T.C. SAKARYA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

YÜKSEK PLASTİSİTELİ BİR KİLDE KUM MİKTARININ KAYMA MUKAVEMETİNE ETKİLERİ

YÜKSEK LİSANS TEZİ

İnş.Müh. CEMİL GÜVEN

Enstitü Anabilim Dalı	:	İNŞAAT MÜHENDİSLİĞİ
Enstitü Bilim Dalı	:	GEOTEKNİK
Tez Danışmanı	:	Prof. Dr. Zeki GÜNDÜZ

Ağustos 2007

T.C. SAKARYA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

YÜKSEK PLASTİSİTELİ BİR KİLDE KUM MİKTARININ KAYMA MUKAVEMETİNE ETKİLERİ

YÜKSEK LİSANS TEZİ

İnş.Müh. Cemil GÜVEN

Enstitü Anabilim Dalı	:	İNŞAAT MÜHENDİSLİĞİ

Enstitü Bilim Dalı : GEOTEKNİK

Bu tez 14 / 08 /2007 tarihinde aşağıdaki jüri tarafından Oybirliği ile kabul edilmiştir.

Prof. Dr. Zeki GÜNDÜZ	Prof. Dr. Hasan ARMAN	Doç. Dr. Seyhan FIRAT
Jüri Başkanı	Üye	Üye

ÖNSÖZ

Altı yıllık üniversite hayatımda her türlü bilgisini benimle paylaşan, çalışmamda kıymetli görüş ve fikirleriyle yardımını esirgemeyen ve bana yol gösteren değerli hocalarım Sakarya Üniversitesi, Mühendislik Fakültesi, İnşaat Mühendisliği Bölümü, Geoteknik Anabilim Dalı Bölüm Başkanı, Danışmanım, Sayın **Doç. Dr. Zeki GÜNDÜZ'e**, Mühendislik Fakültesi, İnşaat Mühendisliği Bölümü, Bölüm Başkan Yardımcısı, Jeofizik Bölüm Başkanı Sayın **Prof. Dr. Hasan ARMAN**'a, en içten dileklerimle sonsuz teşekkürlerimi sunarım. Çalışmam da desteğini esirgemeyen Teknik Eğitim Fakültesi, Yapı Eğitimi Bölümü, Geoteknik Eğitimi Anabilim Dalı Başkanı Sayın **Doç. Dr. Seyhan FIRAT**'a en içten dileklerimle sonsuz teşekkürlerimi.

Ayrıca, çalışmamda kaynak olarak kullandığım kaynaklar kısmında adı ve eseri bizzat zikredilen, yaptıkları araştırmalarıyla bana ışık tutan hocalarıma, Sakarya Üniversitesi, Mühendislik Fakültesi, İnşaat Mühendisliği Bölümü Araştırma Görevlisi **Mücteba UYSAL**, Araştırma Görevlisi **Uğur DAĞDEVİREN**, Teknik Öğretmen İbrahim ÇAKILCIOĞLU, Tekniker İsmail CANAYAKIN, İnşaat Mühendisi Yeşim YEKTE'ye sevgili aileme ve de arkadaşlarıma ayrı ayrı teşekkürlerimi sunmayı bir borç bilirim.

Yüksek lisans tezimde yüksek plastisiteli bir kilde kum miktarının kayma mukavemetine etkileri hakkında bilgi sunarak, bir nebze dahi katkıda bulunduysam benim için en büyük gurur vesilesi olacaktır.

İÇİNDEKİLER

JSÖZ	 ii
INDEKILER	 iii
MGELER VE KISALTMALAR LİSTESİ	 v
KILLER LISTESI	 viii
BLOLAR LİSTESİ	 xviii
ÆT	 xxvii
MMARY	 xxviii

BÖLÜM 1.

GİRİŞ	1
1.1. Yapılan Çalışmalar	3
1.2. Çalışmanın Amacı	3

BÖLÜM 2.

KİL	5
2.1. Kilin Tanımı ve Yapısı	5
2.2. Kil Mineralinin Özellikleri	11
2.3. Killerin Oluşumu	15

BÖLÜM 3.

KAYMA MUKAVEMETİ	17
3.1. Giriş	17
3.1.1. Zeminlerin kayma m.ukavemeti	18
3.1.2. Kırılma hipotezi	21
3.1.2.1. Mohr-coulomb göçme hipotezi	21
3.1.2.2. Göçme durumu ve mohr gerilme daireleri	22

3.1.2.3. Efektif gerilmeler ve kayma mukavemeti	24
3.1.3. Kayma direnci problemleri	27
3.2. Killerin Kayma Mukavemeti	29
3.2.1. Normal yüklenmiş killerin kayma mukavemeti	31
3.2.2. Aşırı konsolide killerin kayma mukavemeti	34
3.2.3. Yoğrulmuş killerin kayma mukavemeti	39
3.3. Kumların Kayma Mukavemeti	40
3.3.1. Drenajlı kesme sırasında doygun kumların davranışı	46
3.3.2. Drenajsız kesme sırasında doygun kumların davranışı	48

BÖLÜM 4.

LABORATUVAR DENEYLERİ	51
4.1. Giriş	51
4.2. Zemin Deneylerinin Amacı	52
4.3. Zemin Sınıflandırma Deneyleri	53
4.3.1. Likit limit deneyi (casagrande yöntemi)	53
4.3.2. Plastik limit deneyi	57
4.3.3. Hidrometre deneyi	58
4.3.3.1. Hesaplamalar için yapılması gereken düzeltme	61
4.3.4. Elek analizi	63
4.3.5. Özgül ağırlık deneyi	65
4.3.6. Kompaksiyon deneyi	67
4.3.6.1. Kompaksiyon yöntemleri ve zemin dokusu	72
4.3.7. Üç eksenli basınç deneyi	74
4.3.8. Kesme kutusu deneyi	77

BÖLÜM 5.

DENEYSEL ÇALIŞMALAR	83
5.1. Giriş	83
5.2. Deney Numunesinin Hazırlanması	83
5.3. Numuneler Üzerinde Yapılan Çalışmalar	83

BÖLÜM 6.	
SONUÇLAR VE ÖNERİLER	231
KAYNAKLAR	237
ÖZGEÇMİŞ	239

SİMGELER VE KISALTMALAR LİSTESİ

А	: Numune kesit alanı
A_0	: Numunenin başlangıç kesit alanı
A _c	: Numunenin düzeltilmiş kesit alanı
В	: Boşluk suyu basıncı katsayısı
c	: Kohezyon
c'	: Efektif gerilme cinsinden kohezyon
c _u	: Drenajsız kohezyon
С	: Kil
CU	: Konsolidasyonlu-drenajsız
CD	: Konsolidasyonlu-drenajlı
СН	: Yüksek plastisiteli kil
CL	: Düşük plastisiteli kil
CVR	: Kritik boşluk oranı
D	: Dane çapı
δ	: Deplasman
$\delta_{\rm h}$: Yatay deplasman
$\delta_{\rm v}$: Düşey deplasman
Δ1	: Boy değişimi
ΔV	: Hacim değişimi
e	: Boşluk oranı
eo	: Başlangış boşluk oranı
e _{cr}	: Kritik boşluk oranı
Е	: Elastisite modülü
S	: Birim şekil değiştirme
Gs	: Dane özgül ağırlık
Ip	: Plastisite indisi
KH	: Kuvvet halkası okuması

Ko	: Sukünetteki toprak basıncı
h	: Numune yüksekliği
L	: Numune boyu
NL	: Normal yüklenmiş kil
OC	: Aşırı konsolide kil
OCR	: Aşırı konsolidasyon oranı
Р	: Dış kuvvet, hidrometrede geçen %
q _u	: Serbest basınç dayanımı
R	: Düzeltilmiş hidrometre okuması,
τ	: Zemin kayma direnci
σ	: Gerilme
σ'	: Efektif gerilme
σ'。	: Ön konsolidasyon basıncı
$\sigma_{\rm N}$: Normal gerilme
Т	: Kesme kuvveti
u	: Boşluk suyu basıncı
UU	: Konsolidasyonsuz-drenajsız
V	: Numune hacmi
Vo	: Başlangıçtaki hacim
Vs	: Dane hacmi
W	: Su muhtevası
Wn	: Doğal su muhtevası
Wopt	: Optimum su muhtevası
W	: Ağırlık
Ws	: Numunenin kuru ağırlığı
\mathbf{w}_{L}	: Likit limit
Wp	: Plastik limit
μ	: Sürtünme katsayısı
Ø	: İçsel sürtünme açısı
Ør	: Kalcı içsel sürtünme açısı

ŞEKİLLER LİSTESİ

Şekil 2.1.	(a) Silis Tetrahedron (b) Tetrahedral Tabaka	7
Şekil 2.2.	(a) Alüminyum Oktahedran (b) Oktahedran Tabaka	7
Şekil 2.3.	Kaolinit Mineral Grubunun Mineralojik Yapısı	8
Şekil 2.4.	İllit Mineral Grubunun Mineralojik Yapısı	8
Şekil 2.5.	Montmorillonit Mineral Grubunun Mineralojik Yapısı	9
Şekil 2.6.	Kil Su İlişkisinin Kimyasal Şeması	10
Şekil 2.7.	Kilin Yapısı (a) Flok Yapı (b) Dispers Yapı	11
Şekil 3.1.	Zeminde σ - ε Eğrisi	20
Şekil 3.2.	Mohr-Coulomb Göçme Hipotezi	22
Şekil 3.3.	Mohr Gerilme Daireleri ve Göçme Zarfı	23
Şekil 3.4.	Göçme Durumunu Gösteren Gerilme Daireleri	23
Şekil 3.5.	Göçme Durumunda Asal Gerilmeler Arasındaki İlişki	24
Şekil 3.6.	Kayma Mukavemeti Zarfının Özel Durumları	24
Şekil 3.7.	Birbiri Üzerinde Kaymaya Zorlanan İki Blok Arasındaki	
	Suyun Etkisi	25
Şekil 3.8.	Sabit Hacim Altında Kaymaya Zorlanan Bir Kil Numunesi	26
Şekil 3.9.	Kayma Direnci Problemleri	27
Şekil 3.10.	Drenajlı Deneyde Kırılma Zarfları	31
Şekil 3.11.	Arazide Konsolidasyonsuz - Drenajsız (UU) Kesme	
	Problemlerine Örnekler	33
Şekil 3.12.	UU Deneyinde Kırılma Zarfları	33
Şekil 3.13.	Kilde Çökelme Ve Aşınma ile Aşırı Konsolidasyon	35
Şekil 3.14.	Aşırı Konsolide Kilde σ - ε - $\mathrm{u_w}$ Eğrileri	36
Şekil 3.15.	Aşırı Konsolide Bir Kilde CD Deneyler Sonucu Elde Edilen	
	Kırılma Zarfi	37
Şekil 3.16.	Aşırı konsolide Kilde CU Koşulda Kırılma Zarfları	38

Şekil 3.17.	Killerde β Katsayısı	3
Şekil 3.18.	Kesme Kutusunda Kayma Direncinin Bulunması	4
Şekil 3.19.	Gevşek ve Sıkı Kumda Kayma Dayanımı	43
Şekil 3.20.	Kumda Gerçek ve Görünür Kayma Direnci Açısı	44
Şekil 3.21.	.Daneli Zeminde Enerji Modeli	43
Şekil 3.22.	Tipik Bir Kumun Gevşek Ve Sıkı Örnekleri Üzerinde Üç	
	Eksenli Basınç Deneyleri	4
Şekil 3.23.	Drenajlı Ve Drenajsız Üç Eksenli Basınç Deneyleri İçin Mohr	
	Daireleri	4
Şekil 4.1.	Kohezyonlu Zeminlerin Su İçeriklerine Göre Bulundukları	
	Kıvamlar	54
Şekil 4.2.	Zeminlerin Hacim-Su İçeriği İlişkisi	54
Şekil 4.3.	Kontrol Plakasının Yerleştirilmesi ve Düşme Yüksekliğinin	
	Ayarlanması	5
Şekil 4.4.	Zemin Örneğinde Kopmalar Olduğu Anda Örnek Çapının	
	3mm Çapındaki Kıyaslama Çubuğu İle Ölçülmesi	5
Şekil 4.5.	Hidrometre Deneyinde Kullanılan Bazı Araç ve Gereç	59
Şekil 4.6.	Elek Analizinde Kullanılan Bazı Araç ve Gereç	64
Şekil 4.7.	Özgül Ağırlık Deneyinde Kullanılan Bazı Araç ve Gereç	6
Şekil 4.8.	Maksi. Kuru Yoğunluğun Su İçeriğine Bağlı Olarak Değişimi	6
Şekil 4.9.	Kompaksiyon Deneyinde Darbelerin Uygulanış Şekli	7
Şekil 4.10.	Proctor Aleti	7
Şekil 4.11.	Killerde Kompaksiyon Sırasında Su İçeriğinin Zemin	
	Dokusuna Etkisi	7
Şekil 4.12.	Üç Eksenli Deney Hücresi	7
Şekil 4.13.	Bishop Kesme Kutusu	8
Şekil 5.1.	Belirlenen Arazinin 3m Kazılması	8.
Şekil 5.2.	Likit Limit Deneyinin Casagrande Cihazında Yapılması	8
Şekil 5.3.	Plastik Limit Deneyi	8.
Şekil 5.4.	Vuruş Sayısı 25'eKarşılık Gelen Likit Limit Değeri	84
Şekil 5.5.	TS 1500/2000 Plastiste Kartında Deney Numunesinin Yeri	8
Şekil 5.6.	CH Numunesinin Yıkamalı Yöntemle 200 Nolu Elekten	
	Elenmesi	87

Şekil 5.7.	CH Numunesinin Elendikten Sonra Etüve Atılması	87
Şekil 5.8.	Numunenin Etüvden Çıkarıldıktan Sonraki Şekli	87
Şekil 5.9.	CH Numunesinin Elekten Elenmesi	88
Şekil 5.10.	Numunenin Peridrol İle Yakılması	88
Şekil 5.11.	Hidrometre İçin Kullanılacak Numunenin NaPO ₃ İle	
	Dağıtılması	89
Şekil 5.12.	Mikser Kullanılarak Hidrometrede Kullanılacak Numunenin	
	Dağılması	89
Şekil 5.13.	25°C'de Su Havuzu İçerisine Ölçme Silindirinin Konulması	89
Şekil 5.14.	.Hidrometre Deneyinden Sonra Numunenin Yıkamalı Elek İçin	
	Kullanılması	90
Şekil 5.15.	Elek Analizi	90
Şekil 5.16.	Özgül Ağırlık Deneyi	90
Şekil 5.17.	İnce Kum ve Kil Numuneleri	91
Şekil 5.18.	Kaba Kum ve Orta Kum Numuneleri	91
Şekil 5.19.	Yüksek Plastisiteli Kilin Dane Dağılım Eğrisi	95
Şekil 5.20.	Kompaksiyon Kalıbı ve 2,5 Kilogramlık Tokmak	96
Şekil 5.21.	Kompaksiyonla Sıkıştırılmış Numune	96
Şekil 5.22.	Sıkıştırılmış Numunenin Kompaksiyon Kalıbı İle Tartılması	96
Şekil 5.23.	CH Numunesi İçin Kompaksiyon Eğrisi	97
Şekil 5.24.	%10 Orta Kum İçeren CH Numunesi İçin Kompaksiyon Eğrisi	98
Şekil 5.25.	%25 Orta Kum İçeren CH Numunesi İçin Kompaksiyon Eğrisi	99
Şekil 5.26.	%50 Orta Kum İçeren CH Numunesi İçin Kompaksiyon Eğrisi	100
Şekil 5.27.	%75 Orta Kum İçeren CH Numunesi İçin Kompaksiyon Eğrisi	101
Şekil 5.28.	Havadan Aldığı Nemi Kaybetsin Diye Numunenin Etüve	
	Atılması	103
Şekil 5.29.	Kum ve Kilin Mikser Kabına Konulması	103
Şekil 5.30.	Kum ve Kilin Mikserde Karışımı	103
Şekil 5.31.	Belirlenen Su Muhtevasında Karışımın Hazırlanması	104
Şekil 5.32.	Karışım Hazırlandıktan Sonra	104
Şekil 5.33.	Hazırlanan Karışımların Oda Sıcaklığında Bekletilmesi	104
Şekil 5.34.	Kesme Kutusu Halkası ve Üç Eksenli Deney Tüpleri	105
Şekil 5.35.	Beton Pres Makinesinde Tüplerin Numune İçerisine İtilmesi	106

Şekil 5.36.	Beton Pres Makinesinde Kesme Kutusu Halkalarının Numune	
	İçerisine İtilmesi 10)6
Şekil 5.37.	Numunenin Kriko Yardımıyla Kompaksiyon Kalıbından	
	Çıkarılması 10)6
Şekil 5.38.	Üç Eksenli Basınç Deneyi Cihazı 10)7
Şekil 5.39.	Kesme Kutusu Cihazı 10)7
Şekil 5.40.	CH Numunesinin Gerilme-Şekil Değiştirme İlişkisi 11	11
Şekil 5.41.	CH Numunesi İçin UU Deneyi Sonucunda Yenilme Zarfı ve	
	Mohr Daireleri 11	11
Şekil 5.42.	% 10 İnce Kum İçeren CH Numunesinin Gerilme-Şekil	
	Değiştirme İlişkisi 11	15
Şekil 5.43.	% 10 İnce Kum İçeren CH Numunesinin UU Deneyi	
	Sonucunda Yenilme Zarfı ve Mohr Daireleri 11	15
Şekil 5.44.	% 10 Orta Kum İçeren CH Numunesinin Gerilme-Şekil	
	Değiştirme İlişkisi 11	19
Şekil 5.45.	% 10 Orta Kum İçeren CH Numunesinin UU Deneyi	
	Sonucunda Yenilme Zarfı ve Mohr Daireleri	19
Şekil 5.46.	% 10 Kaba Kum İçeren CH Numunesinin Gerilme-Şekil	
	Değiştirme İlişkisi 12	23
Şekil 5.47.	% 10 Kaba Kum İçeren CH Numunesinin UU Deneyi	
	Sonucunda Yenilme Zarfı ve Mohr Daireleri	23
Şekil 5.48.	% 25 İnce Kum İçeren CH Numunesinin Gerilme-Şekil	
	Değiştirme İlişkisi 12	27
Şekil 5.49.	% 25 İnce Kum İçeren CH Numunesinin UU Deneyi	
	Sonucunda Yenilme Zarfı ve Mohr Daireleri	27
Şekil 5.50.	% 25 Orta Kum İçeren CH Numunesinin Gerilme-Şekil	
	Değiştirme İlişkisi 12	31
Şekil 5.51.	% 25 Orta Kum İçeren CH Numunesinin UU Deneyi	
	Sonucunda Yenilme Zarfı ve Mohr Daireleri	31
Şekil 5.52.	% 25 Kaba Kum İçeren CH Numunesinin Gerilme-Şekil	
	Değiştirme İlişkisi	35
Şekil 5.53.	% 25 Kaba Kum İçeren CH Numunesinin UU Deneyi	
	Sonucunda Yenilme Zarfi ve Mohr Daireleri	35

Şekil 5.54.	% 50 İnce Kum İçeren CH Numunesinin Gerilme-Şekil	
	Değiştirme İlişkisi	139
Şekil 5.55.	% 50 İnce Kum İçeren CH Numunesinin UU Deneyi	
	Sonucunda Yenilme Zarfı ve Mohr Daireleri	139
Şekil 5.56.	% 50 Orta Kum İçeren CH Numunesinin Gerilme-Şekil	
	Değiştirme İlişkisi	143
Şekil 5.57.	% 50 Orta Kum İçeren CH Numunesinin UU Deneyi	
	Sonucunda Yenilme Zarfı ve Mohr Daireleri	143
Şekil 5.58.	% 50 Kaba Kum İçeren CH Numunesinin Gerilme-Şekil	
	Değiştirme İlişkisi	147
Şekil 5.59.	% 50 Kaba Kum İçeren CH Numunesinin UU Deneyi	
	Sonucunda Yenilme Zarfı ve Mohr Daireleri	147
Şekil 5.60.	% 75 İnce Kum İçeren CH Numunesinin Gerilme-Şekil	
	Değiştirme İlişkisi	151
Şekil 5.61.	% 75 İnce Kum İçeren CH Numunesinin UU Deneyi	
	Sonucunda Yenilme Zarfı ve Mohr Daireleri	151
Şekil 5.62.	% 75 Orta Kum İçeren CH Numunesinin Gerilme-Şekil	
	Değiştirme İlişkisi	155
Şekil 5.63.	% 75 Orta Kum İçeren CH Numunesinin UU Deneyi	
	Sonucunda Yenilme Zarfı ve Mohr Daireleri	155
Şekil 5.64.	% 75 Kaba Kum İçeren CH Numunesinin Gerilme-Şekil	
	Değiştirme İlişkisi	159
Şekil 5.65.	% 75 Kaba Kum İçeren CH Numunesinin UU Deneyi	
	Sonucunda Yenilme Zarfı ve Mohr Daireleri	159
Şekil 5.66.	CH Numunesi Kesme Kutusu Deneyinde Yatay Deplasman-	
	Düşey Deplasman İlişkisi	162
Şekil 5.67.	CH Numunesi Kesme Kutusu Deneyinde Kayma Gerilmesi-	
	Yatay Deplasman İlişkisi	162
Şekil 5.68.	CH Numunesi İçin Kesme Kutusu Deneyi	163
Şekil 5.69.	% 10 İnce Kum İçeren CH Numunesi Kesme Kutusu	
	Deneyinde Yatay Deplasman-Düşey Deplasman İlişkisi	165
Şekil 5.70.	% 10 İnce Kum İçeren CH Numunesi Kesme Kutusu	
	Deneyinde Kayma Gerilmesi-Yatay Deplasman İlişkisi	166

Şekil 5.71.	% 10 İnce Kum İçeren CH Numunesi İçin Kesme Kutusu	1.00
G 1 1 5 50		166
Şekil 5.72.	% 10 Orta Kum Içeren CH Numunesi Kesme Kutusu	4.60
~ 1 11 = = •	Deneyinde Yatay Deplasman-Düşey Deplasman İlişkisi	169
Şekil 5.73.	% 10 Orta Kum Içeren CH Numunesı Kesme Kutusu	
	Deneyinde Kayma Gerilmesi-Yatay Deplasman Ilişkisi	169
Şekil 5.74.	%10 Orta Kum İçeren CH Numunesi İçin Kesme Kutusu	
	Deneyi	170
Şekil 5.75.	% 10 Kaba Kum İçeren CH Numunesi Kesme Kutusu	
	Deneyinde Yatay Deplasman-Düşey Deplasman İlişkisi	172
Şekil 5.76.	% 10 Kaba Kum İçeren CH Numunesi Kesme Kutusu	
	Deneyinde Kayma Gerilmesi-Yatay Deplasman İlişkisi	173
Şekil 5.77.	% 10 Kaba Kum İçeren CH Numunesi İçin Kesme Kutusu	
	Deneyi	173
Şekil 5.78.	% 25 İnce Kum İçeren CH Numunesi Kesme Kutusu	
	Deneyinde Yatay Deplasman-Düşey Deplasman İlişkisi	176
Şekil 5.79.	% 25 İnce Kum İçeren CH Numunesi Kesme Kutusu	
	Deneyinde Kayma Gerilmesi-Yatay Deplasman İlişkisi	176
Şekil 5.80.	% 25 İnce Kum İçeren CH Numunesi İçin Kesme Kutusu	
	Deneyi	177
Şekil 5.81.	% 25 Orta Kum İçeren CH Numunesi Kesme Kutusu	
	Deneyinde Yatay Deplasman-Düşey Deplasman İlişkisi	179
Şekil 5.82.	% 25 Orta Kum İçeren CH Numunesi Kesme Kutusu	
	Deneyinde Kayma Gerilmesi-Yatay Deplasman İlişkisi	180
Şekil 5.83.	% 25 Orta Kum İçeren CH Numunesi İçin Kesme Kutusu	
	Deneyi	180
Şekil 5.84.	% 25 Kaba Kum İçeren CH Numunesi Kesme Kutusu	
	Deneyinde Yatay Deplasman-Düşey Deplasman İlişkisi	183
Şekil 5.85.	% 25 Kaba Kum İçeren CH Numunesi Kesme Kutusu	
	Deneyinde Kayma Gerilmesi-Yatay Deplasman İlişkisi	183
Şekil 5.86.	% 25 Kaba Kum İçeren CH Numunesi İçin Kesme Kutusu	
	Deneyi	184

Şekil 5.87.	% 50 İnce Kum İçeren CH Numunesi Kesme Kutusu	186
	Deneyinde Yatay Deplasman-Düşey Deplasman İlişkisi	
Şekil 5.88.	% 50 İnce Kum İçeren CH Numunesi Kesme Kutusu	
	Deneyinde Kayma Gerilmesi-Yatay Deplasman İlişkisi	187
Şekil 5.89.	% 50 İnce Kum İçeren CH Numunesi İçin Kesme Kutusu	
	Deneyi	187
Şekil 5.90.	% 50 Orta Kum İçeren CH Numunesi Kesme Kutusu	
	Deneyinde Yatay Deplasman-Düşey Deplasman İlişkisi	190
Şekil 5.91.	% 50 Orta Kum İçeren CH Numunesi Kesme Kutusu	
	Deneyinde Kayma Gerilmesi-Yatay Deplasman İlişkisi	191
Şekil 5.92.	% 50 Orta Kum İçeren CH Numunesi İçin Kesme Kutusu	
	Deneyi	191
Şekil 5.93.	% 50 Kaba Kum İçeren CH Numunesi Kesme Kutusu	
	Deneyinde Yatay Deplasman-Düşey Deplasman İlişkisi	194
Şekil 5.94.	% 50 Kaba Kum İçeren CH Numunesi Kesme Kutusu	
	Deneyinde Kayma Gerilmesi-Yatay Deplasman İlişkisi	195
Şekil 5.95.	% 50 Kaba Kum İçeren CH Numunesi İçin Kesme Kutusu	
	Deneyi	195
Şekil 5.96.	% 75 İnce Kum İçeren CH Numunesi Kesme Kutusu	
	Deneyinde Yatay Deplasman-Düşey Deplasman İlişkisi	199
Şekil 5.97.	% 75 İnce Kum İçeren CH Numunesi Kesme Kutusu	
	Deneyinde Kayma Gerilmesi-Yatay Deplasman İlişkisi	199
Şekil 5.98.	% 75 İnce Kum İçeren CH Numunesi İçin Kesme Kutusu	
	Deneyi	200
Şekil 5.99.	% 75 Orta Kum İçeren CH Numunesi Kesme Kutusu	
-	Deneyinde Yatay Deplasman-Düşey Deplasman İlişkisi	202
Şekil 5.100.	% 75 Orta Kum İçeren CH Numunesi Kesme Kutusu	
-	Deneyinde Kayma Gerilmesi-Yatay Deplasman İlişkisi	203
Şekil 5.101.	% 75 Orta Kum İçeren CH Numunesi İçin Kesme Kutusu	
	Deneyi	203
Şekil 5.102.	% 75 Kaba Kum İçeren CH Numunesi Kesme Kutusu	
	Deneyinde Yatay Deplasman-Düşey Deplasman İlişkisi	206

Şekil 5.103.	% 75 Kaba Kum İçeren CH Numunesi Kesme Kutusu	206
	Deneyinde Kayma Gerilmesi-Yatay Deplasman İlişkisi	
Şekil 5.104.	% 75 Kaba Kum İçeren CH Numunesi İçin Kesme Kutusu	
	Deneyi	207
Şekil 5.105.	İnce Kum Numunesinin Kesme Kutusu Deneyinde Yatay	
	Deplasman-Düşey Deplasman İlişkisi	209
Şekil 5.106.	İnce Kum Numunesinin Kesme Kutusu Deneyinde Kayma	
	Gerilmesi-Yatay Deplasman İlişkisi	210
Şekil 5.107.	İnce Kum Numunesinin İçin Kesme Kutusu Deneyi	210
Şekil 5.108.	Orta Kum Numunesinin Kesme Kutusu Deneyinde Yatay	
	Deplasman-Düşey Deplasman İlişkisi	213
Şekil 5.109.	Orta Kum Numunesinin Kesme Kutusu Deneyinde Kayma	
	Gerilmesi-Yatay Deplasman İlişkisi	213
Şekil 5.110.	Orta Kum Numunesinin İçin Kesme Kutusu Deneyi	214
Şekil 5.111.	Kaba Kum Numunesinin Kesme Kutusu Deneyinde Yatay	
	Deplasman-Düşey Deplasman İlişkisi	216
Şekil 5.112.	Kaba Kum Numunesinin Kesme Kutusu Deneyinde Kayma	
	Gerilmesi-Yatay Deplasman İlişkisi	217
Şekil 5.113.	Kaba Kum Numunesinin İçin Kesme Kutusu Deneyi	217
Şekil 5.114.	CH Numunesinin 100kPa, 200kPa, 300 kPa Hücre Basıncı ve	
	Normal Gerilme İle Kesildikten Sonraki Numunelerin	
	Görünümü	219
Şekil 5.115.	%10 İnce Kum İçeren CH Numunesinin 100kPa, 200kPa, 300	
	kPa Hücre Basıncı ve Normal Gerilme İle Kesildikten Sonraki	
	Numunelerin Görünümü	220
Şekil 5.116.	%10 Orta Kum İçeren CH Numunesinin 100kPa, 200kPa, 300	
	kPa Hücre Basıncı ve Normal Gerilme İle Kesildikten Sonraki	
	Numunelerin Görünümü	220
Şekil 5.117.	%10 Kaba Kum İçeren CH Numunesinin 100kPa, 200kPa, 300	
	kPa Hücre Basıncı ve Normal Gerilme İle Kesildikten Sonraki	
	Numunelerin Görünümü	221

Şekil 5.118.	%25 İnce Kum İçeren CH Numunesinin 100kPa, 200kPa, 300	
	kPa Hücre Basıncı ve Normal Gerilme İle Kesildikten Sonraki	
	Numunelerin Görünümü	221
Şekil 5.119.	%25 Orta Kum İçeren CH Numunesinin 100kPa, 200kPa, 300	
	kPa Hücre Basıncı ve Normal Gerilme İle Kesildikten Sonraki	
	Numunelerin Görünümü	222
Şekil 5.120.	% 25 Kaba Kum İçeren CH Numunesinin 100kPa, 200kPa,	
	300 kPa Hücre Basıncı ve Normal Gerilme İle Kesildikten	
	Sonraki Numunelerin	222
	Görünümü	
Şekil 5.121.	% 50 İnce Kum İçeren CH Numunesinin 100kPa, 200kPa, 300	
	kPa Hücre Basıncı ve Normal Gerilme İle Kesildikten Sonraki	
	Numunelerin Görünümü	223
Şekil 5.122.	% 50 Orta Kum İçeren CH Numunesinin 100kPa, 200kPa, 300	
	kPa Hücre Basıncı ve Normal Gerilme İle Kesildikten Sonraki	
	Numunelerin Görünümü	223
Şekil 5.123.	% 50 Kaba Kum İçeren CH Numunesinin 100kPa, 200kPa,	
	300 kPa Hücre Basıncı ve Normal Gerilme İle Kesildikten	
	Sonraki Numunelerin Görünümü	224
Şekil 5.124.	% 75 İnce Kum İçeren CH Numunesinin 100kPa, 200kPa, 300	
	kPa Hücre Basıncı ve Normal Gerilme İle Kesildikten Sonraki	
	Numunelerin Görünümü	224
Şekil 5.125.	% 75 Orta Kum İçeren CH Numunesinin 100kPa, 200kPa, 300	
	kPa Hücre Basıncı ve Normal Gerilme İle Kesildikten Sonraki	
	Numunelerin Görünümü	225
Şekil 5.126.	% 75 Kaba Kum İçeren CH Numunesinin 100kPa, 200kPa,	
	300 kPa Hücre Basıncı ve Normal Gerilme İle Kesildikten	
	Sonraki Numunelerin Görünümü	225
Şekil 5.127.	CH Numunesinde İnce Kum Miktarının Artmasıyla Yapılan	
	Konsolidasyonsuz –Drenajsız Üç Eksenli Kesme Deneyi (UU	
	Deneyi) Sonuçlarında Kohezyonun Değişimi	226

Şekil 5.128.	CH Numunesinde Orta Kum Miktarının Artmasıyla Yapılan	
	Konsolidasyonsuz –Drenajsız Üç Eksenli Kesme Deneyi (UU	
	Deneyi) Sonuçlarında Kohezyonun Değişimi	226
Şekil 5.129.	CH Numunesinde Kaba Kum Miktarının Artmasıyla Yapılan	
	Konsolidasyonsuz –Drenajsız Üç Eksenli Kesme Deneyi (UU	
	Deneyi) Sonuçlarında Kohezyonun Değişimi	227
Şekil 5.130.	CH Numunesinde İnce Kum Miktarının Artmasıyla Yapılan	
	Kesme Kutusu Deneyi Sonuçlarında Kohezyonun Değişimi	227
Şekil 5.131.	CH Numunesinde Orta Kum Miktarının Artmasıyla Yapılan	
	Kesme Kutusu Deneyi Sonuçlarında Kohezyonun Değişimi	228
Şekil 5.132.	CH Numunesinde Kaba Kum Miktarının Artmasıyla Yapılan	
	Kesme Kutusu Deneyi Sonuçlarında Kohezyonun Değişimi	228
Şekil 5.133.	CH Numunesinde İnce Kum Miktarının Artmasıyla Yapılan	
	Kesme Kutusu Deneyi Sonuçlarında İçsel Sürtünme Açısı	
	Değişimi	229
Şekil 5.134.	CH Numunesinde Orta Kum Miktarının Artmasıyla Yapılan	
	Kesme Kutusu Deneyi Sonuçlarında İçsel Sürtünme Açısı	
	Değişimi	229
Şekil 5.135.	CH Numunesinde Kaba Miktarının Artmasıyla Yapılan Kesme	
	Kutusu Deneyi Sonuçlarında İçsel Sürtünme Açısı	
	Değişimi	230
Şekil 6.1.	CH Numunesinde Kum Miktarının Artmasıyla Yapılan	
	Konsolidasyonsuz –Drenajsız Üç Eksenli Kesme Deneyi (UU	
	Deneyi) Sonuçlarında Kohezyon Değerlerinin Karşılaştırılması	232
Şekil 6.2.	CH Numunesinde Kum Miktarının Artmasıyla Yapılan Kesme	
	Kutusu Deneyi Sonuçlarında Kohezyon Değerlerinin	
	Karşılaştırılması	233
Şekil 6.3.	CH Numunesinde Kum Miktarının Artmasıyla Yapılan Kesme	
	Kutusu Deneyi Sonuçlarında İçsel Sürtünme Açısı	
	Değerlerinin Karşılaştırılması	234

TABLOLAR LİSTESİ

Tablo 2.1.	Kil Minerallerinin Özellikleri	12
Tablo 3.1.	Şekil 3.23. da Gösterilen Kavramların Bir Özeti	51
Tablo 4.1.	"K "Değerleri	62
Tablo 4.2.	"L "Değerleri	62
Tablo 4.3.	Zemin Sınıfına Göre Ortalama Kuru Birim Hacim Ağırlık ve	
	Optimum Su Muhtevaları	69
Tablo 4.4.	Zemin Sınıfına Göre Kuru Birim Hacim Ağırlık ve Optimum	
	Su Muhtevaları	70
Tablo 5.1.	Likit Limit Deney Sonuçları	84
Tablo 5.2.	Plastik Limit Deney Sonuçları	85
Tablo 5.3.	Likit Limit ve Plastik Limit Sonuçları	85
Tablo 5.4.	Özgül Ağırlık Deneyi Sonuçları	92
Tablo 5.5.	Elek Analizi Sonuçları	93
Tablo 5.6.	Organik Madde Miktarı Sonuçları	93
Tablo 5.7.	Hidrometre Deneyi Sonuçları	94
Tablo 5.8.	CH Numesinin Çakıl, Kum, Silt ve Kil Yüzdeleri	95
Tablo 5.9.	CH Numunesinin Standart Kompaksiyon Sonuçları	97
Tablo 5.10.	%10 Orta Kum İçeren CH Numunesinin Standart	98
	Kompaksiyon Sonuçları	
Tablo 5.11.	%25 Orta Kum İçeren CH Numunesinin Standart	99
	Kompaksiyon Sonuçları	
Tablo 5.12.	%50 Orta Kum İçeren CH Numunesinin Standart	100
	Kompaksiyon Sonuçları	
Tablo 5.13.	%75 Orta Kum İçeren CH Numunesinin Standart	
	Kompaksiyon Sonuçları	101

Tablo 5.14.	Numunelerin Kuru Birim Hacim Ağırlık ve Optimum Su	
	Muhtevaları Sonuçları	102
Tablo 5.15.	CH Numunesinin UU Deneyinde Fiziksel Özellikleri	108
Tablo 5.16.	CH Numunesinin 100 kPa da c ve Ø'nın UU Deneyi İle	
	Bulunması	108
Tablo 5.17.	CH Numunesinin 200 kPa da c ve Ø'nın UU Deneyi İle	
	Bulunması	109
Tablo 5.18.	CH Numunesinin 300 kPa da c ve Ø'nın UU Deneyi İle	
	Bulunması	110
Tablo 5.19	%10 İnce Kum İçeren CH Numunesinin UU Deneyinde	
	Fiziksel Özellikleri	112
Tablo 5.20	%10 İnce Kum İçeren CH Numunesinin 100 kPa da c ve Ø'nın	
	UU Deneyi İle Bulunması	112
Tablo 5.21	%10 İnce Kum İçeren CH Numunesinin 200 kPa da c ve Ø'nın	
	UU Deneyi İle Bulunması	113
Tablo 5.22.	%10 İnce Kum İçeren CH Numunesinin 300 kPa da c ve Ø'nın	
	UU Deneyi İle Bulunması	114
Tablo 5.23.	%10 Orta Kum İçeren CH Numunesinin UU Deneyinde	
	Fiziksel Özellikleri	116
Tablo 5.24.	%10 Orta Kum İçeren CH Numunesinin 100 kPa da c ve Ø'nın	
	UU Deneyi İle Bulunması	116
Tablo 5.25.	%10 Orta Kum İçeren CH Numunesinin 200 kPa da c ve Ø'nın	
	UU Deneyi İle Bulunması	117
Tablo 5.26.	%10 Orta Kum İçeren CH Numunesinin 300 kPa da c ve Ø'nın	
	UU Deneyi İle Bulunması	118
Tablo 5.27.	%10 Kaba Kum İçeren CH Numunesinin UU Deneyinde	
	Fiziksel Özellikleri	120
Tablo 5.28.	%10 Kaba Kum İçeren CH Numunesinin 100 kPa da c ve	
	Ø'nın UU Deneyi İle Bulunması	120
Tablo 5.29.	%10 Kaba Kum İçeren CH Numunesinin 200 kPa da c ve	
	Ø'nın UU Deneyi İle Bulunması	121
Tablo 5.30.	%10 Kaba Kum İçeren CH Numunesinin 300 kPa da c ve	
	Ø'nın UU Deneyi İle Bulunması	122

Tablo 5.31.	%25 İnce Kum İçeren CH Numunesinin UU Deneyinde	
	Fiziksel Ozellikleri	124
Tablo 5.32.	%25 İnce Kum İçeren CH Numunesinin 100 kPa da c ve Ø'nın	
	UU Deneyi İle Bulunması	124
Tablo 5.33.	%25 İnce Kum İçeren CH Numunesinin 200 kPa da c ve Ø'nın	
	UU Deneyi İle Bulunması	12:
Tablo 5.34.	%25 İnce Kum İçeren CH Numunesinin 300 kPa da c ve Ø'nın	
	UU Deneyi İle Bulunması	12
Tablo 5.35.	%25 Orta Kum İçeren CH Numunesinin UU Deneyinde	
	Fiziksel Özellikleri	128
Tablo 5.36.	%25 Orta Kum İçeren CH Numunesinin 100 kPa da c ve Ø'nın	
	UU Deneyi İle Bulunması	12
Tablo 5.37.	%25 Orta Kum İçeren CH Numunesinin 200 kPa da c ve Ø'nın	
	UU Deneyi İle Bulunması	12
Tablo 5.38.	%25 Orta Kum İçeren CH Numunesinin 300 kPa da c ve Ø'nın	
	UU Deneyi İle Bulunması	13
Tablo 5.39.	%25 Kaba Kum İçeren CH Numunesinin UU Deneyinde	
	Fiziksel Özellikleri	13
Tablo 5.40.	%25 Kaba Kum İçeren CH Numunesinin 100 kPa da c ve	
	Ø'nın UU Deneyi İle Bulunması	132
Tablo 5.41.	%25 Kaba Kum İçeren CH Numunesinin 200 kPa da c ve	
	Ø'nın UU Deneyi İle Bulunması	13.
Tablo 5.42.	%25 Kaba Kum İçeren CH Numunesinin 300 kPa da c ve	
	Ø'nın UU Deneyi İle Bulunması	134
Tablo 5.43.	%50 İnce Kum İçeren CH Numunesinin UU Deneyinde	
	Fiziksel Özellikleri	13
Tablo 5.44.	%50 İnce Kum İçeren CH Numunesinin 100 kPa da c ve Ø'nın	
	UU Deneyi İle Bulunması	13
Tablo 5.45.	%50 İnce Kum İçeren CH Numunesinin 200 kPa da c ve Ø'nın	
	UU Deneyi İle Bulunması	13
Tablo 5.46.	%50 İnce Kum İçeren CH Numunesinin 300 kPa da c ve Ø'nın	
	UU Deneyi İle Bulunması	13
	<u>,</u>	-

Tablo 5.47.	%50 Orta Kum İçeren CH Numunesinin UU Deneyinde	
	Fiziksel Özellikleri	140
Tablo 5.48.	%50 Orta Kum İçeren CH Numunesinin 100 kPa da c ve Ø'nın	
	UU Deneyi İle Bulunması	140
Tablo 5.49.	%50 Orta Kum İçeren CH Numunesinin 200 kPa da c ve Ø'nın	
	UU Deneyi İle Bulunması	14]
Tablo 5.50.	%50 Orta Kum İçeren CH Numunesinin 300 kPa da c ve Ø'nın	
	UU Deneyi İle Bulunması	142
Tablo 5.51.	%50 Kaba Kum İçeren CH Numunesinin UU Deneyinde	
	Fiziksel Özellikleri	144
Tablo 5.52.	%50 Kaba Kum İçeren CH Numunesinin 100 kPa da c ve	
	Ø'nın UU Deneyi İle Bulunması	144
Tablo 5.53.	%50 Kaba Kum İçeren CH Numunesinin 200 kPa da c ve	
	Ø'nın UU Deneyi İle Bulunması	14
Tablo 5.54.	%50 Kaba Kum İçeren CH Numunesinin 300 kPa da c ve	
	Ø'nın UU Deneyi İle Bulunması	140
Tablo 5.55.	%75 İnce Kum İçeren CH Numunesinin UU Deneyinde	
	Fiziksel Özellikleri	148
Tablo 5.56.	%75 İnce Kum İçeren CH Numunesinin 100 kPa da c ve Ø'nın	
	UU Deneyi İle Bulunması	148
Tablo 5.57.	%75 İnce Kum İçeren CH Numunesinin 200 kPa da c ve Ø'nın	
	UU Deneyi İle Bulunması	149
Tablo 5.58.	%75 İnce Kum İçeren CH Numunesinin 300 kPa da c ve Ø'nın	
	UU Deneyi İle Bulunması	150
Tablo 5.59.	%75 Orta Kum İçeren CH Numunesinin UU Deneyinde	
	Fiziksel Özellikleri	152
Tablo 5.60.	%75 Orta Kum İçeren CH Numunesinin 100 kPa da c ve Ø'nın	
	UU Deneyi İle Bulunması	152
Tablo 5.61.	%75 Orta Kum İçeren CH Numunesinin 200 kPa da c ve Ø'nın	
	UU Deneyi İle Bulunması	153
Tablo 5.62.	%75 Orta Kum İçeren CH Numunesinin 300 kPa da c ve Ø'nın	
	UU Deneyi İle Bulunması	154

Tablo 5.63.	%75 Kaba Kum İçeren CH Numunesinin UU Deneyinde	
	Fiziksel Özellikleri	156
Tablo 5.64.	%75 Kaba Kum İçeren CH Numunesinin 100 kPa da c ve	
	Ø'nın UU Deneyi İle Bulunması	156
Tablo 5.65.	%75 Kaba Kum İçeren CH Numunesinin 200 kPa da c ve	
	Ø'nın UU Deneyi İle Bulunması	157
Tablo 5.66.	%75 Kaba Kum İçeren CH Numunesinin 300 kPa da c ve	
	Ø'nın UU Deneyi İle Bulunması	158
Tablo 5.67.	CH Numunesinin Kesme Kutusu Deneyinde Fiziksel	
	Özellikleri ve Sıkışma Miktarı	160
Tablo 5.68.	CH Numunesinin 100 kPa da c ve Ø'nın Kesme Kutusu	
	Deneyi İle Bulunması	160
Tablo 5.69.	CH Numunesinin 200 kPa da c ve Ø'nın Kesme Kutusu	
	Deneyi İle Bulunması	161
Tablo 5.70.	CH Numunesinin 300 kPa da c ve Ø'nın Kesme Kutusu	
	Deneyi İle Bulunması	161
Tablo 5.71.	%10 İnce Kum İçeren CH Numunesinin Kesme Kutusu	
	Deneyinde Fiziksel Özellikleri	163
Tablo 5.72.	%10 İnce Kum İçeren CH Numunesinin 100 kPa da c ve Ø'nın	
	Kesme Kutusu Deneyi İle Bulunması	164
Tablo 5.73.	%10 İnce Kum İçeren CH Numunesinin 200 kPa da c ve Ø'nın	
	Kesme Kutusu Deneyi İle Bulunması	164
Tablo 5.74.	%10 İnce Kum İçeren CH Numunesinin 300 kPa da c ve Ø'nın	
	Kesme Kutusu Deneyi İle Bulunması	165
Tablo 5.75.	%10 Orta Kum İçeren CH Numunesinin Kesme Kutusu	
	Deneyinde Fiziksel Özellikleri	167
Tablo 5.76.	%10 Orta Kum İçeren CH Numunesinin 100 kPa da c ve Ø'nın	
	Kesme Kutusu Deneyi İle Bulunması	167
Tablo 5.77.	%10 Orta Kum İçeren CH Numunesinin 200 kPa da c ve Ø'nın	
	Kesme Kutusu Deneyi İle Bulunması	168
Tablo 5.78.	%10 Orta Kum İçeren CH Numunesinin 300 kPa da c ve Ø'nın	
	Kesme Kutusu Deneyi İle Bulunması	168

Tablo 5.79.	%10 Kaba Kum İçeren CH Numunesinin Kesme Kutusu	
	Deneyinde Fiziksel Özellikleri	170
Tablo 5.80.	%10 Kaba Kum İçeren CH Numunesinin 100 kPa da c ve	
	Ø'nın Kesme Kutusu Deneyi İle Bulunması	171
Tablo 5.81.	%10 Kaba Kum İçeren CH Numunesinin 200 kPa da c ve	
	Ø'nın Kesme Kutusu Deneyi İle Bulunması	171
Tablo 5.82.	%10 Kaba Kum İçeren CH Numunesinin 300 kPa da c ve	
	Ø'nın Kesme Kutusu Deneyi İle Bulunması	172
Tablo 5.83.	%25 İnce Kum İçeren CH Numunesinin Kesme Kutusu	
	Deneyinde Fiziksel Özellikleri	174
Tablo 5.84.	%25 İnce Kum İçeren CH Numunesinin 100 kPa da c ve Ø'nın	
	Kesme Kutusu Deneyi İle Bulunması	174
Tablo 5.85.	%25 İnce Kum İçeren CH Numunesinin 200 kPa da c ve Ø'nın	
	Kesme Kutusu Deneyi İle Bulunması	175
Tablo 5.86.	%25 İnce Kum İçeren CH Numunesinin 300 kPa da c ve Ø'nın	
	Kesme Kutusu Deneyi İle Bulunması	175
Tablo 5.87.	%25 Orta Kum İçeren CH Numunesinin Kesme Kutusu	
	Deneyinde Fiziksel Özellikleri	177
Tablo 5.88.	%25 Orta Kum İçeren CH Numunesinin 100 kPa da c ve Ø'nın	
	Kesme Kutusu Deneyi İle Bulunması	178
Tablo 5.89.	%25 Orta Kum İçeren CH Numunesinin 200 kPa da c ve Ø'nın	
	Kesme Kutusu Deneyi İle Bulunması	178
Tablo 5.90.	%25 Orta Kum İçeren CH Numunesinin 300 kPa da c ve Ø'nın	
	Kesme Kutusu Deneyi İle Bulunması	179
Tablo 5.91.	%25 Kaba Kum İçeren CH Numunesinin Kesme Kutusu	
	Deneyinde Fiziksel Özellikleri	181
Tablo 5.92.	%25 Kaba Kum İçeren CH Numunesinin 100 kPa da c ve	
	Ø'nın Kesme Kutusu Deneyi İle Bulunması	181
Tablo 5.93.	%25 Kaba Kum İçeren CH Numunesinin 200 kPa da c ve	
	Ø'nın Kesme Kutusu Deneyi İle Bulunması	182
Tablo 5.94.	%25 Kaba Kum İçeren CH Numunesinin 300 kPa da c ve	
	Ø'nın Kesme Kutusu Deneyi İle Bulunması	182

Tablo 5.95.	%50 İnce Kum İçeren CH Numunesinin Kesme Kutusu	
	Deneyinde Fiziksel Özellikleri	184
Tablo 5.96.	%50 İnce Kum İçeren CH Numunesinin 100 kPa da c ve Ø'nın	
	Kesme Kutusu Deneyi İle Bulunması	185
Tablo 5.97.	%50 İnce Kum İçeren CH Numunesinin 200 kPa da c ve Ø'nın	
	Kesme Kutusu Deneyi İle Bulunması	185
Tablo 5.98.	%50 İnce Kum İçeren CH Numunesinin 300 kPa da c ve Ø'nın	
	Kesme Kutusu Deneyi İle Bulunması	186
Tablo 5.99.	%50 Orta Kum İçeren CH Numunesinin Kesme Kutusu	
	Deneyinde Fiziksel Özellikleri	188
Tablo 5.100.	%50 Orta Kum İçeren CH Numunesinin 100 kPa da c ve Ø'nın	
	Kesme Kutusu Deneyi İle Bulunması	188
Tablo 5.101.	%50 Orta Kum İçeren CH Numunesinin 200 kPa da c ve Ø'nın	
	Kesme Kutusu Deneyi İle Bulunması	189
Tablo 5.102.	%50 Orta Kum İçeren CH Numunesinin 300 kPa da c ve Ø'nın	
	Kesme Kutusu Deneyi İle Bulunması	190
Tablo 5.103.	%50 Kaba Kum İçeren CH Numunesinin Kesme Kutusu	
	Deneyinde Fiziksel Özellikleri	192
Tablo 5.104.	%50 Kaba Kum İçeren CH Numunesinin 100 kPa da c ve	
	Ø'nın Kesme Kutusu Deneyi İle Bulunması	192
Tablo 5.105.	%50 Kaba Kum İçeren CH Numunesinin 200 kPa da c ve	
	Ø'nın Kesme Kutusu Deneyi İle Bulunması	193
Tablo 5.106.	%50 Kaba Kum İçeren CH Numunesinin 300 kPa da c ve	
	Ø'nın Kesme Kutusu Deneyi İle Bulunması	194
Tablo 5.107.	%75 İnce Kum İçeren CH Numunesinin Kesme Kutusu	
	Deneyinde Fiziksel Özellikleri	196
Tablo 5.108.	%75 İnce Kum İçeren CH Numunesinin 100 kPa da c ve Ø'nın	
	Kesme Kutusu Deneyi İle Bulunması	196
Tablo 5.109.	%75 İnce Kum İçeren CH Numunesinin 200 kPa da c ve Ø'nın	
	Kesme Kutusu Deneyi İle Bulunması	197
Tablo 5.110.	%75 İnce Kum İçeren CH Numunesinin 300 kPa da c ve Ø'nın	
	Kesme Kutusu Deneyi İle Bulunması	198

Tablo 5.111.	%75 Orta Kum İçeren CH Numunesinin Kesme Kutusu	
	Deneyinde Fiziksel Özellikleri	200
Tablo 5.112.	%75 Orta Kum İçeren CH Numunesinin 100 kPa da c ve Ø'nın	
	Kesme Kutusu Deneyi İle Bulunması	201
Tablo 5.113.	%75 Orta Kum İçeren CH Numunesinin 200 kPa da c ve Ø'nın	
	Kesme Kutusu Deneyi İle Bulunması	201
Tablo 5.114.	%75 Orta Kum İçeren CH Numunesinin 300 kPa da c ve Ø'nın	
	Kesme Kutusu Deneyi İle Bulunması	202
Tablo 5.115.	%75 Kaba Kum İçeren CH Numunesinin Kesme Kutusu	
	Deneyinde Fiziksel Özellikleri	204
Tablo 5.116.	%75 Kaba Kum İçeren CH Numunesinin 100 kPa da c ve	
	Ø'nın Kesme Kutusu Deneyi İle Bulunması	204
Tablo 5.117.	%75 Kaba Kum İçeren CH Numunesinin 200 kPa da c ve	
	Ø'nın Kesme Kutusu Deneyi İle Bulunması	205
Tablo 5.118.	%75 Kaba Kum İçeren CH Numunesinin 300 kPa da c ve	
	Ø'nın Kesme Kutusu Deneyi İle Bulunması	205
Tablo 5.119.	İnce Kum Numunesinin Kesme Kutusu Deneyinde Fiziksel	
	Özellikleri	207
Tablo 5.120.	İnce Kum Numunesinin 100 kPa da c ve Ø'nın Kesme Kutusu	
	Deneyi İle Bulunması	208
Tablo 5.121.	İnce Kum Numunesinin 200 kPa da c ve Ø'nın Kesme Kutusu	
	Deneyi İle Bulunması	208
Tablo 5.122.	İnce Kum Numunesinin 300 kPa da c ve Ø'nın Kesme Kutusu	
	Deneyi İle Bulunması	209
Tablo 5.123.	Orta Kum Numunesinin Kesme Kutusu Deneyinde Fiziksel	
	Özellikleri	211
Tablo 5.124.	Orta Kum Numunesinin 100 kPa da c ve Ø'nın Kesme Kutusu	
	Deneyi İle Bulunması	211
Tablo 5.125.	Orta Kum Numunesinin 200 kPa da c ve Ø'nın Kesme Kutusu	
	Deneyi İle Bulunması	212
Tablo 5.126.	Orta Kum Numunesinin 300 kPa da c ve Ø'nın Kesme Kutusu	
	Deneyi İle Bulunması	212

Tablo 5.127.	Kaba Kum Numunesinin Kesme Kutusu Deneyinde Fiziksel	
	Özellikleri	214
Tablo 5.128.	Kaba Kum Numunesinin 100 kPa da c ve Ø'nın Kesme Kutusu	
	Deneyi İle Bulunması	215
Tablo 5.129.	Kaba Kum Numunesinin 200 kPa da c ve Ø'nın Kesme Kutusu	
	Deneyi İle Bulunması	215
Tablo 5.130.	Kaba Kum Numunesinin 300 kPa da c ve Ø'nın Kesme Kutusu	
	Deneyi İle Bulunması	216
Tablo 5.131.	Konsolidasyonsuz Drenajsız Üç Eksenli Basınç Deneyi (UU	
	Deneyi) ve Kesme Kutusu Deneyleri Sonuçları	218
Tablo 6.1.	CH Numunesinde Kum Miktarının Artmasıyla Yapılan	
	Konsolidasyonsuz - Drenajsız Üç Eksenli Kesme Deneyi (UU	
	Deneyi) Sonuçlarında Kohezyon Değerlerinin Karşılaştırılması	232
Tablo 6.2.	CH Numunesinde Kum Miktarının Artmasıyla Yapılan Kesme	
	Kutusu Deneyi Sonuçlarında Kohezyon Değerlerinin	
	Karşılaştırılması	233
Tablo 6.3.	CH Numunesinde Kum Miktarının Artmasıyla Yapılan Kesme	
	Kutusu Deneyi Sonuçlarında İçsel Sürtünme Açısı	
	Değerlerinin Karşılaştırılması	234

ÖZET

Anahtar Kelimeler: Kil, kayma direnci, kohezyon, içsel sürtünme açısı, kesme kutusu deneyi, üç eksenli basınç deneyi

Zeminlerin kayma direnci parametreleri, geoteknik mühendisliği ile ilgili projelendirme sırasında, oldukça önemli bir değere sahiptir. Zeminin kayma direnci, yenilmeye meydan vermeden karşı koyabileceği en büyük kayma gerilmesi olarak tanımlanır. Bir zeminde kayma direncinin belirlenebilmesi için kayma direnci parametreleri olan kayma direnci açısı ve kohezyon değerlerinin arazi ya da laboratuvar deneyleriyle saptanması gereklidir.

