T.C. SAKARYA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

GERÇEK GERİLME BÜNYE DENKLEMLERİNİN İNCELENMESİ

YÜKSEK LİSANS TEZİ

Mak. Müh. Şuayip TURNA

Enstitü Anabilim Dalı	:	MAKİNA MÜHENDİSLİĞİ
Enstitü Bilim Dalı	:	MAKİNA TASARIM VE İMALAT
Tez Danışmanı	:	Yrd. Doç. Dr. Erdal KARADENİZ

Haziran 2008

T.C. SAKARYA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

GERÇEK GERİLME BÜNYE DENKLEMLERİNİN İNCELENMESİ

YÜKSEK LİSANS TEZİ

Mak.Müh. Şuayip TURNA

Enstitü Anabilim Dalı : MAKİNA MÜHENDİSLİĞİ Enstitü Bilim Dalı : MAKİNA TASARIM VE İMALAT

Bu tez 12 / 06 /2008 tarihinde aşağıdaki jüri tarafından Oybirliği ile kabul edilmiştir.

tent

Yrd. Doç. Dr. Erdal KARADENİZ Jüri Başkanı

Doç Dr. Kenan GENEL Üye

Yrd. Doç. Dr. Serdar ASLAN Üye

Bu çalışma, Sakarya Üniversitesi BAPK tarafından 2007.50.01.002 proje numarası ile desteklenmiştir.

TEŞEKKÜR

Soğuk dövme yöntemiyle cıvata imalatında deformasyon analizi oldukça önem taşımaktadır. Bu yöntemle elde edilen malzemelerin hangi kuvvette hangi davranışı gösterdiğini önceden tespit ederek imalata yön vermek için bilgisayar simülasyonları geliştirilmiştir. Bu çalışmamızda cıvata endüstrisinde kullanılan 7 farklı çeliğin oda sıcaklığında yapılmış olan çekme deneylerinin eğrileri, bu çeliklerle uyum sağlayacağı tahmin edilen 2 bünye denklemi ile elde edilen eğrilerle ne derece yakınlık gösterdiği karşılaştırılarak en uygun model tespit edilmiştir.

Tezin hazırlanmasında bana yardımını esirgemeyen ve daima destek olan hocam Yrd. Doç. Dr. Erdal KARADENİZ'e, yüksek lisans öğrenimimde desteğini esirgemeyen Kahramanmaraş İl Jandarma Komutanı Jandarma Albay Ernail KELEŞ'e ve manevi desteklerini hiçbir zaman esirgemeyen sevgili eşim ve oğluma teşekkürlerimi bir borç bilirim.

> Şuayip TURNA Haziran 2008

İÇİNDEKİLER

TEŞEKKÜR	ii
İÇİNDEKİLER	iii
SİMGELER VE KISALTMALAR LİSTESİ	vi
ŞEKİLLER LİSTESİ	vii
TABLOLAR LİSTESİ	ix
ÖZET	X
SUMMARY	xi

BÖLÜM 1.

GİRİŞ]	1

BÖLÜM 2.

MALZEMELERİN PLASTİK ŞEKİL DEĞİŞTİRMESİ	3
2.1. Giriş	3
2.2. Çekme Diyagramı	4
2.3. Elastik Plastik Deformasyon	6
2.3.1. %0,2 Akma mukavemeti	7
2.3.2. Pekleşme	9
2.3.2.1. Tam elastik model	9
2.3.2.2. Rijit tam plastik model	10
2.3.2.3. Rijit plastik doğrusal pekleşen model	11
2.3.2.4. Elastik tam plastik model	11
2.3.2.5. Elastik doğrusal pekleşen model	12
2.3.3. Süneklik	12
2.3.4. Tokluk	13
2.3.5. Sertlik	13

2.4. Gerilme – Birim Şekil Değiştirme Diyagramlarının Özellikleri	13
2.4.1. Sünek Malzemelerin $\sigma - \epsilon$ Diyagramı	13
2.4.2. Gevrek Malzemelerin $\sigma - \epsilon$ Diyagramı	14
2.5. Gerçek Gerilme ve Gerçek Birim Şekil Değiştirme	15
2.6. K ve n Değerlerinin Tayini	20
2.7. Gerçek Gerilme-Gerçek Şekil Değiştirme Eğrileri İçin Yaklaşık	
Denklemleri	22

BÖLÜM 3.

GERÇEK GERİLME VE GERÇEK BİRİM ŞEKİL DEĞİŞTİRME BÜNYE	
DENKLEMLERİNİN ENDÜSTRİYEL VE BİLİMSEL ÖNEMİ	24
3.1. Giriş	24
3.2. Gerçek Gerilme ve Gerçek Şekil Değiştirme Bünye Denklemleri	
Çeşitleri ve Uygunluk Gösterdiği Malzeme Grupları	24

BÖLÜM 4.

DENEYSEL ÇALIŞMALAR	28
4.1. Deney Malzemelerinin İncelenmesi	28
4.2. Çekme Deneyi Çalışmaları	28

BÖLÜM 5.

DENEYSEL SONUÇLAR VE TARTIŞMA	30
5.1. Çekme Deneyi Sonuçları	30
5.1.1. QSt32–3 Çeliği Çekme Deneyi Sonuçları	30
5.1.2. 20MnB4 (a) Çeliği Çekme Deneyi Sonuçları	34
5.1.3. 20MnB4 (b) Çeliği Çekme Deneyi Sonuçları	37
5.1.4. 30MnB3 Çeliği Çekme Deneyi Sonuçları	40
5.1.5. 41Cr4 Çeliği Çekme Deneyi Sonuçları	43
5.1.6. 42CrMo4 Çeliği Çekme Deneyi Sonuçları	46
5.1.7. 22BCr3 Çeliği Çekme Deneyi Sonuçları	49
5.2. Tartışma	52

BÖLÜM 6.	
SONUÇLAR VE ÖNERİLER	54
6.1. Sonuçlar	54
6.2. Öneriler	55
KAYNAKLAR	56
ÖZGEÇMİŞ	58

SİMGELER VE KISALTMALAR LİSTESİ

- A₀ : Numune ilk kesit alanı
- A_S : Numune son kesit alanı
- dl : Birim uzama
- e : Birim şekil değiştirme
- E : Elastisite modülü
- ε : Gerçek birim şekil değiştirme
- ε_0 : Ön birim şekil değiştirme sabiti
- F : Kuvvet
- K : Mukavemet katsayısı (kg/mm²)
- L : Numune boyu
- L₀ : Numune ilk boyu
- L_S : Numune son boyu
- L_K : Numunenin kırılma sonrası boyu
- n : Pekleşme üssü
- σ : Gerilme
- $\sigma_{\rm G}$: Gerçek gerilme (kgf/mm²)
- σ_A : Akma mukavemeti
- $\sigma_{\rm M}$: Kopma mukavemeti (kgf/mm²)
- $\sigma_{\rm K}$: Kırılma mukavemeti (kgf/mm²)
- σ_{H} \qquad : Hollomon denklemiyle elde edilen gerilme değeri
- σ_L : Ludwik denklemiyle elde edilen gerilme değeri
- Δl : Birim uzama
- V : Hacim

ŞEKİLLER LİSTESİ

Şekil 2.1.	Üniversal çekme test makinesi şematik gösterimi	5
Şekil 2.2.	Sünek bir metalin mühendislik çekme diyagramı	6
Şekil 2.3.	Yük – Uzama diyagramı	7
Şekil 2.4.	Deformasyon bölgelerinin mühendislik gerilme – gerinim	
	diyagramı ve test parçası ile ilişkisi	8
Şekil 2.5.	% 0,2 Akma mukavemeti	9
Şekil 2.6.	Tam Elastik Model	10
Şekil 2.7.	Rijit Tam Plastik Model	10
Şekil 2.8.	Katı Plastik Doğrusal Pekleşen Model	11
Şekil 2.9.	Elastik Tam Plastik Model	11
Şekil 2.10.	Elastik Doğrusal Pekleşen Model	12
Şekil 2.11.	Düşük karbonlu çeliğe ait σ - ϵ diyagramı	14
Şekil 2.12.	Tipik bir gevrek malzemenin σ - ϵ diyagramı	15
Şekil 2.13.	F; çekme kuvveti uygulanan parça	16
Şekil 2.14.	Yük – Uzama eğrisi	17
Şekil 2.15.	Gerçek çekme diyagramı ve bu diyagramda homojen plastik	
	şekil değişimi bölgesinde çekme kuvveti boşaltıldıktan sonra	
	hemen yeniden yüklenmesi.	19
Şekil 2.16.	Gerçek gerilme-gerçek şekil değişimi için log σ g ve log ϵ grafiği	21
Şekil 2.17.	Ludwig denklemine göre ve n=1 halinde akma sınırı σA olan bir	
	malzemenin gerçek çekme diyagramı	22
Şekil 2.18.	$\sigma = \sigma_A + K\epsilon^n (n < 1)$	23
Şekil 2.19.	σ = K ϵ^n (n<1) ,elastik davranış göstermeyen ve akma sınırı	
	belirgin olmayan malzeme	23
Şekil 3.1.	Bazı malzemeler için $\sigma - \epsilon$ eğrileri	27
Şekil 4.1.	Çekme Cihazı	29

Şekil 4.2.	Çekme Deneyi Numuneleri	29
Şekil 5.1.	QSt32–3 çeliği için elde edilen Kuvvet-Uzama Eğrisi	32
Şekil 5.2.	QSt32–3 çeliği için elde edilen logaritmik eğri	32
Şekil 5.3.	QSt32-3 çeliği için $\sigma_g - \epsilon$ eğrileri	33
Şekil 5.4.	20MnB4 (a) çeliği için elde edilen Kuvvet-Uzama Eğrisi	36
Şekil 5.5.	20MnB4 (a) çeliği için elde edilen logaritmik eğri	36
Şekil 5.6.	20MnB4 (a) çeliği için $\sigma_g - \epsilon$ eğrileri	37
Şekil 5.7.	20MnB4 (b) çeliği için elde edilen Kuvvet-Uzama Eğrisi	39
Şekil 5.8.	20MnB4 (b) çeliği için elde edilen logaritmik eğri	39
Şekil 5.9.	20MnB4 (b) çeliği için $\sigma_g - \epsilon$ eğrileri	40
Şekil 5.10.	30MnB3 çeliği için elde edilen Kuvvet-Uzama Eğrisi	42
Şekil 5.11.	30MnB3 çeliği için elde edilen logaritmik eğri	42
Şekil 5.12.	30MnB3 çeliği için $\sigma_g - \epsilon$ eğrileri	43
Şekil 5.13.	41Cr4 çeliği için elde edilen Kuvvet-Uzama Eğrisi	45
Şekil 5.14.	41Cr4 çeliği için elde edilen logaritmik eğri	45
Şekil 5.15.	41Cr4 çeliği için $\sigma_g - \epsilon$ eğrileri	45
Şekil 5.16.	42CrMo4 çeliği için elde edilen Kuvvet-Uzama Eğrisi	48
Şekil 5.17.	42CrMo4 çeliği için elde edilen logaritmik eğri	48
Şekil 5.18.	42CrMo4 çeliği için $\sigma_g - \epsilon$ eğrileri	49
Şekil 5.19.	22BCr3 çeliği için elde edilen Kuvvet-Uzama Eğrisi	51
Şekil 5.20.	22BCr3 çeliği için elde edilen logaritmik eğri	51
Şekil 5.21.	22BCr3 çeliği için $\sigma_g - \epsilon$ eğrileri	52

TABLOLAR LİSTESİ

Tablo 4.1.	Deney malzemelerinin kimyasal analiz sonuçları	28
Tablo 5.1.	QSt32-3 çeliği çekme deneyi sonucu değerleri ($d_0 = 10,02 \text{ mm}$)	31
Tablo 5.2.	QSt32-3 çeliği çekme deneyi sonucu değerleri	31
Tablo 5.3.	20MnB4 (a) çeliği çekme deneyi sonucu değerleri ($d_0 = 10,03 \text{ mm}$)	35
Tablo 5.4.	20MnB4 (a) çeliği çekme deneyi sonucu değerler	35
Tablo 5.5.	20MnB4 (b) çeliği çekme deneyi sonucu değerleri ($d_0 = 10,00 \text{ mm}$)	38
Tablo 5.6.	20MnB4 (b) çeliği çekme deneyi sonucu değerler i	39
Tablo 5.7.	30MnB3 çeliği çekme deneyi sonucu değerleri ($d_0 = 10,00 \text{ mm}$)	41
Tablo 5.8.	30MnB3 çeliği çekme deneyi sonucu değerleri	42
Tablo 5.9.	41Cr4 çeliği çekme deneyi sonucu değerleri ($d_0 = 10,06 \text{ mm}$)	44
Tablo 5.10.	41Cr4 çeliği çekme deneyi sonucu değerleri	44
Tablo 5.11.	42CrMo4 çeliği çekme deneyi sonucu değerleri ($d_0 = 9,95 \text{ mm}$)	47
Tablo 5.12.	42CrMo4 çeliği çekme deneyi sonucu değerleri	47
Tablo 5.13.	22BCr3 çeliği çekme deneyi sonucu değerleri ($d_0 = 10,05 \text{ mm}$)	50
Tablo 5.14.	22BCr3 çeliği çekme deneyi sonucu değerleri	51

ÖZET

Anahtar kelimeler: Bünye denklemleri, çekme deneyi, pekleşme

İstenilen özelliklerde ve kusursuz ürün elde edilmesi açısından metallerin şekil verme işlemlerinin incelenmesi önemlidir. Bu amaca ulaşabilmek için, şekil değiştirme işlemlerini en iyi şekilde kontrol etmek ve en iyi tasarıma ulaşmak gerekir. Bu çalışmada, soğuk dövme yöntemiyle üretilen cıvata çeliklerinin oda sıcaklığındaki çekme deneyi sonuçları incelenmiştir. Daha sonra farklı bünye denklemleri karşılaştırılmış ve Hollomon eşitliğinin 7 farklı (QSt32-3, 20MnB4 (a), 20MnB4 (b), 30MnB3, 41Cr4, 42CrMo4, 22BCr3) soğuk dövme çeliği için de en iyi sonuçları verdiği görülmüştür.

