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Abstract: In this article, a new chaotic system with hyperbolic sinusoidal function is introduced.
This chaotic system provides a new category of chaotic flows which gives better perception of chaotic
attractors. In the proposed chaotic flow with hyperbolic sinusoidal function, according to the changes
of parameters of the system, the self-excited attractor and two forms of hidden attractors are occurred.
Dynamic behavior of the offered chaotic flow is studied through eigenvalues, bifurcation diagrams,
phase portraits, and spectrum of Lyapunov exponents. Moreover, the existence of double-scroll
attractors in real word is considered via the Orcard-PSpice software through an electronic execution
of the new chaotic flow and illustrative results between the numerical simulation and Orcard-PSpice
outcomes are obtained. Lastly, random number generator (RNG) design is completed with the
new chaos. Using the new RNG design, a novel voice encryption algorithm is suggested and voice
encryption use and encryption analysis are performed.
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1. Introduction

Chaotic flows are mathematical models originated from the rules of defining chaotic behaviors [1,2].
In the former decades, the chaos theory has been employed in numerous fields such as digital
signature [3], secure cryptography [4], pseudorandom number generation [5], secure communication [6],
weak signal detection [7], DC-DC boost converter [8], image encryption [9], neurophysiology [10],
secure data transmission [11], etc. For the control and synchronization purposes of chaotic systems,
several techniques like active control [12], fuzzy control [13], linear matrix inequality (LMI) [14],
sampled-data control [15], impulsive adaptive control [16], intermittent control [17] and sliding mode
control (SMC) [18] have been introduced.

Recently, Wei (2011) announced a chaotic system with no equilibrium point [19]. Jafari et al. (2013)
discovered a set of 17 elementary quadratic chaos systems with no equilibrium points [20]. A chaos
system possessing a stable equilibrium point was recently found in [21,22]. It is observed that Shilnikov
method [23,24] is not applicable to check chaos behavior in special dynamical systems with no equilibrium
point or with stable equilibrium points. Such dynamical systems can be viewed as systems with hidden
chaotic attractors in scientific computing [24–26]. Chaotic systems with hidden attractors can result in
unexpected disastrous behavior in mechanical systems and electronic circuits.

It is stimulating that chaotic flows containing infinite number of equilibrium points have achieved
much consideration in the past decade. Especially, structures with uncountable equilibrium points
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are categorized as systems with hidden attractors [27,28]. Hidden attractors do not have basins of
attraction related to the unstable equilibria. As stated by the recent investigations, hidden attractors
are fundamental in engineering usages, for instance, radio-physical oscillator [29], multilevel DC/DC
converter [30], electromechanical systems [31] or relay system with hysteresis [32].

In recent years, some new chaotic flows have been planned via cascade chaos, dimension expansion,
and physics modelling [1,33]. An extensive body of scientists has been devoted on counteracting
degradation and performance improvement of existing chaotic flows. As chaos is broadly employed in
nonlinear control, synchronization, and other usages, the design problem of the chaotic flows with
complex chaotic behaviors is more attractive [34].

In addition, a widespread application of chaotic systems is that of encryption schemes, voice,
text or image. In these schemes, RNGs are the most basic constructs. The fact that the numbers used
in encryption have a high randomness and a big impact on the quality of the encryption. In the last
few years, some encryption schemes, especially for sound messages, based mainly on discrete chaotic
maps, have been presented. In 2016, Sadkhan et al. presented a new speech scrambling system using a
hybrid use of different chaotic maps [35]. In 2018, Mobayen et al. proposed the implementation of a
sound encryption method based on a novel chaotic system with boomerang-shaped equilibrium [36].
On the same year, Raheema et al. presented an efficient Simulink model, speech scrambling based
chaotic maps for encryption of data such as voice, video and text, because it possesses high sensitive to
initial values and model external parameters [37].

The objective of this article is to investigate a novel chaotic flow with hyperbolic sinusoidal
function. The proposed chaotic flow provides a new category of chaotic systems which helps in more
perception of chaotic attractors. In this chaotic flow, because of the variations of the parameters,
the self-excited attractor and two forms of hidden attractors (no equilibrium point and line of equilibria)
are created. Next, the proposed chaotic system with hidden attractors has been used in the design of
an RNG algorithm. Finally, this RNG algorithm is used in a sound encryption scheme.

