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GENERALIZATION OF STATISTICALLY CONVERGENT

RABİA SAVAŞ AND RICHARD F. PATTERSON

Abstract. In the late 1950’s and early 1960’s Kurzweil and Henstock presented the
concept of Gauge integral. Following their results, Savas and Patterson extended
this concept to summability theory by considering f (\psi ) real valued function which is
integrable in the Gauge sense on (1,\infty ). The goal of this paper includes the extension
of these notion to statistical convergence. This will be accomplished by presenting the
definition of statistically convergent to L via cardinality in Lebesgue sense. Natural
implications and variations are also presented.

В кiнцi 1950-х та на початку 1960-х рокiв Курцвайль i Хенсток сформулювали
концепцiю калiбрувального iнтеграла. Савас i Паттерсон поширили це на теорiю
пiдсумовування, розглянувши дiйснi функцiї f (\psi ), iнтегровнi в калiбрувальному
сенсi на (1,\infty ). Метою цiєї роботи є поширення цього поняття на випадок
статистичної збiжностi. Для цього дається визначення статистичної збiжностi за
мiрою Лебега. Обговорюються наслiдки та можливi варiанти цього пiдходу.

1. Introduction, Preliminaries and Definitions

In 1957 Kurzweil [5] presented a new concept of integral which is called Gauge Integral.
This notion allows us to extend the class of integrable functions beyond those of Lebesgue
integrable. In [4] Henstock refined and placed this notion on a more solid foundation. Let
us now present the definition of Gauge integral that was defined in [11].

Definition 1.1. [11] A tagged partition of an interval I = [a, b] is a finite set or ordered
pairs

D = \{ (ti, Ii) : 1 \leq i \leq m\} 
where \{ Ii : 1 \leq i \leq m\} is a partition of I consisting of closed non overlapping subintervals
and ti is a point belonging to Ii; ti is called the tag associated with Ii. If f : I \rightarrow \BbbR , the
Riemann sum of f with respect to D is defined to be

S(f,D) =

m\sum 
i=1

f(ti)\ell (Ii) ,

where \ell (Ii) is the length of the subinterval Ii. If \delta : I \rightarrow (0,\infty ) is a positive function,
we define an open interval valued function on I by setting \gamma (t) = (t - \delta (t), t+ \delta (t)). If
Ii = [xi, xi+1], we can write ti \in Ii \subset \gamma (ti) instead of ti  - \delta < xi \leq ti \leq xi+1 < ti + \delta .
Any interval \gamma defined on I such that \gamma (t) is an open interval containing t for each
t \in I is called a Gauge on I. Let us denote the set of all such interval by \Delta G. If
D = \{ (ti, Ii) : 1 \leq i \leq m\} is a tagged partition of I and \gamma is a Gauge on I, we say that
D is \gamma  - fine if ti \in Ii \subset \gamma (ti) is satisfied. Let f : [a, b] \rightarrow \BbbR . If f : [a, b] \rightarrow \BbbR . f is said
to be Gauge integrable over [a, b] if there exists A \in \BbbR such that for every \varepsilon > 0 there
exists a Gauge \gamma on [a, b] such that | S(f,D) - A| < \varepsilon whenever D is a \gamma  - fine tagged
partition of [a, b]. The number A is called the Gauge integral of f over I = [a, b] and is
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denoted by
b\int 
a

f or
\int 
I
f ; when we encounter integrals depending upon parameters, it is

also convenient to write
b\int 
a

f(t) or
\int 
I
f(t).

Throughout this paper we shall use the notion of bounded variation which is as follows:
Let f be a function on [a, b]. Given a partition P = \{ [xk - 1, xk]\} of [a, b], the variation of
f with respect to P is

V (f, P ) =
\sum 
k

| f (xk) - f (xk - 1)| ,

and the variation of f over [a, b] is

V ba f = \mathrm{s}\mathrm{u}\mathrm{p}
P
V (f, P ) ,

where the supremum is taken over all partitions P of [a, b] . If V ba f is finite, then f is
said to be of bounded variation on [a, b]. The set of all such functions is denoted by
BV ([a, b]).
On the other hand, in 1951 Fast [2] introduced an extension the concept of sequential
limit to statistically convergence which as follows:

Definition 1.2. If \BbbN denotes the set of natural numbers and K \subset \BbbN , then K (m,n)
denotes the cardinality of the set K \cap [m,n]. The upper and lower natural density of the
subset K is defined by

d (K) = \mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

\mathrm{s}\mathrm{u}\mathrm{p}
K (1, n)

n
and d (K) = \mathrm{l}\mathrm{i}\mathrm{m}

n\rightarrow \infty 
\mathrm{i}\mathrm{n}\mathrm{f}

K (1, n)

n
.