ANALYSIS OF TRUE STRESS CONSTITUTIVE EQUATIONS

SUMMARY

Keywords: Constitutive equations, tensile test, strain hardening

An important objective of the deformation processing of metals is the production of defect free parts, with the desired properties. This goal can achieved through better design and by better control of the parameters of the deformation processes. In this study, we describe the tensile tests experience with cold forming of bolts at ambient temperatures. Next have been compared using different constitutive equations. Hollomon relationship provides the best fit of the data for 7 different (QSt32-3, 20MnB4 (a), 20MnB4 (b), 30MnB3, 41Cr4, 42CrMo4, 22BCr3) cold forging steels.

BÖLÜM 1. GİRİŞ

Metallere şekil verme, genel olarak döküm, kaynak, plastik şekil verme, talaşlı imalat, toz metalürjisi yöntemlerinin biri veya birkaçının uygulanması ile gerçekleştirilir. Plastik şekil verme; dövme, haddeleme, ekstrüzyon, tel çekme, derin çekme, sıvama, bükme ve kesme gibi çeşitli işlemleri içerir. Cıvatalar deformasyon sırasında malzeme sertliğinin ve dayanımının önemli miktarlarda arttığı, işlem sonucunda mükemmel yüzey kalitesinin elde edildiği ve malzeme kaybının en az olduğu soğuk dövme yöntemiyle elde edilir. Bu işlem aşamasında kalıp malzemeleri, kalıp geometrisi ve kademeleri, malzemenin plastik şekil değişimi kabiliyeti (dövülebilirlik), şekil değişimi için gerekli kuvvet ve enerji değerleri önemli parametrelerdir.

Özellikle son dönemlerde; imalat sektöründe bilgisayar destekli tasarımın kullanılması sektör açısından son derece önemli avantajlar sağlamaktadır. Bilgisayar simülasyonlarının kullanımı, artık malzeme oluşumunu en aza indirme ve deneysel tasarımda kullanılan malzemeler için harcanan zamandan tasarruf sağlamada yardımcı olabilmektedir. Aynı zamanda tasarımın verimli olması ve tasarım hatalarının azaltılması başarılı bir bilgisayar simülasyonu sayesinde gerçekleşebilmektedir [1].

Malzemede deformasyon anında meydana gelen olayları bilgisayarda kullanılabilecek şekilde matematiksel olarak ifade edebilmek için bünye denklemleri kullanılmaktadır.

Bünye denklemleri, malzemelerin deformasyonu esnasında meydana gerilme – birim şekil değişimi ilişkilerini tanımlayabilmek için kullanılır. Bu denklemlerle malzemelerin mekanik işlemleri boyunca karşılaşılabilen gerilmeler, kuvvetler ve distorsiyonlar (çarpıklık, bükülme) tanımlanır.

Bünye denklemleri ile ilgili çalışmaların ilki, Ludwik tarafından 1909 yılında malzemelerin davranışlarını tanımlayabilmek maksadıyla geliştirilmiştir. Diğer araştırmacılar, bu denklemi, deneysel verilere en yakın sonuçları elde edebilecek şekilde geliştirmişlerdir [2].

Deformasyon esnasında malzemede meydana gelen değişimleri tanımlayan denklemler genellikle üç gruba ayrılırlar. İlk grup modeller, deformasyon hızı ve sıcaklık gibi şekillendirme koşullarının dikkate alınmadığı bünye denklemleridir. İkinci grup modellerde soğuk şekil vermede deformasyon hızının etkisinin de dikkate alındığı bünye denklemleridir. Üçüncü grup ise sıcak işlem koşullarının değerlendirildiği bünye denklemleridir [3].

Son yıllarda özellikle Hollomon [4], Ludwik [5], Swift [6], Voce [7,8] ve Ludwigson [9] modelleri kullanılarak birçok çalışma yapılmış (bunlar birinci grup bünye denklemleridir) ve bunların gerçek gerilme – gerçek birim şekil değiştirme eğrileriyle olan uyumları araştırılmıştır [10,11]. Bu araştırmaların bazılarında yüksek sıcaklık, hız ve malzemelerin mikro yapıları da göz önüne alınarak, çalışmalar farklı sahalarda genişletilmiştir [12,13].

Bu çalışmada, cıvata imalatında sıkça kullanılan çeliklerin tasarımı için geliştirilen bilgisayar simülasyonlarında uygulanabilecek en uygun bünye denklemleri araştırılmış ve ilk grup modeller üzerine çalışılmıştır.

QSt32-3, 20MnB4, 30MnB3, 41Cr4, 42CrMo4, 22BCr3 çelikleri, soğuk dövme yöntemiyle cıvata imalatında sık kullanılan çeliklerdir. Bu çeliklerin ε_u (homojen birim şekil değişimi) değerleri 0,20 ~ 0,25 dir. Bakır, kalay ve altın gibi çok sünek malzemeler için tavsiye edilen modeller (Voce [7,8], Sellars [14], Misiolek [15] vb.) ile yüksek sıcaklık koşulları için tavsiye edilen modeller (Samanta [16], Hartley [13] vb.) ve ön şekillendirme görmüş malzemeleri ifade eden Swift [6] incelenmeyerek 2 bünye denklemi (Hollomon [4] ve Ludwik [5]) çalışmada değerlendirmeye alınmıştır.

BÖLÜM 2. MALZEMELERİN PLASTİK ŞEKİL DEĞİŞTİRMESİ

2.1. Giriş

Metalik malzemeleri genel şekillendirme yöntemleri şöyle sınıflandırılabilir:

- a) Döküm
- b) Plastik şekil verme
- c) Talaşlı imalat
- d) Kaynak
- e) Toz metalurjisi

Malzemeleri şekillendirmede kullanılan en genel yöntemlerden biri plastik şekil verme işlemleridir. Plastik şekil verme işlemi bir katı cismin şeklini, başka bir şekle dönüştürmek amacıyla uygulanan ve bu işlem sırasında cismin malzemesinde kütle ve bileşim değişikliğine yol açmayan üretim şekli olarak tarif edilebilir. Bir plastik şekil değiştirme olayı, yeniden kristalleşme sıcaklığının altındaki sıcaklıklarda gerçekleştirilirse soğuk şekil değiştirme, aksi takdirde sıcak şekil değiştirme olarak ifade edilir.

Metalik malzemelerde plastik deformasyon en genel olarak belirli düzlemlerde ve doğrultularda atomların kayması ile gerçekleşir. Kayma, belirli kristalografik düzlemlerde ve belirli kristalografik doğrultularda dislokasyonların hareketi ile olur. Dislokasyonların oluşumuna ve dolayısıyla plastik şekil değişimine neden olan başlıca mekanizma, kristale uygulanan gerilmelerin etkisiyle yeni dislokasyonların doğmasıdır. Mikroçatlaklar, çökelekler ve diğer kristal kusurları bu tür dislokasyon oluşumunu başlatan faktörlerdir. Plastik şekil verme işlemlerinde farklı uygulamalar için; haddeleme, dövme, ekstrüzyon, tel çekme, derin çekme, sıvama, eğme ve kesme gibi çeşitli proses ve yöntemler geliştirilmiştir. Bu yöntemlerdeki en önemli problem malzemenin plastik deformasyona karşı gösterdiği direnç olup, bu türdeki şekillendirme yöntemlerinde bu direncin üzerinde bir kuvvet uygulanması gerekmektedir. Uygulanacak bu kuvvet malzemenin plastik şekil değiştirme koşullarındaki mukavemetine, uygulanabilecek şekil değiştirme miktarı ise malzemenin plastik şekil değiştirme koşullarındaki sünekliğine bağlıdır. Metalin plastik şekil değiştirme davranışını ifade eden malzeme sabitlerinin bilinmesi, şekil değiştirme miktarının saptanmasında oldukça önemlidir [17].

2.2. Çekme Diyagramı

Çekme deneyi, uygulamada mekanik özelliklerden mukavemet ve sünekliğin belirlenmesi amacıyla en fazla kullanılan deneydir. Belirli şekil değiştirme koşullarında yapılan deneylerden elde edilen eğriler malzemenin gerilme - birim şekil değiştirme özellikleri hakkında fikir verir.

Çekme deneyi, Şekil 2.1'de şematik olarak gösterilen üniversal çekme test makinelerinde yapılmaktadır. Numune sabit hızda çekilir ve uygulanan yük değişimine göre uzama belirlenir. Test makinesi üzerinde, deney malzemesinin bağlandığı test ekipmanından alınan elektriksel sinyaller vasıtasıyla birim şekil değişimi ve gerilme değerleri cihaz üzerindeki yazıcıda çizdirilir.

Şekil 2.1 Üniversal çekme test makinesi şematik gösterimi [19]

Sünek bir metalin (Alüminyum, bakır veya benzeri) yük uzama diyagramı ya da tipik mühendislik gerilme - mühendislik gerinim diyagramı Şekil 2.2'de verilmiştir. Aynı şeklin (b) bölümünde ise doğrusal olan başlangıç bölgesi büyütülerek verilmiştir. Şekilden de görülebileceği gibi, gerinim başlangıçta gerilme ile doğrusal olarak artar. Bu bölgede şekil değişimi elastiktir, yani yükün boşaltılması ile parça başlangıçtaki boyutlarını alır. Doğrunun (Hooke doğrusu) eğimi E ile gösterilir ve elastiklik modülü (Young modülü) adını alır. Doğru boyunca Hooke kanunu [20];

$$\sigma = E\epsilon \tag{2.1}$$

geçerlidir.

Şekil 2.2. Sünek bir metalin mühendislik çekme diyagramı [21]

 σ_A olarak belirtilen akma mukavemeti noktasından sonra gerilme-gerinim ilişkisi doğrusal olarak devam etmez, yani artık Hooke kanunu geçersizdir. σ_A noktası elastiklik sınırıdır. Tarif olarak elastiklik sınırı, çekme yükü kaldırıldığı zaman malzemede kalıcı (plastik) şekil değişiminin görülmediği en büyük gerilmedir. Şekilde $\sigma_{Maks.}$ ile gösterilen tepe noktası maksimum yükün uygulandığı ya da maksimum mühendislik gerilme değerine ulaşıldığı noktadır. Bu noktadan sonra yük boşaltılmadıkça azalan yükte malzeme kopma noktasına kadar gider. Şekilde belirtildiği gibi σ_M noktasına kadar olan bölge doğrusal plastik deformasyon bölgesi sonrası ise doğrusal olmayan plastik deformasyon bölgesi olarak adlandırılır.

2.3. Elastik Plastik Deformasyon

Deneyler göstermiştir ki tek eksenli yüklemede belirli bir gerilme değerine karşılık gelen gerinim iki kısımdan oluşur: Geri kazanılabilen elastik gerinim ve geri kazanılamayan plastik gerinim. Elastiklik sınırı aşıldığında plastik şekil değişimi başlar. Plastik alanda, çekme eğrisinin (Şekil 2.2) σ_M maksimum tepe noktasından önce bir A noktasında yük boşaltıldığı takdirde, ideal durumda geriye dönüş elastik çizgisine paralel AB doğrusu boyunca olur (Şekil 2.3). Şekil 2.3 de görülebileceği

gibi BN arası mesafe geri kazanılan elastik deformasyon bölgesidir. OB arasındaki mesafe ise malzemede kalıcı olarak kalan plastik deformasyon miktarıdır.

Şekil 2.3. Yük – Uzama Diyagramı [22]

Elastik Deformasyon: Yük kaldırıldıktan sonra sıfıra iner.

Plastik Deformasyon: Yük kaldırıldıktan sonra sıfıra inmez, belli bir değerde kalır. Şekil 2.5, tek eksenli çekme mühendislik gerilme-mühendislik gerinimi eğrisini ve çeşitli gerinim seviyelerinde numunenin durumunu gösterir.