The rest of this work is organized as follows. In the following section, mathematical form of new
chaotic structure is given and different scenarios are proposed. Moreover, some discussions for chaotic
flow covering dynamic features such as spectrum of the Lyapunov exponents, bifurcation diagrams,
and Poincaré map are proposed. In Section 3, the circuit design of presented chaotic flow is provided
and PSpice representation of the chaotic attractors is presented. In Section 4, the engineering application
containing RNG algorithm design and voice encryption algorithm is described. As a final point,
conclusions are provided in Section 5.

2. Chaotic Flow with a Hyperbolic Sinusoidal Function

In the search for chaos flows with hyperbolic sinusoidal function, we study the form of a
three-dimensional chaotic structure as:

.
x = a1x + a2y + a3z + a4xy + a5xz + a6yz + b,
.
y = a7xy + a8xz + a9yz + a10sinh(y) + c,
.
z = a11x + a12y + a13z + a14xy + a15xz + a16yz

(1)

where x, y and z denote the system states; a1, . . . , a16 indicate the coefficients of the terms; b and c are
two scalars which define the chaos behavior.

A computer examination is executed investigating millions of combinations of different forms,
various initial states and different constant values, looking for dissipative cases for which the largest
Lyapunov exponent is bigger than 0.001. The system is in chaos state if the largest Lyapunov exponent
is bigger than zero, and the system is in steady period state if the largest Lyapunov exponent is smaller
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than zero [38,39]. Therefore, in the present work, a three-dimensional chaotic flow is reported which is
specified by:

.
x = x− ayz + b,
.
y = xz− sinh(y) + c,
.
z = x

(2)

where the parameter a6 in (1) has been denoted as parameter a in system (2).
Next, three different scenarios depending on the values of system’s (2) parameters b, c are discussed

in details.

2.1. Scenario A: Line of Equilibria

If b = c = 0, the chaotic flow (2) will have a line of equilibria, i.e., EA = [0, 0, z∗]T, where z∗ is
the equilibrium point value in z axis and T means the transpose of the vector. To analyze the state
trajectories in the vicinity of the equilibrium point, the Jacobian matrix is obtained from (2) as:

J =


1 −az −ay
z −cosh(y) x
1 0 0

. (3)

For equilibrium point EA = [0, 0, z∗]T, the Jacobian matrix is defined as

J =


1 −az∗ 0
z∗ −1 0
1 0 0

. (4)

Therefore, the eigenvalues of the linearized system are achieved as

|λI − J| =

∣∣∣∣∣∣∣∣∣
λ− 1 az∗ 0
−z∗ λ+ 1 0
−1 0 λ

∣∣∣∣∣∣∣∣∣ = λ
(
λ2 + az∗2 − 1

)
= 0⇒ λ1 = 0,λ2,3 = ±

√

1− az∗2. (5)

The equilibrium is a saddle node for − 1
√

a
< z∗ < 1

√
a
. The equilibrium point is an unstable node for

z∗ = ± 1
√

a
. For the values z∗ > 1

√
a

and z∗ < − 1
√

a
, since one eigenvalue is zero and two eigenvalues are

imaginary, the stability of the equilibrium point cannot be determined by this method; the equilibrium
point may be stable, unstable or marginally stable.

If one design parameter is varied and the norm of the state variables vector is plotted for finding the
fixed points of the system versus the changing parameter, finally the bifurcation diagram is obtained [40].
In the bifurcation diagrams, the fixed points maybe disappear, appear, or change their stability nature
when the design parameter is changed. Those variations may occur even for infinitesimal changes in
the parameter. Bifurcation diagram is used for the stability analysis of a dynamical system [41,42].
Moreover, the Lyapunov exponents spectrum makes it possible to qualitatively quantify a local property
with respect to the attractor’s stability. The positive/negative values of the Lyapunov exponents can
be observed as a measure of the averaged exponential divergence/convergence of neighborhood
trajectories [43,44]. The bifurcation diagram for y, when the states cut the plane z = 0 with dz/dt < 0,
as well as the spectrum of system’s Lyapunov exponents (LEi, i = 1, 2, 3), by varying the value of a
to explore the dynamical form of system (2), while keeping the initial states as [x0, y0, z0] = [2, 0.2, 1],
are depicted in Figure 1. Therefore, the suggested structure (2) is integrated via the classical Runge-Kutta
integration algorithm [45], numerically. For all of the parameters, the simulation calculations are
executed via the parameters and variables in extended precision mode. In addition, the spectrum of
the Lyapunov exponents are found via the Wolf’s algorithm [46].
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Figure 1. (a) Bifurcation diagram, (b) Lyapunov exponents spectrum of dynamics (2), when changing 
a from 1.85 to 2.4, and b = c = 0. 

