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I2-LACUNARY STRONGLY SUMMABILITY FOR

MULTIDIMENSIONAL MEASURABLE FUNCTIONS

Rabia Savaş and Richard F. Patterson

Abstract. Let I2 ⊆ P(N × N) be a nontrivial ideal. We provide a new
approach to the concept of I2-double lacunary statistical convergence and
I2-lacunary strongly double summable by taking f(τ, υ), which is a multidi-
mensional measurable real valued function on (1, ∞) × (1, ∞). Additionally,
we examine the relation between these two new methods.

1. Introduction

The concept of a statistical convergence was introduced by Fast [9], and Stein-
haus [30] independently in the same year 1951. Actually, the idea of statistical
convergence was used to proved theorems on the statistical convergence of Fourier
series by Zygmund [31] in the first edition of his celebrated monograph published
in Warsaw. He used the term “almost convergence” place of statistical conver-
gence and at that time this idea was not recognized much. Since the term “almost

convergence” was already in use Lorentz [18], Fast [9] had to choose a different
name for his concept and “statistical convergence” was mostly the suitable one.
Active research on this topic started after the paper of Fridy [10] and since then a
large collection of literature has appeared. At the last quarter of the 20th century,
statistical convergence has been discussed and captured important aspect in creat-
ing the basis of several investigations conducted in main branches of mathematics
such as the theory of number [7], measure theory [19], trigonometric series [31],
probability theory [6], and approximation theory [12]. In addition, it was further
investigated from the sequence space point of view and linked with summability
theory by Connor [4], Et at. al. [8], Kolk [13], Orhan et al. [11], Kumar and Mur-
saleen [15], Rath and Tripathy [24], Šalát [25], and many others made substantial
contributions to the theory.

Definition 1.1. Let R be a subset of N and Rm = {i 6 m : i ∈ R}. The
natural density of R is defined δ(R) = limm

1
m

|Rm| provided it exists. Here, and in

2010 Mathematics Subject Classification: 40G15; 40H05.
Key words and phrases: double sequences, lacunary statistically convergent, strongly lacu-

nary functions, real valued function.
Communicated by Gradimir Milovanović.

93



94 SAVAŞ AND PATTERSON

what follows, |Rm| denotes the cardinality of set Rm. A sequence y = (yi) is said
to be statistically convergent to the number L, provided that for every ε > 0, the
set Rε = {i ∈ N : |yi − L| > ε} has natural density zero, that is

lim
m→∞

|{i 6 m : |yi − L| > ε}| = 0.

Whenever this occurs, we can write st− limi yi = L.

In 1993, Fridy and Orhan [11] established the following relation between lacu-
nary statistical convergence and statistical convergence.

Definition 1.2. By a lacunary sequence θ = (pr), r = 0, 1, 2, . . . where k0, we
shall mean an increasing sequence of nonnegative integers with pr−pr−1 → ∞. The
intervals determined by θ will be denoted by Js = (pr−1, pr] and zr = pr − pr−1.
The ratio pr

pr−1

will be denoted by qr. Let θ = (pr) be a lacunary sequence; the
number sequence y is Sθ-convergent to L if for every ε > 0,

lim
r→∞

1
pr

|{i ∈ Js : |yi − L| > ε}| = 0.

In this case, we write Sθ − limi→∞ yi = L or yi → L(Sθ).

In 1970, Bernstein [3] introduced convergence of sequences with respect to a
filter F on N. Using the concept of an ideal, the idea statistical convergence was
further extended to I-convergence in [14]. The ideal convergence provides a general
framework to study the properties of various types of convergence. Some of the
most important applications of ideals can be found in [16, 17, 26, 27].

For any nonempty set Y , P(Y ) denotes the power set of Y . A family of sets
I ⊂ P(Y ) is said to be an “ideal” on Y if and only if

(i) ∅ ∈ I;
(ii) For each A,B ∈ I we have A ∪B ∈ I;
(iii) For each A ∈ I and B ⊆ A we have B ∈ I.

A nonempty family of sets F ⊂ P(Y ) is said to be “filter” on Y if and only if

(i) ∅ /∈ F ;
(ii) For each A,B ∈ F we have A ∩B ∈ F ;
(iii) For A ∈ F and B ⊇ A we have B ∈ F .

An ideal I on Y is called “nontrivial” if I 6= ∅ and Y /∈ I. It is clear that I ⊂ P(Y )
is a nontrivial ideal on Y if and only if F = F(I) = {Y −A : A ∈ I} is a filter on
Y . The filter F = F(I) is called the filter associated with the ideal I. A nontrivial
ideal I ⊂ P(Y ) is called an admissible ideal in Y if and only if it contains all
singletons i.e. if it contains {{y} : y ∈ Y }.