2.3.1. 0.2% Akma mukavemeti

Akma sınırının Şekil 2.5'te olduğu gibi belirgin olmadığı hallerde %0.2 plastik gerinimin meydana geldiği mühendislik gerilme değeri akma sınırı olarak kabul edilir. Bu gerilme değerinin bulunması için e=0.002 noktasından Hooke doğrusuna paralel çizilir ve gerilme-gerinim eğrisini kestiği noktadaki gerilme değeri akma mukavemet değeri olarak alınır [20].

Şekil 2.4. Deformasyon bölgelerinin mühendislik gerilme-gerinim diyagramı ve test parçası ile İlişkisi [22]

Şekil 2.5. 0.2% Akma mukavemeti [23]

2.3.2. Pekleşme

Metallerin uygulanan yükler altında elastik bölgeyi geçerek kalıcı şekil değişimine uğraması ve buna bağlı olarak mukavemet ve sertlik değerlerinin artmasına pekleşme adı verilir. Başka bir ifadeyle, malzemedeki kristal yapı kusurlarından dislokasyonların kalıcı şekil değişimi süresince yoğunluklarının artışıdır. Dislokasyon yoğunluğu artışı malzemedeki şekil değişimi davranışını şekil değişimine karşı direnç gösterme şeklinde etkiler. Bu durum her malzemede ve malzeme yapısı farklılıklarında değişiktir. Bu nedenle, pekleşme davranışları farklılıkları bir malzeme özelliğidir.

2.3.2.1. Tam elastik model

Aşağıdaki şekilde tam elastik ideal bir malzemenin gerçek gerilme-gerçek gerinim diyagramı görülmektedir. Bu model için Hooke kanunu (σ =E ϵ) geçerlidir. Cam, seramikler ve bazı dökme demirler gibi gevrek malzemelerin davranışı bu tür bir eğri ile gösterilebilir. Kopma uzaması çok küçük (mertebe olarak % 1...2) olan ve elastiklik sınırı aşıldığı takdirde çok az bir uzamadan sonra büzülme göstermeden çekme kuvveti etkisiyle kopan gevrek malzemelerde elastiklik sınırı çekme dayanımına çok yakındır. Ayrıca gevrek malzemelerin çekme diyagramlarında kopma noktasındaki gerilme değeri ile çekme dayanımı çakışır.

Şekil 2.6. Tam elastik model [18]

2.3.2.2. Rijit tam plastik model

Plastik, pekleşmeyen malzeme modelidir. Aşağıdaki şekilde rijit, tam plastik ideal bir malzemenin gerçek gerilme-gerçek gerinim diyagramı görülmektedir. Bu tür bir malzemeden bir çekme deneyi çubuğu, çekme gerilmesi akma sınırına erişinceye kadar tamamen rijittir (elastik şekil değiştirme sıfır); çekme gerilmesi akma sınırına eşit olduğu anda plastik şekil değişimi başlar ve sabit gerilme altında (pekleşme olmadan) devam eder.

Şekil 2.7. Rijit tam plastik model [18]

2.3.2.3. Rijit plastik doğrusal pekleşen model

Aşağıdaki şekilde rijit, doğrusal pekleşen bir malzemenin gerçek gerilme-gerçek gerinim diyagramı verilmiştir. Böyle bir malzemede, çekme gerilmesi akma sınırına erişinceye kadar şekil değişimi görülmez. Çekme gerilmesinin akma sınırına eşit olması ile birlikte plastik şekil değişimi başlarsa da, şekil değiştirmeyi arttırmak için gerilme de sürekli olarak yükseltilmelidir. Gerilmenin plastik şekil değiştirme ile artışı (pekleşme) doğrusaldır. Rijit tam plastik malzemede olduğu gibi burada da şekil değişiminin elastik bileşeni plastik bileşen yanında ihmal edilmektedir.

Şekil 2.8. Katı plastik doğrusal pekleşen model [18]

2.3.2.4. Elastik tam plastik model

Aşağıdaki şekilde elastik tam plastik bir malzemenin gerçek gerilme-gerçek gerinim diyagramı görülmektedir.

Şekil 2.9. Elastik tam plastik model [18]

2.3.2.5. Elastik doğrusal pekleşen model

Bu model ise şekilde görüldüğü gibi elastik doğrusal pekleşen bir davranım gösterir.

Şekil 2.10. Elastik doğrusal pekleşen model [18]

2.3.3. Süneklik

Kopma noktasına kadar olan uzama yüzdesi sünekliğin bir ölçütüdür. Uzama yüzdesi ne kadar fazla ise malzeme o kadar sünektir. Sünek malzemenin karşıtı kırılgan malzeme olarak adlandırılır.

Süneklik şu şekilde tanımlanabilir:

Kırılmadaki % uzama
$$\frac{l_s - l_0}{l_0} \ge 100$$
 (2.2)

veya alan kullanarak kırılmada % kesit azalması : $\frac{A_0 - As}{A_0} \times 100$ (2.3)

olarak yazılır. Burada;

A₀: İlk kesit alan

A_s : Son alan

l₀: İlk uzunluk

l_s: Son uzunluk

değerlerini ifade etmektedir. Genellikle sertlik artınca, süneklik azalır. Malzemeleri sünek yapmak için:

1. Sıcaklık yükseltilir.

2. Hidrostatik basınç yükseltilir. Çok yüksek hidrostatik basınç uygulaması kopmayı da geciktirir.

2.3.4. Tokluk

Malzemeyi kopma noktasına getirmek için gerekli enerji miktarı tokluğun bir ölçütüdür. Eşdeğer gerilme-eşdeğer gerinim eğrisi altındaki alan tokluğu verir. Bir malzeme hem tok hem de kırılgan olamaz.

2.3.5. Sertlik

Malzemenin batmaya karşı olan direncidir. Yüksek akma mukavemeti olan metaller yüksek sertlik değerine sahiptirler. Fakat akma mukavemet değerinden sertlik değeri hesaplanamaz [20].

2.4. Gerilme – Birim Şekil Değiştirme Diyagramlarının Özellikleri

Değişik malzemeler için gerilme-şekil değiştirme diyagramları farklılık gösterir. Ayrıca farklı çekme deneyleri, numune sıcaklığı ve yükleme hızına bağlı olarak aynı malzeme için elde edilen $\sigma - \varepsilon$ diyagramları farklı olabilir. Genelde $\sigma - \varepsilon$ diyagramlarına göre malzemeleri iki tipte sınıflandırmak mümkündür.

- 1. Sünek malzemeler (inşaat demiri, düşük karbonlu çelik, Al, Cu...)
- 2. Gevrek malzemeler (dökme demir, cam, taş....)

2.4.1. Sünek malzemelerin σ – ε diyagramı

Yük belirli bir değere ulaştıktan sonra numunenin orta bölümünde çap bölgesel kararsızlık nedeniyle azalmaya başlar (Örnek: Düşük karbonlu çelik). Buna boyun yapma denir. Boyun yaptıktan sonra uzama devam eder ve numune, numune yüzeyine yaklaşık 45° lik bir açıyla kırılır. Numunenin 45° lik bir açıyla kırılması, kırılmadan öncelikle kayma gerilmelerinin sorumlu olduğunu gösterir. Aşağıda düşük karbonlu çeliğin $\sigma - \varepsilon$ diyagramı gösterilmiştir.

Şekil 2.11. Düşük Karbonlu çeliğe ait σ-ε diyagramı [24]

Diyagramda;

Akmanın başladığı noktaya; Akma mukavemeti (σ_A)

Numuneye uygulanan azami yüke; Kopma mukavemeti (σ_M)

Kırılmaya karşılık gelen gerilmeye; Kırılma mukavemeti (σ_K) denir.

Düşük karbonlu çeliğin σ – ε diyagramında akma noktası belirgindir. Üst akma ve alt akma mukavemetleri ayırt edilebilir. Malzemenin akma mukavemeti olarak alt akma mukavemeti kullanılmalıdır.

2.4.2. Gevrek malzemelerin (σ – ε diyagramı)

Dökme demir, cam, taş gibi malzemeler uzama oranında ciddi bir değişiklik olmaksızın kırılırlar. Bu yüzden gevrek malzemelerin kopma mukavemetleri ile kırılma mukavemetleri arasında önemli bir fark yoktur. Deformasyon küçüktür. Gevrek malzemede boyun meydana gelmediğinden kırılmanın kuvvete dik yüzey boyunca olduğu gözlenir. Bu nedenle, gevrek malzemenin kırılmasından normal gerilmenin sorumlu olduğu sonucuna varılır. Çekme testi sonrasında kırılmış gevrek bir malzemenin resmi ve bu deney sonucu elde edilen $\sigma - \varepsilon$ diyagramı aşağıda gösterilmiştir.

Şekil 2.12. Tipik bir gevrek malzemenin $\sigma - \epsilon$ diyagramı [18]

Bir malzemenin sünekliğinin standart ölçüsü yüzde uzamadır ve

Yüzde uzama =
$$100 \times \frac{L_{K} - L_{0}}{L_{0}}$$
 (2.4)

ifadesiyle gösterilir. Burada L_0 numunenin ilk boyu, L_K ise numunenin kırılma sonrası boyudur. Sünekliğin başka bir ölçüsü büzülme alanıdır.

Yüzde büzülme alanı =
$$100 \times \frac{A_0 - A_K}{A_0}$$
 (2.5)

şeklinde tanımlanır. Burada A_0 numunenin ilk alanı, A_K ise numunenin kırılma sonrası alanıdır.

2.5. Gerçek Gerilme ve Gerçek Birim Şekil Değiştirme

Burada ilk etapta gerçek gerinim tanımını elde etmek amacıyla aşağıdaki şekilde gösterilen parçaya F çekme kuvveti uygulanmaktadır. Aşağıdaki prosedür sonucu

sadece gerçek gerinim tanımı elde edilmekle kalınmamakta aynı zamanda çekme işlemi boyunca gerilme artışı hızı ile alan daralış hızı ilişkilendirilmektedir.

Şekil 2.13. F; Çekme kuvveti uygulanan parça

$$\sigma = \frac{F}{A_0} \tag{2.6}$$

Çekme numunesine uygulanan kuvvetin, numunenin orijinal boyuna oranına mühendislik gerilimi denir ve yukarıdaki şekilde ifade edilir.

$$\sigma_g = \frac{F}{A} \tag{2.7}$$

Gerçek gerilme ise; numuneye uygulanan yükün, bu yük uygulandığı sırada oluşan deforme olmuş kesit alanı A'ya bölünmesi ile elde edilir.

$$F = \sigma.A \tag{2.8}$$

$$\ln F = \ln \sigma + \ln A \tag{2.9}$$

$$\frac{dF}{F} = \frac{d\sigma}{\sigma} + \frac{dA}{A}$$
(2.10)

Maksimum kuvvette $(F = F_{max})$ (Maksimum çekme dayanımında)

$$\frac{dF}{F} = 0 \text{ dur.}$$
(2.11)

$$\frac{d\sigma}{\sigma} = -\frac{dA}{A} \tag{2.12}$$

Yukarıdaki denklem (2.12) maksimum kuvvet noktasında gerilimin artış hızının alanın azalış hızına eşit olduğunu göstermektedir. Burada;

A₀ : İlk kesit alan

A : Güncel kesit alan

1₀ : İlk uzunluk

1 : Güncel uzunluk

değerlerini ifade etmektedir.

Şekil 2.14. Yük Uzama Eğrisi [20].

Hacim sabitliği;

$$V = A_0 l_0 = Al \tag{2.13}$$

$$\ln V = \ln A + \ln l \tag{2.14}$$

$$\frac{dV}{V} = \frac{dA}{A} + \frac{dl}{l}$$
(2.15)

Hacim sabit olduğuna göre hacim değişimini ifade eden terim;

$$\frac{dV}{V} = 0 \text{ olur.}$$
(2.16)

$$\frac{dA}{A} = -\frac{dl}{l} \tag{2.17}$$

(2.12) ile (2.17) eşitlenirse;

$$\frac{d\sigma}{\sigma} = \frac{dl}{l} = d\varepsilon \quad \text{elde edilir.}$$
(2.18)

Mühendislik gerinimi:

$$e = \frac{l - l_0}{l_0} \, \mathrm{dur.}$$
 (2.19)

Yani; uzama miktarının orijinal parça boyuna oranıdır.

Gerçek gerinim ise (2.18) den

$$d\varepsilon = \frac{dl}{l} \tag{2.20}$$

olarak tanımlanır. dl uzamadaki diferansiyel değişimi ifade eder. (2.20) aşağıdaki formlarda kullanılır.

$$\varepsilon = \int_{L_0}^{L} d\varepsilon = \int_{L_0}^{L} \frac{dl}{l}$$
(2.21)

$$\varepsilon = \ln \frac{l}{l_0} \tag{2.22}$$

Şekil 2.15. Gerçek çekme diyagramı ve bu diyagramda homojen plastik şekil değişimi bölgesinde çekme kuvveti boşaltıldıktan sonra hemen yeniden yüklenmesi [18]

Şekil 2.15'de, plastik alanda, homojen şekil değişimi bölgesinde bir C noktasında yükün boşaltılması ve hemen yeniden yüklenmesi görülmektedir. Mühendislik çekme diyagramında olduğu gibi, gerek yükün boşaltılması, gerek boşaltmadan sonra hemen yeniden yükleme sırasında σ ile ε arasındaki değişim yaklaşık doğrusal ve bu doğrunun da OA Hooke doğrusuna paralel olduğu kabul edilebilir.

