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1. Introduction

Throughout the paper, the following notations are used. The set of real numbers, complex numbers,
elliptic numbers, elliptic biquaternions are denoted by R,C,Cp, HCp, respectively. The set of all
matrices on R(Cp orHCp) are denoted by Mm×n(R)(Mm×n(Cp) orMm×n(HCp)). For convenience, the set
of all square matrices on Cp( or HCp) are denoted by Ms(Cp)( or Ms(HCp)).

In 1843, Hamilton introduced the set of real quaternions [1], which can be represented as

H = {q = q0 + q1i + q2j + q3k : q0, q1, q2, q3 ∈ R}

where the quaternionic units i, j and k satisfy the equalities:

i2 = j2 = k2 = −1 , ij = −ji = k , jk = −kj = i, ki = −ik = j. (1.1)

http://www.aimspress.com/journal/Math
http://dx.doi.org/10.3934/math.2020146


2212

There are many applications of real quaternions in various areas of science. One of these
applications is related to matrix theory. In the first half of the 20th century, the real quaternion
matrices began to study [2]. It is well known that linear matrix equations with their applications have
been one of the main topics in matrix theory. For real quaternion matrices, Tian discussed the linear
equations in [3], and gave a general method to solve them. Also, the real quaternion matrix equation
X − AXF = C (Lyapunov equation) is studied by Song et al. [4]. On the other hand, in [5], Song and
Chen studied the real quaternion matrix equation XF − AX = C (Sylvester equation). In the process of
preparing this paper, we are motivated by the aforementioned studies [3–5]. The studies [6–9] can be
suggested as some different and qualified studies on quaternion matrix equations.

After the discovery of real quaternion algebra, Hamilton also introduced the complex quaternion
algebra [10]. The set of complex quaternions is defined by

HC = {Q = Q0 + Q1i + Q2j + Q3k : Q0,Q1,Q2,Q3 ∈ C}

where i, j and k satisfy the same multiplication rules given in (1.1).
As well as real quaternions, complex quaternions have many applications in many areas of science

and they have an important role to explain mathematical and physical events. In these applications of
real and complex quaternions, their complex matrix representations have an important place. There
can be found some interesting studies on complex matrices in [11–14].

Recently, the elliptic biquaternion algebra, which includes the complex quaternion algebra and
real quaternion algebra as special cases, has been introduced. Various studies concerned with elliptic
biquaternion algebra have been presented in the literature. We refer the readers to the papers [15–19].

This article is organized as follows. In section 2, we review elliptic numbers, elliptic matrices,
elliptic biquaternions and elliptic biquaternion matrices. In Section 3, real representations of elliptic
biquaternion matrices are obtained. In section 4, in view of these real representations, we develop a
general method to study the solutions of linear matrix equations over the elliptic biquaternion algebra
HCp. In section 5, we investigate the solutions of the elliptic biquaternion matrix equations X−AXB =

C and AX − XB = C by means of this method. In section 6, we provide numerical algorithms for
finding the solutions of problems which are discussed in the section 4 and section 5.

2. Preliminaries

The set of elliptic numbers is represented as

Cp =
{
x + Iy : x, y ∈ R, I2 = p < 0, p ∈ R

}
.

In this number system, addition and multiplication of any elliptic numbers ω = x1 + Iy1, ς = x2 + Iy2 ∈

Cp are defined as ω+ ς = (x1 + Iy1) + (x2 + Iy2) = (x1 + x2) + I(y1 + y2) and ως = (x1 + Iy1)(x2 + Iy2) =

(x1x2 + py1y2) + I (x1y2 + x2y1), respectively. As it is well known in the literature, Cp is a field under
these two operations, [20]. The set of matrices, which includes m × n matrices with elliptic number
entries, are investigated in [21]. In the set of m×n elliptic matrices Mm×n

(
Cp

)
, ordinary matrix addition

and multiplication are defined. Also, the scalar multiplication is defined as λA = λ
[
ai j

]
=

[
λai j

]
∈

Mm×n

(
Cp

)
where λ ∈ Cp and A =

[
ai j

]
∈ Mm×n

(
Cp

)
, [21].
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The elliptic biquaternion algebra is a four dimensional vector space over the elliptic number field
Cp. It is expressed by

HCp =
{
Q = A0 + A1i + A2j + A3k : A0, A1, A2, A3 ∈ Cp

}
where i, j and k are the quaternionic units which satisfy (1.1). Let Q = A0 + A1i + A2j + A3k, R =

