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Abstract Let R a commutative ring with identity and M be a unitary R-module. In this paper, we investigate
some properties of n-absorbing submodules of M as a generalization of 2-absorbing submodules. We also
define the classical n-absorbing submodule, a proper submodule N of an R-module M is called a classical
n-absorbing submodule if whenever a1a2 . . . an+1m ∈ N for a1, a2, . . . , an+1 ∈ R and m ∈ M , there are n of
ai ’s whose product with m is in N . Furthermore, we give some characterizations of n-absorbing and classical
n-absorbing submodules under some conditions.

Mathematics Subject Classification 13C05 · 13C13 · 13C99

1 Introduction

Throughout this paper, we assume that all rings are commutative with 1 �= 0. Let R be a commutative ring.
An ideal I of R is said to be proper if I �= R. Let M a unitary module over R and N be a submodule of
M . The residual of N by M , (N :R M) or simply (N : M), denotes the ideal {r ∈ R : rM ⊆ N }. For
any element x of M , the ideal (N : x) is defined by (N : x) = {r ∈ R : r x ∈ N }. Let a ∈ R. Then,
Na = {x : x ∈ M and ax ∈ N } is a submodule of the R-module M . Let m ∈ M , a cyclic submodule that is
generated by m is a submodule of M has the form Rm = {rm : r ∈ R}. A proper submodule N of M is said
to be irreducible if N is not an intersection of two submodules of M that properly contain it. The set of zero
divisors of M , denoted by Zd(M) is defined by Zd(M) = {r ∈ R : f or some x ∈ M and x �= 0, r x = 0}.
An R-module M is called a multiplication module if every submodule N of M has the form I M for some ideal
I of R. Prime ideals play a crucial role in ring theory, since they interfere with many branches of algebra and
they represent an important role in understanding the structure of ring. A proper ideal I of a ring R is called
a prime ideal if, whenever ab ∈ I for a, b ∈ R, then a ∈ I or b ∈ I . A proper submodule N of an R-module
M is said to be a prime submodule if, whenever a ∈ R, m ∈ M , and am ∈ N , then m ∈ N or a ∈ (N : M).

In [5], Badawi introduced a new generalization of prime ideals in a commutative ring R. He defined a
nonzero proper ideal I of R to be a 2-absorbing ideal of R if, whenever a, b, c ∈ R and abc ∈ I , then ab ∈ I
or ac ∈ I or bc ∈ I . The concept of 2-absorbing ideal has been transferred to modules. A proper submodule
N of an R-module M is a 2-absorbing submodule of M [6] if, whenever abm ∈ N for a, b ∈ R and m ∈ M ,
then am ∈ N or bm ∈ N or ab ∈ (N : M). The class of 2-absorbing submodules of modules was introduced
as a generalization of the class of 2-absorbing ideals of rings. Then, many generalizations of 2-absorbing
submodules were studied such as primary 2-absorbing [8], almost 2-absorbing [3], almost 2-absorbing primary
[2], and classical 2-absorbing [9]. In this article, we investigate some properties of n-absorbing submodules
of M as a generalization of 2-absorbing submodules. We also define the classical n-absorbing submodule.
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Furthermore, we give some characterizations of n-absorbing and classical n-absorbing submodules under
some conditions. In addition, we investigate the sufficient and necessary conditions for a submodule N to be
classical n-absorbing submodule of M .

2 n-Absorbing submodules

The concept of 2-absorbing has been extended to n-absorbing in ideals and submodules, where n is any positive
integer. In this section, we investigate some properties of n-absorbing submodules.

Definition 2.1 [1] A proper ideal I of a ring R is said to be an n-absorbing ideal if, whenever a1 . . . an+1 ∈ I
for a1, . . . , an+1 ∈ R, then there are n of a′

i s whose product is in I .

Definition 2.2 [7] A proper submodule N of an R-module M is called an n-absorbing submodule if, whenever
a1 . . . anm ∈ N for a1, . . . , an ∈ R and m ∈ M , then either a1 . . . an ∈ (N : M) or there are n − 1 of a′

i s
whose product with m is in N .

Proposition 2.3 If N is an n-absorbing submodule of an R-module M, then (N : m) is an n-absorbing ideal
in R for all m ∈ M − N.