Gerçek çekme diyagramı, mühendislik çekme diyagramı gibi bir maksimumdan geçmez. Çekme deneyinin herhangi bir anında çekme kuvveti F ve çubuğun çekme doğrultusuna dik kesit yüzeyi A ile gösterilirse, kuvvetin gerçek şekil değiştirme ile artış hızı;

$$\frac{dF}{d\varepsilon} = \frac{d}{d\varepsilon} (\sigma A) = A \frac{d\sigma}{d\varepsilon} + \frac{dA}{d\varepsilon} \sigma$$
(2.23)

şeklinde yazılabilir. Plastik şekil değişiminde çekme çubuğunun ölçü boyu arasındaki hacminin (V=Al) sabit kaldığı düşünülürse;

$$\frac{dV}{d\varepsilon} = \frac{d}{d\varepsilon} (Al) = l \frac{dA}{d\varepsilon} + A \frac{dl}{d\varepsilon} = 0$$
(2.24)

bulunur. Denklem (2.24) ten, tarif olarak dɛ=dl/l olduğu da göz önüne alınarak

$$\frac{dA}{d\varepsilon} = -\frac{A}{l}\frac{dl}{d\varepsilon} = -A \tag{2.25}$$

elde edilir. Denklem (2.23) ve (2.25) ten

$$\frac{dF}{d\varepsilon} = A \frac{d\sigma}{d\varepsilon} - \sigma A$$

yazılırsa, maksimum çekme kuvvetinde $\frac{dF}{d\varepsilon} = 0$ olacağından

$$\frac{d\sigma}{d\varepsilon} = \sigma \tag{2.27}$$

bulunur. Gerçek çekme eğrisinin eğimi (pekleşme hızı veya pekleşme derecesi) gerçek gerilme değerine eşit olduğu anda çekme kuvveti de (veya nominal gerilme) maksimum değerini almaktadır.

Bu sonuç, fiziksel bakımdan, pekleşme nedeniyle gerilme artışının, kesit küçülmesi nedeniyle gerilmedeki düşmeyi dengelediğini gösterir.

2.6. K ve n Değerlerinin Tayini

Çekme deneyinde elde edilen Kuvvet-uzama değerlerinden homojen plastik deformasyon bölgesi (akma başlangıcı ile boyun verme arasındaki bölge) kapsamındaki değerler kullanılarak K ve n değerleri hesaplanır.

Homojen plastik deformasyon bölgesinde elde edilen her bir nokta için Kuvvet (F) ve uzama (Δl) değerleri ölçülür. Ölçülen bu sonuçlar kullanılarak, denklem (2.6) ile mühendislik gerilmesi, denklem (2.19) ile mühendislik birim şekil değişimi, denklem (2.7) ile gerçek gerilme ve denklem (2.20) ile gerçek birim şekil değişimi değerleri hesaplanır. Hesaplanan bu gerçek gerilme-gerçek birim şekil değişimi değerleri ile log σ_g ve log ε değerleri bulunur. Hesaplanan bu log σ_g ve log ε değerleri ile grafik

çizilir (Şekil 2.16.). Çizilen grafikteki noktaların oluşturduğu lineer doğrunun eğiminden n değeri bulunur (Denklem (2.29.)).

$$n = \frac{a}{b} \tag{2.28}$$

K değeri ise aynı grafikte gerçek birim şekil değiştirmenin $\varepsilon = 1$ yani log $\varepsilon = 0$ olduğu değerdir. Yani eğim çizgisinin y eksenini kestiği nokta(y), 10^{y} şeklinde hesaplanarak K bulunur.

Şekil 2.16. Gerçek gerilme-gerçek şekil değişimi için log σ_g ve log ϵ grafiği [22]

Başka bir ifadeyle Şekil 4.3 grafikteki noktaların eğiminin tanjantı;

$$n = \frac{\log \sigma_1 - \log \sigma_2}{\log \varepsilon_2 - \log \varepsilon_1}$$
(2.29.)

olarak ifade edilmektedir.

2.7. Gerçek Gerilme-Gerçek Şekil Değiştirme Eğrileri İçin Yaklaşık Denklemler

Deneysel olarak elde edilen gerçek gerilme-gerçek şekil değiştirme eğrilerine çok uyan bazı ampirik denklemler geliştirilmiştir. Bunlardan biri Ludwig tarafından sabit sıcaklık ve sabit şekil değiştirme hızında;

 $\sigma = \sigma_A + K\epsilon^n$ şeklinde ifade edilmiştir. Burada $\sigma_{A,}$ akma sınırı, K ve n ise malzemeye özgü sabitlerdir.(n<1)

a) n=1 hali (Şekil 2.17.) : Bu halde, gerçek gerilme gerçek şekil değiştirme ile $\sigma = \sigma_A + K\epsilon$ bağıntısına göre değişir. Böyle bir malzemeye çekme deneyi uygulanması halinde, çekme gerilmesi σ_A akma sınırına erişinceye kadar şekil değişimi görülmez; çekme gerilmesinin akma sınırına erişmesi ile birlikte plastik şekil değişimi başlar. Plastik alanda gerilme ile şekil değiştirme arasında doğrusal bir bağıntı vardır, yani pekleşme lineerdir. Ayrıca şekil değişiminin elastik bileşeni plastik bileşen yanında ihmal edilmektedir [18].

Şekil 2.17. Ludwig denklemine göre ve n=1 halinde akma sınırı σ_A olan bir malzemenin gerçek çekme diyagramı [18]

b) n<1 hali(Şekil 2.18.): Bu halde de şekil değişiminin elastik bileşeni plastik bileşen yanında ihmal edilmektedir.

Şekil 2.18. $\sigma = \sigma_A + K\epsilon^n$ (n<1) [18]

Akma sınırından (σ_A) sonra plastik şekil değişimi nedeniyle malzeme pekleşmekte fakat σ ve ε arasında doğrusal bir bağıntı bulunmamaktadır.(pekleşme lineer değil)

c) n<1, $\sigma_A = 0$ hali (Şekil 2.19): Bu halde $\sigma = K\epsilon^n$ olmaktadır. Bu tür bir malzeme, yüklemenin başlangıcından itibaren elastik davranış göstermez ve akma sınırı belirgin değildir.

Şekil.2.19. $\sigma = K\epsilon^n$ (n<1), elastik davranış göstermeyen ve akma sınırı belirgin olmayan malzeme [18]

Denklem (2.27) de, çekme kuvvetinin maksimum olduğu noktada;

$$\frac{d\sigma}{d\varepsilon} = \sigma$$

bulunmuştur. $\sigma = K\epsilon^n$ olduğu taktirde, yukarıdaki ifadeden hareketle, büzülme anında

$$\varepsilon_{\rm u} = n \tag{2.28}$$

olduğu görülür.

BÖLÜM 3. GERÇEK GERİLME VE GERÇEK BİRİM ŞEKİL DEĞİŞTİRME BÜNYE DENKLEMLERİ

3.1. Giriş

Herhangi bir malzemede istenilen özelliklere ulaşabilmek için şekil verme işlemlerini etkileyen unsurlar iyi şekilde irdelenmelidir. Bunun için de deformasyon koşulları, malzemenin özellikleri ve deformasyon süreci gibi unsurlar hakkında ayrıntılı bilgiye sahip olmak gerekir [3].

Şekillendirme karakteristiklerinin anlaşılmasında özellikle pekleşme büyük rol oynamaktadır. Metalik malzemelerin pekleşme davranışlarının analizinde çekme diyagramlarından faydalanılır [12].

Deformasyona uğrayan herhangi bir malzeme, şekil verme esnasında birçok doğrusal olmayan aşamalardan geçtiğinden kusursuz ve güvenilir bir matematiksel model oluşturulamamıştır. Bu yüzden meydana gelen gerçek gerilme – gerçek şekil değiştirme olaylarını açıklayabilmek maksadıyla birçok deneye dayalı (ampirik) denklem geliştirilmiştir.

3.2. Gerçek Gerilme ve Gerçek Şekil Değiştirme Bünye Denklemleri Çeşitleri ve Uygunluk Gösterdiği Malzeme Grupları

Metallere şekil verme için kullanılan bilgisayar tasarım, analiz ve simülasyon işlemlerinde en sık kullanılan gerçek gerilme bünye denklemleri aşağıda gösterilmiştir:

Hollomon Denklemi:

$$\overline{\sigma} = K\varepsilon^n \quad [4] \tag{3.1}$$

Ludwik Denklemi:

$$\sigma = \sigma_A + K\varepsilon^n \ [5] \tag{3.2}$$

Hartley Tarafından Genelleştirilmiş Ludwik Denklemi:

$$\sigma = \sigma_A + K(\varepsilon_0 + \varepsilon)^n \quad [22] \tag{3.3}$$

Swift Denklemi:

$$\overline{\sigma} = K(\varepsilon_0 + \varepsilon)^n \quad [6] \tag{3.4}$$

Krupkowski Denklemi:

$$\sigma = K z_i^{n_i} [23] \tag{3.5}$$

Yukarıda ifade edilen (1),(2),(3),(4),(5) bünye denklemleri özellikle ε değeri 0,3'ten küçük sünek malzemelerde gerçek değerlere yakın sonuçlar vermektedir.

Hollomon, Ludwik ve Swift bünye denklemleri oda sıcaklıklarında yapılan deneysel çalışmalarda gerçeğe yakın sonuçlar verirken, Hartley denklemi ile arzu edilen değerlere ulaşabilmek için yüksek sıcaklıklarda çalışılması gerekmektedir [3].

Samanta Denklemi:

$$\overline{\sigma} = \sigma_A + K \ln \varepsilon \quad [16] \tag{3.6}$$

Voce Denklemi:

 $\overline{\sigma} = \sigma_s - (\sigma_s - \sigma_A) \exp(-n\varepsilon) [7], [8]$ (3.7)

Sellars Denklemi:

$$\overline{\sigma} = \sigma_A + (\sigma_p - \sigma_A) [1 - \exp(-n\varepsilon)]^n [14]$$
(3.8)

Misiolek Denklemi:

 $\overline{\sigma} = K\varepsilon^n \exp(n_1 \varepsilon) [15]$ (3.9)

Ludwigson Denklemi:

$$\overline{\sigma} = K_1 \varepsilon^{n_1} + e^{(K_2 + n_2 \varepsilon)} [9]$$
(3.10)

Önerilen eşitliklerin sayısının çok olmasından da anlaşıldığı gibi, hiçbir eşitlik her malzeme ve tüm deformasyon kosulları için bütünüyle yeterli değildir. Yukarıda bahsedilen eşitlikler çelik, bakır ve alüminyum alaşımları gibi malzemelerin gerilme birim sekil değişimi eğrilerinin davranışlarını, tatmin edecek sekilde tanımlayabilmek için kullanılmaktadır. İlave fonksiyonlar ise deformasyon ile n'in pekleşme üssü değişimlerini tanımlayabilmek icin çıkarılmıştır. (3.1),(3.2),(3.3),(3.4),(3.5) eşitliklerinin uygulanabilirliği maksimum gerilmeye kadar olan birim şekil değişimi değerlerinin küçük olduğu koşullar ile sınırlıdır [4]. Yani ɛ = 0,5' e kadar olanlar diyebiliriz. (3.1),(3.2),(3.4)'teki eşitlikler oda sıcaklıklarındaki çalışmalarda yakınlık gösterirken eşitlik (3.3)'ün uygulama sahası yüksek sıcaklıklar olduğu görülmüştür.

Eşitlik (3.6); sünek malzemelerde yaklaşık sonuçlar vermekte, ancak Hartley denkleminde [22] olduğu gibi yüksek sıcaklık değerlerine çıkılması gerekmektedir.

Eşitlik (3.7),(3.8),(3.9) ise büyük birim şekil değişimi meydana gelen (aynı zamanda değişimin sürekli ve düzenli bir halde olduğu) kurşun gibi malzemeler için oldukça uygundur [3].

Bizim çalışmasını yapmış olduğumuz çelikler, cıvata imalatında kullanılan ε değeri çok yüksek olmayan soğuk dövme çelikleri olduğundan, ilk 5 grupta belirtilen bünye denklemleri ile daha fazla uyum sağlayacağı değerlendirilmektedir.

Aşağıda bazı malzemeler için gerilme – birim şekil değiştirme eğrileri verilmiştir.

Şekil 3.1. Bazı malzemeler için $\sigma-\epsilon$ eğrileri [19]

BÖLÜM 4. DENEYSEL ÇALIŞMALAR

4.1. Deney Malzemelerinin İncelenmesi

Bu çalışmada soğuk dövme yöntemi ile üretilecek olan cıvata hammaddelerinden 41Cr4, QSt32-3, 22BCr3, 20MnB4 (a), 20MnB4 (b), 42CrMo4 ve 30MnB3 olmak üzere 7 farklı çelik türü kullanılmıştır. 20MnB4 (a) çeliği A firması, diğer 6 çelik ise B firması imalatı olup kangal şeklinde alınmıştır. Temin edilen malzemelerin kimyasal bileşimleri Tablo 4.1'de verilmiştir.

