T.C. SAKARYA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

ADAPAZARI TEDAŞ ADA TRAFO-STADYUM DAĞITIM SİSTEMİNİN BİLGİSAYAR ORTAMINDA MODELLENMESİ

YÜKSEK LİSANS TEZİ

Elektrik-Elektronik Müh. Onur ACAR

Enstitü Anabilim Dalı	:	ELEKTRİK-ELEKTRONİK MÜH.
Enstitü Bilim Dalı	:	ELEKTRİK
Tez Danışmanı	:	Prof. Dr. Uğur ARİFOĞLU

T.C. SAKARYA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

ADAPAZARI TEDAŞ ADA TRAFO-STADYUM DAĞITIM SİSTEMİNİN BİLGİSAYAR ORTAMINDA MODELLENMESİ

YÜKSEK LİSANS TEZİ

Elektrik-Elektronik Müh. Onur ACAR

:

Enstitü Anabilim Dalı

ELEKTRİK-ELEKTRONİK MÜH

Enstitü Bilim Dalı

: ELEKTRİK

Bu tez 04 / 09 12008 Karihinde aşağıdaki jüri tarafından Oybirliği ile kabul edilmiştir. Prof/D Yrd.Doc.Dr. Yrd.Doc.Dr. Uğur ARİFOĞLU Yılmaz UYAROĞLU **İlyas ÇANKAYA** Jüri Başkanı Üye Üye

TEŞEKKÜR

Tezimin her aşamasında bana destek veren, her türlü yardımı benden esirgemeyen ve bilgisinden istifade ettiğim değerli danışman hocam Sayın Prof.Dr.Uğur ARİFOĞLU'na, tezin aşamalarında Elektrik Dağıtım Sistemi hakkında bana bilgi vererek katkıda bulunan Sakarya Elektrik Dağıtım A.Ş İşletme Baş Mühendisi Sayın Burhan AK'a ve bana yardımcı olan Sedaş çalışanlarına, yaşamım boyunca her konuda destekçim olan aileme teşekkür ederim.

Onur ACAR

İÇİNDEKİLER

TEŞEKKÜR	ii
İÇİNDEKİLER	iii
SİMGELER VE KISALTMALAR LİSTESİ	vi
ŞEKİLLER LİSTESİ	viii
TABLOLAR LİSTESİ	xiv
ÖZET	XV
SUMMARY	xvi

BÖLÜM 1.

GİRİŞ	1
1.1. Giriş	1
1.2. Enerji Hatlarında Şebeke Arızaları	2
1.3. Kısa Devre Hata Türleri ve Bazı Kabuller	3
1.4. Güç Akışı	4

BÖLÜM 2.

KISA DEVRE HESAPLAMALARI	7
2.1. Üç Fazlı Kısa Devre Hesaplamaları	7
2.2. İki Fazlı Kısa Devre Hesaplamaları	10
2.3. İki Faz- Toprak Kısa Devre Hesaplamaları	12

BÖLÜM 3

MATLAB SİMULİNK İLE ADAPAZARI TEDAŞ ADA TRAFO- STADYUM ENERJİ DAĞITIM SİSTEMİNİN ANALİZİ	15
3.1. Matlab Simulink Yazılım Programının Avantajları ve Kullanım	
Alanları	15