Figure 1. (a) Bifurcation diagram, (b) Lyapunov exponents spectrum of dynamics (2), when changing a
from 1.85 to 2.4, and b = c = 0.

The dynamics (2) shows a chaotic attractor, for a = 2 (Figure 2), and a limit cycle of Period-1,
for a = 2.35 (Figure 3). The spectrum of Lyanpunov exponents (Figure 1b) approves the dynamic
behavior of the system as it has been revealed via bifurcation diagram.

2.2. Scenario B: No Equilibrium Point

If b , 0, c = 0 and by keeping a = 2, for obtaining the equilibrium point, we solve
.
x = 0,

.
y = 0

and
.
z = 0, that is

x− 2yz + b = 0,
xz− sinh(y) = 0,
x = 0.

(6)

Consequently, the chaotic flow has no equilibrium point in this case. Therefore, it belongs to the
category of chaotic systems containing hidden attractors.
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Taking the bifurcation diagram of y (Figure 4a), along with the Lyapunov exponents spectrum
(Figure 4b) by changing b for 0 < b < 0.005, in order to explore the dynamics (2), for initial conditions
[x0, y0, z0] = [2, 0.2, 1], interesting dynamical behavior has been investigated. As it is obtained from
bifurcation diagram (Figure 4a), the system passes from a chaotic region, for b ∈ [0, 0.075), to a periodic
one as the parameter b increases.Symmetry 2020, 12, x FOR PEER REVIEW 5 of 18 
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Figure 2. Strange chaos attractor for a = 2 and b = c = 0 in Scenario A.
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Figure 3. Limit cycle of period-1 for b = c = 0 and a = 2.35 in Scenario A.
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Figure 4. (a) Bifurcation diagram, (b) spectrum of Lyapunov exponents of (2), when changing b from 0
to 0.01, for a = 2, c = 0.

The strange attractors of the system (2) are displayed for a = 2, b = 0.005 and c = 0 in Figure 5. In this
case, the Lyapunov exponents are LE1 = 0.14107, LE2 = 0, LE3 = −1.33835, which confirmed the chaotic
behavior of the system (2). The Kaplan-York dimension of the chaotic flow is DKY = 2.1054. Besides,
the Poincaré map in x-y plane presents the folding properties of chaos when z = 0 with dz/dt < 0 (Figure 6).
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2.3. Scenario C: Self-Excited Attractor

If b = 0, c , 0 and a = 2 this chaotic flow has only one equilibrium EC =
[
0, sinh−1(b), 0

]T
. For the

equilibrium point EC, the Jacobian matrix is found as:

J =


1 0 −2sinh−1(b)
0 −cosh(sinh−1(b)) 0
1 0 0

. (7)

Then, the eigenvalues of the linearized chaotic flow are obtained as:

|λI − J| =

∣∣∣∣∣∣∣∣∣
λ− 1 0 2sinh−1(c)

0 λ+ cosh(sinh−1(c)) 0
−1 0 λ

∣∣∣∣∣∣∣∣∣
=

(
λ+ cosh(sinh−1(c))

)(
λ2
− λ+ 2sinh−1(c)

)
= 0

⇒ λ1 = −cons(sinh−1(c)) = −
√

1 + c2,λ2,3 =
1±
√

1−8sinh−1(c)
2 .

(8)

For c > 0.1253, the eigenvalues of the chaotic flow are found as λ = −
√

1 + c2, 1±iω
2 , and the

equilibrium point is a saddle focus. For c < 0.1253, the eigenvalues of the chaotic flow are obtained as

λ = −
√

1 + c2, 1±
√

∆
2 , and the equilibrium point is a saddle node.