B0 + B1i + B2j + B3k ∈ HCp and λ ∈ Cp be given. Then, the operations of multiplication and addition
are expressed as

QR = [(A0B0) − (A1B1) − (A2B2) − (A3B3)] + [(A0B1) + (A1B0) + (A2B3) − (A3B2)] i
+ [(A0B2) − (A1B3) + (A2B0) + (A3B1)] j + [(A0B3) + (A1B2) − (A2B1) + (A3B0)] k

Q + R = (A0 + B0) + (A1 + B1) i + (A2 + B2) j + (A3 + B3) k

while the operation of scalar multiplication is expressed as [15]

λQ = (λA0) + (λA1) i + (λA2) j + (λA3) k.

The set of all m × n type matrices with elliptic biquaternion entries is denoted by Mm×n

(
HCp

)
. In

this set, the ordinary matrix addition and multiplication are defined. Also, the scalar multiplication is
defined as

QA = Q
[
ai j

]
=

[
Qai j

]
∈ Mm×n

(
HCp

)
where A =

[
ai j

]
∈ Mm×n

(
HCp

)
and Q ∈ HCp. There is a faithful relation between elliptic matrices and

elliptic biquaternion matrices. Where A0, A1, A2, A3 ∈ Mm×n

(
Cp

)
, every elliptic biquaternion matrix

A = A0 + A1i + A2j + A3k ∈ Mm×n

(
HCp

)
has a 2m × 2n elliptic representation

ξ (A) =


A0 + 1√

|p|
IA1 −A2 −

1√
|p|

IA3

A2 −
1√
|p|

IA3 A0 −
1√
|p|

IA1

 (2.1)

which is determined by means of the following linear isomorphism [22]

ξ : Mm×n

(
HCp

)
→ M2m×2n

(
Cp

)
A = A0 + A1i + A2j + A3k → ξ (A) =


A0 + 1√

|p|
IA1 −A2 −

1√
|p|

IA3

A2 −
1√
|p|

IA3 A0 −
1√
|p|

IA1

 .
We aim to obtain the real representations of elliptic biquaternion matrices. In the next section, the

representation ξ (A) will be written in a somewhat different form which is suitable for the purpose of
us.
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3. Real representations of elliptic biquaternion matrices

In this section, firstly, we get the real representations of elliptic matrices. Afterwards, we obtain the
real representations of elliptic biquaternion matrices which will be useful for investigating the solutions
of linear matrix equations over the elliptic biquaternion algebra HCp in the next section.

By means of the study [23] which was presented by Yaglom in 1968, we know that in the case
I2 = −q−rI(r2−4q < 0), the transformation that is obtained by making the generalized complex number
c1 + Id1 correspond to the ordinary complex number c + id, where c = c1 −

r
2d1 and d = d1

2

√
4q − r2, is

an isomorphism. As it is well known, I2 = p, p < 0 for elliptic numbers. By taking into consideration
this case, the restriction of this isomorphism is obtained as follows:

ε : Cp → C

c1 + Id1 → c1 + id1
√
|p|

(3.1)

On the other hand, we know that an ordinary complex number z = a + ib has a faithful real matrix
representation

α (z) =

[
a −b
b a

]
which is determined by means of the following linear isomorphism

α : C→ MΩ
2 (R)

z = a + ib→ α (z) =

[
a −b
b a

]
(3.2)

where MΩ
2 (R) =

{[
x −y
y x

]
: x, y ∈ R

}
, [24].

Now, we take into consideration the compound function δp = α ◦ ε which is given as

δp : Cp → MΩ
2 (R)

ω = x + Iy→ δp(ω) =

[
x −y

√
|p|

y
√
|p| x

]
.

(3.3)

Since the functions ε and α are linear isomorphisms, there is no doubt that δp is a linear isomorphism.
Thus, we have a faithful real matrix representation of an elliptic number ω = x + Iy ∈ Cp as

δp(ω) =

[
x −y

√
|p|

y
√
|p| x

]
.