3.2. Adapazarı Tedaş Ada Trafo-Stadyum Dağıtım Sisteminin	
Simulink Ortamında Gerçekleştirilmesi	15
3.2.1. Stadyum dağıtım sisteminde bulunan trafolar	16
3.2.2. XLPE yalıtkanlı tek damarlı orta gerilim kabloları	22
3.2.2.1. Yapısı	22
3.2.2.2. Kullanıldığı yerler	22
3.2.2.3. Gerilim değerleri	23
3.2.3. Teknik bilgiler	23
3.2.4. A.C güç kaynağı, hat parametreleri, kesicilerin değeri ve	
matlab simulink modeli	24
3.2.5. 400 kVA-630 kVA-1000 kVA-100 MVA lık	
transformatörlerin analizi, test raporlarının incelenmesi, kısa	
devre ve boşta çalışma karakteristikleri ve karakteristiklerin	
matlab simulinkte incelenmesi	28
3.2.5.1. S=1000 kVA transformatörlerin analizi, test	
raporlarının İncelenmesi, kısa Devre ve boşta çalışma	
karakteristiklerinin bulunması	28
3.2.5.2. S=1000 kVA transformatörün matlab simulink modeli	33
3.2.5.3. S=630 kVA transformatörlerin analizi, test	
raporlarının incelenmesi, kısa devre ve boşta çalışma	
karakteristiklerinin bulunması	34
3.2.5.4. S=400 kVA transformatörlerin analizi, test	
raporlarının incelenmesi, kısa devre ve boşta çalışma	
karakteristiklerinin bulunması	38
3.2.5.5. S=400 kVA transformatörün matlab simulink modeli	42
3.2.5.6. S=100 MVA transformatörlerin analizi, test	
raporlarının incelenmesi, kısa devre ve boşta çalışma	
karakteristiklerinin bulunması	43
3.2.5.7. S=100 MVA transformatörün matlab simulink modeli	47
3.2.6. S=400 kVA, 1000 kVA,100 MVA trafoların kısa devre,	
boşta çalışma karakteristiklerinin simulinkte incelenmesi	52

BÖLÜM 4

ADA TRAFO-STADYUM DAĞITIM SİSTEMİNİN MATLAB	
SİMULİNKTE MODELLENMESİ	67
4.1. Ada Trafo Stadyum dağıtım sisteminde çeşitli noktalarda normal	
çalıştırma, kısa devre durumunda akım değerleri ve aktif-reaktif	
güç değerleri	81
BÖLÜM 5	
SONUÇLAR VE ÖNERİLER	85
KAYNAKLAR	87
EKLER	88
ÖZGEÇMİŞ	93

SİMGELER VE KISALTMALAR LİSTESİ

A	:Amper
A.G.	: Alçak Gerilim
F	: Farad
f	: Frekans
Н	: Henry
Hz	: Hertz
Ι	: Akım
I _{sc}	: Kısa devre akımı
Io	: Boşta çalışma akımı
I ₀	: Sıfır bileşen devre akım fazörü
I_1	: Doğru bileşen devre akım fazörü
I ₂	: Ters bileşen devre akım fazörü
kA	: kilo amper
kVA	: kilo volt-amper
kVAR	: kilo volt-amper reaktif
kW	: kilo watt
L _m	: Magnetik endüktans
MVA	: Mega volt-amper
MVAR	: Mega volt-amper reaktif
MW	: Mega watt
mA	: Mili amper
mH	: Mili henry
mΩ	: Mili ohm
μF	: Mikro Farad
Р	: Aktif güç
PQ	: Yük barası

PV	: Generatör barası
Q	: Reaktif güç
R	: Direnç
R _{eq}	: Eşdeğer direnç
S	: Kompleks güç veya görünür güç
SEDAŞ	: Sakarya Elektrik Dağıtım A.Ş.
U	: Fazlar arası gerilim
u _k	: Yüzde gerilim değişimi
V	: Volt
Vo	: Sıfır gerilim bileşeni
V _d	: Doğru gerilim bileşeni
V_{pp}	: Faz faz gerilim değeri
Vt	: Ters gerilim bileşeni
V_0	: Sıfır bileşen devre gerilim fazörü
V_1	: Doğru bileşen devre gerilim fazörü
V_2	: Ters bileşen devre gerilim fazörü
VAr	: Volt-amper reaktif
W	: Watt
Х	: Reaktans
X _{eq}	: Eşdeğer Reaktans
Xo	: Boșta çalışma reaktansı
Y-Y	: Yıldız yıldız bağlantılı
Υ-Δ	: Yıldız-üçgen bağlantılı
Ζ	: Empedans
Z_{eq}	: Eşdeğer empedans
Zo	: Boșta çalışma empedansı
Z_1	: Doğru empedans bileşeni
Z_2	: Ters empedans bileşeni
Z_0	: Sıfır empedans bileşeni
Δ-Υ	: Üçgen yıldız bağlantılı
Ω	: Ohm