Figure 7 depicts the bifurcation diagram of variable y as well as the spectrum of Lyapunov
exponents by varying c, for 0 < c < 0.05, to explore the dynamics (2), for initial states [x0, y0, z0] = [2, 0.2, 1].
It is shown from bifurcation diagram (Figure 7a) that the system passes from a chaotic region for
c ∈ [0, 0.0285) to a periodic one as the parameter c increases. The respective spectrum of Lyapunov
exponents to parameter c displays the aforementioned system’s (2) dynamical behavior for a = 2 and
b = 0.

The strange attractors of (2) for a = 2, b = 0, and c = 0.02 are demonstrated in Figure 8.
For these parameter’s values, the Lyapunov exponents are LE1 = 0.09822, LE2 = 0, LE3 = −1.27669,
which confirmed the chaotic behavior of system (2). The Kaplan-York dimension is DKY = 2.07699.
Furthermore, the Poincaré maps in x–y plane, when z = 0 with dz/dt < 0 (Figure 9) presents the folding
features of chaos.
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Figure 7. (a) Bifurcation diagram, (b) Lyapunov exponents spectrum of (2) when changing c from 0 to
0.05, for a = 2, b = 0.
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Figure 8. Strange attractors for a = 2, b = 0 and c = 0.02.
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3. Circuit Design of the Proposed Chaotic Flow

In recent years, the physical realizations of theoretical chaos forms have been investigated
extensively for approving the feasibility and employing them in practical usages [47–50]. Therefore,
in this section, a circuit realization with the hyperbolic sinusoidal nonlinearity is presented.
For the reason of easiness, the general design methodology is applied according to the operational
amplifiers [51,52]. The circuit is designed by using the common electronic components as displayed in
Figure 10. There are an inverting amplifier (U4), three integrators (U1–U3), and two analog multipliers
(U7, U8) of type AD633. The circuit for simulating the hyperbolic sinusoidal nonlinearity, in the dotted
frame, includes three resistors (RS1–RS3), two operational amplifiers (U5, U6) and two diodes (D1, D2).

Based on Figure 8, via the Kirchhoff’s laws, the circuital equation of the circuit is found as

.
X = 1

RC

[
X − R

R11V YZ + Vb
]
,

.
Y = 1

RC

[
XZ
1V −

2ISRS3R
R4

sinh
( RS2

nVTRS1

)
+ Vc

]
,

.
Z = 1

RC X

(9)

where IS, n and VT are diode’s reverse bias saturation current, the diode’s ideality factor, and the
thermal voltage, correspondingly. Normalizing the Equation (9) with τ = t/RC, the dimensionless
structure can be designated by

.
X = X − R

R11V YZ + Vb,
.
Y = XZ

1V −
2ISRS3R

R4
sinh

( RS2
nVTRS1

)
+ Vc,

.
Z = X

(10)

The variables (X, Y, Z) are equivalent to output voltages of integrators (U1–U3), when the power
supply is ±15 VDC. The system (10) corresponds to the suggested system with the hyperbolic sinusoidal
nonlinear function (2). The electronic components are selected for a = 2, and b = c = 0; then we have R
= R4 = 30 kΩ, R1 = 15 kΩ, R2 = 10 kΩ, R3 = 90 kΩ, RS1 = 100 kΩ, RS2 = 50.66 kΩ, RS3 = 18.65 MΩ and
C = 10 nF. The planned circuit of Figure 10 has been executed in Multisim, and some PSpice results are
presented in Figure 11. One can obviously confirm the consistency of the simulations (Figure 11) and
numerical outcomes (Figure 2).
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4. Voice Encryption Algorithm Design and Its Analysis

Chaos-based cryptography is one of the topics that has been intensively studied in recent years
because of the randomness and rich dynamics of chaotic systems [53–58]. These works usually focus
on image encryption. A new RNG algorithm design is performed by using the developed chaotic form
and National Institute of Standards and Technology (NIST) 800-22 [59] randomness tests are employed
to study the randomness of the obtained random numbers. It is noted that the NIST statistical test suit
is used for the evaluation of the advanced encryption standard candidate algorithms. At first, a voice
encryption algorithm is proposed using the obtained random number. Then, the voice encryption
is executed by using the proposed algorithm and frequency spectrum analysis of the encryption
procedure is executed.