ÇELİK	%C	%Si	%Mn	%P	%S	%Cr	%Mo	%B
41Cr4	0,4100	0,0750	0,7610	0,0098	0,0124	1,0008		
QSt32-3	0,0493	0,0447	0,3733	0,0126	0,0105	0,0319	0,0041	
22BCr3	0,2369	0,0665	0,9752	0,0173	0,0084	0,1920		0,0037
20MnB4 (a)	0,2022	0,0922	0,9822	0,0063	0,0042	0,0345	0,0072	0,0046
20MnB4 (b)	0,2124	0,0417	1,0412	0,0105	0,0101	0,2279	0,0051	0,0043
42CrMo4	0,4088	0,0826	0,7533	0,0098	0,006	1,0038	0,1813	0,0002
30MnB3	0,3050	0,0600	0,8300	0,0090	0,0070	0,1800	0,0308	0,0018

Tablo 4.1. Deney malzemelerinin kimyasal analiz sonuçları

4.2. Çekme Deneyi Çalışmaları

Bu çalışmada Sakarya Üniversitesi Teknik Eğitim Fakültesi Yapı Eğitimi bölümü laboratuarında bulunan ALŞA marka çekme cihazı (Şekil 4.1) kullanılmıştır. Kullanılan cihazın kapasitesi 40 tondur. Deneyler 5mm / dak. çekme hızında ve oda sıcaklığında yapılmıştır. Deney sırasında 3542-050M–100-St model 50 mm ölçüm kapasiteli ekstansometre numunelere bağlanarak bilgisayar kontrollü ortamda hassas ölçümler alınmıştır. Bilgisayara eşzamanlı kaydedilen kuvvet-uzama verileriyle kuvvet-uzama eğrileri elde edilmiştir. Elde edilen kuvvet-uzama bilgileri ışığında numunelere ait nominal gerçek gerilme-gerçek birim şekil değiştirme eğrileri ve malzemelere özgü K ve n değerleri saptanmıştır.

Çekme deneylerinde kullanılan numune şekil ve ölçüleri Şekil 4.2'de verilmiştir.

Şekil 4.1. Çekme cihazı

Şekil 4.2. Çekme deneyi numunesi ($l_0 = 50 \text{ mm}$)

BÖLÜM 5. DENEYSEL SONUÇLAR VE TARTIŞMA

5.1. Çekme Deneyi Sonuçları

5.1.1. QSt32-3 çeliği çekme deneyi sonuçları

QSt32-3 numunelerine uygulanan çekme deneylerinden elde edilen kuvvet değerleri ve uzama değerleri, kuvvet değerleri ve uzama değerlerinden hesaplama yoluyla elde edilen gerçek gerilme ve gerçek birim şekil değişimi değerleri Tablo 5.1'de verilmiştir. Bununla beraber, Tablo 5.1'de her bir gerçek birim şekil değişimi değeri için Hollomon ve Ludwik gerçek gerilme değerleri de görülmektedir. Bünye denklemleri kullanılarak çekme eğrileri elde edilebilmesi için gerekli akma dayanımı (σ_a) , malzeme mukavemet katsayısı (K) ve pekleşme üssü (n) QSt32–3 çeliği için Tablo 5.2'de sunulmuştur. K ve n değerleri, logaritmik koordinatlarda log σ -log ε grafiklerinden faydalanarak bulunmuş ve $\sigma = K\varepsilon^n$ formülasyonu ile bulunan gerilme-birim sekil değişimi eğrileri hesaplamalı ile deneysel eğriler karşılaştırılmıştır.

Şekil 5.3'de ise Tablo 5.1–5.2'deki değerler kullanılarak elde edilen deneysel, Hollomon, ve Ludwik gerçek gerilme – gerçek birim şekil değişimi eğrileri görülmektedir.

F	$\Delta \mathbf{l}$	3	$\sigma_{ m g}$	$\sigma_{ m H}$	$\sigma_{\rm L}$	Log e	Log o
(Kg)	(mm)		(Kg / mm^2)	(Kg / mm^2)	(Kg / mm^2)	_	
0	0	0	0,000				
662	0,02	0,0004	8,386			-3,398	0,924
1379	0,04	0,0008	17,476			-3,097	1,242
1655	0,05	0,0010	20,978			-3,000	1,322
1942	0,09	0,0018	24,636			-2,745	1,392
1992	0,12	0,0024	25,285			-2,620	1,403
2018	0,2	0,0040	25,656			-2,399	1,409
2013	0,48	0,0096	25,735			-2,020	1,411
2018	0,6	0,0119	25,861			-1,923	1,413
2015	0,9	0,0178	25,975			-1,749	1,415
2046	1,1	0,0218	26,479	26,668	56,076	-1,662	1,423
2105	1,3	0,0257	27,349	27,691	56,738	-1,591	1,437
2171	1,5	0,0296	28,316	28,597	57,353	-1,529	1,452
2232	1,69	0,0332	29,219	29,372	57,901	-1,478	1,466
2317	2	0,0392	30,514	30,501	58,729	-1,406	1,484
2388	2,3	0,0450	31,630	31,468	59,464	-1,347	1,500
2428	2,5	0,0488	32,283	32,058	59,923	-1,312	1,509
2466	2,7	0,0526	32,913	32,611	60,362	-1,279	1,517
2513	3	0,0583	33,732	33,382	60,983	-1,235	1,528
2579	3,5	0,0677	34,944	34,539	61,936	-1,170	1,543
2640	4,03	0,0775	36,125	35,627	62,854	-1,111	1,558
2647	4,5	0,0862	36,536	36,498	63,601	-1,065	1,563
2687	5	0,0953	37,428	37,346	64,339	-1,021	1,573
2718	5,5	0,1044	38,204	38,126	65,026	-0,981	1,582
2741	6	0,1133	38,875	38,850	65,669	-0,946	1,590
2765	6,53	0,1227	39,586	39,563	66,309	-0,911	1,598
2786	7	0,1310	40,218	40,157	66,845	-0,883	1,604
2796	7,31	0,1365	40,582	40,530	67,184	-0,865	1,608
2815	8	0,1484	41,350	41,314	67,900	-0,829	1,616
2831	9	0,1655	42,302	42,354	68,856	-0,781	1,626
2848	10	0,1823	43,277	43,298	69,732	-0,739	1,636
2855	11	0,1989	44,107	44,163	70,539	-0,701	1,645
2857	11,18	0,2018	44,268	44,312	70,678	-0,695	1,646
2857	11,44	0,2060	44,456	44,522	70,875	-0,686	1,648
2855	11,5	0,2070	44,468	44,570	70,920	-0,684	1,648
2855	12,2	0,2183	44,974	45,115	71,432	-0,661	1,653
2850	12,64	0,2254	45,213	45,443	71,740	-0,647	1,655

Tablo 5.1. QSt32-3 çeliği çekme deneyi sonucu değerleri ($d_0 = 10,02 \text{ mm}$)

T 11 7 A	00.000	1	1	1 .		1 - 1	•
I ablo 5 7	()\(+3))_3	001101	columo	denevi	connen	deger	ori
1a0105.2.	$O_{O_1} = -5$	CUIEI	UUKIIIU	uciic vi	sonucu	uueun	
	N	· ·	3 -				

$\sigma_a (Kg / mm^2)$	n	K (Kg / mm ²)
25,656	0,227	63,844

Şekil 5.1-5.3 de sırasıyla QSt32-3 malzemesinin kuvvet-uzama diyagramı, K ve n hesabı için Log ε -Log σ diyagramı ve gerçek gerilme-gerçek birim şekil değişimi diyagramları verilmiştir.

Şekil 5.1. QSt32-3 çeliği için elde edilen Kuvvet-Uzama Eğrisi

Şekil 5.2. QSt32-3 çeliği için elde edilen logaritmik eğri

Şekil 5.3. QSt32–3 çeliği için $\sigma_g - \epsilon$ eğrileri

Şekil 5.2'deki eğrinin eğim formülünden (y=0,2277x+1,8051); n=0,2277 ve K= $10^{1,8051}$ =63,84 kg/mm² olarak hesaplanır.

Şekil 5.3 de sunulan QSt32–3 çeliği için $\sigma_g - \varepsilon$ eğrileri deneysel elde edilen ve bünye denklemleri ile elde edilen çekme eğrileri olacak şekilde karşılaştırılmıştır. İncelemede kullanılan çeliğin deneysel sonuçlardan elde edilen çekme eğrisinde belirgin akma gösteren bir özellikte olduğu görülmektedir. Bünye denklemleri kullanılarak elde edilen çekme eğrilerinin hepsinde de belirgin akma elde edilememiş ve bu durum eğrisel olarak sunulamamıştır. Bu nedenle, bünye denklemlerinden elde edilecek çekme eğrilerinde bu durum incelenemeyecektir. Çalışmada incelenen çelikler için kalıcı şekil değişimi bölgesi önemli olduğundan dolayı çalışmayı değerlendirmede gerekliliği göz ardı edilebilir. Çekme eğrilerinden deneysel sonuçlara en uygun olanı Hollomon bünye denklemi kullanılarak elde edilen eğri ile çok büyük farklılık göstermiştir. Farklılık plastik bölge gerilme değerlerinin çok yüksek değerlerde sonuçlanması şeklindedir. Bu durum malzemenin akma dayanımının küçük değerlere sahip olması nedeniyledir. Ludwik bünye denkleminin akma dayanımı yüksek olan malzemeler için tavsiye edilebileceği sonucuna varılmıştır.

Şekil 5.3 deki çekme eğrileri ve Tablo 5.1 deki gerçek gerilme değerleri QSt32–3 çeliği için Hollomon bünye denklemi ile deneysel çekme eğrilerinin \pm % 1,3 hassasiyetle uyumlu sonuçlar verdiğini göstermektedir.

5.1.2. 20MnB4 (a) çeliği çekme deneyi sonuçları

20MnB4 (a) numunelerine uygulanan çekme deneylerinden elde edilen kuvvet değerleri ve uzama değerleri, kuvvet değerleri ve uzama değerlerinden hesaplama yoluyla elde edilen gerçek gerilme ve gerçek birim şekil değişimi değerleri Tablo 5.3'te verilmiştir. Bununla beraber, Tablo 5.3'te her bir gerçek birim şekil değişimi değeri için Hollomon ve Ludwik gerçek gerilme değerleri de görülmektedir. Bünye denklemleri kullanılarak çekme eğrileri elde edilebilmesi için gerekli akma dayanımı (σ_a), malzeme mukavemet katsayısı (K) ve pekleşme üssü (n) değerleri 20MnB4 (a) çeliği için Tablo 5.4'de sunulmuştur. Şekil 5.6'da ise Tablo 5.3–5.4'deki değerler kullanılarak elde edilen deneysel, Hollomon ve Ludwik gerçek gerilme – gerçek birim şekil değişimi eğrileri görülmektedir.

F	$\Delta \mathbf{l}$	3	σ _g	σ _H	$\sigma_{\rm L}$	Log e	Log o
(Kg)	(mm)		(Kg / mm^2)	(Kg / mm^2)	(Kg / mm ²)	Ŭ	0
0	0	0,0000	0,000				
3244	0,2	0,0040	41,160	38,545	79,645	-2,399	1,614
3321	0,3	0,0060	42,221	40,757	81,857	-2,223	1,626
3390	0,4	0,0080	43,184	42,402	83,502	-2,099	1,635
3446	0,5	0,0100	43,984	43,722	84,822	-2,002	1,643
3564	0,7	0,0139	45,670	45,788	86,888	-1,857	1,660
3666	0,9	0,0178	47,163	47,391	88,491	-1,749	1,674
3793	1,2	0,0237	49,084	49,290	90,390	-1,625	1,691
3958	1,71	0,0336	51,730	51,723	92,823	-1,473	1,714
4074	2,2	0,0431	53,750	53,518	94,618	-1,366	1,730
4163	2,71	0,0528	55,461	55,043	96,143	-1,278	1,744
4222	3,2	0,0620	56,770	56,284	97,384	-1,207	1,754
4219	3,7	0,0714	57,263	57,386	98,486	-1,146	1,758
4262	4,2	0,0807	58,385	58,360	99,460	-1,093	1,766
4288	4,7	0,0898	59,283	59,235	100,335	-1,047	1,773
4302	5,2	0,0989	60,020	60,029	101,129	-1,005	1,778
4314	5,7	0,1080	60,733	60,756	101,856	-0,967	1,783
4326	6,2	0,1169	61,449	61,427	102,527	-0,932	1,789
4333	6,6	0,1240	61,986	61,928	103,028	-0,907	1,792
4335	7	0,1310	62,453	62,402	103,502	-0,883	1,796
4338	7,7	0,1432	63,264	63,174	104,274	-0,844	1,801
4338	8,01	0,1486	63,604	63,495	104,595	-0,828	1,803

Tablo 5.3.20 MnB4 (a) çeliği çekme deneyi sonucu değerleri ($d_0 = 10,03 \text{ mm}$)

Tablo 5.4. 20 MnB4 (a) çeliği çekme deneyi sonucu değerleri

$\sigma_a (Kg / mm^2)$	n	K (Kg / mm ²)
41,10	0,138	82,775

Şekil 5.4-5.6 da sırasıyla 20 MnB4 (a) malzemesinin kuvvet-uzama diyagramı, K ve n hesabı için Log ε -Log σ diyagramı ve gerçek gerilme-gerçek birim şekil değişimi diyagramları verilmiştir.