If d (K) = d (K), then we say that the natural density of K exists and it is denoted simply
by d (K). Clearly, d (K) = \mathrm{l}\mathrm{i}\mathrm{m}

n\rightarrow \infty 
K(1,n)
n . A sequence x = (xk) of real numbers is said to be

statistically convergent to L if for arbitrary \varepsilon > 0, the set K (\varepsilon ) = \{ k \in \BbbN : | xk  - L| \geq \varepsilon \} 
has natural density zero. In this case, we will denote statistically convergence as st - \mathrm{l}\mathrm{i}\mathrm{m}xk.

Following Fast’s definition Schoenberg in [10] presented a bridge of this concept to
summability theory. Recently, statistical convergence has been one of the most active
areas in summability theory thanks to Fridy’s presentation in [3] and many other papers
were studied in this area (see [7], [8]). Afterward, strongly summable single valued
functions were studied by Borwein in [1]. Following Borwein’s work Nuray [6] extended
his notion via \lambda -strongly summability and \lambda -statistically convergent functions by taking
nonnegative real-valued Lebesgue measurable function on (1,\infty ). Prior to present Nuray’s
notions, let us note that the following definition.

Definition 1.3. [6] Let \lambda = (\lambda n) be non-decreasing sequence of positive numbers tending
to \infty such that \lambda n+1 \leq \lambda n + 1, \lambda 1 = 1. \Delta denote the set of all such sequences. For a
sequence x = (xn) the generalized de la Vallée Poussin mean is defined by

tn (x) =
1

n

\sum 
k\in In

xk,

where In = [n - \lambda n + 1, n].

Definition 1.4. [6] Let \lambda \in \Delta and f (\psi ) be a real valued function which is measurable
in the Lebesgue sense in the interval (1,\infty ), if

\mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

1

\lambda n

n\int 
n - \lambda n+1

| f (\psi ) - L| d\psi = 0,
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then we say that the function f (\psi ) is \lambda  - strongly summable to L. In this case we write
[W,\lambda ]  - \mathrm{l}\mathrm{i}\mathrm{m} f (\psi ) = L or f (\psi ) \rightarrow L [W,\lambda ]. If we take \lambda n = n, then [W,\lambda ] reduced to
[W ] , the space of all all strongly double summable functions.

Definition 1.5. [6] Let \lambda \in \Delta and f (\psi ) be a real-valued function which is measurable
on (1,\infty ), if for every \varepsilon > 0,

\mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

1

\lambda n
| \{ \psi \in In : | f (\psi ) - L| \geq \varepsilon \} | = 0,

then we say that the function f (\psi ) is \lambda  - statistically convergent to L, where the vertical
bars indicate the Lebesgue measurable of the enclosed set. The space of all statistical
convergence functions will be denoted by (Sf , \lambda ). In this case, we write [Sf , \lambda ] - \mathrm{l}\mathrm{i}\mathrm{m} f (\psi ) =
L or f (\psi ) \rightarrow L [Sf , \lambda ].

The following is an example of such convergence.

Example 1.6. Let us consider a function f (\psi ) which is defined by

f(\psi ) =

\Biggl\{ 
\psi , n - 1

\mathrm{l}\mathrm{o}\mathrm{g} \lambda n
+ 1

\lambda n
+ 1 \leq \psi \leq n,

0, otherwise,

for every \varepsilon > 0,

\mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

1

\lambda n
| \{ \psi \in In : | f (\psi ) - 0| \geq \varepsilon \} | = \mathrm{l}\mathrm{i}\mathrm{m}

n\rightarrow \infty 

1
\mathrm{l}\mathrm{o}\mathrm{g} \lambda n

+ 1
\lambda n

\lambda n
= 0,

i.e., [Sf , \lambda ] - \mathrm{l}\mathrm{i}\mathrm{m} f (\psi ) = 0.