As a natural consequence of the linear isomorphism δp, the following function

γp : Mm×n(Cp) → MΩ
2m×2n(R)

A = A1 + IA2 → γp(A) =

[
A1 −

√
|p|A2√

|p|A2 A1

]
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that is expected to be a linear isomorphism can be immediately defined where

MΩ
2m×2n(R) =

{[
G −

√
|p|H√

|p|H G

]
: G,H ∈ Mm×n(R)

}
. One can see easily that this function is

bijection and satisfies the following equalities

γp(A + B) = γp(A) + γp(B), γp(AC) = γp(A)γp(C)

for any elliptic matrices A, B, C of appropriate sizes. Thus, γp is a linear isomorphism as anticipated
and we have a faithful real matrix representation of an elliptic matrix A = A1 + IA2 ∈ Mm×n(Cp) as

γp (A) =

[
A1 −

√
|p|A2√

|p|A2 A1

]
. (3.4)

On the other hand, the elliptic matrix representation of an elliptic biquaternion matrix A = A0 +

A1i + A2j + A3k ∈ Mm×n(HCp) given in (2.1) can be written in a somewhat different form as

ξ (A) =


A#

0 −
√
|p|A′1 −A#

2 +
√
|p|A′3

A#
2 +

√
|p|A′3 A#

0 +
√
|p|A′1

 + I


A′0 + 1√

|p|
A#

1 −A′2 −
1√
|p|

A#
3

A′2 −
1√
|p|

A#
3 A′0 −

1√
|p|

A#
1

 (3.5)

where Ai = Ai
# + I Ai

′ ∈ Mm×n(Cp) , Ai
#, Ai

′ ∈ Mm×n(R) , 0 ≤ i ≤ 3. Then, applying (3.4) to (3.5), we
get 4m×4n real matrix representation of the elliptic matrix ξ (A) (in other words the real representation
of the elliptic biquaternion matrix A) as follows:

γp (ξ (A)) =



A#
0 −

√
|p|A′1 −A#

2 +
√
|p|A′3 −A#

1 −
√
|p|A′0 A#

3 +
√
|p|A′2

A#
2 +

√
|p|A′3 A#

0 +
√
|p|A′1 A#

3 −
√
|p|A′2 A#

1 −
√
|p|A′0

A#
1 +

√
|p|A′0 −A#

3 −
√
|p|A′2 A#

0 −
√
|p|A′1 −A#

2 +
√
|p|A′3

−A#
3 +

√
|p|A′2 −A#

1 +
√
|p|A′0 A#

2 +
√
|p|A′3 A#

0 +
√
|p|A′1


. (3.6)

For convenience, let us denote γp(ξ(A)) by (A)γp where A is any elliptic biquaternion matrix. One can
immediately see that the unit matrix In satisfies the equation

(In)γp = I4n. (3.7)

Some properties which are satisfied by the real representation are given below.

Proposition 3.1. Let A, B ∈ Mm×n(HCp), C ∈ Mn×l(HCp), D ∈ Ms(HCp) be arbitrary elliptic
biquaternion matrices. In that case

1. A = B⇔ (A)γp = (B)γp,
2. (A + B)γp = (A)γp + (B)γp, (AC)γp = (A)γp(C)γp,

AIMS Mathematics Volume 5, Issue 3, 2211–2225.
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3. If D is invertible, then (D)γp is invertible and (D−1)γp = ((D)γp)−1,

4. (A)γp = S 4m
−1(A)γpS 4n where S 4t =


0 0 −It 0
0 0 0 −It

It 0 0 0
0 It 0 0

 , t = m, n.

Proof. Since γp ◦ ε is a linear isomorphism, 1 and 2 are obvious. Also, the proof of 4 can be easily
completed by direct calculation. Now we will prove 3.

3. From the inverse property, we can write

DD−1 = D−1D = Is.

Then, we get the equalities

(D)γp(D−1)γp = (DD−1)γp = (Is)γp = I4s

and

(D−1)γp(D)γp = (D−1D)γp = (Is)γp = I4s

by means of (3.7) and first two properties in this proposition. It means that (D−1)γp = ((D)γp)−1.

�

4. On the solutions of linear matrix equations over HCp

In this section, we give a general method on the solutions of linear matrix equations over the elliptic
biquaternion algebra HCp with the aid of the real representations. To do so, we take into consideration
the elliptic biquaternion matrix equation:

A1XB1 + ... + AkXBk = C (4.1)

where A1, ..., Ak ∈ Mm×n(HCp), B1, ..., Bk ∈ Mu×v(HCp), C ∈ Mm×v(HCp) and X ∈ Mn×u(HCp).
Let us define the real representation of the elliptic biquaternion matrix equation (4.1) as in the

following:

(A1)γpY(B1)γp + ... + (Ak)γpY(Bk)γp = (C)γp. (4.2)

Thanks to the first two properties given in Proposition 3.1, the elliptic biquaternion matrix
equation (4.1) is equivalent to the following real matrix equation

(A1)γp(X)γp(B1)γp + ... + (Ak)γp(X)γp(Bk)γp = (C)γp. (4.3)

Hence, we have the following proposition.