Bu çalışma, yüksek plastisiteli kilde kum miktarının artmasıyla kayma parametrelerinin değişimini gözlemlemek maksadıyla gerçekleştirilmiştir. İnce kum, orta kum ve kaba kum olmak üzere üç çeşit kum kullanılmıştır.

Deney için yüksek plastisiteli kil, ince kum, orta kum ve kaba kum temin edilmiş, kil içerisine %10, %25, %50 ve %75 oranlarında kum katılarak hazırlanan mumunelerin, standart kompaksiyon deneyi ile optimum su muhtevaları bulunmuştur.

Bulunan optimum su muhtevalarında, standart kompaksiyon deneyi ile numuneler sıkıştırılmış, üç eksenli basınç deneyi ve kesme kutusu deneylerinde kullanılmak üzere deney numuneleri temin edilmiş ve deneyler gerçekletirilmiştir.

Bütün deneyler sonuçlandıktan sonra çıkan değerler incelendiğinde; yüksek plastisiteli kilde % 25 ince kum miktarına kadar, üç eksenli basınç deneyi ve kesme kutusu deneylerinde kohezyon değerinin hızla arttığı görülmüştür. Kum miktarının artmasına devam edildiğinde ise kohezyon değerinin artık hızlı bir şekilde düştüğü gözlemlenmiştir. Bu sonuç orta kum ve kaba kum katılarak hazırlanmış deney numunelerinde de yapılmış ve benzer sonuç bulunmuştur. Kayma parametrelerinden diğeri olan içsel sürtünme acısı ise; üç eksenli deney sonuçlarına bakarak herhangi bir kanıya varmak mümkün değildir. Ancak kesme kutusu deneyi sonuçlarına bakıldığında %25 ince kum içeren CH numunesine kadar içsel sürtünme açısı değeri düşmekte, kum miktarının artmaya devam edilmesiyle içsel sürtünme açısında artma belirmiştir.

THE EFFECTS OF SAND QUANTITY IN HIGH PLASTICITY CLAY TO THE SHEARING STRESS

SUMMARY

Keywords: Clay, shearing resistance, cohesion, angle of internal friction, shearbox test, triaxial compression test.

The parameters of shearing resistance of soils, while the projects with about geotechcinal engineering, has extremly consequence. Shearing stres of soil is defined the biggest shearing stres that withstand without yield resistance. In orderto define shering resistance in a soil, angle of shearinh resistance and cohesion values are find with laboratory and in-sute test.

In this study, the changing of shearing parameters with increasing sand quantity in high plasticity clay has been defined. Fine sand, coarse sand and medium are used in this study.

High plasticity clay, fine sand, medium sand and coarse sand is used for tests, 10%, 25%, 50%, 75% percent of proportion for the clay, the sand is mixed to the prepared samples and optimum moisture content with standart compaction tests are find.

Found optimum moisture content, the samples to be found with standart compaction test is compacted and the tese samples are ensured for the usu of triaxial compression test and shearbox tests and the tests are realized.

When finished all the tests until the 25% percent of fine sand puantity in high plasticty clay, ohesion ualues have increased in triaxial compression tests and sherbox tests. If sand quantity continues to increased, it shows that quantity of percentage of cohesion is quidty decreased. This similar result is seen when the experimen with when used medium and coarse sand. Angle of internal friction than one of shearing patameters, there is no commet to look at the resultsof experiment for triaxial compression tests. If you look at the shearbox tests results 25% of fine sand das CH samples; angle of internal friction value decreases and if sand percentage keep continue to increases internal friction increased.

BÖLÜM 1. GİRİŞ

Bir zeminin kayma mukavemeti, onun dayanabileceği maksimum kayma gerilmesidir. Başka bir deyişle, kırılma sırasında, kayma yüzeyi boyunca etkiyen kayma gerilmesidir. Mukavemet aşıldığı zaman kayma yüzeyi boyunca kırılma olayı meydana gelir. Kayma mukavemetinin daima aşağıda verilen iki kısımdan müteşekkil olduğu kabul edilir.

İçsel sürtünme veya daneler arasındaki kilitlenmeden doğan mukavemet, Kohezyon veya daneleri beraberce tutmaya çalışan kuvvetlerden doğan mukavemet,

Genel olarak ifade edilirse, kum gibi kaba daneli zeminler, hemen hemen bütün kayma mukavemetlerini daneler arası sürtünmeden aldıkları halde, diğer zeminlerde mukavemet, yukarıda verilen iki kısmın bir kombinezonudur [1].

Zeminin kayma dayanımı geoteknik mühendisliğinin en önemli konusunu teşkil eder. Sığ veya derin temellerin taşıma kapasitesi, şev stabilitesi, istinat duvarı dizaynı ve dolaylı veya kaplamayı oluşturan zeminin kayma dayanımından etkilenmektedir. Yapı ve şevler maksimum yükleme şartlarında yüklendiği zaman duraylı ve göçmeye karşı sağlam kalabilmelidir. Bundan dolayı, bu yapıların dizaynında analizin sınır denge metotları uygun şekilde kullanılır ve bu metotlar zeminin nihai veya sınır kayma mukavemetinin tanınmasını gerektirir [2].

Zemin kitlesi üzerine yapılan bir yükleme sonucunda dengenin korunması ve kırılma olayı meydana gelmemesi istenir. Öte yandan; yapılan yüklemeler sonucunda meydana gelecek deformasyonların da belli sınırları aşmaması gerekmektedir. O halde; zemin kütlesi üzerine yapılacak yüklemelerde iki koşulun aynı anda sağlanması gerekmektedir. Bunlar kısaca denge (stabilite) ve yer değiştirme (deformasyon) koşulları olarak adlandırılabilir. Zemin kitlesinin denge koşulunda kırılma anındaki gerilme durumuyla ilgilenilirken, yer değiştirme koşulunda kırılma oluşmadan önceki gerilme durumu ile ilgilenilir. Her iki koşulun incelenmesinde de zemine ait kayma direncinin, bunun için de kayma direnci parametrelerinin bilinmesi gerekmektedir.

Zeminin kayma direncini oluşturan bileşenler;

- 1- Zeminin danelerinin oluşturduğu yapının kaymaya karşı gösterdiği direnç,
- 2- Danelerin temas yüzeyindeki oluşan sürtünme kuvvetleri,
- 3- Daneler arasında görünür kohezyon kuvvetleri

olarak sıralanabilir. Zemin kitlesi içinde kayma veya göçmeye sebep olan normal ve kayma gerilmelerinin ortak etkisi göz önüne alan birçok hipotez geliştirilmiştir. Zemin kitlesinin kayma direnci parametreleri aynı zemine ait drenaj ve konsolidasyon koşularına bağlı olarak değişik değerler almaktadır.

Gerçek kohezyon; bir zeminde efektif gerilmelerin sıfır olduğu durumdaki kayma direnci olarak tanımlanabilir. Fizikçiler gerçek kohezyonu aynı cinsten cisimlerin birbirinden ayrılmak için uyguladıkları kuvvet olarak tanımlamaktadır. Kum ve çakıl gibi zeminlerde gerçek kohezyon değeri 3 kPa dan daha küçük olmakta ve genellikle ihmal edilmektedir. Kil zeminlerde bu değer oldukça yüksektir.

Görünür kohezyon; Mohr-Coulomb kırılma zarfının kayma gerilmesi eksenini kestiği noktadaki kayma direnci görünür olarak adlandırılmaktadır. Görünür kohezyon zemin daneleri çevresinde bulunan su filmi aracılığı ile danelere uygulan yüzey gerilmesinden doğan kılcal gerilmedir [3].

Bir zemin kütlesi içinde kayma gerilmesi belirli bir kritik değeri geçerse zemin kırılır. Yükleme ve zemin durumuna göre kırılma heyelan, istinat duvarının yıkılmasına veya bir sömelin zemine göçmesine sebep olur. Böyle kazaların önlenmesi önemli olduğu için zeminlerin kayma direnci tayin eden değişken üzerinde bir yüzyıldan fazla bir süredir dikkatle durulmuştur [4]. Araştırmaların önemli bölümünün kayma mukavemeti alanında yapılmasına karşın bugün de

tümüyle anlaşılmayan yanları vardır. Kayma direncinin ilk incelenmesi Coulomb tarafından yapılmış ve zeminin kayma direncinin tek parametre ile temsil edilmesi ilkesi getirilmiştir. Daha sonra bir matematikçi olan Mohr, Coulomb'un yaklaşımından çok farklı bir formülasyon getirmiştir. Her iki teorinin göz önüne almadığı efektif gerilme ilkesi Terzaghi tarafından geliştirilince konu esasta bu üç araştırmacının çalışmalarının bileşimi olarak geoteknikte uygulama bulmuştur. Yukarıda anılan yanılgı bu tarihsel gelişimin bir sonucu olarak kabul edilebilir. Benzer şekilde, problemlerin iki boyutlu olduğunun kabulü ve lineer olmayan $\sigma - \varepsilon$ eğrisinin elasto-plastik nitelikte olduğu varsayımı hataları arttırmaktadır. Kayma direnci ölçümünün o günün teknolojisine bağlı olarak bazı laboratuvar deneyleri ile yapılması da gerçekçi olmayan parametrelere bağlı sonuçlar getirmiştir [5].

1.1. Yapılan Çalışmalar

Kum ve kil karışımlarının kayma dayanımı ve sıkışabilme özellikleri üzerine yapılan çalışmada, hiç silt ve kil içermeyen kumdan, kum yüzdesi sıfır olan silt-kil karışımlarına kadar geniş dane dağılımı ele alınmıştır. Karışımlarda ince malzeme oranı baz alınmış, karışımlardaki oranların değişiminin kayma dayanımına ve sıkışma ile oturma özelliklerini etkisi araştırılmıştır. İnce malzeme oranı %5, %15, %35, %50, %75 ve %100 olan 6 karışım üzerinde yapılan drenajlı direk kesme deneyleri sonuçlarına göre, %50'lere kadar kayma dayanımı açıları genel olarak 30-38 dereceler arasında oynamakta ve yüzdenin artmasıyla beraber ufak bir düşme göstermektedir. %50'den sonra ise açılardaki azalma çok belirginleşerek, 10 derece düzeyine kadar düşebilmektedir. %35, %50, %75, %100 oranında ince malzeme içeren zeminlerde yapılan drenajsız üç eksenli basınç deneylerinin sonuçlarına göre ise kayma dayanımı açıları yakın değerler verip ince malzeme oranından bağımsız bir davranış göstermektedir [6].

1.2. Çalışmanın Amacı

Zeminlerde kayma direnci parametreleri olan c ve \emptyset ; zeminin cinsi, fiziksel özellikleri, zeminin üzerine yapılacak olan yapının inşa şekline göre arazi ya da laboratuar deneyleri ile tesbit edilir. Laboratuvar ortamında yapılan deneylerden

kesme kutusu ve üç eksenli basınç deneyleri en yaygın olarak kullanılanlardır. Üç eksenli basınç deneyleri boyu çapının iki katı olan silindirik numuneler üzerinde yapılır. Kesme kutusu deneyi ise kare ya da daire kesitli numunelere uygulanır. Zemin üzerine yapılacak olan üst yapıların dizaynında önemli bir yeri olan kayma direncini bulmak için, kayma direnci parametrelerinin laboratuvarda tesbiti esnasında etken olan faktörler dikkatle incelenmelidir. Bu araştırmanın konusu olarak, yüksek plastisiteli bir kilde kum miktarının kayma mukavemetine etkisi seçilmiştir. Yüksek plastisiteli kile, %10, %25, %50, %75 oranlarında ince, orta, kaba kum katılarak üç eksenli basınç deneyinde c ve Ø değerlerine olan etkisi yanında, aynı numunenin kesme kutusunda nasıl bir davranış sergilediği de incelenmiştir.

Yapılan araştırma, Sakarya İli, Serdivan İlçesi, Bahçelievler Mahallesi, Tunatan Tesisleri yakınından örselenmiş zemin numuneleri alınmıştır. Alınan bu numuneler Sakarya Üniversitesi, Mühendislik Fakültesi, İnşaat Mühendisliği Laboratuvarına getirilmiş ve tüm çalışmalar burada yürütülmüştür. Bu çalışmada, yüksek plastisiteli killi zeminin kayma direncine kum miktarının etkisi araştırıldığından zemin numunesinin önce fiziksel özellikleri tesbit edilmiş, daha sonra 200 nolu elekten elenerek kumdan arındırılmıştır. Her katılan kum oranıyla birlikte standart kompaksiyon deneyiyle optimum su muhtevaları bulunmuştur.

200 nolu elek altına geçen kil+siltten oluşan ince daneli zemin içerisine değişik oranlarda ve farklı dane boyutlarında kum katılarak elde edilen karışım optimum su muhtevasında sıkıştırılmıştır. Optimum su muhtevasında sıkıştırılan zemin karışımından üç eksenli basınç ve kesme kutusu deneyleri için numuneler hazırlanmıştır. Bu numuneler üzerinde yapılan üç eksenli basınç ve kesme kutusu deneylerinde kum miktarının ve kum boyutunun kayma direnci parametrelerine (c, \emptyset) olan etkisi incelenmiştir.

BÖLÜM 2. KİL

2.1. Kilin Tanımı ve Yapısı

Kil minerali son derece ince plakalar halinde kristalli yapılar olup kayaların fiziksel ve kimyasal yolla parçalanması, aşınması ve bozulması sonucu oluşmuştur [7]. Kil minerali su ile karıştığında çamur oluşturur ve hamur halinde şekil verebilecek kadar plastisiteye sahipken, pişirildiğinde büyük dayanım artışları gösteren bir katıya dönüşür. Isıtıldığında genellikle hacim artışı gösterir; kurutulduğunda ise hacim azalır ve çoğunlukla çatlar. Killer birçok durumda geoteknik mühendisinin yararına özelliklerden dolayı aranır. Dolgu barajlarda ve atık depolarında geçirimsizliğin sağlanması, göletlerin su tutması için ve kazıldığında kendini tutamayan zeminlere bulamaç halinde etkin destek sağlamak amacıyla kullanılır [5]. Son derece küçük olan (dane boyutu 2 mikron veya daha küçüktür) olan kil mineralleri X ışınları, ısıl analiz bazen de elektronik misroskoplarla tayin edilebilmektedir. Kil mineralleri kimyasal olarak alumina –silikat hidrateler diğer mekanik iyonlar (magnezyum, demir, potasyum vb.) ile oluşmuştur. Kil mineralleri genel olarak;

1- İllit,

- 2- Montmorillenit
- 3- Kaolenit
- 4- Alofenler

şeklinde görülür.

Montmorillinit, illit ve kaolenit gibi kil mineralleri doğada genellikle saf halde tek başlarına bulunmazlar. Zaten zengin olarak bulunduklarında ticari değerleri çok yüksektir. Zira kağıt boya, ilaç, seramik vb. işlerde kullanılır. Çoğunlukla bu mineraller birbirleriyle ve diğer mineraller ile karışık halde belli oranlarda bulunur.

Ancak montmorillerit yönünden zengin killer suyla temas ettiklerinde aşırı olarak şişerler.

Kil mineralleri çok karmaşık bir yapı gösterdiklerinden dolayı bugüne kadar herkes tarafından kabul edilmiş bir sınıflandırma sistemi mevcut değildir. Çünkü kil minerallerinin sınıflandırılmasında

- 1- Tabakalanma (tabaka kalınlığı, tabakaların ara mesafesi, vb.)
- 2- İyon içeriği (tabakalar arasındaki diğer minerallerin varlığı, cinsi, miktarı vb.)
- 3- Tabakaların dizilişi ve düzeni

olmak üzere farklı özellikler göz önüne alınabilmektedir. Fakat kil minerallerinin mühendislik özellikleri (su tutma/emme kabiliyeti, sıkışabilirlik şişme/büzülme potansiyeli vb.) açısından tabakaların dizilişi ve diziliş düzenine göre sınıflandırmak genel bir kabul görmektedir. Çünkü kil minerallerinin tamamı iki, üç veya daha fazla tabakalı kristallerden ve her bir tabaka farklı minerallerden oluşur.

Kil mineralleri Al, Si, Fe, Mg, O minerallerinin değişik tabakalar halinde farklı düzenlerde görülür. Ayrıca bu tabakalar arasında zayıf veya kuvvetli bağlar oluşmakta ve tabakalar arasında su veya diğer iyonlar bulunmaktadır. Özellikle Al ve Si minerallerinin tabaka sayısı ve diziliş şekli tabakalar arası bağ kuvveti kil minerallerinin özelliklerini belirlemektedir.

Kil mineralojisinde silis tetrahedron ve alüminyum veya magnezyum oktahedron olarak adlandırılan iki ana yapı bloğu vardır. Silis tetrahedron; 1 silis iyonu ile 4 oksijen atomunun birleşmesinden oluşan 4 köşeli, 4 yüzlü kristal blokudur. Silis tetrahedronların birleşmesi ile oluşan tabakalar tetrahedral tabaka olarak adlandırılmaktadır. Şekil 2.1. de silis tetrahedron ve tetrahedral tabaka gösterilmektedir.

Şekil 2.1. (a) Silis Tetrahedron (b) Tetrahedral Tabaka

Aluminyum veya magnezyum oktahedron; 6 hidrosil iyonuna bağlı aluminyum veya magnezyum iyonlarından oluşan 6 köşeli 8 yüzlü kristal yapı bloğudur. Oktahedronların birleşmesi ile oluşan tabakalar ise oktahedral tabaka olarak adlandırılır. Şekil 2.2. de alüminyum oktahedron ve oktahedral tabaka gösterilmektedir. Şişen zeminin içerdiği kil minerallerinin mineralojik yapısı zemin hacim değişime etki eden en önemli faktördür.

Şekil 2.2. (a) Alüminyum Oktahedran (b) Oktahedran Tabaka

Kaolinitin kristal yapısı 1 tetrahedral ve 1 oktahedral tabakadan oluşmaktadır. Kaolinitin mineralojik yapısında tabakalar arasındaki kuvvetli hidrojen bağları suyun tabakalar arasına girip şişme oluşturmasını engellemektedir. Doğada sık olarak rastlanan kaolinit mineralinin suya eğilimi az olup su ile karşılaştıklarında büyük oranda hacim değişimine sahip olmazlar. Bu minerallerin şişme ve plastik özellikleri düşüktür. Şekil 2.3. de kaolinit mineral grubunun mineralojik yapısı gösterilmektedir.

Şekil 2.3. Kaolinit Mineral Grubunun Mineralojik Yapısı

İllit mineralinin mineralojik yapısı 1 oktahedral tabakanın 2 tetrahedral tabakasının arasına sıkışmasından oluşmaktadır. Tabakalar arasına giren potasyum iyonları bağın bir miktar kuvvet kazanmasına neden olup su moleküllerinin tabakalar arasına girmesine engel olmaktadır. Şekil 2.4. de illit mineral grubunun mineralojik yapısı gösterilmektedir.

Şekil 2.4. İllit Mineral Grubunun Mineralojik Yapısı

Montmorillonit'in mineralojik yapısı 1 oktahedral tabakanın 2 tetrahedral tabaka arasına sıkışmasından oluşmaktadır. Tabakalar arasındaki bağ çok zayıf olduğundan suyun tabakalar arasına girmesi tabakaların birbirinden ayrılmasına dolayısıyla da zeminin hacim değişimine neden olmaktadır. Doğada yaprak plaka şeklinde bulunan montmorillonit minerallerinin plastisite ve hacim değiştirme özellikleri yüksek olup suya olan eğilimleri diğer kil minerallerine oranla çok yüksektir. Tetrahedral veya oktahedral tabakalardaki katiyonların yerinin başka bir katiyon tarafından alınması olarak tanımlanan izomorf yer değiştirme kil minerallerin davranışlarını önemli ölçüde değiştirmektedir. Şişen zeminlerin içerdiği kil mineralleri izomorf yer değiştirme nedeniyle mineral yüzeylerinde net negatif yük taşımaktadır. Bu durumdaki mineral tabakaları su ve katiyonlara karşı istekli olmaktadır. Şişen killerin hacim değişimi, kil mineralinin yapısına, miktarına ve kil tanelerinin dizilişine bağlıdır. Şekil 2.5. de montmorillonit grubunun mineralojik yapısı gösterilmektedir.

Şekil 2.5. Montmorillonit Mineral Grubunun Mineralojik Yapısı [10]

Kil kolloidleri 0,002 mm'den 10A ($1A = 10^{-7}$ mm)'e kadar değişik boyutta görülebilir. Bu kil partikülleri silikatlar, oksitler, karbonatlar ve sülfatlar gibi minerallerin bileşimidir. Kil partiküllerinin yüzeyleri sahip olduğu mineralin cinsine bağlı olarak negatif elektrik yüküne sahiptir (Şekil 2.6.). Su molekülleri kutupsuz olduğundan dolayı kil partiküllerinin çekimi altındadır. Bu nedenle kil partikülleri hem suya duyarlı olup hem de kolayca su kaybettiklerinden ötürü su tutma özelliğine sahiptir [7].

Şekil 2.6. Kil Su İlişkisinin Kimyasal Şeması [8]

Tabiatta zemin daneleri net elektriksel yüklerini dengelemek için ortamdan iyonları yanlarına çekerler fakat iyonların dane ile bağıntıları göreli olarak zayıf olacağı için bu iyonlar başka iyonlarla yer değiştirebilir bu yüzden bunlara "değişebilir iyonlar" adı verilir. Kil daneceği de su içine atılınca hem mineral yüzeyleri hem de değişebilir iyonları su alacak ve hidrasyona uğrayacaktır. Bu hidrasyona uğramış değişebilir iyonlar, etraflarında su tabakaları ile birlikte mineral yüzeyinden uzaklaşarak dengede olacakları bir noktaya gelirler ve zemin danesi etrafında bir bağlı su tabakası oluşmasına yol açarlar. Bağlı tabaka kalınlığı dane elektriksel yükünün dengelendiği mesafeyi göstermektedir.

Su içinde iki zemin danesi birbirine yaklaştırıldığında belirli bir noktadan sonra bu daneler birbirine itme kuvveti uygularlar ve bu itme kuvvetleri bağlı tabakaların birbirine değme noktasında başlar, çünkü her dane net negatif elektrik yükle yüklüdür. Su-zemin ortamının özelliklerinde herhangi bir değişiklik bağlı tabaka kalınlığı, itme kuvvetlerinin şiddeti ve dolayısıyla dane ara mesafelerini belirler. İtici kuvvetlerden başka daneler arasında çekici kuvvetler de vardır. İtici ve çekici kuvvetlerin net etkisi çekici kuvvetlerden yana oluşuyorsa, daneler bir çatı ve bu yapısal dizilişe flok (yumak) yapı adı verilir (Şekil 2.7a.). Eğer net kuvvetler itici kuvvetler ise daneler dispers (dağılmış) yapı verilen düz ve paralel bir yapısal dizilişte olurlar (Şekil 2.7b.).

Şekil 2.7. Kilin Yapısı (a) Flok Yapı (b) Dispers Yapı [9]

Kil partikülleri arasında sudan bağımsız olarak çekim kuvvetleri (Van der Wall kuvvetleri) mevcuttur. Aynı zamanda negatif yüklü kil daneleri pozitif yüklü suyu çekerek danelerin etrafında absorbe su tabakası oluşturur. Bu absorbe su normal sudan çok daha viskos olup kalınlığına bağlı olarak zemin partiküllerini birbirinden itmeye çalıştığı gibi zeminin plastik özelliklerini de belirler. Kil partiküllerini arasındaki mesafe ne kadar az ise partiküller arasındaki çekim kuvveti itme kuvvetinden o kadar daha fazladır. Eğer suya tuz katılacak olursa itme kuvvetleri son derece azalır [7].

2.2. Kil Mineralinin Özellikleri

Kil mineralleri, çok karmaşık bir yapı gösterdiklerinden dolayı günümüze kadar herkes tarafından kabul edilmiş bir sınıflandırma sistemi mevcut değildir. Çünkü kil mineralinin sınıflandırılmasında; tabakalanma (tabaka kalınlığı, tabakaların ara mesafesi, vb.), iyon içeriği (tabakalar arasındaki diğer organik veya inorganik minerallerin varlığı, cinsi, miktarıi vb.) tabakaların dizilişi ve düzeni olmak üzere farklı özellikler göz önüne alınabilmektadir. Fakat kil mineralinin mühendislik özellikleri (su tutma/emme kabiliyeti, sıkışabilirlik, şişme-büzülme potansiyeli vb.) açısından tabakaların dizilişi ve diziliş düzeni yönünden sınıflandırmaya tabi tutmak genel kabul göstermektedir. Kil mineralleri içeren zeminlerin en belirgin özellikleri dane çaplarının çok küçük olması ve su ile temas halinde olduklarında çamur haline gelmesidir. Killi zeminlerin suya olan eğilimleri içermiş oldukları kil mineralinin miktarı ve türüne bağlıdır. Büyük oranda kaolinit mineralleri içeren killi zeminlerin suya eğilimleri az olup bu zeminler su ile karşılaştıklarında stabilitelerini kaybetmezler. Fakat içeriğinde büyük oranda montmorillonit minerali içeren killi zeminlerin suya karşı çok hassas olup su ile karşılaştıklarında büyük oranda hacim değişimlerine maruz kalırlar. Kil minerallerinin özgül yüzeyi, kil minerallerinin tane büyüklükleri ile ters orantılıdır. Kil içeren zeminlerin hacim değiştirme özelliği minerallerin özgül yüzeylerinin büyüklüğü ile orantılıdır. Kil zeminlerin içerdiği oktahedral tabakadaki bazı magnezyum iyonları veya tetrahedral tabakadaki bazı silis iyonlarının aluminyum katiyonları ile izomorf yer değiştirmesi durumunda mineral yüzeylerinde net elektrik yük oluşmaktadır. Oktahedral tabakadaki hidroksil iyonlarının kil yüzeylerinden ayrılması ise elektrik yük dengesizliğine neden olmaktadır. Bu durumdaki kil mineralleri bu dengesizliği giderebilmesi için su ve katiyonlara istek duymaktadır. Kil tanelerinin negatif yüklenmesi durumunda oluşan yük dengesizliğini giderebilmek için gerekli katiyon miktarı ise katiyon değiştirme kapasitesi olarak tanımlanmaktadır. Kıvam limitleri yüksek olan kil minerallerinin katiyon değiştirme kapasiteleri de yüksek olmaktadır. Katiyon değiştirme kapasitesinin belirlenmesi bakımından çok önemlidir. Kil minerallerinin üzerindeki negatif elektron sarjları, tabakalar arası bağ kuvvetlerini ve katyon değistirme kapasitesini dolayısıyla kilin şişme potansiyelini arttırmaktadır. Kaolinit, kil mineralleri arasında en düşük şişme kapasitesine sahip kil mineralidir. İllit minerali %15 şişme yüzdesine sahip olup monmorillonit mineralinin şişme yüzdesi ise %60-100 arasındadır. Zemin mühendisliği bakımından önemli olan kil mineralinin özellikleri Tablo 2.1. de verilmektedir.

		-	
Özellik	Kaolinit	İllit	Montmorillonit
Büyüklük (mm)	100-5000	100-2000	10-1000
Kalınlık (mm)	50-2000	30	3
Özgül yüzey (m ² /g)	5-20	100-200	700-800
Kohezyon	Düşük	Orta	Yüksek
Hacim değiştirme özelliği	Düşük	Orta	Yüksek
Katiyon değiştirme kapasitesi	3-10	15-40	80-120
(cmol/kg)			

Tablo 2.1. Kil Minerallerinin Özellikleri

Tablo 2.1 den görüldüğü üzere kil mineralinin özgül yüzeyleri büyük olup su tutma kapasiteleri de fazladır. Killi bir zeminin şişme kapasitesi, zemin içerisindeki kil mineralinin miktarı ve tipine, kil partiküllerinin yüzey alanlarına ve partikülleri çevreleyen zemin suyunun kimyasına bağlıdır. Montmorillonit mineralini yüksek oranda içeren zeminler hacim değişimine eğilimleri çok yüksek olup bu minerali içeren zeminleri inşaat malzemesi olarak kullanılmaması gerekmektedir [10].

Killerin küçük partikül çapı ve levha benzeri şekli nedeniyle, yüzey alanının kütleye oranı diğer zeminlerdekinden hayli büyüktür. Bu oran özgül yüzey olarak bilinir. Örneğin, montmorillonitin özgül yüzey alanı yaklaşık 800m²/gr'dır. Bu değer bu kilin 3,5 gramının bir futbol sahasının alanına eşit bir yüzey alanına eşit olduğu anlamına gelir.

Killerin büyük özgül yüzeyi, partiküller arasında daha çok temas alanı ve böylece çeşitli partiküller arası kuvvetlerin gelişmesi için daha fazla fırsat sağlar. Ayrıca, su moleküllerin bağlanması için daha fazla yer sağlar. Bu yolla, killere suyu içine çekmesi için çok büyük eğilim kazandırır. Bazı killer birim ağırlıklarının birkaç katı kadar suyu kolayca içine çekebilir. Özgül yüzeyi en büyük kil minerali montmorilonitdir. Bu yüzden, suya karşı en büyük eğilime sahip olmaları sürpriz değildir. Su ve kil mineralleri arasındaki etkileşimler oldukça karmaşıktır. Bununla birlikte, net etki; mühendislik özelliklerinin, su içeriği değiştikçe değişmesidir. Örneğin %50 su içeriğinde göz önüne alınan bir kilin kesme dayanımı, %10 su içeriğindekinden daha az olacaktır [11].

Kilin başlıca dört özelliği vardır. Plastisite, Kohezyon, Renk ve Rötre' dir.

Plastisite; ezilmiş kile uygun miktarda su karıştırıldığı zaman işlenebilme ve şekillendirme özelliği kolaylaşır. Böylece kil kolayca şekil alır. Örneğin, un su ile karıştırıldığı zaman işlenebilir ve şekillendirilebilir. Buna karşılık kum, su ile karıştırıldığı zaman herhangi bir plastik özellik kazanamaz. Kilin plastisite özelliği kazanabilmesi için muhakkak surette su ile karıştırılması gereklidir. Su dışında hiçbir madde kile plastisite özelliği kazandırmaz. Bu konuda yapılmış deneylerde bir çok sıvı (alkol, gaz, terebentin, amonyak, aseton vb.) kullanılmışsa da hiç birisi ile bu özellik elde edilmemiştir.

Kohezyon; bu özellik kil hamuruna kuruduğu zaman kendisine verilmiş olan şekli muhafaza etme kabiliyeti sağlar. Örneğin kum bu özelliğe sahip olmadığı için su ile ıslandıktan sonra kurumaya terk edildiği zaman küçük bir darbe ile kendi kendine dağılır. Kilin kohezyona sahip olabilmesi için mutlaka su ile yoğurulması gereklidir. Su dışında kalan diğer sıvılarla kil kohezyon kazanmaz.

Renk; killer metal oksitlerle karışık bir şekilde bulunduklarından doğal olarak renklenmiş durumdadırlar. Ayrıca organik maddeler de ihtiva eder. Kilin saf olması halinde rengi beyaz olur ve kaolen adını alır. Bunun ötesinde killerin renkleri sarı, pembe, kırmızımsı, mavimsi, kahverengi, gri, yeşil ve siyahımsı olabilir. Kilin rengi içinde bulunan maddeler hakkında fikir vermektedir. Kilde limonit bulunması halinde rengi esmerdir. Kilde demir peroksit bulunması halinde rengi kırmızıdır. Kilde manganez bioksit bulunması halinde rengi siyahtır. Kilde organik maddeler bulunması halinde menekşe rengindedir. Bununla beraber, kilin pişmeden evvelki rengi piştikten sonrada aynı renkte kalacağını göstermez. Çünkü oksitlerin yüksek ısı derecelerinde renkleri değişir.

Büzüşme (Rötre) ; kil su ile yoğrulup şekillendikten sonra kurumaya terk edilirse şekillendirme sırasında verilmiş olan ölçüleri küçülür. Diğer bir değişle kil hamurunun kuruma sırasında hacmi küçülür. Bu olaya kilin rötre yapması denir. Rötre, kilin kuruması sırasında olduğu gibi pişmesi sırasında da devam eder. Kilin kurumasından meydana gelen rötre, kilin plastisite özelliğine bağlıdır. Rutubetli bir kil hamuru kurumaya terk edildiği zaman hacmi küçülür. Belli bir zaman süresi sonucunda kil hamuru katılaşır ve mutlak kuruma haline kadar su kaybı ve hacim küçülmesi devam eder. Bu şekilde kurutulmuş kil hamuru gittikçe yükselen ısıda pişirildiği taktirde, kurutmada olduğu gibi yine hacmini küçültür. Kilin gerek kuruma ve gerekse pişme sırasında yapılmış olduğu rötre, toplam rötredir [12].

2.3. Killerin Oluşumu

Zemin türleri gibi killerin oluşumunda da ortamın önemli rol oynayacağı açıktır; ancak danelerin küçüklüğü bu etkiyi daha da arttırmaktadır. Şöyle ki, aynı mineralin deniz veya gölde çökelmesi sonucu oluşan iki kilin mühendislik özellikleri şaşırtıcı ölçüde farklı olmaktadır. Aynı kil değişik gerilmeler altında da farklı davranışlar göstermektedir.

Yerinde oluşan killer tropik ikim koşullarında özellikle kor kayaçların ayrışması ürünüdür. Ilıman iklimlerde rezidüel (kalıntı) killer daha çok kil kökenli kayaçların ayrışmasıyla meydana gelir. Genç vadi yamaçlarındaki sağlam kayaçların ayrışması sert killeri oluşturmaktadır. Ancak bir heyelan sonucu su ile de karıştığında hızla yumuşama olmaktadır. Volkanik küllerin su alarak ayrışması ve kuruması sonucu oluşan tüfler çok plastik killerin kökenidir.

Taşındıktan sonra tatlı yada tuzlu suda çökelerek oluşan killere tortul adı verilebilir. Bazı durumlarda tuzlu suda çökeldikten sonra arazi yükselmesiyle yağmurun yıkamasına maruz kalan killer mekanik dirençlerini büyük ölçüde yitirerek hassaslaşmaktadır. Bu tür killer suda ve çoğun sukunette biriktiğinden oldukça yumuşaktırlar. Ancak jeolojik olaylar sonucu üzerine yük geldiğinde sıkışarak sertleşmektedirler. Bu tür kile aşırı konsolide olmuş ya da önceden yüklenmiş denmektedir ve içindeki kil minerali oranının, fazlalığı oranında yapısında mikro ve makro çatlaklar bulunur. İçinde silt bulunan önceden yüklenmiş killerde çatlaklar daha azdır.

Buzul çağı Avrupa, Asya ve Kuzey Amerika'nın önemli bir bölümünde zeminlerin oluşmasında çok etkin olmuştur. Buzulların ilerlemesi ve gerilemesi sırasında değişik koşullarda oluşan killer diğer türlerden önemli farklılık gösterirler. Bunların en tipik örneği çakıl killidir. Çok yumuşak kil matrisi için 75mm ye varan büyüklükte çakıllar içeren killer sert killer olarak sınıflandırılır. Türkiye'de buzulların etkin olduğu bölgeler çok kısıtlı olduğundan buzul kökenli killer önem taşımazlar.

Yamaçlarda heyelan ve akma sonucu etekte biriken malzemenin killeşmesi o yörenin jeolojik özelliklerinden farklı depoların oluşmasını sağlamaktadır. Eğer yuvarlanan kitle aşırı şekil değiştirmiş yada parçalanmışsa bunlara göçme blokları denilmektedir. Tersine, malzeme dağlardan çamur akmasıyla inmişse kilin aşırı yuğrulmuş ve ana kayacın özelliklerini hiç yansıtmadığı görülecektir. Haliç'te karşılaşılan killer buna canlı örnektir [13].

Kil mineralleri çeşitli şekillerde bir araya toplanarak killi zeminleri oluştururlar. Bu mikroskopik biçimler zemin dokusu olarak adlandırılır büyük ölçüde oluşumun ve çökelimin geçmişine bağlıdır. Örneğin, yerinde bozuşmuş ve halen orijinal yerinde olan rezidüel kil, taşınmış ve çökeltme ile depolanan bir deniz kilinden çok farklı bir dokuya sahip olacaktır. Bu farklılıklar, bu gibi zeminlerin farklı olarak davranma nedenlerinin bir kısmıdır.

Bazen saf kilden oluşan tabakalara rastlamamıza rağmen, killerin çoğu siltler veya kumlar ile karışmıştır. Bununla birlikte, kilin küçük bir yüzdesi bile bir zeminin davranışını önemli biçimde etkilenir. Kil içeriği yaklaşık yüzde 50'yi aştığı zaman, kum ve silt partikülleri aslında kil içinde yüzer ve zeminin mühendislik özelliklerini üzerindeki etkileri çok az olur [11].

BÖLÜM 3. KAYMA MUKAVEMETİ

3.1. Giriş

Kayma mukavemeti, zemin kitlesi içindeki danelerin birbirleri arasındaki sürtünme kuvveti ile kohezyonun büyüklüğüne bağlıdır. Killi zeminlerin kayma mukavemetinden kohezyon sorumludur. Halbuki granüler (kohezyonsuz) temel tabakalarında ise içsel sürtünme açısı kayma mukavemetini belirler. Zeminin kayma mukavemeti sabit bir değer olmayıp su içeriği, yükleme hızı ve süresi ve birçok faktöre bağlı olarak değişir. Örneğin optimum su içeriğinde sıkıştırılan bir zeminin kayma mukavemeti maksimum değere sahiptir. Ancak yapılan araştırmalar sonucuna göre, optimumdan daha kuru su içeriğinde sıkıştırılan zeminleri kayma mukavemeti optimumdan daha yaş su içeriğinde sıkıştırılan zemin kayma mukavemetinden genellikle daha fazla olduğu görülmüştür. Zeminlerin stabilitesi doğrudan kayma mukavemeti ile ilgilidir. Kohezyon ve içsel sürtünme açısı üç eksenli veya kesme kutusu deneyleri ile belirlenir. İçsel sürtünme açısı, yük altında danelerin birbiri üzerinde kaymaya karşı gösterdikleri dirençtir. Kohezyon danelerin birbirine yapışma özelliğidir. Danelerin yüzey pürüzlülüğü ve köşeliliği artıkça, deneysel arası boşluk oranı azaldıkça, dane çapı büyüdükçe, iyi bir gradasyona (danelerin büyüklüğüne göre gösterdikleri dane dağılım oranı) sahipse ve ince malzeme miktarı ile su içeriği ne kadar az ise içsel sürtünme açısı da o kadar büyük olmaktadır [14].

Diğer bütün malzemelerde olduğu gibi, zeminler üzerine uygulanan yüklerin yol açtığı gerilmeler belirli sınırları aştığı zaman zeminde göçme meydana gelmektedir. Değişik malzemelerin göçme biçimlerinin birbirinden farklı olduğu bilinmektedir. Elasto-plastik davranış gösteren malzemelerde akma tipi göçme gözlenirken çelik gibi kırılgan malzemelerde ani göçme meydana gelebilmektedir.

3.1.1. Zeminlerin kayma mukavemeti

Zeminlerde göçme meydana gelmesi için, olası bir kayma düzlemi boyunca kayma direncinin aşılması gerekmektedir. Bu düzlem her zaman en büyük kayma gerilmesi düzlemi olmayabilmektedir. Genel olarak göçme belli bir kayma düzlemi üzerine etkiyen normal ve kayma gerilmelerinin ortaklaşa etkisi sonucu ortaya çıkmaktadır. Zeminin kayma mukavemeti ise, göçmeye meydan vermeden karşı koyabileceği en büyük kayma gerilmesi olarak tanımlanabilir [15].

Temel görevi yapacak zeminin seçilen kırılma kriterine göre kayma mukavemeti tarifi yapılabilmesi için kayma mukavemeti (kayma direnci) açısı ϕ , kohezyonu c, bunu sağlayacak gerilmelerle boy kısalması bağıntısı ve makaslama sırasında oluşan boşluk suyu basınçlarının bilinmesi, zeminin türü, oluşan gerilmeler, jeolojik geçmişinde geçirdiği evreler, ortam sıcaklığına bağlıdır. c ve ϕ ye zeminin kayma direnci parametreleri denir. Bu parametrelerin bulunması arazi yerinde yapılan ölçümler ve laboratuvar deneyleri ile mümkündür [13].

Diğer inşaat gereçlerinde söz konusu olmayan boşluk suyu basınçları zeminlerin kayma direncinde önemli bir etken olarak bilinir. Bir başka deyişle zeminin toplam ve efektif gerilme türünden ifade edilen kayma direnci önemli farklar gösterebilmektedir. Problemlerin çözümünde analiz hangi yaklaşımla yapılacağına zemin türü, yükleme hızı ve drenaj koşullarına göre karar verilir.

Zeminin kayma direncinin aşılması için etkiyen yükler farklı özellik taşırlar. Statik ve tekdüze yüklemede gerilme sıfır ya da belirli bir düzeyden başlayarak değişmez veya değişen hızla yükselir. Oysa birçok yük tekrarlı ve geri dönüşlüdür (trafik, makine yükleri gibi). Öte yandan, deprem olduğu gibi genliği ve frekansı değişen geçici yükleme zemin ortamında çok farklı etkiler yapmaktadır.

Zeminler günümüzde sadece statik yük değil, endüstri, trafik ve özel yapıların uyguladığı tekrarlı ve titreşimli yüklerin de etkisi altındadır. Bu yüklerin yukarıda değinildiği gibi genlik ve sıklıkları çok farklı olabilmektedir. Bunun yanında deprem yükleri de farklı etkiler getirdiğinden son yıllarda zemin dinamiği geoteknik mühendisliğinde ayrı bir bilim dalı olarak gelişmiştir.

Bazı zeminler yüklerin tekrarlı uygulanışı sırasında dayanımlarının önemli bir bölümünü korudukları gibi, bazı zeminlerde 10^5 ve daha fazla çevrim sonunda direncin arttığı da izlenir. Plastik killer bu gruba girer.

Gevşek kumlar gibi ortamlarda ise gerilmelerin tekrarlı uygulanması aşırı hacim kaybı getirmektedir. Bunun nedeni, gerilme yön değiştirdiğinde yükün kalkışından yeniden uygulanmasına kadar oluşmuş önceki birim kısalmaların sıfıra dönemeden ortamın yeni gerilmeler almasıdır. Boşluk hacminde beliren bu azalmanın doğal sonucu boşluk suyu basıncında belirecek sürekli artıştır. Böylece zemin drenaj olanağı bulamadan artan gerilmelere maruz kalmaktadır. Sonuçta, boşluk suyu basıncı çevre basıncı düzeyine yükseldiğinden zeminin direnci sıfıra düşecektir. Bu olaya günümüzde "sıvılaşma" denmekte ve özellikle kum ve siltlerde önemli sorunlar getirmektedir. Bu durumda kayma direncinin aşılması sıvılaşmanın belirmesi veya aşırı deformasyonların oluşması biçiminde ortaya çıkar.

Şekil 3.1. soldaki eğride belirgin doruk gösteren ve göstermeyen iki eğri görülmektedir. Sıkı kumlar ve aşırı konsolide killerde tipik olan A eğrisinde maksimum deviatör gerilmeye oldukça küçük birim kısalmada ulaşılmakta ve kırılma oluşmaktadır. Direnç bundan sonra düşüş göstererek büyük ε değerlerinde sonlu bir değere yönelmektedir. Deviatör gerilmenin bu değerine kalıcı direnç denir.

Gevşek kumlar ve normal yüklenmiş killer gibi malzemelerde (B eğrisi), artan ε değerlerinde deviatör gerilme sürekli yükselmekte ancak belirgin bir maksimuma ulaşılmamaktadır. Ancak eğrinin yöneldiği değer yine kalıcı direnç düzeyidir.

Konu toplam gerilmeler türünden incelendiğinde bu bulgular yeterli olacaktır. Ancak problem efektif gerilmelerle çözülmek istendiğinde karşımıza farklı bir durum çıkmaktadır. Şekil 3.1. sağdaki eğride aşırı konsolide kilde $\sigma - \varepsilon$ eğrisi, ölçülmüş boşluk suyu basıncı eğrisiyle birlikte ele alınmaktadır. Bu örnekte toplam deviatör gerilme ($\sigma_1 - \sigma_3$) sürekli yükseldiği halde bu kez efektif gerilmelerle büyük-küçük asal gerilme oranı ($\overline{\sigma}_1 / \overline{\sigma}_3$) türünden çizilecek eğride bir doruk noktasının belirdiği ve sonra ani düşüş gösterdiği izlenmektedir. O halde bu tür zeminde kırılma kriterinin maksimum deviatör gerilme yerine erişecek en yüksek efektif gerilme oranı türünden ifadesi daha gerçekçi olacaktır. Burada hatırlanması gereken ek nokta yenilmeyi sağlayan deviatör gerilmenin toplam ve efektif durumlar için değişmediğidir.

$$\overline{\sigma}_1 - \overline{\sigma}_3 = (\sigma_1 - u_w) - (\sigma_3 - u_w)$$

Şekil 3.1. Zeminde σ - ε Eğrisi

Bu incelemelerden bir zeminin ne zaman yenildiği/kırıldığının öncelikle σ - ε özelliklerine bağlı bir kriter olduğu görülmektedir. Şöyle ki:

Bir doruk göstermeyen zeminlerde (NL kil) kırılmanın daha önce belirlenmiş bir limit ε değerinde oluştuğu kabul edilebilir. Genelde bu limit %20 olarak kabul edilmektedir.

Yapı temellerinde olduğu gibi, kayma direncinin küçük ε değerinde belirdiği durumlarda zeminin σ - ε eğrisi bir doruk gösteriyorsa bu değer kayma direnci olarak alınır.

Birçok zeminde maksimum deviatör gerilmeye ulaşmadığı halde büyük/küçük asal gerilme oranı bir tepe noktadan geçmektedir. Böylesi durumlarda kırılma bu orana erişildiğinde belirmiş olacaktır.

Uyuyan bir heyelanda yamaç hareketlerinin yeniden başlaması örneğinde olduğu gibi çok büyük hareketlerin söz konusu olduğu durumlarda, kayma direnci kalıcı dirence eşit kabul edilir. Kalıcı dirence %20 lik birim kısalmaların çok daha üstünde erişildiği hatırlanmalıdır [5].

3.1.2. Kırılma hipotezi

3.1.2.1. Mohr - coulomb göçme hipotezi

Zeminler için, göçmeye yol açan normal ve kayma gerilmelerinin ortak etkisini göz önüne alan birçok hipotez geliştirilmiştir. Bunlar içinde en basit olanı ve uygulamada yaygın olarak kullanılanı Mohr - Coulomb göçme kriteri olmaktadır. Buna göre, zeminin kayma mukavemeti (birlikte göçmeye yol açan normal ve kayma gerilmelerinin sınır değerleri) Şekil 3.2. de gösterilen eğri ile temsil edilmektedir. Bu şekilde, normal gerilmeler yatay eksende, kayma gerilmeleri düşey eksende gösterilmekte, göçme zarfi olarak nitelendirilen eğrinin altında kalan gerilme durumları için göçme ortaya çıkmazken, bu zarfa ulaşıldığı anda zeminde göçme meydana gelmektedir. Bu zarfın üzerinde yer alan gerilme durumlarının mümkün olmadığı açıktır. Genel olarak göçme zarfi bir eğri ile temsil edilmektedir (Şekil 3.2b.). Bu doğrunun düşey ekseni kestiği nokta c ve yatay ile yaptığı açı ϕ ile gösterilirse, kayma mukavemetini veren bağıntı (doğrunun denklemi);

$$\tau = c + \sigma \tan \phi$$

şeklinde yazılabilir. Burada c ve ϕ kayma mukavemeti parametreleri olarak nitelendirilen iki katsayı olmak üzere, σ ise göçme yüzeyine etkiyen normal gerilme olmaktadır.

Şekil 3.2. Mohr - Coulomb Göçme Hipotezi

Zeminlerin kayma mukavemetinin olası bir göçme düzlemi boyunca kaymaya karşı oluşan dirençten kaynaklandığı bilinmektedir. Bu direnç, o düzlem boyunca ortaya çıkan sürtünmeden kaynaklanmaktadır. Yukarıdaki bağıntıda ikinci terimin ($\sigma \tan \phi$) bir sürtünme direnci ifade ettiği açık olarak görülmektedir ve ϕ açısı zeminin kayma mukavemeti açısı (veya içsel sürtünme açısı) olarak nitelendirilmektedir. Kayma mukavemeti açısı (ϕ) sadece dane yüzeyleri arası sürtünmeden kaynaklanan direnci değil, aynı zamanda danelerin birbirine göre hareketine engel olan kilitlenme etkisini de içeren toplam direnci temsil etmektedir. Mohr - Coulomb bağıntısındaki diğer kayma mukavemeti parametresi (c) ise genellikle kohezyon katsayısı olarak nitelendirilmektedir. Bu katsayının daha yaygın bilinen açıklaması danelerin birbirini tutma özelliğinden kaynaklandığı şeklindedir. Aynı zeminin değişik koşullarda yüklemeye tabi tutulması ile bu katsayı çok farklı değerler alabilmektedir. Bu gerçeği göz önüne alan bazı araştırmacılar c parametresinin zeminin fiziksel bir özelliği olmadığı, yalnızca belli koşullarda sürtünme direncini ifade etmek için kullanılan bir katsayı olarak düşünülmesi gerektiği kanısındadırlar.