In addition to these definitions, please note the following theorem in [6].

Theorem 1.7. [6] Let \lambda \in \Delta and f (\psi ) be a real valued function which is measurable in
the Lebesgue sense in the interval (1,\infty ), then [W,\lambda ] \subset [Sf , \lambda ] and the inclusion is proper.

In 2019, Savas and Patterson in [9] introduced the new concept of strongly Cesáro
type summability theory by considering Gauge integral and the following definition:

Definition 1.8. [9] Let us consider \delta : Ii = (ti  - \delta (ti), ti + \delta (ti)] \rightarrow (0,\infty ) is a positive
function, and [a, b] = \cup Ii with  - \infty < a < b < \infty . We define an open interval valued
function on I by setting \gamma = \gamma (ti)= (ti  - \delta (ti), ti + \delta (ti)). If Ji = [i - \lambda i + 1, i] , we
can write ti \in Ji \subset \gamma (ti) instad of ti  - \delta (ti) < i  - \lambda i + 1 \leq ti \leq i < ti + \delta (ti). Let
\gamma = \gamma (ti) \in \Delta G, and let f(\psi ) be a real valued function which is measurable Gauge sense
in the interval (1,\infty ) . Provided that

\int 
f(\psi ) and

\int 
| f (\psi )| exist in the gauge sense and

\mathrm{l}\mathrm{i}\mathrm{m}
ti\rightarrow \infty 

1

\xi (ti)

ti+\delta (ti)\int 
ti - \delta (ti)

| f(\psi ) - L| d\psi = 0,

where \xi (ti) = (ti + \delta (ti)) - (ti  - \delta (ti)) = 2\delta (ti), then we say that the function f(\psi ) is
\gamma  - strongly summable to L with respect Gauge. In this case, we write [G, \gamma ] - \mathrm{l}\mathrm{i}\mathrm{m} f(\psi ) = L
or f(\psi ) \rightarrow L [G, \gamma ] .

Using the definitions above, Savas and Patterson also established the following theorem
which grants us a connection between strongly summability in the Lebesgue sense and in
the Gauge sense.

Theorem 1.9. [9] Let \lambda = (\lambda n) \in \Delta , \gamma = \gamma (ti) \in \Delta G, Ii = [ti  - \delta (ti) , ti + \delta (ti)] and
[a, b] = \cup Ii with  - \infty < a < b < \infty , and f (\psi ) be a real valued function in the Gauge
sense in the interval (1,\infty ), then

(1) [W,\lambda ] \subset [G, \gamma ]
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(2) If f (\psi ) is bounded variation and f is \gamma  - strongly summable to L with re-
spect to Gauge sense over every measurable subset of [ti  - \delta (ti) , ti + \delta (ti)]
(i.e., if CEf is Gauge integrable over [ti  - \delta (ti) , ti + \delta (ti)]) for every measurable
E \subset ti  - \delta (ti) , ti + \delta (ti)), then f is [W ] - \mathrm{l}\mathrm{i}\mathrm{m} f (\psi ) = L.

2. Main Results

We begin this section with the following new definition.

Definition 2.1. Let \lambda \in \Delta and f (\psi ) be a real-valued function in the interval (1,\infty ) ,
for every \varepsilon > 0, let A = \{ \psi \in In : | f (\psi ) - L| \geq \varepsilon \} , \{ Ai : i \in \BbbN \} be a countable partition
of A, and \alpha i = \mathrm{s}\mathrm{u}\mathrm{p} \{ \psi \in Ai\} . Provided that

\mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

1

\alpha n
| \{ \psi \leq \alpha i : | f (\psi ) - L| \geq \varepsilon \} | = 0,

where the vertical bars indicate the Lebesgue measure of the enclosed set, then we say f (\psi )
is statistically convergent to L via cardinality. In this case, we write S\ast 

f  - \mathrm{l}\mathrm{i}\mathrm{m} f (\psi ) = L

or f (\psi ) \rightarrow L
\Bigl[ 
S\ast 
f

\Bigr] 
. The class of the \lambda  - statistically convergent to L via cardinality is

denoted by
\Bigl[ 
S\ast 
f

\Bigr] 
.