Proposition 4.1. The elliptic biquaternion matrix equation (4.1) has an elliptic biquaternion matrix
solution X ∈ Mn×u(HCp) if and only if the real matrix equation (4.2) has a real matrix solution Y =

(X)γp ∈ M4n×4u(R).
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Theorem 4.2. Let A1, A2, ..., Ak ∈ Mm×n(HCp), B1, B2, ..., Bk ∈ Mu×v(HCp) and C ∈ Mm×v(HCp) be
given. In this case the elliptic biquaternion matrix equation (4.1) has a solution X ∈ Mn×u(HCp) if and
only if its real representation equation (4.2) has a solution Y ∈ M4n×4u(R). In that case, if the block
matrix

Y =
[
Yi j

]4

i, j=1
, Yi j ∈ Mn×u(R)

is a solution of (4.2), then n × u elliptic biquaternion matrix

X = (X#
0 + IX′0) + (X#

1 + IX′1)i + (X#
2 + IX′2)j + (X#

3 + IX′3)k (4.4)

is a solution of (4.1) where

X#
0 = 1

4 (Y11 + Y22 + Y33 + Y44), X′0 = 1
4
√
|p|

(Y31 − Y13 + Y42 − Y24),

X#
1 = 1

4 (Y24 − Y42 + Y31 − Y13), X′1 = 1
4
√
|p|

(Y44 − Y33 + Y22 − Y11),

X#
2 = 1

4 (Y21 − Y12 + Y43 − Y34), X′2 = 1
4
√
|p|

(Y14 − Y32 + Y41 − Y23),

X#
3 = 1

4 (Y14 − Y32 + Y23 − Y41), X′3 = 1
4
√
|p|

(Y34 + Y12 + Y43 + Y21).

(4.5)

Proof. In view of the Proposition 4.1, the proof remains to show that if the block real matrix

Y =
[
Yi j

]4

i, j=1
, Yi j ∈ Mn×u(R) (4.6)

is a solution of (4.2), in that case the elliptic biquaternion matrix, which is given in (4.4), is a solution
of (4.1). When Y is a solution of (4.2), in view of the fourth property in Proposition 3.1, we have the
equation

(A1)γp(S 4n
−1YS 4u)(B1)γp + ... + (Ak)γp(S 4n

−1YS 4u)(Bk)γp = (C)γp. (4.7)

This last equation shows that S 4n
−1YS 4u is also a solution of (4.2). Then, according to the matrix

theory, the following matrix

Y ′ =
1
2

(Y + S 4n
−1YS 4u) (4.8)

satisfies the real matrix equation (4.2), that is, Y ′ is another solution of (4.2). If (4.6) is substituted in
(4.8), after some calculations, the equality

Y ′ =


J K −N −O
L M −P −R
N O J K
P R L M

 (4.9)
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is obtained where

J =
1
2

(Y11 + Y33), L =
1
2

(Y21 + Y43), N =
1
2

(Y31 − Y13), P =
1
2

(Y41 − Y23)

K =
1
2

(Y12 + Y34), M =
1
2

(Y22 + Y44), O =
1
2

(Y32 − Y14), R =
1
2

(Y42 − Y24).

By taking into consideration (4.9) and (3.6), we construct the elliptic biquaternion matrix

X = (X#
0 + I X′0) + (X#

1 + I X′1)i + (X#
2 + I X′2)j + (X#

3 + I X′3)k

where X#
i , X′i , 0 ≤ i ≤ 3 are as in (4.5).

Obviously, (X)γp = Y ′. Then, according to Proposition 4.1, the elliptic biquaternion matrix X is a
solution of the equation (4.1). �

5. Some results

In this section, we investigate the solutions of the elliptic biquaternion matrix equations X − AXB =

C and AX − XB = C by means of Theorem 4.2.
For k = 2, the special case of (4.1) is given by

A1XB1 + A2XB2 = C (5.1)

where A1, A2 ∈ Mm×n(HCp), B1, B2 ∈ Mu×v(HCp), C ∈ Mm×v(HCp) and X ∈ Mn×u(HCp). If B1 =

Iu, A2 = −In, m = n, u = v are taken in (5.1) and also some notation changes are made as follows:
A1 = A, B2 = B,

AX − XB = C

is obtained where A ∈ Mn(HCp), B ∈ Mu(HCp) and C ∈ Mn×u(HCp). It is not difficult to see that the
real representation of the last equation is

(A)γpY − Y(B)γp = (C)γp.