4.1. RNG Algorithm Design and NIST 800-22 Test Results

In this subsection, an RNG algorithm design is developed via the newly introduced chaos in
order to obtain the random numbers to be employed in the algorithm. The design process of the
RNG algorithm is carried out as exposed in Algorithm 1 (see Appendix A). In the design process of
the RNG algorithm, firstly the initial states and parameters of the chaotic system are defined. Then,
the sampling interval of the system is determined and the chaotic system is considered by using
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fourth-order Runge-Kutta (RK-4) integration algorithm using this sampling value. As an outcome of
the system analysis, float values are found for each cycle from each phase. On the float values obtained
from each phase, the step values of the decimal parts after the comma are subjected to the mode 2
operation. As a result, 15 bits are generated from each phase in the each cycle. Further, these obtained
values are added to the number sequences for each phase (rngx, rngy, rngz). This process continues for
each number sequence until the 1 M. bit is generated for the NIST 800-22 randomness examinations.
Because at least 1 M. bit is needed for NIST 800-22 tests. After 1 M bits are generated from each phase,
the phases are subjected to Exclusive Or (XOR) processing in binary form and new random number
sequences are generated as named rngxy, rngxz, rngyz, rngxyz in the Algorithm 1. The generated
values from the x and y phases are subjected to XOR processing to obtain a rngxy random number
sequence. Similarly, generated from the phases y and z for rngyz, the x and z phases for rngyz and the
x, y, z phases for rngxyz are subjected to XOR processing. Finally, NIST 800-22 tests are employed to all
obtained random bit sequences. When random bit sequences are tested singularly, they cannot pass
some tests. For this reason, random bit sequences generated are subjected to 2 or 3 XOR operations.

For the safe use of random numbers, they must have an appropriate randomness. The NIST
800-22 tests are a set of internationally accepted and frequently used tests in the literature that define
the numbers’ randomness via a variety of different tests. The NIST 800-22 test outcomes for the random
number sequences originated from the developed RNG algorithm are displayed in Table 1. According to
the test outcomes, it is seen that all the random numbers created passed all the examinations.

Table 1. NIST 800-22 NIST Test Results.

NIST Statistical Tests p-Value
(x⊕y)

p-Value
(x⊕z)

p-Value
(y⊕z)

p-Value
(x⊕y⊕z) Results

Frequency (Monobit) Test 0.32708 0.70840 0.07409 0.83679 Passed
Block-Frequency Test 0.05028 0.44384 0.87530 0.24483 Passed

Cumulative-Sums Test 0.49997 0.79399 0.12548 0.88754 Passed
Runs Test 0.28235 0.05285 0.01530 0.34010 Passed

Longest-Run Test 0.91108 0.88963 0.46730 0.057827 Passed
Binary Matrix Rank Test 0.17994 0.15263 0.55596 0.39136 Passed

Discrete Fourier Transform Test 0.17441 0.92688 0.52063 0.20211 Passed
Overlapping Templates Test 0.63213 0.12006 0.96148 0.29966 Passed

Maurer’s Universal Statistical Test 0.59708 0.81350 0.40059 0.48723 Passed
Approximate Entropy Test 0.95048 0.38285 0.27585 0.52635 Passed

Random-Excursions Test (x = −4) 0.82604 0.57997 0.40488 0.34822 Passed
Random-Excursions Variant Test (x = −4) 0.74935 0.63538 0.19136 0.46211 Passed

Serial Test-1 0.53650 0.89087 0.74965 0.92028 Passed
Serial Test-2 0.13577 0.48589 0.27236 0.75602 Passed