Şekil 5.4. 20MnB4 (a) çeliği için elde edilen Kuvvet-Uzama Eğrisi

Şekil 5.5. 20MnB4 (a) çeliği için elde edilen logaritmik eğri

Şekil 5.6. 20MnB4(a) çeliği için $\sigma_g - \epsilon$ eğrileri

Şekil 5.5'deki eğrinin eğim formülünden (y=0,1384x+1,9179); n=0,138 ve K= $10^{1,9179}$ =82,775 kg/mm² olarak hesaplanır.

Şekil 5.6 da sunulan 20MnB4 (a) çeliği için $\sigma_g - \varepsilon$ eğrileri, deneysel elde edilen ve bünye denklemleri ile elde edilen çekme eğrileri olacak şekilde karşılaştırılmıştır. Çekme eğrilerinden, deneysel sonuçlara en uygun olan bünye denklemi eğrisinin bu çelik için de Hollomon eşitliği kullanılarak elde edilen eğri olduğu görülmektedir. Ludwik bünye denklemi kullanılarak elde edilen eğri 20MnB4 (a) çeliği için deneysel elde edilen eğri ile de büyük farklılık göstermiştir.

Şekil 5.6 daki çekme eğrileri ve Tablo 5.3 deki gerçek gerilme değerleri, 20MnB4 (a) çeliği için Hollomon bünye denklemi ile deneysel çekme eğrilerinin + % 0,5 ve -% 1 hassasiyetle uyumlu sonuçlar verdiğini göstermektedir ($\varepsilon = 0,01$ den büyük değerlerde).

5.1.3. 20MnB4 (b) çeliği çekme deneyi sonuçları

20MnB4 (b) numunelerine uygulanan çekme deneylerinden elde edilen kuvvet değerleri ve uzama değerleri, kuvvet değerleri ve uzama değerlerinden hesaplama

yoluyla elde edilen gerçek gerilme ve gerçek birim şekil değişimi değerleri Tablo 5.5'de verilmiştir. Bununla beraber, Tablo 5.5'de her bir gerçek birim şekil değişimi değeri için Hollomon ve Ludwik gerçek gerilme değerleri de görülmektedir. Bünye denklemleri kullanılarak çekme eğrileri elde edilebilmesi için gerekli akma dayanımı (σ_a), malzeme mukavemet katsayısı (K) ve pekleşme üssü (n) değerleri 20MnB4 (b) çeliği için Tablo 5.6'da sunulmuştur. Şekil 5.9'da ise Tablo 5.5–5.6'daki değerler kullanılarak elde edilen deneysel, Hollomon ve Ludwik gerçek gerilme – gerçek birim şekil değişimi eğrileri görülmektedir.

F (Kσ)	Δl (mm)	3	σ_{g} (Kg / mm ²)	$\sigma_{\rm H}$ (Kg / mm ²)	σ_L (Kg/mm ²)	Log ɛ	Log σ
0	0.00	0.0000	0.00	(1-g /)	(1-g,)		
504	0,02	0,0003	6.32	14,448	43,498	-3,517	0,801
808	0,02	0,0005	10,14	15,995	45,045	-3,312	1,006
1202	0,04	0,0007	15,08	17,425	46,475	-3,139	1,178
2230	0,17	0,0033	28,05	24,195	53,245	-2,476	1,448
2303	0,28	0,0055	29,03	26,963	56,013	-2,257	1,463
2402	0,43	0,0085	30,37	29,578	58,628	-2,070	1,482
2503	0,57	0,0113	31,74	31,427	60,477	-1,947	1,502
2607	0,75	0,0148	33,17	33,332	62,382	-1,829	1,521
2701	0,95	0,0188	34,51	35,060	64,110	-1,726	1,538
2803	1,16	0,0229	35,96	36,585	65,635	-1,640	1,556
2906	1,38	0,0272	37,44	37,963	67,013	-1,566	1,573
3105	1,98	0,0388	40,47	40,980	70,030	-1,411	1,607
3114	2,00	0,0392	40,60	41,067	70,117	-1,407	1,609
3218	2,41	0,0470	42,29	42,713	71,763	-1,328	1,626
3326	2,91	0,0565	44,12	44,435	73,485	-1,248	1,645
3489	3,90	0,0751	47,15	47,230	76,280	-1,125	1,674
3543	4,32	0,0828	48,26	48,240	77,290	-1,082	1,684
3597	4,81	0,0918	49,43	49,319	78,369	-1,037	1,694
3647	5,32	0,1011	50,59	50,349	79,399	-0,995	1,704
3682	5,82	0,1101	51,53	51,281	80,331	-0,958	1,712
3713	6,32	0,1190	52,43	52,147	81,197	-0,925	1,720
3758	7,37	0,1375	54,06	53,790	82,840	-0,862	1,733
3769	7,81	0,1451	54,63	54,420	83,470	-0,838	1,737
3784	8,30	0,1535	55,31	55,085	84,135	-0,814	1,743
3791	8,72	0,1607	55,82	55,629	84,679	-0,794	1,747
3793	9,21	0,1690	56,31	56,236	85,286	-0,772	1,751
3795	10,21	0,1858	57,29	57,390	86,440	-0,731	1,758
3793	10,71	0,1940	57,74	57,929	86,979	-0,712	1,761
3781	11,71	0,2104	58,50	58,945	87,995	-0,677	1,767
3769	12,21	0,2185	58,79	59,424	88,474	-0,661	1,769

Tablo 5.5. 20 MnB4 (b) çeliği çekme deneyi sonucu değerleri ($d_0 = 10,00 \text{ mm}$)

Tablo 5.6.20 MnB4 (b) çeliği çekme deneyi sonucu değerleri

$\sigma_a (Kg / mm^2)$	n	\mathbf{K} ($\mathbf{Kg} / \mathbf{mm}^2$)
29,050	0,216	82,413

Şekil 5.7-5.9'da sırasıyla 20 MnB4 (b) malzemesinin kuvvet-uzama diyagramı, K ve n hesabı için Log ε -Log σ diyagramı ve gerçek gerilme-gerçek birim şekil değişimi diyagramları verilmiştir.

Şekil 5.7. 20MnB4 (b) çeliği için elde edilen Kuvvet-Uzama Eğrisi

Şekil 5.8. 20MnB4 (b) çeliği için elde edilen logaritmik eğri

Şekil 5.9. 20MnB4 (b) çeliği için $\sigma_g - \epsilon$ eğrileri

Şekil 5.8'deki eğrinin eğim formülünden (y=0,2156x+1,916); n= 0,2156 ve K= $10^{1,916}$ =82,413 kg/mm² olarak hesaplanır.

Şekil 5.9'da sunulan 20MnB4 (b) çeliği için karşılaştırılan $\sigma_g - \varepsilon$ eğrileri, deneysel elde edilen ve bünye denklemleri ile elde edilen çekme eğrileri neticesinde, bu çelik için de Hollomon bünye denkleminin en yaklaşık sonuçlar verdiği rahatlıkla görülebilmektedir. Ludwik bünye denklemi kullanılarak elde edilen eğri 20MnB4 (b) çeliği için deneysel elde edilen eğri ile kıyas edilemeyecek kadar farklılık göstermektedir.

Şekil 5.9'daki çekme eğrileri ve Tablo 5.5'deki gerçek gerilme değerleri, 20MnB4
(b) çeliği için Hollomon bünye denklemi ile deneysel çekme eğrilerinin + % 1,75 ve
% 0,5 hassasiyetle uyumlu sonuçlar verdiğini göstermektedir.

5.1.4. 30MnB3 çeliği çekme deneyi sonuçları

30 MnB3 numunelerine uygulanan çekme deneylerinden elde edilen kuvvet değerleri ve uzama değerleri, kuvvet değerleri ve uzama değerlerinden hesaplama yoluyla elde edilen gerçek gerilme ve gerçek birim şekil değişimi değerleri Tablo 5.7'de

verilmiştir. Bununla birlikte, Tablo 5.7'de her bir gerçek birim şekil değişimi değeri için Hollomon ve Ludwik gerçek gerilme değerleri de görülmektedir. Bünye denklemleri kullanılarak çekme eğrileri elde edilebilmesi için gerekli akma dayanımı (σ_a), malzeme mukavemet katsayısı (K) ve pekleşme üssü (n) değerleri 30MnB3 çeliği için Tablo 5.8 de sunulmuştur. Şekil 5.12 de ise Tablo 5.7–5.8 deki değerler kullanılarak elde edilen deneysel, Hollomon ve Ludwik gerçek gerilme – gerçek birim şekil değişimi eğrileri görülmektedir.

F	ΔΙ	3	σ _g	σ _Η	σL	Log e	Log o
(Kg)	(mm)		(Kg / mm^2)	(Kg / mm ²)	(Kg / mm ²)		
0	0,00	0,0000	0,00				
1011	0,03	0,0007	12,89			-3,174	1,110
1525	0,05	0,0010	19,45			-2,996	1,289
2230	0,17	0,0035	28,51	27,070	55,320	-2,459	1,455
2341	0,19	0,0039	29,94	27,689	55,939	-2,412	1,476
2409	0,26	0,0053	30,85	29,517	57,767	-2,279	1,489
2527	0,42	0,0084	32,46	32,563	60,813	-2,073	1,511
2633	0,63	0,0126	33,97	35,390	63,640	-1,900	1,531
2822	0,83	0,0165	36,55	37,451	65,701	-1,781	1,563
2961	1,03	0,0205	38,50	39,148	67,398	-1,689	1,585
3154	1,33	0,0263	41,25	41,253	69,503	-1,580	1,615
3303	1,63	0,0322	43,45	43,005	71,255	-1,493	1,638
3423	1,93	0,0380	45,29	44,512	72,762	-1,421	1,656
3574	2,42	0,0473	47,74	46,607	74,857	-1,325	1,679
3689	2,92	0,0568	49,74	48,413	76,663	-1,245	1,697
3773	3,43	0,0664	51,36	50,009	78,259	-1,178	1,711
3821	3,79	0,0731	52,37	51,020	79,270	-1,136	1,719
3838	4,43	0,0850	53,23	52,636	80,886	-1,071	1,726
3883	4,93	0,0941	54,35	53,767	82,017	-1,026	1,735
3913	5,43	0,1032	55,26	54,805	83,055	-0,986	1,742
3930	5,93	0,1121	56,01	55,764	84,014	-0,950	1,748
3949	6,43	0,1210	56,78	56,657	84,907	-0,917	1,754
3966	6,93	0,1299	57,53	57,492	85,742	-0,886	1,760
3975	7,43	0,1386	58,17	58,277	86,527	-0,858	1,765
3984	7,93	0,1473	58,80	59,017	87,267	-0,832	1,769
3984	8,43	0,1559	59,31	59,717	87,967	-0,807	1,773
3984	8,93	0,1644	59,82	60,382	88,632	-0,784	1,777
3982	9,43	0,1728	60,30	61,014	89,264	-0,762	1,780
3982	10,43	0,1895	61,31	62,195	90,445	-0,722	1,788
3977	10,93	0,1978	61,74	62,748	90,998	-0,704	1,791
3970	11,43	0,2059	62,14	63,279	91,529	-0,686	1,793

Tablo 5.7. 30MnB3 çeliği çekme deneyi sonucu değerleri ($d_0 = 10,00 \text{ mm}$)

Tablo 5.8. 30MnB3 çeliği çekme deneyi sonucu değerleri

$\sigma_a (Kg / mm^2)$	n	\mathbf{K} ($\mathbf{Kg} / \mathbf{mm}^2$)
28,25	0,2089	88,084

Şekil 5.10-5.12'de sırasıyla 30MnB3 malzemesinin kuvvet-uzama diyagramı, K ve n hesabı için Log ε -Log σ diyagramı ve gerçek gerilme-gerçek birim şekil değişimi diyagramları verilmiştir.

Şekil 5.10. 30MnB3 çeliği için elde edilen Kuvvet-Uzama Eğrisi

Şekil 5.11. 30MnB3 çeliği için elde edilen logaritmik eğri

Şekil 5.12. 30MnB3 çeliği için $\sigma_g - \epsilon$ eğrileri

Şekil 5.11'deki eğrinin eğim formülünden (y=0,2089x+1,9449); n=0,2089 ve K= $10^{1,9449}$ =80,084 kg/mm² olarak hesaplanır.

Ludwik bünye denklemi kullanılarak elde edilen eğrinin, 30MnB3 çeliği için elde edilen deneysel eğriye yakın sonuçlar vermediği aşikardır.

Şekil 5.12'deki çekme eğrileri ve Tablo 5.7'deki gerçek gerilme değerleri, 30 MnB4 çeliği için Hollomon bünye denklemi ile deneysel çekme eğrilerinin \pm % 2,65 hassasiyetle uyumlu sonuçlar verdiğini göstermektedir.