Using the above terminology, Kostyrko et al. [14] defined I-convergence in a
metric space as follows:

Definition 1.3. Let I ⊂ P(N) be a nontrivial ideal in N and (Y, d) be a metric
space. A sequence y = (yi) in Y is said to be I-convergent to ψ if for each ε > 0,
then the set

A(ε) = {i ∈ N : d(yi, ψ) > ε} ∈ I.
Under this condition, we write I − limi→∞ yi = ψ.
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Recently, Kostyrko et al. in [14] and Savas and Gumus [26] introduced new
concept of I-statistical convergence and I-lacunary statistical convergence respec-
tively. In recent years, ideas of statistical convergence, lacunary statistical con-
vergence and I-convergence have been respectively extended from single to double
sequence in [2, 17], and [28].

We now present the following definitions, which will be needed in the sequel.
Definition 1.4. [23] A double sequence y = (yi,j) of real numbers is said to

be convergent to L ∈ R in Pringsheim sense if for any ε > 0, there exists Nε ∈ N

such that |yi,j − L| < ε, whenever i, j > Nε. In this case, we denote such limit as

follow: P − limi,j→∞ yi,j = L and y
P−→ L.

The following concept of statistical convergence for double sequences was pre-
sented by Mursaleen and Edely [20]. Also, Savaş and Patterson [28] introduced the
notion of double lacunary sequence and defined the lacunary statistical convergence
for double sequence, and please note that let

I0 = {A ⊂ N × N : (∃m(A) ∈ N)(i, j > m(A) ⇒ (i, j) /∈ A)}.

Then I0 is a nontrivial strongly admissible ideal and clearly an ideal I2 is admissible
if and only if I0 ⊂ I2. Additionally, if I2 is the I0, then I2-convergence coincides
with the convergence in Pringsheim’s sense and if we take

Id = {A ⊂ N × N : δ2(A) = 0},

then Id-convergence becomes statistical convergence for double sequences [2]. While
the work on sequences continued, strongly summable functions were introduced by
Borwein [1]. Following Borwein’s results, in 2010, Nuray [21] introduced λ-strongly
summable and λ-statistically convergent functions by taking real valued Lebesgue
measurable function on (1,∞). Recently, Connor and Savaş [5] introduced lacu-
nary statistical and sliding window convergence for measurable functions. In [22],
Nuray and Aydin introduced lacunary strongly convergence, statistical convergence
and lacunary statistical convergence of measurable functions on interval (1,∞). In
2019, by using Pringsheim limits, Savas [29] presented the new notion of mul-
tidimensional strongly Cesáro type Summability method by taking a real valued
measurable functions f(τ, υ) defined on (1,∞) × (1,∞) as follows:

A function f(τ, υ) is said to be strongly double Cesáro summable to L if

P − lim
m,n→∞

1
mn

∫ m

1

∫ n

1
|f(τ, υ) − L|dτ dυ = 0.

The space of all strongly double Cesáro summable functions will be denoted by
[W ]2.

Following Savas’s results, in this paper we will present the more general no-
tion of I2-lacunary double statistical convergence and I2-lacunary strongly double
summability by taking nonnegative multidimensional measurable real valued func-
tion on (1,∞) × (1,∞). Moreover, we will establish the relationship between two
summability methods.
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2. Main Results

In this section, we shall present the following new definitions. Additionally, the
relationship between these concepts are investigated. Throughout this paper f(τ, υ)
shall be a multidimensional measurable real valued function on (1,∞) × (1,∞).

Definition 2.1. A function f(τ, υ) is said to be statistically double bounded if
there exists some constant M such that

P − lim
m,n→∞

1
mn

|{(τ, υ) : τ 6 m, υ 6 n : |f(τ, υ| >M}| = 0,

where the vertical bars indicate the Lebesgue measure of the enclosed set. We will
denote the set of all double bounded double functions by F (ℓ)2

∞.

Now, we will define the definition of double lacunary function to present our
main definitions of this paper.

Definition 2.2. The double function ΘF = {g(t), h(s)} is called double lacu-
nary function if there exist two increasing functions such that

g(0) = 0, α(t) = g(t) − g(t− 1) → ∞ as t → ∞,

h(0) = 0, β(s) = h(s) − h(s− 1) → ∞ as s → ∞.

where g(t)
g(t+1) 6 1, h(s)

h(s+1) 6 1, and g(r)
h(r) 6 1 because of g(1) 6 h(1) 6 g(2) 6

h(2) 6 . . . 6 g(r − 1) 6 h(r − 1) 6 g(r) 6 h(r) as r → ∞. We shall use the
following notations in the sequel, g(t, s) = g(t) · h(s) and α(t, s) = α(t) · β(s), ΘF

is determined by It,s = {(τ, υ) : g(t − 1) < τ 6 g(t) & h(s − 1) < υ 6 h(s)},
ξ(t) = g(t)

g(t−1) and ϕ(s) = h(s)
h(s−1) , ξ(t, s) = ξ(t) · ϕ(s).