ŞEKİLLER LİSTESİ

Şekil 1.1.	Yıldız Noktasının Topraklanması	2
Şekil 1.2.	Yıldız Noktasının Bobin Üzerinden Topraklanması	2
Şekil 1.3.	İletim Hattında Üç Fazlı Kısa Devre Gösterimi	4
Şekil 2.1.	Üç Fazlı Dengeli Sistemde Simetrili Bileşen Devre Gösterimi.	8
Şekil 2.2.	Üç Fazlı Arızada Bileşen Devre Bağlantıları	9
Şekil 2.3.	İletim Hattında İki Fazlı Kısa Devre Gösterimi	10
Şekil 2.4.	İki Fazlı Arızada Bileşen Devre Bağlantıları	11
Şekil 2.5.	İletim Hattında İki Faz-Toprak Kısa Devre Gösterimi	12
Şekil 2.6.	İki Faz-Toprak Kısa Devresinde Bileşen Devre Bağlantıları	14
Şekil 3.1.	Ada Trafo-Stadyum Enerji Dağıtım Şebekesi	16
Şekil 3.2.	İmamhatip Civarındaki Trafonun Müşterinin Çektiği Aktif ve	
	Reaktif Güçler ve 3 Faz Yükün Blok Parametreleri	18
Şekil 3.3.	Ahmet Akkoç Civarındaki Trafonun Müşterinin Çektiği Aktif	
	ve Reaktif Güçler ve 3 Faz Yükün Blok Parametreleri	19
Şekil 3.4.	Kraas Civarındaki Trafonun Müşterinin Çektiği Aktif ve	
	Reaktif Güçler ve 3 Faz Yükün Blok Parametreleri	19
Şekil 3.5.	Katlı Pazar Civarındaki Trafonun Müşterinin Çektiği Aktif	
	ve Reaktif Güçler ve 3 Faz Yükün Blok Parametreleri	20
Şekil 3.6.	Askerlik Şubesi Civarındaki Trafonun Müşterinin Çektiği	
	Aktif ve Reaktif güçler ve 3 Faz Yükün Blok Parametreleri	20
Şekil 3.7.	Yuvam Sokak Civarındaki Trafonun Müşterinin Çektiği Aktif	
	ve Reaktif Güçler ve 3 Faz Yükün Blok Parametreleri	21
Şekil 3.8.	Lüleci Sokak Civarındaki Trafonun Müşterinin Çektiği Aktif	
	ve Reaktif Güçler ve 3 Faz Yükün Blok Parametreleri	21
Şekil 3.9.	Gökçe Sokak Civarındaki Trafonun Müşterinin Çektiği Aktif	
	ve Reaktif Güçler ve 3 Faz Yükün Blok Parametreleri	22

Şekil 3.10.	Ada Trafo Girişine Bağlanan A.C Güç Kaynağı Blok
	Parametreleri
Şekil 3.11.	Ada Trafo Girişine Bağlanan A.C Güç Kaynağı 120 Derece
	Faz Farkı Uygulanması Blok Parametreleri
Şekil 3.12.	Ada Trafo Girişine Bağlanan A.C Güç Kaynağı 240 Derece
	Faz Farkı Uygulanması Blok Parametrelri
Şekil 3.13.	Sistemde Kullanılan Herhangi Bir Kesici Blok Parametrteleri.
Şekil 3.14.	Enerji Dağıtım Sisteminde Tüm Trafolar Arası Kullanılan Üç
	Faz Pi Modeli
Şekil 3.15.	Pi Eşdeğer Devre Modeli (Pi Section Line)
Şekil 3.16.	1*240 mm2 Kesitinde Kullanılan Kablonun Pi Modelinde
	Kullanılan Blok Parametreleri
Şekil 3.17.	1*95 mm2 Kesitinde Kullanılan Kablonun Pi Modelinde
	Kullanılan Blok Parametreleri
Şekil 3.18.	S=1000 kVA lık Transformatörün Üçgen-Yıldız Bağlantı
-	Şekilleri
Şekil 3.19.	S=1000 kVAlık Transformatörün Eşdeğer
	Devresi
Şekil 3.20.	S=1000 kVAlık Transformatörün Sekonderinin Kısa Devre
	Edilmesi
Şekil 3.21.	S=1000 kVA lık Transformatörün Boşta Çalışma Durumunda
	Eşdeğer Devre
Şekil 3.22.	S=1000 kVA ve f=50 Hz lik Trafonun Blok Parametreleri
Şekil 3.23.	S=630 kVA lık Transformatörün ÜçgenYıldız Bağlantı sekilleri
Şekil 3.24.	S=630 kVA lık Transformatörün Eşdeğer Devresi
Şekil 3.25.	S=630 kVA lık Transformatörün Sekonderinin Kısa Devre
,	Edilmesi
Şekil 3.26.	S=630 kVAlık Transformatörün Boşta Çalışma Durumunda
-	Eşdeğer Devre
Şekil 3.27.	S=400 kVA lık Transformatörün Üçgen-Yıldız Bağlantı
	Şekilleri
	,