5.1.5. 41Cr4 çeliği çekme deneyi sonuçları

41Cr4 numunelerine uygulanan çekme deneylerinden elde edilen kuvvet değerleri ve uzama değerleri, kuvvet değerleri ve uzama değerlerinden hesaplama yoluyla elde edilen gerçek gerilme ve gerçek birim şekil değişimi değerleri Tablo 5.9'da verilmiştir. Aynı şekilde, Tablo 5.9'da her bir gerçek birim şekil değişimi değeri için Hollomon ve Ludwik gerçek gerilme değerleri de görülmektedir. Bünye denklemleri kullanılarak çekme eğrileri elde edilebilmesi için gerekli akma dayanımı (σ_a), malzeme mukavemet katsayısı (K) ve pekleşme üssü (n) değerleri 41Cr4 çeliği için Tablo 5.10'da sunulmuştur. Şekil 5.15'de ise Tablo 5.9–5.10'daki değerler kullanılarak elde edilen deneysel, Hollomon ve Ludwik gerçek gerilme – gerçek birim şekil değişimi eğrileri görülmektedir.

F	$\Delta \mathbf{l}$	3	σ _g	$\sigma_{ m H}$	σL	Log e	Log o
(Kg)	(mm)		(Kg / mm^2)	(Kg / mm ²)	(Kg / mm ²)		
0	0	0,0000	0,000		28,050		
1513	0,05	0,0010	19,064		28,050	-3,000	1,280
1732	0,07	0,0014	21,832		28,050	-2,854	1,339
1816	0,08	0,0016	22,895		28,050	-2,796	1,360
1975	0,1	0,0020	24,910	25,074	53,124	-2,699	1,396
2256	0,2	0,0040	28,511	29,138	57,188	-2,399	1,455
2612	0,5	0,0100	33,207	35,525	63,575	-2,002	1,521
3041	0,9	0,0178	38,967	40,323	68,373	-1,749	1,591
3435	1,4	0,0276	44,448	44,333	72,383	-1,559	1,648
3748	2	0,0392	49,064	47,840	75,890	-1,406	1,691
3930	2,5	0,0488	51,942	50,161	78,211	-1,312	1,716
4055	3	0,0583	54,104	52,131	80,181	-1,235	1,733
4144	3,5	0,0677	55,813	53,849	81,899	-1,170	1,747
4213	4	0,0770	57,273	55,376	83,426	-1,114	1,758
4208	4,5	0,0862	57,735	56,752	84,802	-1,065	1,761
4255	5,03	0,0959	58,947	58,078	86,128	-1,018	1,770
4276	5,4	0,1026	59,636	58,936	86,986	-0,989	1,776
4293	5,72	0,1083	60,219	59,639	87,689	-0,965	1,780
4302	6,09	0,1149	60,746	60,411	88,461	-0,940	1,784
4319	6,5	0,1222	61,432	61,222	89,272	-0,913	1,788
4338	7	0,1310	62,248	62,154	90,204	-0,883	1,794
4347	7,5	0,1398	62,925	63,030	91,080	-0,855	1,799
4356	8,04	0,1491	63,647	63,922	91,972	-0,826	1,804
4359	8,43	0,1558	64,119	64,534	92,584	-0,807	1,807
4352	8,6	0,1587	64,202	64,794	92,844	-0,799	1,808
4354	10	0,1823	65,766	66,773	94,823	-0,739	1,818
4349	10,2	0,1856	65,910	67,036	95,086	-0,731	1,819
4347	10,8	0,1956	66,536	67,797	95,847	-0,709	1,823
4342	11,2	0,2021	66,897	68,284	96,334	-0,694	1,825
4335	11,5	0,2070	67,116	68,639	96,689	-0,684	1,827
4333	11,75	0,2111	67,358	68,929	96,979	-0,676	1,828
4323	12.22	0.2187	67.714	69,459	97.509	-0.660	1.831

Tablo 5.9. 41Cr4 çeliği çekme deneyi sonucu değerleri ($d_0 = 10,06 \text{ mm}$)

Tablo 5.10. 41Cr4 çeliği çekme deneyi sonucu değerleri

$\sigma_a (Kg / mm^2)$	n	K (Kg / mm ²)
28,05	0,2175	96,605

Şekil 5.13-5.15'de sırasıyla 41Cr4 malzemesinin kuvvet-uzama diyagramı, K ve n hesabı için Log ε -Log σ diyagramı ve gerçek gerilme-gerçek birim şekil değişimi diyagramları verilmiştir.

Şekil 5.13. 41Cr4 çeliği için elde edilen Kuvvet-Uzama Eğrisi

Şekil 5.14. 41Cr4 çeliği için elde edilen logaritmik eğri

Şekil 5.15. 41Cr4 çeliği için $\sigma_g - \epsilon$ eğrileri

Şekil 5.14'deki eğrinin eğim formülünden (y=0,2175x+1,985); n=0,2175 ve K= $10^{1,985}$ =96,605 kg/mm² olarak hesaplanır.

Şekil 5.15'de sunulan 41Cr4 çeliği için karşılaştırılan $\sigma_g - \varepsilon$ eğrileri, deneysel elde edilen ve bünye denklemleri ile elde edilen çekme eğrileri neticesinde, bu çelik için de Hollomon bünye denkleminin en yaklaşık sonuçlar verdiğini söyleyebiliriz. Ludwik bünye denklemi kullanılarak elde edilen eğriden, bu bünye denkleminin daha yüksek akma gerilmesine sahip malzemeler için uygun olabileceğini anlamaktayız.

Şekil 5.15'deki çekme eğrileri ve Tablo 5.9 daki gerçek gerilme değerleri, 41Cr4 çeliği için Hollomon bünye denklemi ile deneysel çekme eğrilerinin \pm % 2,57 hassasiyetle uyumlu sonuçlar verdiğini göstermektedir.

5.1.6. 42CrMo4 çeliği çekme deneyi sonuçları

42CrMo4 numunelerine uygulanan çekme deneylerinden elde edilen kuvvet değerleri ve uzama değerleri, kuvvet değerleri ve uzama değerlerinden hesaplama yoluyla elde edilen gerçek gerilme ve gerçek birim şekil değişimi değerleri Tablo 5.11'de verilmiştir. Bununla beraber, Tablo 5.11'de her bir gerçek birim şekil değişimi değeri için Hollomon ve Ludwik gerçek gerilme değerleri de görülmektedir. Bünye

denklemleri kullanılarak çekme eğrileri elde edilebilmesi için gerekli akma dayanımı (σ_a), malzeme mukavemet katsayısı (K) ve pekleşme üssü (n) değerleri 42CrMo4 çeliği için Tablo 5.12'de sunulmuştur. Şekil 5.18'de ise Tablo 5.11–5.12'deki değerler kullanılarak elde edilen deneysel, Hollomon ve Ludwik gerçek gerilme – gerçek birim şekil değişimi eğrileri görülmektedir.

F	$\Delta \mathbf{l}$	3	σ _g	σ _Η	σι	Log e	Log o
(Kg)	(mm)		(Kg / mm^2)	(Kg / mm^2)	(Kg / mm^2)		
0	0,00	0,0000	0,000		34,100		
1027	0,04	0,0007	13,092	24,340	58,440	-3,155	1,117
1676	0,06	0,0011	21,374	26,593	60,693	-2,947	1,330
2708	0,19	0,0038	34,628	33,274	67,374	-2,421	1,539
3196	0,78	0,0155	41,350	43,176	77,276	-1,810	1,616
3505	1,31	0,0259	45,821	47,470	81,570	-1,587	1,661
3741	1,78	0,0350	49,354	50,196	84,296	-1,456	1,693
3934	2,29	0,0448	52,411	52,541	86,641	-1,349	1,719
4078	2,78	0,0541	54,839	54,412	88,512	-1,267	1,739
4184	3,30	0,0639	56,819	56,113	90,213	-1,194	1,754
4267	3,78	0,0729	58,467	57,492	91,592	-1,137	1,767
4323	4,28	0,0822	59,785	58,777	92,877	-1,085	1,777
4368	4,78	0,0913	60,964	59,939	94,039	-1,039	1,785
4401	5,27	0,1002	61,974	60,980	95,080	-0,999	1,792
4420	5,79	0,1096	62,827	61,996	96,096	-0,960	1,798
4399	6,08	0,1148	62,854	62,528	96,628	-0,940	1,798
4387	6,38	0,1201	63,018	63,056	97,156	-0,920	1,799
4404	6,78	0,1272	63,711	63,726	97,826	-0,896	1,804
4406	6,98	0,1307	63,964	64,049	98,149	-0,884	1,806
4408	7,28	0,1360	64,330	64,517	98,617	-0,867	1,808
4411	7,67	0,1427	64,812	65,101	99,201	-0,856	1,810
4406	8,08	0,1498	65,199	65,687	99,787	-0,845	1,812
4404	8,38	0,1550	65,506	66,099	100,199	-0,824	1,814
4404	8,78	0,1618	65,955	66,629	100,729	-0,810	1,816
4397	9,28	0,1703	66,410	67,261	101,361	-0,791	1,819
4382	9,79	0,1788	66,753	67,874	101,974	-0,769	1,822
4347	10,29	0,1872	66,774	68,448	102,548	-0,748	1,824

Tablo 5.11. 42CrMo4 çeliği çekme deneyi sonucu değerleri ($d_0 = 9,95 \text{ mm}$)

Tablo 5.12. 42CrMo4 çeliği çekme deneyi sonucu değerleri

$\sigma_a (Kg / mm^2)$	n	K (Kg / mm ²)
34,10	0,1851	93,497

Şekil 5.16-5.18'de sırasıyla 42CrMo4 malzemesinin kuvvet-uzama diyagramı, K ve n hesabı için Log ε -Log σ diyagramı ve gerçek gerilme-gerçek birim şekil değişimi diyagramları verilmiştir.

Şekil 5.16. 42CrMo4 çeliği için elde edilen Kuvvet-Uzama eğrisi

Şekil 5.17. 42CrMo4 çeliği için elde edilen logaritmik eğri

Şekil 5.18. 42CrMo4 çeliği için $\sigma_g - \epsilon$ eğrileri

Şekil 5.17'deki eğrinin eğim formülünden (y=0,1851x+1,9708); n=0,1851 ve K= $10^{1,9708}$ =93,497 kg/mm² olarak hesaplanır.

Şekil 5.18'de sunulan 42CrMo4 çeliği için $\sigma_g - \varepsilon$ eğrileri, deneysel elde edilen ve bünye denklemleri ile elde edilen çekme eğrileri olacak şekilde karşılaştırılmıştır. Çekme eğrilerinden, deneysel sonuçlara en uygun olan bünye denklemi eğrisinin bu çelik için de Hollomon eşitliği kullanılarak elde edilen eğri olduğu görülmektedir. Ludwik bünye denklemi kullanılarak elde edilen eğrinin 42CrMo4 çeliği için elde edilen gerçek gerilme eğrisi ile de yakınlık göstermemektedir.

Şekil 5.18'deki çekme eğrileri ve Tablo 5.11'deki gerçek gerilme değerleri, 42CrMo4 çeliği için Hollomon bünye denklemi ile deneysel çekme eğrilerinin \pm % 1,70 hassasiyetle uyumlu sonuçlar verdiğini göstermektedir.

5.1.7. 22BCr3 çeliği çekme deneyi sonuçları

22BCr3 numunelerine uygulanan çekme deneylerinden elde edilen kuvvet değerleri ve uzama değerleri, kuvvet değerleri ve uzama değerlerinden hesaplama yoluyla elde edilen gerçek gerilme ve gerçek birim şekil değişimi değerleri Tablo 5.13'de verilmiştir. Bununla beraber, Tablo 5.13'de her bir gerçek birim şekil değişimi değeri için Hollomon ve Ludwik gerçek gerilme değerleri de görülmektedir. Bünye denklemleri kullanılarak çekme eğrileri elde edilebilmesi için gerekli akma dayanımı (σ_a), malzeme mukavemet katsayısı (K) ve pekleşme üssü (n) değerleri 22BCr3 çeliği için Tablo 5.14'de sunulmuştur. Şekil 5.21'de ise Tablo 5.13–5.14'deki değerler kullanılarak elde edilen deneysel, Hollomon ve Ludwik gerçek gerilme – gerçek birim şekil değişimi eğrileri görülmektedir.