3.1.2.2. Göçme durumu ve mohr gerilme daireleri

Zemin içinde bir noktada etkiyen gerilme durumunun grafiksel olarak Mohr gerilme daireleri ilegösterilmektedir. Mohr gerilme dairesi ile Mohr-Coulomb göçme zarfi aynı şekil üzerinde gösterilirse, uygulanan yüklerin yol açtığı gerilme durumunun göçmeye yol açıp açmayacağını açık olarak görmek mümkün olmaktadır. Şekil 3.3. de değişik gerilme durumlarını temsil eden üç mohr gerilme dairesi gösterilmiştir.

Şekil 3.3. Mohr Gerilme Daireleri ve Göçme Zarfı

A ve B gerilme daireleri göçme zarfının altında kaldığı için göçme meydana gelmeyecektir. Buna karşılık C dairesi göçme zarfına değdiği için, bu gerilme durumuna yol açan σ_3 ve σ_1 asal gerilmeleri göçme meydana gelmesine neden olacaktır. Şekil 3.4. de gösterilen mohr gerilme dairelerinin hepsi göçmeye yol açacak gerilme durumlarını göstermektedir.

Şekil 3.4. Göçme Durumunu Gösteren Gerilme Daireleri

Görüldüğü gibi, aynı zeminde göçmeye yol açacak birçok gerilme durumu mevcuttur. Mohr - Coulomb göçme zarfı göçmeye yol açan bütün gerilme durumlarını sınırlamakta olup, bu durumları gösteren gerilme daireleri göçme zarfına teğet olmaktadır. Gerilme dairesinin göçme zarfına teğet olduğu noktadan çizilen doğru ise göçme düzleminin eğimini vermektedir. Göçme düzleminin eğimini veren açının $\alpha = 45 + \phi/2$ olduğu kolaylıkla gösterilebilir. Şekil 3.5. de göçmeye yol açan gerilme durumunu gösteren bir mohr gerilme dairesi ve mukavemet (göçme) zarfı gösterilmiştir.

Şekil 3.5. Göçme Durumunda Asal Gerilmeler Arasındaki İlişki

Bazı zeminlerde veya bazı özel yükleme durumlarında kayma mukavemeti parametrelerinden birisi sıfır değerini alabilmektedir. Şekil 3.6a. ve Şekil 3.6b. de $\phi=0$ durumlarındaki kayma mukavemeti zarfları gösterilmiştir.

Şekil 3.6. Kayma Mukavemeti Zarfının Özel Durumları

3.1.2.3. Efektif gerilmeler ve kayma mukavemeti

Boşluk suyu basınçları zeminlerin kayma mukavemeti açısından da çok önemli olmaktadır. Birçok arazi yükleme durumunun analizinde, zeminin kayma mukavemetini efektif gerilmeler cinsinden ifade etmek daha gerçekçi olmaktadır. Mohr - Coulomb göçme kriterine göre kayma mukavemetini veren bağıntı efektif gerilmeler cinsinden

$$\tau = c' + (\sigma - u) \tan \phi'$$

şeklinde ifade etmek mümkün olmaktadır. Burada, (σ -u) göçme düzlemine etkiyen normal gerilmeyi, c' ve ϕ ' ise efektif kayma mukavemeti parametreleri olarak nitelendirilen katsayıları göstermektedir.

Şekil 3.7. Birbiri Üzerinde Kaymaya Zorlanan İki Blok Arasındaki Suyun Etkisi

Boşluk suyu basınçlarının kayma mukavemeti üzerindeki etkisini Şekil 3.7 de gösterilen, birbiri üzerinde kaymaya zorlanan iki sürtünmeli bloğun davranışını incelemek yararlı olmaktadır. Bloklar üzerinde uygulanan N normal kuvveti etkisi altında, iki blok arasındaki suyun dışarı çıkma olanağı bulamaması durumunda, sıkışmaya zorlanan suda bir hidrostatik basınç artışı meydana gelecek ve U ile gösterilen reaksiyon kuvveti doğacaktır. Bloklar üzerine F gibi bir kesme kuvveti uygulandığı zaman, bu kuvvetin kaymaya yol açması için bloklar arasındaki sürtünme direncinin aşılması gerekecektir.

$$F_{max} = \mu (N - U)$$

$$\tau = F_{\max} / A = \mu \left(\frac{N}{A} - \frac{U}{A} \right) = \mu \left(\sigma - \frac{U}{A} \right)$$

Burada μ blokları oluşturan malzemenin sürtünme katsayısı olmaktadır. Bloklar arasındaki sudan kaynaklanan reaksiyon kuvveti U = (A - Ac) olup, su basıncını, Ac ise bloklar arası temas noktaları alanlarının toplamı olmaktadır. Zeminlerde Ac<A dir. Buna göre, iki zemin blokunun birbirine göre kaymaya zorlanması durumunda

$$\tau = \mu (\sigma - u) = (\sigma - u) \tan \phi$$

olmaktadır. Görüldüğü gibi, zemin daneleri arasında oluşan boşluk basıncı (bu basıncın oluşması için suyun zeminden dışarı çıkmaması gerekmektedir) sürtünme direncini doğrudan etkilemektedir.

Zeminin hacim değiştirmesine izin verilmemesi durumunda (zemin suyunun dışarı çıkması engellenerek) göçme düzlemi boyunca oluşan kayma direnci uygulanan normal gerilmeden (dolayısıyla boşluk suyu basınçlarından) bağımsız olmaktadır. Bu koşullarda kayma mukavemeti

$$\tau = Cu$$

şeklinde ifade edilmektedir. Drenajsız kohezyon olarak nitelendirilen Cu değeri yalnızca zeminin boşluk oranına bağlı olarak değişmektedir. Bu durumun geçerli olması için, zemin kaymaya zorlanırken boşluk oranının değişmemesi gerektiği için suya doygun olmayan zeminlerde Cu kavramının kullanılmaması gerekmektedir.

Mohr gerilme dairelerini, toplam gerilmeler cinsinden olduğu gibi, efektif gerilmeler cinsinden de çizmek mümkün olmaktadır. Şekil 3.8. de göçme durumunu gösteren toplam ve efektif gerilme daireleri ve bunlara teğet olarak çizilen mukavemet zarfları gösterilmiştir.

Şekil 3.8. Göçme Durumunu Gösteren Toplam ve Efektif Gerilme Daireleri

Boşluk suyu basıncı her doğrultuda eşit olarak etkilendiği için $\sigma_1 = (\sigma_1 - u)$ ve $\sigma_3 = (\sigma_3 - u)$ olmaktadır.

Burada, u_f boşluk suyu basıncının göçme anındaki değeri olup, toplam ve efektif gerilme dairelerinin çapları birbirine eşittir. Efektif gerilme dairesi toplam gerilme dairesine göre normal gerilme ekseni boyunca u_f kadar sola (veya negatif boşluk suyu basıncı oluşması durumunda sağa) doğru kaydırılarak çizilmektedir [15].

3.1.3. Kayma direnci problemleri

Gerilme artışı alan bir zemin ortamında sıkışma (konsolidasyon) ve kayma deformasyonlarını ayırmanın olanaksızlığı açık olmakla birlikte bazı problemlerde zeminin kayma direnci öne çıkmaktadır. Şekil 3.9. da bu problemlerden en önemlileri özetlenmiştir.

Şekil 3.9. Kayma Direnci Problemleri

Kesme koşulları beş ana grupta toplanabilir:

- 1. Eksenel basınç durumu
- 2. Yanal genleşme durumu
- 3. Eksenel çekme durumu
- 4. Yanal sıkıştırma durumu
- 5. Düzlem deformasyon durumu

Bu gerilme türleri Şekil 3.9. daki örnekler üzerinde ait oldukları numaralarla gösterilmektedir. O halde kayma direncinin aşılmasına neden olan gerilme problemlerini daha basit bir sınıflandırmaya tabi tutabiliriz:

A. Basınçla

- 1. Düşey gerilmede artış, çevre basıncı değişmiyor,
- 2. Düşey gerilme sabit, çevre basıncı azalıyor;
- 3. Ortalama asal gerilme değişmiyor, çevre basıncında düşme;

B. Çekmeyle

- 1. Düşey gerilmede azalma, çevre basıncı değişmez;
- 2. Düşey gerilme sabit, çevre basıncında artış,
- 3. Ortalama asal gerilme değişmiyor, çevre basıncı azalıyor.

Problemlerin bir önemli yanı da gerilmelerin uygulanması sırasında boşluk suyu basınçlarının aldığı değerlerdir. Zira bir zemin örneğinin kayma direncinin ölçüldüğü deney türü yanında boşluk suyu basınçlarına önemli ölçüde bağlı olduğu bilinmektedir. Benzer şekilde doğada ya da arazide boşluk suyu basıncı rejimi ve profili kayma direncini birinci derecede etkiler. Boşluk suyu basıncının değişimi açısından yapılacak deneyler üç grupta toplanabilir.

Konsolidasyonsuz - Drenajsız Deneyler (UU)

Deneye başlamadan numunenin dış gerilmeler altında konsolide olmasına izin verilmez ve kesme de ani olarak gerçekleştirilir. Bu nedenle bu tip deney "hızlı" olarak da nitelendirilebilmektedir. Boşluk suyu basınçları konsolidasyon ve kesme aşamalarında sistem dışına çıkamadığından en yüksek düzeyde kalır.

Konsolidasyonlu - Drenajsız Deneyler (CIU, CAU, CU)

Numune deneye başlamadan arazide bulunduğu çevre basıncına eşdeğer bir basınca tabi tutularak konsolide edilir. Bu iki şekilde gerçekleştirilmektedir. Basit uygulamada numune çevre basıncına her yönden eşit olarak tabi tutulmakta ve oluşan fazla boşluk suyu basınçlarının sönmesine izin verilmektedir. Daha gerçekçi ama zahmetli deney uygulanmasında ise zeminin yerinde K₀ koşullarında bulunduğu göz önünde tutulmaktadır. Yanal basınç artırılırken düşey basınç sadece $\sigma_1 = \sigma_3 / K_0$ oranında yükseltilmektedir. Konsolidasyon tamamlandıktan sonra kesme aşaması drenaja izin verilmeden gerçekleştirilmekte ve boşluk suyu basıncı bu sırada ölçüldüğünden deney sonuçlarını toplam ve efektif gerilmelere göre bulunur.

Konsolidasyonlu - Drenajlı Deneyler (CID, CAD, CD)

Bu tür deneylerde numune CU deneylerde olduğu gibi öngörülen basınca konsolide edilmekte ve sonra da tüm drenaj koşulları sağlanarak uygulanan kesme gerilmelerinin boşluk suyu basıncında hiçbir artış oluşturmaması için yeterince düşük hızda kesilmektedir. Böylece elde edilecek parametreler efektif gerilmelere göre olacaktır [5].

3.2. Killerin Kayma Mukavemeti

Kayma direnci konusunda killeri ayıran en belirgin özellik ortamın geçirimliliği ve jeolojik etkenlerin killerde daha ağır basmasıdır. Kilin kayma direnci içerdiği danelerin mikroskopik boyutları nedeniyle daneler arası yüzey kuvvetlerinden önemli ölçüde etkilenirler. Gevşek kumlarla normal yüklenmiş killer; sıkı kumlarla da aşırı konsolide killerin $\sigma - \varepsilon - u_w - \Delta V$ bağıntılarında paralellik ve kritik durumda tam benzerlik bulunmaktadır. Killerde kayma direncinin şu özelliklere bağlı olduğunu göstermektedir.

- 1. Efektif gerilme düzeyi
- 2. Kilin plastisitesi
- 3. Çimentolanma
- 4. Daneler arası çekme veya itme
- 5. Su muhtevası
- 6. Kesilme hızı
- 7. Ortamın anizotropluğu
- 8. Gevreklik

9. Numunenin kalitesi

10. Ölçüm tekniği

Daha basit bir deyişle killerin ölçülecek kayma direnci fiziksel fiziko-kimyasal ve gerilme özelliklerinin yanında, örnekleme ve ölçüme dayalı etkenlere dayalıdır.

Yapılan çalışmalar ve elde edilen sonuçlar killerin davranışını daha açıklıkla tanımlanabilmesi için bu zeminlerin jeolojik kökenleri doğrultusunda üç ana grup altında incelenmesinin yararlı olacağını göstermiştir. Bu bölümde normal yüklenmiş (NL) yani tamamen konsolide olmuş, aşırı konsolide (OC) yani önceden yüklenmiş, yoğrulmuş killerin özellikleri ele alınmaktadır.

Kumlarda da kısmen görüldüğü gibi boşluk suyu basınçlarının aşırı yükseliş veya düşüşü ortamda toplam ve efektif gerilmeler arasında önemli farklar doğduğundan ölçülecek kayma direnci parametrelerinin toplam ve efektif gerilmelere göre ifadesi özellikle killerde büyük önem taşımaktadır [5].

Kohezyonlu bir zeminin kayma direnci denklemini bulmak için en basit deney drenajlı türdür. Örnekler farklı gerilmelere konsolide edildikten sonra uygun hızda kesildiklerinde normal yüklenmiş killer kumlar gibi orijinden geçen bir kırılma zarfı verirler (Şekil 3.10.). Fazla boşluk suyu basıncı oluşmasına izin verilmediğinden gerilmeler efektiftir. Aynı deney serisi, konsolidasyon basıncı yüksek değerlere arttırıldığından sonra belirlenmiş aşırı konsolidasyon oranına göre birinci seride çevre basınçlarına indirilerek tekrarlanırsa Şekil 3.10b. de gösterilen kırılma zarfı bulunacaktır.

Şekil 3.10. Drenajlı Deneyde Kırılma Zarfları

Burada drenajlı kayma direnci açısı değişmemekle birlikte, önceden yüklemenin sıfır yanal basınçta bir c_d kohezyon ordinatı verdiği görülecektir. Genel anlamda kilin de kumlar gibi içsel sürtünme özelliği bulunduğu hazırlanmalıdır. Buna ek olarak, aşırı konsolidasyon, kil zerreleri arasında mevcut dokunma ve yapışmayı arttırmakta ve gerilme kaldırıldığında bu etki tümüyle kaybolmaktadır. Zeminin kayma direnci büyük veya küçük asal gerilmelerin değişim sırasından yani gerilme yörüngesinden de etkilenir [13].

3.2.1. Normal yüklenmiş killlerin kayma mukavemeti

Killerde kayma direncinin ölçümü, kolaylığı ve gereken sürenin kısalığı nedeniyle laboratuarlarda yapılmaktadır. Arazi koşullarına çok benzer olmasa da, laboratuvar deneylerinin yüklemenin özelliği ve drenajın kontrolü ile olabildiğince gerçekçi yapılmasına çalışılmaktadır. Laboratuvarda tüm kontrollerin en kolay sağlandığı deney üç eksenli hücre basınç deneyidir. Bu deney değişik konsolidasyon ve drenaj koşullarında yumuşak killere kolaylıkla uygulanabilmektedir.

Normal yüklenmiş killerde en önemli sorunlardan biri çok hızlı yapılan yüklemenin getirdiği kritik durumlardır. Şekil 3.11. de gösterildiği gibi, bir dolgunun NL killer

üzerine çok hızlı inşa edilmesi, bir barajın yüksek plastisiteli çekirdeğinin hızla yükseltilmesi ya da yumuşak kil üzerine oturtulan bir temelin aşırı hızlı yüklenmesi konsolidasyonsuz - drenajsız (UU) koşulları yaratmaktadır. Bu durumda, hızla artan gerilmeler sonucu kilde ani yükselen boşluk suyu basınçları sistem dışına çıkamadan zemin kayma gerilmeleri aldığından ani yenilmeler meydana gelir. Bu gibi problemlerde analizlerin sadece toplam gerilmelerle yapılması gerçekçi olmaktadır.

Dayanımın drenajsız koşullarda ölçümü laboratuvara getirilen numunelerin hücreye konduktan sonra bir çevre basıncına tabi tutulması ve boşluk suyuna hiç hareket olanağı sağlamadan uygulanacak düşey yükle de hızla kesilmesiyle gerçekleştirilir. Doygun kille boşluk suyu basıncı katsayısı B=1.00 olduğundan numunede boşluk suyu basıncı uygulanan çevre basıncına eşit olur ($\mu_w = \sigma_3$). Bir başka deyişle, NL killerde UU koşullarda boşluk suyu basıncı çevre basıncına eşit olduğundan her hücre basıncında yapılan deney aynı noktadan başlar ($\overline{\sigma}_3 = 0$). Kesme aşamasında ise A katsayısı 1.0 veya daha yüksek olup deviatör gerilmede beliren artışlar tümüyle boşluk suyu basıncındaki yükselmeyle karşılandığından çevre basıncındaki artışla kayma direncinde bir artış olmayacak, bir başka deyişle zeminin drenajsız kayma direnci esasta çevre basıncında bağımsız olacaktır. Daha da basit bir deyişle NL kilde kırılma dairelerinin çaplarının aynı olması gerekmektedir (Şekil 3.12.). Buna göre normal yüklenmiş kilin drenajsız kayma direnci toplam gerilmelere göre yatay bir kırılma zarfı ve Su = $\tau_{max} = C$ ifadesiyle gösterilebilir.

Şekil 3.11. Arazide Konsolidasyonsuz - Drenajsız (UU) Kesme Problemlerine Örnekler

Şekil 3.12. UU Deneyinde Kırılma Zarfları

Bu açıklamalardan, UU koşullarda bir normal yüklenmiş kil için sadece tek efektif gerilme dairesi olur. Ayrıca, UU deneyde boşluk suyu basıncını ölçmenin pratik bir yararı kalmadığından bu ölçüm gerçekleştirilmez. Dikkat edilmesi gereken, UU deneyde ölçülen maksimum kayma direncinin CU deneyde ölçülen $\tau_{\rm f}$ ten yatıklık açısı nedeniyle daha büyük olduğudur. Kırılma zarfının yatık çıkması zeminin özelliğinin bir göstergesi değil, büyük ölçüde UU deneyinin doygun numuneye uyguladığı koşulların sonucu olduğudur.

Normal yüklenmiş kilin drenajsız kayma direnci arazide artan efektif gerilmeyle yükselmektedir. Yapılan araştırmalar dayanımın gerçekten de plastisiteye bağlı olarak yükseldiğini göstermiştir.

Türkiye'deki laboratuvarlarda yapılan üç eksenli hücre kesme deneylerinin yaklaşık %95 inin UU tipi olduğunu göstermektedir. Bunu nedeni deneyin kolayca yapılabilmesi yanında deneyi yapanların bilgi eksikliği nedeniyle yanlış uygulamalarıdır.

3.2.2. Aşırı konsolide killerin kayma mukavemeti

Bu grup killer Türkiye'de en çok rastlanan tür olduğundan önem taşımaktadır. Bu killerin önemli sorunlar yaratma potansiyeli de vardır. Kural olmasa da çoğu CH sınıfına girmektedir. Bu tür killerin doğal su muhtevası genellikle plastik limitin altında olup birçok durumda %100 doygunlukta bulunmazlar. Kazılarda serbest kaldıklarında önemli şişme gösterebilmektedirler. Şekil 3.13. de bir kilin suda çökelip üzerine karada birikim aldıktan sonra ideal koşullarda aşırı konsolide olması olayı temsil edilmektedir. Geçmişte kalınlığı birkaç yüz metre hatta bin metreye varabilen katmanlar altında $\overline{\sigma}_c$ gibi yüksek bir basınçta dengeye gelen kilde düşey gerilmeler daha sonra binlerce yıl sürüp giden aşınma etkisinde ve bu sırada çok küçük yanal deformasyonlar geçirerek günümüzde $\overline{\sigma}_0$ basıncına düşmüşse aynı kilin $\overline{\sigma}_c$ basıncı altındaki gerilmelerde NL halinde göstereceğinden bugün daha yüksek dayanım göstermesi beklenir. Bunun ne denli daha yüksek olacağı ise OCR nin düzeyine bağlıdır.

Şekil 3.13. Kilde Çökelme Ve Aşınma ile Aşırı Konsolidasyon

Aşırı konsolide killerin kayma direncinin ölçümünde UU ve serbest basma deneyleri, normal yüklenmiş killerdeki başarıyla uygulanamamaktadır. Bu nedenle OC killerde kayma direncinin CU ve CD tipte üç eksenli hücre kesme veya kesme kutusunda ölçümü önerilmektedir.

Aşırı konsolidasyonun kilin kayma direncine etkisini incelemek için basit bir modelden yola çıkmak uygun olacaktır. CH tipi bir kilde alınan numuneleri likit limitin üstünde bir su muhtevasında yoğurduktan sonra önce dört fazlı çevre basıncında (A,B,C,F) konsolide edelim (Şekil 3.14a.) ve drenajsız koşullarda (CD) keselim. Bu dört numune konsolide edildikleri çevre basıncında kesildikleri için NL kil olarak tanımlanacaklardır. Bunların efektif kırılma zarfı da tamamen konsolide olmuş killerden beklendiği gibi Şekil 3.14b. deki A-B-C-F- doğrusuna uygun olarak $s=\overline{\sigma}$.tan ϕ denklemini gösterecektir. Şimdi beşinci numuneyi C gibi bir çevre basıncına konsolide ettikten sonra basıncı E'ye düşürelim. Böyle bir işlem numunenin $\sigma_{\rm C}/\sigma_{\rm E}$ düzeyinde aşırı konsolide olmasını sağlar. Yani, kili C' den E' ye boşaltarak aşırı konsolidasyon sürecini laboratuvarda taklit etmekte olduğumuz söylenebilir. Bu numune B çevre basıncında kesildiğinde göstereceği kayma direnci OC_E normal yüklenmiş eşdeğeri olan NL_B'den belirgin şekilde yüksek olacaktır. Bu işlem C' ye konsolide edilmiş numunenin bu kez D' ye şişirilmesi durumunda da A dan daha yüksek bir kayma direnciyle tekrarlanacaktır. Ancak bu aşamada OCR daha yüksek olduğundan artışında daha fazla belirmesi normaldir. Bu modelde C

noktasının ön konsolidasyon basıncı $\overline{\sigma}_{c}$ ye karşılık olduğu kolayca görülebilir. Buradan çıkartılabilecek sonuç aşırı konsolide kilde kırılma zarfının $\overline{\sigma}_{c}$ ye kadar normal yüklenmiş zarfın üstünde de OCR ye orantılı miktarda bir "hörgüç" göstereceği ön konsolidasyon basıncı aşıldıktan sonra ise NL hali ile aynı doğruyu izleyeceğidir.

Şekil 3.14. Aşırı Konsolidasyon Sonucu Kayma Direncinde Değişme

Şekil 3.15. de ise bir OC kilde yapılmış ayrıntılı CD deney sonuçları gösterilmektedir. Bu şekilden kırılma zarfı denkleminin karmaşık bir ifade olacağı tahmin edilebilir. Durumu daha basit bir biçimde gösterebilmek için aşırı konsolide kilin kayma direnci denklemi genellikle orijinden geçmeyen bir doğru olarak gösterilir.

$$s = \tau_f = c'_d + \overline{\sigma} \cdot tan \phi'_{cd}$$

Şekil 3.15. Aşırı Konsolide Bir Kilde CD Deneyler Sonucu Elde Edilen Kırılma Zarfı

Aşırı konsolide killerde CU deneylerde elde edilen eğriler ölçülen boşluk suyu basıncı düşüşleri nedeniyle aşırı konsolidasyon basıncının altındaki çevre basınçlarında efektif gerilme daireleri toplam gerilme dairelerinin soluna değil sağına kaçmakta ve $\phi' < \phi$ durumu doğmaktadır. Ancak $\sigma_3 > \overline{\sigma}_c$ düzeyine gelindiğinde NL killerde olduğu gibi daireler bu sefer sağa kaymaktadır (Şekil 3.16.). Bu parametrelerinin hatalı ölçümünden kaçınmak için deneyi probleme özgü gerilme kademelerinde yaparak bu iki doğrunun kırılma zarfinın doğru ayağını kullanmak en uygun yaklaşım olarak önerilmektedir. Bu durumda CU koşullarda aşırı konsolide kilin kayma direnci denklemini efektif gerilme türünden

$$s = c' + \overline{\sigma} . \tan \phi' \qquad (\sigma_3 < \overline{\sigma}_c)$$

$$s = \overline{\sigma} . \tan \phi' \qquad (\sigma_3 \ge \overline{\sigma}_c)$$

biçiminde yazmak uygun olabilir.

Şekil 3.16. Aşırı Konsolide Kilde CU Koşulda Kırılma Zarfları

Normal yüklenmiş killerde olduğu gibi aşırı konsolide killerde de kayma direncinin derinlikle değişimi incelenmiştir. OCR kilde kayma direnci oluşum sırasında ortamın almış olduğu gerilmelere bağlı olduğuna göre drenajsız kayma direnci ile efektif gerilme arasında

$$S_{u}/\overline{\sigma} = \frac{\operatorname{Sin}\phi[K_{0} + A_{f}(1 - K_{0})]}{1 + (2A_{f} - 1)\sin\phi}$$

gibi sukunette toprak basıncı katsayısı K_0 'ı içeren bir bağıntı bulunduğu gösterilmiştir. Bir başka bulgu da drenajsız kayma direnci/efektif gerilme oranının NL ve OC killerde β katsayısı ile Şekil 3.17. deki ortalama eğri ile gösterilebileceğidir. Bu eğriden yararlanılarak aşırı konsolide bir kilin kayma direncinde derinlikle değişimin o kilin normal konsolide durumundaki kayma direncinden çıkılarak

$$\beta = \frac{(S_u / \overline{\sigma}_o)_{OC}}{(S_u / \overline{\sigma}_o)_{NC}}$$

bağıntısından tahmin edilmesi olanağı sağlanmıştır.

Şekil 3.17. Killerde β Katsayısı [4]

3.2.3. Yoğrulmuş killerin kayma mukavemeti

Yoğrulmuş kilin başlangıç su muhtevası likit limite yakınsa, yavaş ve konsolidasyonlu çabuk kesmede kilin direnci kayma düzlemindeki basınçla doğru orantılı olarak artar. Yoğrulmuş normal yüklenmiş killerde kesme sırasında çok küçük basınçlarda dahi hacim değişmesi olmaz [4].

Yoğrulma kaybı, kayma mukavemetindeki azalmanın, örselenmemiş kayma mukavemetine oranına eşittir. Orta hassalıkta killerde yoğrulma kaybı, likitlik indeksine yakındır. Hassaslık, likit yapısı ve bileşenleri, oluş tarihi ve likitlik indeksi ile değişir. Düşük likitlik indeksi olan aşırı konsolide olmuş killer ufak yoğrulma kaybı gösterirler ve hassas olmayan killer diye adlandırılır. Tabiatta çok karşılaşılan killerin büyük bir kısmı 2 ile 4 arsında değişir. S (hassaslık değeri) 4 ile 8 arasında olan killer hassas killer olarak adlandırılır. S değeri 8'in üzerinde bulunan killere ise aşırı hassas kil denir. Killerin hassaslığı büyük bir pratik önem taşımaktadır. Kil şevde meydana gelen ufak bir kayma başlangıcı, eğer kil hassas ise örselenmiş zemin yumuşaması sebebiyle büyük bir göçmeye dönüşebilir. Hassas killerden numune çıkarılması, numune alınma esnasında en ufak örselenmenin dahi mukavemet üzerinde büyük bir etkisi olacağından güçlük gösterir [1].

3.3 Kumların Kayma Mukavemeti

İri daneli ya da kohezyonsuz olarak nitelendirilen kumlar, çakıllar ve bunların siltle karışımlarında en belirgin özellik sisteminde yer çekimi, yani kitle kuvvetlerinin hakim olmasıdır. Oysa killerde tanelerin misroskopik boyutta olması hakim kuvvetlerin dane yüzeyleri ve suyun varlığından kaynaklanmasını, kitle kuvvetlerinin ise ikincil derecede etkin olması sonucunu getirmektedir. Bu farklardan dolayı, iri daneli zeminlerde sürtünme birinci derecede etkin olmaktadır.

Kumlarda kayma direncini etkileyen başlıca özellikler;

- 1. Danelerin mineralojik kökeni ve biçimi
- 2. Danelerin boyutu ve dağılımı
- 3. Birim hacim ağırlık ve sıkılığı
- 4. Kumun jeolojik tarihçesi
- 5. Çimentolanma
- 6. Etkileyen efektif gerilmeler
- 7. Doygunluk derecesi

şeklinde sıralanabilir.

Kum daneleri genellikle kuvarstır. Kuvarsın basma dayanımı yüksek olduğundan olağan düzeyde normal ve kesme gerilmesi aldığında danelerde kırılma ve ezilme oluşmayabilir. Ancak ortamda bulunabilecek başka mineraller gerilmelere dayanıklı olmadıklarından danelerin ezilmesi gündeme gelmektedir. Çevre basıncının yeterli düzeylere yükselmesi durumunda kuvars danelerin de ezilmediği bilinmektedir. Böyle durumlarda kayma direnci açısının değişmesi beklenir.

Dane biçimi de önemli bir etkendir. Tahmin edilebildiği gibi köşeli taneler arasında sürtünme ve kilitlenme önemli boyutlara varabilen yuvarlak danelerde bu etki aynı düzeyde uyanmamaktadır. Dane dağılımı kayma direncini etkileyen bir diğer önemli etkendir. Üniform ortamda kilitlenme minimum düzeyde iken c_u'nun çakılda 4 veya kumda 6 ya yükselmesi ile dirençte önemli artışlar görülmektedir.

Özellikle deniz ortamında çökelmiş kumlarda organik ve anorganik etkilerle çimentolanma olabilir. Bu etki taşlaşma düzeyine erişmese de kumda ihmal edilemeyecek gerçek kohezyon oluşmaktadır. Bir başka deyişle kumtaşı olmamış ortamda da kohezyon etkisi belirebilmektedir.

Birim hacim ağırlık ve bunu dolaylı göstergesi olan porozite veya boşluk oranı kumun kayma dayanımını etkileyen en önemli iki öğeden biridir. Bu özellik kumda birim hacim ağırlığının azalması kayma direncini doğrudan düşüreceği söylenebilir. Önceleri sadece killere özgü olduğu düşünülen aşırı konsolidasyon olayının kumlarda da etkin olduğu bulunduğundan OCR'nin kumların kayma direncini yükselten bir etken olduğu hatırlanmalıdır [5].

Kumun kayma direnci kesme kutusunda çabukça ve kolaylıkla ölçülebilir. Kutuya öngörülen boşluk oranında yerleştirilen kum değişik normal gerilmelerde konsolide edildikten sonra kesilir. Şekil 3.18. de orta sıkılıkta bir örneğin $\sigma_1 > \sigma_2 > \sigma_3$ normal basınçlarında denenmesi sonucu elde edilen eğriler verilmiştir. Her örneğin gösterdiği maksimum direnç gerilmeye karşı noktalandığında eğimi ϕ olan kırılma zarfı bulunacaktır.

Şekil 3.18. Kesme Kutusunda Kayma Direncinin Bulunması

Tablo 3.1. de kumun normal koşullarda ($\sigma \leq 5$ kg/cm²) kayma direnci açısı verilmiştir. Yüksek gerilmelerde danelerde kırılma başladığından 5-50kg/cm² arasında ϕ değerinde 10° ye varabilen düşme beklenmektedir. Tablo 3.1. de getirilen bir yeni kavram doğal şev açısı β dır. Kumlu zeminlerde özellikle kuru durumda bir yatay düzleme biriktirildiklerinde biriken kitlenin yüksekliği ne olursa olsun kenarları β açısından daha dik bir eğimde tutulamamaktadır. Bu açının kayma direnci açısıyla yaklaşık bir bağıntısı vardır.

Malzemenin özelliği	Doğal şev açısı	Maksimum	Kalıcı dirençte
	β	dirençte ϕ	<i>ф</i> r
Silt (NP) gevşek	26 - 30°	28 - 32	26 - 30
Silt (NP) sıkı	-	30 - 35	26 - 30
Siltli kum	25 - 33°	27 - 34	25 - 30
Ínce orta kum (SP)	-	30 - 34	26 - 30
Sıkı kum-köşeli daneler (SW)	26 - 30°	33 - 45	32 - 40
Gevşek kum-köşeli daneler (SW)	30 - 34°	30 - 25	-
Kumlu çakıl	32 - 36°	35 - 50	32 - 36

Tablo 3.1. Daneli Zeminlerde ϕ İçin Tipik Değerler

Kumlu zeminlerde, ortamda suyun varlığının kayma direnci açısını önemli miktarda etkilediği de bilinmektedir. Buna göre doygun ortamda kayma direnci efektif gerilme cinsinden

$$\tau = (\sigma - \mathbf{u}_{w}) \tan \phi$$

olarak yazılabilir.

Tablo 3.1. de getirilen bir başka kavram kalıcı dirençtir. Şekil 3.19. da kalıcı direnç gösterilmektedir. Sıkı zemin kesme kutusunda denendiğinde küçük hareketlerde direnç hızla maksimum değerine ulaşmakta ancak bir süre sonra kayma düzleminde

direnç aşıldığından ölçülen gerilmeler kalıcı değere ulaşmaktadır. Aynı gözlem gevşek örnekte yapılırsa direncin giderek arttığı ve ϕ nin maksimum değerinin bu kez kalıcı dirençte belirdiği görülecektir [13].

Şekil 3.19. Gevşek ve Sıkı Kumda Kayma Dayanımı [1]

Bir gevşek sonra sıkı kum örneği doygun durumda konsolidasyonlu - drenajsız olarak denenirse kayma direncinin efektif gerilme türünden denklemleri de yazılabilir. Gevşek kum konsolide edildikten sonra kesilirse boşluk suyu basınçları artacaktır. Kırılma anında u_w ölçülürse gerilme dairesi hem toplam hem de efektif olarak çizilebilir (Şekil 3.20.). Kısaca, toplam gerilme dairesi için orijin 0, efektif gerilme için ise 0' olmalıdır. Kırılma dairesine 0 dan çizilen teğet toplam gerilme için kırılma zarfıdır. Ölçülen kayma direnci açısı ϕ ye görünen içsel sürtünme açısı denir. Eğer deney boşluk suyu basınçları ölçülmeden yapılsa kum için sadece bu açının bulunacağı açıktır. Öte yandan teğet 0' dan çizilirse bulunacak ϕ ' kumun gerçek içsel sürtünme açısı olacaktır. Gevşek kohezyonsuz malzeme için $\phi' > \phi$ özelliği şekilde görülmektedir. Deney aynı kumun sıkı durumunda tekrarlanırsa kesme sıkı kumda negatif boşluk suyu basınçları yaratacağından kayma direnci
artacaktır. Birim hacim ağırlıkça zeminin görünür içsel sürtünme açısı da artmaktadır.

Şekil 3.20. Kumda Gerçek ve Görünür Kayma Direnci Açısı

Kum zeminin kayma direncini sadece daneler arasında oluşan sürtünme ile açıklamak yeterli olmaz. Rowe kayma direncini üç etkenin bileşkesi olarak tarif etmiştir; dokunma noktalarındaki sürtünmeden; danelerin gerilme altında yer değiştirmesi için gerekli, şişmeyi sağlamak için gerekli enerjiden doğan dirençten bahsetmektedir. En düşük porozitelerde maksimum dirence, önemli daneler arası hareket oluşmadan ulaşır, buna uygun olarak yapılan iş küçüktür. Yenilmenin oluşması için mevcut çevre basıncına karşı önemli hacimsel genleşme gerekeceğinden şişme için gerekli iş ise büyüktür. Eğer çevre basıncı çok yüksekse kabarma daha az olacak ancak makaslamanın sürebilmesi için daneler ezilip, ufalanacaktır. Yüksek porozitelerde daneler birbiri üzerinde yuvarlanıp boşluklara yerleştiklerinden ikinci bileşen hakimdir.

Kritik boşluk oranı (CVR) yenilmenin sabit hacimde oluştuğu özel durumdur. Burada şişme için ek iş gerekmemekte ve kayma direnci açısı sadece kalıcı $\phi_{\rm T}$ ve dane yer değiştirme bileşenlerinden oluşmaktadır. CVR sıkı ve gevşek kum örneklerinin normal bir gerilmede kesilmesiyle basitçe anlatılabilir. Sıkı örnekte makaslama hareketinin küçük değerinden direnç hızla yükselir ve kırılma çabuk oluşur. Bundan sonra ölçülen kalıcı dirençtir. Kum daha sonra mümkün olan en gevşek durumda yerleştirilip aynı normal gerilme kesilirse direnç maksimum değerine büyük hareketlerde ulaşacak, bu maksimum sıkı örneğin kalıcı direncine eşit olacağı bulunacaktır. Buna göre, şişmeyi yenmek için yapılması gerekli işe eşdeğer olması gerekecektir. Bu olay Şekil 3.21. de gösterilen modelle açıklanabilir. Sıkı düzende yerleştirilmiş çubuklarda kırılma A çubuğunun B üzerinden aşırılmasıyla sağlanacağına göre uygulanan yükler ana sürtünme özelliği ϕ_r ile çubukların ortalama eğimi ile bağıntılıdır.

Şekil 3.21. Daneli Zeminde Enerji Modeli

$$P_1 = P_3 (\tan \phi_r + \beta)$$

Eğer yükler lı ve l3 aralığında uygulanırsa, asal gerilmeler

$$\sigma_1 = P_1 / l_1$$
, $\sigma_3 = P_3 / l_3$

olacaktır. Bu iki denklemden asal gerilme oranı tariflenebilir.

$$(\sigma_1/\sigma_3)_{\text{max}} = (P_1 l_3 / P_3 l_1) = l_2 / l_1 \tan(\phi_r + \beta) = \tan\alpha \tan(\phi_r + \beta)$$

Gevşek ortamda ise bu özellik görülmediği gibi kayma direnci açısı ϕ_r nın altına ve 10° ye kadar düşebilmektedir. Rowe kırılmanın deformasyona bağlı hacim artışından da etkilendiğini göstermiştir.

$$(\sigma_1/\sigma_3)_{\text{max}} = (1 + \text{dv/d}\varepsilon) \tan^2 (45 + \phi_r/2)$$
 [13]

3.3.1. Drenajlı kesme sırasında doygun kumların davranışı

Kesme sırasında kumların davranışını görebilmek için biri yüksek boşluk oranına sahip "gevşek" ve diğeri çok düşük boşluk oranına sahip "sıkı" iki kum örneğini inceleyelim. Bunlar üzerinde doğrudan kesme deneyleri yapılabilir, ancak hacim değişimlerini daha iyi ölçmek için üç eksenli basınç deneyi kullanılır. Her iki deneyi de suyun numuneye rahatça girebileceği veya terk edebileceği şekilde herhangi bir müdahale olmaksızın konsolidasyonlu drenajlı (CD) şartları sağlanır. Örneğin doygun olması halinde örneğe giren ve çıkan suyu takip ederek bunu örnekteki hacim değişikliğine veya boşluk oranı değişikliğine dönüştürmemiz mümkündür. Kesme sırasında örneği terk eden su hacim azalmasını veya tersi durumda hacim artışını ifade eder. Her iki deneyde de çevre basıncı sabit tutulur. Eksenel gerilme de yenilme oluşana kadar arttırılır. Yenilme aşağıdaki şekillerde tanımlanabilir:

Maksimum asal gerilme farkı $(\sigma_1 - \sigma_3)_{max}$ Maksimum asal efektif gerilme oranı $(\overline{\sigma}_1/\overline{\sigma}_3)_{max}$ Önceden belirlenen birim deformasyon oranında $\tau = (\sigma_1 - \sigma_3)/2$

Yenilme çoğu zaman numunenin basınç dayanımı ile aynı olan maksimum asal gerilme farkı diye tanımlanır. Gevşek ve sıkı kumların tipik gerilme-birim deformasyon eğrileri Şekil 3.22a. da, bunlara karşılık gelen boşluk oranı eğrileri de Şekil 3.22b. de gösterilmiştir.

Şekil 3.22. Tipik Bir Kumun Gevşek Ve Sıkı Örnekleri Üzerinde Üç Eksenli Basınç Deneyleri a) Gerilme - Birim Deformasyon Eğrisi b) Kesme Esnasında Boşluk Oranı Değişimleri

Gevşek kum kesmeye maruz kaldığı zaman asal gerilme farkı maksimum veya nihai değer olan $(\sigma_1 - \sigma_3)_{nihai}$ 'e kadar giderek artar. Gerilme artarken eş zamanlı olarak boşluk oranı e_l den kritik boşluk oranı e_{kritik} ye çok yakın olan e_{ci} ye doğru azalır. Casagrande (1936) asal gerilme farkında değişimin olmadığı durumda sürekli birim deformasyonun meydana geldiği nihai boşluk oranını kritik boşluk oranı olarak adlandırmıştır.

Sıkı kum kesmeye maruz kaldığı zaman asal gerilme farkı pik veya maksimuma erişir; sonra gevşek kum için ($\sigma_1 - \sigma_3$)_{nih} değerine çok yaklaşacak kadar azalır. Boşluk oranı-gerilme eğrisi sıkı kumun başta az bir hacim azalması gösterdiğini; daha sonra e_{cd} ye genişlediğini göstermektedir. Yenilmedeki boşluk oranı e_{cd} nin e_{ci} ye çok yakındır. Teorik olarak her ikisi de kritik boşluk oranı e_{kri} ye eşit olmalıdır. Benzer şekilde her iki deneyin ($\sigma_1 - \sigma_3$)_{nih} değerleri de aynı olmalıdır. Aradaki farklar genellikle nihai boşluk oranı ve deney örneklerindeki üniform olmayan gerilme dağılımının hassas olarak ölçülmesinin zor oluşundan kaynaklanmaktadır. Bahsedilen ikinci olayla ile ilgili kanıt, numunenin genellikle değişik şekillerdeki yenilmesi olarak gösterilebilir. Gevşek kum sadece fiçi gibi şişer; sıkı örnek ise çoğu zaman yatayla yaklaşık $45 + \phi/2$ açı yapan belirgin bir yüzey boyunca yenilir. Bir örneğin ilksel boşluk oranının yenilme durumunda hacim değişimi sıfır olacak şekilde ayarlanabilmesinin en azından teorik olarak mümkün olduğuna dikkat edilmelidir. Bu boşluk oranı ise elbette ki kritik boşluk oranı e_{kri} dir.

3.3.2. Drenajsız kesme sırasında doygun kumların davranışı

Drenajlı ve drenajsız üç eksenli kesme arasındaki temel fark drenajsız deneyde eksenel yükleme sırasında hacim değişmesine izin verilmemesidir. Ancak, hücre basıncı $\overline{\sigma}_{3c \ kri}$ de tutulamadığı sürece zemin yükleme sırasında hacim değiştirme eğiliminde olacaktır. Mesela, Şekil 3.23. deki Peacock diyagramından hareketle, e_c deki bir zemin C noktasında $\overline{\sigma}_3$ de drenajsız deneye tabi tutulursa, kum örneğinin hacmi azalmaya meyleder ancak azalamaz. Sonuçta, efektif gerilmede azalmaya yol açan pozitif bir boşluk suyu basıncı gelişir. $\Delta V/Vo = 0$ olduğundan yenilmedeki minimum efektif basınç $\overline{\sigma}_{3c \ kri}$ dir. Hacim değişimine doğru bir eğilim gelişmezse boşluk suyu basıncı gelişmez. O halde, bu örnekte gelişmesi mümkün maksimum boşluk suyu basıncı $\overline{\sigma}_{3c} - \overline{\sigma}_{3c \ kri}$ ye veya Şekil 3.23. deki BH mesafesine eşittir. Bu durum için yenilmedeki mohr daireleri Şekil 3.23. de verilmiştir. E dairesi (kesikli çizgi) efektif gerilme şartlarını; T de toplam gerilmeleri temsil eder. $\sigma = \overline{\sigma} + u$ eşitliği daima geçerli olduğundan iki daire, deney sırasında gelişen Δu değeriyle ayrılırlar. Hacim değişimi eğilimi azalma durumunda olduğundan boşluk suyu basıncında pozitif değişime (artışa) neden olur; akabinde efektif gerilmede azalır.

Şekil 3.23. Drenajlı Ve Drenajsız Üç Eksenli Basınç Deneyleri İçin Mohr Daireleri

Böylece, bu örnekte $\Delta u = B - H = \overline{\sigma}_{3c} - \overline{\sigma}_{3f} = \overline{\sigma}_{3c} - \overline{\sigma}_{3 \text{ kri}}$ dür. Yenilmedeki hücre basıncı $\overline{\sigma}_{3c \text{ kri}}$ olduğu zaman ($\overline{\sigma}_1 - \overline{\sigma}_3$)_f eşitliğinden verilen formdaki gibi olur:

$$(\sigma_1 - \sigma_3)_f = \overline{\sigma}_{3 \text{ kri}} [(\overline{\sigma}_1 / \overline{\sigma}_3)_f - 1]$$

Ayrıca, C noktasındaki $\overline{\sigma}_{3c}$ hücre basıncında bir drenajlı deney yapmak durumunda olsaydık, drenajlı dayanım drenajsız dayanımdan çok daha büyük olurdu.

 $\overline{\sigma}_{3c} < \overline{\sigma}_{3 \text{ kri}}$ durumunda morh dairesi ile temsili Şekil 3.23b de verilmiştir. Drenajsız deney A noktasında $\overline{\sigma}_{3c}$ de başlar ve gelişen boşluk suyu basıncı negatif olduğundan efektif hücre basıncı H noktasındaki yenilmeye erişene kadar artar. Şekil 3.23a. da ve b. de yenilme durumundaki efektif gerilme daireleri E nin aynı boyuttadır. Bunun nedeni, bu boşluk oranı e_c için yenilmedeki efektif gerilme aynıdır ($\overline{\sigma}_{3 \text{ kri.}}$). Efektif gerilme ve boşluk oranı aynı ise, numunelerin basınç dayanımı aynıdır ($\overline{\sigma}_{1} - \overline{\sigma}_{3}$)_f. Dairelerde aynı çaptadır. Yenilmedeki toplam gerilme dairesi T nin, ($\overline{\sigma}_{1} - \overline{\sigma}_{3}$)_f nin hem T hem de E için aynı olmasından dolayı, efektif gerilme dairesi ile aynı olduğuna ve ayrıca T nin E nin solunda yer almasına dikkat edilmelidir. Bu durum Şekil 3.23a. da verilenin tam tersidir. Ayrıca, bu ikinci durum için drenajlı mohr dairesinin drenajsız durumun efektif gerilme dairesinden önemli ölçüde küçüktür. Daire $\overline{\sigma}_{3c}$ de başlar ve efektif mohr yenilme zarfına teğet olmalıdır. Konsolidasyondan sonraki boşluk oranı e_c Şekil 3.30 da gösterilen tüm deneyler için sabit olduğundan, tüm efektif mohr daireleri efektif gerilme yenilme zarfına teğet olmalıdır. Şekil 3.23. de gösterilen ve tartışılan noktaların bir özeti Tablo 3.1. de verilmiştir.

Efektif	Mohr daireleri			
konsolidasyon	Drenajlı, efektif =	Drenajsız, efektif	Drenajsız, toplam	
basıncı	toplam			
$\overline{\sigma}_{3c} > \overline{\sigma}_{3 kri}$	Drenajsızdan büyük	Drenajlıdan küçük:	Drenajlıdan küçük:	
		toplam gerilme	efektif gerilme	
		dairesinin solunda	dairesinin sağında	
		$\overline{\sigma}_{3\mathrm{f}} < \overline{\sigma}_{3\mathrm{c}}$		
$\overline{\sigma}_{3c} < \overline{\sigma}_{3 kri}$	Drenajsızdan küçük	Drenajlıdan büyük:	Drenajlıdan büyük:	
		toplam gerilme	efektif gerilme	
		dairesinin sağında	dairesinin sağında	
		$\overline{\sigma}_{3\mathrm{f}} > \overline{\sigma}_{3\mathrm{c}}$		
$\overline{\sigma}_{3c} = \overline{\sigma}_{3 kri}$	Deney sırasında hacim değişimi eğilimi olmadığından;			
	$\Delta u = 0$ olduğundan, tüm daireler aynıdır.			

Tablo 3.1 Şekil 3.23. de Gösterilen Kavramların Bir Özeti [2]

BÖLÜM 4. LABORATUVAR DENEYLERİ

4.1. Giriş

Laboratuvar deneyleri fiziksel araştırmaların bir parçasıdır. Saha incelemesinin tamamlayıcı bir parçası olarak laboratuvar deneyleri, alınması gereken numunenin türü ve sayısını çoğu zaman tayin eder. Bu nedenle, numunenin alınış şekli sahadaki zemin koşullarının önceden bilinmesini zorunlu kılar. Bu durum, bazı yazarların arazi çalışmasını iki aşamalı olarak tavsiye etmelerinde etkili olmuştur. Buna göre, laboratuvar deneyleri incelemenin ikinci aşamasında spesifik numune alımı işleminden sonra bu numuneler üzerinde yapılmaktadır. Maliyetteki artış ve sürenin uzun olmasından dolayı rutin incelemelerde böyle bir program pratik değildir ve çok ender olarak gerçekleştirilir. Arazi ve laboratuvar çalışmalarının iki aşama halinde yapılamadığı durumlarda inceleme işlemi daha dikkatli planlanmalıdır.

Bazı yapıların maliyetinin çok büyük olması ve bunların yıkılması halinde çok önemli problemlerin ortaya çıkmasından dolayı, zemin şartlarının nasıl olduğuna bakmaksızın, yapı performansını doğru tahmin etmede azami gayret gösterilmelidir.

Rutin işlerin söz konusu olduğu yerlerde düşük maliyetli numune alma ve deneye dayalı kişisel kanaat çoğu zaman yeterli olabilir fakat, bu yöntemin çok önemli bir kusuru vardır. Gözleme dayalı mühendislik bilgisinin kapsamının genişletilmesine ve iyi kaliteli verilerle kıyaslanmasına izin vermemektedir. Doğru ve uzmanlık isteyen deneyler için gerekli zaman ve paranın yüksek olduğu durumlara kıyasla, rutin incelemeler sayıca çok daha fazladır.

Zeminin davranışı hakkında tahminlerde bulunurken iki faktör çok önemlidir. Birincisi, yapının uygun bir performans göstermesi açısından zemin davranışının hangi elemanlarının olduğunun değerlendirilmesidir. Bir yapının performansını olumsuz etkileyebilecek çok çeşitli zemin davranışı söz konusu olduğundan, probleme neden olabilecek faktörlerin tümünü ele almak ve bunlardan hangilerinin en kritik olduğunu belirlemek için her birini kısaca analiz etmek gerekir. İkincisi, zemin davranışının herhangi bir çehresi üzerinde konabilecek sınırlar önemlidir. Mesela, ne kadarlık bir oturmaya izin verilebilir; bu toplam mı yoksa farklı oturma mıdır?

Zemin davranışı hakkında tatmin edici bir tahminde bulunma konusunda zemin deneylerinin kalitesini etkileyen iki faktör vardır. Yapılan deneyler arzu elden verilerin toplanması için uygun şekilde seçilmeli veya bu deneylerin sonuçları yeterli doğruluk derecesindeki hesaplamalar ile birlikte, bulunması istenen zemin parametreleri ile ampirik olarak bağlantı olmalıdır. Buna ek olarak numune alam ve deney işlemleri arazideki zeminin yığınsal özelliklerini temsil eden parametreler verecek şekilde teknikler kullanarak ve doğruluk derecesinde yapılmalıdır. Arazideki zeminin sadece küçük bir kısmını örneklendiğini hatırda tutarak zemin şartları değişken olduğu zaman kaliteli ve pahalı numune alma ve deney teknikleri kullanılmadığı sürece temsilci numuneler almak hiçbir zaman mümkün olmayacaktır. Bu şartlar altında sadece basit laboratuvar deneyleri göz önüne alınmalıdır; arazi deneyleri daha fazla yararlı veri sağlayabilir.