Linear-Complexity Test 0.72956 0.94527 0.31945 0.78612 Passed

4.2. Voice Encryption Algorithm Design and Its Application

A new voice encryption algorithm is developed via RNG algorithm introduced in the previous
section, voice encryption usage and its analysis are performed. The block diagram of the encryption
process is presented in Figure 12. In the encryption algorithm, after entering initial states and parameters
of chaotic system, these values are transmitted to the receiving side as a key for generation of the
random number sequences to be employed in the decryption process. In order to realize the bit-based
encryption, the values are obtained from the voice file consisting of float values with appropriate
sampling step and converted into binary form. With random bit sequences past all NIST 800-22
randomness tests obtained from the RNG, the voice file in the binary form is encrypted. XOR operation
is used in encryption process. After the encryption operation, the encrypted binary bit array is changed
to the float form to generate the encrypted voice file. After the encrypted voice data is sent to the
receiver side in this way, the decryption process is performed by applying the reverse operations in the
encryption. Thus, the original voice file is attained on the receiving side.
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The voice files in encryption procedure are shown in Figure 13. The original, encrypted and
decrypted voice file is demonstrated in Figure 13a–c, respectively. When comparing the original and
encrypted voice file in Figure 13a,b; it is seen that a very different file is gotten than the original and the
encryption process is successful. When Figure 13a,c are examined, it is observed that the decryption
procedure is successful. Figure 14 shows the frequency spectrum analysis results of the encryption
process. Frequency spectrum analysis is carried out to determine the frequency range of voice files.
To determine the success of the encryption process, frequency spectrum analyzes are performed on
original and encrypted voice files. The spectrum analysis results of original and encrypted voice files
are illustrated in Figure 14a,b. If we compare these two graphs, it seems that the encrypted voice
file has a rather wide frequency spectrum range than the original. When these results are evaluated,
it shows the success of the encryption process.

Symmetry 2020, 12, x FOR PEER REVIEW 13 of 18 

 

 
Figure 12. The block diagram of encryption process. 

The voice files in encryption procedure are shown in Figure 13. The original, encrypted and 
decrypted voice file is demonstrated in Figure 13a–c, respectively. When comparing the original and 
encrypted voice file in Figure 13a,b; it is seen that a very different file is gotten than the original and 
the encryption process is successful. When Figure 13a,c are examined, it is observed that the 
decryption procedure is successful. Figure 14 shows the frequency spectrum analysis results of the 
encryption process. Frequency spectrum analysis is carried out to determine the frequency range of 
voice files. To determine the success of the encryption process, frequency spectrum analyzes are 
performed on original and encrypted voice files. The spectrum analysis results of original and 
encrypted voice files are illustrated in Figure 14a,b. If we compare these two graphs, it seems that the 
encrypted voice file has a rather wide frequency spectrum range than the original. When these results 
are evaluated, it shows the success of the encryption process. 

   
(a) (b) (c) 

Figure 13. The voice file (a) original; (b) encrypted; (c) decrypted. Figure 13. The voice file (a) original; (b) encrypted; (c) decrypted.



Symmetry 2020, 12, 2047 14 of 18Symmetry 2020, 12, x FOR PEER REVIEW 14 of 18 

 

  
(a) (b) 

Figure 14. The spectrum analysis outcomes of original and encrypted voice files. (a) Original, (b) 
Encrypted. 

5. Conclusions and Discussion 

In this article, a new chaotic system with hyperbolic sinusoidal nonlinearity is designed. The 
proposed system belongs to a new category of dynamical systems with hidden chaotic flows, which 
assist in further understanding of chaotic attractors and also to use them in interesting applications 
like cryptography and secure communication schemes. The feature of hidden chaotic attractors, such 
as in systems with line of equilibria or in systems with no equilibrium point, makes them more 
suitable for the aforementioned applications, due to the fact that using systems with hidden attractors 
adds complexity to the dynamical system, which is used in this kind of applications. Therefore, in 
this work a voice encryption scheme, which is based on the specific systems was studied. Based on 
the variations of parameters of the system, this flow presented two classes of hidden attractors (with 
line of equilibria and no equilibrium point) plus a self-excited attractor, which has been reported to 
the literature for the first time. Dynamical behavior of the proposed system was explored and its 
bifurcation diagram and spectrum of Lyapunov exponents were propounded. For the appropriate 
selection of the parameters, the flow could display periodic oscillations and double-scroll chaos 
attractors. The system’s electronic simulation investigated the confirmation of the double-scroll chaos 
attractor in real word. Via the proposed chaotic system, a novel RNG design was realized and random 
number generation was performed. NIST 800-22 randomness examinations were employed to the 
produced numbers and it was determined that all tests passed. By using RNG design, a novel voice 
encryption algorithm was established and encryption process was done. Frequency spectrum 
analysis of the voice encryption procedure was executed. In line with the analysis outcomes, it has 
been found that the new RNG design produces high random numbers and that the suggested 
encryption algorithm effectively achieves the encryption process. Therefore, authors aim with this 
work to attract the interest of the research community in the use of chaotic dynamical systems with 
hidden attractors in encryption schemes, as the results are proved to be very promising. Finally, as a 
future plan, the hardware implementation of the specific approach has been planned. 