Definition 2.3. Let us consider the double lacunary function ΘF ={g(t), h(s)}.
A function f(τ, υ) is said to be lacunary double statistically convergent to L if for
each ε > 0,

P − lim
t,s→∞

1
α(t, s)

|{(τ, υ) ∈ It,s : |f(τ, υ) − L| > ε}|,

where the vertical bars indicate the Lebesgue measure of the enclosed set. When-
ever this occurs, we write SΘF

− lim f(τ, υ) = L. The set of all lacunary double
statistically convergent functions will be denoted by [SΘF

].

Definition 2.4. Let us consider the ordered pair of double lacunary func-
tions ΘF = {g(t), h(s)}. A function f(τ, υ) is said to be lacunary strongly double
summable to L, if

P − lim
t,s→∞

1
α(t, s)

∫ g(t)

g(t−1)

∫ h(s)

h(s−1)
|f(τ, υ) − L|dτ dυ = 0.

Whenever this occurs, we write [NΘF
] − lim f(τ, υ) = L and

[NΘF
] =

{

f(τ, υ) : ∃ some L, P − lim
t,s→∞

1
α(t, s)

∫∫

(τ,υ)∈It,s

|f(τ, υ) − L|dτ dυ = 0

}

.
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We shall denote the set of all lacunary strongly double summable functions by
[NΘF

].

Example 2.1. Let us consider the double lacunary function ordered pair of
functions ΘF = {g(t), h(s)} and f(τ, υ) define as follows:

f(τ, υ) =

{

1
α(t,s) sgn(γ(τ, υ)), if (τ, υ) ∈ It,s

0, if otherwise

where γ(τ, υ) denote the collection of functions that are bounded on It,s, note that
f(τ, υ) ∈ [NΘF

].

Definition 2.5. Let I2 ⊆ P(N × N) be a nontrivial ideal. A function f(τ, υ)
is said to be I2-convergent in Pringsheim sense to a number L, if for every ε > 0,

{(m,n) ∈ N × N : |f(τ, υ) − L| > ε} ∈ I2.

Whenever this occurs, we write I2 − limτ,υ→∞ f(τ, υ) = L.

Definition 2.6. Let I2 ⊆ P(N × N) be a nontrivial ideal. A function f(τ, υ)
is said to be I2-double statistical convergent or S2

F (I2)-convergent to L, if for each
ε > 0 and δ > 0,

{

(m,n) ∈ N × N :
1
mn

|{τ 6 m, υ 6 n : |f(τ, υ) − L| > ε}| > δ
}

∈ I2.

In this case, we write S2
F (I2) − limτ,υ→∞ f(τ, υ) = L or f(τ, υ)

P−→ L(S2
F (I2)),

where S2
F (I2) denotes the set of all I2-double statistically convergent functions.

Definition 2.7. Let us consider the double lacunary function ordered pair of
functions ΘF = {g(t), h(s)} and I2 ⊆ P(N × N) be a nontrivial ideal. A function
f(τ, υ) is said to be I2-double lacunary statistically convergent to L, if for every
ε > 0 and δ > 0,

{

(t, s) ∈ N × N :
1

α(t, s)
|{(τ, υ) ∈ It,s : |f(τ, υ) − L| > ε}| > δ

}

∈ I2.

In this case, we write f(τ, υ)
P−→ L(SΘF

(I2)) or SΘF
(I2) − limτ,υ→∞ f(τ, υ) = L,

where SΘF
(I2) denotes the set of all I2-lacunary double statistically convergent

functions.

Definition 2.8. Let us consider the double lacunary function ΘF = {g(t), h(s)}
and I2 ⊆ P(N×N) be a nontrivial ideal. A function f(τ, υ) is said to be NΘF

(I2)-
lacunary strongly double summable to L, if for every ε > 0 we have,

{

(t, s) ∈ N × N :
1

α(t, s)

∫∫

(τ,υ)∈It,s

|f(τ, υ) − L| > ε
}

∈ I2.

When this occurs, we write f(τ, υ)
P−→ L(NΘF

(I2)) orNΘF
(I2)−limτ,υ→∞ f(τ, υ) =

L. NΘF
(I2) denotes the set of all NΘF

(I2)-lacunary strongly double summable
functions.
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Example 2.2. If we take

I2 = {K ⊂ N × N : K = (N ×R) ∪ (R × N) for some finite subset R of N}.
Let g(t) = (2t) and h(s) = (3s) be two lacunary functions. We take a special set
A ∈ I2 and define a real valued function f(τ, υ) by

f(τ, υ) =































√
τυ, for (t, s) /∈ A, 2t−1 + 1 6 t 6 2t +

√

α(t) and

3s−1 + 1 6 s 6 3s +
√

β(s),

τυ, for (t, s) ∈ A, 2t−1 < t 6 2t + (α(t))2 and

3s−1 < r 6 3s + (β(s))2

0, otherwise.