Proof Form ∈ M−N , (N : m) is a proper ideal of R.Assume thata1 . . . an+1 ∈ (N : m) fora1, . . . , an+1 ∈ R.
Then, a1 . . . an+1m = a1 . . . an(an+1m) ∈ N . Since N is an n-absorbing submodule, then a1 . . . an ∈ (N :
M) ⊆ (N : m) or there are n − 1 of the a′

i s , 1 ≤ i ≤ n whose product with an+1m in N , the latter case means
that there are n − 1 of the a′

i s, 1 ≤ i ≤ n whose product with an+1 belongs to (N : m). Thus, (N : m) is an
n-absorbing ideal in R. ��
Proposition 2.4 [4] Let M an R-module and N be a proper submodule of M. Then, Zd(M/N ) =⋃

x∈M−N (N : x).
Proposition 2.5 Let N be an n-absorbing submodule of M. If the set of all zero divisors of M/N, Zd(M/N ),
forms an ideal in R, then it is an n-absorbing ideal of R.

Proof Let a1 . . . an+1 ∈ Zd(M/N ) for a1, . . . , an+1 ∈ R, and then, by Proposi tion 2.4, a1 . . . an+1 ∈ (N :
m′) for some m′ ∈ M − N . Since N is an n-absorbing submodule, then (N : m′) is an n-absorbing ideal of R.
Therefore, there are n of a′

i s whose product belongs to (N : m′), and hence, there are n of a′
i s whose product

belongs to Zd(M/N ). ��
Remark 2.6 The set of all zero divisors may not be an ideal. For example, consider the Z-module M = Z6,
we have 2, 3 ∈ Zd(M) but 2 + 3 /∈ Zd(M).

The following theorem characterizes n-absorbing submodule in terms of submodules.

Theorem 2.7 Let N be a submodule of an R-module M. The following are equivalent:

(1) N is an n-absorbing submodule.
(2) For a1, . . . , an ∈ R, such that a1 . . . an /∈ (N : M), Na1...an = ⋃n

i=1 Nâi , where âi =
a1 . . . ai−1ai+1 . . . an.

Proof (1) ⇒ (2) Let m ∈ Na1...an and assume that a1 . . . an /∈ (N : M), and then, a1 . . . anm ∈ N .
Since N is an n-absorbing submodule, then there are n − 1 of a′

i s, 1 ≤ i ≤ n, such that âim ∈ N ,
âi = a1 . . . ai−1ai+1 . . . an , and hence, m ∈ Nâi . For the other containment, let m ∈ ⋃n

i=1 Nâi , then â jm ∈ N
for some j ∈ {1, . . . , n}, then a j â jm = a1 . . . anm ∈ N , so m ∈ Na1...an .
(2) ⇐ (1) Let a1, . . . , an ∈ R and m ∈ M such that a1 . . . anm ∈ N . Assume that a1 . . . an /∈
(N : M), then m ∈ Na1...an = ⋃n

i=1 Nâi then m ∈ Nâ j for some j ∈ {1, . . . , n}, implies that
â jm = a1 . . . a j−1a j+1 . . . anm ∈ N . Thus, N is an n-absorbing submodule. ��
The following example shows that if N is not an n-absorbing submodule of M , then the second statement in
the previous theorem does not hold.

Example 2.8 Take n = 2. Let M = Z be a module over itself, and let N = 8Z, N is not a 2-absorbing
submodule of M and N2.2 = 2Z �= N2 = 4Z.
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Now, we give a necessary and sufficient condition for capability of reducing (by 1) the index of the residual
(N : M) of the proper submodule N of M .

Theorem 2.9 Let N be an n-absorbing submodule of an R-module M. Then, (N : M) is an (n−1)-absorbing
ideal of R if and only if (N : m) is an (n − 1)-absorbing ideal of R for all m ∈ M − N.

Proof (⇒) Let a1, . . . , an ∈ R, m ∈ M − N and a1 . . . an ∈ (N : m). Then, a1 . . . anm ∈ N . Since N is an
n-absorbing submodule of M , then a1 . . . an ∈ (N : M) or there are n − 1 of the a′

i s whose product with m
is in N . If a1 . . . an ∈ (N : M), then, by assumption, there are n − 1 of the a′

i s, 1 ≤ i ≤ n, whose product
belongs to (N : M), and hence, there are n − 1 of the a′

i s, 1 ≤ i ≤ n, whose product belongs to (N : m). In
the other case, if there are n − 1 of the a′

i s whose product with m is in N , and hence, there are n − 1 of the
a′
i s, 1 ≤ i ≤ n, whose product belongs to (N : m) and we are done.