Author Contributions: S.M. was responsible for formal analysis and writing—original draft preparation. C.K.V. 
and Ü.Ç. were responsible to conceptualization, methodology, and software. S.K. was responsible for software, 
supervision and editing. All authors have read and agreed to the published version of the manuscript. 

Funding: This research received no external funding. 

Conflicts of Interest: The authors of this paper declare that they have no conflicts of interest. 

Date Availability: The MATLAB files data used to support the findings of this paper are available from the 
corresponding author upon request. 
  

Figure 14. The spectrum analysis outcomes of original and encrypted voice files. (a) Original,
(b) Encrypted.

5. Conclusions and Discussion

In this article, a new chaotic system with hyperbolic sinusoidal nonlinearity is designed.
The proposed system belongs to a new category of dynamical systems with hidden chaotic flows,
which assist in further understanding of chaotic attractors and also to use them in interesting applications
like cryptography and secure communication schemes. The feature of hidden chaotic attractors, such as
in systems with line of equilibria or in systems with no equilibrium point, makes them more suitable
for the aforementioned applications, due to the fact that using systems with hidden attractors adds
complexity to the dynamical system, which is used in this kind of applications. Therefore, in this work
a voice encryption scheme, which is based on the specific systems was studied. Based on the variations
of parameters of the system, this flow presented two classes of hidden attractors (with line of equilibria
and no equilibrium point) plus a self-excited attractor, which has been reported to the literature for the
first time. Dynamical behavior of the proposed system was explored and its bifurcation diagram and
spectrum of Lyapunov exponents were propounded. For the appropriate selection of the parameters,
the flow could display periodic oscillations and double-scroll chaos attractors. The system’s electronic
simulation investigated the confirmation of the double-scroll chaos attractor in real word. Via the
proposed chaotic system, a novel RNG design was realized and random number generation was
performed. NIST 800-22 randomness examinations were employed to the produced numbers and it
was determined that all tests passed. By using RNG design, a novel voice encryption algorithm was
established and encryption process was done. Frequency spectrum analysis of the voice encryption
procedure was executed. In line with the analysis outcomes, it has been found that the new RNG design
produces high random numbers and that the suggested encryption algorithm effectively achieves
the encryption process. Therefore, authors aim with this work to attract the interest of the research
community in the use of chaotic dynamical systems with hidden attractors in encryption schemes,
as the results are proved to be very promising. Finally, as a future plan, the hardware implementation
of the specific approach has been planned.
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Appendix A

Algorithm 1 RNG Design Algorithm Pseudo Code

1: Start
2: rngx=[[] rngy=[[] rngz=[[] rngxy=[[] rngyz=[[] rngxz=[[] rngxyz=[[]
3: Entering system parameters and initial conditions of chaotic systems
4: Determination of the appropriate value of (∆h=0.001)
5: while i<=1000000 do
6: Sampling with determination ∆h value
7: Solving the chaotic system using RK4 algorithm
8: Obtaining time series float values (x,y,z) (each value 15 digit)
9: for k = 0 to 14 do
10: rngx[i]=mod(x[k], 2);
11: rngy[i]=mod(y[k], 2);
12: rngz[i]=mod(z[k], 2);
13: i=i+1
14: end for
15: end while
16: rngxy=bitxor(rngx, rngy);
17: rngyz=bitxor(rngy, rngz);
18: rngxz=bitxor(rngx, rngz);
19: rngxyz = bitxor(rngxy, rngz);
20: The implementation of NIST tests for each new array (rngxy, rngyz, rngxz, rngxyz)
21: rng=[rngxy,rngyz,rngxz,rngxyz]
22: End
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