where It = (2t−1, 2t] and Is = (3s−1, 3s]. Then for each ε > 0, we have

P − lim
t,s→∞

1
α(t, s)

|{(τ, υ) ∈ It,s : |f(τ, υ) − 0| > ε}| 6 P − lim
t,s→∞

√

α(t)
√

β(s)
(α(t, s))

= 0,

for (t, s) 6= A. For δ > 0, there exists a positive integer z0 such that

1
α(t, s)

|{(τ, υ) ∈ It,s : |f(τ, υ) − 0| > ε}| < δ,

for every (t, s) /∈ A and t, s > z0. Let B = {1, 2, . . . , z0 − 1} and

E =
{

(t, s) /∈ A :
1

α(t, s)
|{(τ, υ) ∈ It,s : |f(τ, υ) − 0| > ε}| > δ

}

.

Thus, E ⊆ (N ×B) ∪ (B × N) and E ∈ I2 by structure of the ideal I2. Therefore
{

(t, s) ∈ N × N :
1

α(t, s)
|{(τ, υ) ∈ It,s : |f(τ, υ) − 0| > ε}| > δ

}

⊂ A ∪ E.

It follows that SΘF
(I2) − limτ,υ→∞ f(τ, υ) = 0. However, similarly

P − lim
t,s→∞

1
α(t, s)

|(τ, υ) ∈ It,s : |f(τ, υ) − 0| > ε| 9 0.

This example demonstrates that SΘF
(I2)-double statistical convergence is a gener-

ation of SΘF
-double statistical convergence for the functions.

Theorem 2.1. Let I2 ⊂ P(N×N) be an admissible ideal and ΘF = {g(t), h(s)}
be a double lacunary function. Then we have the following:

(1) f(τ, υ)
P−→ L(NΘF

(I2)) implies f(τ, υ)
P−→ L(SΘF

(I2));
(2) NΘF

(I2) is a proper subset of SΘF
(I2);

(3) If f(τ, υ) is statistically bounded and f(τ, υ)
P−→ L(SΘF

(I2))

then f(τ, υ)
P−→ L(NΘF

(I2)).

Proof. (1) Suppose f(τ, υ)
P−→ L(NΘF

(I2)). For ε > 0, we can write
∫∫

(τ,υ)∈It,s

|f(τ, υ) − L|dτ dυ >

∫∫

(τ,υ)∈It,s,|f(τ,υ)−L|>ε

|f(τ, υ) − L|dτ dυ

> ε|{(τ, υ) ∈ It,s : |f(τ, υ) − L| > ε}|;
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which implies

1
εα(t, s)

∫∫

(τ,υ)∈It,s

|f(τ, υ) − L|dτ dυ >
1

α(t, s)
|{(τ, υ) ∈ It,s : |f(τ, υ) − L| > ε}|.

Hence, for any δ > 0, we have the containment

{

(t, s) ∈ N × N :
1

α(t, s)
|{(τ, υ) ∈ It,s : |f(τ, υ) − L| > ε}| > δ

}

⊆
{

(t, s) ∈ N × N :
1

α(t, s)

∫∫

(τ,υ)∈It,s

|f(τ, υ) − L|dτ dυ > εδ

}

.

Since f(τ, υ)
P−→ L(NΘF

(I2)), it follows that the later set belongs to I2 and thus
{

(t, s ∈ N × N :
1

α(t, s)
|{(τ, υ) ∈ It,s : |f(τ, υ) − L| > ε}| > δ

}

∈ I2.

Therefore, f(τ, υ)
P−→ L(SΘF

(I2)).

(2) Let f = f(τ, υ) be defined as follows:

f(τ, υ) =























1 2 3 · · · 3

√

α(t, s) 0 · · ·
2 2 3 · · · 3

√

α(t, s) 0 · · ·
...

...
...

...
...

...
...

3

√

α(t, s) 3

√

α(t, s) · · · · · · 3

√

α(t, s) 0 · · ·
0 0 0 0 0 0

...
...

...
...

...
...

...
. . .























.

It is clear that f(τ, υ) is an unbounded double function and for ε > 0,

1
α(t, s)

|{(τ, υ) ∈ It,s : |f(τ, υ) − 0| > ε}| 6
3

√

α(t, s)
α(t, s)

which implies for any δ > 0, the containment

{

(t, s) ∈ N × N :
1

α(t, s)
|{(τ, υ) ∈ It,s : |f(τ, υ)| > ε}| > δ

}

⊆
{

(t, s) ∈ N × N :
3

√

α(t, s)
α(t, s)

> δ

}

.