In view of the above derivation and Theorem 4.2, we have the following corollary:

Corollary 5.1. Let A ∈ Mn(HCp), B ∈ Mu(HCp) and C ∈ Mn×u(HCp). In this case the elliptic
biquaternion matrix equation

AX − XB = C (5.2)

has a solution X ∈ Mn×u(HCp) if and only if the real matrix equation

(A)γpY − Y(B)γp = (C)γp (5.3)
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has a solution Y ∈ M4n×4u(R), in which case, if

Y =
[
Yi j

]4

i, j=1
, Yi j ∈ Mn×u(R)

is a solution of (5.3), then n × u elliptic biquaternion matrix

X = (X#
0 + IX′0) + (X#

1 + IX′1)i + (X#
2 + IX′2)j + (X#

3 + I X′3)k

is a solution of (5.2) where X#
i , X′i , 0 ≤ i ≤ 3 are calculated as in (4.5). �

Similarly above, if A1 = In, B1 = Iu, m = n, u = v are taken in (5.1) and also some notation
changes are made as follows: A2 = −A, B2 = B,

X − AXB = C

is obtained where A ∈ Mn(HCp), B ∈ Mu(HCp) and C ∈ Mn×u(HCp). It is easy to see that the real
representation of the last equation is

Y − (A)γpY(B)γp = (C)γp.

Considering the above derivation and Theorem 4.2, we have the following corollary:

Corollary 5.2. Let A ∈ Mn(HCp), B ∈ Mu(HCp) and C ∈ Mn×u(HCp). In this case the elliptic
biquaternion matrix equation

X − AXB = C (5.4)

has a solution X ∈ Mn×u(HCp) if and only if the real matrix equation

Y − (A)γpY(B)γp = (C)γp (5.5)

has a solution Y ∈ M4n×4u(R), in which case, if

Y =
[
Yi j

]4

i, j=1
, Yi j ∈ Mn×u(R)

is a solution of (5.5), then n × u elliptic biquaternion matrix

X = (X#
0 + IX′0) + (X#

1 + IX′1)i + (X#
2 + IX′2)j + (X#

3 + I X′3)k

is a solution of (5.4) where X#
i , X′i , 0 ≤ i ≤ 3 are calculated as in (4.5).

6. Numerical algorithms and examples

Based on the discussions in Section 4 and Section 5, in this section we provide numerical algorithms
for finding the solutions of problems which are related to Corollary 5.1, Corollary 5.2 and Theorem 4.2.

Note that all computations in the rest of the paper are performed on an Intel i7-3630QM@2.40
Ghz/16GB computer using MATLAB R2016a software. Another thing that can be of importance is
that we use the standard MATLAB package procedures.

Firstly, we give an example related to Corollary 5.1.
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Example 6.1. Solve elliptic biquaternion matrix equation

[
−(1 + I)i (2I) j

0 0

]
X − X

[
1 i
0 k

]

=

[
(−8 + 2I) − (1 + I) i + (−18 + 2I) j − 2Ik (19 − 3I) − (2 + I) i − 2Ij + (25 − 3I) k

0 − (2 + I) i + Ij

]
over the elliptic biquaternion algebra HC−9 with the aid of its real representation.

By taking into consideration the Corollary 5.1, real representation of given matrix equation can be
written as in the following:



3 0 0 0 1 0 0 6
0 0 0 0 0 0 0 0
0 0 −3 0 0 −6 −1 0
0 0 0 0 0 0 0 0
−1 0 0 −6 3 0 0 0
0 0 0 0 0 0 0 0
0 6 1 0 0 0 −3 0
0 0 0 0 0 0 0 0


Y − Y



1 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 1
0 0 0 0 0 1 0 0
0 1 0 0 1 0 0 0
0 0 0 −1 0 0 0 0
0 0 0 −1 0 0 1 0
0 −1 0 0 0 0 0 0



=



−5 22 12 −9 −5 11 6 19
0 3 0 0 0 2 0 3
−24 −9 −11 16 −5 −1 −6 31

0 0 0 −3 0 0 0 −3
5 −11 −6 −19 −5 22 12 −9
0 −2 0 −3 0 3 0 0
6 −31 7 −7 −24 −9 −11 16
0 3 0 2 0 0 0 −3


.