(⇐) Suppose that a1 . . . an ∈ (N : M) for some a1, . . . , an ∈ R and assume that, for every i , 1 ≤ i ≤ n,
there exists mi ∈ M , such that âimi /∈ N , where âi = a1 . . . ai−1ai+1 . . . an . By a1 . . . anmi ∈ N , it follows
that â jmi ∈ N , where j �= i and â j = a1 . . . a j−1a j+1 . . . an , since (N : mi ) is (n − 1)-absorbing ideal. If∑n

i=1 mi ∈ N , then â jm j ∈ N , since â jmi ∈ N , ∀i �= j , which is a contradiction. Thus,
∑n

i=1 mi /∈ N . Now,
by a1 . . . an

∑n
i=1 mi ∈ N , we have a1 . . . an ∈ (N : ∑n

i=1 mi ), and then, there are n − 1 of the a′
i s whose

product is in (N : ∑n
i=1mi ), and hence, there are n − 1 of the a′

i s whose product with
∑n

i=1 mi belongs to N ,
and then, we must have âkmk ∈ N , for some k ∈ {1, . . . , n}, which is a contradiction. Thus, there are n − 1
of the a′

i s whose product with M is contained in N . Therefore, (N : M) is (n − 1)-absorbing ideal of R. ��
Proposition 2.10 Let N be an n-absorbing submodule of an R-module M , y ∈ M, and a1, . . . , an ∈ R. If
a1 . . . an /∈ (N : M), then

(N : a1 . . . an y) =
n⋃

i=1

(N : âi y),

where âi = a1 . . . ai−1ai+1 . . . an.

Proof Let r ∈ (N : a1 . . . an y), and then, ra1 . . . an y = a1 . . . an(ry) ∈ N . Since N is an n-absorbing
submodule and a1 . . . an /∈ (N : M), then âi (ry) ∈ N , where âi = a1 . . . ai−1ai+1 . . . an , for some i , and
hence, r ∈ (N : âi y). For the reverse inclusion, let r ∈ ⋃n

i=1(N : âi y), and then, r ∈ (N : â j y) for some
j ∈ {1, . . . , n}. Then, ra j â j y = ra1 . . . an y ∈ N implies r ∈ (N : a1 . . . an y). ��
In the following two propositions, we study the absorbing property under the homomorphism and localization.

Proposition 2.11 Let f : M → M ′ be an epimorphism of R-modules.

(1) If N ′ is an n-absorbing submodule of M ′, then f −1(N ′) is an n-absorbing submodule of M.
(2) If N is an n-absorbing submodule of M containing ker( f ), then f (N ) is an n-absorbing submodule of

M ′.

Proof (1) Let a1, . . . , an ∈ R and m ∈ M , such that a1 . . . anm ∈ f −1(N ′) then a1 . . . an f (m) ∈ N ′, but N ′
is n-absorbing submodule of M ′, so a1 . . . an ∈ (N ′ : M ′) or âi f (m) ∈ N ′, where âi = a1 . . . ai−1ai+1 . . . an .
If a1 . . . an ∈ (N ′ : M ′), then a1 . . . anM ′ ⊆ N ′, then a1 . . . anM ⊆ f −1(N ′), so a1 . . . an ∈ ( f −1(N ′) : M).
If âi f (m) ∈ N ′, then f (âim) ∈ N ′ so âim ∈ f −1(N ′). Thus, f −1(N ′) is an n-absorbing submodule of M .
(2) Let a1, . . . , an ∈ R, m′ ∈ M ′, and a1 . . . anm′ ∈ f (N ). Then, there exists t ∈ N , such that a1 . . . anm′ =
f (t). Since f is an epimorphism therefore for somem ∈ M , we have f (m) = m′. Thus, a1 . . . an f (m) = f (t).
This implies that f (a1 . . . anm−t) = 0, so a1 . . . anm−t ∈ ker( f ) ⊆ N . Thus, a1 . . . anm ∈ N . Now, since N
is an n-absorbing, therefore, âim ∈ N or a1 . . . an ∈ (N : M). Thus, âim′ ∈ f (N ) or a1 . . . an ∈ ( f (N ) : M ′).
Hence, f (N ) is an n-absorbing submodule of M ′. ��
Proposition 2.12 Let S be a multiplicatively closed subset of R and S−1M be the module of fraction of M.
Then, the following statements hold.