Since P − lim
3
√
α(t,s)
α(t,s) = 0. It follows that the set on the right side is finite and

therefore belongs to I2. This shows that
{

(t, s) ∈ N × N :
1

α(t, s)
|{(τ, υ) ∈ It,s : |f(τ, υ)| > ε}| > δ

}

∈ I2,
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and thus we obtain f(τ, υ)
P−→ 0 (SΘF

(I2)). On the other hand

1
α(t, s)

∫∫

(τ,υ)∈It,s

|f(τ, υ)|dτ dυ =
3

√

α(t, s)( 3

√

α(t, s)( 3

√

α(t, s) + 1))
2α(t, s)

P−→ 1
2

as t, s → ∞

implies that the function
( 1
α(t, s)

3

√

α(t, s)
(

3

√

α(t, s)
(

3

√

α(t, s) + 1
))

)

P−→ 1 as t, s → ∞

and for ε = 1
4 , we are granted the following

{

(t, s) ∈ N × N :
1

α(t, s)

∫∫

(τ, υ) ∈ It,s|f(τ, υ)|dτ dυ >
1
4

}

=
{

(t, s) ∈ N × N :
1

α(t, s)
3

√

α(t, s)( 3

√

α(t, s)( 3

√

α(t, s) + 1)) >
1
2

}

∈ F(I2).

This shows that f(τ, υ)
P−→ 0 (NΘF

(I2)) does not hold.

(3) Provided that f(τ, υ) ∈ F (ℓ)2
∞ such that f(τ, υ)

P−→ L(SΘF
(I2)). Then

there exists a R > 0 such that |f(τ, υ) − L| 6 R for all (τ, υ) ∈ N × N. Also for
each ε > 0, we can write

1
α(t, s)

∫∫

(τ,υ)∈It,s

|f(τ, υ) − L|dτ dυ =
1

α(t, s)

∫∫

(τ,υ)∈It,s,|f(τ,υ)−L|>ε
2

|f(τ, υ) − L|dτ dυ

+
1

α(t, s)

∫∫

(τ,υ)∈It,s,|f(τ,υ)−L|6ε
2

|f(τ, υ) − L|dτ dυ

6
R

α(t, s)

∣

∣

∣

{

(τ, υ) ∈ It,s : |f(τ, υ) − L| > ε

2

}∣

∣

∣ +
ε

2
.

As a result, we obtain
{

(t, s) ∈ N × N :
1

α(t, s)

∫∫

(τ,υ)∈It,s

|f(τ, υ) − L|dτ dυ > ε

}

⊆
{

(t, s) ∈ N × N :
1

α(t, s)

∣

∣

∣

{

(τ, υ) ∈ It,s : |f(τ, υ) − L| > ε

2

}∣

∣

∣ >
ε

2R

}

.

Since f(τ, υ)
P−→ L(SΘF

(I2)), it follows that later set belongs to I2, which implies
{

(t, s) ∈ N × N :
1

α(t, s)

∫∫

(τ,υ)∈It,s

|f(τ, υ) − L|dτ dυ > ε

}

∈ I2.

This demonstrates that f(τ, υ)
P−→ L(NΘF

(I2)). �

In the following, we investigate the relationship between I2-double statistical
convergence and I2-lacunary double statistical convergence for two dimensional
measurable functions.
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Theorem 2.2. Let ΘF = {g(t), h(s)} be a double lacunary function and I2 ⊆
P(N×N) be a nontrivial ideal, f(τ, υ)

P−→ L(S2
F (I2)) implies f(τ, υ)

P−→ L(SΘF
(I2))

if and only if lim inft ξ(t) > 1 and lim infs ϕ(s) > 1. If lim inft ξ(t) = 1 and

lim infs ϕ(s) = 1, then there exists a bounded two dimensional function f(τ, υ)
which is I2-double statistically convergent but not I2-double lacunary statistically

convergent.

Proof. Suppose lim inft ξ(t) > 1 and lim infs ϕ(s) > 1; then we can find ψ > 0
such that 1 + ψ 6 ξ(t) and 1 + ψ 6 ϕ(s) for sufficiently large t and s. This implies
α(t)
g(t) >

ψ
1+ψ and β(s)

h(s) >
ψ

1+ψ . If f(τ, υ)
P−→ L(S2

F (I2)) then for every ε > 0, we
obtain the following:

1
g(t, s)

|{τ 6 g(t) and υ 6 h(s) : |f(τ, υ) − L| > ε}|

>
1

g(t, s)
|{(τ, υ) ∈ It,s : |f(τ, υ) − L| > ε}|

=
α(t, s)
g(t, s)

1
α(t, s)

|{(τ, υ) ∈ It,s : |f(τ, υ) − L| > ε}|

>

( ψ

1 + ψ

)2 1
α(t, s)

|{(τ, υ) ∈ It,s : |f(τ, υ) − L| > ε}|.