Şekil 3.28.	S=400 kVAlık Transformatörün Eşdeğer Devresi
Şekil 3.29.	S=400 kVAlık Transformatörün Sekonderinin Kısa Devre
	Durumunda Eşdeğer Devresi
Şekil 3.30.	S=400 kVA lık Transformatörün Boşta Çalışma Durumunda
	Eşdeğer Devre
Şekil 3.31.	S=400 kVA ve f=50 Hz lik Trafonun Blok Parametrleri
Şekil 3.32.	S=100 MVA lık Transformatörün Yıldız-Yıldız Bağlantı şekilleri
Şekil 3.33.	S=100 MVA lık Transformatörün Eşdeğer Devresi
Şekil 3.34.	S=100 MVAlık Transformatörün Boşta çalışma Durumunda
	Eşdeğer Devre
Şekil 3.35.	S=100 MVA lık Transformatörün Sekonderinin Kısa Devre
	Durumunda Eşdeğer Devre
Şekil 3.36.	S=100 MVA ve f=50 hz lik Trafonun Blok Parametreleri
Şekil 3.37.	S=400 kVA Değerindeki Trafonun Matlab Simulinkte
	Sekonderinin Kısa Devre Edilmesi (devre 1) ve Primerinin Kısa
	Devre Edilmesi (devre2) Sonucu Kısa Devre Gücü ve Kısa
	Devre Akımının Bulunması
Şekil 3.38.	S=400 kVA f=50 Hz 34,5/0,4 kV Değerindeki Trafonun Blok
	Parametreleri
Şekil 3.39.	S=400 KVA Trafonun Sekonderinin Kısa Devre Edilmesinde
	Primer Tarafındaki A.C Gerilim Kaynağının Blok Parametreleri.
Şekil 3.40.	S=400 kVA Trafonun Sekonderinin Kısa Devre Edilmesinde
	Sekonder Tarafındaki A.C Gerilim Kaynağının Blok Parametre.
Şekil 3.41.	S=400 kVA Değerindeki Trafonun Matlab Simulinkte
	Sekonderinin Boşta Çalıştırılması Durumunda (devre 3) ve
	Primerinin Boşta Çalıştırılması Durumunda (devre4) Sonucu
	Boşta Çalışma Gücü ve Boşta Çalışma Akımının Bulunması
Şekil 3.42.	S=400 kVA Trafonun Sekonderinin Boşta Çalışması
	Durumunda Primer Tarafındaki A.C Gerilim Kaynağının Blok
	Parametreleri
Şekil 3.43.	S=400 kVA Trafonun Sekonderinin Boşta Çalıştırılması
	Durumunda Sekonder Tarafındaki A.C Gerilim Kaynağının
	Blok Parametreleri