4.2. Zemin Deneylerinin Amacı

Zeminler genel olarak değişkenliği değerlendirme amacıyla ve belirli jeoteknik hesaplamalar için gerekli parametreleri elde etmek amacıyla deneye tabi tutulurlar. Deney yapma konusunda birbirinden farklı bu iki neden, çok farklı deney programlarının ortaya çıkmasına yol açmıştır. Bir sahadaki zemini gruplara ayırmak amacıyla yapılan rutin deneyler ideal olarak deney programının ilk evresini oluşturacak şekilde planlanmalıdır. Bunu izleyen daha pahalı ve karmaşık deneyler normalde her grubu temsil eden zemin üzerinde yapılır; sınıflama deneylerinin sonuçları bilinmeden, test edilecek numunelerin sağlıklı bir şekilde seçilmesi mümkün değildir. Zaman ve ekonomi gibi nedenlerden dolayı bu ideal şema normalde kullanılmamaktadır. Daha karmaşık deneyler daha uzun süreler gerektirmektedir. Numuneler sahadan gelmeye başlar başlamaz deneylere başlandığında mühendis ilk adımda arazideki zeminin bir kısmına ait tanımlamalara güvenmek zorunda kalabilir.

Zemin sınıflaması bir sahadaki az sayıdaki farklı gruplarını tanımlamak amacıyla yapılır. Her zemin grubu stratigrafik olarak tanımlanmış bir jeolojik birim içerebilir. Zemin sınıflamalarında çoğu zaman zemin gurubunun içindeki malzemenin benzer jeoteknik özelliklerine bakıldığı için, sınıflamada genellikle jeolojik sınıflamalar ihmal edilir. Tane boyu, plastisite ve organik içerik bir jeoteknik mühendis için çökelme zamanından daha önemli olabilir. Zeminleri sınıflamada kullanılan üç özellik; zemin tanımı, tane boyu dağılımı analizi ve plastisite deneyidir [16].

4.3. Zemin Sınıflandırma Deneyleri

4.3.1. Likit limit Ddeneyi (casagrande yöntemi)

Kohezyonlu bir zemine aşırı miktarda su ilave edilirse, zemin akışkan bir sıvı gibi davranarak kendi ağırlığı altında kolayca akabilecek duruma gelir. Böyle bir zemin belli bir miktar kurutulursa, kırılma veya çatlama olmadan kolayca istenilen şeklin verilebileceği plastik duruma gelir. Biraz daha kurutulursa, herhangi bir şekil verilmek istendiğinde kırılarak parçalanacağı yarı katı duruma geçer. Bu durumda iken kurutmaya devam ederse, tamamen katı duruma geçerek gevrek ve kırılgan bir hal alır. Zeminlerin farklı su içeriklerinde gösterdikleri bu davranışlar kıvam olarak adlandırılır. Zeminlerin bu kıvamlarını birbirinden ayıran sınır su içeriklerine ise sırasıyla; likit limit, plastik limit ve büzülme (rötre) limiti adı verilmiştir. Bu tanımlar ilk kez İsveçli bilim adamı A. Atterberg tarafından tarım topraklarının kıvamlarına göre tanımlanması amacıyla ortaya konulmuştur. Bu nedenle kıvam limitleri bir çok kaynakta "Atterberg Limitleri" olarak da yer almaktadır. Zeminlerin kıvam durumları şematik olarak Şekil 4.1. de göstermektedir.

Şekil 4.1. Kohezyonlu Zeminlerin Su İçeriklerine Göre Bulundukları Kıvamlar

Kıvam limitleri Şekil 4.2. de gösterildiği gibi hacim (V) - su içeriği (w) ilişkisi ile de açıklamak mümkündür. Belli bir kap içerisinde likit durumda bulunan bir zemin kurutulursa doğal olarak su içeriği azalacaktır. Zemini kurutmaya devam ettikçe belli bir noktaya kadar su içeriğinin azalması ile birlikte hacminde de azalma olacaktır. Ancak bu noktadan sonra su içeriği azalmasına rağmen, hacminin sabit kaldığı görülecektir. Bu geçiş noktasındaki su içeriği, zeminin suya doygun olduğu en düşük su içeriğidir ve buna büzülme limiti adı verilir.

Şekil 4.2. Zeminlerin Hacim-Su İçeriği İlişkisi

Atterberg'in tarım topraklarını sınıflandırmak amacıyla ortaya koyduğu kıvam limitleri Casagrande tarafından mühendislik amaçlarına uygun olarak daka kesin biçimde ifade edilmiştir. Bu amaçla Casagrande tarafından likit limitin deneysel olarak belirlenmesi için bir cihaz geliştirmiş olup, günümüzde halen kullanılmakta ve kaynaklarda "Casagrande Likit Limit Cihazı" olarak bilinmektedir. Sonraki yıllarda ise İngilizler tarafından likit limitin belirlenmesi için tamamen farklı prensiplere sahip olan başka bir cihaz "Koni Batma Cihazı" geliştirilmiştir. Koni batma yöntemi İngiliz standartlarına geçerek, İngiltere'nin yanı sıra bazı Avrupa ülkelerinin standartlarında da 1. yöntem olarak yer almaktadır [17].

Bu deney açıkta kurutulmuş zeminin likit limitinin (viskositesi yüksek bir sıvı gibi akıcı durumdaki zeminin plastik duruma dönüştüğü andaki su muhtevasıdır) bulunması ile ilgili olup, doğal durumdaki numunelere de uygulanabilir.

Kullanılan cihazlar;

Standart likit limit deney aleti (casagrande aleti) Standart oluk açma bıçağı Spatula (Palet bıçağı) Kap Damıtık su dolu plastik piset 105°C de etüv Terazi Yarı logaritmik kağıt Kuru bir bez

Numune konulan kısmın sert plastiğe düşüş yüksekliğinin 1cm olması gerekir. Deney aleti ve oluk açma bıçağı her deneyden önce temiz, kuru ve çalışır durumda olmalıdır [18].

Şekil 4.3. Kontrol Plakasının Yerleştirilmesi ve Düşme Yüksekliğinin Ayarlanması [17]

Likit limiti öğrenilmek istenen zemin kitlesinden bu kitleyi temsil edebilecek kadar alınır. Bu örselenmiş numune 400 mikrondan elenerek geçen malzemeden en az 200gr ağırlığında numune alınması bu deney için yeterlidir. Numune bir kap içerisine konularak damıtık su ilave edilir ve hamur kıvamına gelene kadar spatula ile iyice karıştırılır. Ardından numunenin her yanına su işlenmesini sağlamak amacıyla, hava geçirmez bir kap içerisinde 24 saat süreyle oda sıcaklığında bekletilir.

Deneyin yapılışı; Numune kaptan çıkartılıp en az 10 dakika boyunca karıştırılır. Bazı zeminlerde bu süre 40 dakikaya kadar çıkabilir. Spatula ile bir miktar alınarak casagrande aletindeki kabın içine konur. Yerleştirme sırasında numunenin içinde hava kabarcıkları kalmamalı ve numunenin yüzeyi yatay olacak şekilde düzeltilir. Numunenin ortasından standart oluk açma bıçağı ile bir yarık açılır. Bıçağın hareketi sırasında bıçak, kap yüzeyine dik tutulmalı, bıçağın şevli yüzü hareket yüzüne bakmalıdır. Böylece V şeklinde bir oluk açılmış olur. Krank kolu saniyede 2 devirlik bir hızla çevrilerek iki yanda kalan zemin, oluğun dip kısmında 13mm boyunca birbirlerine değene kadar kap krank kolu ile kaldırılıp düşürülür. Kapanma sağlandığı zaman vuruş sayısı kaydedilir. Oluğun kapanmış olan kesiminin çevresinden, palet biçağıyla alınan yaklaşık 10gram ağırlığında bir numune alınır ve bir kaba konup 0.01 gram hassasiyetteki terazide tartılıp ağırlığı kaydedilir. Su içeriğinin belirlenmesi için etüve atılır. Cihazın kabında bulunan numune alınarak önceki kaba konur. Cihaz kabı ve oluk açma bıçağı bez yardımıyla iyice temizlenir. Kap içine tekrar alınan numuneye bir miktar daha damıtık su konularak spatula ile iyice karıştırılıp, oluşan yeni kıvamın aynı işlemler yapılarak vuruş sayısı kaydedilir. Bu işlemler her zemin için iyi bir sonuç vermesi maksadıyla en az beş kere tekrarlanır. Seçilen başlangıç su ve deney sırasında eklenen su miktarı, elde edilen düşüş sayılarının 10 ila 50 arasında eşit aralıklarla dağılmasını sağlayacak biçimde olmalıdır.

Her denemede elde edilen su muhtevasına karşı düşüş sayısı, yarı logaritmik bir grafik üzerine işaretlenir. Bu işlem için, su muhtevası değerleri y eksenine, vuruş sayıları da logaritmik eksen olan x eksenine işaretlenir. Elde edilen noktaların arasından geçen bir doğru çizilir. Bu doğru üzerinde 25 vuruşa karşılık gelen su muhtevası okunur. Bu değer zeminin likit limitini verir.

4.3.2. Plastik limit deneyi

Bu deney zeminin henüz plastik kıvamda bulunduğu en düşük su muhtevasının elde edilmesi için yapılır.

Kullanılan cihazlar;

Cam plaka Numune kabı Terazi Damıtık su dolu plastik piset 105°C de etüv

Şekil 4.4. Zemin Örneğinde Kopmalar Olduğu Anda Örnek Çapının 3mm Çapındaki Kıyaslama Çubuğu İle Ölçülmesi

Deneyin yapılışı; Likit limit deneyi için hazırlanmış numunede en az 20gr dolayında numune alınır. Zemin numunesi homojen bir duruma gelene kadar ve küçük bir top biçimini alabilecek şekilde plastik olana kadar cam plaka üzerinde damıtık su ilave edilerek iyice karıştırılır. Numune silindirik bir makarna şeklini alana değin, cam plaka üzerinde el ile yuvarlanır. Zemin çubukları 3mm çapında silindirik çubuklar haline gelmeden çatlamalar oluşursa numune üzerine çok az miktarda damıtık su ilave edilerek yoğrulur. Zemin çubukları 3mm çapında silindirik çubuklar haline geldiğinde çatlamalar ve dağılmalar olana kadar devam edilir. Numunenin su muhtevası bulunması için bir kaba konup terazide tartılıp kaydedilir ve etüve atılıp 24 saat sonra kuru ağırlığı tartılır. Su muhtevası bulunmuş olur [18].

4.3.3. Hidrometre deneyi

0,075mm'den daha küçük boyutlu olan zeminlerin dane boyutlarının belirlenmesi için uygulanan ve bir çöktürme analizi olarak hidrometre deneyinin genel prensibi Stokes yasasına dayanmaktadır. Stokes yasasında, bir sıvı içerisinde çöken ve geometrik şekli küre olan danelerin çökme hızları ile dane çapları arasında bir ilişki olduğu ifade edilmişir.

Stokes yasası, küre şeklinde olan daneler için geçerli olduğundan, Stokes eşitliğine göre zeminlerin dane boyutunun belirlenmesinde, zemin danelerinin şeklinin de küre olduğu kabul edilmektedir. Buna göre özgül ağırlığı, zemin danelerinin özgül ağırlığı ile aynı olan su içerisinde zemin daneleri ile aynı hızla çöken kürenin çapı, zemin danelerinin çapı olarak belirlenmektedir. Buna "eşdeğer küre teorisi" de denilmektedir. Çöktürme analizinde zemin daneleri, içi su ile dolu olan silindirin içerisinde kendi ağırlığı ve yerçekiminin etkisi ile çökmeye bırakılmakta ve belirli zamanlarda hidrometre adı verilen camdan yapılmış bir gereçle danelerin çökme mesafeleri ve zemin-su karışımının yoğunluğu ölçülmektedir. Analizi yapılan zemin danelerinin hepsinin aynı özgül ağırlığa sahip olduğu kabul edilmek koşuluyla, büyük boyutlu danelerin daha hızlı, küçük boyutlu danelerin ise daha yavaş çökecekleri bilinmektedir.

ASTM E 100' de 151 H ve 152 H olmak üzere iki farklı tipte zemin hidrometresi tanımlanmıştır. 151 H tipi hidrometreler, zemin-su karışımının gr/cm³ veya gr/ml cinsinden yoğunluğunu ölçecek şekilde tasarlanmışken, 152 H tipi hidrometreler ise gram cinsinden karışımdaki zemin miktarını ölçmektedir. Her iki tip hidrometre de ağırlığı hacmine eşit olacak ve ağırlık merkezi gövde kısmının tam ortasında yer alacak şekilde imal edilir. 151 H hidrometreler 20°C sıcaklılığındaki saf suyun yoğunluğunu 1 gr/cm³ veya gr/ml olarak ölçecek şekilde kalibre edilirler.

Gerek 151 H gerekse 152 H tipi hidrometre kullanılarak zeminlerin dane boyutunun belirlenmesinde, deney örneğinin hazırlanması ve deneyin tatbik edilmesi aynı olmasına karşın, dane çaplarının ve geçen yüzdelerinin hesaplanması birbirinden farklıdır [17].

Hidrometre deneyi ince danelerin dane boyutu dağılımının belirlenmesi maksadıyla gerçekleştirilir (zemin numunesinde kil ve silt miktarını belirlemek amacıyla). Zeminin sınıflandırılmasında bu değerler kullanılır.

Kullanılan cihazlar;

Ölçme silindiri (şeffaf 1000ml hacimli) Mekanik karıştırıcı Kronometre Hassas terazi Etüv Sodyum hegsametafosfat (NaPO₃) 151 H tipi hidrometresi Termometre Su havuzu Plastik piset Numune kabı Peridrol [18]

Şekil 4.5. Hidrometre Deneyinde Kullanılan Bazı Araç ve Gereç [17]

Kuru ağırlıkları alınan numunenin 2mm'nin altına geçen kısmından 50 gr numune hidrometre deneyi için ayrılır. Bu numune içine alınan kap ile birlikte tartılır (kap ağırlığının önceden belirlenmesi gerekir). Bu ağırlık kap+yanmamış numune değeri olarak kaydedilir. Daha sonra aynı kap içerisinde numune, içindeki organikleri bulmak için 50cc peridrol ile yakılarak kabarma işlemi bitene kadar 24 saat bekletilir. Numune bekletildikten sonra etüve atılır. 105 °C etüvde bekletilen numune tam olarak kuruduktan sonra etüvden çıkarılarak soğumaya bırakılır. Soğuduktan sonra tartılır ve kap+yanmış numune değeri kaydedilir. Yanmış numuneye 100cc sodyum heksametafosfat (NaPO₃) çözeltisi katılır. Numunenin iyice dağılması için bir süre beklenir. Dağılan numune pisetten su fışkırtılarak mikser kabına alınır. İyice karıştığına emin oluncaya kadar mikserde karıştırma işlemi sürdürülür. Karıştırılan numune hızlı bir şekilde mezürün içine dökülür. Numune döküldükten sonra mezür içerisindeki su 1000cc'ye tamamlanır.

Deneyin yapılışı; Çöktürme silindirine konulan karışımın iyice dağılması için silindirin ağzı avuç içi ile kapatılarak ters-düz edilip, çalkalanır. Bu arada numune kaybedilmemelidir. Calkalama islemi bittikten sonra 25°C'de ayarlanmış su takına yerleştirilip, kronometreye basılır. Silindirin etrafına yapışan numuneler içerisinde su bulunan piset ile temizlenir. Hidrometre karışım içerisine yavaşça indirilir. Hidrometre indirilirken karışımın sallanmamasına dikkat edilmelidir. İlk olarak 30sn için hidrometreden okuma yapılır. Okuma menisküsün üst kısmından gerçekleştirilir. Hesaplarda menisküs düzeltmesi yapılır (menisküs; karışım içerisindeki suyun hidrometrenin sapında bir miktar kabarması). Diğer okumalar 0.5, 1, 2, 4, 8, 15, 30, 60, 120, 240 ve 1440 dakikalarda yapılır. İlk okumalarda (ilk dört veya beş okuma) hidrometre karışım içerisinde bırakılır. Sonraki okumalarda hidrometre karışım içerisinden alınarak saf su içine konulur. Daha sonraki okumalarda (ilk dört veya beş okumadan sonra) okuma zamanı gelmeden yaklaşık 15sn kadar önce hidrometre karışım içerisine konularak okuma yapılır. Bu şekilde deney devam ettirilerek okumaların hepsi alınıp hidrometre deneyi tamamlanır. Hidrometre okumaları alındıktan sonra numune mezür içerisinde hiç numune kalmayacak şekilde pisetten su akıtılarak 200 nolu elek üzerine dökülür ve yıkamalı elek analizi yöntemiyle numune yıkanır. Elek üzerinde kalan numune bir kaba alınarak etüve atılır ve 24 saat etüvde kurutulduktan sonra elek analizi yapılır.

4.3.3.1. Hesaplamalar için yapılması gereken düzeltmeler

Deney esnasında yapılan hidrometre okumaları "asıl hidrometre okuması" olarak adlandırılmaktadır. Asıl hidrometre okumalarına; menisküs, sıcaklık ve dağıtma maddesi düzeltmeleri uygulanarak "düzeltme uygulanmış hidrometre okumaları" hesaplanır.

Düzeltme Uyg. Hid. Okuması = Asıl hidrometre okuması + Menisküs düzeltmesi -"sıcaklık + dağıtıcı maddesi düzeltmesi

Menisküs düzeltmesinin belirlenmesi;

Menisküs düzeltmesi ASTM 151 H tipi hidrometre için 0,0005 olarak belirlenmiştir. Bu değer asıl hidrometre okumalarına eklenir.

Sıcaklık düzeltmesinin belirlenmesi;

151 H tipi yoğunluk hidrometresi 20 °C sıcaklığındaki saf suyun yoğunluğunu 1 g/ml olarak ölçecek şekilde tasarlanarak imal edilir. Hidrometre deneyi sırasında da zemin- su karışımının sıcaklığının 20 °C olması istenir. Suyun yoğunluğu sıcaklıkla birlikte değiştiğinden dolayı hidrometre okumasının yapıldığı anda karışımın sıcaklığı 20 °C' den farklı ise sıcaklık düzeltmesinin yapılması gerekir.

Buna göre; 25 °C sıcaklık için sıcaklık + dağıtıcı madde düzeltmesi 0.0032 olarak belirlenmiştir. Bu değerin menisküs düzeltmesi uygulanmış hidrometre okumalarından çıkartılması gerekir.

"K" Değerleri;

Suyun sıcaklığına ve deneyde kullanılan zemin danelerinin özgül ağırlığına (G_s) bağlı olarak değişen bir katsayıdır. Tane çaplarının hesaplanmasında kullanılan "K" değerleri önceden hazırlanmış tablolar yardımıyla belirlenir (Tablo 4.1.).

Sıcaklık (°C)	Özgül Ağırlık					
	2,45	2,50	2,55	2,60	2,65	2,70
23	0,01404	0,01381	0,01358	0,01337	0,01317	0,01297
24	0,01388	0,01365	0,01342	0,01321	0,01301	0,01282
25	0,01372	0,01349	0,01327	0,01306	0,01286	0,01267
26	0,01357	0,01334	0,01312	0,01291	0,01272	0,01253
27	0,01342	0,01319	0,01297	0,01277	0,01258	0,01239

Tablo 4.1. "K "Değerleri

Efektif Derinlik (L);

Efektif derinlik, hidrometre karışımın içine daldırılmadan önceki durumda, karışımın üst seviyesi ile hidrometrenin ağırlık merkezi arasındaki mesafedir. Menisküs düzeltmesi uygulanmış hidrometre okumalarına karşılık gelen efektif derinlikler önceden hazırlanmış olan Tablo 4.2.' den alınır.

Hidrometre 151H					
Düz. Menisküs Hidrometre Okuması	Efektif Derinlik	Düz. Menisküs Hidrometre Okuması	Efektif Derinlik		
1,000	16,3	1,015	12,3		
1,001	16,0	1,016	12,1		
1,002	15,8	1,017	11,8		
1,003	15,5	1,018	11,5		
1,004	15,2	1,019	11,3		
1,005	15,0	1,020	11,0		
1,006	14,7	1,021	10,7		
1,007	14,4	1,022	10,5		
1,008	14,2	1,023	10,2		
1,009	13,9	1,024	10,0		
1,010	13,7	1,025	9,7		
1,011	13,4	1,026	9,4		
1,012	13,1	1,027	9,2		
1,013	12,9	1,028	8,9		
1,014	12,6	1,029	8,6		

Tablo 4.2.	"L"	Değerleri
------------	-----	-----------

Aşağıda verilen bağıntı yardımıyla dane çapı hesabı yapılır.

 $D = K * (L/T)^{1/2}$

D: Dane çapı (mm)

K: Karışımın sıcaklığına ve zemin özgül ağırlığına bağlı olan bir katsayı (Tablo 4.1.)

L: Efektif derinlik (cm)

T: Deneyin başlangıcından itibaren hidrometre okumasının yapıldığı ana kadar geçen süre (dk)

Toplam geçen yüzdelerin hesabı için aşağıda verilen bağıntı kullanılır;

%P = $(100000 / M) \times (Gs / (Gs - 1.002)) \times (R - 1.002)$

Burada,

P: Geçen yüzde (%)

Gs: Zemin örneğinin özgül ağırlığı

M: Hidrometre deneyinde kullanılan deney örneğinin ağırlığı (gr)

R: Düzeltme uygulanmış hidrometre okuması

 $K = P \ge P_{100} / 100$ P_{100}= 100 nolu elekten geçen yüzde numune miktarı [18].

4.3.4. Elek analizi

Bu deney, zeminlerin dane büyüklüklerini ve toplam kütle içerindeki ağırlıkça miktarını yüzde (%) cinsinden hesaplayıp dane büyüklüğü dağılımının ve çakıl, kum, silt ve kil yüzdelerinin belirlenmesi amacı ile yapılır.

Elek analizi ve hidrometre deneyleri birbirinin devamı niteliğinde olup, elek analizi ile 0,075mm boyutuna kadar olan zeminlerin dane boyu dağılımı belirlenebilirken 0,075 mm'den daha küçük boyutlu olan zeminlerin dane boyu dağılımı ise çöktürme analizi ile belirlenmektedir. 0,075mm (No.200) elekten iki kısma ayrılan deney

örneğine, elek analizi ve hidrometre deneyleri ayrı ayrı uygulanmaktan sonra elde edilen sonuçlar birleştirilerek tüm zeminin Dane Boyu Dağılım eğrisi çizilir. ASTM, BS VE TS'ye göre, elek analizi sonucunda, zeminin No.200 elekten geçen miktarı %10 dan az ise hidrometre deneyinin yapılmasına gerek yoktur.

Elek analizi, zeminlerin No.200 elek üzerinde kalan iri kısmına uygulanır. Özellikle ince daneli zeminlerde, kil ve silt boyutundaki daneler birbirine veya kum, çakıl boyutundaki danelerin üzerine yapışarak topaklanmış halde olacağından, bunları birbirinden ayırmak için kesinlikle yıkayarak eleme yapılmalıdır. Kil-silt gibi küçük boyutlu daneleri içermeyen veya deney sonuçlarını önemli ölçüde etkilemeyecek kadar az içeren temiz kumlarda ve iri çakıllarda yıkama yapılmayabilir [17].

Kullanılan cihazlar;

Terazi Etüv Elek serisi Piset Numune kabı Yıkama fırçası [18]

Şekil 4.6. Elek Analizinde Kullanılan Bazı Araç ve Gereç [17]

Deneyin yapılışı; Hidrometre deneyi yapılan zemin numunesi 200 nolu eleğe dökülerek yıkamalı elek analizi yapılır. İnce tanelerin elekten geçmesi sağlanır, bu işlem el ile ve ya firça yardımıyla yapılabilir. Elekte kalan numune bir kaba konularak etüvde kurutulur. 24 saat sonra etüvden çıkarılarak göz açıklıkları büyükten küçüğe doğru dizilmiş (yukarıdan aşağıya) olan elek serisinin üst kısmına boşaltılır. Elekleri sallayarak numunenin elenmesi sağlanır. Elek çapları 50, 30.5, 16, 8, 4, 2, 0.850, 0.425, 0.212, 0.147, 0.0074mm'lik eleklerden elenir. Hidrometre deneyinde numune 2mm'lik elendiği için 2 nin üstündeki elekte hiç numune kalmamalıdır. Numune tek tek, eleklerden elenerek elekler üzerinde kalan numune miktarı terazide tartılarak kaydedilir. Bu şekilde tüm elekler için aynı işlem yapılarak tavada kalanda tartılıp deneye son verilir [18].

4.3.5. Özgül ağırlık deneyi

Zemin mühendisliğinde özgül ağırlık, zeminin dane birim hacim ağırlığının (γ s) suyun birim hacim ağırlığına (γ_w) oranı şeklinde ifade edilir ve G_s sembolü ile gösterilir. Aşağıdaki bağıntıdan da görüleceği gibi, özgül ağırlığın birimi yoktur, başka ifadeyle boyutsuzdur (Gs = γ_s / γ_w).

Dane birim hacim ağırlık ise, danelerin kuru ağırlığının danelerin boşluksuz durumundaki hacmine oranıdır. Bir çok uygulamada ve çoğu zemin probleminin çözümünde suyun, birim hacim ağırlığı 1.00gr/cm³ olarak kabul edilebilir. Bu durumda, dane birim hacim ağırlığı ile özgül ağırlık aynı değere sahip olup, aralarındaki fark, özgül ağırlığın birimi olmazken, dane birim hacim ağırlığının gr/cm³, t/m³, kN/m³ gibi birimlerle ifade edilmesidir. Özgül ağırlık deneyi, dane birim hacim ağırlıktan başka, zeminlerin boşluk oranı ve doygunluk derecesi gibi diğer ağırlık-hacim ilişkilerinin hesaplanmasında da kullanılan bir parametredir [17].

Bir zemin mekaniği laboratuvarında özgül ağırlık değerine genellikle; konsolidasyon deneyinde boşluk oranlarının hesaplanması için ve hidrometre veya pipet deneylerinde dane çaplarının ve toplam geçen yüzdelerin hesaplanması için gerek duyulmaktadır.

Kullanılan cihazlar;

Piknometre 50ml 0,01gr duraylılıkta hassas terazi Desikatör Etüv Plastik piset Havası alınmış su Plastik hortum Vakum kaynağı Gres yağı [18]

Şekil 4.7. Özgül Ağırlık Deneyinde Kullanılan Bazı Araç ve Gereç [17]

Özgül ağırlığı bulunacak zemin numunesinden (örselenmiş numune) en az yaklaşık 50gr kadar alınarak 2,00mm'lik elekten elenir. En az 10gr ağırlığında numune elde edilene kadar elemeye devam edilir. Elenen numune 24 saat etüvde kurutulur. Numunede danelerin topaklaşma oluşturmasına izin verilmemelidir. Ardından desikatörde soğumaya bırakılır. Piknometreler damıtık suyla temizlenip etüvde kurutulup, desikatörde soğutulup 0,01gr hassasiyetteki tartıda tartılarak piknometre ağırlığı bulunur (laboratuarlarda piknometrelerin sabit ağırlıkları bu şekilde bulunur.)

Deneyin yapılışı; Hazırlanmış numuneden, önceden piknometre ağırlığı bilinen piknometrenin içine konup hassas terazide tartılır (piknometre + numune). Böylece piknometre içine konulan numunenin ağırlığı da bulunur. Piknometre şişesinin içine yaklaşık 2/3 oranında piset yardımıyla havası alınmış su konur. Homojen bir karışım oluncaya kadar ve zemin danelerinin arasına suyun girmesini sağlamak amacıyla hafifçe çalkanır. Numunenin + su karışımı içindeki havayı almak için vakum yöntemi kullanılır. En az 3 tane hazırlanan piknometre + numune + su desikatörün içine piknometre kapakları açık bir şekilde konulur. Desikatör 20 – 25cm çapında kapaklı cam bir kaptır. Desikatörün ağız kısmına gres yağı sürülerek kapağı kapanır. Gres yağının sürülmesinin nedeni, hava kaçışlarını engellemek içindir. Kapağın üstünde bulunan delik kısmına da plastik hortum (vakum kaynağı ile desikatörü birbirine bağlayan) takılır ve vakum işlemi başlatılır. Vakum işlemi hava kabarcıkları kalmayacak şekilde en az 2 saat süreyle devam ettirilir. İşlem tamamlandıktan sonra kapak açılarak şişenin geri kalan kısmı da su ile doldurulup tartılır (piknometre + numune + su). Piknometre boşaltılarak temizlenir, içinde zemin taneciklerinin kalmamasına dikkat edilmelidir. Son olarak şişenin içine su konularak hava kabarcığı kalmayacak sekilde kabağı kapatılıp hassas terazide tartılıp kaydedilir (piknometre + su). Deney bu şekilde sona erdirilir [18].

4.3.6. Kompaksiyon deneyi

Kompaksiyon; zeminlerin dayanımı, permeabilite (geçirimlilik) ve oturmaya karşı iyileştirilmesi veya erozyon olayına karşı sağlamlaştırılması için tabakalar halinde serilerek sıkıştırılması olarak tanımlanabilir. Kompaksiyonun amacı; zeminin sıkıştırılması ile maksimum kuru yoğunluğu veren su içeriğinin elde edilmesidir. Sıkıştırma işlemleri değişik yöntemler kullanılarak yapılabilir [3].

Kompaksiyonla genel olarak şu yararlar sağlanır.

1) Zeminlerin taşıma gücü artırılır.

2) Zeminin geçirimliliği azaltılır, zemine daha kararlı bir yapı kazandırılır. Böylece zeminin su alarak, hacim değişikliğine uğraması azaltılır.

3) Zeminin sabit, hareketli, dinamik yükler altında yapacağı oturmalar azaltılır [19].

Kuru halde bulunan zemine bir miktar su ilave edildiği zaman zemin daneleri bu suyu emerler. Daha fazla su ilave edilmesi durumunda zemin daneleri çevresinde bulunan su filminin kalınlığı artar ve zemin daneleri birbirlerine göre kolaylıkla rölatif hareketler (birbirleri üzerinden kayma hareketleri) yapabilirler. Bir miktar daha su ilave edilmesi halinde zemin içerisinde bulunan boşluklar su ile dolmaya başlar ve zeminin yoğunluğunu arttırırlar. Ancak zemin içerisindeki boşlukların tamamen suyla doldurulması ve suyun sıkışmaması halinde bir noktadan su ilaveleri zemini yoğunluğunu arttırmayacağı gibi azalmasına sebep olur. Buradan da anlaşılacağı gibi zemine ilave edilecek suyun miktarı iyi ayarlanmalıdır ki zemine ait maksimum yoğunluk elde edilebilsin. Şöyle ki; ilave edilen suyun çok az ya da çok fazla olması halinde zeminde maksimum kuru yoğunluklardan daha az değerlere ulaşılabilmektedir. Maksimum kuru yoğunluğun elde edilmesini sağlayan su içeriğine optimum su içeriği (su muhtevası) adı verilmektedir.

Şekil 4.8. Maksimum Kuru Yoğunluğun Su İçeriğine Bağlı Olarak Değişimi [3]

Bir zemin sabit bir kompaksiyon enerjisi ile değişik su muhtevalarında sıkıştırdığında artan su muhtevası ile kuru birim hacim ağırlığı önce artmakta sonrada azalmaktadır.

I.Bölge: Zeminde yeteri kadar su bulunmadığı için danelerin daha az boşluklu yerleşmek üzere hareket etmeleri daneler arası sürtünme kuvvetinden dolayı zordur. Çünkü su, daneler arası yağlanma etkisi yapmaktadır.

II.Bölge: Sıkışmanın en yüksek olduğu yerdir. γ_k maksimum değere ulaşmaktadır. Bu durumdaki su muhtevasına optimum su muhtevası denir. Bu durumda yapılacak en iyi sıkıştırma için optimum su muhtevasını kullanmak gerekir. (proctor deneyi)

III.Bölge: Fazla miktarda su bulunması ve suyunda pratik olarak sıkışamaz olmasından dolayı zemindeki boşluk hacmi azaltılamamaktadır [20].

Maksimum kuru yoğunluğu veren su içeriğinin (optimum su içeriği) laboratuvarda belirlenmesi ile arazide yapılacak olan bir kompaksiyon da zemine karıştırılacak su miktarının belirlenmesi mümkün olmaktadır. Laboratuvarda elde edilen kuru yoğunluklar genellikle arazide elde edilen kuru yoğunluklardan yüksek olmaktadır. Bundan dolayı arazide elde edilen maksimum kuru yoğunluğun laboratuarda elde edilen maksimum kuru yoğunluğun laboratuarda elde edilen maksimum kuru yoğunluğun laboratuarda elde edilen maksimum kuru yoğunluğa oranının bilinmesi istenir. Standartlar genellikle bu oranın en az %95 olmasını istemektedir [3].

	Maksimum kuru Birim hac. ağırlık (gr/cm ³)	Optimum su Muhtevası	
Sınıfı	Ortalama	Ortalama	
GC	>1,84	<15	
GM	>1,83	<15	
SM	1,83	15	
SC	1,84	15	
ML	1,65	19	
CL	1,73	17	
СН	1,51	25	
MH	1,31	36	

Tablo 4.3. Zemin Sınıfına Göre Ortalama Kuru Birim Hacim Ağırlık ve Optimum Su Muhtevaları [22]

	Maksimum kuru Birim hac. ağırlık (gr/cm ³)			Optimum su Muhtevası		
Sınıfı	Maksimum	Minimum	Ortalama	Maksimum	Minimum	Ortalama
GW	2,04	1,91	1,99	13,7	9,9	11,4
GP	2,05	1,68	1,95	17,7	9,1	11,2
GM	2,13	1,39	1,81	29,5	5,8	15,8
GC	2,07	1,54	1,87	23,6	6,0	13,9
SW	2,16	1,89	2,02	11,2	7,4	9,1
SP	2,16	1,71	1,85	13,4	7,8	10,8
SM	2,12	1,49	1,87	25,5	6,8	12,5
SC	2,11	1,67	1,90	18,2	6,7	12,4
ML	2,02	1,31	1,65	34,6	10,6	19,7
CL	1,94	1,44	1,75	29,2	6,4	16,7
MH	1,43	1,33	1,36	35,5	31,5	33,6
СН	1,72	1,32	1,53	41,8	16,6	25,0

Tablo 4.4. Zemin Sınıfına Göre Kuru Birim Hacim Ağırlık ve Optimum Su Muhtevaları [22]

Şekil 4.9. Kompaksiyon Deneyinde Darbelerin Uygulanış Şekli [23]

Kompaksiyon deneyi; Zeminin sıkıştırılması ile maksimum kuru birim hacim ağırlığı veren su muhtevasının elde edilmesi ve bu su muhtevasında birim hacime sığabilecek maksimumu zemin ağırlığının bulunması için gerçekleştirilir.

Kullanılan cihazlar;

Standart tokmak (50mm çapında, 2,5kg ağırlığında olan ve 30,5cm den serbest düşme ile sıkıştırma yapar) Taban plakası Kompaksiyon kalıbı Yaka Geniş karıştırma leğenleri Kürek Palet bıçağı Numuneyi çıkartmak için kriko Etüv Hassas terazi

Numune kabı [24]

Şekil 4.10. Proctor Aleti [23]

Zemin kütlesini temsil eden bir miktar havada kurutulmuş zemin 20mm'lik elekten geçirilerek elenir. Elenen numuneden en az beş adet farklı su muhtevalarında numune hazırlanarak geniş karıştırma leğenlerine konur.

Deneyin yapılışı; Hassas terazide kalıp tartılarak ağırlığı kaydedilir. Taban düzgün bir yüzeye konularak kompaksiyon kalıbı üzerine oturtulur, yaka da kalıbın üzerine oturtularak sistem sabitlenir. Sonra ilk zemin numunesi alınarak (su muhtevası düşük olan) kalıpta sıkışacak numunenin 2/3 oranında kürek ile alınarak kalıp içersine konulur. Standart tokmakla 25 kez farklı noktalara vuracak sekilde, tokmağı dik tutarak düşüşler yapılır. Darbeler, her tabaka yüzeyine eşit sayıda gerçekleştirilmelidir. Spatula ile sıkıştırılan zemin numunesi üzerine birkaç çizgi çizilir. Bunun nedeni iki sıkışacak zeminin birbiri üzerine iyice kenetlenmesidir. Ardından sıkışacak numunenin 2/3 oranında tekrar numune konularak 25 düşüş daha gerçekleştirilir. Son kısımda doldurulacak bir kez daha 25 düşüş yapılır. Son noktada dikkat edilmesi gereken nokta zemin numunesi, kalıbı doldurmaya yetmeli, ancak yaka çıkarıldıktan sonra kesilip atılacak artık zemin yüksekliği 6mm'yi aşmamalıdır. Yaka cıkarılarak kalıptan taşan numune kesilip, kalıbın alt ve üst yüzü kuvvet uygulamadan düzlenir. Kalıp + numune tartılarak değeri kaydedilir. Numune kriko yardımıyla konsolidasyon kalıbından çıkarılarak, sıkıştırılmış zemin numunesinin ortasından bir miktar zemin alınarak kalıba konup tartılır ve etüve atılır. Aynı işlemler farklı su muhtevalarına sahip ikinci, üçüncü, dördüncü, beşinci numune için de gerçekleştirilir. 24 saatin sonundaki kuru ağırlıkları terazide tartılıp kaydedilir [24].

4.3.6.1. Kompaksiyon yöntemleri ve zemin dokusu

Sadece Proctor sıkıştırma deney sonuçlarına dayanmak, tüm dolguların optimum su içeriğine hemen hemen eşit bir su muhtevası ile sıkıştırılması gerektiği izlenimi vermektedir. Çünkü bu yöntem en az kompaksiyon çabası için en yüksek doygun birim hacim ağırlığa ulaşır. Bu durum, projelerin çoğunda yapılan bir şeydir.

Bununla birlikte, ilave kompaksiyon çabası kullanımı yoluyla optimumun hafifçe ıslak veya kuru tarafında sıkıştırılan zeminler de gerekli doygun birim hacim ağırlığa

ulaşabilirler. Bu yöntem daha pahalı olmasına rağmen, farklı dokuya özellikle killerde muhtemelen daha uygun mühendislik özelliklerine sahip bir dolguya yol açar. Optimumun kuru tarafında sıkıştırıldığı zaman, killer Şekil 4.11. de gösterildiği gibi floküle bir doku kazanırlar. Bu gibi zeminler, optimumun ıslak tarafında sıkıştırılanlardan daha yüksek bir hidrolik iletkenliğe ve daha büyük bir kesme dayanımına sahiptirler. Aksine, optimumun ıslak tarafında sıkıştırılan killer, mühendislik özelliklerini de etkileyen daha yönelimli bir doku kazanırlar.

Şekil 4.11. Killerde Kompaksiyon Sırasında Su İçeriğinin Zemin Dokusuna Etkisi

Kil dolgulardaki doku sıkıştırma yöntemine de bağlıdır. Örneğin, basınç kompaksiyonu elle yapılan kompaksiyondan daha farklı bir dokuya yol açar. Bu etkiler özellikle zemin optimumun ıslak tarafında sıkıştırıldığı zaman belirgindir.

Bu doku etkileri genellikle alışılagelen sıkıştırılmış dolgu projelerinde dikkate alınmamasına rağmen, toprak barajlar veya çok derin dolgular gibi kritik projelerde önemli olabilirler. Örneğin, bir toprak barajın çekirdeğini inşa etmek için kullanılan killer düşük bir hidrolik iletkenlik sağlamak amacıyla optimumun ıslak tarafında yerleştirilebilir. Bu gibi projeler, çeşitli sıkıştırma su içerikleri ve yöntemler kullanılarak zeminler üzerinde bir dizi laboratuvar deneyleri yapmayı ve deneylerin sonuçlarına bağlı sıkıştırma şartnameleri geliştirmeyi içerebilir [11].

4.3.7. Üç eksenli basınç deneyi (UU deneyi) (konsolidasyonsuz-drenajsız)

Zemin mekaniğinde yarım sonsuz ortam olarak dikkate aldığımız zemin kitlesinin herhangi bir derinliğinden bir zemin numunesinin çıkarılması halinde, numune üzerinde bulunan yatay ve düşey gerilmeler kaldırılmış olmaktadır. Laboratuarda deneye tabi tutulacak numuneler üzerinde mümkün olduğunca arazi koşullarının sağlanmasına gayret gösterilir. Üç eksenli kesme deneyi ile arazi koşullarına uygun yatay ve düşey gerilmeler numune üzerine uygulanabilmektedir. Ayrıca numuneler değişik yatay ve düşey gerilmeler altında kesilebilmektedir.

Üç eksenli deneyde numunenin çevresine, alt ve üst yüzeylerine aynı basınç (hidrostatik basınç) uygulanabilmektedir. Uygulanan bu basınca çevre basıncı ya da hücre basıncı adı verilmektedir. Çevre basıncı, bir hücre içerisinde bulunan numunenin çevresine doldurulan bir sıvı genellikle su üzerine basınç uygulanarak elde edilir.

Üç eksenli kesme deneyinde kullanılan numuneler üzerindeki gerilme durumu arazide meydana gelmesi beklenen gerilme durumu gibi düzenlenerek deney yapılması en mantıklı yoldur. Bunun için arazideki yatay gerilmeler numunede çevre basıncı olarak uygulandıktan sonra düşey doğrultudaki gerilme arttırılarak numunenin kesilmesi sağlanır. Düşey gerilmedeki artış deviatör gerilme olarak adlandırılmaktadır. Numune üzerine uygulanan deviatör gerilmenin arttırılması ile düşey doğrultudaki asal gerilme çevre basıncından farklıdır.

UU Deneyi: Bu deneyde çevre basıncı uygulandıktan hemen sonra deviatör gerilme arttırılarak numunenin kesilmesi sağlanır. Deviatör gerilmenin hızlı bir şekilde uygulanması ile deney süresince numunenin konsolide olmasına ve suyun drenajına müsaade edilmez. Bu deneyin doygun haldeki kil numunelerle yapılması halinde içsel sürtünme açısı daima sıfır olur. Deney sonucunda zeminin drenajsız kayma direnci elde edilir. Boşluk suyu basınçları konsolidasyon ve kesme aşamalarında sistem dışına çıkamadığından en yüksek düzeyde kalır. Bu deney, çapı 3,5cm ila 11cm arasında yüksekliği ise, çapının iki katı dolayında olan silindirik numune tüpleri ile yapılır. Kesme kutusu deneyine göre üç eksenli deneyin bir çok üstünlüğü bulunmaktadır. Bu üstünlüklerden en önemli üç tanesi;

- 1- Numunede meydana gelen hacim değişmeleri daha hassas olarak ölçülebilir.
- 2- Üç eksenli kesme deneyinin bütün aşamalarında numunenin gerilme durumu bilinir. Oysa; kesme kutusu deneyinde sadece kırılma anındaki gerilme durumu bilinir.
- 3- Zeminlerin bazı özelliklerinin, örneğin elastisite modülü ve poisson oranı vb. belirlenmesinde sağlanması gereken özel durumlara üç eksenli deneyin uyarlanması daha kolaydır [3].

Bu deney kohezyonlu bir zeminin basınç dayanımının üç eksenli kesme cihazında, hücre basıncı belirli bir değerde tutularak su muhtevasının değişmesi önlenerek ölçülmesi ile ilgilidir.

Kullanılan cihazlar;

Silindirik numune tüpü Tıraşlama bıçağı veya palet bıçağı Lastik kılıf Kılıf germe cihazı Lastik halkalar Numune çapında iki adet metal başlık Terazi Etüv (105°C) Numuneyi tüpten çıkarmak için kriko Kumpas Deney numunesinin boyutlarına uygun üç eksenli deney hücresi Hücreyi dolduran akışkana istenilen basıncı 0,05kgf/cm² (5kPa) hassasiyetle uygulayabilecek ve bu basıncı belirli bir düzeyde tutabilecek bir cihaz Birim kısalmaları gösteren bir mikrometre Uygulanacak yükle birim kısalmalara karşılık gelen kuvvet halkasının değerini 5kPa hassasiyetle ölçebilecek mikrometre [24]

Şekil 4.12. Üç Eksenli Deney Hücresi [16]

Numunenin hazırlanmasındaki amaç, zeminin yapısını ve su muhtevasını değişikliğe uğratmadan yüksekliği çapının iki katı olan uçları düz ve eksene dik silindir biçiminde numune elde etmektir.

Sondajdan alınan örselenmemiş numuneden silindirik numune tüpü batırılıp numune alınır. Tüpteki numunenin alt ve üst kısmı düzeltilerek kriko yardımıyla numune tüpten çıkartılır. Numunenin çapı kumpas ile ölçülerek yüksekliği çapının iki katı olacak şekilde numune yüksekliği alınır. Alınan numunenin alt ve üst kısmı düzgün hale getirilip, terazide tartılır. Numunenin çapı, yüksekliği, ağırlığı kaydedilir. Numune geçirimsiz metal bir başlık üzerine oturtulur. Numunenin üst kısmında metal başlık konulduktan sonra kılıf germe cihazı ile lastik kılıf geçirilerek suyun içeri sızmaması için alt başlık ve kılıf üzerine bir adet, üst başlık ve kılıf üzerine bir adet lastik halka geçirilir. Kılıfın numuneyi iyice kapatması sağlanır. Kılıf germe cihazı çıkarılır. Şeffaf basınç hücresi kapatılıp, yük halkasının pistonu numunenin üst yüzeyindeki metal başlığa temas edene kadar indirilir. Bu arada numuneye kuvvet uygulamamaya dikkat edilmelidir. Basınç hücresine istenilen çevre basıncı verilerek hücre için su doldurulur. Ardından bütün drenaj vanaları kapatılır. Düşey deformasyonu ölçen mikrometre ve kuvvet halkası ölçen mikrometre sıfırlanarak ilk okumalar kaydedilir.

Deneyin yapılışı; Deneye ilk 100kPa uygulanmak üzere sistem çalıştırılır. Deformasyon saati (mikrometresi) 10 değerine geldiğinde kuvvet halkası ölçen mikrometre değerine bakılıp kaydedilir. Deformasyon saati 25 değerine geldiğinde kuvvet halkası ölçen mikrometre değerine bakılıp kaydedilir. Bu işlem 50, 75, 100, 150, 200, 300, 400, 500, 600, 700, 800, 900...gibi değerlerde de okunarak kuvvet halkası değerleri kaydedilir. Deney maksimum eksenel gerilme değeri aşılana veya birim boy değişimi %20'ye ulaşana kadar devam ettirilir. Deney sona erdiğinde cihaz durdurulur. Basınç hücresindeki çevre basıncı kaldırılarak hücredeki sıvı boşaltılır. Yükleme pistonu kaldırılır ve şeffaf hücre cıvatalardan gevşetilerek açılır. Lastik halkalar, lastik kılıf ve metal başlıklar çıkartılıp numune incelenerek bir kap içerisinde etüve atılır. Aynı işlem ikinci numune için de tekrarlanır (200kPa). En az üç numuneyle bu deneyin yapılması daha iyi sonuç verir. Numuneler 24 saat sonunda tartılarak kuru ağırlıkları kaydedilir [24].

4.3.8. Kesme kutusu deneyi

Zeminlerin kayma direnci; zemine uygulanan sürekli deplasmanlar altında zemin danelerinin birbirine göre rölatif hareketlerine karşı gösterdikleri dirençtir.

Kesme kutusu deneyi kohezyonlu yada kohezyonsuz zeminlerin kayma dirençlerini belirlemek için kullanılan bir deneydir. Kesme kutusunun üst başlığı sağa doğru kaydırılarak zorlanmaktadır. Bu şekilde zemin numunesi yatay zorlanmayla kesilerek kayma parametreleri bulunabilmektedir.

Zeminlerin kayma direnci parametrelerinin belirlenmesinde hangi deneyin kullanılacağına karar verirken, deneylerin hangi amaç için yapılacağı, bu deneyin sakıncaları ve üstünlükleri dikkate alınmalıdır. Üç eksenli kesme deneyinin kesme kutusu deneyine göre iki belirgin üstünlükleri vardır. Bunlardan birincisi, deneyin yapılması ve aletlerin kullanılması daha kolaydır. İkicisi ise deney kısa zamanda yapılarak sonuçlar erken alınabilir. Buna karşın sakıncalı yanları üç ana başlık altında toplanabilir.

- 1- Numune daha önceden belirlenmiş bir düzlem üzerinde kesilir. Bu düzlem numunenin en zayıf düzlemi olmasa bile bu kısmın kayma direnci ölçülür.
- 2- Deney süresince numunenin yüklenen en kesit alanı yatay hareketten dolayı küçüldüğünden normal gerilme deney süresince artmaktadır. Bu durum kare kesitli kesme kutusunun kullanılması halinde bir sorun olmamakla beraber, dairesel kesitli kesme kutusunun kullanılması halinde, deney süresince düşey yükün etkidiği alanın hesaplanmasında güçlüklerle karşılaşılmaktadır.
- 3- Dairesel kesme kutusu kullanılması halinde kayma düzlemindeki gerilme koşulları karmaşıktır. Numune bazı alanlarda kesilmeye zorlanırken bazı yerlerde kesilmesi engellenmektedir. Gerilmelerin her noktada üniform olarak dağıldığını kabul etmek bu durumda doğru bir kabul olmaktan oldukça uzaktır [3].

Kesme kutusu deneyi iri ve ince daneli zeminlerin örselenmemiş veya sıkıştırılmış numunelerinde, en büyük yumuşamış ve kalıntı direnç parametrelerinin, numunelerin önceden belirli yatay bir düzlem boyunca kesilmesi suretiyle ölçülmesine dairdir. Zeminin kayma parametrelerinin belirlenmesi için yapılır. Numunenin kenar boyutu; 60mm olan kare biçimindeki, yüksekliği ise 20mm veya fazla olmalıdır. Deney en az üç numune ile farklı normal gerilmelerde numuneler konsolide edilerek yapılır.

Kullanılan cihazlar;

Kesme kutusu Yatay kuvvet uygulama sistemi Gözenekli taşlar Çelik numune alıcılar Numune itici Düşey hareketi ölçen mikrometre Yatay hareketi ölçen mikrometre Terazi Kronometre Etüv Su Palet bıçağı Numune kabı

Çelik numune alıcı zemine batırılarak numune tüpünden numune alınır. Numunenin alt ve üst kısmı palet bıçağı ile hiç yük uygulamadan düzeltilir. Halka + numune ağırlığı terazide tartılarak bulunur. Ardından kesme kutusu cihazına gözenekli taş ve üstüne filtre kağıdı konularak, numune itici kullanılarak numune alıcıdan numune itilerek filtre ve gözenekli taşın üstüne oturtulur. Bu sırada numuneye fazla kuvvet uygulayıp numunenin konsolide olmasına izin verilmemelidir. Numunenin üstüne filtre kağıdı ve gözenekli taş konulur ve üzerine başlık oturtulur. Numuneyi koyduğumuz iki parçalı hücrenin alt parçası ana hücreye sabitlenir, üst parçası da kuvvet halkasına bağlanır. Düşey yük özengi çelik başlığın üzerindeki çelik bilyaya oturtulur. Yatay hareketi, düşey oturmayı ölçen mikrometreler sıfırlanır. Numune artık deneye hazırdır.

Deneyin yapılışı; Sol ve sağ keseye ağırlıklar konulduktan sonra havuza su konur numune konsolidasyona maruz bırakılır. Numune kum ise ani sıkışma göstereceğinden konsolidasyon süresi, mikrometre belli bir yerde durduğunda veya çok yavaş ilerlediğinde konsolidasyona son verilir. Kil gibi ince deneli zeminlerde bu konsolidasyon süresi en az 24 saattir. Konsolidasyonda sonra numuneyi kesme
80

işlemine geçilir. Kuvvet halkasını ve yatay ötelenmeyi ölçen mikrometreler sıfırlanarak kesme kutusu çalıştırılır. Numune belirlenen hızla (0,5mm/dak) kesme işlemi başlatılır. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,dakika zaman aralıklarında kuvvet halkası mikrometresinden kuvvet halkası değeri ve bu değere karşılık gelen yatay ötelenmede diğer mikrometreden okunarak bu değerle düzenli bir şekilde kaydedilir. Kuvvet halkası değerleri beli bir noktadan sonra sabitlenince (gevşek kum) veya belli bir noktadan sonra düşerse (sıkı kum) deneye son verilir. İşlem tamamlandıktan sonra numunenin alt ve üst taraflarında yatay ötelenme yaptığı görülür. Numune hassas terazide tartılarak ağırlığı kaydedilir. Ardından numune, numune kabına konularak etüve atılır ve kuru ağırlığı bulunur. Kesme kutusu deneti için bu sefer ikinci ve üçüncü numune için de tekrarlanır. Bu şekilde deneye son verilir [24].

Şekil 4.13. Bishop Kesme Kutusu [16]

BÖLÜM 5. DENEYSEL ÇALIŞMALAR VE DENEY SONUÇLARI

5.1. Giriş

Zeminlerde kayma direnci parametrelerine ait değerler, zemin üzerine yapılacak olan yapıların projelendirilmesi esnasında önemli bir yere sahip olup, bu parametrelerin arazi ya da laboratuvar deneyleri sonucu doğru olarak ölçülmesi zemin mekaniğinin önde gelen konularından birisini teşkil eder. Hazırladığım bu tez yüksek plastisiteli kilde; ince kum, orta kum ve kaba kum miktarını artmasıyla, konsolidasyonsuz-drenajsız üç eksenli basınç deneyi ve kesme kutusu deneyi yapılarak sonuçlarının karşılaştırılması ve kayma direnci parametrelerinin değişimini gözlemlemek maksadıyla gerçekleştirilmiştir.