Then for any δ > 0, we have

{

(t, s) ∈ N × N :
1

α(t, s)
|(τ, υ) ∈ It,s : |f(τ, υ) − L| > ε| > δ

}

⊆
{

(t, s) ∈ N × N :
1

g(t, s)
|τ 6 g(t) and

υ 6 h(s) : |f(τ, υ) − L| > ε| > δ
( ψ

1 + ψ

)2}

∈ I2.

Therefore f(τ, υ)
P−→ L(SΘF

(I2) and this proves the sufficiency.
On the other side, assume that lim inft ξ(t) = 1 and lim infs ϕ(s) = 1. Let

us choose a double subsequence function g(ηi, ϑj) = g(ηi) · h(ϑj) of the lacunary
double function ΘF such that

g(ηi)
g(ηi − 1)

< 1 +
1
i

and
h(ϑj)

h(ϑj − 1)
< 1 +

1
j
,

g(ηi − 1)
g(ηi−1)

> i and
h(ϑj − 1)
h(ϑj−1)

> j

where ηi > ηi−1 + 2, and ϑj > ϑj−1 + 2.
Let us define f(x, y) as follows:

f(x, y) =

{

1, if (x, y) ∈ Iηi,ϑj

0, otherwise
.
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Then, for any real L,

1
α(ηi, ϑj)

∫∫

(τ,υ)∈Iηi,ϑj

|f(x, y) − L|dx dy = |1 − L| for i, j = 1, 2, . . .

1
α(t, s)

∫∫

(τ,υ)∈It,s

|f(x, y) − L|dx dy = |L| for (t, s) 6= (ηi, ϑj).

Then it is obvious that f(τ, υ) does not belong to NΘF
(I2). Since f(τ, υ) ∈ F (ℓ)2

∞,

Theorem 2.1(3) implies that f(τ, υ)
P
9 L(SΘF

(I2)).
If m and n are any sufficiently large integers we can find unique i and j for

g(ηi − 1) 6 m 6 g(ηi+1 − 1) and h(ϑj − 1) 6 n 6 h(ϑj+1 − 1).

Afterward,

ε

mn
|{τ 6 m, υ 6 n : |f(τ, υ) − L| > ε}|

6
1
mn

∫ m

x=1

∫ n

y=1
|f(x, y)|dx dy

6

(g(ηi − 1) + α(ηi)
g(ηi − 1)

)

·
(h(ϑj − 1) + β(ϑj)

h(ϑj − 1)

)

6
g(ηi − 1, ϑj − 1)
g(ηi − 1, ϑj − 1)

+
g(ηi − 1) · β(ϑj)

g(ηi − 1) · h(ϑj − 1)

+
α(ηi) · h(ϑj − 1)

g(ηi − 1) · h(ϑj − 1)
+

α(ηi) · β(ϑj)
g(ηi − 1) · h(ϑj − 1)

6 1 +
β(ϑj)

h(ϑj − 1)
+

α(ηi)
g(ηi − 1)

+
α(ηi) · β(ϑj)

g(ηi − 1) · h(ϑj − 1)

6 1 +
h(ϑj) − h(ϑj − 1)

h(ϑj − 1)
+
g(ηi) − g(ηi − 1)

g(ηi − 1)

+
[g(ηi) − g(ηi − 1)] · [h(ϑj) − h(ϑj − 1)]

g(ηi − 1) · h(ϑj − 1)

6 1 +
h(ϑj)

h(ϑj − 1)
− 1 +

g(ηi)
g(ηi − 1)

− 1

+
( g(ηi)
g(ηi − 1)

− 1
)

·
( h(ϑj)
h(ϑj − 1)

− 1
)

6

(

1 +
1
i

)

+ (1 +
1
j

)

+
1
ij

− 1

6 1 +
1
i

+
1
j

+
1
ij

6 C

where C is any sufficient large constant. Hence f(τ, υ) is I2−double statistically
convergent for any nontrivial ideal I2. �
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For the next result we assume that the double lacunary function ΘF satisfies
the condition that for any set Ĝ2 ∈ F(I2),

⋃

m,n{(m,n) : g(t− 1) < m < g(t) & h(s− 1) < n < h(s), (t, s) ∈ Ĝ2} ∈ F(I2).

Theorem 2.3. Let ΘF = {g(t), h(s)} be a double lacunary function and I2 ⊆
P(N×N) be a nontrivial ideal, f(τ, υ)

P−→ L(SΘF
(I2)) implies f(τ, υ)

P−→ L(S2
F (I2))

if and only if lim supt ξ(t) < ∞ and lim sups ϕ(s) < ∞.