Şekil 3.44.	S=1000 kVA Değerindeki Trafonun Matlab Simulinkte	
	Sekonderinin Kısa Devre Edilmesi (devre 1) ve Primerinin	
	Kısa Devre Edilmesi (devre2) Sonucu Kısa Devre Gücü ve	
	Kısa Devre Akımının Bulunması	57
Şekil 3.45.	S=1000 kVA f=50 Hz 34,5/0,4 kV Değerindeki Trafonun	
	Blok Parametreleri	58
Şekil 3.46.	S=1000 kVA Trafonun Sekonderinin Kısa Devre Edilmesinde	
	Primer Tarafındaki A.C Gerilim Kaynağının Blok	
	Parametreleri	58
Şekil 3.47.	S=400 kVA Trafonun Sekonderinin Kısa Devre Edilmesinde	
	Sekonder Tarafındaki Gerilim Kaynağının Blok Parametresi	59
Şekil 3.48.	S=400 kVA Değerindeki Trafonun Matlab Simulinkte	
	Sekonderinin Boşta Çalıştırılması Durumunda (devre 3) ve	
	Primerinin Boşta Çalıştırılması Durumunda (devre4) Sonucu	
	Boşta Çalışma Gücü ve Boşta Çalışma Akımının Bulunması	60
Şekil 3.49.	S=1000 kVA Trafonun Sekonderinin Boşta Çalışması	
	Durumunda Primer Tarafındaki A.C Gerilim Kaynağının	
	Blok Parametreleri	61
Şekil 3.50.	S=1000 kVA Trafonun Sekonderinin Boşta Çalıştırılması	
	Durumunda Sekonder Tarafındaki A.C Gerilim Kaynağının	
	Blok Parametreleri	61
Şekil 3.51.	S=100 MVA Değerindeki Trafonun Matlab Simulinkte	
	Sekonderinin Kısa Devre Edilmesi (devre 1) ve Primerinin	
	Kısa Devre Edilmesi (devre2) Sonucu Kısa Devre Gücü ve	
	Kısa Devre Akımının Bulunması	62
Şekil 3.52.	S=100 MVA f=50 Hz 34,5/0,4 kV Değerindeki Trafonun	
	Blok Parametreleri	63
Şekil 3.53.	S=100 MVA Trafonun Sekonderinin Kısa Devre	
	Edilmesinde Primer Tarafındaki A.C Gerilim Kaynağının	
	Blok Parametreleri	64
Şekil 3.54.	S=100 MVA Trafonun Sekonderinin Kısa Devre Edilmesinde	
	Sekonder Tarafındaki A.C Gerilim Kaynağı Blok Parametreleri	64

Şekil 3.55.	S=100 MVA Değerindeki Trafonun Matlab Simulinkte	
	Sekonderinin Boşta Çalıştırılması Durumunda (devre 3) ve	
	Primerinin Boşta Çalıştırılması Durumunda (devre4) Sonucu	
	Boşta Çalışma Gücü ve Boşta Çalışma Akımının Bulunması	65
Şekil 3.56.	S=100 MVA Trafonun Sekonderinin Boşta Çalışması	
	Durumunda Primer Tarafındaki A.C Gerilim Kaynağının	
	Blok Parametreleri	66
Şekil 3.57.	S=100 MVA Trafonun Sekonderinin Boşta Çalıştırılması	
	Durumunda Sekonder Tarafındaki A.C Gerilim Kaynağının	
	Blok Parametreleri	66
Şekil 4.1.	Ada Trafo-Stadyum Dağıtım Sisteminin Matlab Simulinkte	
	Modeli	67
Şekil 4.2.	Kraas Alışveriş Merkezi Civarındaki Trafonun Çıkışının A	
	Fazından Geçen Akımın Grafiğinin Bulunması İçin Matlab	
	Simulinkte Modellenmesi	68
Şekil 4.3.	İşaretin (karakökünün ortalamasını bir periyot boyunca alır)	
	Simulink Modeli	69
Şekil 4.4.	İşaretin (karakökünün ortalamasını bir periyot boyunca alır)	
	Blok Parametreleri	69
Şekil 4.5.	Akım Ölçerin Simulink Modeli	69
Şekil 4.6.	Akım Ölçerin Blok Parametreleri	69
Şekil 4.7.	Kraas Alışveriş Merkezi Civarındaki Trafonun Çıkışının A	
	Fazından Geçen Akımın Grafiği	70
Şekil 4.8.	Kraas Alışveriş Merkezi Civarındaki Trafonun Beslediği	
	Müşterinin P (Aktif güç), QL(endüktif reaktif güç) değerleri	71
Şekil 4.9.	Gökçe Sokak Civarındaki Trafonun Çıkışının A Fazından	
	Geçen Akımın Grafiğinin Bulunması İçin Matlab Simulinkte	
	Modellenmesi	72
Şekil 4.10.	İşaretin (karakökünün ortalamasını bir periyot boyunca alır)	
	Blok Parametreleri	73
Şekil 4.11.	Gökçe Sokak Civarındaki Trafonun Çıkışının A Fazından	
	Geçen Akımın Grafiği	73