If we solve this equation, we have

Y =



−3 0 6 −2 −1 0 0 3
0 −3 0 −2 0 0 0 3
6 2 3 0 0 −3 1 0
0 2 0 3 0 −3 0 0
1 0 0 −3 −3 0 6 −2
0 0 0 −3 0 −3 0 −2
0 3 −1 0 6 2 3 0
0 3 0 0 0 2 0 3


.

It means that
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Y11 = Y33 =

[
−3 0
0 −3

]
,Y12 = Y34 =

[
6 −2
0 −2

]
,Y14 = Y41 =

[
0 3
0 3

]
,Y13 = Y42 =

[
−1 0
0 0

]
,

Y22 = Y44 =

[
3 0
0 3

]
, Y24 = Y31 =

[
1 0
0 0

]
, Y32 = Y23 =

[
0 −3
0 −3

]
, Y21 = Y43 =

[
6 2
0 2

]
.

Consequently, it is concluded that

X =

[
(1 + I) i + 2Ik (2 + I) j

0 Ii + (2 + I) j

]
∈ M2(HC−9).

by means of the equations (4.4) and (4.5). �

We can generate an algorithm for problems related to Corollary 5.1 as in the following:
Algorithm 1

1. Input A, B, C (A ∈ Mn(HCp), B ∈ Mu(HCp) and C ∈ Mn×u(HCp)).
2. Form (A)γp, (B)γp, (C)γp.

3. Compute Y =
[
Yi j

]4

i, j=1
satisfying (5.3) (Yi j ∈ Mn×u(R)).

4. Calculate X#
i , X′i according to (4.5)(0 ≤ i ≤ 3).

5. Output X = (X#
0 + IX′0) + (X#

1 + IX′1)i + (X#
2 + IX′2)j + (X#

3 + I X′3)k.

Now, we give an example related to Corollary 5.2.

Example 6.2. Solve elliptic biquaternion matrix equation

X −
[

(−1 − I)i 0
0 0

]
X

[
1 0
0 k

]

=

[
(1 − I) + (1 + I) i + (I) j + (−1 + 2I) k (1 − 2I) i + (1 + I) j + (1 + I) k

0 (I) i + 5j

]

over the elliptic biquaternion algebra HC−2 by using its real representation.
If the Corollary 5.2 is taken into consideration, the real representation equation

Y −



1.4142 0 −1 0 1 0 0 0
0 0 0 0 0 0 0 0
1 0 −1.4142 0 0 0 −1 0
0 0 0 0 0 0 0 0
−1 0 0 0 1.4142 0 −1 0
0 0 0 0 0 0 0 0
0 0 1 0 1 0 −1.4142 0
0 0 0 0 0 0 0 0


Y



1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 −1 0 0 0 0
0 0 0 0 0 0 1 0
0 −1 0 0 0 0 0 0


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=



−0.4142 2.8284 2.8284 0.4142 0.4142 −1 0.4142 2.4142
0 −1.4142 0 −5 0 0 0 0

2.8284 2.4142 2.4142 −2.8284 −2.4142 −0.4142 2.4142 1
0 5 0 1.4142 0 0 0 0

−0.4142 1 −0.4142 −2.4142 −0.4142 2.8284 2.8284 0.4142
0 0 0 0 0 −1.4142 0 −5

2.4142 0.4142 −2.4142 −1 2.8284 2.4142 2.4142 −2.8284
0 0 0 0 0 5 0 1.4142


can be written. By solving this equation, we have

Y =



−1.4142 0 0 1.4142 −1 0 1.4142 1
0 −1.4142 0 −5 0 0 0 0
0 1.4142 1.4142 0 −1.4142 1 1 0
0 5 0 1.4142 0 0 0 0
1 0 −1.4142 −1 −1.4142 0 0 1.4142
0 0 0 0 0 −1.4142 0 −5

1.4142 −1 −1 0 0 1.4142 1.4142 0
0 0 0 0 0 5 0 1.4142


.