Proof. Suppose that lim supt ξ(t) < ∞ and lim sups ϕ(s) < ∞. Then, there
exist 0 < R < ∞ and 0 < S < ∞ such that ξ(t) < R and ϕ(s) < S, for all t > 1

and s > 1. Suppose that f(τ, υ)
P−→ L(SΘF

(I2)) and for ε, δ, δ∗ > 0 define the sets

Ĝ2 =
{

(t, s) ∈ N × N :
1

α(t, s)
|{(τ, υ) ∈ It,s : |f(τ, υ) − L| > ε}| < δ

}

,

Ê2 =
{

(m,n) ∈ N × N :
1
mn

|{τ 6 m, υ 6 n : |f(τ, υ) − L| > ε}| < δ∗
}

.

It is clear from our assumption that Ĝ2 ∈ F(I2), the filter associated with the
ideal I2. Additionally, we observe that

Ãi,j =
1

α(i, j)
|{(τ, υ) ∈ Ii,j : |f(τ, υ) − L| > ε}| < δ,

for all (i, j) ∈ Ĝ2. Let (m,n) ∈ N × N be such that g(t − 1) < m < g(t) and
h(s − 1) < n < h(s) for all (t, s) ∈ Ĝ2. Moreover, α(t, s) = α(t) · β(s) = [g(t) −
g(t− 1)] · [h(s) − h(s− 1)] 6 g(t, s) − g(t− 1, s), and g(1) 6 h(1) 6 g(2) 6 h(2) 6
· · · 6 g(r − 1) 6 h(r − 1) 6 g(r) 6 h(r) as r → ∞, we obtain

1
mn

|{τ 6 m, υ 6 n : |f(τ, υ) − L| > ε}|

=
1

g(t− 1, s− 1)
|{τ 6 g(t), υ 6 h(s) : |f(τ, υ) − L| > ε}|

=
1

g(t− 1, s− 1)
|{(τ, υ) ∈ I2,2 : |f(τ, υ) − L| > ε}| + · · · +

+
1

g(t− 1, s− 1)
|{(τ, υ) ∈ It,s : |f(τ, υ) − L| > ε}|

6
g(2, 2) − g(2, 1)
g(t− 1, s− 1)

1
α(2, 2)

|{(τ, υ) ∈ I2,2 : |f(τ, υ) − L| > ε}|

+
g(3, 3) − g(2, 3)
g(t− 1, s− 1)

1
α(3, 3)

|{(τ, υ) ∈ I3,3 : |f(τ, υ) − L| > ε}|

+
g(t, s) − g(t− 1, s)
g(t− 1, s− 1)

1
α(t, s)

|{(τ, υ) ∈ It,s : |f(τ, υ) − L| > ε}|

6
g(2, 2) − g(2, 1)
g(t− 1, s− 1)

Ã2,2 +
g(3, 3) − g(2, 3)
g(t− 1, s− 1)

Ã3,3 + · · · +
g(t, s) − g(t− 1, s)
g(t− 1, s− 1)

Ãt,s

6 sup
(i,j)∈Ĝ2

Ãi,j
g(t, s)

g(t− 1, s− 1)
< RSδ.
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Choosing δ∗ = δ
RS

and in view of the fact that
⋃

m,n{(m,n) : g(t− 1) < m < g(t) & h(s− 1) < n < h(s), (t, s) ∈ Ĝ2} ⊂ Ê2,

where Ĝ2 ∈ F(I2) it follows from our assumption on ΘF that the set Ê2 ∈ F(I2)
and this completes the proof of the theorem. �

Theorem 2.4. The set SΘF
(I2) ∩ F (ℓ)2

∞ is a closed subset of F (ℓ)2
∞, where

as usual F (ℓ)2
∞ is Banach space of all bounded real functions endowed with the

supremum norm.

Proof. Suppose that fm,n = fm,n(τ, υ) ∈ SΘF
(I2)∩F (ℓ)2

∞ is a P -convergence
function and converges to f(τ, υ) ∈ F (ℓ)2

∞. Since fm,n ∈ SΘF
(I2), there exists µm,n

for m = 1, 2, 3, . . . and n = 1, 2, 3, . . . such that SΘF
(I2) − P − lim fm,n(τ, υ) = µ.

We first show that the sequence µm,n is P−convergent to some number µ and
f = f(τ, υ), which is a real valued function of two variables measurable on (1,∞)×
(1,∞), is I2-double lacunary statistically convergent to µ. Since fm,n(τ, υ) →
µm,n(SΘF

(I2)). As fm,n → f implies fm,n is a multidimensional Cauchy function.
Therefore for every ε > 0, there exists a positive integer n0 such that for every

p > m > n0 and q > n > n0, we obtain |fp,q − fm,n| < ε
3 . Since fm,n(τ, υ)

P−→
µm,n(SΘF

(I2)), so for each ε > 0 and δ̃ > 0, if we denote the sets

R1 =
{

(t, s) ∈ N × N :
1

α(t, s)

∣

∣

∣

{

(τ, υ) ∈ It,s : |fm,n(τ, υ) − µm,n| > ε

3

}∣

∣

∣
<
δ̃

3

}

,

R2 =
{

(t, s) ∈ N × N :
1

α(t, s)