5.2. Deney Numunesinin Hazırlanması

Deneyde kullanılmak üzere yüksek plastisiteli kilin temin edilebilmesi için Sakarya'nın hangi bölgesinde bulunacağı konusunda gerekli araştırılmalar yapıldı. Bu araştırmalar sonucunda Sakarya'nın Serdivan İlçesi, Bahçelievler Mahallesi, Siteler Camisi yanında bulunan araziyi 3m derinlikte kazı yapılarak, deney numunesi alındı. Numunenin fiziksel özelliklerini tespit etmek için Sakarya Üniversitesi, İnşaat Mühendisliği laboratuvarına götürülerek plastik ve likit limit deneyi yapıldı.

Şekil 5.1. Belirlenen Arazinin 3m Kazılması

Şekil 5.2. Likit Limit Deneyinin Casagrande Cihazında Yapılması

Şekil 5.3. Plastik Limit Deneyi

Tablo 5.1. Likit Limit Deney Sonuçları

LİKİT LİMİT DENEYİ								
Örneğin Alındığı Yer		Serdi	van, Bah	çelievler	Mah.			
Örneğin Tanımı			Açık I	Kahve				
Derinlik			3	m				
Deneyi Yapan			Cemil (GÜVEN				
Deney No	1	2	3	4	5	6		
Kap No	363	329	340	327	357	369		
Kap Ağırlığı (gr)	18,29	19,79	19,94	20,44	23,83	21,84		
Kap + Yaş Örnek Ağırlığı (gr)	32,01	34,69	35,72	36,33	41,92	39,80		
Kap + Kuru Örnek Ağırlığı (gr)	27,52	29,66	30,37	30,80	35,55	33,27		
Kuru Örnek Ağırlığı (gr)	9,23	9,87	10,43	10,36	11,72	11,43		
Su Ağırlığı (gr)	4,49 5,03 5,35 5,53 6,37				6,53			
Su Muhtevası (w) (%)	48,65 50,96 51,30 53,38 54,35 57,13							
Darbe Sayısı (N)	45	38	28	24	19	15		

Şekil 5.4. Vuruş Sayısı 25'eKarşılık Gelen Likit Limit Değeri

PLASTİK LİMİT DENEYİ							
Örneğin Alındığı Yer	Serdiv	Serdivan, Bahçelievler Mah.					
Örneğin Tanımı		Açık Kahve					
Derinlik		3m					
Deneyi Yapan	Cemil GÜVEN						
Deney No	w _n 1 2						
Kap No	325	309	316				
Kap Ağırlığı (gr)	24,94	24,23	20,76				
Kap + Yaş Örnek Ağırlığı (gr)	71,79	36,77	34,15				
Kap + Kuru Örnek Ağırlığı (gr)	60,73	34,25	31,43				
Kuru Örnek Ağırlığı (gr)	35,79	10,02	10,67				
Su Ağırlığı (gr)	11,06	2,52	2,72				
Su Muhtevası (w) (%)	30,90	25,15	25,49				
Plastik Limit (w _p) (%) - 25,32							

Tablo 5.2. Plastik Limit Deney Sonuçları

Tablo 5.3. Likit Limit ve Plastik Limit Sonuçları

Likit Limit (w _L) (%)	52,82
Plastik Limit (w _p) (%)	25,32
Plastisite İndisi (I _p) (%)	27,50
Sıvılık İndisi (I _L)	0,20
Kıvam İndisi (I _c)	0,80

Şekil 5.5. TS 1500/2000 Plastiste Kartında Deney Numunesinin Yeri

Deney numunesinin fiziksel özelliğinin bulunması sonucunda numunenin, CH olduğu ortaya çıkmıştır.

5.3. Numuneler Üzerinde Yapılan Çalışmalar

Deney için kullanılacak doğru numunenin bulunmasının ardından, laboratuvara getirilen deney numunelerinin elenmesi için numuneler sulandırılarak (çamur haline getirilerek) 200 nolu (0,0075mm) elekten elenmiştir. CH numunesinin eleme işlemi, numunenin su alarak şişmesi, zemin danelerinin birbirine yapışması gibi etkenler neticesinde numunenin elenmesi işlemi uzun sürmüştür. Elenen numune etüve atılarak sudan arındırılmış, 24 saat sonra numuneler etüvden çıkarılarak tokmakla işlemi ile numune toz haline getirilmiştir. Bu işlem sonunda yaklaşık 58 kg CH elde edilmiştir.

Şekil 5.6. CH Numunesinin Yıkamalı Yöntemle 200 Nolu Elekten Elenmesi

Şekil 5.7. CH Numunesinin Elendikten Sonra Etüve Atılması

Şekil 5.8. Numunenin Etüvden Çıkarıldıktan Sonraki Şekli

Şekil 5.9. CH Numunesinin Elekten Elenmesi

Ardından hidrometre, elek analizi ve özgül ağırlık deneyleri yapılarak; CH numunesinin kum, kil ve silt yüzdesi ve özgül ağırlığı bulundu. Bu arada deneyde kullanılacak ince kum, orta kum ve kaba kumun temini gerçekleştirildi. Kumlar; Türk Standartında belirtilen dane çapı 0,0075-0,2mm arası ince kum, dane çapı 0,2-0,6mm arası orta kum, dane çapı 0,6-2mm arası kaba kum olarak belirlenmiş. Laboratuarda; dane çapı 0,075-0,212mm arası ince kum, dane çapı 0,212-0,6mm orta kum, dane çapı 0,6-2mm arası kaba kum için bu elek numaraları kullanıldı.

Şekil 5.10. Numunenin Peridrol İle Yakılması

Şekil 5.11. Hidrometre İçin Kullanılacak Numunenin NaPO3 İle Dağıtılması

Şekil 5.12. Mikser Kullanılarak Hidrometrede Kullanılacak Numunenin Dağılması

Şekil 5.13. 25°C'de Su Havuzu İçerisine Ölçme Silindirinin Konulması

Şekil 5.14. Hidrometre Deneyinden Sonra Numunenin Yıkamalı Elek İçin Kullanılması

Şekil 5.15. Elek Analizi

Şekil 5.16. Özgül Ağırlık Deneyi

Şekil 5.17. İnce Kum ve Kil Numuneleri

Şekil 5.18. Kaba Kum ve Orta Kum Numuneleri

Tablo 5.4. Özgül Ağırlık Deneyi Sonuçları

ÖZGÜL AĞIRLIK DENEYİ						
Örneğin Alındığı Yer	Serdivar	ı, Bahçeliev	ler Mah.			
Örneğin Tanımı		Açık Kahve	e			
Derinlik		3m				
Deneyi Yapan	Cemil GÜVEN					
Deneyde Kullanılan Örneğin En Büyük Dane Çapı	2,00mm					
Deney No	1	2	3			
Piknometre Numarası	1	3	10			
Piknometre Ağırlığı (gr)	37,342	37,911	37,136			
Piknometre + Su Ağırlığı (gr)	138,147	138,122	136,706			
Kuru Örnek Ağırlığı (gr)	10,150	10,450	10,925			
Piknometre + Örnek + Su Ağırlığı (gr)	144,456	144,588	142,925			
Özgül Ağırlık (Gs)	2,64	2,62	2,61			
Zeminin Özgül Ağırlığı		2,62				

Tablo 5.5. Elek Analizi Sonuçları

ELEK ANALİZİ							
Örneğin Alındığı Yer			Serdivan, Bahçelievler Mah.				
Örneğin Tanımı				Açık Kahv	e		
Derinlik				3m			
Deneyi Yapan			(Cemil GÜV	EN		
Elek göz açıklığı (mm)	Elekte kalan numune (g)		Kalan (%)	Toplam kalan (%)	Toplam geçen (%)		
31,50	0,00		0,00	0,00	100,00		
16,00	0,00		0,00	0,00	100,00		
8,00	0,00		0,00	0,00	100,00		
4,00	0,00		0,00	0,00	100,00		
2,00	0,00		0,00	0,00	100,00		
0,850	0,099		0,20	0,20	99,80		
0,425	0,145		0,29	0,49	99,51		
0,212	0,257		0,51	1,00	99,00		
0,147	0,203		0,41	1,41	98,59		
0,074	0,526		1,05	2,46	97,54		
Toplam	1,230						

Tablo 5.6. Organik Madde Miktarı Sonuçları

Organik Madde Miktarı						
Kap No	266					
Numune+Kap ağırlığı, g	334,264					
Kap ağırlığı, g	284,264					
Kuru numune+Kap ağırlığı, g	332,421					
Organik madde miktarı, g	1,843					
Organik madde miktarı, %	3,69					
Numune Miktarı, g	50,000					
Özgül Ağırlık	2,62					

HİDROMETRE DENEYİ								
Örneğin	Alındığı Yei	[Serdivan, Bahçelievler Mah.				
Örneğin	Tanımı				Açık Kahve			
Derinlik						3m		
Deneyi	Yapan				Cemil	l GÜVEN		
	Süre	Oku	ima		Süre	Ol	kuma	
	0,5	1,02	295		30	1,	0205	
	1	1,02	281		60	1,	0178	
	2	1,02	273		120	1,	0160	
	4	1,02	258		240	1,	0140	
	8	1,02	249		1440	1,	1,0102	
	15	1,02	229	,	T (°C)		25	
Süre (dak)	Hidrometre Okuması	Düz. Hidro. Okuması	K	L	Eşdeğer çap (mm)	%P	%К	
0,5	1,0295	1,0300	0,0130	8,40	0,0533	90,68	89,36	
1	1,0285	1,0290	0,0130	8,60	0,0381	87,44	86,16	
2	1,0280	1,0285	0,0130	8,75	0,0272	85,82	84,57	
4	1,0270	1,0275	0,0130	9,05	0,0196	82,58	81,38	
8	1,0260	1,0265	0,0130	9,30	0,0140	79,34	78,19	
16	1,0255	1,0260	0,0130	9,40	0,0100	77,73	76,59	
30	1,0245	1,0250	0,0130	9,70	0,0074	74,49	73,40	
64	1,0240	1,0245	0,0130	9,85	0,0051	72,87	71,80	
120	1,0230	1,0235	0,0130	10,10	0,0038	69,63	68,61	
240	1,0225	1,0230	0,0130	10,35	0,0027	68,01	67,02	
1440	1,0205	1,0210	0,0130	10,70	0,0011	61,53	60,63	

Şekil 5.19. Yüksek Plastisiteli Kilin Dane Dağılım Eğrisi

Elek analizi ve Hidrometre deneylerinin sonucunda elde edilen dane çapı ve % geçen değerleri, granülometre eğrisinde çizilerek çakıl, kum, silt ve kil oranları aşağıdaki değerler bulunmuştur.

Tablo 5.8. CH Numesinin Çakıl, Kum, Silt ve Kil Yüzdeleri

ÇAKIL (%)	0
KUM (%)	2,55
SİLT (%)	36,82
KİL (%)	60,63

CH numunesinin fiziksel özelliklerinin belirlenmesinin ardından optimum su muhtevalarının bulunması için standart kompaksiyon deneyi yapıldı. Deneyde CH, %10 orta kum içeren CH, %25 orta kum içeren CH, %50 orta kum içeren CH, %75 orta kum içeren CH numuneleri üzerinde optimum su muhtevalarını bulmak için değişik su muhtevalarında numuneler hazırlanarak, kompaksiyon deneyleri gerçekleştirildi.

Şekil 5.20. Kompaksiyon Kalıbı ve 2,5 Kilogramlık Tokmak

Şekil 5.21. Kompaksiyonla Sıkıştırılmış Numune

Şekil 5.22. Sıkıştırılmış Numunenin Kompaksiyon Kalıbı İle Tartılması

KOMPAKSİYON DENEYİ							
Örneğin Tanımı	СН		Kalıbın	Kalıbın Çapı (cm)			
Deneyi Yapan	Cemil (GÜVEN	Kalıbın	Yüksekliğ	ģi (cm)	10,09	
Özgül Ağırlığı (Gs)	2,	62	Kalıbın	İç Hacmi	(cm^2)	952,32	
Deney No		1	2	3	4	5	
Kalıp Ağırlığı (gr)		8000	8000	8000	8000	8000	
Kalıp + Zemin Ağırlığı	(gr)	9490	9630	9730	9695	9580	
Sıkıştırılmış Zemin Ağırlığı (gr)		1490	1630	1730	1695	1580	
Yaş Birim Hac. Ağırlık (kN/m ³)		15,35	16,79	17,82	17,46	16,28	
Kap No		743	786	783	741	785	
Kap Ağırlığı (gr)		56,21	56,45	54,07	55,16	56,30	
Kap + Yaş Örnek Ağır	ığı (gr)	208,28	194,75	239,56	270,06	249,56	
Kap + Kuru Örnek Ağı	rlığı (gr)	186,77	171,27	198,67	212,14	189,56	
Kuru Ağırlığı (gr)		130,56	114,82	144,60	156,98	133,26	
Su Ağırlığı (gr)		21,51	23,48	40,89	57,92	60,00	
Su Muhtevası (w) (%)		16,48	20,45	28,28	36,90	45,02	
Kuru Birim Hacim Ağ.	(kN/m^3)	13,18	13,94	13,89	12,75	11,22	

Tablo 5.9. CH Numunesinin Standart Kompaksiyon Sonuçları

Şekil 5.23. CH Numunesi İçin Kompaksiyon Eğrisi

KOMPAKSİYON DENEYİ							
Örneğin Tanımı	%10 Orta Kur	%10 Orta Kum İçeren CH		Kalıbın Çapı (cm)			
Deneyi Yapan	Cemil G	ÜVEN	Kalıbın	Yüksekliğ	ği (cm)	10,09	
Örnek Ağırlığı (kg)	10)	Kalıbın	İç Hacmi	(cm^2)	952,32	
Deney No		1	2	3	4	5	
Kalıp Ağırlığı (gr)		8000	8000	8000			
Kalıp + Zemin Ağırlı	ğı (gr)	9632	9756	9642			
Sıkıştırılmış Zemin Ağırlığı (gr)		1632	1756	1642			
Yaş Birim Hac. Ağırlık (kN/m ³)		16,81	18,09	16,91			
Kap No		512	538	531			
Kap Ağırlığı (gr)		49,86	47,19	50,34			
Kap + Yaş Örnek Ağ	ırlığı (gr)	158,36	169,14	174,45			
Kap + Kuru Örnek A	ğırlığı (gr)	142,12	144,14	142,14			
Kuru Ağırlığı (gr)		92,26	96,95	91,80			
Su Ağırlığı (gr)		16,24	25,00	32,31			
Su Muhtevası (w) (%)		17,60	25,79	35,19			
Kuru Birim Hacim A	ğ. (kN/m ³)	14,30	14,38	12,51			

Tablo 5.10. %10 Orta Kum İçeren CH Numunesinin Standart Kompaksiyon Sonuçları

Şekil 5.24. %10 Orta Kum İçeren CH Numunesi İçin Kompaksiyon Eğrisi

KOMPAKSİYON DENEYİ							
Örneğin Tanımı	%25 Orta Kur	%25 Orta Kum İçeren CH		Kalıbın Çapı (cm)			
Deneyi Yapan	Cemil G	ÜVEN	Kalıbın	Yüksekliğ	ği (cm)	10,09	
Örnek Ağırlığı (kg)	10)	Kalıbın	İç Hacmi	(cm^2)	952,32	
Deney No		1	2	3	4	5	
Kalıp Ağırlığı (gr)		8000	8000	8000			
Kalıp + Zemin Ağırlı	ğı (gr)	9750	9865	9850			
Sıkıştırılmış Zemin Ağırlığı (gr)		1750	1865	1850			
Yaş Birim Hac. Ağırlık (kN/m ³)		18,03	19,21	19,06			
Kap No		512	538	531			
Kap Ağırlığı (gr)		49,86	47,19	50,34			
Kap + Yaş Örnek Ağ	ırlığı (gr)	158,51	167,73	191,62			
Kap + Kuru Örnek A	ğırlığı (gr)	143,24	146,83	162,96			
Kuru Ağırlığı (gr)		93,39	99,64	112,62			
Su Ağırlığı (gr)		15,27	20,90	28,66			
Su Muhtevası (w) (%)		16,35	20,98	25,45			
Kuru Birim Hacim A	ğ. (kN/m ³)	15,49	15,88	15,19			

Tablo 5.11. %25 Orta Kum İçeren CH Numunesinin Standart Kompaksiyon Sonuçları

Şekil 5.25. %25 Orta Kum İçeren CH Numunesi İçin Kompaksiyon Eğrisi

KOMPAKSİYON DENEYİ							
Örneğin Tanımı	%50 Orta Kur	%50 Orta Kum İçeren CH		Kalıbın Çapı (cm)			
Deneyi Yapan	Cemil G	ÜVEN	Kalıbın	Yüksekliğ	gi (cm)	10,09	
Örnek Ağırlığı (kg)	6		Kalıbın	İç Hacmi	(cm^2)	952,32	
Deney No		1	2	3	4	5	
Kalıp Ağırlığı (gr)		8000	8000	8000			
Kalıp + Zemin Ağırlı	ğı (gr)	9710	9899	9812			
Sıkıştırılmış Zemin Ağırlığı (gr)		1710	1899	1812			
Yaş Birim Hac. Ağırlık (kN/m ³)		17,61	19,56	18,67			
Kap No		512	551	531			
Kap Ağırlığı (gr)		49,86	44,19	50,34			
Kap + Yaş Örnek Ağ	ırlığı (gr)	160,45	178,65	185,56			
Kap + Kuru Örnek A	ğırlığı (gr)	148,50	160,24	158,23			
Kuru Ağırlığı (gr)		98,64	116,05	107,89			
Su Ağırlığı (gr)		11,95	18,41	27,33			
Su Muhtevası (w) (%)		12,11	15,86	25,33			
Kuru Birim Hacim A	ğ. (kN/m ³)	15,71	16,88	14,89			

Tablo 5.12. %50 Orta Kum İçeren CH Numunesinin Standart Kompaksiyon Sonuçları

Şekil 5.26. %50 Orta Kum İçeren CH Numunesi İçin Kompaksiyon Eğrisi

KOMPAKSİYON DENEYİ						
Örneğin Tanımı	%75 Orta Kur	%75 Orta Kum İçeren CH		Kalıbın Çapı (cm)		
Deneyi Yapan	Cemil G	ÜVEN	Kalıbın	Yüksekliğ	gi (cm)	10,09
Örnek Ağırlığı (kg)	6		Kalıbın	İç Hacmi	(cm^2)	952,32
Deney No		1	2	3	4	5
Kalıp Ağırlığı (gr)		8000	8000	8000		
Kalıp + Zemin Ağırlı	ğı (gr)	9800	10030	9955		
Sıkıştırılmış Zemin Ağırlığı (gr)		1800	2030	1955		
Yaş Birim Hac. Ağırlık (kN/m ³)		18,54	20,91	20,14		
Kap No		543	561	560		
Kap Ağırlığı (gr)		51,21	47,85	45,71		
Kap + Yaş Örnek Ağ	ırlığı (gr)	175,25	227,47	233,43		
Kap + Kuru Örnek A	ğırlığı (gr)	167,36	204,25	202,48		
Kuru Ağırlığı (gr)		130,56	114,82	144,60		
Su Ağırlığı (gr)		10,41	23,22	30,95		
Su Muhtevası (w) (%)		8,96	14,85	19,74		
Kuru Birim Hacim A	ğ. (kN/m ³)	17,02	18,21	16,82		

Tablo 5.13. %75 Orta Kum İçeren CH Numunesinin Standart Kompaksiyon Sonuçları

Şekil 5.27. %75 Orta Kum İçeren CH Numunesi İçin Kompaksiyon Eğrisi

Numune	Optimum Su Muhtevası	Kuru Birim Hacim Ağırlığı
СН	24,5	14,10
%10 Orta Kum İçeren CH Numunesi	22	14,58
%25 Orta Kum İçeren CH Numunesi	20	15,90
%50 Orta Kum İçeren CH Numunesi	17,5	16,80
%75 Orta Kum İçeren CH Numunesi	14	18,22

Tablo 5.14. Numunelerin Kuru Birim Hacim Ağırlık ve Optimum Su Muhtevaları Sonuçları

Optimum su muhtevaları da belirlendikten sonra; CH için su muhtevası 24,5; %10 ince, orta, kaba kum içeren CH numunesi için su muhtevası %22; %25 ince, orta, kaba kum içeren CH numunesi için su muhtevası %20; %50 ince, orta, kaba kum içeren CH numunesi için su muhtevası %17,5; %75 ince, orta, kaba kum içeren CH numunesi için su muhtevası %14 olarak deney numunelerinin hazırlamasına geçildi. Önce kil ve kumun bünyesinde nemden kaynaklanan suyu kurutmak için etüve atılarak 24 saat bekletildi. Çıkarılan numuneler kapaklı kaplara konuldu. Yapılacak karışım için belirlenen kil ve kum miktarları tartılarak karıştırıldı ve bu karışımın homojen olmasını sağlamak maksadıyla mikser kullanıldı. Her karışım 3 dakika sabit hızda mikserde karıştırıldı. Karışım geniş bir kap içerisine alınarak belirlenen su muhtevası için karışıma su ilave edildi. Örneğin 2kg'lık %10 ince kumda %22 su muhtevası için; 1800gram kil, 200 gram ince kum ve 440ml su ilave edilerek karışım elle iyice karıştırıldı. İçerisine konulan suyu, bütün numune daneleri alsın diye üzerleri poşetlenerek 24 saat oda sıcaklığında beklemeye bırakıldı.

Şekil 5.28. Havadan Aldığı Nemi Kaybetsin Diye Numunenin Etüve Atılması

Şekil 5.29. Kum ve Kilin Mikser Kabına Konulması

Şekil 5.30. Kum ve Kilin Mikserde Karışımı

Şekil 5.31. Belirlenen Su Muhtevasında Karışımın Hazırlanması

Şekil 5.32. Karışım Hazırlandıktan Sonra

Şekil 5.33. Hazırlanan Karışımların Oda Sıcaklığında Bekletilmesi

Numunelerin optimum su muhtevalarında hazırlanmasının ardından standart kompaksiyon deneyi yapılarak numunenin sıkıştırılması sağlandı. 3 kademe halinde 25 vuruş yapacak şekilde 2,5kg tokmakla sıkıştırma işlemi gerçekleştirildi. Numune sıkıştırıldıktan sonra 3 adet üç eksenli deney tüpü yağlanarak numunenin içine itildi. Aynı şekilde 3 adet kesme kutusu halkası da numune içerisine itildi. Tüplerin ve kesme kutusu halkasının itilme işlemi beton pres makinesinde üste bulunan kuvvet kolunun çevrilmesiyle, tüpler ve kesme halkası üzerine kuvvet uygulanarak numuneye batması sağlandı. Kompaksiyon kalıbından çıkarılan tüp ve kesme halkaları içindeki numunelerin, üst ve alt yüzeyleri düzeltilerek hava almaması için bir poşet içine konuldu. Tüp içerisindeki numuneler kriko yardımıyla çıkarılarak konsolidasyonsuz drenajsız üç eksenli basınç deneyi yapıldı. Bu işlemler bütün hazırlanan deney numuneleri için tekrarlandı.

Şekil 5.34. Kesme Kutusu Halkası ve Üç Eksenli Deney Tüpleri

Şekil 5.35. Beton Pres Makinesinde Tüplerin Numune İçerisine İtilmesi

Şekil 5.36. Beton Pres Makinesinde Kesme Kutusu Halkalarının Numune İçerisine İtilmesi

Şekil 5.37. Numunenin Kriko Yardımıyla Kompaksiyon Kalıbından Çıkarılması

Şekil 5.38. Üç Eksenli Basınç Deneyi Cihazı

Şekil 5.39. Kesme Kutusu Cihazı

Örneğin Tanımı	СН	Kuvvet Halka	ISI NO	4693
Deneyi Yapan	Cemil GÜVEN	Kuvvet Halka	Kuvvet Halkası Katsayısı	
Deney Hızı	0,8mm/dak	Özgül Ağırlık		2,62
Örnek No.		1	2	3
Örnek Çapı, (cm)		3,57	3,60	3,61
Örnek Alanı, (cm ²)		10,01	10,18	10,24
Örnek Yüksekliği, (cm)	7,28	7,05	7,44	
Örnek Hacmi, (cm ³)	72,87	71,76	76,15	
Çevre Basıncı, σ_3 , (kPa)	100	200	300	
Yaş Örnek Ağırlığı, (gr)	134,20	136,94	143,83	
Kuru Örnek Ağırlığı, (gr)		107,45	109,84	115,26
Su Ağırlığı, (gr)		26,75	27,10	28,57
Su Muhtevası, (%)		24,9	24,7	24,8
Dane Hacmi, (cm ³)	41,01	41,92	43,99	
Boşluk Hacmi, (cm ³)	31,86	29,84	32,16	
Porozite, (%)		43,7	41,6	42,2
Doygunluk Derecesi, (%)		84,0	90,8	88,8

Tablo 5.15. CH Numunesinin UU Deneyinde Fiziksel Özellikleri

Tablo 5.16. CH Numunesinin 100 kPa da c ve Ø'nın UU Deneyi İle Bulunması

	$\sigma_3 = 100 \text{ kPa}$						
∆h (mm/100)	Kuvvet Halkası	3	A (cm ²)	P (N)	σ (kPa)		
0	0	0,0000	10,01	0,00	0,00		
10	8	0,0014	10,02	16,97	16,93		
25	10	0,0034	10,04	21,21	21,12		
50	15	0,0069	10,08	31,82	31,57		
75	19	0,0103	10,11	40,30	39,84		
100	23	0,0137	10,15	48,78	48,07		
150	31	0,0206	10,22	65,75	64,33		
200	38	0,0275	10,29	80,60	78,31		
300	49	0,0412	10,44	103,93	99,55		
400	52	0,0549	10,59	110,29	104,13		
500	55	0,0687	10,75	116,66	108,54		
600	60	0,0824	10,91	127,26	116,66		
700	75	0,0962	11,07	159,08	143,64		
800	80	0,1099	11,25	169,68	150,89		
900	79	0,1236	11,42	167,56	146,70		
1000	79	0,1374	11,60	167,56	144,40		
1100	78	0,1511	11,79	165,44	140,30		
1200	-	-	-	-	-		

	$\sigma_3 = 200 \text{ kPa}$						
∆h (mm/100)	Kuvvet Halkası	3	A (cm ²)	P (N)	σ (kPa)		
0	0	0,0000	10,18	0,00	0,00		
10	6	0,0014	10,19	12,73	12,48		
25	7	0,0035	10,21	14,85	14,53		
50	18	0,0071	10,25	38,18	37,24		
75	25	0,0106	10,29	53,03	51,54		
100	30	0,0142	10,33	63,63	61,63		
150	38	0,0213	10,40	80,60	77,50		
200	45	0,0284	10,48	95,45	91,11		
300	58	0,0426	10,63	123,02	115,71		
400	70	0,0567	10,79	148,47	137,59		
500	80	0,0709	10,96	169,68	154,88		
600	84	0,0851	11,13	178,16	160,14		
700	87	0,0993	11,30	184,53	163,29		
800	88	0,1135	11,48	186,65	162,56		
900	91	0,1277	11,67	193,01	165,41		
1000	89	0,1418	11,86	188,77	159,15		
1100	84	0,1560	12,06	178,16	147,72		
1200	80	0,1702	12,27	169,68	138,33		
1300	-	-	-	-	-		
1400	-	-	-	-	-		
1500	-	-	-	-	-		
1600	-	-	-	-	-		
1700	-	-	-	-	-		

Tablo 5.17. CH Numunesinin 200 kPa da c ve Ø'nın UU Deneyi İle Bulunması

		$\sigma_3 = 3$	00 kPa		
∆h (mm/100)	Kuvvet Halkası	3	A (cm ²)	P (N)	σ(kPa)
0	0	0,0000	10,24	0,00	0,00
10	6	0,0014	10,25	12,73	12,42
25	8	0,0035	10,27	16,97	16,52
50	15	0,0071	10,31	31,82	30,86
75	27	0,0106	10,35	57,27	55,35
100	35	0,0142	10,38	74,24	71,50
150	46	0,0213	10,46	97,57	93,29
200	53	0,0284	10,53	112,41	106,71
300	68	0,0426	10,69	144,23	134,91
400	78	0,0567	10,85	165,44	152,46
500	85	0,0709	11,02	180,29	163,65
600	93	0,0851	11,19	197,25	176,32
700	100	0,0993	11,36	212,10	186,65
800	109	0,1135	11,55	231,19	200,24
900	113	0,1277	11,73	239,67	204,27
1000	111	0,1418	11,93	235,43	197,39
1100	110	0,1560	12,13	233,31	192,38
1200	109	0,1702	12,33	231,19	187,43
1300	-		-	-	
1400	-	-	-	-	-
1500	-	_	-	-	_
1600	-	-	-	-	-
1700	-	-	-	-	-

Tablo 5.18. CH Numunesinin 300 kPa da c ve Ø'nın UU Deneyi İle Bulunması

Şekil 5.40. CH Numunesinin Gerilme-Şekil Değiştirme İlişkisi

Şekil 5.41.CH Numunesi İçin UU Deneyi Sonucunda Yenilme Zarfı ve Mohr Daireleri

Örneğin Tanımı	CH + % 10 İnce Kum	Kuvvet Halka	isi No	4693
Deneyi Yapan	Cemil GÜVEN	Kuvvet Halka	ısı Katsayısı	2,121
Deney Hızı	0,8mm/dak			
Örnek No.		1	2	3
Örnek Çapı, (cm)		3,53	3,59	3,58
Örnek Alanı, (cm ²)	9,79	10,12	10,07	
Örnek Yüksekliği, (cr	730,00	7,29	7,36	
Örnek Hacmi, (cm ³)	7144,34	73,79	74,09	
Çevre Basıncı, σ_3 , (kl	100	200	300	
Yaş Örnek Ağırlığı, (gr)	138,34	137,80	144,97
Kuru Örnek Ağırlığı,	112,64	112,79	118,12	
Su Ağırlığı, (gr)	25,70	25,01	26,84	
Su Muhtevası, (%)		22,8	22,2	22,7

Tablo 5.19. %10 İnce Kum İçeren CH Numunesinin UU Deneyinde Fiziksel Özellikleri

Tablo 5.20. %10 İnce Kum İçeren CH Numunesinin 100 kPa da c ve Ø'nın UU Deneyi İle Bulunması

	$\sigma_3 = 100 \text{ kPa}$						
∆h (mm/100)	Kuvvet Halkası	3	A (cm ²)	P (N)	σ (kPa)		
0	0	0,0000	9,79	0,00	0,00		
10	9	0,0014	9,80	19,09	19,48		
25	18	0,0034	9,82	38,18	38,88		
50	26	0,0068	9,85	55,15	55,96		
75	31	0,0103	9,89	65,75	66,49		
100	35	0,0137	9,92	74,24	74,81		
150	40	0,0205	9,99	84,84	84,91		
200	45	0,0274	10,06	95,45	94,85		
300	50	0,0411	10,21	106,05	103,91		
400	55	0,0548	10,35	116,66	112,67		
500	61	0,0685	10,51	129,38	123,15		
600	68	0,0822	10,66	144,23	135,26		
700	69	0,0959	10,82	146,35	135,20		
800	70	0,1096	10,99	148,47	135,08		
900	73	0,1233	11,16	154,83	138,70		
1000	80	0,1370	11,34	169,68	149,63		
1100	86	0,1507	11,52	182,41	158,30		
1200	83	0,1644	11,71	176,04	150,31		
1300	80	0,1781	11,91	169,68	142,50		
1400	80	0,1918	12,11	169,68	140,13		
1500	-	-	-	-	-		
1600	-	-	-	-	-		

		$\sigma_3 = 2$	00 kPa		
∆h (mm/100)	Kuvvet Halkası	3	A (cm ²)	P (N)	σ(kPa)
0	0	0,0000	10,12	0,00	0,00
10	15	0,0014	10,14	31,82	31,39
25	26	0,0034	10,16	55,15	54,29
50	35	0,0069	10,19	74,24	72,84
75	40	0,0103	10,23	84,84	82,95
100	45	0,0137	10,26	95,45	93,00
150	50	0,0206	10,33	106,05	102,61
200	54	0,0274	10,41	114,53	110,05
300	57	0,0412	10,56	120,90	114,52
400	60	0,0549	10,71	127,26	118,82
500	65	0,0686	10,87	137,87	126,86
600	72	0,0823	11,03	152,71	138,45
700	79	0,0960	11,20	167,56	149,64
800	80	0,1097	11,37	169,68	149,23
900	81	0,1235	11,55	171,80	148,77
1000	82	0,1372	11,73	173,92	148,25
1100	87	0,1509	11,92	184,53	154,79
1200	90	0,1646	12,12	190,89	157,54
1300	87	0,1783	12,32	184,53	149,79
1400	83	0,1920	12,53	176,04	140,52
1500	81	0,2058	12,74	171,80	134,80
1600	-	-	-	-	-
1700	-	-	-	-	-

Tablo 5.21. %10 İnce Kum İçeren CH Numunesinin 200 kPa da c ve Ø'nın UU Deneyi İle Bulunması

		$\sigma_3 = 3$	00 kPa		
∆h (mm/100)	Kuvvet Halkası	3	A (cm ²)	P (N)	σ(kPa)
0	0	0,0000	10,07	0,00	0,00
10	15	0,0014	10,08	31,82	31,56
25	28	0,0034	10,10	59,39	58,80
50	34	0,0069	10,14	72,11	71,15
75	40	0,0103	10,17	84,84	83,42
100	45	0,0137	10,21	95,45	93,52
150	50	0,0206	10,28	106,05	103,19
200	54	0,0274	10,35	114,53	110,66
300	60	0,0412	10,50	127,26	121,22
400	70	0,0549	10,65	148,47	139,40
500	76	0,0686	10,81	161,20	149,16
600	78	0,0823	10,97	165,44	150,83
700	79	0,0960	11,14	167,56	150,48
800	80	0,1097	11,31	169,68	150,07
900	82	0,1235	11,48	173,92	151,45
1000	86	0,1372	11,67	184,53	156,35
1100	88	0,1509	11,85	186,65	157,45
1200	85	0,1646	12,05	180,29	149,62
1300	80	0,1783	12,25	169,68	138,51
1400	80	0,1920	12,46	169,68	136,20
1500	-	-	-	-	-
1600	-	-	-	-	-
1700	-	-	-	-	-

Tablo 5.22. %10 İnce Kum İçeren CH Numunesinin 300 kPa da c ve Ø'nın UU Deneyi İle Bulunması

Şekil 5.42. % 10 İnce Kum İçeren CH Numunesinin Gerilme-Şekil Değiştirme İlişkisi

Şekil 5.43. %10 İnce Kum İçeren CH Numunesinin UU Deneyi Sonucunda Yenilme Zarfi ve Mohr Daireleri
Örneğin Tanımı	Örneğin Tanımı CH + % 10 Orta Kum		Kuvvet Halkası No	
Deneyi Yapan	Cemil GÜVEN	Kuvvet Halka	sı Katsayısı	2,121
Deney Hızı	0,8mm/dak			
Örnek No.		1	2	3
Örnek Çapı, (cm)		3,57	3,58	3,51
Örnek Alanı, (cm ²)	10,01	10,07	9,68	
Örnek Yüksekliği, (cr	7,19	7,35	7,34	
Örnek Hacmi, (cm ³)		71,97	73,98	71,02
Çevre Basıncı, o3, (kl	Pa)	100	200	300
Yaş Örnek Ağırlığı, (gr)	140,66	139,62	137,49
Kuru Örnek Ağırlığı,	115,02	113,85	112,05	
Su Ağırlığı, (gr)		25,64	25,77	25,44
Su Muhtevası, (%)		22,3	22,6	22,7

Tablo 5.23. %10 Orta Kum İçeren CH Numunesinin UU Deneyinde Fiziksel Özellikleri

Tablo 5.24 %10 Orta Kum İçeren CH Numunesinin 100 kPa da c ve Ø'nın UU Deneyi İle Bulunması

$\sigma_3 = 100 \text{ kPa}$					
∆h (mm/100)	Kuvvet Halkası	3	A (cm ²)	P (N)	σ(kPa)
0	0	0,0000	10,01	0,00	0,00
10	8	0,0014	10,02	16,97	16,93
25	16	0,0035	10,04	33,94	33,78
50	21	0,0070	10,08	44,54	44,19
75	22	0,0104	10,12	46,66	46,13
100	24	0,0139	10,15	50,90	50,15
150	28	0,0209	10,22	59,39	58,09
200	32	0,0278	10,30	67,87	65,92
300	36	0,0417	10,45	76,36	73,10
400	41	0,0556	10,60	86,96	82,04
500	48	0,0695	10,76	101,81	94,64
600	50	0,0834	10,92	106,05	97,10
700	51	0,0974	11,09	108,17	97,54
800	52	0,1113	11,26	110,29	97,92
900	53	0,1252	11,44	112,41	98,25
1000	55	0,1391	11,63	116,66	100,33
1100	60	0,1530	11,82	127,26	107,68
1200	61	0,1669	12,02	129,38	107,68
1300	63	0,1808	12,22	133,62	109,36
1400	65	0,1947	12,43	137,87	110,91
1500	66	0,2086	12,65	139,99	110,67
1600	67	0,2225	12,87	142,11	110,38
1700	70	0,2364	13,11	148,47	113,25

	$\sigma_3 = 200 \text{ kPa}$					
∆h (mm/100)	Kuvvet Halkası	3	A (cm ²)	P (N)	σ(kPa)	
0	0	0,0000	10,07	0,00	0,00	
10	7	0,0014	10,08	14,85	14,73	
25	10	0,0034	10,10	21,21	21,00	
50	12	0,0068	10,13	25,45	25,11	
75	14	0,0102	10,17	29,69	29,20	
100	16	0,0136	10,20	33,94	33,25	
150	20	0,0204	10,28	42,42	41,28	
200	21	0,0272	10,35	44,54	43,05	
300	23	0,0408	10,49	48,78	46,49	
400	27	0,0544	10,65	57,27	53,80	
500	30	0,0680	10,80	63,63	58,91	
600	32	0,0816	10,96	67,87	61,92	
700	37	0,0952	11,13	78,48	70,54	
800	40	0,1088	11,30	84,84	75,11	
900	45	0,1224	11,47	95,45	83,21	
1000	49	0,1361	11,65	103,93	89,20	
1100	52	0,1497	11,84	110,29	93,17	
1200	55	0,1633	12,03	116,66	96,97	
1300	56	0,1769	12,23	118,78	97,13	
1400	59	0,1905	12,43	125,14	100,64	
1500	61	0,2041	12,65	129,38	102,30	
1600	63	0,2177	12,87	133,62	103,85	
1700	65	0,2313	13,09	137,87	105,28	

Tablo 5.25. %10 Orta Kum İçeren CH Numunesinin 200 kPa da c ve Ø'nın UU Deneyi İle Bulunması

		$\sigma_3 = 3$	00 kPa		
∆h (mm/100)	Kuvvet Halkası	3	A (cm ²)	P (N)	σ(kPa)
0	0	0,0000	9,68	0,00	0,00
10	10	0,0014	9,69	21,21	21,89
25	16	0,0034	9,71	33,94	34,95
50	20	0,0068	9,74	42,42	43,54
75	24	0,0102	9,78	50,90	52,07
100	26	0,0136	9,81	55,15	56,22
150	28	0,0204	9,88	59,39	60,12
200	30	0,0272	9,95	63,63	63,97
300	33	0,0408	10,09	69,99	69,38
400	36	0,0544	10,23	76,36	74,62
500	41	0,0680	10,38	86,96	83,76
600	42	0,0816	10,54	89,08	84,55
700	43	0,0952	10,69	91,20	85,28
800	44	0,1088	10,86	93,32	85,95
900	45	0,1224	11,03	95,45	86,56
1000	46	0,1361	11,20	97,57	87,11
1100	56	0,1497	11,38	118,78	104,38
1200	54	0,1633	11,56	114,53	99,04
1300	53	0,1769	11,76	112,41	95,63
1400	51	0,1905	11,95	108,17	90,50
1500	-	-	-	-	-
1600	-	-	-	-	-
1700	-	-	-	-	-

Tablo 5.26. %10 Orta Kum İçeren CH Numunesinin 300 kPa da c ve Ø'nın UU Deneyi İle Bulunması

Şekil 5.44. % 10 Orta Kum İçeren CH Numunesinin Gerilme-Şekil Değiştirme İlişkisi

Şekil 5.45. %10 Orta Kum İçeren CH Numunesinin UU Deneyi Sonucunda Yenilme Zarfi ve Mohr Daireleri

119

Örneğin Tanımı	CH + % 10 Kaba Kum	Kuvvet Halka	Kuvvet Halkası No	
Deneyi Yapan	Cemil GÜVEN	Kuvvet Halka	sı Katsayısı	2,121
Deney Hızı	0,8mm/dak			
Örnek No.		1	2	3
Örnek Çapı, (cm)		3,55	3,60	3,59
Örnek Alanı, (cm ²)	9,90	10,18	10,12	
Örnek Yüksekliği, (cı	7,10	7,21	7,20	
Örnek Hacmi, (cm ³)		70,28	73,39	72,88
Çevre Basıncı, σ_3 , (kl	Pa)	100	200	300
Yaş Örnek Ağırlığı, (gr)	132,83	139,46	139,43
Kuru Örnek Ağırlığı,	108,53	113,99	114,52	
Su Ağırlığı, (gr)		24,31	25,47	24,91
Su Muhtevası, (%)		22,4	22,3	21,8

Tablo 5.27. %10 Kaba Kum İçeren CH Numunesinin UU Deneyinde Fiziksel Özellikleri

Tablo 5.28. %10 Kaba Kum İçeren CH Numunesinin 100 kPa da c ve Ø'nın UU Deneyi İle Bulunma.

		$\sigma_3 = 1$	00 kPa		
∆h (mm/100)	Kuvvet Halkası	3	A (cm ²)	P (N)	σ (kPa)
0	0	0,0000	9,90	0,00	0,00
10	18	0,0014	9,91	38,18	38,52
25	30	0,0035	9,93	63,63	64,06
50	42	0,0070	9,97	89,08	89,37
75	51	0,0106	10,00	108,17	108,13
100	60	0,0141	10,04	127,26	126,76
150	74	0,0211	10,11	156,95	155,22
200	80	0,0282	10,18	169,68	166,60
300	83	0,0423	10,33	176,04	170,34
400	86	0,0563	10,49	182,41	173,90
500	98	0,0704	10,65	207,86	195,21
600	110	0,0845	10,81	233,31	215,80
700	117	0,0986	10,98	248,16	226,00
800	121	0,1127	11,15	256,64	230,07
900	118	0,1268	11,33	250,28	220,81
1000	108	0,1408	11,52	229,07	198,83
1100	108	0,1549	11,71	229,07	195,57
1200	-	-	-	-	-
1300	-	-	-	-	-
1400	-	-	-	-	-
1500	-	-	-	-	-
1600	-	-	-	-	-

		$\sigma_3 = 2$	00 kPa		
∆h (mm/100)	Kuvvet Halkası	3	A (cm ²)	P (N)	σ (kPa)
0	0	0,0000	10,18	0,00	0,00
10	21	0,0014	10,19	44,54	43,70
25	36	0,0035	10,21	76,36	74,75
50	52	0,0069	10,25	110,29	107,60
75	70	0,0104	10,29	148,47	144,35
100	84	0,0139	10,32	178,16	172,61
150	98	0,0208	10,40	207,86	199,96
200	110	0,0277	10,47	233,31	222,85
300	128	0,0416	10,62	271,49	255,62
400	147	0,0555	10,78	311,79	289,32
500	152	0,0693	10,94	322,39	294,77
600	143	0,0832	11,10	303,30	273,18
700	138	0,0971	11,27	292,70	259,64
800	138	0,1110	11,45	292,70	255,65
900	-	-	-	-	-
1000	-	-	-	-	-
1100	-	-	-	-	-
1200	-	-	-	-	-
1300	-	-	-	-	-
1400	-	-	-	-	-
1500	-	-	-	-	-
1600	-	-	-	-	-
1700	-	-	-	-	-

Tablo 5.29. %10 Kaba Kum İçeren CH Numunesinin 200 kPa da c ve Ø'nın UU Deneyi İle Bulunma.

		$\sigma_3 = 3$	00 kPa		
∆h (mm/100)	Kuvvet Halkası	3	A (cm ²)	P (N)	σ (kPa)
0	0	0,0000	10,12	0,00	0,00
10	20	0,0014	10,14	42,42	41,85
25	36	0,0035	10,16	76,36	75,17
50	47	0,0069	10,19	99,69	97,80
75	63	0,0104	10,23	133,62	130,64
100	79	0,0139	10,26	167,56	163,24
150	110	0,0208	10,34	233,31	225,70
200	142	0,0277	10,41	301,18	289,29
300	168	0,0416	10,56	356,33	337,38
400	188	0,0555	10,72	398,75	372,08
500	192	0,0693	10,88	407,23	374,41
600	196	0,0832	11,04	415,72	376,52
700	204	0,0971	11,21	432,68	385,96
800	212	0,1110	11,39	449,65	394,93
900	208	0,1248	11,57	441,17	381,43
1000	203	0,1387	11,75	430,56	366,37
1100	201	0,1526	11,94	426,32	356,91
1200	-	-	-	-	-
1300	-	-	-	-	-
1400	-	-	-	-	-
1500	-	-	-	-	-
1600	-	-	-	-	-
1700	-	-	-	-	-

Tablo 5.30. %10 Kaba Kum İçeren CH Numunesinin 300 kPa da c ve Ø'nın UU Deneyi İle Bulunma.

Şekil 5.46. % 10 Kaba Kum İçeren CH Numunesinin Gerilme-Şekil Değiştirme İlişkisi

Şekil 5.47. %10 Kaba Kum İçeren CH Numunesinin UU Deneyi Sonucunda Yenilme Zarfı ve Mohr Daireleri

Örneğin Tanımı	Örneğin Tanımı CH + % 25 İnce Kum		Kuvvet Halkası No	
Deneyi Yapan	Cemil GÜVEN	Kuvvet Halka	ısı Katsayısı	2,121
Deney Hızı	0,8mm/dak			
Örnek No.		1	2	3
Örnek Çapı, (cm)		3,55	3,57	3,60
Örnek Alanı, (cm ²)	9,90	10,01	10,18	
Örnek Yüksekliği, (cr	7,38	7,59	7,62	
Örnek Hacmi, (cm ³)		73,05	75,97	77,56
Çevre Basıncı, σ_3 , (kl	Pa)	100	200	300
Yaş Örnek Ağırlığı, (gr)	148,31	145,88	154,51
Kuru Örnek Ağırlığı,	122,89	121,74	128,65	
Su Ağırlığı, (gr)		25,42	24,14	25,86
Su Muhtevası, (%)	20,7	19,8	20,1	

Tablo 5.31. %25 İnce Kum İçeren CH Numunesinin UU Deneyinde Fiziksel Özellikleri

Tablo 5.32. %25 İnce Kum İçeren CH Numunesinin 100 kPa da c ve Ø'nın UU Deneyi İle Bulunması

		$\sigma_3 = 1$	00 kPa		
∆h (mm/100)	Kuvvet Halkası	3	A (cm ²)	P (N)	σ (kPa)
0	0	0,0000	9,90	0,00	0,00
10	18	0,0014	9,91	38,18	38,52
25	30	0,0034	9,93	63,63	64,07
50	48	0,0068	9,97	101,81	102,16
75	60	0,0102	10,00	127,26	127,27
100	70	0,0136	10,03	148,47	147,97
150	80	0,0203	10,10	169,68	167,94
200	91	0,0271	10,17	193,01	189,72
300	114	0,0407	10,32	241,79	234,36
400	132	0,0542	10,47	279,97	267,53
500	144	0,0678	10,62	305,42	287,67
600	155	0,0813	10,77	328,76	305,14
700	172	0,0949	10,94	364,81	333,61
800	185	0,1084	11,10	392,39	353,46
900	191	0,1220	11,27	405,11	359,37
1000	189	0,1355	11,45	400,87	350,12
1100	189	0,1491	11,63	400,87	344,63
1200	189	0,1626	11,82	400,87	339,15
1300	-	-	-	-	-
1400	-	-	-	-	-
1500	-	-	-	-	-
1600	-	-	-	-	-

	$\sigma_3 = 200 \text{ kPa}$					
∆h (mm/100)	Kuvvet Halkası	3	A (cm ²)	P (N)	σ(kPa)	
0	0	0,0000	10,01	0,00	0,00	
10	13	0,0013	10,02	27,57	27,51	
25	28	0,0033	10,04	59,39	59,13	
50	45	0,0066	10,08	95,45	94,72	
75	59	0,0099	10,11	125,14	123,78	
100	70	0,0132	10,14	148,47	146,37	
150	89	0,0198	10,21	188,77	184,86	
200	103	0,0264	10,28	218,46	212,50	
300	130	0,0395	10,42	275,73	264,57	
400	151	0,0527	10,57	320,27	303,09	
500	167	0,0659	10,72	354,21	330,55	
600	169	0,0791	10,87	358,45	329,79	
700	179	0,0922	11,03	379,66	344,31	
800	198	0,1054	11,19	419,96	375,33	
900	209	0,1186	11,36	443,29	390,34	
1000	212	0,1318	11,53	449,65	390,03	
1100	218	0,1449	11,71	462,38	394,98	
1200	220	0,1581	11,89	466,62	392,46	
1300	218	0,1713	12,08	462,38	382,81	
1400	220	0,1845	12,27	466,62	380,18	
1500	229	0,1976	12,48	485,71	389,34	
1600	232	0,2108	12,68	492,07	387,96	
1700	224	0,2240	12,90	475,10	368,33	

Tablo 5.33. %25 İnce Kum İçeren CH Numunesinin 200 kPa da c ve Ø'nın UU Deneyi İle Bulunması

		$\sigma_3 = 3$	00 kPa		
∆h (mm/100)	Kuvvet Halkası	3	A (cm ²)	P (N)	σ (kPa)
0	0	0,0000	10,18	0,00	0,00
10	10	0,0013	10,19	21,21	20,81
25	23	0,0033	10,21	48,78	47,77
50	40	0,0066	10,25	84,84	82,80
75	50	0,0099	10,28	106,05	103,16
100	65	0,0132	10,31	137,87	133,66
150	78	0,0198	10,38	165,44	159,32
200	90	0,0264	10,45	190,89	182,60
300	120	0,0395	10,60	254,52	240,17
400	135	0,0527	10,75	286,34	266,48
500	150	0,0659	10,90	318,15	291,97
600	165	0,0791	11,05	349,97	316,64
700	172	0,0922	11,21	364,81	325,35
800	180	0,1054	11,38	381,78	335,54
900	176	0,1186	11,55	373,30	323,25
1000	170	0,1318	11,72	360,57	307,57
1100	160	0,1449	11,90	339,36	285,08
1200	-	-	-	-	-
1300	-	-	-	-	-
1400	-	-	-	-	-
1500	-	-	-	-	-
1600	-	-	-	-	-
1700	-	-	-	-	-

Tablo 5.34. %25 İnce Kum İçeren CH Numunesinin 300 kPa da c ve Ø'nın UU Deneyi İle Bulunması

Şekil5.48. % 25 İnce Kum İçeren CH Numunesinin Gerilme-Şekil Değiştirme İlişkisi

Şekil 5.49. %25 İnce Kum İçeren CH Numunesinin UU Deneyi Sonucunda Yenilme Zarfi ve Mohr Daireleri

Örneğin Tanımı	rneğin Tanımı CH + % 25 Orta Kum		Kuvvet Halkası No	
Deneyi Yapan	Cemil GÜVEN	Kuvvet Halka	sı Katsayısı	2,121
Deney Hızı	0,8mm/dak			
Örnek No.		1	2	3
Örnek Çapı, (cm)		3,58	3,56	3,49
Örnek Alanı, (cm ²)	10,07	9,95	9,57	
Örnek Yüksekliği, (cr	n)	7,31	7,38	7,30
Örnek Hacmi, (cm ³)		73,58	73,46	69,83
Çevre Basıncı, σ_3 , (kl	Pa)	100	200	300
Yaş Örnek Ağırlığı, (gr)	148,22	149,40	151,27
Kuru Örnek Ağırlığı,	123,28	123,93	125,85	
Su Ağırlığı, (gr)		24,94	25,47	25,42
Su Muhtevası, (%)		20,2	20,5	20,2

Tablo 5.35. %25 Orta Kum İçeren CH Numunesinin UU Deneyinde Fiziksel Özellikleri

Tablo 5.36. %25 Orta Kum İçeren CH Numunesinin 100 kPa da c ve Ø'nın UU Deneyi İle Bulunması

	$\sigma_3 = 100 \text{ kPa}$						
∆h (mm/100)	Kuvvet Halkası	3	A (cm ²)	P (N)	σ (kPa)		
0	0	0,0000	10,07	0,00	0,00		
10	15	0,0014	10,08	31,82	31,56		
25	25	0,0034	10,10	53,03	52,50		
50	39	0,0068	10,14	82,72	81,61		
75	50	0,0103	10,17	106,05	104,27		
100	58	0,0137	10,21	123,02	120,54		
150	75	0,0205	10,28	159,08	154,79		
200	90	0,0274	10,35	190,89	184,45		
300	120	0,0410	10,50	254,52	242,47		
400	146	0,0547	10,65	309,67	290,80		
500	159	0,0684	10,81	337,24	312,11		
600	170	0,0821	10,97	360,57	328,81		
700	180	0,0958	11,13	381,78	342,96		
800	200	0,1094	11,30	424,20	375,30		
900	216	0,1231	11,48	458,14	399,10		
1000	220	0,1368	11,66	466,62	400,15		
1100	210	0,1505	11,85	445,41	375,91		
1200	206	0,1642	12,04	436,93	362,81		
1300	215	0,1778	12,24	456,02	372,46		
1400	-	-	-	-	-		

		$\sigma_3 = 2$	00 kPa		
∆h (mm/100)	Kuvvet Halkası	3	A (cm ²)	P (N)	σ (kPa)
0	0	0,0000	9,95	0,00	0,00
10	15	0,0014	9,97	31,82	31,92
25	28	0,0034	9,99	59,39	59,46
50	43	0,0068	10,02	91,20	91,01
75	62	0,0102	10,06	131,50	130,77
100	77	0,0136	10,09	163,32	161,85
150	100	0,0203	10,16	212,10	208,75
200	118	0,0271	10,23	250,28	244,63
300	146	0,0407	10,38	309,67	298,46
400	177	0,0542	10,52	375,42	356,72
500	191	0,0678	10,68	405,11	379,42
600	196	0,0813	10,83	415,72	383,69
700	208	0,0949	11,00	441,17	401,18
800	219	0,1084	11,16	464,50	416,07
900	225	0,1220	11,34	477,23	420,97
1000	229	0,1355	11,51	485,71	421,84
1100	230	0,1491	11,70	487,83	417,04
1200	238	0,1626	11,89	504,80	424,68
1300	237	0,1762	12,08	502,68	416,05
1400	237	0,1897	12,28	502,68	409,21
1500	237	0,2033	12,49	502,68	402,36
1600	-	-	-	-	-
1700	-	-	-	-	-

Tablo 5.37. %25 Orta Kum İçeren CH Numunesinin 200 kPa da c ve Ø'nın UU Deneyi İle Bulunması

$\sigma_3 = 300 \text{ kPa}$						
∆h (mm/100)	Kuvvet Halkası	3	A (cm ²)	P (N)	σ (kPa)	
0	0	0,0000	9,57	0,00	0,00	
10	16	0,0014	9,58	33,94	35,43	
25	33	0,0034	9,60	69,99	72,92	
50	52	0,0068	9,63	110,29	114,51	
75	72	0,0102	9,66	152,71	158,01	
100	83	0,0136	9,70	176,04	181,53	
150	107	0,0203	9,76	226,95	232,42	
200	124	0,0271	9,83	263,00	267,48	
300	151	0,0407	9,97	320,27	321,18	
400	170	0,0542	10,11	360,57	356,49	
500	185	0,0678	10,26	392,39	382,39	
600	194	0,0813	10,41	411,47	395,16	
700	203	0,0949	10,57	430,56	407,40	
800	213	0,1084	10,73	451,77	421,06	
900	220	0,1220	10,89	466,62	428,29	
1000	225	0,1355	11,07	477,23	431,27	
1100	226	0,1491	11,24	479,35	426,39	
1200	227	0,1626	11,42	481,47	421,46	
1300	232	0,1762	11,61	492,07	423,77	
1400	239	0,1897	11,81	506,92	429,38	
1500	243	0,2033	12,01	515,40	429,27	
1600	238	0,2168	12,21	504,80	413,28	
1700	238	0,2304	12,43	504,80	406,13	

Tablo 5.38. %25 Orta Kum İçeren CH Numunesinin 300 kPa da c ve Ø'nın UU Deneyi İle Bulunması

Şekil 5.50. % 25 Orta Kum İçeren CH Numunesinin Gerilme-Şekil Değiştirme İlişkisi

Şekil 5.51. %25 Orta Kum İçeren CH Numunesinin UU Deneyi Sonucunda Yenilme Zarfı ve Mohr Daireleri

Örneğin Tanımı	Orneğin Tanımı CH + % 25 Kaba Kum		Kuvvet Halkası No	
Deneyi Yapan	Cemil GÜVEN	Kuvvet Halka	sı Katsayısı	2,121
Deney Hızı	0,8mm/dak			
Örnek No.		1	2	3
Örnek Çapı, (cm)		3,60	3,66	3,50
Örnek Alanı, (cm ²)	10,18	10,52	9,62	
Örnek Yüksekliği, (cı	n)	7,30	7,42	7,10
Örnek Hacmi, (cm ³)		74,30	78,06	68,31
Çevre Basıncı, σ_3 , (kl	Pa)	100	200	300
Yaş Örnek Ağırlığı, (gr)	149,07	159,98	138,28
Kuru Örnek Ağırlığı,	123,48	132,54	114,45	
Su Ağırlığı, (gr)		25,59	27,44	23,83
Su Muhtevası, (%)		20,7	20,7	20,8

Tablo 5.39. %25 Kaba Kum İçeren CH Numunesinin UU Deneyinde Fiziksel Özellikleri

Tablo 5.40. %25 Kaba Kum İçeren CH Numunesinin 100 kPa da c ve Ø'nın UU Deneyi İle Bulunma.