F	$\Delta \mathbf{l}$	3	$\sigma_{ m g}$	σΗ	$\sigma_{ m L}$	Log e	Log o
(Kg)	(mm)		(Kg / mm^2)	(Kg / mm ²)	(Kg / mm^2)		
0	0	0,0000	0,000	0,000	33,050		
330	0,01	0,0002	4,120	18,828	51,878	-3,699	0,615
693	0,02	0,0004	8,653	21,597	54,647	-3,398	0,937
1075	0,03	0,0006	13,426	23,402	56,452	-3,222	1,128
1362	0,04	0,0008	17,013	24,773	57,823	-3,097	1,231
1662	0,05	0,0010	20,765	25,892	58,942	-3,000	1,317
1864	0,06	0,0012	23,293	26,843	59 <i>,</i> 893	-2,921	1,367
2051	0,07	0,0014	25,635	27,674	60,724	-2,854	1,409
2200	0,08	0,0016	27,503	28,415	61,465	-2,796	1,439
2437	0,13	0,0026	30,497	31,279	64,329	-2,586	1,484
2574	0,15	0,0030	32,224	32,177	65,227	-2,524	1,508
2805	0,2	0,0040	35,151	34,059	67,109	-2,399	1,546
3064	0,4	0,0080	38,549	39,054	72,104	-2,099	1,586
3229	0,61	0,0121	40,794	42,440	75,490	-1,916	1,611
3439	0,81	0,0161	43,619	44,874	77,924	-1,794	1,640
3604	1	0,0198	45,883	46,768	79,818	-1,703	1,662
3956	1,5	0,0296	50,858	50,629	83,679	-1,529	1,706
4203	2	0,0392	54,558	53,545	86,595	-1,406	1,737
4382	2,51	0,0490	57,440	55,953	89,003	-1,310	1,759
4503	3	0,0583	59,577	57,911	90,961	-1,235	1,775
4592	3,51	0,0678	61,339	59,682	92,732	-1,168	1,788
4656	4,01	0,0771	62,775	61,219	94,269	-1,113	1,798
4649	4,5	0,0862	63,249	62,576	95,626	-1,065	1,801
4691	5	0,0953	64,406	63,837	96,887	-1,021	1,809
4715	5,5	0,1044	65,324	64,994	98,044	-0,981	1,815
4725	6	0,1133	66,052	66,063	99,113	-0,946	1,820
4735	6,5	0,1222	66,783	67,059	100,109	-0,913	1,825
4745	7	0,1310	67,516	67,989	101,039	-0,883	1,829
4748	7,35	0,1371	67,974	68,607	101,657	-0,863	1,832
4753	7,77	0,1444	68,544	69,314	102,364	-0,852	1,834
4758	8,1	0,1501	69,008	69,847	102,897	-0,836	1,837
4762	8,41	0,1555	69,434	70,331	103,381	-0,823	1,839
4764	9	0,1655	70,165	71,208	104,258	-0,814	1,841
4769	9,5	0,1740	70,834	71,913	104,963	-0,808	1,842

Tablo 5.13. 22BCr3 çeliği çekme deneyi sonucu değerleri ($d_0 = 10,05 \text{ mm}$)

Tablo 5.14. 22BCr3 çeliği çekme deneyi sonucu değerleri

$\sigma_a (Kg / mm^2)$	n	K (Kg / mm ²)
33,05	0,197	101,671

Şekil 5.19-5.21'da sırasıyla 22BCr3 malzemesinin kuvvet-uzama diyagramı, K ve n hesabı için Log ε -Log σ diyagramı ve gerçek gerilme-gerçek birim şekil değişimi diyagramları verilmiştir.

Şekil 5.19. 22BCr3 çeliği için elde edilen Kuvvet-Uzama eğrisi

Şekil 5.20. 22BCr3 çeliği için elde edilen logaritmik eğri

Şekil 5.21. 22BCr3 çeliği için $\sigma_g - \epsilon$ eğrileri

Şekil 5.20'deki eğrinin eğim formülünden (y=0,1979x+2,0072); n=0,1979 ve K= $10^{2,0072}$ =101,671 kg/mm² olarak hesaplanır.

Şekil 5.21'de gösterilen 22BCr3 çeliği için $\sigma_g - \varepsilon$ eğrileri, deneysel elde edilen ve bünye denklemleri ile elde edilen çekme eğrileri olacak şekilde karşılaştırılmıştır. Çekme eğrilerinden, deneysel sonuçlara en yaklaşık sonuçlar veren bünye denklemi eğrisinin bu çelik için de Hollomon eşitliği kullanılarak elde edilen eğri olduğu görülmektedir. Ludwik bünye denklemi kullanılarak elde edilen eğri diğer tüm çeliklerde olduğu gibi bu çelik için istenilen değerlerde yakınlık göstermemektedir.

Şekil 5.21'deki çekme eğrileri ve Tablo 5.13'deki gerçek gerilme değerleri, 22BCr3 çeliği için Hollomon bünye denklemi ile deneysel çekme eğrilerinin \pm % 1,30 hassasiyetli sonuçlar verdiğini göstermektedir.

5.2. Tartışma

Araştırmada kullanılan cıvata imalatı çeliklerinin her birinin genel özelliği soğuk şekil vermeye uygun malzemeler olmalarıdır. Soğuk şekil vermeye uygun çeliklerden kalıcı şekil değişimi gerilme değerlerinin küçük ve yeter derecede sünek olmaları istenir [24].

Gerçek gerilme – gerçek birim şekil değişimi eğrilerinin elde edilmesine yararlanılan bünye denklemlerinden soğuk şekil vermeye uygun çelikler için Hollomon ve Ludwik bünye denklemleri karşılaştırma sonuçları incelenen çeliklerde akma dayanımı değerlerinin küçüklüğü nedeniyle Ludwik bünye denkleminin uygun olmadığını göstermektedir.

Çalışmada elde edilen sonuçlardan hazırlanan deneysel çekme eğrileri ile Hollomon bünye denklemlerinden elde edilen çekme eğrileri çok benzer sonuçlar vermiştir. Benzerlik, QSt32-3, 20MnB4 (a), 20MnB4 (b), 22BCr3 ve 30MnB3 çelikleri için \pm % 1,5 sapma değerleri, 41Cr4 ve 42CrMo4 çelikleri için \pm % 2,5 sapma değerleri şeklindedir.

Deneysel sonuçlar göstermiştir ki; düşük karbonlu ve orta karbonlu soğuk dövme cıvata hammaddeleri ile yapılacak cıvata kafa şişirme veya soğuk şekillendirme bilgisayarlı modelleme simülasyonu çalışmaları için Hollomon bünye denklemi ortalama % 2 hassasiyetle yaklaşık sonuçlar vermektedir. Bu nedenle, çalışmada incelenen malzeme grubu için Hollomon bünye denklemi sonuçları oldukça güvenilirdir.

BÖLÜM 6. SONUÇLAR VE ÖNERİLER

6.1. Sonuçlar

Araştırmada incelenen cıvata soğuk dövme hammaddeleri gerçek gerilme – gerçek birim şekil değişimi eğrileri sonuçları:

- Deneysel çekme eğrileri olmadan bünye denklemleri ile malzemelerin homojen kalıcı şekil değişimi bölgesi gerçek gerilme – gerçek birim şekil değişimi değerlerinin elde edilebileceğini göstermiştir.
- Hollomon bünye denklemleri deneysel çekme eğrilerine çok benzer sonuçlar vermiştir. Benzerlik, QSt32-3, 20MnB4 (a), 20MnB4 (b), 22BCr3 ve 30MnB3 çelikleri için ± % 1,5 sapma değerleri, 41Cr4 ve 42CrMo4 çelikleri için ± % 2,5 sapma değerleri şeklindedir.
- 3. Deneysel sonuçlar göstermiştir ki; düşük karbonlu ve orta karbonlu soğuk dövme cıvata hammaddeleri ile yapılacak cıvata kafa şişirme veya soğuk şekillendirme bilgisayarlı modelleme simülasyonu çalışmaları için Hollomon bünye denklemi ortalama % 2 hassasiyetle yaklaşık sonuçlar vermektedir.
- Ludwik bünye denklemleri küçük akma dayanımına sahip az karbonlu ve orta karbonlu soğuk dövme çelikleri için uygun sonuçlar veren bünye denklemi değildir.

6.2. Öneriler

Düşük karbonlu ve orta karbonlu soğuk dövme cıvata hammaddeleri ile yapılacak cıvata kafa şişirme veya soğuk şekillendirme bilgisayarlı modelleme simülasyonu çalışmaları için şekil değişimi hızı etkisini de içeren bünye denklemi seçimi çalışmalarını sektör için önermek yararlı olacaktır.

KAYNAKLAR

- HUSSAIN, P.B., CHEON, J.S., KWAK, D.Y., KIM, S.Y., IM, Y.T. "Simulation of Clutch-hub Forging Process Using CAMPform", Journal of Materials Processing Technology 123 (2002), 120-132
- [2] AIROD, A., VANDEKINDEREN, H., BARROS, J., COLÁS, R., HOUBAERT, Y. "Constitutive Equations for the Room Temperature Deformation of Commercial Purity Aluminum", Journal of Materials Processing Technology, 134 (2003) 398-404
- [3] GRONOSTAJSKI, Z. "The Constitutive Equations for FEM Analysis" Journal of Materials Processing Technology 106 (2000), 40-44
- [4] HOLLOMON, J.H. Tensile Deformation, Trans. AIME 162 (1945) 268.
- [5] LUDWIK, P. Elemente der Technologischen Mechanik, Springer, Berlin, 1909, p. 32.
- [6] SWIFT, H.W. PlasticInstability Under Plane Stres, J. Mech. Phys. Solids 1 (1952) 1.
- [7] VOCE, E. The Relationship Between Stres and Strain for Homogeneous Deformation, J. Int. Met. 74 (1948) 537.
- [8] VOCE, E. A Practical Strain Hardening Function, Metallurgia 51 (1955) 219.
- [9] LUDWIGSON, D.G. Modified Stres-Strain Relation for FCC Metals and Alloys, Metallurgical Transactions 2 (1971) 2825–2828.
- [10] ISAAC SAMUEL, E., CHOUDHARY, B.K., BHANU SANKARA RAO, K. "Influence of Temperature and Strain Rate on Tensile Work Hardening Behaviour of Type 316 LN Austenitic Stainless Steel", Scripta Materialia 46 (2002), 507-512
- [11] DAN W.J., ZHANG, W.G, LI, S.H., LIN, Z.Q. An Experimental Investigation of Large-Strain Tensile Behaviour of a Metal Sheet, Materials and Design, (2006)

- [12] MARKANDEYA, R., NAGARJUNA, S., SATYANARAYANA, D.V.V., SARMA, D.S. "Correlation of Structure and Flow Behaviour of Cu-Ti-Cd Alloys" Materials Science and Engineering A 428 (2006) 233-243
- [13] SATYANARAYANA, D.V.V., MALAKONDAIAH, G., SARMA, D.S.
 "Analysis of Flow Behaviour of an Aluminium Containing Austenitic Steel", Materials Science and Engineering A 452-453 (2007) 244-253
- [14] SAH, J.P., RICHARDSON, G.J., SELLARS, C.M. Recrystallization During Hot Deformation of Nickel, J. Aust. Inst. Met. 14 (1969) 292.
- [15] MISIOLEK, Z., KOWALCZYK, J., KASTNER, P. Archiwum Hutnictwa 22 (1977) 71.
- [16] SAMANTA, S.K. Resistance To Dynamic Compression of Low-Carbon Steel and Alloy Steels at Elevated Tempratures and at High Strain-Rates, Int. J. Mech. Sci. 10 (1968) 614.
- [17] SÖNMEZ, H., AVCI, A. U., GÜLTEKİN, N., "Metallerde İmalat Kabiliyeti", Mühendis ve Makina, syf. 31-37, 445 (1997).
- [18] ÇAPAN, L., Metallere plastik şekil verme, Çağlayan Basımevi,15-28,İstanbul, 1999
- [19] SCHEY, J.A., "Introduction to Manufacturing Processes", McGraw-Hill, (2000).
- [20] GEORGE E.DIETER, Mechanical Metallurgy, McGraw-Hill, 1988
- [21] HOSFORD, W.F. "Metal Forming Mechanics and Metallurgy", 1983
- [22] ZABARAS, N. "Work Hardening", MAE 212 Spring (2001) Lecture 8
- [23] KAYALI, E.S., ENSARİ., C., DİKEÇ., "Metalik Malzemelerin Mekanik Deneyleri" İ.T.Ü.Kimya-Metalürji Fakültesi Ofset Atölyesi, İstanbul, (1996).
- [24] "Stress Strain Relationships", Mechanical Design in Optical Engineering, OPTI 222
- [25] HARTLEY, C.S. GARDE, A., CHUNG, H.M., KASSNER, T.F., A Microstructure-Based Constitutive Relation for Dilute Alloys of α-Zirconium, ASM STP 681; (1979) 342.
- [26] KRUPKOWSKI, A. Ann. Acad. Pol. Sci. Technol. 7 (1946) 113.

ÖZGEÇMİŞ

Şuayip Turna 30.11.1981'de Bursa- İnegöl'de doğdu. İlk ve orta eğitimini İnegöl'de, lise eğitimin ise Yalova-Çınarcık'ta tamamladı. 1998 yılında başladığı Sakarya Üniversitesi Makine Mühendisliği bölümündeki eğitimini 2002 yılında tamamladı. 2004 yılında yedek subaylık görevini bitirmesine müteakip Jandarma Genel Komutanlığı'nda subay olarak göreve başlamış olup halen Kahramanmaraş İl Jandarma Komutanlığında görevine devam etmektedir.

Şuayip Turna, evli ve bir çocuk babasıdır.