∣

∣

∣

{

(τ, υ) ∈ It,s : |fp,q(τ, υ) − µp,q| >
ε

3

}∣

∣

∣ <
δ̃

3

}

,

then ∅ 6= R1 ∩R2 ∈ F(I2). Let (t, s) ∈ R1 ∩R2, then we obtain

1
α(t, s)

∣

∣

∣

{

(m,n) ∈ It,s : |fm,n(τ, υ) − µm,n| > ε

3

}∣

∣

∣ <
δ̃

3
,

1
α(t, s)

∣

∣

∣

{

(m,n) ∈ It,s : |fp,q(τ, υ) − µp,q| >
ε

3

}∣

∣

∣
<
δ̃

3
,

which implies that

1
α(t, s)

∣

∣

∣

{

(m,n) ∈ It,s : |fm,n(τ, υ) − µm,n| > ε

3
∨ |fp,q(τ, υ) − µp,q| >

ε

3

}∣

∣

∣ < δ̃ < 1.

This shows that there exists a pair (τ0, υ0) ∈ It,s for which |fm,n(τ0, υ0)−µm,n| < ε
3

and |fp,q(τ0, υ0) − µp,q| < ε
3 . Moreover, for p > m > n0 and q > n > n0, we get

|µm,n − µp,q| = |µp,q − fp,q(τ0, υ0)| + |fp,q(τ0, υ0) − fm,n(τ0, υ0)|
+ |fm,n(τ0, υ0) − µm,n| < ε

3
+
ε

3
+
ε

3
= ε.

Hence (µm,n) is a Cauchy double sequence in R (or C) and consequently there is a

number µ such that µm,n
P−→ µ. Now to prove the theorem it is sufficient to show

that the real valued measurable function of two variables f = f(τ, υ) → µ(SΘF
(I2)).
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Since fm,n = fm,n(τ, υ) ∈ SΘF
(I2) ∩ F (ℓ)2

∞ is a P -convergent function and P -
convergence to f(τ, υ) ∈ F (ℓ)2

∞. Therefore, for each ε > 0, there exists a positive
integer n1(ε) such that

|fm,n(τ, υ) − fm,n| < ε

3
for m,n > n1(ε).

Also µm,n
P−→ µ, so for each ε > 0, we can find another positive integer n2(ε) such

that
|µm,n − µ| < ε

3
, ∀m,n > n2(ε).

Choose n3(ε) = max{n1(ε), n2(ε)} and m0, n0 > n3(ε). Then for any (τ, υ) ∈ N×N

|f(τ, υ) − µ| 6 |f(τ, υ) − fm0,n0
(τ, υ)| + |fm0,n0

(τ, υ) − µm0,n0
| + |µm0,n0

− µ|
<
ε

3
+ |fm0,n0

(τ, υ) − µm0,n0
| +

ε

3
,

and therefore the containment

{(τ, υ) ∈ It,s : |f(τ, υ) − µ| > ε} ⊆
{

(τ, υ) ∈ It,s : |fm0,n0
(τ, υ) − µm0,n0

| > ε

3

}

implies

1
α(t, s)

|{(τ, υ) ∈ It,s : |f(τ, υ)| > ε}|

6
1

α(t, s)
|{(τ, υ) ∈ It,s : |fm0,n0

(τ, υ) − µm0,n0
| > ε}.

In addition, for any δ̃ > 0 we obtain
{

(t, s) ∈ N × N :
1

α(t, s)

∣

∣

∣

{

(τ, υ) ∈ It,s : |fm0,n0
(τ, υ) − µm0,n0

| > ε

3

}∣

∣

∣ < δ̃
}

⊆
{

(t, s) ∈ N × N :
1

α(t, s)

∣

∣

∣

{

(τ, υ) ∈ It,s : |f(τ, υ) − µ| > ε
}∣

∣

∣
< δ̃

}

.

Because
{

(t, s) ∈ N×N :
1

α(t, s)

∣

∣

∣

{

(τ, υ) ∈ It,s : |fm0,n0
(τ, υ)−µm0,n0

| > ε

3

}∣

∣

∣ < δ̃
}

∈ F(I2).

Therefore
{

(t, s) ∈ N × N :
1

α(t, s)
|{(τ, υ) ∈ It,s : |f(τ, υ) − µ| > ε}| < δ̃

}

∈ F(I2).

Hence,
{

(t, s) ∈ N × N :
1

α(t, s)
|{(τ, υ) ∈ It,s : |f(τ, υ) − µ| > ε}| < δ̃

}

∈ I2.

This demonstrates that f = f(τ, υ)
P−→ µ(SΘF

(I2)). �

Corollary 2.1. The set (S2
F (I2)) ∩ F (ℓ)2

∞ is a closed subset of F (ℓ)2
∞.
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