$\sigma_3 = 100 \text{ kPa}$						
∆h (mm/100)	Kuvvet Halkası	3	A (cm ²)	P (N)	σ(kPa)	
0	0	0,0000	10,18	0,00	0,00	
10	12	0,0014	10,19	25,45	24,97	
25	28	0,0034	10,21	59,39	58,15	
50	44	0,0068	10,25	93,32	91,06	
75	50	0,0103	10,28	106,05	103,12	
100	60	0,0137	10,32	127,26	123,31	
150	75	0,0205	10,39	159,08	153,07	
200	89	0,0274	10,47	188,77	180,37	
300	103	0,0411	10,61	218,46	205,81	
400	110	0,0548	10,77	233,31	216,65	
500	126	0,0685	10,93	267,25	244,57	
600	141	0,0822	11,09	299,06	269,66	
700	153	0,0959	11,26	324,51	288,24	
800	156	0,1096	11,43	330,88	289,44	
900	158	0,1233	11,61	335,12	288,64	
1000	159	0,1370	11,79	337,24	285,93	
1100	175	0,1507	11,98	371,18	309,71	
1200	179	0,1644	12,18	379,66	311,68	
1300	176	0,1781	12,38	373,30	301,43	
1400	175	0,1918	12,59	371,18	294,72	
1500	175	0,2055	12,81	371,18	289,73	
1600	-	-	-	-	-	

		$\sigma_3 = 2$	00 kPa		
∆h (mm/100)	Kuvvet Halkası	3	A (cm ²)	P (N)	σ(kPa)
0	0	0,0000	10,52	0,00	0,00
10	13	0,0013	10,54	27,57	26,17
25	24	0,0034	10,56	50,90	48,22
50	35	0,0067	10,59	74,24	70,08
75	45	0,0101	10,63	95,45	89,80
100	53	0,0135	10,66	112,41	105,41
150	60	0,0202	10,74	127,26	118,51
200	67	0,0270	10,81	142,11	131,43
300	80	0,0404	10,96	169,68	154,76
400	90	0,0539	11,12	190,89	171,66
500	107	0,0674	11,28	226,95	201,18
600	110	0,0809	11,45	233,31	203,83
700	102	0,0943	11,62	216,34	186,23
800	95	0,1078	11,79	201,50	170,87
900	89	0,1213	11,97	188,77	157,66
1000	-	-	-	-	-
1100	-	-	-	-	-
1200	-	-	-	-	-
1300	_		_	_	
1400	-	-	-	-	-
1500	-	-	-	-	-
1600	-	-	-	-	-
1700	-	-	-	-	-

Tablo 5.41. %25 Kaba Kum İçeren CH Numunesinin 200 kPa da c ve Ø'nın UU Deneyi İle Bulunma.

		$\sigma_3 = 3$	00 kPa		
∆h (mm/100)	Kuvvet Halkası	3	A (cm ²)	P (N)	σ (kPa)
0	0	0,0000	9,62	0,00	0,00
10	10	0,0013	9,63	21,21	22,02
25	20	0,0034	9,65	42,42	43,94
50	39	0,0067	9,69	82,72	85,40
75	52	0,0101	9,72	110,29	113,48
100	66	0,0135	9,75	139,99	143,54
150	82	0,0202	9,82	173,92	177,12
200	96	0,0270	9,89	203,62	205,93
300	115	0,0404	10,03	243,92	243,27
400	127	0,0539	10,17	269,37	264,88
500	137	0,0674	10,32	290,58	281,67
600	147	0,0809	10,47	311,79	297,86
700	156	0,0943	10,62	330,88	311,46
800	166	0,1078	10,78	352,09	326,50
900	174	0,1213	10,95	369,05	337,06
1000	171	0,1348	11,12	362,69	326,17
1100	171	0,1482	11,30	362,69	321,09
1200	175	0,1617	11,48	371,18	323,40
1300	-	-	-	-	-
1400	-	-	-	-	-
1500	-	-	-	-	-
1600	-	-	-	-	-
1700	-	-	-	-	-

Tablo 5.42. %25 Kaba Kum İçeren CH Numunesinin 300 kPa da c ve Ø'nın UU Deneyi İle Bulunma.

Şekil5.52. % 25 Kaba Kum İçeren CH Numunesinin Gerilme-Şekil Değiştirme İlişkisi

Şekil 5.53. %25 Kaba Kum İçeren CH Numunesinin UU Deneyi Sonucunda Yenilme Zarfı ve Mohr Daireleri

Örneğin Tanımı	eğin Tanımı CH + % 50 İnce Kum		Kuvvet Halkası No	
Deneyi Yapan	Cemil GÜVEN	Kuvvet Halka	ısı Katsayısı	2,121
Deney Hızı	0,8mm/dak			
Örnek No.		1	2	3
Örnek Çapı, (cm)		3,59	3,58	3,60
Örnek Alanı, (cm ²)	10,12	10,07	10,18	
Örnek Yüksekliği, (cr	7,23	7,19	7,35	
Örnek Hacmi, (cm ³)		73,18	72,37	74,81
Çevre Basıncı, σ_3 , (kl	Pa)	100	200	300
Yaş Örnek Ağırlığı, (gr)	150,18	147,87	151,24
Kuru Örnek Ağırlığı,	127,36	126,12	128,95	
Su Ağırlığı, (gr)		22,82	21,75	22,29
Su Muhtevası, (%)		17,9	17,2	17,3

Tablo 5.43. %50 İnce Kum İçeren CH Numunesinin UU Deneyinde Fiziksel Özellikleri

Tablo 5.44. %50 İnce Kum İçeren CH Numunesinin 100 kPa da c ve Ø'nın UU Deneyi İle Bulunması

$\sigma_3 = 100 \text{ kPa}$						
∆h (mm/100)	Kuvvet Halkası	3	A (cm ²)	P (N)	σ (kPa)	
0	0	0,0000	10,12	0,00	0,00	
10	8	0,0014	10,14	16,97	16,74	
25	13	0,0035	10,16	27,57	27,15	
50	18	0,0069	10,19	38,18	37,46	
75	20	0,0104	10,23	42,42	41,47	
100	22	0,0138	10,26	46,66	45,46	
150	24	0,0207	10,34	50,90	49,25	
200	26	0,0277	10,41	55,15	52,97	
300	32	0,0415	10,56	67,87	64,27	
400	40	0,0553	10,72	84,84	79,18	
500	49	0,0692	10,87	103,93	95,57	
600	52	0,0830	11,04	110,29	99,92	
700	54	0,0968	11,21	114,53	102,20	
800	57	0,1107	11,38	120,90	106,22	
900	67	0,1245	11,56	142,11	122,91	
1000	77	0,1383	11,75	163,32	139,03	
1100	76	0,1521	11,94	161,20	135,02	
1200	74	0,1660	12,14	156,95	129,32	
1300	77	0,1798	12,34	163,32	132,33	
1400	-	-	-	-	-	
1500	-	-	-	-	-	
1600	-	-	-	-	-	

	$\sigma_3 = 200 \text{ kPa}$						
∆h (mm/100)	Kuvvet Halkası	3	A (cm ²)	P (N)	σ (kPa)		
0	0	0,0000	10,07	0,00	0,00		
10	9	0,0014	10,08	19,09	18,94		
25	15	0,0035	10,10	31,82	31,50		
50	20	0,0070	10,14	42,42	41,85		
75	24	0,0104	10,17	50,90	50,04		
100	26	0,0139	10,21	55,15	54,02		
150	30	0,0209	10,28	63,63	61,89		
200	34	0,0278	10,35	72,11	69,65		
300	39	0,0417	10,50	82,72	78,75		
400	42	0,0556	10,66	89,08	83,57		
500	46	0,0695	10,82	97,57	90,19		
600	52	0,0834	10,98	110,29	100,43		
700	57	0,0974	11,15	120,90	108,41		
800	60	0,1113	11,33	127,26	112,36		
900	64	0,1252	11,51	135,74	117,97		
1000	71	0,1391	11,69	150,59	128,80		
1100	77	0,1530	11,88	163,32	137,42		
1200	80	0,1669	12,08	169,68	140,43		
1300	81	0,1808	12,29	171,80	139,82		
1400	85	0,1947	12,50	180,29	144,23		
1500	90	0,2086	12,72	190,89	150,08		
1600	95	0,2225	12,95	201,50	155,63		
1700	99	0,2364	13,18	209,98	159,28		

Tablo 5.45. %50 İnce Kum İçeren CH Numunesinin 200 kPa da c ve Ø'nın UU Deneyi İle Bulunması

	$\sigma_3 = 300 \text{ kPa}$						
∆h (mm/100)	Kuvvet Halkası	3	A (cm ²)	P (N)	σ(kPa)		
0	0	0,0000	10,18	0,00	0,00		
10	11	0,0014	10,19	23,33	22,89		
25	19	0,0035	10,21	40,30	39,45		
50	25	0,0070	10,25	53,03	51,73		
75	29	0,0104	10,29	61,51	59,80		
100	32	0,0139	10,32	67,87	65,75		
150	37	0,0209	10,40	78,48	75,49		
200	40	0,0278	10,47	84,84	81,03		
300	44	0,0417	10,62	93,32	87,86		
400	48	0,0556	10,78	101,81	94,46		
500	53	0,0695	10,94	112,41	102,76		
600	59	0,0834	11,11	125,14	112,68		
700	65	0,0974	11,28	137,87	122,26		
800	68	0,1113	11,45	144,23	125,93		
900	72	0,1252	11,64	152,71	131,25		
1000	77	0,1391	11,82	163,32	138,13		
1100	85	0,1530	12,02	180,29	150,02		
1200	90	0,1669	12,22	190,89	156,24		
1300	94	0,1808	12,43	199,37	160,46		
1400	95	0,1947	12,64	201,50	159,41		
1500	97	0,2086	12,86	205,74	159,96		
1600	104	0,2225	13,09	220,58	168,49		
1700	110	0,2364	13,33	233,31	175,02		

Tablo 5.46. %50 İnce Kum İçeren CH Numunesinin 300 kPa da c ve Ø'nın UU Deneyi İle Bulunması

Şekil5.54. % 50 İnce Kum İçeren CH Numunesinin Gerilme-Şekil Değiştirme İlişkisi

Şekil 5.55. %50 İnce Kum İçeren CH Numunesinin UU Deneyi Sonucunda Yenilme Zarfı ve Mohr Daireleri

Örneğin Tanımı	Örneğin Tanımı CH + % 50 Orta Kum		Kuvvet Halkası No	
Deneyi Yapan	Cemil GÜVEN	Kuvvet Halka	sı Katsayısı	2,121
Deney Hızı	0,8mm/dak			
Örnek No.		1	2	3
Örnek Çapı, (cm)		3,57	3,58	3,50
Örnek Alanı, (cm ²)	10,01	10,07	9,62	
Örnek Yüksekliği, (cr	7,49	7,20	7,55	
Örnek Hacmi, (cm ³)		74,97	72,48	72,64
Çevre Basıncı, σ_3 , (kl	Pa)	100	200	300
Yaş Örnek Ağırlığı, (gr)	154,03	142,01	148,97
Kuru Örnek Ağırlığı,	131,01	120,98	126,58	
Su Ağırlığı, (gr)		23,02	21,03	22,39
Su Muhtevası, (%)		17,6	17,4	17,7

Tablo 5.47. %50 Orta Kum İçeren CH Numunesinin UU Deneyinde Fiziksel Özellikleri

Tablo 5.48. %50 Orta Kum İçeren CH Numunesinin 100 kPa da c ve Ø'nın UU Deneyi İle Bulunması

$\sigma_3 = 100 \text{ kPa}$						
∆h (mm/100)	Kuvvet Halkası	3	A (cm ²)	P (N)	σ (kPa)	
0	0	0,0000	10,01	0,00	0,00	
10	8	0,0013	10,02	16,97	16,93	
25	13	0,0033	10,04	27,57	27,45	
50	17	0,0067	10,08	36,06	35,78	
75	19	0,0100	10,11	40,30	39,86	
100	20	0,0134	10,15	42,42	41,81	
150	21	0,0200	10,21	44,54	43,61	
200	24	0,0267	10,28	50,90	49,50	
300	25	0,0401	10,43	53,03	50,85	
400	27	0,0534	10,57	57,27	54,16	
500	30	0,0668	10,73	63,63	59,32	
600	31	0,0801	10,88	65,75	60,42	
700	32	0,0935	11,04	67,87	61,47	
800	34	0,1068	11,21	72,11	64,35	
900	36	0,1202	11,38	76,36	67,12	
1000	40	0,1335	11,55	84,84	73,44	
1100	41	0,1469	11,73	86,96	74,12	
1200	42	0,1602	11,92	89,08	74,74	
1300	44	0,1736	12,11	93,32	77,05	
1400	47	0,1869	12,31	99,69	80,97	
1500	49	0,2003	12,52	103,93	83,03	
1600	48	0,2136	12,73	101,81	79,98	
1700	47	0,2270	12,95	99,69	76,99	

	$\sigma_3 = 200 \text{ kPa}$						
∆h (mm/100)	Kuvvet Halkası	3	A (cm ²)	P (N)	σ(kPa)		
0	0	0,0000	10,07	0,00	0,00		
10	5	0,0014	10,08	10,61	10,52		
25	8	0,0035	10,10	16,97	16,80		
50	9	0,0069	10,14	19,09	18,83		
75	12	0,0104	10,17	25,45	25,02		
100	16	0,0139	10,21	33,94	33,25		
150	25	0,0208	10,28	53,03	51,58		
200	29	0,0278	10,35	61,51	59,41		
300	34	0,0417	10,50	72,11	68,66		
400	36	0,0556	10,66	76,36	71,64		
500	39	0,0694	10,82	82,72	76,47		
600	41	0,0833	10,98	86,96	79,19		
700	42	0,0972	11,15	89,08	79,89		
800	43	0,1111	11,32	91,20	80,54		
900	45	0,1250	11,50	95,45	82,97		
1000	47	0,1389	11,69	99,69	85,28		
1100	49	0,1528	11,88	103,93	87,47		
1200	50	0,1667	12,08	106,05	87,80		
1300	51	0,1806	12,28	108,17	88,06		
1400	52	0,1944	12,50	110,29	88,26		
1500	54	0,2083	12,71	114,53	90,08		
1600	55	0,2222	12,94	116,66	90,14		
1700	56	0,2361	13,18	118,78	90,14		

Tablo 5.49. %50 Orta Kum İçeren CH Numunesinin 200 kPa da c ve Ø'nın UU Deneyi İle Bulunması

	$\sigma_3 = 300 \text{ kPa}$						
∆h (mm/100)	Kuvvet Halkası	3	A (cm ²)	P (N)	σ(kPa)		
0	0	0,0000	9,62	0,00	0,00		
10	8	0,0014	9,63	16,97	17,61		
25	12	0,0035	9,65	25,45	26,36		
50	16	0,0069	9,69	33,94	35,03		
75	19	0,0104	9,72	40,30	41,45		
100	20	0,0139	9,76	42,42	43,48		
150	22	0,0208	9,83	46,66	47,49		
200	24	0,0278	9,90	50,90	51,44		
300	25	0,0417	10,04	53,03	52,82		
400	27	0,0556	10,19	57,27	56,22		
500	28	0,0694	10,34	59,39	57,44		
600	31	0,0833	10,50	65,75	62,65		
700	34	0,0972	10,66	72,11	67,67		
800	35	0,1111	10,82	74,24	68,59		
900	36	0,1250	11,00	76,36	69,44		
1000	37	0,1389	11,17	78,48	70,24		
1100	40	0,1528	11,36	84,84	74,71		
1200	42	0,1667	11,55	89,08	77,16		
1300	43	0,1806	11,74	91,20	77,68		
1400	45	0,1944	11,94	95,45	79,91		
1500	46	0,2083	12,15	97,57	80,28		
1600	48	0,2222	12,37	101,81	82,30		
1700	50	0,2361	12,59	106,05	84,20		

Tablo 5.50. %50 Orta Kum İçeren CH Numunesinin 300 kPa da c ve Ø'nın UU Deneyi İle Bulunması

Şekil5.56. % 50 Orta Kum İçeren CH Numunesinin Gerilme-Şekil Değiştirme İlişkisi

Şekil 5.57. %50 Orta Kum İçeren CH Numunesinin UU Deneyi Sonucunda Yenilme Zarfi ve Mohr Daireleri

Örneğin Tanımı	Örneğin Tanımı CH + % 50 Kaba Kum		Kuvvet Halkası No	
Deneyi Yapan	Cemil GÜVEN	Kuvvet Halka	sı Katsayısı	2,121
Deney Hızı	0,8mm/dak			
Örnek No.		1	2	3
Örnek Çapı, (cm)		3,53	3,57	3,50
Örnek Alanı, (cm ²)	9,79	10,01	9,62	
Örnek Yüksekliği, (cr	n)	7,12	7,18	7,35
Örnek Hacmi, (cm ³)		69,68	71,87	70,72
Çevre Basıncı, σ ₃ , (kl	Pa)	100	200	300
Yaş Örnek Ağırlığı, (141,83	148,06	143,91	
Kuru Örnek Ağırlığı,	120,25	125,98	122,65	
Su Ağırlığı, (gr)		21,58	22,08	21,26
Su Muhtevası, (%)		17,9	17,5	17,3

Tablo 5.51. %50 Kaba Kum İçeren CH Numunesinin UU Deneyinde Fiziksel Özellikleri

Tablo 5.52. %50 Kaba Kum İçeren CH Numunesinin 100 kPa da c ve Ø'nın UU Deneyi İle Bulunma.

$\sigma_3 = 100 \text{ kPa}$					
∆h (mm/100)	Kuvvet Halkası	3	A (cm ²)	P (N)	σ (kPa)
0	0	0,0000	9,79	0,00	0,00
10	5	0,0014	9,80	10,61	10,82
25	7	0,0035	9,82	14,85	15,12
50	10	0,0070	9,86	21,21	21,52
75	12	0,0105	9,89	25,45	25,73
100	15	0,0140	9,93	31,82	32,05
150	18	0,0211	10,00	38,18	38,19
200	20	0,0281	10,07	42,42	42,13
300	28	0,0421	10,22	59,39	58,13
400	35	0,0562	10,37	74,24	71,59
500	40	0,0702	10,53	84,84	80,60
600	44	0,0843	10,69	93,32	87,32
700	48	0,0983	10,85	101,81	93,80
800	51	0,1124	11,03	108,17	98,11
900	54	0,1264	11,20	114,53	102,24
1000	55	0,1404	11,39	116,66	102,46
1100	52	0,1545	11,58	110,29	95,28
1200	51	0,1685	11,77	108,17	91,90
1300	51	0,1826	11,97	108,17	90,35
1400	-	-	-	-	_
1500	-	-	-	-	-
1600	-	-	-	-	-

		$\sigma_3 = 2$	00 kPa		
∆h (mm/100)	Kuvvet Halkası	3	A (cm ²)	P (N)	σ (kPa)
0	0	0,0000	10,01	0,00	0,00
10	12	0,0014	10,02	25,45	25,39
25	18	0,0035	10,04	38,18	38,01
50	20	0,0070	10,08	42,42	42,08
75	21	0,0104	10,12	44,54	44,03
100	23	0,0139	10,15	48,78	48,06
150	24	0,0209	10,22	50,90	49,79
200	27	0,0279	10,30	57,27	55,62
300	29	0,0418	10,45	61,51	58,88
400	31	0,0557	10,60	65,75	62,03
500	33	0,0696	10,76	69,99	65,05
600	35	0,0836	10,92	74,24	67,96
700	38	0,0975	11,09	80,60	72,67
800	40	0,1114	11,26	84,84	75,31
900	43	0,1253	11,44	91,20	79,69
1000	48	0,1393	11,63	101,81	87,54
1100	51	0,1532	11,82	108,17	91,51
1200	53	0,1671	12,02	112,41	93,53
1300	55	0,1811	12,22	116,66	95,44
1400	58	0,1950	12,43	123,02	98,93
1500	61	0,2089	12,65	129,38	102,25
1600	63	0,2228	12,88	133,62	103,74
1700	67	0,2368	13,12	142,11	108,35

Tablo 5.53. %50 Kaba Kum İçeren CH Numunesinin 200 kPa da c ve Ø'nın UU Deneyi İle Bulunma.

		$\sigma_3 = 3$	00 kPa		
∆h (mm/100)	Kuvvet Halkası	3	A (cm ²)	P (N)	σ (kPa)
0	0	0,0000	9,62	0,00	0,00
10	10	0,0014	9,63	21,21	22,01
25	14	0,0035	9,65	29,69	30,76
50	18	0,0070	9,69	38,18	39,41
75	20	0,0104	9,72	42,42	43,63
100	21	0,0139	9,76	44,54	45,65
150	22	0,0209	9,83	46,66	47,49
200	23	0,0279	9,90	48,78	49,29
300	25	0,0418	10,04	53,03	52,81
400	26	0,0557	10,19	55,15	54,12
500	27	0,0696	10,34	57,27	55,38
600	28	0,0836	10,50	59,39	56,57
700	29	0,0975	10,66	61,51	57,70
800	30	0,1114	10,83	63,63	58,77
900	31	0,1253	11,00	65,75	59,77
1000	32	0,1393	11,18	67,87	60,72
1100	33	0,1532	11,36	69,99	61,60
1200	34	0,1671	11,55	72,11	62,43
1300	35	0,1811	11,75	74,24	63,19
1400	36	0,1950	11,95	76,36	63,89
1500	38	0,2089	12,16	80,60	66,27
1600	39	0,2228	12,38	82,72	66,82
1700	40	0,2368	12,61	84,84	67,30

Tablo 5.54. %50 Kaba Kum İçeren CH Numunesinin 300 kPa da c ve Ø'nın UU Deneyi İle Bulunma.

Şekil5.58. % 50 Kaba Kum İçeren CH Numunesinin Gerilme-Şekil Değiştirme İlişkisi

Şekil 5.59. %50 Kaba Kum İçeren CH Numunesinin UU Deneyi Sonucunda Yenilme Zarfı ve Mohr Daireleri

Örneğin Tanımı	CH + % 75 İnce Kum	Kuvvet Halka	si No	4693
Deneyi Yapan	Cemil GÜVEN	Kuvvet Halka	sı Katsayısı	2,121
Deney Hızı	0,8mm/dak			
Örnek No.		1	2	3
Örnek Çapı, (cm)		3,58	3,57	3,60
Örnek Alanı, (cm ²)	10,07	10,01	10,18	
Örnek Yüksekliği, (cr	7,19	7,35	7,35	
Örnek Hacmi, (cm ³)		72,37	73,57	74,81
Çevre Basıncı, o3, (kl	Pa)	100	200	300
Yaş Örnek Ağırlığı, (gr)	143,90	152,58	154,97
Kuru Örnek Ağırlığı,	125,45	133,68	135,22	
Su Ağırlığı, (gr)		18,45	18,90	19,75
Su Muhtevası, (%)		14,7	14,1	14,6

Tablo 5.55. %75 İnce Kum İçeren CH Numunesinin UU Deneyinde Fiziksel Özellikleri

Tablo 5.56. %75 İnce Kum İçeren CH Numunesinin 100 kPa da c ve Ø'nın UU Deneyi İle Bulunması

$\sigma_3 = 100 \text{ kPa}$					
∆h (mm/100)	Kuvvet Halkası	3	A (cm ²)	P (N)	σ (kPa)
0	0	0,0000	10,07	0,00	0,00
10	12	0,0014	10,08	25,45	25,25
25	18	0,0035	10,10	38,18	37,80
50	27	0,0070	10,14	57,27	56,50
75	30	0,0104	10,17	63,63	62,55
100	35	0,0139	10,21	74,24	72,72
150	37	0,0209	10,28	78,48	76,34
200	40	0,0278	10,35	84,84	81,94
300	45	0,0417	10,50	95,45	90,86
400	41	0,0556	10,66	86,96	81,58
500	31	0,0695	10,82	65,75	60,78
600	19	0,0834	10,98	40,30	36,69
700	-	-	-	-	-
800	-	-	-	-	-
900	-	-	-	-	-
1000	-	-	-	-	-
1100	-	-	-	-	-
1200	-	-	-	-	-
1300	-	-	-	-	-
1400	-	-	-	-	-
1500	-	-	-	-	-
1600	-	-	-	-	-

		$\sigma_3 = 2$	00 kPa		
∆h (mm/100)	Kuvvet Halkası	3	A (cm ²)	P (N)	σ(kPa)
0	0	0,0000	10,01	0,00	0,00
10	11	0,0014	10,02	23,33	23,28
25	23	0,0034	10,04	48,78	48,57
50	30	0,0068	10,08	63,63	63,14
75	36	0,0102	10,11	76,36	75,50
100	41	0,0136	10,15	86,96	85,69
150	47	0,0204	10,22	99,69	97,56
200	50	0,0272	10,29	106,05	103,06
300	57	0,0408	10,44	120,90	115,85
400	59	0,0544	10,59	125,14	118,21
500	45	0,0680	10,74	95,45	88,86
600	40	0,0816	10,90	84,84	77,84
700	33	0,0952	11,06	69,99	63,26
800	-	-	-	-	-
900	-	-	-	-	-
1000	-	-	-	-	-
1100	-	-	-	-	-
1200	-	-	-	-	-
1300	-	-	-	-	-
1400	-	-	-	-	-
1500	-	-	-	-	-
1600	-	-	-	-	-
1700	-	-	-	-	-

Tablo 5.57. %75 İnce Kum İçeren CH Numunesinin 200 kPa da c ve Ø'nın UU Deneyi İle Bulunması

	$\sigma_3 = 300 \text{ kPa}$						
∆h (mm/100)	Kuvvet Halkası	3	A (cm ²)	P (N)	σ (kPa)		
0	0	0,0000	10,18	0,00	0,00		
10	10	0,0014	10,19	21,21	20,81		
25	20	0,0034	10,21	42,42	41,53		
50	25	0,0068	10,25	53,03	51,74		
75	28	0,0102	10,28	59,39	57,75		
100	34	0,0136	10,32	72,11	69,88		
150	39	0,0204	10,39	82,72	79,61		
200	46	0,0272	10,46	97,57	93,24		
300	50	0,0408	10,61	106,05	99,93		
400	45	0,0544	10,76	95,45	88,67		
500	40	0,0680	10,92	84,84	77,68		
600	32	0,0816	11,08	67,87	61,24		
700	-	-	-	-	-		
800	-	-	-	-	-		
900	-	-	-	-	-		
1000	-	-	-	-	-		
1100	-	-	-	-	-		
1200	-	-	-	-	-		
1300	-	-	-	-	-		
1400	-	-	-	-	-		
1500	-	-	-	-	-		
1600	-	-	-	-	-		
1700	-	-	-	-	-		

Tablo 5.58. %75 İnce Kum İçeren CH Numunesinin 300 kPa da c ve Ø'nın UU Deneyi İle Bulunması

Şekil5.60. % 75 İnce Kum İçeren CH Numunesinin Gerilme-Şekil Değiştirme İlişkisi

Şekil 5.61. %75 İnce Kum İçeren CH Numunesinin UU Deneyi Sonucunda Yenilme Zarfi ve Mohr Daireleri
Örneğin Tanımı	CH + % 75 Orta Kum	Kuvvet Halka	isi No	4693
Deneyi Yapan	Cemil GÜVEN	Kuvvet Halka	ısı Katsayısı	2,121
Deney Hızı	0,8mm/dak			
Örnek No.		1	2	3
Örnek Çapı, (cm)		3,53	3,55	3,54
Örnek Alanı, (cm ²)	9,79	9,90	9,84	
Örnek Yüksekliği, (cr	7,27	7,30	7,28	
Örnek Hacmi, (cm ³)		71,15	72,26	71,65
Çevre Basıncı, o3, (kl	Pa)	100	200	300
Yaş Örnek Ağırlığı, (gr)	148,28	148,43	146,56
Kuru Örnek Ağırlığı,	(gr)	129,54	129,78	128,65
Su Ağırlığı, (gr)	18,74	18,65	17,91	
Su Muhtevası, (%)		14,5	14,4	13,9

Tablo 5.59. %75 Orta Kum İçeren CH Numunesinin UU Deneyinde Fiziksel Özellikleri

Tablo 5.60. %75 Orta Kum İçeren CH Numunesinin 100 kPa da c ve Ø'nın UU Deneyi İle Bulunması

$\sigma_3 = 100 \text{ kPa}$							
∆h (mm/100)	Kuvvet Halkası	3	A (cm ²)	P (N)	σ (kPa)		
0	0	0,0000	9,79	0,00	0,00		
10	10	0,0014	9,80	21,21	21,64		
25	20	0,0034	9,82	42,42	43,20		
50	22	0,0069	9,85	46,66	47,35		
75	23	0,0103	9,89	48,78	49,33		
100	24	0,0138	9,92	50,90	51,30		
150	25	0,0206	9,99	53,03	53,06		
200	26	0,0275	10,06	55,15	54,80		
300	29	0,0413	10,21	61,51	60,26		
400	35	0,0550	10,36	74,24	71,68		
500	44	0,0688	10,51	93,32	88,80		
600	48	0,0825	10,67	101,81	95,44		
700	50	0,0963	10,83	106,05	97,93		
800	58	0,1100	11,00	123,02	111,87		
900	66	0,1238	11,17	139,99	125,33		
1000	75	0,1376	11,35	159,08	140,18		
1100	79	0,1513	11,53	167,56	145,30		
1200	80	0,1651	11,72	169,68	144,76		
1300	85	0,1788	11,92	180,29	151,27		
1400	80	0,1926	12,12	169,68	139,99		
1500	77	0,2063	12,33	163,32	132,44		
1600	73	0,2201	12,55	154,83	123,39		

	$\sigma_3 = 200 \text{ kPa}$							
∆h (mm/100)	Kuvvet Halkası	3	A (cm ²)	P (N)	σ (kPa)			
0	0	0,0000	9,90	0,00	0,00			
10	12	0,0014	9,91	25,45	25,68			
25	22	0,0034	9,93	46,66	46,98			
50	38	0,0068	9,97	80,60	80,87			
75	42	0,0103	10,00	89,08	89,08			
100	52	0,0137	10,04	110,29	109,90			
150	63	0,0205	10,11	133,62	132,23			
200	75	0,0274	10,18	159,08	156,31			
300	85	0,0411	10,32	180,29	174,66			
400	98	0,0548	10,47	207,86	198,49			
500	105	0,0685	10,63	222,71	209,59			
600	118	0,0822	10,78	250,28	232,07			
700	123	0,0959	10,95	260,88	238,30			
800	132	0,1096	11,12	279,97	251,86			
900	138	0,1233	11,29	292,70	259,26			
1000	144	0,1370	11,47	305,42	266,30			
1100	148	0,1507	11,65	313,91	269,35			
1200	154	0,1644	11,85	326,63	275,75			
1300	155	0,1781	12,04	328,76	272,99			
1400	151	0,1918	12,25	320,27	261,52			
1500	145	0,2055	12,46	307,55	246,87			
1600	141	0,2192	12,68	299,06	235,92			
1700	-	-	-	-	-			

Tablo 5.61. %75 Orta Kum İçeren CH Numunesinin 200 kPa da c ve Ø'nın UU Deneyi İle Bulunması

$\sigma_3 = 300 \text{ kPa}$							
∆h (mm/100)	Kuvvet Halkası	3	A (cm ²)	P (N)	σ(kPa)		
0	0	0,0000	9,84	0,00	0,00		
10	18	0,0014	9,86	38,18	38,74		
25	30	0,0034	9,88	63,63	64,43		
50	45	0,0068	9,91	95,45	96,31		
75	52	0,0103	9,94	110,29	110,91		
100	65	0,0137	9,98	137,87	138,16		
150	74	0,0205	10,05	156,95	156,19		
200	83	0,0274	10,12	176,04	173,96		
300	99	0,0411	10,26	209,98	204,58		
400	120	0,0548	10,41	254,52	244,43		
500	145	0,0685	10,57	307,55	291,07		
600	170	0,0822	10,72	360,57	336,24		
700	200	0,0959	10,89	424,20	389,67		
800	237	0,1096	11,05	502,68	454,76		
900	245	0,1233	11,23	519,65	462,88		
1000	251	0,1370	11,40	532,37	466,81		
1100	254	0,1507	11,59	538,73	464,89		
1200	257	0,1644	11,78	545,10	462,79		
1300	263	0,1781	11,97	557,82	465,83		
1400	270	0,1918	12,18	572,67	470,26		
1500	280	0,2055	12,39	593,88	479,41		
1600	287	0,2192	12,61	608,73	482,92		
1700	293	0,2329	12,83	621,45	484,37		

Tablo 5.62. %75 Orta Kum İçeren CH Numunesinin 300 kPa da c ve Ø'nın UU Deneyi İle Bulunması

Şekil5.62 % 75 Orta Kum İçeren CH Numunesinin Gerilme-Şekil Değiştirme İlişkisi

Şekil 5.63. %75 Orta Kum İçeren CH Numunesinin UU Deneyi Sonucunda Yenilme Zarfı ve Mohr Daireleri

Örneğin Tanımı	CH + % 75 Kaba Kum	Kuvvet Halka	si No	4693
Deneyi Yapan	Cemil GÜVEN	Kuvvet Halka	sı Katsayısı	2,121
Deney Hızı	0,8mm/dak			
Örnek No.		1	2	3
Örnek Çapı, (cm)		3,53	3,56	3,58
Örnek Alanı, (cm ²)	9,79	9,95	10,07	
Örnek Yüksekliği, (cr	7,08	7,38	7,20	
Örnek Hacmi, (cm ³)		69,29	73,46	72,48
Çevre Basıncı, σ_3 , (kl	Pa)	100	200	300
Yaş Örnek Ağırlığı, (gr)	155,53	164,43	161,21
Kuru Örnek Ağırlığı,	(gr)	136,58	144,56	141,29
Su Ağırlığı, (gr)	18,95	19,87	19,92	
Su Muhtevası, (%)		13,9	13,7	14,1

Tablo 5.63. %75 Kaba Kum İçeren CH Numunesinin UU Deneyinde Fiziksel Özellikleri

Tablo 5.64. %75 Kaba Kum İçeren CH Numunesinin 100 kPa da c ve Ø'nın UU Deneyi İle Bulunma.

$\sigma_3 = 100 \text{ kPa}$							
∆h (mm/100)	Kuvvet Halkası	3	A (cm ²)	P (N)	σ (kPa)		
0	0	0,0000	9,79	0,00	0,00		
10	10	0,0014	9,80	21,21	21,64		
25	15	0,0035	9,82	31,82	32,39		
50	18	0,0071	9,86	38,18	38,73		
75	21	0,0106	9,89	44,54	45,03		
100	23	0,0141	9,93	48,78	49,14		
150	27	0,0212	10,00	57,27	57,28		
200	35	0,0282	10,07	74,24	73,71		
300	40	0,0424	10,22	84,84	83,02		
400	52	0,0565	10,37	110,29	106,33		
500	60	0,0706	10,53	127,26	120,85		
600	78	0,0847	10,69	165,44	154,72		
700	80	0,0989	10,86	169,68	156,24		
800	83	0,1130	11,03	176,04	159,55		
900	89	0,1271	11,21	188,77	168,36		
1000	96	0,1412	11,40	203,62	178,67		
1100	104	0,1554	11,59	220,58	190,37		
1200	108	0,1695	11,78	229,07	194,39		
1300	112	0,1836	11,99	237,55	198,16		
1400	107	0,1977	12,20	226,95	186,04		
1500	105	0,2119	12,42	222,71	179,35		
1600	104	0,2260	12,64	220,58	174,45		

$\sigma_3 = 200 \text{ kPa}$								
∆h (mm/100)	Kuvvet Halkası	3	A (cm ²)	P (N)	σ (kPa)			
0	0	0,0000	9,95	0,00	0,00			
10	20	0,0014	9,97	42,42	42,56			
25	28	0,0034	9,99	59,39	59,46			
50	35	0,0068	10,02	74,24	74,07			
75	40	0,0102	10,06	84,84	84,37			
100	44	0,0136	10,09	93,32	92,49			
150	46	0,0203	10,16	97,57	96,03			
200	49	0,0271	10,23	103,93	101,58			
300	57	0,0407	10,38	120,90	116,52			
400	70	0,0542	10,52	148,47	141,07			
500	84	0,0678	10,68	178,16	166,86			
600	92	0,0813	10,83	195,13	180,10			
700	99	0,0949	11,00	209,98	190,94			
800	108	0,1084	11,16	229,07	205,18			
900	126	0,1220	11,34	267,25	235,74			
1000	144	0,1355	11,51	305,42	265,26			
1100	153	0,1491	11,70	324,51	277,42			
1200	163	0,1626	11,89	345,72	290,85			
1300	176	0,1762	12,08	373,30	308,97			
1400	190	0,1897	12,28	402,99	328,06			
1500	207	0,2033	12,49	439,05	351,43			
1600	214	0,2168	12,71	453,89	357,14			
1700	221	0,2304	12,93	468,74	362,44			

Tablo 5.65. %75 Kaba Kum İçeren CH Numunesinin 200 kPa da c ve Ø'nın UU Deneyi İle Bulunma.

$\sigma_3 = 300 \text{ kPa}$								
∆h (mm/100)	Kuvvet Halkası	3	A (cm ²)	P (N)	σ (kPa)			
0	0	0,0000	10,07	0,00	0,00			
10	28	0,0014	10,08	59,39	58,92			
25	40	0,0034	10,10	84,84	84,00			
50	52	0,0068	10,13	110,29	108,83			
75	60	0,0102	10,17	127,26	125,14			
100	66	0,0136	10,20	139,99	137,18			
150	74	0,0203	10,27	156,95	152,76			
200	82	0,0271	10,35	173,92	168,10			
300	95	0,0407	10,49	201,50	192,04			
400	113	0,0542	10,64	239,67	225,20			
500	130	0,0678	10,80	275,73	255,36			
600	146	0,0813	10,96	309,67	282,63			
700	163	0,0949	11,12	345,72	310,88			
800	180	0,1084	11,29	381,78	338,16			
900	205	0,1220	11,46	434,81	379,28			
1000	225	0,1355	11,64	477,23	409,86			
1100	248	0,1491	11,83	526,01	444,67			
1200	267	0,1626	12,02	566,31	471,12			
1300	287	0,1762	12,22	608,73	498,21			
1400	308	0,1897	12,42	653,27	525,87			
1500	329	0,2033	12,63	697,81	552,33			
1600	342	0,2168	12,85	725,38	564,39			
1700	350	0,2304	13,08	742,35	567,60			

Tablo 5.66. %75 Kaba Kum İçeren CH Numunesinin 300 kPa da c ve Ø'nın UU Deneyi İle Bulunma.

Şekil5.64. % 75 Kaba Kum İçeren CH Numunesinin Gerilme-Şekil Değiştirme İlişkisi

Şekil 5.65. %75 Kaba Kum İçeren CH Numunesinin UU Deneyi Sonucunda Yenilme Zarfı ve Mohr Daireleri

Örneğin Tanımı	СН	Kuvvet Halka	Kuvvet Halkası No		
Deneyi Yapan	Cemil GÜVEN	Kuvvet Halka	ısı Katsayısı	2,82	
Kesme Hızı	0,5mm/dak	Düşey Defor.	Saati Katsayısı	0,002	
Örnek No.		1	2	3	
Örnek Boyu, (cm)		6,0	6,0	6,0	
Örnek Alanı, (cm ²)		36,00	36,00	36,00	
Örnek Yüksekliği, (cm)		2,0	2,0	2,0	
Örnek Hacmi, (cm ³)		72,00	72,00	72,00	
Normal Gerilme, σ_3 , (kPa	100	200	300		
Halka No	10	11	12		
Halka Ağırlığı, (gr)		148,31	160,06	160,91	
Halka ve Numune Ağırlığ	i, (gr)	291,45	301,72	304,18	
Deney Sonu Numune Ağı	rlığı, (gr)	143,02	141,26	143,08	
Kuru Numune Ağırlığı, (g	gr)	112,86	111,48	111,93	
Düşey Yük, (gr)		36000	72000	108000	
İlk Okuma, (mm)		2500	2500	2500	
Son Okuma, (mm)	Son Okuma, (mm)			1345	
Sıkışma, (mm)		366	552	1155	

Tablo 5.67. CH Numunesinin Kesme Kutusu Deneyinde Fiziksel Özellikleri ve Sıkışma Miktarı

Tablo 5.68. CH Numunesinin 100 kPa da c ve Ø'nın Kesme Kutusu Deneyi İle Bulunması

$\sigma_n = 100 \text{ kPa}$									
t	KH	Δh	δ, (mm)	S (N)	τ (kPa)	$\Delta H (mm)$			
Zaman dk	Kuvvet Halkası Okuması	Düşey Defor. Okuması	Yatay Deplasman	Kesme Kuvveti	Kayma Gerilmesi	Düşey Deplasman			
0	0	2500	0	0	0,00	0,000			
1	24	2502	0,5	67,68	18,80	-0,004			
2	36	2508	1	101,52	28,20	-0,016			
3	42	2513	1,5	118,44	32,90	-0,026			
4	43	2517	2	121,26	33,68	-0,034			
5	43	2517	2,5	121,26	33,68	-0,034			
6	43	2519	3	121,26	33,68	-0,030			
7	42	2517	3,5	118,44	32,90	-0,034			
8	-	-	4	-	-	-			
9	-	-	4,5	-	-	-			
10	-	-	5	-	-	-			
11	-	-	5,5	-	-	-			
12	-	-	6	-	-	-			
13	-	-	6,5	-	-	-			
14	-	-	7	-	-	-			

$\sigma_n = 200 \text{ kPa}$									
t	KH	Δh	δ, (mm)	S (N)	τ (kPa)	$\Delta H (mm)$			
Zaman dk	Kuvvet Halkası Okuması	Düşey Defor. Okuması	Yatay Deplasman	Kesme Kuvveti	Kayma Gerilmesi	Düşey Deplasman			
0	0	2500	0	0	0,00	0			
1	51	2488	0,5	143,82	39,95	0,024			
2	66	2480	1	186,12	51,70	0,04			
3	85	2474	1,5	239,7	66,58	0,052			
4	93	2466	2	262,26	72,85	0,068			
5	70	2460	2,5	197,4	54,83	0,08			
6	65	2453	3	183,3	50,92	0,094			
7	63	2447	3,5	177,66	49,35	0,106			
8	-	-	4	-	-	-			
9	-	-	4,5	-	-	-			
10	-	-	5	-	-	-			
11	-	-	5,5	-	-	-			
12	-	-	6	-	-	-			
13	-	-	6,5	-	-	-			
14	-	-	7	-	-	-			

Tablo 5.69. CH Numunesinin 200 kPa da c ve Ø'nın Kesme Kutusu Deneyi İle Bulunması

Tablo 5.70. CH Numunesinin 300 kPa da c ve Ø'nın Kesme Kutusu Deneyi İle Bulunması

$\sigma_n = 300 \text{ kPa}$									
t	KH	Δh	δ, (mm)	S (N)	τ (kPa)	$\Delta H (mm)$			
Zaman dk	Kuvvet Halkası Okuması	Düşey Defor. Okuması	Yatay Deplasman	Kesme Kuvveti	Kayma Gerilmesi	Düşey Deplasman			
0	0	2500	0	0	0,00	0,000			
1	17	2490	0,5	47,94	13,32	0,020			
2	27	2489	1	76,14	21,15	0,022			
3	35	2485	1,5	98,7	27,42	0,030			
4	50	2475	2	141	39,17	0,050			
5	90	2442	2,5	253,8	70,50	0,116			
6	108	2425	3	304,56	84,60	0,150			
7	122	2405	3,5	344,04	95,57	0,190			
8	130	2393	4	366,6	101,83	0,214			
9	136	2388	4,5	383,52	106,53	0,224			
10	139	2361	5	391,98	108,88	0,278			
11	138	2344	5,5	389,16	108,10	0,312			
12	138	2328	6	389,16	108,10	0,344			
13	137	2318	6,5	386,34	107,32	0,364			

Şekil 5.66. CH Numunesi Kesme Kutusu Deneyinde Yatay Deplasman – Düşey Deplasman İlişkisi

Şekil 5.67. CH Numunesi Kesme Kutusu Deneyinde Kayma Gerilmesi - Yatay Deplasman İlişkisi

Şekil 5.68. CH Numunesi İçin Kesme Kutusu Deneyi

Örneğin Tanımı	CH + % 10 İnce Kum	Kuvvet Halka	isi No	15553
Deneyi Yapan	Cemil GÜVEN	Kuvvet Halka	ısı Katsayısı	2,82
Kesme Hızı	0,5mm/dak	Düşey Defor.	Saati Katsayısı	0,002
Örnek No.		1	2	3
Örnek Boyu, (cm)		6,0	6,0	6,0
Örnek Alanı, (cm ²)		36,00	36,00	36,00
Örnek Yüksekliği, (cr	n)	2,0	2,0	2,0
Örnek Hacmi, (cm ³)	72,00	72,00	72,00	
Normal Gerilme, σ_3 ,	100	200	300	
Halka No		10	11	12
Halka Ağırlığı, (gr)		148,31	160,06	160,91
Halka ve Numune Ağ	urlığı, (gr)	293,60	308,76	308,26
Deney Sonu Numune	Ağırlığı, (gr)	144,29	145,92	144,23
Kuru Numune Ağırlığ	ğı, (gr)	114,21	116,46	115,31
Düşey Yük, (gr)		36000	72000	108000
İlk Okuma, (mm)		2500	2500	2500
Son Okuma, (mm)	2005	1985	1610	
Sıkışma, (mm)		495	515	890

Tablo 5.71. %10 İnce Kum İçeren CH Numunesinin Kesme Kutusu Deneyinde Fiziksel Özellikleri

			$\sigma_n = 100 \text{ kPa}$			
t	KH	Δh	δ, (mm)	S (N)	τ (kPa)	$\Delta H (mm)$
Zaman dk	Kuvvet Halkası Okuması	Düşey Defor. Okuması	Yatay Deplasman	Kesme Kuvveti	Kayma Gerilmesi	Düşey Deplasman
0	0	2500	0	0	0,00	0,00
1	38	2481	0,5	107,16	29,77	0,038
2	51	2468	1	143,82	39,95	0,064
3	60	2457	1,5	169,2	47,00	0,086
4	65	2450	2	183,3	50,92	0,100
5	68	2438	2,5	191,76	53,27	0,124
6	69	2434	3	194,58	54,05	0,132
7	67	2432	3,5	188,94	52,48	0,136
8	65	2430	4	183,3	50,92	0,140
9	63	2428	4,5	177,66	49,35	0,144
10	-	-	5	-	-	-
11	-	-	5,5	-	-	-
12	-	-	6	-	-	-
13	-	-	6,5	-	-	-

Tablo 5.72. %10 İnce Kum İçeren CH Numunesinin 100 kPa da c ve Ø'nın Kesme Kutusu Deneyi İle Bulunması

Tablo 5.73. %10 İnce Kum İçeren CH Numunesinin 200 kPa da c ve Ø'nın Kesme Kutusu Deneyi İle Bulunması