(1) If N is an n-absorbing submodule of M , then S−1N is an n-absorbing submodule of S−1M.
(2) If S−1N is an n-absorbing submodule of S−1M such that Zd(M/N ) ∩ S = φ, then N is an n-absorbing

submodule of M.
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Proof (1) Assume that a1, . . . , an ∈ R, s1, . . . , sn, l ∈ S, m ∈ M and a1...anm
s1...snl

∈ S−1N . Then, there exists
s′ ∈ S, such that s′a1 . . . anm = a1 . . . an(s′m) ∈ N . By assumption, N is an n-absorbing submodule of M ,
and thus, a1 . . . an ∈ (N : M) or âi s′m ∈ N , where âi = a1 . . . ai−1ai+1 . . . an for some 1 ≤ i ≤ n. If
âi s′m ∈ N , then âi s′m

s1...si−1si+1...sns′l = âim
ŝi l

∈ S−1N , and if a1 . . . an ∈ (N : M), then a1...an
s1...sn

∈ S−1(N : M) ⊆
(S−1N : S−1M) . Therefore, S−1N is an n-absorbing submodule of S−1M .
(2) Let a1, . . . , an ∈ R and m ∈ M be such that a1 . . . anm ∈ N . Then, a1...anm

1 ∈ S−1N . Since S−1N is

an n-absorbing submodule of S−1M , either a1...an
1 ∈ (S−1N :S−1R S−1M) or âim

1 ∈ S−1N , where âi =
a1 . . . ai−1aa+1..an for some 1 ≤ i ≤ n. Therefore, there exists s ∈ S, such that sâim ∈ N . This implies
âim ∈ N , since S ∩ Zd(M/N ) = φ. Now, consider the case when a1...an

1 ∈ (S−1N :S−1R S−1M), then

a1 . . . anS−1M ⊆ S−1N . Now, we have to show a1 . . . anM ⊆ N . Assume that m′ ∈ M , and then, a1...anm′
1 ∈

a1 . . . anS−1M ⊆ S−1N , so there exists t ∈ S, such that ta1 . . . anm ∈ N . Since S ∩ Zd(M/N ) = φ, then
a1 . . . anm′ ∈ N , and therefore, a1 . . . anM ⊆ N . Hence, N is an n-absorbing submodule of M . ��

3 Classical n-absorbing submodules

In this section, we introduce and study the concept of classical n-absorbing submodules as a generalization of
n-absorbing submodules.

Definition 3.1 A proper submodule N of an R-module M is called a classical n-absorbing submodule if,
whenever a1a2 . . . an+1m ∈ N for a1, a2, . . . , an+1 ∈ R and m ∈ M , there are n of ai ’s whose product with
m is in N .

Example 3.2 (1) Let R = Z and M = R× R. The submodule N = {(k, k) : k ∈ R} is a classical n-absorbing
submodule of M .

(2) Let R = Z and M = Z3 ⊕Q⊕Z. Take n = 2, the submodule N = 0̄⊕{0}⊕Z is a classical 2-absorbing
submodule of M . To see this, let a, b, c, z ∈ Z, w ∈ Q and x̄ ∈ Z3 such that abc(x̄, w, z) ∈ N . Hence,
abcx = 0 and abcw = 0. If abcz �= 0, then w = 0. We have 3|abcx , then 3|ab or 3|cx , if 3|ab,
then ab(x̄, w, z) = (abx, 0, abz) = (0, 0, abz) ∈ N . Similarly if 3|cx , then c(x̄, w, z) = (cx, 0, cz) =
(0, 0, cz) ∈ N . Now, if abcz = 0, then one of a, b, c, z is zero; first, we take one of the scalars which is
zero, say a, then a(x̄, w, z) = (0̄, 0, 0) ∈ N , and hence ab(x̄, w, z) ∈ N . if a, b, c �= 0 and z = 0, since
abcw = 0, then w = 0 (this was a previous case). If a, b, c �= 0, z = 0 and w �= 0, then abcw �= 0 so
abc(x̄, w, z) /∈ N , a contradiction. Thus, N is a classical 2-absorbing submodule of M .

Proposition 3.3 Let N be a proper submodule of an R-module M.

(i) If N is an n-absorbing submodule of M, then N is a classical n-absorbing submodule of M.
(ii) If N is an n-absorbing submodule of M and (N : M) is an (n − 1)-absorbing ideal of R, then N is a

classical (n − 1)-absorbing submodule of M.