Şekil 4.12.	Gökçe Sokak Civarındaki Trafonun Beslediği Müşterinin P
	(aktif güç), QL (endüktif reaktif güç) Değerleri
Şekil 4.13.	Ada Trafo-Stadyum Dağıtım Sisteminde Stadyumdaki
	Kesicilerde Üç Faz Kısa Devre Olması Durumunda Simulink
	Modeli
Şekil 4.14.	Üç faz Kısa Devre Hatasının Simulink Modeli
Şekil 4.15.	Üç faz Kısa Devre Hatasının Blok Parametreleri
Şekil 4.16.	Stadyumdaki Kesicilerde Sistem Çalıştıktan 1.2 Saniye Sonra
	3 Faz Kısa Devre Olması Durumunda Stadyum Çıkışında C
	Fazından Akan Akımın Grafiği
Şekil 4.17.	Stadyumdaki Kesicilerde Sistem Çalıştıktan 1.2 Saniye Sonra
	3 Faz Kısa Devre Olması Durumunda Kraas Alışveriş
	Merkezi Civarında Bulunan Trafonun Çıkışında A Fazından
	Akan Akımın Grafiği
Şekil 4.18.	Stadyumdaki Kesicilerde Sistem Çalıştıktan 1.2 Saniye Sonra
	3 Faz Kısa Devre Olması Durumunda Gökçe Sokak
	Civarında Bulunan Trafonun Çıkışında A Fazından Akan
	Akımın Grafiği
Şekil 4.19.	Ada Trafo-Stadyum Dağıtım Sisteminde Ahmet Akkoç
	Civarındaki Trafo ile Kraas Alışveriş Merkezi Civarındaki Üç
	Faz Toplam Aktif Güç ve Reaktif Gücün Bulunması İçin
	Oluşturulan Matlab Simulink Modeli
Şekil 4.20.	Akım Ölçü Aleti Simulink Bloğu
Şekil 4.21.	Gerilim Ölçü Aleti Simulink Bloğu
Şekil 4.22.	Tek faz İçin Aktif Güç ve Reaktif Gücün Bulunması İçin
	Simulink Bloğu
Şekil 4.23.	Ahmet Akkoç Civarındaki Trafo ile Kraas Alışveriş
	Merkezindeki Trafolar Arasındaki Üç Faz Toplam Aktif
	Güç ve Reaktif Güç Değerleri Grafiği

TABLOLAR LİSTESİ

Tablo 1.1	Güç Sistem Baralarının Yük Akışı İçin Sınıflandırılması	5
Tablo 3.1	XLPE Yalıtkanlı Tek damarlı Orta Gerilim Kablosu	23
Tablo 3.2	Ada Trafo Stadyum Enerji Dağıtım Sisteminde Hat Mesafe	
	Değerleri	25
Tablo 3.3	S=1000 kVA Gücündeki Trafo İçin Trafonun Parametreleri	
	Kullanılarak Adım Adım Trafo Değerleri Hesabı	49
Tablo 4.1	Ada Trafo Stadyum Dağıtım Sisteminde Trafoların Giriş ve	
	Çıkışlarında A Fazından Akan Akım Değerleri (Sistemin normal	
	çalışması)	81
Tablo 4.2	Ada Trafo Stadyum Dağıtım Sisteminde Sistemin Çalışmaya	
	Başlamasından 0.5 Saniye Sonra Stadyum Kesici Girişinde Üç	
	Faz Kısa Devre Olması Durumunda Trafoların Giriş ve	
	Çıkışlarında A Fazından Akan Akım Değerleri	82
Tablo 4.3	Ada Trafo Stadyum Dağıtım Sisteminde Trafo Girişlerindeki Üç	
	Faz Toplam Aktif ve Reaktif Güç Değerleri	83
Tablo 4.4	Ada Trafo Stadyum Dağıtım Sisteminde Trafolar Arasındaki Üç	
	Faz Toplam Aktif ve Reaktif Güç Değerleri	84