This following are examples of a measurable and non-measurable functions, respectively
that satisfy Definition 2.1.

Example 2.2. f (\psi ) be a real-valued function which is measurable on (1,\infty ). Define by

f (\psi ) =

\biggl\{ 
1 if \psi is a square / \{ 1\} ,
0 if \psi \in (1,\infty ) /\psi is not a square.

Example 2.3. Let S a non-measurable subset of (1,\infty ). Define a function f (\psi ) by

f(\psi ) =

\left\{   1 if \psi \in S \cup (\psi is an even square) ,
0 if \psi \in S \cup (\psi is an odd square) ,
0 if otherwise.

Let us consider the following inclusion theorems.

Theorem 2.4. If \mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

\mathrm{i}\mathrm{n}\mathrm{f} \lambda n

\alpha n
> 0 and \lambda n

\alpha n
= O (1), then [Sf , \lambda ] \subseteq 

\Bigl[ 
S\ast 
f

\Bigr] 
.

Proof. Let \varepsilon > 0 and [Sf , \lambda ] - \mathrm{l}\mathrm{i}\mathrm{m} f(\psi ) = L. We write

\{ \psi \leq \alpha i : | f(\psi ) - L| \geq \varepsilon \} \supset \{ \psi \in In : | f(\psi ) - L| \geq \varepsilon \} .

Therefore,

1

\alpha n
| \{ \psi \leq \alpha i : | f(\psi ) - L| \geq \varepsilon \} | \geq 1

\alpha n
| \{ \psi \in In : | f(\psi ) - L| \geq \varepsilon \} | 

\geq \lambda n
\alpha n

.
1

\lambda n
| \{ \psi \in In : | f(\psi ) - L| \geq \varepsilon \} | .

Hence by using \mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

\mathrm{i}\mathrm{n}\mathrm{f} \lambda n

\alpha n
> 0 and taking the limit n \rightarrow \infty we get f(\psi ) \rightarrow L [Sf , \lambda ]

implies f(\psi ) \rightarrow L
\Bigl[ 
S\ast 
f

\Bigr] 
. \square 

Theorem 2.5. [W,\lambda ] \subset 
\Bigl[ 
S\ast 
f

\Bigr] 
and for the condition \mathrm{l}\mathrm{i}\mathrm{m}

n\rightarrow \infty 
\mathrm{i}\mathrm{n}\mathrm{f} \alpha n

\lambda n
> 1, the inclusion is

proper.
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Proof. Let \varepsilon > 0 and [W,\lambda ] - \mathrm{l}\mathrm{i}\mathrm{m} f(\psi ) = L. We write\int 
\psi \in In

| f(\psi ) - L| d\psi =

\int 
\{ \psi : \psi \leq \alpha i\} 

| f(\psi ) - L| d\psi \geq \varepsilon \{ \psi \leq \alpha i : | f(\psi ) - L| \geq \varepsilon \} .

Therefore, [W,\lambda ] - \mathrm{l}\mathrm{i}\mathrm{m} f(\psi ) = L implies S\ast 
f  - \mathrm{l}\mathrm{i}\mathrm{m} f(\psi ) = L. Let us consider the following

function

f(\psi ) =

\biggl\{ 
\psi , n - \mathrm{l}\mathrm{n}(\lambda n) + 1 \leq \psi \leq n,
0 otherwise

f(\psi ) is not bounded function, for every \varepsilon > 0,

\mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

1

\alpha n
| \{ \psi \leq \alpha i : | f(\psi ) - L| \geq \varepsilon \} | 

\geq \mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

1

\alpha n

\alpha n
\lambda n

| \{ \psi \leq \alpha i : | f(\psi ) - L| \geq \varepsilon \} | 

= \mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

\mathrm{l}\mathrm{n}(\lambda n)

\lambda n
= 0,

i.e., S\ast 
f  - \mathrm{l}\mathrm{i}\mathrm{m} f(\psi ) = 0. However,

\mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

1

\lambda n

n\int 
n - \lambda n+1

| f(\psi ) - 0| d\psi = \infty ,

i.e., f(\psi )\nrightarrow L [W,\lambda ]. Hence, the inclusion is proper. \square 

Theorem 2.6. [G, \gamma ] \varsubsetneq 
\Bigl[ 
S\ast 
f

\Bigr] 
.