Proof (i) Assume that N is an n-absorbing submodule of M . Let a1, a2, . . . , an+1 ∈ R and m ∈ M , such
that a1a2 . . . anan+1m = a1a2 . . . an(an+1m) ∈ N . Then, either there are n − 1 of ai ’s whose product with
an+1m is in N or a1a2 . . . an ∈ (N : M). The first case leads us to the claim. In the second case, we have that
a1a2 . . . anm ∈ N . Consequently, N is a classical n-absorbing submodule.
(i i) Assume that N is an n-absorbing submodule of M and (N : M) is an (n − 1)-absorbing ideal of R. Let
a1a2 . . . anm ∈ N for some a1, a2, . . . , an ∈ R and m ∈ M , such that there are no n− 1 of ai ’s whose product
with m is in N . Then, a1a2 . . . an ∈ (N : M), and so, there are n − 1 of ai ’s whose product is in (N : M),
which is a contradiction. Hence, N is a classical (n − 1)-absorbing submodule of M . ��
Remark 3.4 The following example shows that the converse of Proposition 3.3(i) is not true. Take n = 2,
and let R = Z and M = Z3 ⊕ Z5 ⊕ Z. The zero submodule of M is a classical 2-absorbing submodule,
but is not 2-absorbing, since 3.5(1, 1, 0) = (0, 0, 0), but 3(1, 1, 0) �= (0, 0, 0), 5(1, 1, 0) �= (0, 0, 0), and
3.5 /∈ (0 : Z3 ⊕ Z5 ⊕ Z) = 0.

The following theorem characterizes classical n-absorbing submodule in terms of n-absorbing ideals.

Theorem 3.5 Let M an R-module and N be a proper submodule of M. Then, the followings are equivalent:

(i) N is a classical n-absorbing submodule of M.
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(ii) (N : m) is a n-absorbing ideal of R for every m ∈ M − N.

Proof (i) ⇒ (i i) Assume that N is a classical n-absorbing submodule. (N : m) is a proper ideal, since
m ∈ M − N . Let a1a2 . . . an+1 ∈ (N : m) for some a1, a2, . . . , an+1 ∈ R. Since N is a classical n-absorbing
submodule and a1a2 . . . an+1m ∈ N , then there are n of ai ’s whose product with m is in N , and hence, there
are n of ai ’s whose product is in (N : m). Thus, (N : m) is n-absorbing ideal.
(i i) ⇐ (i) Assume that (N : m) is a n-absorbing ideal of R for every m ∈ M − N . let a1, a2, . . . , an+1 ∈ R
and m ∈ M with a1a2 . . . an+1m ∈ N . If m ∈ N , we are done. Assume that m /∈ N , since (N : m) is a
n-absorbing ideal and a1a2 . . . an+1 ∈ (N : m), then there are n of ai ’s whose product is in (N : m), and
hence, there are n of ai ’s whose product with m is in N . Therefore, N is a classical n-absorbing submodule of
M . ��
Theorem 3.6 Let M a cyclic R-module and N be a submodule of M. If N is a classical n-absorbing submodule,
then N is an n-absorbing submodule of M.

Proof LetM = Rm for somem ∈ M . Suppose that a1a2 . . . anx ∈ N for some a1, a2, . . . , an ∈ R and x ∈ M .
Then, there exists an element an+1 ∈ R, such that x = an+1m. Therefore, a1a2 . . . anx = a1a2 . . . anan+1m ∈
N , and since N is a classical n-absorbing submodule, then there are n of ai ’s whose product with m is in
N . Since M is cyclic, (N : m) = (N : M); hence, there are n of ai ’s whose product with m is in N or
a1a2 . . . an ∈ (N : M). Thus, N is an n-absorbing submodule of M . ��
Now, in the following two corollaries, we characterize the classical n-absorbing submodules in terms of
n-absorbing submodules and n-absorbing ideal.

Corollary 3.7 Let M a cyclic R-module and N be a submodule of M. Then, the followings are equivalent:

(i) N is a classical n-absorbing submodule of M.
(ii) N is an n-absorbing submodule of M.

Corollary 3.8 Let M a cyclic multiplication R-module and N be a submodule of M. Then, the followings are
equivalent:

(i) N is a classical n-absorbing submodule of M.
(ii) (N : M) is an n-absorbing ideal of R.

Proof Directly by Corollary 3.7 and Proposition 2.4 in [7]. ��
Here, in the next theorem, we investigate a submodule to be classical n-absorbing under some conditions.