			$\sigma_n = 200 \text{ kPa}$			
t	KH	Δh	δ, (mm)	S (N)	τ (kPa)	$\Delta H (mm)$
Zaman dk	Kuvvet Halkası Okuması	Düşey Defor. Okuması	Yatay Deplasman	Kesme Kuvveti	Kayma Gerilmesi	Düşey Deplasman
0	0	2500	0	0	0,00	0,000
1	64	2483	0,5	180,48	50,13	0,034
2	84	2470	1	236,88	65,80	0,060
3	90	2449	1,5	253,8	70,50	0,102
4	93	2430	2	262,26	72,85	0,140
5	95	2412	2,5	267,9	74,42	0,176
6	97	2403	3	273,54	75,98	0,194
7	96	2395	3,5	270,72	75,20	0,210
8	96	2390	4	270,72	75,20	0,220
9	95	2380	4,5	267,9	74,42	0,240
10	-	-	5	-	-	-
11	-	-	5,5	-	-	-
12	-	-	6	-	-	-
13	-	-	6,5	-	-	-

			$\sigma_n = 300 \text{ kPa}$			
t	KH	Δh	δ, (mm)	S (N)	τ (kPa)	$\Delta H (mm)$
Zaman dk	Kuvvet Halkası Okuması	Düşey Defor. Okuması	Yatay Deplasman	Kesme Kuvveti	Kayma Gerilmesi	Düşey Deplasman
0	0	2500	0	0	0,00	0,000
1	78	2485	0,5	219,96	61,10	0,030
2	98	2468	1	276,36	76,77	0,064
3	111	2453	1,5	313,02	86,95	0,094
4	118	2441	2	332,76	92,43	0,118
5	120	2434	2,5	338,4	94,00	0,132
6	121	2425	3	341,22	94,78	0,150
7	122	2415	3,5	344,04	95,57	0,170
8	121	2408	4	341,22	94,78	0,184
9	121	2401	4,5	341,22	94,78	0,198
10	120	2394	5	338,4	94,00	0,212
11	-	-	5,5	-	-	-
12	-	-	6	-	-	-
13	-	-	6,5	-	-	-
14	-	-	7	-	-	-

Tablo 5.74. %10 İnce Kum İçeren CH Numunesinin 300 kPa da c ve Ø'nın Kesme Kutusu Deneyi İle Bulunması

Şekil 5.69. %10 İnce Kum İçeren CH Numunesinin Kesme Kutusu Deneyinde Yatay Deplasman – Düşey Deplasman İlişkisi

Şekil 5.70. % 10 İnce Kum İçeren CH Numunesinin Kesme Kutusu Deneyinde Kayma Gerilmesi – Yatay Deplasman İlişkisi

Şekil 5.71. % 10 İnce Kum İçeren CH Numunesi İçin Kesme Kutusu Deneyi

Örneğin Tanımı	CH + % 10 Orta Kum	Kuvvet Halka	ası No	15553
Deneyi Yapan	Cemil GÜVEN	Kuvvet Halka	ısı Katsayısı	2,82
Kesme Hızı	0,5mm/dak	Düşey Defor.	Saati Katsayısı	0,002
Örnek No.		1	2	3
Örnek Boyu, (cm)		6,0	6,0	6,0
Örnek Alanı, (cm ²)		36,00	36,00	36,00
Örnek Yüksekliği, (cr	n)	2,0	2,0	2,0
Örnek Hacmi, (cm ³)	72,00	72,00	72,00	
Normal Gerilme, σ_3 ,	100	200	300	
Halka No		10	11	12
Halka Ağırlığı, (gr)		148,31	160,06	160,91
Halka ve Numune Ağ	urlığı, (gr)	297,33	310,02	305,61
Deney Sonu Numune	Ağırlığı, (gr)	146,71	147,68	142,69
Kuru Numune Ağırlığ	ğı, (gr)	126,29	117,76	117,80
Düşey Yük, (gr)		36000	72000	108000
İlk Okuma, (mm)		2500	2500	2500
Son Okuma, (mm)	1900	1821	1420	
Sıkışma, (mm)		600	679	1080

Tablo 5.75. %10 Orta Kum İçeren CH Numunesinin Kesme Kutusu Deneyinde Fiziksel Özellikleri

Tablo 5.76. %10 Orta Kum İçeren CH Numunesinin 100 kPa da c ve Ø'nın Kesme Kutusu Deneyi İle Bulunması

			$\sigma_n = 100 \text{ kPa}$			
t	KH	Δh	δ, (mm)	S (N)	τ (kPa)	$\Delta H (mm)$
Zaman dk	Kuvvet Halkası Okuması	Düşey Defor. Okuması	Yatay Deplasman	Kesme Kuvveti	Kayma Gerilmesi	Düşey Deplasman
0	0	2500	0	0	0,00	0,000
1	32	2496	0,5	90,24	25,07	0,008
2	40	2494	1	112,8	31,33	0,012
3	62	2494	1,5	174,84	48,57	0,012
4	68	2492	2	191,76	53,27	0,016
5	73	2490	2,5	205,86	57,18	0,020
6	74	2488	3	208,68	57,97	0,024
7	73	2485	3,5	205,86	57,18	0,030
8	73	2483	4	205,86	57,18	0,034
9	70	2480	4,5	197,4	54,83	0,040
10	-	-	5	-	-	-
11	-	-	5,5	-	-	-
12	-	-	6	-	-	-
13	-	-	6,5	-	-	-

			$\sigma_n = 200 \text{ kPa}$			
t	KH	Δh	δ, (mm)	S (N)	τ (kPa)	$\Delta H (mm)$
Zaman dk	Kuvvet Halkası Okuması	Düşey Defor. Okuması	Yatay Deplasman	Kesme Kuvveti	Kayma Gerilmesi	Düşey Deplasman
0	0	2500	0	0	0,00	0,000
1	43	2498	0,5	121,26	33,68	0,004
2	58	2484	1	163,56	45,43	0,032
3	71	2478	1,5	200,22	55,62	0,044
4	80	2471	2	225,6	62,67	0,058
5	86	2462	2,5	242,52	67,37	0,076
6	88	2454	3	248,16	68,93	0,092
7	89	2449	3,5	250,98	69,72	0,102
8	90	2444	4	253,8	70,50	0,112
9	90	2441	4,5	253,8	70,50	0,118
10	90	2438	5	253,8	70,50	0,124
11	90	2436	5,5	253,8	70,50	0,128
12	-	-	6	-	-	-
13	-	-	6,5	-	-	-

Tablo 5.77. %10 Orta Kum İçeren CH Numunesinin 200 kPa da c ve Ø'nın Kesme Kutusu Deneyi İle Bulunması

Tablo 5.78. %10 Orta Kum İçeren CH Numunesinin 300 kPa da c ve Ø'nın Kesme Kutusu Deneyi İle Bulunması

			$\sigma_n = 300 \text{ kPa}$			
t	KH	Δh	δ, (mm)	S (N)	τ (kPa)	$\Delta H (mm)$
Zaman dk	Kuvvet Halkası Okuması	Düşey Defor. Okuması	Yatay Deplasman	Kesme Kuvveti	Kayma Gerilmesi	Düşey Deplasman
0	0	2500	0	0	0,00	0,000
1	68	2493	0,5	191,76	53,27	0,014
2	95	2482	1	267,9	74,42	0,036
3	110	2471	1,5	310,2	86,17	0,058
4	115	2463	2	324,3	90,08	0,074
5	118	2458	2,5	332,76	92,43	0,084
6	122	2451	3	344,04	95,57	0,098
7	120	2450	3,5	338,4	94,00	0,100
8	118	2448	4	332,76	92,43	0,104
9	117	2445	4,5	329,94	91,65	0,110
10	-	-	5	-	-	-
11	-	-	5,5	-	-	-
12	-	-	6	-	-	-
13	-	-	6,5	-	-	-

Şekil 5.72. %10 Orta Kum İçeren CH Numunesinin Kesme Kutusu Deneyinde Yatay Deplasman – Düşey Deplasman İlişkisi

Şekil 5.73. % 10 Orta Kum İçeren CH Numunesinin Kesme Kutusu Deneyinde Kayma Gerilmesi – Yatay Deplasman İlişkisi

Şekil 5.74. % 10 Orta Kum İçeren CH Numunesi İçin Kesme Kutusu Deneyi

Örneğin Tanımı	Örneğin Tanımı CH + % 10 Kaba Kum		Kuvvet Halkası No		
Deneyi Yapan	Cemil GÜVEN	Kuvvet Halka	Kuvvet Halkası Katsayısı		
Kesme Hızı	0,5mm/dak	Düşey Defor.	Saati Katsayısı	0,002	
Örnek No.		1	2	3	
Örnek Boyu, (cm)		6,0	6,0	6,0	
Örnek Alanı, (cm ²)		36,00	36,00	36,00	
Örnek Yüksekliği, (cı	n)	2,0	2,0	2,0	
Örnek Hacmi, (cm ³)		72,00	72,00	72,00	
Normal Gerilme, σ_3 ,	100	200	300		
Halka No		10	11	12	
Halka Ağırlığı, (gr)		148,31	160,06	160,91	
Halka ve Numune Ağ	jurlığı, (gr)	302,26	310,97	305,15	
Deney Sonu Numune	Ağırlığı, (gr)	152,53	149,53	145,34	
Kuru Numune Ağırlığ	ğı, (gr)	111,12	122,00	112,60	
Düşey Yük, (gr)		36000	72000	108000	
İlk Okuma, (mm)	2500	2500	2500		
Son Okuma, (mm)	1840	1745	1545		
Sıkışma, (mm)		660	755	955	

Tablo 5.79. %10 Kaba Kum İçeren CH Numunesinin Kesme Kutusu Deneyinde Fiziksel Özellikleri

			$\sigma_n = 100 \text{ kPa}$			
t	KH	Δh	δ, (mm)	S (N)	τ (kPa)	$\Delta H (mm)$
Zaman dk	Kuvvet Halkası Okuması	Düşey Defor. Okuması	Yatay Deplasman	Kesme Kuvveti	Kayma Gerilmesi	Düşey Deplasman
0	0	2500	0	0	0,00	0,000
1	55	2496	0,5	155,1	43,08	0,008
2	78	2488	1	219,96	61,10	0,024
3	85	2482	1,5	239,7	66,58	0,036
4	88	2479	2	248,16	68,93	0,042
5	89	2475	2,5	250,98	69,72	0,050
6	88	2473	3	248,16	68,93	0,054
7	86	2470	3,5	242,52	67,37	0,060
8	85	2468	4	239,7	66,58	0,064
9	-	-	4,5	-	-	-
10	-	-	5	-	-	-
11	-	-	5,5	-	-	-
12	-	-	6	-	-	-
13	-	-	6,5	-	-	-

Tablo 5.80. %10 Kaba Kum İçeren CH Numunesinin 100 kPa da c ve Ø'nın Kesme Kutusu Deneyi İle Bulunması

Tablo 5.81. %10 Kaba Kum İçeren CH Numunesinin 200 kPa da c ve Ø'nın Kesme Kutusu Deneyi İle Bulunması

			$\sigma_n = 200 \text{ kPa}$			
t	KH	Δh	δ, (mm)	S (N)	τ (kPa)	$\Delta H (mm)$
Zaman dk	Kuvvet Halkası Okuması	Düşey Defor. Okuması	Yatay Deplasman	Kesme Kuvveti	Kayma Gerilmesi	Düşey Deplasman
0	0	2500	0	0	0,00	0,000
1	65	2498	0,5	183,3	50,92	0,004
2	88	2483	1	248,16	68,93	0,034
3	98	2481	1,5	276,36	76,77	0,038
4	101	2481	2	284,82	79,12	0,038
5	102	2480	2,5	287,64	79,90	0,040
6	103	2476	3	290,46	80,68	0,048
7	102	2458	3,5	287,64	79,90	0,084
8	101	2449	4	284,82	79,12	0,102
9	100	2443	4,5	282	78,33	0,114
10	-	-	5	-	-	-
11	-	-	5,5	-	-	-
12	-	-	6	-	-	-
13	-	-	6,5	-	-	-

			$\sigma_n = 300 \text{ kPa}$			
t	KH	Δh	δ, (mm)	S (N)	τ (kPa)	$\Delta H (mm)$
Zaman dk	Kuvvet Halkası Okuması	Düşey Defor. Okuması	Yatay Deplasman	Kesme Kuvveti	Kayma Gerilmesi	Düşey Deplasman
0	0	2500	0	0	0,00	0,000
1	80	2492	0,5	225,6	62,67	0,016
2	101	2465	1	284,82	79,12	0,070
3	112	2438	1,5	315,84	87,73	0,124
4	118	2413	2	332,76	92,43	0,174
5	123	2392	2,5	346,86	96,35	0,216
6	126	2374	3	355,32	98,70	0,252
7	128	2361	3,5	360,96	100,27	0,278
8	131	2350	4	369,42	102,62	0,300
9	132	2341	4,5	372,24	103,40	0,318
10	133	2332	5	375,06	104,18	0,336
11	134	2325	5,5	377,88	104,97	0,350
12	134	2320	6	377,88	104,97	0,360
13	134	2315	6,5	377,88	104,97	0,370
14	133	2312	7	375,06	104,18	0,376

Tablo 5.82. %10 Kaba Kum İçeren CH Numunesinin 300 kPa da c ve Ø'nın Kesme Kutusu Deneyi İle Bulunması

Şekil 5.75. % 10 Kaba Kum İçeren CH Numunesinin Kesme Kutusu Deneyinde Yatay Deplasman – Düşey Deplasman İlişkisi

Şekil 5.76. % 10 Kaba Kum İçeren CH Numunesinin Kesme Kutusu Deneyinde Kayma Gerilmesi – Yatay Deplasman İlişkisi

Şekil 5.77. % 10 Kaba Kum İçeren CH Numunesi İçin Kesme Kutusu Deneyi

Örneğin Tanımı	CH + % 25 İnce Kum	Kuvvet Halka	ISI NO	15553
Deneyi Yapan	Cemil GÜVEN	Kuvvet Halka	Kuvvet Halkası Katsayısı	
Kesme Hızı	0,5mm/dak	Düşey Defor.	Saati Katsayısı	0,002
Örnek No.		1	2	3
Örnek Boyu, (cm)		6,0	6,0	6,0
Örnek Alanı, (cm ²)		36,00	36,00	36,00
Örnek Yüksekliği, (cı	n)	2,0	2,0	2,0
Örnek Hacmi, (cm ³)	72,00	72,00	72,00	
Normal Gerilme, σ_3 ,	100	200	300	
Halka No		10	11	12
Halka Ağırlığı, (gr)		148,31	160,06	160,91
Halka ve Numune Ağ	urlığı, (gr)	306,03	314,77	314,18
Deney Sonu Numune	Ağırlığı, (gr)	160,20	155,10	152,31
Kuru Numune Ağırlığ	ğı, (gr)	129,87	126,03	121,11
Düşey Yük, (gr)		36000	72000	108000
İlk Okuma, (mm)		2500	2500	2500
Son Okuma, (mm)	Son Okuma, (mm)			1600
Sıkışma, (mm)		450	660	900

Tablo 5.83. %25 İnce Kum İçeren CH Numunesinin Kesme Kutusu Deneyinde Fiziksel Özellikleri

Tablo 5.84. %25 İnce Kum İçeren CH Numunesinin 100 kPa da c ve Ø'nın Kesme Kutusu Deneyi İle Bulunması

			$\sigma_n = 100 \text{ kPa}$			
t	KH	Δh	δ, (mm)	S (N)	τ (kPa)	$\Delta H (mm)$
Zaman dk	Kuvvet Halkası Okuması	Düşey Defor. Okuması	Yatay Deplasman	Kesme Kuvveti	Kayma Gerilmesi	Düşey Deplasman
0	0	2500	0	0	0,00	0,000
1	46	2485	0,5	129,72	36,03	0,030
2	66	2475	1	186,12	51,70	0,050
3	74	2473	1,5	208,68	57,97	0,054
4	82	2488	2	231,24	64,23	0,024
5	87	2504	2,5	245,34	68,15	-0,008
6	90	2519	3	253,8	70,50	-0,038
7	89	2522	3,5	250,98	69,72	-0,044
8	87	2516	4	245,34	68,15	-0,032
9	83	2514	4,5	234,06	65,02	-0,028
10	-	-	5	-	-	-
11	-	-	5,5	-	-	-
12	-	-	6	-	-	-
13	-	-	6,5	-	-	-

			$\sigma_n = 200 \text{ kPa}$			
t	KH	Δh	δ, (mm)	S (N)	τ (kPa)	$\Delta H (mm)$
Zaman dk	Kuvvet Halkası Okuması	Düşey Defor. Okuması	Yatay Deplasman	Kesme Kuvveti	Kayma Gerilmesi	Düşey Deplasman
0	0	2500	0	0	0,00	0,000
1	49	2456	0,5	138,18	38,38	0,088
2	70	2430	1	197,4	54,83	0,140
3	90	2412	1,5	253,8	70,50	0,176
4	108	2396	2	304,56	84,60	0,208
5	119	2385	2,5	335,58	93,22	0,230
6	129	2375	3	363,78	101,05	0,250
7	131	2368	3,5	369,42	102,62	0,264
8	131	2362	4	369,42	102,62	0,276
9	130	2350	4,5	366,6	101,83	0,300
10	124	2345	5	349,68	97,13	0,310
11	-	-	5,5	-	-	-
12	-	-	6	-	-	-
13	-	-	6,5	-	-	-

Tablo 5.85. %25 İnce Kum İçeren CH Numunesinin 200 kPa da c ve Ø'nın Kesme Kutusu Deneyi İle Bulunması

Tablo 5.86. %25 İnce Kum İçeren CH Numunesinin 300 kPa da c ve Ø'nın Kesme Kutusu Deneyi İle Bulunması

			$\sigma_n = 300 \text{ kPa}$			
t	KH	Δh	δ, (mm)	S (N)	τ (kPa)	$\Delta H (mm)$
Zaman dk	Kuvvet Halkası Okuması	Düşey Defor. Okuması	Yatay Deplasman	Kesme Kuvveti	Kayma Gerilmesi	Düşey Deplasman
0	0	2500	0	0	0,00	0,000
1	88	2482	0,5	248,16	68,93	0,036
2	114	2465	1	321,48	89,30	0,070
3	130	2450	1,5	366,6	101,83	0,100
4	140	2435	2	394,8	109,67	0,130
5	144	2424	2,5	406,08	112,80	0,152
6	146	2410	3	411,72	114,37	0,180
7	147	2400	3,5	414,54	115,15	0,200
8	145	2390	4	408,9	113,58	0,220
9	145	2381	4,5	408,9	113,58	0,238
10	144	2371	5	406,08	112,80	0,258
11	-	-	5,5	-	-	-
12	-	-	6	-	-	-
13	-	-	6,5	-	-	-

Şekil 5.78. % 25 İnce Kum İçeren CH Numunesinin Kesme Kutusu Deneyinde Yatay Deplasman – Düşey Deplasman İlişkisi

Şekil 5.79. % 25 İnce Kum İçeren CH Numunesinin Kesme Kutusu Deneyinde Kayma Gerilmesi – Yatay Deplasman İlişkisi

Şekil 5.80. % 25 İnce Kum İçeren CH Numunesi İçin Kesme Kutusu Deneyi

Örneğin Tanımı	CH + % 25 Orta Kum	Kuvvet Halka	ISI NO	15553
Deneyi Yapan	Cemil GÜVEN	Kuvvet Halkası Katsayısı		2,82
Kesme Hızı	0,5mm/dak	Düşey Defor.	Saati Katsayısı	0,002
Örnek No.		1	2	3
Örnek Boyu, (cm)		6,0	6,0	6,0
Örnek Alanı, (cm ²)		36,00	36,00	36,00
Örnek Yüksekliği, (cr	n)	2,0	2,0	2,0
Örnek Hacmi, (cm ³)	72,00	72,00	72,00	
Normal Gerilme, σ_3 ,	100	200	300	
Halka No		10	11	12
Halka Ağırlığı, (gr)		148,31	160,06	160,91
Halka ve Numune Ağ	urlığı, (gr)	305,12	316,96	310,80
Deney Sonu Numune	Ağırlığı, (gr)	155,37	155,77	153,12
Kuru Numune Ağırlığ	ğı, (gr)	128,31	129,06	123,06
Düşey Yük, (gr)		36000	72000	108000
İlk Okuma, (mm)		2500	2500	2500
Son Okuma, (mm)	2040	1920	1875	
Sıkışma, (mm)		460	580	625

Tablo 5.87. %25 Orta Kum İçeren CH Numunesinin Kesme Kutusu Deneyinde Fiziksel Özellikleri

			$\sigma_n = 100 \text{ kPa}$			
t	KH	Δh	δ, (mm)	S (N)	τ (kPa)	$\Delta H (mm)$
Zaman dk	Kuvvet Halkası Okuması	Düşey Defor. Okuması	Yatay Deplasman	Kesme Kuvveti	Kayma Gerilmesi	Düşey Deplasman
0	0	2500	0	0	0,00	0,000
1	58	2483	0,5	163,56	45,43	0,034
2	80	2467	1	225,6	62,67	0,066
3	94	2467	1,5	265,08	73,63	0,066
4	101	2481	2	284,82	79,12	0,038
5	103	2506	2,5	290,46	80,68	-0,012
6	99	2521	3	279,18	77,55	-0,042
7	95	2528	3,5	267,9	74,42	-0,056
8	91	2532	4	256,62	71,28	-0,064
9	-	-	4,5	-	-	-
10	-	-	5	-	-	-
11	-	-	5,5	-	-	-
12	-	-	6	-	-	-
13	-	-	6,5	-	-	-

Tablo 5.88. %25 Orta Kum İçeren CH Numunesinin 100 kPa da c ve Ø'nın Kesme Kutusu Deneyi İle Bulunması

Tablo 5.89. %25 Orta Kum İçeren CH Numunesinin 200 kPa da c ve Ø'nın Kesme Kutusu Deneyi İle Bulunması

			$\sigma_n = 200 \text{ kPa}$			
t	KH	Δh	δ, (mm)	S (N)	τ (kPa)	$\Delta H (mm)$
Zaman dk	Kuvvet Halkası Okuması	Düşey Defor. Okuması	Yatay Deplasman	Kesme Kuvveti	Kayma Gerilmesi	Düşey Deplasman
0	0	2500	0	0	0,00	0,000
1	61	2480	0,5	172,02	47,78	0,040
2	91	2475	1	256,62	71,28	0,050
3	115	2470	1,5	324,3	90,08	0,060
4	136	2461	2	383,52	106,53	0,078
5	140	2458	2,5	394,8	109,67	0,084
6	141	2432	3	397,62	110,45	0,136
7	138	2412	3,5	389,16	108,10	0,176
8	135	2402	4	380,7	105,75	0,196
9	132	2400	4,5	372,24	103,40	0,200
10	-	-	5	-	-	-
11	-	-	5,5	-	-	-
12	-	-	6	-	-	-
13	-	-	6,5	-	-	-

			$\sigma_n = 300 \text{ kPa}$			
t	KH	Δh	δ, (mm)	S (N)	τ (kPa)	$\Delta H (mm)$
Zaman dk	Kuvvet Halkası Okuması	Düşey Defor. Okuması	Yatay Deplasman	Kesme Kuvveti	Kayma Gerilmesi	Düşey Deplasman
0	0	2500	0	0	0,00	0,000
1	63	2483	0,5	177,66	49,35	0,034
2	93	2460	1	262,26	72,85	0,080
3	116	2435	1,5	327,12	90,87	0,130
4	145	2407	2	408,9	113,58	0,186
5	150	2381	2,5	423	117,50	0,238
6	157	2358	3	442,74	122,98	0,284
7	160	2335	3,5	451,2	125,33	0,330
8	161	2319	4	454,02	126,12	0,362
9	162	2300	4,5	456,84	126,90	0,400
10	163	2290	5	459,66	127,68	0,420
11	160	2273	5,5	451,2	125,33	0,454
12	160	2260	6	451,2	125,33	0,480
13	160	2257	6,5	451,2	125,33	0,486
14	-	-	7	-	-	-

Tablo 5.90. %25 Orta Kum İçeren CH Numunesinin 300 kPa da c ve Ø'nın Kesme Kutusu Deneyi İle Bulunması

Şekil 5.81. % 25 Orta Kum İçeren CH Numunesinin Kesme Kutusu Deneyinde Yatay Deplasman – Düşey Deplasman İlişkisi

Şekil 5.82. % 25 Orta Kum İçeren CH Numunesinin Kesme Kutusu Deneyinde Kayma Gerilmesi – Yatay Deplasman İlişkisi

Şekil 5.83. % 25 Orta Kum İçeren CH Numunesi İçin Kesme Kutusu Deneyi

Tablo 5.91. %25 Kaba Kum İçeren CH Numunesinin Kesme Kutusu Deneyinde Fiziksel Özellikleri

Örneğin Tanımı	CH + % 25 Kaba Kum	Kuvvet Halka	si No	15553
Deneyi Yapan	Cemil GÜVEN	Kuvvet Halkası Katsayısı		2,82
Kesme Hızı	0,5mm/dak	Düşey Defor.	Saati Katsayısı	0,002
Örnek No.		1	2	3
Örnek Boyu, (cm)		6,0	6,0	6,0
Örnek Alanı, (cm ²)		36,00	36,00	36,00
Örnek Yüksekliği, (cı	n)	2,0	2,0	2,0
Örnek Hacmi, (cm ³)		72,00	72,00	72,00
Normal Gerilme, σ_3 ,	100	200	300	
Halka No		10	11	12
Halka Ağırlığı, (gr)		148,31	160,06	160,91
Halka ve Numune Ağ	urlığı, (gr)	307,59	318,69	308,91
Deney Sonu Numune	Ağırlığı, (gr)	158,12	157,09	146,64
Kuru Numune Ağırlığ	ğı, (gr)	129,36	131,35	120,45
Düşey Yük, (gr)		36000	72000	108000
İlk Okuma, (mm)	2500	2500	2500	
Son Okuma, (mm)	2255	1925	1720	
Sıkışma, (mm)		245	575	780

Tablo 5.92. %25 Kaba Kum İçeren CH Numunesinin 100 kPa da c ve Ø'nın Kesme Kutusu Deneyi İle Bulunması

			$\sigma_n = 100 \text{ kPa}$			
t	KH	Δh	δ, (mm)	S (N)	τ (kPa)	$\Delta H (mm)$
Zaman dk	Kuvvet Halkası Okuması	Düşey Defor. Okuması	Yatay Deplasman	Kesme Kuvveti	Kayma Gerilmesi	Düşey Deplasman
0	0	2500	0	0	0,00	0,000
1	46	2456	0,5	129,72	36,03	0,088
2	66	2445	1	186,12	51,70	0,110
3	79	2445	1,5	222,78	61,88	0,110
4	83	2458	2	234,06	65,02	0,084
5	87	2475	2,5	245,34	68,15	0,050
6	89	2489	3	250,98	69,72	0,022
7	88	2500	3,5	248,16	68,93	0,000
8	86	2508	4	242,52	67,37	-0,016
9	84	2515	4,5	236,88	65,80	-0,030
10	-	-	5	-	-	-
11	-	-	5,5	-	-	-
12	-	-	6	-	-	-
13	-	-	6,5	-	-	-

			$\sigma_n = 200 \text{ kPa}$			
t	KH	Δh	δ, (mm)	S (N)	τ (kPa)	$\Delta H (mm)$
Zaman dk	Kuvvet Halkası Okuması	Düşey Defor. Okuması	Yatay Deplasman	Kesme Kuvveti	Kayma Gerilmesi	Düşey Deplasman
0	0	2500	0	0	0,00	0,000
1	51	2486	0,5	143,82	39,95	0,028
2	78	2475	1	219,96	61,10	0,050
3	100	2462	1,5	282	78,33	0,076
4	116	2462	2	327,12	90,87	0,076
5	126	2465	2,5	355,32	98,70	0,070
6	132	2473	3	372,24	103,40	0,054
7	134	2482	3,5	377,88	104,97	0,036
8	134	2492	4	377,88	104,97	0,016
9	134	2478	4,5	377,88	104,97	0,044
10	131	2478	5	369,42	102,62	0,044
11	-	-	5,5	-	-	-
12	-	-	6	-	-	-
13	-	-	6,5	-	-	-

Tablo 5.93. %25 Kaba Kum İçeren CH Numunesinin 200 kPa da c ve Ø'nın Kesme Kutusu Deneyi İle Bulunması

Tablo 5.94. %25 Kaba Kum İçeren CH Numunesinin 300 kPa da c ve Ø'nın Kesme Kutusu Deneyi İle Bulunması

	$\sigma_n = 300 \text{ kPa}$						
t	KH	Δh	δ, (mm)	S (N)	τ (kPa)	$\Delta H (mm)$	
Zaman dk	Kuvvet Halkası Okuması	Düşey Defor. Okuması	Yatay Deplasman	Kesme Kuvveti	Kayma Gerilmesi	Düşey Deplasman	
0	0	2500	0	0	0,00	0,000	
1	75	2472	0,5	211,5	58,75	0,056	
2	102	2444	1	287,64	79,90	0,112	
3	114	2418	1,5	321,48	89,30	0,164	
4	122	2398	2	344,04	95,57	0,204	
5	140	2380	2,5	394,8	109,67	0,240	
6	149	2367	3	420,18	116,72	0,266	
7	151	2356	3,5	425,82	118,28	0,288	
8	150	2347	4	423	117,50	0,306	
9	150	2337	4,5	423	117,50	0,326	
10	149	2327	5	420,18	116,72	0,346	
11	-	-	5,5	-	-	-	
12	-	-	6	-	-	-	
13	-	-	6,5	-	-	-	

Şekil 5.84. % 25 Kaba Kum İçeren CH Numunesinin Kesme Kutusu Deneyinde Yatay Deplasman – Düşey Deplasman İlişkisi

Şekil 5.85. % 25 Kaba Kum İçeren CH Numunesinin Kesme Kutusu Deneyinde Kayma Gerilmesi – Yatay Deplasman İlişkisi

Şekil 5.86. % 25 Kaba Kum İçeren CH Numunesi İçin Kesme Kutusu Deneyi

Örneğin Tanımı	CH + % 50 İnce Kum	Kuvvet Halka	15553
Deneyi Yapan	Cemil GÜVEN	Kuvvet Halka	2,82
Kesme Hızı	0,5mm/dak	Düşey Defor.	0,002
Örnek No.	1	2	3
Örnek Boyu, (cm)	6,0	6,0	6,0
Örnek Alanı, (cm ²)	36,00	36,00	36,00
Örnek Yüksekliği, (cı	2,0	2,0	2,0
Örnek Hacmi, (cm ³)	72,00	72,00	72,00
Normal Gerilme, σ_3 ,	100	200	300
Halka No	10	11	12
Halka Ağırlığı, (gr)	148,31	160,06	160,91
Halka ve Numune Ağ	309,29	315,99	311,23
Deney Sonu Numune	158,68	153,32	148,98
Kuru Numune Ağırlığ	133,03	129,52	124,76
Düşey Yük, (gr)	36000	72000	108000
İlk Okuma, (mm)	2500	2500	2500
Son Okuma, (mm)	1980	1802	1682
Sıkışma, (mm)	520	698	818

Tablo 5.95. %50 İnce Kum İçeren CH Numunesinin Kesme Kutusu Deneyinde Fiziksel Özellikleri

$\sigma_n = 100 \text{ kPa}$						
t	KH	Δh	δ, (mm)	S (N)	τ (kPa)	$\Delta H (mm)$
Zaman dk	Kuvvet Halkası Okuması	Düşey Defor. Okuması	Yatay Deplasman	Kesme Kuvveti	Kayma Gerilmesi	Düşey Deplasman
0	0	2500	0	0	0,00	0,000
1	24	2492	0,5	67,68	18,80	0,016
2	40	2482	1	112,8	31,33	0,036
3	51	2465	1,5	143,82	39,95	0,070
4	59	2455	2	166,38	46,22	0,090
5	64	2452	2,5	180,48	50,13	0,096
6	68	2451	3	191,76	53,27	0,098
7	69	2451	3,5	194,58	54,05	0,098
8	70	2449	4	197,4	54,83	0,102
9	69	2449	4,5	194,58	54,05	0,102
10	68	2448	5	191,76	53,27	0,104
11	67	2445	5,5	188,94	52,48	0,110
12	-	-	6	-	-	-
13	-	-	6,5	-	-	-

Tablo 5.96. %50 İnce Kum İçeren CH Numunesinin 100 kPa da c ve Ø'nın Kesme Kutusu Deneyi İle Bulunması

Tablo 5.97. %50 İnce Kum İçeren CH Numunesinin 200 kPa da c ve Ø'nın Kesme Kutusu Deneyi İle Bulunması

$\sigma_n = 200 \text{ kPa}$						
t	KH	Δh	δ, (mm)	S (N)	τ (kPa)	$\Delta H (mm)$
Zaman dk	Kuvvet Halkası Okuması	Düşey Defor. Okuması	Yatay Deplasman	Kesme Kuvveti	Kayma Gerilmesi	Düşey Deplasman
0	0	2500	0	0	0,00	0,000
1	42	2486	0,5	118,44	32,90	0,028
2	60	2472	1	169,2	47,00	0,056
3	76	2456	1,5	214,32	59,53	0,088
4	90	2448	2	253,8	70,50	0,104
5	100	2443	2,5	282	78,33	0,114
6	109	2440	3	307,38	85,38	0,120
7	116	2439	3,5	327,12	90,87	0,122
8	120	2439	4	338,4	94,00	0,122
9	121	2438	4,5	341,22	94,78	0,124
10	122	2437	5	344,04	95,57	0,126
11	121	2437	5,5	341,22	94,78	0,126
12	120	2437	6	338,4	94,00	0,126
13	119	2436	6,5	335,58	93,22	0,128

$\sigma_n = 300 \text{ kPa}$						
t	KH	Δh	δ, (mm)	S (N)	τ (kPa)	$\Delta H (mm)$
Zaman dk	Kuvvet Halkası Okuması	Düşey Defor. Okuması	Yatay Deplasman	Kesme Kuvveti	Kayma Gerilmesi	Düşey Deplasman
0	0	2500	0	0	0,00	0,000
1	45	2489	0,5	126,9	35,25	0,022
2	76	2461	1	214,32	59,53	0,078
3	98	2430	1,5	276,36	76,77	0,140
4	114	2404	2	321,48	89,30	0,192
5	124	2381	2,5	349,68	97,13	0,238
6	131	2365	3	369,42	102,62	0,270
7	137	2352	3,5	386,34	107,32	0,296
8	141	2341	4	397,62	110,45	0,318
9	144	2332	4,5	406,08	112,80	0,336
10	146	2325	5	411,72	114,37	0,350
11	148	2315	5,5	417,36	115,93	0,370
12	150	2307	6	423	117,50	0,386
13	151	2300	6,5	425,82	118,28	0,400
14	153	2292	7	431,46	119,85	0,416
15	154	2286	7,5	434,28	120,63	0,428
16	155	2280	8	437,1	121,42	0,440
17	154	2275	8,5	434,28	120,63	0,450
18	154	2271	9	434,28	120,63	0,458
19	153	2265	9,5	431,46	119,85	0,470

Tablo 5.98. %50 İnce Kum İçeren CH Numunesinin 300 kPa da c ve Ø'nın Kesme Kutusu Deneyi İle Bulunması

Şekil 5.87. % 50 İnce Kum İçeren CH Numunesinin Kesme Kutusu Deneyinde Yatay Deplasman – Düşey Deplasman İlişkisi

Şekil 5.88. % 50 İnce Kum İçeren CH Numunesinin Kesme Kutusu Deneyinde Kayma Gerilmesi – Yatay Deplasman İlişkisi

Şekil 5.89. % 50 İnce Kum İçeren CH Numunesi İçin Kesme Kutusu Deneyi

Tablo 5.99. %50 Orta Kum İçeren CH Numunesinin Kesme Kutusu Deneyinde Fiziksel Özellikleri
Örneğin Tanımı	CH + % 50 Orta Kum	Kuvvet Halka	Kuvvet Halkası No		
Deneyi Yapan	Cemil GÜVEN	Kuvvet Halka	ısı Katsayısı	2,82	
Kesme Hızı	0,5mm/dak	Düşey Defor.	Saati Katsayısı	0,002	
Örnek No.		1	2	3	
Örnek Boyu, (cm)		6,0	6,0	6,0	
Örnek Alanı, (cm ²)		36,00	36,00	36,00	
Örnek Yüksekliği, (cr	n)	2,0	2,0	2,0	
Örnek Hacmi, (cm ³)		72,00	72,00	72,00	
Normal Gerilme, σ_3 ,	100	200	300		
Halka No		10	11	12	
Halka Ağırlığı, (gr)		148,31	160,06	160,91	
Halka ve Numune Ağ	jurlığı, (gr)	305,20	315,17	314,50	
Deney Sonu Numune	Ağırlığı, (gr)	150,53	151,45	149,69	
Kuru Numune Ağırlığ	ğı, (gr)	126,19	128,56	127,44	
Düşey Yük, (gr)		36000	72000	108000	
İlk Okuma, (mm)	2500	2500	2500		
Son Okuma, (mm)		2149	1778	1560	
Sıkışma, (mm)		351	722	940	

Tablo 5.100. %50 Orta Kum İçeren CH Numunesinin 100 kPa da c ve Ø'nın Kesme Kutusu Deneyi İle Bulunması

			$\sigma_n = 100 \text{ kPa}$			
t	KH	Δh	δ, (mm)	S (N)	τ (kPa)	$\Delta H (mm)$
Zaman dk	Kuvvet Halkası Okuması	Düşey Defor. Okuması	Yatay Deplasman	Kesme Kuvveti	Kayma Gerilmesi	Düşey Deplasman
0	0	2500	0	0	0,00	0,000
1	24	2496	0,5	67,68	18,80	0,008
2	44	2484	1	124,08	34,47	0,032
3	50	2472	1,5	141	39,17	0,056
4	55	2465	2	155,1	43,08	0,070
5	58	2461	2,5	163,56	45,43	0,078
6	59	2459	3	166,38	46,22	0,082
7	60	2456	3,5	169,2	47,00	0,088
8	61	2455	4	172,02	47,78	0,090
9	60	2454	4,5	169,2	47,00	0,092
10	59	2453	5	166,38	46,22	0,094
11	59	2452	5,5	166,38	46,22	0,096
12	-	-	6	-	-	-
13	-	-	6,5	-	-	-

			$\sigma_n = 200 \text{ kPa}$			
t	KH	Δh	δ, (mm)	S (N)	τ (kPa)	$\Delta H (mm)$
Zaman dk	Kuvvet Halkası Okuması	Düşey Defor. Okuması	Yatay Deplasman	Kesme Kuvveti	Kayma Gerilmesi	Düşey Deplasman
0	0	2500	0	0	0,00	0,000
1	56	2484	0,5	157,92	43,87	0,032
2	74	2468	1	208,68	57,97	0,064
3	85	2455	1,5	239,7	66,58	0,090
4	90	2442	2	253,8	70,50	0,116
5	94	2437	2,5	265,08	73,63	0,126
6	97	2417	3	273,54	75,98	0,166
7	99	2408	3,5	279,18	77,55	0,184
8	101	2403	4	284,82	79,12	0,194
9	102	2400	4,5	287,64	79,90	0,200
10	103	2399	5	290,46	80,68	0,202
11	104	2398	5,5	293,28	81,47	0,204
12	103	2398	6	290,46	80,68	0,204
13	102	2397	6,5	287,64	79,90	0,206
14	101	2395	7	284,82	79,12	0,210

Tablo 5.101. %50 Orta Kum İçeren CH Numunesinin 200 kPa da c ve Ø'nın Kesme Kutusu Deneyi İle Bulunması

			$\sigma_n = 300 \text{ kPa}$			
t	KH	Δh	δ, (mm)	S (N)	τ (kPa)	$\Delta H (mm)$
Zaman dk	Kuvvet Halkası Okuması	Düşey Defor. Okuması	Yatay Deplasman	Kesme Kuvveti	Kayma Gerilmesi	Düşey Deplasman
0	0	2500	0	0	0,00	0,000
1	52	2489	0,5	146,64	40,73	0,022
2	83	2461	1	234,06	65,02	0,078
3	96	2430	1,5	270,72	75,20	0,140
4	105	2404	2	296,1	82,25	0,192
5	110	2381	2,5	310,2	86,17	0,238
6	113	2365	3	318,66	88,52	0,270
7	115	2352	3,5	324,3	90,08	0,296
8	117	2341	4	329,94	91,65	0,318
9	118	2332	4,5	332,76	92,43	0,336
10	119	2325	5	335,58	93,22	0,350
11	120	2315	5,5	338,4	94,00	0,370
12	121	2307	6	341,22	94,78	0,386
13	122	2300	6,5	344,04	95,57	0,400
14	123	2292	7	346,86	96,35	0,416
15	121	2286	7,5	341,22	94,78	0,428
16	121	2280	8	341,22	94,78	0,440
17	121	2275	8,5	341,22	94,78	0,450

Tablo 5.102. %50 Orta Kum İçeren CH Numunesinin 300 kPa da c ve Ø'nın Kesme Kutusu Deneyi İle Bulunması

Şekil 5.90. % 50 Orta Kum İçeren CH Numunesinin Kesme Kutusu Deneyinde Yatay Deplasman – Düşey Deplasman İlişkisi

Şekil 5.91. % 50 Orta Kum İçeren CH Numunesinin Kesme Kutusu Deneyinde Kayma Gerilmesi – Yatay Deplasman İlişkisi

Şekil 5.92. % 50 Orta Kum İçeren CH Numunesi İçin Kesme Kutusu Deneyi

Örneğin Tanımı	Örneğin Tanımı CH + % 50 Kaba Kum		Kuvvet Halkası No		
Deneyi Yapan	Cemil GÜVEN	Kuvvet Halka	Kuvvet Halkası Katsayısı		
Kesme Hızı	0,5mm/dak	Düşey Defor.	Saati Katsayısı	0,002	
Örnek No.		1	2	3	
Örnek Boyu, (cm)		6,0	6,0	6,0	
Örnek Alanı, (cm ²)		36,00	36,00	36,00	
Örnek Yüksekliği, (cr	n)	2,0	2,0	2,0	
Örnek Hacmi, (cm ³)		72,00	72,00	72,00	
Normal Gerilme, σ_3 ,	100	200	300		
Halka No		10	11	12	
Halka Ağırlığı, (gr)		148,31	160,06	160,91	
Halka ve Numune Ağ	urlığı, (gr)	303,98	315,73	310,69	
Deney Sonu Numune	Ağırlığı, (gr)	152,86	150,56	144,59	
Kuru Numune Ağırlığ	ğı, (gr)	127,64	129,13	1124,56	
Düşey Yük, (gr)		36000	72000	108000	
İlk Okuma, (mm)		2500	2500	2500	
Son Okuma, (mm)	2015	1821	1449		
Sıkışma, (mm)		485	679	1051	

Tablo 5.103. %50 Kaba Kum İçeren CH Numunesinin Kesme Kutusu Deneyinde Fiziksel Özellikleri

Tablo 5.104. %50 Kaba Kum İçeren CH Numunesinin 100 kPa da c ve Ø'nın Kesme Kutusu Deneyi İle Bulunması

			$\sigma_n = 100 \text{ kPa}$			
t	KH	Δh	δ, (mm)	S (N)	τ (kPa)	$\Delta H (mm)$
Zaman dk	Kuvvet Halkası Okuması	Düşey Defor. Okuması	Yatay Deplasman	Kesme Kuvveti	Kayma Gerilmesi	Düşey Deplasman
0	0	2500	0	0	0,00	0,000
1	36	2498	0,5	101,52	28,20	0,004
2	42	2482	1	118,44	32,90	0,036
3	45	2474	1,5	126,9	35,25	0,052
4	48	2469	2	135,36	37,60	0,062
5	52	2464	2,5	146,64	40,73	0,072
6	54	2463	3	152,28	42,30	0,074
7	59	2462	3,5	166,38	46,22	0,076
8	63	2462	4	177,66	49,35	0,076
9	65	2462	4,5	183,3	50,92	0,076
10	67	2462	5	188,94	52,48	0,076
11	65	2463	5,5	183,3	50,92	0,074
12	63	2465	6	177,66	49,35	0,070
13	61	2467	6,5	172,02	47,78	0,066

			$\sigma_n = 200 \text{ kPa}$			
t	KH	Δh	δ, (mm)	S (N)	τ (kPa)	$\Delta H (mm)$
Zaman dk	Kuvvet Halkası Okuması	Düşey Defor. Okuması	Yatay Deplasman	Kesme Kuvveti	Kayma Gerilmesi	Düşey Deplasman
0	0	2500	0	0	0,00	0,000
1	32	2494	0,5	90,24	25,07	0,012
2	55	2475	1	155,1	43,08	0,050
3	64	2461	1,5	180,48	50,13	0,078
4	71	2453	2	200,22	55,62	0,094
5	75	2444	2,5	211,5	58,75	0,112
6	77	2441	3	217,14	60,32	0,118
7	80	2437	3,5	225,6	62,67	0,126
8	82	2434	4	231,24	64,23	0,132
9	86	2429	4,5	242,52	67,37	0,142
10	88	2425	5	248,16	68,93	0,150
11	91	2422	5,5	256,62	71,28	0,156
12	95	2420	6	267,9	74,42	0,160
13	98	2418	6,5	276,36	76,77	0,164
14	97	2416	7	273,54	75,98	0,168
15	97	2412	7,5	273,54	75,98	0,176
16	96	2409	8	270,72	75,20	0,182

Tablo 5.105. %50 Kaba Kum İçeren CH Numunesinin 200 kPa da c ve Ø'nın Kesme Kutusu Deneyi İle Bulunması

			$\sigma_n = 300 \text{ kPa}$			
t	KH	Δh	δ, (mm)	S (N)	τ (kPa)	$\Delta H (mm)$
Zaman dk	Kuvvet Halkası Okuması	Düşey Defor. Okuması	Yatay Deplasman	Kesme Kuvveti	Kayma Gerilmesi	Düşey Deplasman
0	0	2500	0	0	0,00	0,000
1	52	2489	0,5	146,64	40,73	0,022
2	83	2461	1	234,06	65,02	0,078
3	96	2430	1,5	270,72	75,20	0,140
4	105	2404	2	296,1	82,25	0,192
5	110	2381	2,5	310,2	86,17	0,238
6	113	2365	3	318,66	88,52	0,270
7	115	2352	3,5	324,3	90,08	0,296
8	117	2341	4	329,94	91,65	0,318
9	118	2332	4,5	332,76	92,43	0,336
10	119	2325	5	335,58	93,22	0,350
11	120	2315	5,5	338,4	94,00	0,370
12	121	2307	6	341,22	94,78	0,386
13	122	2300	6,5	344,04	95,57	0,400
14	123	2292	7	346,86	96,35	0,416
15	121	2286	7,5	341,22	94,78	0,428
16	121	2280	8	341,22	94,78	0,440
17	121	2275	8,5	341,22	94,78	0,450

Tablo 5.106. %50Kaba Kum İçeren CH Numunesinin 300 kPa da c ve Ø'nın Kesme Kutusu Deneyi İle Bulunması

Şekil 5.93. % 50 Kaba Kum İçeren CH Numunesinin Kesme Kutusu Deneyinde Yatay Deplasman – Düşey Deplasman İlişkisi

Şekil 5.94. % 50 Kaba Kum İçeren CH Numunesinin Kesme Kutusu Deneyinde Kayma Gerilmesi – Yatay Deplasman İlişkisi

Şekil 5.95. % 50 Kaba Kum İçeren CH Numunesi İçin Kesme Kutusu Deneyi

Örneğin Tanımı	Örneğin Tanımı CH + % 75 İnce Kum		Kuvvet Halkası No		
Deneyi Yapan	Cemil GÜVEN	Kuvvet Halka	ısı Katsayısı	2,82	
Kesme Hızı	0,5mm/dak	Düşey Defor.	Düşey Defor. Saati Katsayısı		
Örnek No.		1	2	3	
Örnek Boyu, (cm)		6,0	6,0	6,0	
Örnek Alanı, (cm ²)		36,00	36,00	36,00	
Örnek Yüksekliği, (cı	n)	2,0	2,0	2,0	
Örnek Hacmi, (cm ³)	72,00	72,00	72,00		
Normal Gerilme, σ_3 ,	100	200	300		
Halka No		10	11	12	
Halka Ağırlığı, (gr)		148,31	160,06	160,91	
Halka ve Numune Ağ	urlığı, (gr)	298,67	313,52	307,38	
Deney Sonu Numune	Ağırlığı, (gr)	149,12	152,80	146,02	
Kuru Numune Ağırlığ	ğı, (gr)	129,41	1130,59	123,82	
Düşey Yük, (gr)		36000	72000	108000	
İlk Okuma, (mm)	2500	2500	2500		
Son Okuma, (mm)	Son Okuma, (mm)			1808	
Sıkışma, (mm)		570	598	692	

Tablo 5.107. %75 İnce Kum İçeren CH Numunesinin Kesme Kutusu Deneyinde Fiziksel Özellikleri

Tablo 5.108. %75 İnce Kum İçeren CH Numunesinin 100 kPa da c ve Ø'nın Kesme Kutusu Deneyi İle Bulunması

			$\sigma_n = 100 \text{ kPa}$			
t	KH	Δh	δ, (mm)	S (N)	τ (kPa)	$\Delta H (mm)$
Zaman dk	Kuvvet Halkası Okuması	Düşey Defor. Okuması	Yatay Deplasman	Kesme Kuvveti	Kayma Gerilmesi	Düşey Deplasman
0	0	2500	0	0	0,00	0,000
1	25	2458	0,5	70,5	19,58	0,084
2	32	2428	1	90,24	25,07	0,144
3	38	2395	1,5	107,16	29,77	0,210
4	46	2360	2	129,72	36,03	0,280
5	52	2341	2,5	146,64	40,73	0,318
6	57	2328	3	160,74	44,65	0,344
7	59	2318	3,5	166,38	46,22	0,364
8	60	2317	4	169,2	47,00	0,366
9	62	2312	4,5	174,84	48,57	0,376
10	62	2308	5	174,84	48,57	0,384
11	62	2304	5,5	174,84	48,57	0,392
12	63	2301	6	177,66	49,35	0,398
13	-	-	6,5	-	-	-

			$\sigma_n = 200 \text{ kPa}$			
t	KH	Δh	δ, (mm)	S (N)	τ (kPa)	$\Delta H (mm)$
Zaman dk	Kuvvet Halkası Okuması	Düşey Defor. Okuması	Yatay Deplasman	Kesme Kuvveti	Kayma Gerilmesi	Düşey Deplasman
0	0	2500	0	0	0,00	0,000
1	40	2495	0,5	112,8	31,33	0,010
2	53	2465	1	149,46	41,52	0,070
3	65	2435	1,5	183,3	50,92	0,130
4	77	2426	2	217,14	60,32	0,148
5	89	2419	2,5	250,98	69,72	0,162
6	100	2414	3	282	78,33	0,172
7	110	2413	3,5	310,2	86,17	0,174
8	117	2420	4	329,94	91,65	0,160
9	123	2428	4,5	346,86	96,35	0,144
10	127	2435	5	358,14	99,48	0,130
11	130	2440	5,5	366,6	101,83	0,120
12	133	2444	6	375,06	104,18	0,112
13	135	2448	6,5	380,7	105,75	0,104
14	132	2450	7	372,24	103,40	0,100
15	130	2444	7,5	366,6	101,83	0,112
16	128	2435	8	360,96	100,27	0,130

Tablo 5.109. %75 İnce Kum İçeren CH Numunesinin 200 kPa da c ve Ø'nın Kesme Kutusu Deneyi İle Bulunması

			$\sigma_n = 300 \text{ kPa}$			
t	KH	Δh	δ, (mm)	S (N)	τ (kPa)	$\Delta H (mm)$
Zaman dk	Kuvvet Halkası Okuması	Düşey Defor. Okuması	Yatay Deplasman	Kesme Kuvveti	Kayma Gerilmesi	Düşey Deplasman
0	0	2500	0	0	0,00	0,000
1	55	2488	0,5	155,1	43,08	0,024
2	80	2462	1	225,6	62,67	0,076
3	105	2430	1,5	296,1	82,25	0,140
4	124	2405	2	349,68	97,13	0,190
5	140	2385	2,5	394,8	109,67	0,230
6	150	2365	3	423	117,50	0,270
7	160	2354	3,5	451,2	125,33	0,292
8	170	2345	4	479,4	133,17	0,310
9	176	2351	4,5	496,32	137,87	0,298
10	184	2335	5	518,88	144,13	0,330
11	190	2330	5,5	535,8	148,83	0,340
12	194	2323	6	547,08	151,97	0,354
13	198	2320	6,5	558,36	155,10	0,360
14	202	2316	7	569,64	158,23	0,368
15	203	2311	7,5	572,46	159,02	0,378
16	205	2305	8	578,1	160,58	0,390
17	206	2300	8,5	580,92	161,37	0,400
18	207	2294	9	583,74	162,15	0,412
19	208	2287	9,5	586,56	162,93	0,426
20	210	2281	10	592,2	164,50	0,438
21	211	2275	10,5	595,02	165,28	0,450
22	212	2272	11	597,84	166,07	0,456
23	209	2268	11,5	589,38	163,72	0,464
24	208	2265	12	586,56	162,93	0,470
25	206	2260	12,5	580,92	161,37	0,480