Proof. Suppose that \varepsilon > 0 , [G, \gamma ] - \mathrm{l}\mathrm{i}\mathrm{m} f(\psi ) = L. Therefore, we can obtain the following\int 
\psi \in \gamma (ti)

| f(\psi ) - L| d\psi \geq 
\int 

\{ \psi \in \gamma (ti) : | f(\psi ) - L| \geq \varepsilon \} 

| f(\psi ) - L| d\psi 

\geq \varepsilon | \{ \psi \in \gamma (ti) : | f(\psi ) - L| \geq \varepsilon \} | 
\gneq \varepsilon | \{ \psi \leq \alpha i : | f (\psi ) - L| \geq \varepsilon \} | 

which implies that f(\psi )\nrightarrow L [Sf , \lambda ]. \square 

Theorem 2.7. If \mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

\mathrm{i}\mathrm{n}\mathrm{f} \gamma (ti)\alpha n
> 0 and f (\psi ) is a bounded variation, then

\Bigl[ 
S\ast 
f

\Bigr] 
\subseteq [G, \gamma ].

Proof. Suppose that
\Bigl[ 
S\ast 
f

\Bigr] 
 - \mathrm{l}\mathrm{i}\mathrm{m} f(\psi ) = L and since f (\psi ) be a bounded variation, f (\psi )

will be a bounded function, and we say that | f(\psi ) - L| \leq M for all \psi . Given \varepsilon > 0, we
have that

1

\gamma (ti)

\int 
\psi \in \gamma (ti)

| f(\psi ) - L| d\psi =
1

\gamma (ti)

\int 
\{ \psi \in \gamma (ti) : | f(\psi ) - L| \geq \varepsilon \} 

| f(\psi ) - L| d\psi 

+
1

\gamma (ti)

\int 
\{ \psi \in \gamma (ti) : | f(\psi ) - L| <\varepsilon \} 

| f(\psi ) - L| dx

\leq M

\gamma (ti)
| \{ \psi \in \gamma (ti) : | f (\psi ) - 0| \geq \varepsilon \} | + \varepsilon 

\leq M

\gamma (ti)
| \{ \psi \leq \alpha i : | f(\psi ) - L| \geq \varepsilon \} | + \varepsilon .

\leq \gamma (ti)

\alpha n

M

\gamma (ti)
| \{ \psi \leq \alpha i : | f (\psi ) - L| \geq \varepsilon \} | + \varepsilon .
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Hence, [G, \gamma ] - \mathrm{l}\mathrm{i}\mathrm{m} f(\psi ) = L. \square 
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(1965), 628–634.

[2] H. Fast, Sur la Convergence Statistique, Colloquium Mathematicum, 2 (1951), 241–244.
[3] J. A. Fridy, On Statistically Convergence, Analysis, 5 (1985), 301–313.
[4] R. Henstock, Definitions of Riemann Type of Variational Integral, Proc. London Math. Soc., 11

(1961), 402–418.
[5] J. Kurzweil, Generalized Ordinary Differential Equations and Continuous Dependence on a Parameter,

Czech. Math. J., 82 (1957), 418–449.
[6] F. Nuray, \lambda  - Strongly Summable and \lambda  - Statistically Convergent Functions, Iranian Journal of Sci.

and Tech., 34 (4) (2010), 335–338.
[7] K. Raj, A. Choudhary and C. Sharma, Almost strongly Orlicz double sequence spaces of regular

matrices and their applications to statistical convergence, Asian-Eur. J. Math., Vol.11 No.5 (2018),
1850073, (14pages).doi.org/10.1142/S1793557118500730.

[8] K. Raj and S. Jamwal, On some generalized statistical convergent sequence spaces, Kuwait J. Sci.,
42 (3) (2015), 86–104.

[9] R. Savas and R. F. Patterson, Gauge Strongly Summability for Measurable Functions, Carpathian
Journal of Mathematics, (accepted-preprint)

[10] I. J. Schoenberg, The Integrability of Certain Functions and Related Summability Theory, Am.
Math. Month., 66 (1959), 361–375.

[11] C. Swartz, Introduction to Gauge Integrals, World Scientific Publishing Co., 1938.
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