It means that

Y11 = Y33 =

[
−1.4142 0

0 −1.4142

]
, Y12 = Y34 =

[
0 1.4142
0 −5

]
, Y14 =

[
1.4142 1

0 0

]
,

Y13 = Y42 =

[
−1 0
0 0

]
, Y21 = Y43 =

[
0 1.4142
0 5

]
, Y23 =

[
−1.4142 1

0 0

]
, Y41 =

[
1.4142 −1

0 0

]
,

Y22 = Y44 =

[
1.4142 0

0 1.4142

]
, Y24 = Y31 =

[
1 0
0 0

]
, Y32 =

[
−1.4142 −1

0 0

]
.

Consequently, we obtain

X =

[
(1 + 0.9995I) i + (0.9995I) j (1 + 0.9995I) k

0 (0.9995I) i + 5j

]
∈ M2(HC−2)

by means of the equations (4.4) and (4.5). �
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We can generate an algorithm for problems related to Corollary 5.2 as follows:

Algorithm 2

1. Input A, B, C (A ∈ Mn(HCp), B ∈ Mu(HCp) and C ∈ Mn×u(HCp)).
2. Form (A)γp, (B)γp, (C)γp.

3. Compute Y =
[
Yi j

]4

i, j=1
satisfying (5.5) (Yi j ∈ Mn×u(R)).

4. Calculate X#
i , X′i according to (4.5)(0 ≤ i ≤ 3).

5. Output X = (X#
0 + IX′0) + (X#

1 + IX′1)i + (X#
2 + IX′2)j + (X#

3 + I X′3)k.

As a result of using the standard MATLAB package procedures, when our calculations include
the rational numbers, root numbers, exponential expressions, logarithmic expressions etc., our method
gives an approximate solution of the desired equation just like in the case of Example 6.2. Otherwise,
our method gives the exact solution of the desired equation just like in the case of Example 6.1. To
ensure the exact solution of the desired equation in Example 6.2, one can use the MATLAB package
Symbolic Math Toolbox. If the same steps are followed by using this package, the exact solution

X =

[
(1 + I) i + (I) j (1 + I) k

0 (I) i + 5j

]
∈ M2(HC−2)

of the aforementioned elliptic biquaternion matrix equation is immediately found. It must be noted
that using this package always provides an advantage in terms of the exact solution, however using it
sometimes causes a disadvantage in terms of the length of the solution.

Finally, we can give an algorithm for the most general case, that is, for the problems related to
Theorem 4.2.
Algorithm 3

1. Input Ai, Bi, C (Ai ∈ Mm×n(HCp), Bi ∈ Mu×v(HCp), 1 ≤ i ≤ k and C ∈ Mm×v(HCp)).
2. Form (Ai)γp, (Bi)γp, (C)γp (1 ≤ i ≤ k).

3. Compute Y =
[
Yi j

]4

i, j=1
satisfying (4.2) (Yi j ∈ Mn×u(R)).

4. Calculate X#
i , X′i according to (4.5)(0 ≤ i ≤ 3).

5. Output X = (X#
0 + IX′0) + (X#

1 + IX′1)i + (X#
2 + IX′2)j + (X#

3 + I X′3)k.

7. Conclusion

In this paper, real representations of elliptic biquaternion matrices, which may be needed to
investigate various topics on elliptic biquaternion matrices in the future, are obtained. By means of
these representations, a general method on the solutions of linear matrix equations over the elliptic
biquaternion algebra HCp is developed. Also, some problems are considered as applications of this
method. Lastly, the numerical algorithms for finding the solutions of these problems are provided.

When p = −1 the number system Cp and the set of elliptic biquaternions HCp correspond to the
complex number system C and the set of complex quaternions HC, respectively. As a natural
consequence of this case, the set of elliptic biquaternion matrices Mm×n(HCp) is reduced to set of
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complex quaternion matrices Mm×n(HC) when p = −1. Therefore, our method solves the linear
equations of complex quaternion matrices as well.

Real or complex quaternion matrices have an important role in many areas of science. Since elliptic
biquaternion matrices are generalized form of complex quaternion matrices and so real quaternion
matrices, it is expected that the results obtained here will be used as a valuable tool in many areas of
science.
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19. K. E. Özen, M. Tosun, Further results for elliptic biquaternions, Conference Proceedings of
Science and Technology, 1 (2018), 20–27.

20. A. A. Harkin, J. B. Harkin, Geometry of generalized complex numbers, Math. Mag., 77 (2004),
118–129.
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