Tablo 5.110. %75 Kaba Kum İçeren CH Numunesinin 300 kPa da c ve Ø'nın Kesme Kutusu Deneyi İle Bulunması

Şekil 5.96. % 75 İnce Kum İçeren CH Numunesinin Kesme Kutusu Deneyinde Yatay Deplasman – Düşey Deplasman İlişkisi

Şekil 5.97. % 75 İnce Kum İçeren CH Numunesinin Kesme Kutusu Deneyinde Kayma Gerilmesi – Yatay Deplasman İlişkisi

Şekil 5.98. % 75 İnce Kum İçeren CH Numunesi İçin Kesme Kutusu Deneyi

Örneğin Tanımı	CH + % 75 Orta Kum	Kuvvet Halka	15553	
Deneyi Yapan	Cemil GÜVEN	Kuvvet Halka	ısı Katsayısı	2,82
Kesme Hızı	0,5mm/dak	Düşey Defor.	Saati Katsayısı	0,002
Örnek No.		1	2	3
Örnek Boyu, (cm)		6,0	6,0	6,0
Örnek Alanı, (cm ²)		36,00	36,00	36,00
Örnek Yüksekliği, (cı	n)	2,0	2,0	2,0
Örnek Hacmi, (cm ³)		72,00	72,00	72,00
Normal Gerilme, σ_3 ,	(kPa)	100	200	300
Halka No		10	11	12
Halka Ağırlığı, (gr)		148,31	160,06	160,91
Halka ve Numune Ağ	urlığı, (gr)	298,34	316,70	319,39
Deney Sonu Numune	Ağırlığı, (gr)	149,74	154,72	156,80
Kuru Numune Ağırlığ	ğı, (gr)	129,13	134,07	136,08
Düşey Yük, (gr)		36000	72000	108000
İlk Okuma, (mm)		2500	2500	2500
Son Okuma, (mm)	1995	1938	1830	
Sıkışma, (mm)		505	562	670

Tablo 5.111 %75 Orta Kum İçeren CH Numunesinin Kesme Kutusu Deneyinde Fiziksel Özellikleri

			$\sigma_n = 100 \text{ kPa}$			
t	KH	Δh	δ, (mm)	S (N)	τ (kPa)	$\Delta H (mm)$
Zaman dk	Kuvvet Halkası Okuması	Düşey Defor. Okuması	Yatay Deplasman	Kesme Kuvveti	Kayma Gerilmesi	Düşey Deplasman
0	0	2500	0	0	0,00	0,000
1	22	2490	0,5	62,04	17,23	0,020
2	35	2468	1	98,7	27,42	0,064
3	45	2452	1,5	126,9	35,25	0,096
4	53	2444	2	149,46	41,52	0,112
5	60	2443	2,5	169,2	47,00	0,114
6	66	2450	3	186,12	51,70	0,100
7	71	2461	3,5	200,22	55,62	0,078
8	74	2475	4	208,68	57,97	0,050
9	80	2490	4,5	225,6	62,67	0,020
10	80	2508	5	225,6	62,67	-0,016
11	80	2521	5,5	225,6	62,67	-0,042
12	80	2532	6	225,6	62,67	-0,064
13	-	-	6,5	-	-	-

Tablo 5.112. %75 Orta Kum İçeren CH Numunesinin 100 kPa da c ve Ø'nın Kesme Kutusu Deneyi İle Bulunması

Tablo 5.113. %75 Orta Kum İçeren CH Numunesinin 200 kPa da c ve Ø'nın Kesme Kutusu Deneyi İle Bulunması

			$\sigma_n = 200 \text{ kPa}$			
t	KH	Δh	δ, (mm)	S (N)	τ (kPa)	$\Delta H (mm)$
Zaman dk	Kuvvet Halkası Okuması	Düşey Defor. Okuması	Yatay Deplasman	Kesme Kuvveti	Kayma Gerilmesi	Düşey Deplasman
0	0	2500	0	0	0,00	0,000
1	58	2495	0,5	163,56	45,43	0,010
2	70	2488	1	197,4	54,83	0,024
3	88	2486	1,5	248,16	68,93	0,028
4	102	2493	2	287,64	79,90	0,014
5	112	2508	2,5	315,84	87,73	-0,016
6	120	2520	3	338,4	94,00	-0,040
7	128	2529	3,5	360,96	100,27	-0,058
8	138	2545	4	389,16	108,10	-0,090
9	144	2561	4,5	406,08	112,80	-0,122
10	149	2585	5	420,18	116,72	-0,170
11	150	2607	5,5	423	117,50	-0,214
12	150	2625	6	423	117,50	-0,250
13	148	2628	6,5	417,36	115,93	-0,256
14	140	2631	7	394,8	109,67	-0,262

			$\sigma_n = 300 \text{ kPa}$			
t	KH	Δh	δ, (mm)	S (N)	τ (kPa)	$\Delta H (mm)$
Zaman dk	Kuvvet Halkası Okuması	Düşey Defor. Okuması	Yatay Deplasman	Kesme Kuvveti	Kayma Gerilmesi	Düşey Deplasman
0	0	2500	0	0	0,00	0,000
1	64	2480	0,5	180,48	50,13	0,040
2	85	2460	1	239,7	66,58	0,080
3	112	2445	1,5	315,84	87,73	0,110
4	137	2435	2	386,34	107,32	0,130
5	155	2431	2,5	437,1	121,42	0,138
6	168	2430	3	473,76	131,60	0,140
7	180	2440	3,5	507,6	141,00	0,120
8	189	2450	4	532,98	148,05	0,100
9	191	2460	4,5	538,62	149,62	0,080
10	197	2470	5	555,54	154,32	0,060
11	205	2481	5,5	578,1	160,58	0,038
12	204	2495	6	575,28	159,80	0,010
13	200	2507	6,5	564	156,67	-0,014
14	192	2513	7	541,44	150,40	-0,026

Tablo 5.114. %75 Orta Kum İçeren CH Numunesinin 300 kPa da c ve Ø'nın Kesme Kutusu Deneyi İle Bulunması

Şekil 5.99. % 75 Orta Kum İçeren CH Numunesinin Kesme Kutusu Deneyinde Yatay Deplasman – Düşey Deplasman İlişkisi

Şekil 5.100. % 75 Orta Kum İçeren CH Numunesinin Kesme Kutusu Deneyinde Kayma Gerilmesi – Yatay Deplasman İlişkisi

Şekil 5.101. % 75 Orta Kum İçeren CH Numunesi İçin Kesme Kutusu Deneyi

Tablo 5.115. %75 Kaba Kum İçeren CH Numunesinin Kesme Kutusu Deneyinde Fiziksel Özellikleri

Örneğin Tanımı	CH + % 75 Kaba Kum	Kuvvet Halka	isi No	15553
Deneyi Yapan	Cemil GÜVEN	Kuvvet Halka	ısı Katsayısı	2,82
Kesme Hızı	0,5mm/dak	Düşey Defor.	Saati Katsayısı	0,002
Örnek No.	· · · · · · · · · · · · · · · · · · ·	1	2	3
Örnek Boyu, (cm)		6,0	6,0	6,0
Örnek Alanı, (cm ²)		36,00	36,00	36,00
Örnek Yüksekliği, (cr	n)	2,0	2,0	2,0
Örnek Hacmi, (cm ³)		72,00	72,00	72,00
Normal Gerilme, σ_3 , ((kPa)	100	200	300
Halka No		10	11	12
Halka Ağırlığı, (gr)		148,31	160,06	160,91
Halka ve Numune Ağ	urlığı, (gr)	314,17	327,89	325,52
Deney Sonu Numune	Ağırlığı, (gr)	165,06	166,77	164,99
Kuru Numune Ağırlığ	ğı, (gr)	145,45	148,60	146,74
Düşey Yük, (gr)		36000	72000	108000
İlk Okuma, (mm)		2500	2500	2500
Son Okuma, (mm)		2072	1885	1705
Sıkışma, (mm)		428	615	795

Tablo 5.116. %75 Kaba Kum İçeren CH Numunesinin 100 kPa da c ve Ø'nın Kesme Kutusu Deneyi İle Bulunması

	$\sigma_n = 100 \text{ kPa}$						
t	KH	Δh	δ, (mm)	S (N)	τ (kPa)	$\Delta H (mm)$	
Zaman dk	Kuvvet Halkası Okuması	Düşey Defor. Okuması	Yatay Deplasman	Kesme Kuvveti	Kayma Gerilmesi	Düşey Deplasman	
0	0	2500	0	0	0,00	0,000	
1	28	2480	0,5	78,96	21,93	0,040	
2	41	2462	1	115,62	32,12	0,076	
3	51	2460	1,5	143,82	39,95	0,080	
4	60	2466	2	169,2	47,00	0,068	
5	67	2485	2,5	188,94	52,48	0,030	
6	72	2505	3	203,04	56,40	-0,010	
7	76	2526	3,5	214,32	59,53	-0,052	
8	80	2548	4	225,6	62,67	-0,096	
9	82	2575	4,5	231,24	64,23	-0,150	
10	82	2603	5	231,24	64,23	-0,206	
11	82	2624	5,5	231,24	64,23	-0,248	
12	78	2645	6	219,96	61,10	-0,290	
13	-	-	6,5	-	-	-	

			$\sigma_n = 200 \text{ kPa}$			
t	KH	Δh	δ, (mm)	S (N)	τ (kPa)	$\Delta H (mm)$
Zaman dk	Kuvvet Halkası Okuması	Düşey Defor. Okuması	Yatay Deplasman	Kesme Kuvveti	Kayma Gerilmesi	Düşey Deplasman
0	0	2500	0	0	0,00	0,000
1	42	2472	0,5	118,44	32,90	0,056
2	60	2430	1	169,2	47,00	0,140
3	80	2393	1,5	225,6	62,67	0,214
4	98	2385	2	276,36	76,77	0,230
5	113	2372	2,5	318,66	88,52	0,256
6	125	2372	3	352,5	97,92	0,256
7	136	2377	3,5	383,52	106,53	0,246
8	144	2390	4	406,08	112,80	0,220
9	151	2408	4,5	425,82	118,28	0,184
10	159	2429	5	448,38	124,55	0,142
11	162	2449	5,5	456,84	126,90	0,102
12	160	2468	6	451,2	125,33	0,064
13	157	2490	6,5	442,74	122,98	0,020
14	155	2515	7	437,1	121,42	-0,030

Tablo 5.117. %75 Kaba Kum İçeren CH Numunesinin 200 kPa da c ve Ø'nın Kesme Kutusu Deneyi İle Bulunması

Tablo 5.118. %75 Kaba Kum İçeren CH Numunesinin 300 kPa da c ve Ø'nın Kesme Kutusu Deneyi İle Bulunması

	$\sigma_n = 300 \text{ kPa}$						
t	KH	Δh	δ, (mm)	S (N)	τ (kPa)	$\Delta H (mm)$	
Zaman dk	Kuvvet Halkası Okuması	Düşey Defor. Okuması	Yatay Deplasman	Kesme Kuvveti	Kayma Gerilmesi	Düşey Deplasman	
0	0	2500	0	0	0,00	0,000	
1	57	2475	0,5	160,74	44,65	0,050	
2	88	2443	1	248,16	68,93	0,114	
3	110	2422	1,5	310,2	86,17	0,156	
4	124	2412	2	349,68	97,13	0,176	
5	138	2409	2,5	389,16	108,10	0,182	
6	145	2412	3	408,9	113,58	0,176	
7	152	2423	3,5	428,64	119,07	0,154	
8	165	2432	4	465,3	129,25	0,136	
9	182	2452	4,5	513,24	142,57	0,096	
10	196	2470	5	552,72	153,53	0,060	
11	211	2515	5,5	595,02	165,28	-0,030	
12	208	2558	6	586,56	162,93	-0,116	
13	202	2580	6,5	569,64	158,23	-0,160	

Şekil 5.102. % 75 Kaba Kum İçeren CH Numunesinin Kesme Kutusu Deneyinde Yatay Deplasman – Düşey Deplasman İlişkisi

Şekil 5.103. % 75 Kaba Kum İçeren CH Numunesinin Kesme Kutusu Deneyinde Kayma Gerilmesi – Yatay Deplasman İlişkisi

Şekil 5.104. % 75 Kaba Kum İçeren CH Numunesi İçin Kesme Kutusu Deneyi

Örneğin Tanımı	İnce Kum	Kuvvet Halka	Kuvvet Halkası No	
Deneyi Yapan	Cemil GÜVEN	Kuvvet Halka	ısı Katsayısı	2,82
Kesme Hızı	0,5mm/dak	Düşey Defor.	Saati Katsayısı	0,002
Örnek No.		1	2	3
Örnek Boyu, (cm)		6,0	6,0	6,0
Örnek Alanı, (cm ²)		36,00	36,00	36,00
Örnek Yüksekliği, (cm)		2,0	2,0	2,0
Örnek Hacmi, (cm ³)		72,00	72,00	72,00
Normal Gerilme, σ_3 , (kPa)	100	200	300
Halka No		10	11	12
Halka Ağırlığı, (gr)		148,31	160,06	160,91
Halka ve Numune Ağırlığ	1, (gr)	274,73	273,60	275,38
Deney Sonu Numune Ağı	rlığı, (gr)	126,42	113,54	114,47
Kuru Numune Ağırlığı, (g	gr)	125,99	118,37	117,66
Düşey Yük, (gr)		125,99	118,37	117,66
İlk Okuma, (mm)		2500	2500	2500
Son Okuma, (mm)		2310	2240	1950
Sıkışma, (mm)		190	260	550

Tablo 5.119. İnce Kum Numunesinin Kesme Kutusu Deneyinde Fiziksel Özellikleri

			$\sigma_n = 100 \text{ kPa}$			
t	KH	Δh	δ, (mm)	S (N)	τ (kPa)	$\Delta H (mm)$
Zaman dk	Kuvvet Halkası Okuması	Düşey Defor. Okuması	Yatay Deplasman	Kesme Kuvveti	Kayma Gerilmesi	Düşey Deplasman
0	0	2500	0	0	0,00	0,000
1	25	2490	0,5	70,5	19,58	0,020
2	37	2485	1	104,34	28,98	0,030
3	45	2510	1,5	126,9	35,25	-0,020
4	49	2542	2	138,18	38,38	-0,084
5	53	2575	2,5	149,46	41,52	-0,150
6	50	2610	3	141	39,17	-0,220
7	50	2642	3,5	141	39,17	-0,284
8	49	2671	4	138,18	38,38	-0,342
9	-	-	4,5	-	-	-
10	-	-	5	-	-	-
11	-	-	5,5	-	-	-
12	-	-	6	-	-	-
13	-	-	6,5	-	-	-

Tablo 5.120. İnce Kum İçeren Numunesinin 100 kPa da c ve Ø'nın Kesme Kutusu Deneyi İle Bulunması

Tablo 5.121. İnce Kum İçeren Numunesinin 200 kPa da c ve Ø'nın Kesme Kutusu Deneyi İle Bulunması

	$\sigma_n = 200 \text{ kPa}$						
t	KH	Δh	δ, (mm)	S (N)	τ (kPa)	$\Delta H (mm)$	
Zaman dk	Kuvvet Halkası Okuması	Düşey Defor. Okuması	Yatay Deplasman	Kesme Kuvveti	Kayma Gerilmesi	Düşey Deplasman	
0	0	2500	0	0	0,00	0,000	
1	60	2485	0,5	169,2	47,00	0,030	
2	107	2483	1	301,74	83,82	0,034	
3	130	2478	1,5	366,6	101,83	0,044	
4	150	2485	2	423	117,50	0,030	
5	159	2508	2,5	448,38	124,55	-0,016	
6	165	2532	3	465,3	129,25	-0,064	
7	170	2555	3,5	479,4	133,17	-0,110	
8	170	2575	4	479,4	133,17	-0,150	
9	170	2600	4,5	479,4	133,17	-0,200	
10	170	2612	5	479,4	133,17	-0,224	
11	-	-	5,5	-	-	-	
12	-	-	6	-	-	-	
13	-	-	6,5	-	-	-	

			$\sigma_n = 300 \text{ kPa}$			
t	KH	Δh	δ, (mm)	S (N)	τ (kPa)	$\Delta H (mm)$
Zaman dk	Kuvvet Halkası Okuması	Düşey Defor. Okuması	Yatay Deplasman	Kesme Kuvveti	Kayma Gerilmesi	Düşey Deplasman
0	0	2500	0	0	0,00	0,000
1	63	2490	0,5	177,66	49,35	0,020
2	125	2470	1	352,5	97,92	0,060
3	170	2450	1,5	479,4	133,17	0,100
4	200	2452	2	564	156,67	0,096
5	220	2457	2,5	620,4	172,33	0,086
6	228	2472	3	642,96	178,60	0,056
7	230	2495	3,5	648,6	180,17	0,010
8	224	2520	4	631,68	175,47	-0,040
9	215	2542	4,5	606,3	168,42	-0,084
10	210	2548	5	592,2	164,50	-0,096
11	-	-	-	-	-	-
12	-	-	-	-	-	-
13	-	-	-	-	-	-
14	-	-	-	-	-	-

Tablo 5.122. İnce Kum İçeren Numunesinin 300 kPa da c ve Ø'nın Kesme Kutusu Deneyi İle Bulunması

Şekil 5.105. İnce Kum Numunesinin Kesme Kutusu Deneyinde Yatay Deplasman – Düşey Deplasman İlişkisi

Şekil 5.106. İnce Kum Numunesinin Kesme Kutusu Deneyinde Kayma Gerilmesi – Yatay Deplasman İlişkisi

Şekil 5.107. İnce Kum Numunesinin İçin Kesme Kutusu Deneyi

Örneğin Tanımı	gin Tanımı Orta Kum		Kuvvet Halkası No			
Deneyi Yapan	Cemil GÜVEN	Kuvvet Halka	Kuvvet Halkası Katsayısı			
Kesme Hızı	0,5mm/dak	Düşey Defor.	Düşey Defor. Saati Katsayısı			
Örnek No.		1	2	3		
Örnek Boyu, (cm)		6,0	6,0	6,0		
Örnek Alanı, (cm ²)		36,00	36,00	36,00		
Örnek Yüksekliği, (cm)		2,0	2,0	2,0		
Örnek Hacmi, (cm ³)	72,00	72,00	72,00			
Normal Gerilme, σ_3 , (kPa	100	200	300			
Halka No	10	10 11				
Halka Ağırlığı, (gr)		148,31	160,06	160,91		
Halka ve Numune Ağırlığ	n, (gr)	271,77 274,52		273,55		
Deney Sonu Numune Ağı	rlığı, (gr)	123,46	114,46	112,64		
Kuru Numune Ağırlığı, (g	gr)	110,95	113,43	112,95		
Düşey Yük, (gr)		110,95	113,43	112,95		
İlk Okuma, (mm)		2500	2500	2500		
Son Okuma, (mm)	2315	2315 2258				
Sıkışma, (mm)		185	185 242			

Tablo 5.123. Orta Kum Numunesinin Kesme Kutusu Deneyinde Fiziksel Özellikleri

Tablo 5.124. Orta Kum İçeren Numunesinin 100 kPa da cve Ø'nın Kesme Kutusu Deneyi İle Bulunması

$\sigma_n = 100 \text{ kPa}$							
t	KH	Δh	δ, (mm)	S (N)	τ (kPa)	$\Delta H (mm)$	
Zaman dk	Kuvvet Halkası Okuması	Düşey Defor. Okuması	Yatay Deplasman	Kesme Kuvveti	Kayma Gerilmesi	Düşey Deplasman	
0	0	2500	0	0	0,00	0,000	
1	28	2480	0,5	78,96	21,93	0,040	
2	42	2468	1	118,44	32,90	0,064	
3	63	2485	1,5	177,66	49,35	0,030	
4	72	2520	2	203,04	56,40	-0,040	
5	70	2548	2,5	197,4	54,83	-0,096	
6	67	2570	3	188,94	52,48	-0,140	
7	67	2591	3,5	188,94	52,48	-0,182	
8	-	-	4	-	-	-	
9	-	-	4,5	-	-	-	
10	-	-	5	-	-	-	
11	-	-	5,5	-	-	-	
12	-	-	6	-	-	-	
13	-	-	6,5	-	-	-	

$\sigma_n = 200 \text{ kPa}$							
t	KH	Δh	δ, (mm)	S (N)	τ (kPa)	$\Delta H (mm)$	
Zaman dk	Kuvvet Halkası Okuması	Düşey Defor. Okuması	Yatay Deplasman	Kesme Kuvveti	Kayma Gerilmesi	Düşey Deplasman	
0	0	2500	0	0	0,00	0,000	
1	30	2491	0,5	84,6	23,50	0,018	
2	49	2482	1	138,18	38,38	0,036	
3	95	2479	1,5	267,9	74,42	0,042	
4	132	2491	2	372,24	103,40	0,018	
5	152	2520	2,5	428,64	119,07	-0,040	
6	158	2529	3	445,56	123,77	-0,058	
7	156	2596	3,5	439,92	122,20	-0,192	
8	149	2630	4	420,18	116,72	-0,260	
9	140	2671	4,5	394,8	109,67	-0,342	
10	-	-	5	-	-	-	
11	-	-	5,5	-	-	-	
12	-	-	6	-	-	-	
13	-	-	6,5	-	-	-	

Tablo 5.125. Orta Kum İçeren Numunesinin 200 kPa da c ve Ø'nın Kesme Kutusu Deneyi İle Bulunması

Tablo 5.126. Orta Kum İçeren Numunesinin 300 kPa da c ve ø 'nın Kesme Kutusu Deneyi İle Bulunması

$\sigma_n = 300 \text{ kPa}$							
t	KH	Δh	δ, (mm)	S (N)	τ (kPa)	$\Delta H (mm)$	
Zaman dk	Kuvvet Halkası Okuması	Düşey Defor. Okuması	Yatay Deplasman	Kesme Kuvveti	Kayma Gerilmesi	Düşey Deplasman	
0	0	2500	0	0	0,00	0,000	
1	60	2488	0,5	169,2	47,00	0,024	
2	120	2475	1	338,4	94,00	0,050	
3	170	2470	1,5	479,4	133,17	0,060	
4	205	2480	2	578,1	160,58	0,040	
5	220	2502	2,5	620,4	172,33	-0,004	
6	225	2535	3	634,5	176,25	-0,070	
7	226	2560	3,5	637,32	177,03	-0,120	
8	224	2586	4	631,68	175,47	-0,172	
9	221	2610	4,5	623,22	173,12	-0,220	
10	215	2629	5	606,3	168,42	-0,258	
11	-	-	-	-	-	-	
12	-	-	-	-	-	-	
13	-	-	-	-	-	-	

Şekil 5.108. Orta Kum Numunesinin Kesme Kutusu Deneyinde Yatay Deplasman – Düşey Deplasman İlişkisi

Şekil 5.109. Orta Kum Numunesinin Kesme Kutusu Deneyinde Kayma Gerilmesi – Yatay Deplasman İlişkisi

Şekil 5.110. Orta Kum Numunesinin İçin Kesme Kutusu Deneyi

Örneğin Tanımı	rneğin Tanımı Kaba Kum		Kuvvet Halkası No			
Deneyi Yapan	Cemil GÜVEN	Kuvvet Halka	Kuvvet Halkası Katsayısı			
Kesme Hızı	0,5mm/dak	Düşey Defor.	Saati Katsayısı	0,002		
Örnek No.		1	2	3		
Örnek Boyu, (cm)		6,0	6,0	6,0		
Örnek Alanı, (cm ²)		36,00	36,00	36,00		
Örnek Yüksekliği, (cm)		2,0	2,0	2,0		
Örnek Hacmi, (cm ³)	72,00	72,00	72,00			
Normal Gerilme, σ_3 , (kPa	100	200	300			
Halka No		10	11	12		
Halka Ağırlığı, (gr)		148,31	160,06	160,91		
Halka ve Numune Ağırlığ	1, (gr)	280,64 258,09		268,84		
Deney Sonu Numune Ağı	rlığı, (gr)	132,33	98,03	107,93		
Kuru Numune Ağırlığı, (g	gr)	117,31	118,15	118,35		
Düşey Yük, (gr)		117,31	118,15	118,35		
İlk Okuma, (mm)		2500	2500	2500		
Son Okuma, (mm)	2325 2142		2085			
Sıkışma, (mm)		175	175 358			

Tablo 5.127. Kaba Kum Numunesinin Kesme Kutusu Deneyinde Fiziksel Özellikleri

$\sigma_n = 100 \text{ kPa}$								
t	KH	Δh	δ, (mm)	S (N)	τ (kPa)	$\Delta H (mm)$		
Zaman dk	Kuvvet Halkası Okuması	Düşey Defor. Okuması	Yatay Deplasman	Kesme Kuvveti	Kayma Gerilmesi	Düşey Deplasman		
0	0	2500	0	0	0,00	0,000		
1	47	2495	0,5	132,54	36,82	0,010		
2	67	2493	1	188,94	52,48	0,014		
3	78	2520	1,5	219,96	61,10	-0,040		
4	84	2565	2	236,88	65,80	-0,130		
5	80	2600	2,5	225,6	62,67	-0,200		
6	78	2630	3	219,96	61,10	-0,260		
7	75	2675	3,5	211,5	58,75	-0,350		
8	-	-	4	-	-	-		
9	-	-	4,5	-	-	-		
10	-	-	5	-	-	-		
11	-	-	5,5	-	-	-		
12	-	-	6	-	-	-		
13	-	-	6,5	-	-	-		

Tablo 5.128. Kaba Kum İçeren Numunesinin 100 kPa da c ve Ø'nın Kesme Kutusu Deneyi İle Bulunması

Tablo 5.129. Kaba Kum İçeren Numunesinin 200 kPa da c
 ve \emptyset 'nın Kesme Kutusu Deneyi İle Bulunması

$\sigma_n = 200 \text{ kPa}$								
t	KH	Δh	δ, (mm)	S (N)	τ (kPa)	$\Delta H (mm)$		
Zaman dk	Kuvvet Halkası Okuması	Düşey Defor. Okuması	Yatay Deplasman	Kesme Kuvveti	Kayma Gerilmesi	Düşey Deplasman		
0	0	2500	0	0	0,00	0,000		
1	67	2483	0,5	188,94	52,48	0,034		
2	117	2475	1	329,94	91,65	0,050		
3	158	2479	1,5	445,56	123,77	0,042		
4	180	2510	2	507,6	141,00	-0,020		
5	183	2546	2,5	516,06	143,35	-0,092		
6	180	2590	3	507,6	141,00	-0,180		
7	167	2628	3,5	470,94	130,82	-0,256		
8	156	2687	4	439,92	122,20	-0,374		
9	-	-	4,5	-	-	-		
10	-	-	5	-	-	-		
11	-	-	5,5	-	-	-		
12	-	-	6	-	-	-		
13	-	-	6,5	-	-	-		

$\sigma_n = 300 \text{ kPa}$								
t	KH	Δh	δ, (mm)	S (N)	τ (kPa)	$\Delta H (mm)$		
Zaman dk	Kuvvet Halkası Okuması	Düşey Defor. Okuması	Yatay Deplasman	Kesme Kuvveti	Kayma Gerilmesi	Düşey Deplasman		
0	0	2500	0	0	0,00	0,000		
1	50	2465	0,5	141	39,17	0,070		
2	78	2448	1	219,96	61,10	0,104		
3	130	2428	1,5	366,6	101,83	0,144		
4	184	2420	2	518,88	144,13	0,160		
5	225	2432	2,5	634,5	176,25	0,136		
6	247	2458	3	696,54	193,48	0,084		
7	258	2495	3,5	727,56	202,10	0,010		
8	259	2540	4	730,38	202,88	-0,080		
9	253	2578	4,5	713,46	198,18	-0,156		
10	244	2613	5	688,08	191,13	-0,226		
11	228	2660	5,5	642,96	178,60	-0,320		
12	-	-	-	-	-	-		
13	-	-	-	-	-	-		
14	-	-	-	-	-	-		

Tablo 5.130. Kaba Kum İçeren Numunesinin 300 kPa da c ve Ø'nın Kesme Kutusu Deneyi İle Bulunması

Şekil 5.111. Kaba Kum Numunesnin Kesme Kutusu Deneyinde Yatay Deplasman – Düşey Deplasman İlişkisi

Şekil 5.112. Kaba Kum Numunesinin Kesme Kutusu Deneyinde Kayma Gerilmesi – Yatay Deplasman İlişkisi

Şekil 5.113. Kaba Kum Numunesinin İçin Kesme Kutusu Deneyi

	UU DENEYİ KESME KU					ME KUT	USU DENEYİ	
NUMUNE	σ_3	σ_1	с	Ø	σ_n	τ	с	Ø
	(kPa)	(kPa)	(kPa)	(°)	(kPa)	(kPa)	(kPa)	(°)
	100	250,89			100	33,68		
СН	200	365,41	50	7	200	57,18	12	16,70
	300	504,27			300	108,88		
% 10 İnce Kum	100	258,30			100	54,05		
İçeren CH	200	357,54	78,88	0	200	81,47	16	15,64
	300	457,45			300	95,57		
% 25 İnce Kum	100	459,37			100	70,50		
İçeren CH	200	580,18	179,15	0	200	102,62	52	13,52
	300	635,54			300	115,15		
% 50 İnce Kum	100	239,03			100	54,83		
İçeren CH	200	344,23	62,81	2	200	95,57	36	16,70
	300	459,41			300	121,42		
	100	190,86			100	48,57		
% 75 Ince Kum	200	318,21	51,48	0	200	105,75	25	23,75
içeleli CH	300	399,93			300	166,07		
	100	-			100	41,52		
İnce Kum	200	-	-	-	200	133,17	0	31,80
	300	-			300	180,17		
	100	250,89			100	33,68		
СН	200	365,41	50	7	200	57,18	12	16,70
	300	504,27			300	108,88		
% 10 Orta Kum	100	210,91			100	57,97		
İçeren CH	200	300,64	52,66	0	200	70,50	36	13,42
	300	404,38			300	95,57		
% 25 Orta Kum	100	500,15			100	80,68		
İçeren CH	200	624,68	182,87	4	200	110,45	58	11,31
	300	729,38			300	127,68		
% 50 Orta Kum	100	180,97			100	47,78		
İçeren CH	200	288,26	41,52	0	200	81,47	32	13,60
	300	379,91			300	96,35		
% 75 Orta Kum	100	251,27			100	62,67		
İçeren CH	200	472,99	12,52	22	200	117,50	20	25,64
	300	770,26			300	160,58		
	100	-			100	56,40		
Orta Kum	200	-	-	-	200	123,77	8	30,11
	300	-			300	177,03		

Tablo 5.131. Konsolidasyonsuz Drenajsız Üç Eksenli Basınç Deneyi (UU Deneyi) ve Kesme Kutusu Deneyleri Sonuçları

	UU DENEYİ				KESME KUTUSU DENEYİ			
NUMUNE	σ_3	σ_1	с	Ø	σ_n	τ	с	Ø
	(kPa)	(kPa)	(kPa)	(°)	(kPa)	(kPa)	(kPa)	(°)
	100	250,89			100	33,68		
СН	200	365,41	50	7	200	57,18	12	16,70
	300	504,27			300	108,88		
% 10 Kaba Kum	100	330,07			100	69,72		
İçeren CH	200	494,77	55,32	16	200	80,68	42	13,50
	300	694,93			300	104,67		
% 25 Kaba Kum	100	411,68			100	69,72		
İçeren CH	200	403,83	142,10	0	200	104,97	56	12,40
	300	637,06			300	118,28		
% 50 Kaba Kum	100	202,97			100	52,48		
İçeren CH	200	298,93	44,30	0	200	76,77	22	16,16
	300	363,89			300	96,35		
% 75 Kaba Kum	100	298,16			100	64,23		
İçeren CH	200	528,06	8,71	24	200	126,90	12	27,41
	300	852,33			300	165,28		
	100	-			100	65,80		
Kaba Kum	200	-	-	-	200	143,35	4	30,96
	300	-			300	202,88		

Tablo 5.131. (Devamı) Konsolidasyonsuz Drenajsız Üç Eksenli Basınç Deneyi (UU Deneyi) ve Kesme Kutusu Deneyi Sonuçları

Şekil 5. 114. CH Numunesinin 100kPa, 200kPa, 300 kPa Hücre Basıncı ve Normal Gerilme İle Kesildikten Sonraki Numunelerin Görünümü

Şekil 5. 115. %10 İnce Kum İçeren CH Numunesinin 100kPa, 200kPa, 300 kPa Hücre Basıncı ve Normal Gerilme İle Kesildikten Sonraki Numunelerin Görünümü

Şekil 5. 116. %10 Orta Kum İçeren CH Numunesinin 100kPa, 200kPa, 300 kPa Hücre Basıncı ve Normal Gerilme İle Kesildikten Sonraki Numunelerin Görünümü

Şekil 5. 117. %10 Kaba Kum İçeren CH Numunesinin 100kPa, 200kPa, 300 kPa Hücre Basıncı ve Normal Gerilme İle Kesildikten Sonraki Numunelerin Görünümü

Şekil 5. 118. %25 İnce Kum İçeren CH Numunesinin 100kPa, 200kPa, 300 kPa Hücre Basıncı ve Normal Gerilme İle Kesildikten Sonraki Numunelerin Görünümü

Şekil 5. 119. %25 Orta Kum İçeren CH Numunesinin 100kPa, 200kPa, 300 kPa Hücre Basıncı ve Normal Gerilme İle Kesildikten Sonraki Numunelerin Görünümü

Şekil 5. 120. %25 Kaba Kum İçeren CH Numunesinin 100kPa, 200kPa, 300 kPa Hücre Basıncı ve Normal Gerilme İle Kesildikten Sonraki Numunelerin Görünümü

Şekil 5. 121. %50 İnce Kum İçeren CH Numunesinin 100kPa, 200kPa, 300 kPa Hücre Basıncı ve Normal Gerilme İle Kesildikten Sonraki Numunelerin Görünümü

Şekil 5. 122. %50 Orta Kum İçeren CH Numunesinin 100kPa, 200kPa, 300 kPa Hücre Basıncı ve Normal Gerilme İle Kesildikten Sonraki Numunelerin Görünümü

Şekil 5. 123. %50 Kaba Kum İçeren CH Numunesinin 100kPa, 200kPa, 300 kPa Hücre Basıncı ve Normal Gerilme İle Kesildikten Sonraki Numunelerin Görünümü

Şekil 5. 124. %75 İnce Kum İçeren CH Numunesinin 100kPa, 200kPa, 300 kPa Hücre Basıncı ve Normal Gerilme İle Kesildikten Sonraki Numunelerin Görünümü

Şekil 5. 125. %75 Orta Kum İçeren CH Numunesinin 100kPa, 200kPa, 300 kPa Hücre Basıncı ve Normal Gerilme İle Kesildikten Sonraki Numunelerin Görünümü

Şekil 5. 126. %75 Kaba Kum İçeren CH Numunesinin 100kPa, 200kPa, 300 kPa Hücre Basıncı ve Normal Gerilme İle Kesildikten Sonraki Numunelerin Görünümü

Şekil 5.127. CH Numunesinde İnce Kum Miktarının Artmasıyla Yapılan Konsolidasyonsuz – Drenajsız Üç Eksenli Kesme Deneyi (UU Deneyi) Sonuçlarında Kohezyonun Değişimi

Şekil 5.128. CH Numunesinde Orta Kum Miktarının Artmasıyla Yapılan Konsolidasyonsuz – Drenajsız Üç Eksenli Kesme Deneyi (UU Deneyi) Sonuçlarında Kohezyonun Değişimi

Şekil 5.129. CH Numunesinde Kaba Kum Miktarının Artmasıyla Yapılan Konsolidasyonsuz – Drenajsız Üç Eksenli Kesme Deneyi (UU Deneyi) Sonuçlarında Kohezyonun Değişimi

Şekil 5.130. CH Numunesinde İnce Kum Miktarının Artmasıyla Yapılan Kesme Kutusu Deneyi Sonuçlarında Kohezyonun Değişimi

Şekil 5.131. CH Numunesinde Orta Kum Miktarının Artmasıyla Yapılan Kesme Kutusu Deneyi Sonuçlarında Kohezyonun Değişimi

Şekil 5.132. CH Numunesinde Kaba Kum Miktarının Artmasıyla Yapılan Kesme Kutusu Deneyi Sonuçlarında Kohezyonun Değişimi

Şekil 5.133. CH Numunesinde İnce Kum Miktarının Artmasıyla Yapılan Kesme Kutusu Deneyi Sonuçlarında İçsel Sürtünme Açısının Değişimi

Şekil 5.134. CH Numunesinde Orta Kum Miktarının Artmasıyla Yapılan Kesme Kutusu Deneyi Sonuçlarında İçsel Sürtünme Açısının Değişimi

Şekil 5.135. CH Numunesinde Kaba Kum Miktarının Artmasıyla Yapılan Kesme Kutusu Deneyi Sonuçlarında İçsel Sürtünme Açısının Değişimi

BÖLÜM 6. SONUÇLAR VE ÖNERİLER

Zeminlerde drenajsız kayma direnci parametreleri birçok geoteknik problemin çözümünde gerekli olmaktadır. Bu problemlerin arasında sığ ve derin temellerin hızlı yükleme durumundaki taşıma gücü, şevlerin stabilitesi ve dayanma duvarlarının stabilitesi sayılabilir. Drenajsız kayma direnci parametrelerinin laboratuvarda ölçümü için başlıca iki farklı deney düzeneği geliştirilmiştir. Bunlar kesme kutusu deneyi ve üç eksenli basınç deneyi düzenekleridir. Laboratuarda sınırlı sayıda hazırlanan numuneler üzerinde yapılan deneylerle bu tez hazırlanmıştır. Numune hazırlaması oldukça fazla zaman aldığından, deney sayısı sınırlı tutulmuştur.

Bu çalışma içinde Sakarya ili, Serdivan Beldesi, Bahçelievler Mahallesi sınırları içinden alınmış örselenmiş yüksek plastisiteli kil numunesine belirlenen oranlarda ince, orta, kaba kum katılarak, laboratuvar ortamında optimum su muhtevası ve standart proktor sıkılığında hazırlanmış numunelerin, drenajsız kayma direnci parametrelerine etkisi araştırılmıştır.

Hazırlanmış olan numunelere, kesme kutusu deneyi ve konsolidasyonsuz-drenajsız üç eksenli basınç deneyi uygulandığında, kayma direnci parametrelerinin hangi değerleri aldığı incelenmiştir.

Deneysel bir çalışmanın sonuçlarını etkileyecek çok faktör bulunmaktadır. Numunelerin hazırlanış yöntemi, numunelerin yerleştirilmesi, deney düzeneğinin çalışma prensibi, deneyin başlangıç ve bitiş anının saptanabilmesi ve deney sırasında alınan okumalar yapılacak çalışma için istenilen verilerin doğruluk derecesini etkilemektedir. Bu yüzden; söz konusu yapılan deneylerin ciddiyeti ve hassasiyeti bilinerek tüm deneyler, gerekli itina gösterilerek gerçekleştirilmiştir. Yapılan deney sonuçlarının toplu halde değerleri aşağıdaki grafiklerde ve tablolarda gösterilmiştir;

Şekil 6.1. CH Numunesinde Kum Miktarının Artmasıyla Yapılan Konsolidasyonsuz –Drenajsız Üç Eksenli Kesme Deneyi (UU Deneyi) Sonuçlarında Kohezyon Değerlerinin Karşılaştırılması

	İnce Kum İçeren CH Numunesi	Orta Kum İçeren CH Numunesi	Kaba Kum İçeren	Ortalama
0 (= 0
% 0 Kum	50	50	50	50
% 10 Kum	78,88	52,66	55,32	62,29
% 25 Kum	179,15	182,87	142,10	168,0
% 50 Kum	62,81	142,10	44,30	49,54
% 75 Kum	51,48	168,04	8,71	24,24

Tablo 6.1. CH Numunesinde Kum Miktarının Artmasıyla Yapılan Konsolidasyonsuz –Drenajsız Üç Eksenli Kesme Deneyi (UU Deneyi) Sonuçlarında Kohezyon Değerlerinin Karşılaştırılması

Şekil 6.2. CH Numunesinde Kum Miktarının Artmasıyla Yapılan Kesme Kutusu Deneyi Sonuçlarında Kohezyon Değerlerinin Karşılaştırılması

	İnce Kum İçeren	Orta Kum İçeren	Kaba Kum İçeren	Ortalama
	CH Numunesi	CH Numunesi	CH Numunesi	
% 0 Kum	12	12	12	12
% 10 Kum	16	36	42	31,33
% 25 Kum	52	58	56	55,33
% 50 Kum	36	32	22	30
% 75 Kum	25	20	12	19
% 100 Kum	0	8	4	4

Tablo 6.2. CH Numunesinde Kum Miktarının Artmasıyla Yapılan Kesme Kutusu Deneyi Sonuçlarında Kohezyon Değerlerinin Karşılaştırılması

Şekil 6.3. CH Numunesinde Kum Miktarının Artmasıyla Yapılan Kesme Kutusu Deneyi Sonuçlarında İçsel Sürtünme Açısı Değerlerinin Karşılaştırılması

	İnce Kum İçeren	Orta Kum İçeren	Kaba Kum İçeren	Ortalama
	CH Numunesi	CH Numunesi	CH Numunesi	
% 0 Kum	16,70	16,70	16,70	16,70
% 10 Kum	15,64	13,42	13,50	14,19
% 25 Kum	13,52	11,31	12,40	12,41
% 50 Kum	16,70	13,60	16,16	15,49
% 75 Kum	23,75	25,64	27,41	25,60
% 100 Kum	31,80	30,11	30,96	30,96

Tablo 6.3. CH Numunesinde Kum Miktarının Artmasıyla Yapılan Kesme Kutusu Deneyi Sonuçlarında İçsel Sürtünme Açısı Değerlerinin Karşılaştırılması

Üç eksenli basınç deneyinde; CH numunesine %10, %25, %50, %75 kum oranları uygulandığında, optimum su muhtevalarında ve standart proktor sıkılığında, yüksek plastisiteli kilde ince kum, orta kum ve kaba kum miktarlarının artmasıyla kohezyon değeri %25 kum oranı uygulanıncaya kadar artmakta, kum miktarı atmaya devam ettikçe kohezyon değerinde düşüş görülmektedir. Görüldüğü gibi %25 ve %50 kum

miktarları arasında deney sayıları arttırılarak kesin düşüş değerinin nerede olduğu da yapılan benzer çalışmalarla bulunabilir.

Daha başka bir ifadeyle CH numunesinde ince kum miktarının artmasıyla kohezyon değeri %25 ince kum miktarına kadar hızlı olarak artmakta, kum miktarı artmaya devam edildiğinde ise hızlı bir şekilde kohezyon değerinde düşüş gözlenmiştir. Aynı şekilde bu sonuç; orta kum ve kaba kum katılarak hazırlanan deneyler içinde bulunmuştur.

Kesme kutusu deneyinde ise; CH numunesinde ince kum miktarının artmasıyla kohezyon değeri %25 ince kum miktarına kadar yavaş olarak artmakta, kum miktarı artmaya devam edildiğinde ise üç eksenli deney sonuçlarına göre daha yavaş bir şekilde kohezyon değerinde düşüş gözlenmiştir. Aynı şekilde bu sonuç; orta kum ve kaba kum katılarak hazırlanan deneyler içinde bulunmuştur.

Üç eksenli deney sonuçları ve kesme kutusu deney sonuçları karşılaştırıldığında çok farklı değerler ortaya çıktığı gözlenmiştir. Üç eksenli deney sonuçları kesme kutusu deney sonuçlarına göre daha yüksek çıkmıştır. Sebebi ise; kesme kutusu deneyi esnasında zemin numunesine uygulanan yatay kuvvetten dolayı, numunenin alt ve üst yüzeylerinde kayma gerilmeleri oluşmakta fakat kenar yüzlere tamamlayıcı kayma gerilmeleri uygulanamamaktadır. Bu da numuneye etkiyen gerilme ve numunede oluşan şekil değiştirme dağılımlarının üniform olmamasına yol açar. Numune boyunca birim kayma değişimlerinin üniform olmaması, büyük birim kayma değerlerinde, şekil değiştirmelerin en zayıf olan kesitte yoğunlaşmasına neden olur. Üç eksenli basınç deney cihazında ise, şekil değiştirme ve gerilme dağılımları kesme kutusu deneyine göre daha üniform bir dağılım gösterir [25].

Konsolidasyonsuz-drenajsız üç eksenli basınç deneyinde içsel sürtünme açısı değerlerine baktığımızda birbirinden tamamen bağımsız sonuçlar çıkmıştır. Kesme kutusu deneyine baktığımızda ise; CH numunesinde ince kum miktarının artmasıyla içsel sürtünme açısı değeri %25 ince kum miktarına kadar yavaşça düşmekte, kum miktarı artmaya devam edildiğinde ise içsel sürtünme açısı değerinde bir yükselme

gözlenmektedir. Aynı şekilde bu sonuç; orta kum ve kaba kum katılarak hazırlanan deneyler için de bulunmuştur.

Ayrıca yüksek plastisiteli kilde, kum miktarının artmasıyla optimum su muhtevasının düştüğü, kuru birim hacim ağırlığının da yükseldiği görülmüştür.

Dane boyutu olarak dikkate alındığında ise; hem üç eksenli basınç deneyinden, hemde kesme kutusu deneyinden hesaplanan kohezyon ve içsel sürtünme açısı değerleri kum dane boyutundan bağımsız olarak değerler aldığı ortaya çıkmıştır.

İleride yapılabilecek çalışmalar;

Yüksek plastisiteli kilde ince kum, orta kum ve kaba kum miktarının artmasıyla kohezyon değeri %25 kum içeren CH numunesine kadar artmakta, kum miktarının artmasının devam etmesiyle birlikte kohezyon değeri düşmektedir. %25-%50 kum içeren CH numuneleri arasında deney sayıları arttırılırsa, kohezyon değerinin hangi değerde düştüğü sonucuna kesin olarak varılabilir. Ayrıca içsel sürtünme açısının da hangi değerde yükseldiği sonucuna da kesin olarak varılabilir.

Bu deneye eşdeğer olarak; düşük plastisiteli kil (CL) ve orta plastisiteli kilde de(CI) kum miktarının artmasıyla kohezyon ve içsel sürtünme açısı değerlerinin değişimleri gözlemlenebilir.

KAYNAKLAR

- [1] CAPPER, P. L., CASSIE, W. F., "İnşaat Mühendisliğinde Zemin Mekaniği", Çevirenler KUMBASAR, V., KİP, F., Çağlayan Kitabevi, pp. 73,74,81, İstanbul, 1984.
- [2] HOLTZ, R. D., KOVACS, W. D., "Geoteknik Mühendisliğine Giriş", Çeviren KAYABALIK, K., Gazi Kitabevi, pp. 484-487, 494-497, Ankara, 2002.
- [3] AYTEKİN, M., "Deneysel Zemin Mekaniği", Teknik Yayınevi, pp. 189-192, 270, 284-287, 381-386, Ankara, 2004.
- [4] TERZAGHI, K., "Mühendislik Tatbikatında Zemin Mekaniği", Çevirenler TOĞROL E., KİP F., İstanbul Teknik Üniversitesi İnşaat Mühendisliği Matbaası, pp. 86, 95-97, İstanbul, 1980.
- [5] ÖNALP, A., "Geoteknik Bilgisi I Çözümlü Problemlerle Zeminler ve Mekaniği", Birsen Yayınevi, pp. 237, 240, 245-246, 269-286, İstanbul, 2002.
- [6] BAYOĞLU, E., "Kum-Kil Karışımlarının Kayma Dayanımı ve Sıkışabilme Özellikleri", Yüksek Lisans Tezi, ODTÜ, Ankara, 1995.
- [7] TUNÇ, A., "Yol Mühendisliğinde Geoteknik ve Uygulamaları", Atlas Yayın Dağıtım, pp. 4-9, İstanbul, 2002.
- [8] ATMACA, M., "Yapı Temelleri ve Zeminler", Mühendislik Yayıncılık, pp. 25, Ankara, 2003.
- [9] DORA, G., "Yumuşak Zeminlerin Kayma Mukavemeti", Yüksek Lisans Tezi, İTÜ, Fen Bilimleri Enstitüsü, pp. 5-6, İstanbul, 1996.
- [10] ANGIN, Z., ANGIN, A., "Şişen Killerin Geoteknik Özelliklerinin İyileştirilmesi", Geoteknik Sempozyumu, Adana, pp. 365-373, Ekim 2005.
- [11] CODUTO, D. P., "Geoteknik Mühendisliği İlkeler ve Uygulamalar", Çevirenler MOLLAMAHMUTOĞLU, M., KAYABALI, K., Gazi Kitabevi, pp. 126-127, Ankara, 2006.
- [12] tr.wikipedia.org/wiki/Kil.

- [14] TUNÇ, A., "Yol Malzemeleri (Agrega, Asfalt, Bitümlü Karışımlar, Beton, Zemin) ve Uygulamarı (Kaplamalar ve Zemin Islahı - Dizayn ve Yapım Mettları)", Atlas Yayın Dağıtım, pp. 490-491, İstanbul, 2001.
- [15] ÖZAYDIN, K., "Zemin Mekaniği", Birsen Yayınevi, pp. 185, 192-202, İstanbul, 1997.
- [16] CLAYTON, C. R. I., MATTHEWS, W. C., SIMONS, N. S. E., "Jeoteknik Saha İncelemesi", Çevirenler ÇETİN, H., KAYABALI, K., ARMAN, H., Gazi Kitabevi, pp. 399-401, Ankara, 2005.
- [17] ORKAN, M., ÖZER, M., IŞIK, N. S., "Zemin Mekaniği Laboratuar Deneyleri", Cilt 1 (İndeks ve Sınıflandırma Deneyleri), Gazi Kitabevi, pp. 29-33, 63, 87-89, 103, 109-110, Ankara, 2004.
- [18] TÜRK STANDARTLARI TS 1900-1 "Inşaat Mühendisliğinde Zemin Laboratuar Deneyleri-Bölüm 1: Fiziksel Özelliklerin Tayini" Türk Standartları Enstitüsü, pp. 10, 18-21, 24-25, 31-33, 37-38, 51-59, 60-64, Ankara, 2006.
- [19] UZUNER, B. A., "Çözümlü Problemlerle Temel Zemin Mekaniği", Teknik Yayınevi Mimarlık Mühendislik Yayınları, pp. 146, Ankara, 2001.
- [20] MEGEP (Mesleki Eğitim ve Öğretim Sisteminin Güçlendirilmesi Projesi), İnşaat Teknolojisi, Zemin Deneyleri III, Milli Eğitim Bakanlığı Yayınları, pp. 20, Ankara, 2006.
- [21] <u>http://www.rajirrigation.gov.in/6guidelines_soil_prop.htm.</u>
- [22] <u>http://www.usbr.gov</u>.
- [23] MEGEP (Mesleki Eğitim ve Öğretim Sisteminin Güçlendirilmesi Projesi), İnşaat Teknolojisi, Zemin Deneyleri II, Milli Eğitim Bakanlığı Yayınları, pp. 7, Ankara, 2006.
- [24] TÜRK STANDARTLARI TS 1900-2 "Inşaat Mühendisliğinde Zemin Laboratuar Deneyleri-Bölüm 2: Mekanik Özelliklerin Tayini" Türk Standartları Enstitüsü, pp. 30-31, 55-59, Ankara, 2006.
- [25] NALBANTOĞLU, Z., "Üç Eksenli Basınç, Basit Kesme ve Kesme Kutusu Deney Yöntemleri İle Bulunan Kayma Mukavemetinin Karşılaştırılması", Yüksek Lisans Tezi, İTÜ, İstanbul, 1988.

ÖZGEÇMİŞ

İstanbul'un Şişli ilçesinde 1983 yılında dünyaya geldi. 8 yıllık ilk ve orta öğretimini İstanbul Yenibosna'da Kuleli İlköğretim okulun da tamamladı. Lise eğitimini yine İstanbul'da İstanbul İnşaat Anadolu Teknik İnşaat Teknik ve Yapı Meslek Lisesi, Yapı Ressamlığı Bölümü Teknik Lise de 4 yıl okuyup okul birincisi olarak mezun oldu. 2000–2001 eğitim öğretim yılında girmiş olduğu ÖSS sınavıyla Sakarya Üniversitesi, İnşaat Mühendisliği Bölümünü kazanarak eğitimini bitirdi. 2005-2006 eğitim öğretim yılında Sakarya Üniversitesi, Fen Bilimleri Enstitüsü, İnşaat Mühendisliği Anabilim Dalı, Geoteknik Bilim Dalında yüksek lisansa başladı. Mezuniyeti sonrası çeşitli özel firmalarda mesleki çalışmalarını sürdürdü.