Theorem 3.9 Let M an R-module and N be a proper irreducible submodule of M, such that Nr = Nrn for
all r ∈ R, and then, N is a classical n-absorbing submodule of M.

Proof Let r1, r2, . . . , rn+1 ∈ R and m ∈ N with r1r2 . . . rn+1m ∈ N , and assume that N is not a classical
n-absorbing submodule of M , and so, there are no n of ai ’s whose product with m is in N . We have N ⊆⋂n

i=1 (N + Rr̂im), where r̂i = r1r2 . . . ri−1ri+1 . . . rn . Let x ∈ ⋂n
i=1 (N + Rr̂im), then x = x1 + s1r̂nm =

x2+s2r̂n−1m = · · · = xn +snr̂1m where xi ∈ N and si ∈ R for every i , then rn−1
1 x = rn−1

1 x1+s1r
n−1
1 r̂nm =

rn−1
1 x2 + s2r

n−1
1 r̂n−1m = · · · = rn−1

1 xn + snr
n−1
1 r̂1m, since r1n−1xn, snr1n−1r̂1m ∈ N , so s1r1n−1r̂nm ∈ N

which implies that s1(r2r3 . . . rn−1)m ∈ Nr1n , but Nr1n = Nr1 , and hence, s1r̂nm ∈ N , and so, x ∈ N .
Therefore,

⋂n
i=1 (N + Rr̂im) ⊆ N ; consequently,

⋂n
i=1 (N + Rr̂im) = N , a contradiction, because N is an

irreducible. Hence, N is a classical n-absorbing submodule of M . ��
Theorem 3.10 Let M an R-module and N be a classical n-absorbing submodule of M, such that (N : y)
is a prime ideal of R for y ∈ M − N. For x ∈ M, if (N : x) − ⋃

xi∈M−N (N : xi ) �= φ, then N =
(N + Rx) ∩ ⋂

xi∈M−N (N + Rxi ).

Proof Suppose that N is a classical n-absorbing submodule of M . Let a1a2 . . . an ∈ (N : x) − ⋃
xi∈M−N (N :

xi ), where a1, a2, . . . , an ∈ R, then a1a2 . . . anx ∈ N and a1a2 . . . anxi /∈ N for every xi ∈ M − N .
It is Clear that N ⊆ (N + Rx) ∩ ⋂

xi∈M−N (N + Rxi ). For the reverse inclusion, let n ∈ (N + Rx) ∩
⋂

xi∈M−N (N + Rxi ), then n = n′ + r ′x = ni + ri xi for every xi ∈ M − N , where n′, ni ∈ N and
r ′, ri ∈ R. Now, a1a2 . . . ann = a1a2 . . . ann′ + a1a2 . . . anr ′x = a1a2 . . . anni + a1a2 . . . anri xi and
a1a2 . . . anr ′x, a1a2 . . . ann′, a1a2 . . . anni ∈ N , so a1a2 . . . anri xi ∈ N . Since N is a classical n-absorbing
submodule and a1a2 . . . anxi /∈ N , then there are n−1 of ai ’s whose product with ri xi is in N . Hence, there are
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n−1 of ai ’s whose product with ri is in (N : xi ). If xi ∈ N , then ri xi ∈ N , and so n = ni +ri xi ∈ N . Assume
that xi /∈ N , so, by hypothesis, (N : xi ) is a prime, and hence, either there are n−1 of ai ’s whose product is in
(N : xi ) or ri ∈ (N : xi ). From the first case, we have a1a2 . . . anxi ∈ N which is a contradiction. Therefore,
ri ∈ (N : xi ), and hence, ri xi ∈ N . Thus, we have n = ni+ri xi ∈ N , so (N+Rx)∩⋂

xi∈M−N (N+Rxi ) ⊆ N .
Hence, N = (N + Rx) ∩ ⋂

xi∈M−N (N + Rxi ). ��
Corollary 3.11 Let M an R-module and N be a classical n-absorbing submodule of M, such that (N : y)
is a prime ideal of R for y ∈ M − N. For x ∈ M − N, if (N : x) − ⋃

xi∈M−N (N : xi ) �= φ, then N is not
irreducible.

Proof By Theorem 3.10, N = (N + Rx) ∩ ⋂
xi∈M−N (N + Rxi ). Since x ∈ M − N , we have N ⊂ (N + Rx)

and N ⊂ ⋂
xi∈M−N (N + Rxi ). Thus, N is not irreducible. ��

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate
if changes were made.
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