ÖZET

Anahtar Kelimeler : Enerji Dağıtım Sistemi, Matlab Simulink, Transformatörlerin parametreleri, Güç akışı ve kısa devre analizleri

Adapazarı Tedaş Ada-Trafo Stadyum enerji dağıtım sistemi Sakarya Elektrik Dağıtım Anonim Şirketin'den gelen talep üzerine Matlab Simulink programında oluşturulmuştur. Sistemde kullanılan transformatörlerin test raporları, hat mesafe değerleri, kablo kesit değerleri, yük değerleri v.b. tüm bilgiler Sakarya Elektrik Dağıtım Anonim Şirketin'den temin edilip; gerçek veriler kullanılmıştır.

Adapazarı Tedaş Ada-Trafo Stadyum enerji dağıtım sistemi modellenmeden önce kullanılacak trafoların parametreleri hesaplanmış, bulunan kısa devre ve boşta çalışma karakteristikleri simulinkte test edilmiştir.Hat parametreleri ve yük değerleri hesaplanmış, simulink modellerine dönüştürülmüştür. Böylece Sakarya Bölgesin'de enerji dağıtım sisteminin bir parçası olan Adapazarı'nın Stadyum kesiminin modeli Matlab Simulink'te oluşturulmuştur. Bu model üzerinde sistem içindeki tüm trafoların giriş ve çıkış akım değerleri, stadyum kesicilerinde üç faz kısa devre oluşması sonucu kısa devre akımları, hatlar arası aktif ve reaktif güç değerleri bulunmuştur.

Sakarya Bölgesinin bir parçası olan Ada Trafo-Stadyum Dağıtım hattı, daha da genişletilip tüm Sakarya Bölgesi için enerji dağıtım sistemi modellenirse, sistem içinde çeşitli noktalara simulink blokları bağlanarak istenilen akım, gerilim, aktif ve reaktif güç değerleri bulunacaktır. Böylece transformatör, kablo kesiti, röle, kesici, ayırıcı v.b enerji dağıtım sistemi içinde istenilen tüm değerler Matlab Simulink programı vasıtasıyla belirlenecektir. Sistem içinde kolaylıkla güç akışı ve kısa devre analizleri yapılarak gerekli değerler ve grafikler bilgisayar ortamında görülecektir.

MODELLING OF DISTRIBUTION SYSTEM OF ADAPAZARI TEDAŞ ADA TRAFO STADYUM IN COMPUTER ENVIRONMENT

SUMMARY

Key Words: Power Distribution System , Matlab Simulink, Transformers parameters, Power flow and short circuit analysis

The SEDAŞ request that The TEDAŞ (Power Distribution Company of Turkey) Ada-Trafo Stadyum power distribution system of Adapazarı will be simulate on the Matlab Simulink. The values, test reports of the transformers in the system, line distances, cable diameters, load values, etc obtained from the SEDAŞ and they are used for the simulation.

Before modelling of the Ada-Trafo Stadyum power distribution system in Adapazarı Tedaş, the transformers parameters is determined, the characteristics of the calculated short-circuit and open circuit are tested in simulink. Line parameters and load values are calculated and then they are converted to simulink models. Indeed, the model of the Stadyum area, where a part of the power distribution system in the Sakarya region, has been created in the Matlab Simulink. By using this model, the input/output current values of the transformers, the three phase short circuit current values for the stadyum cutters, line active and reactive power values has been determined.

If the modelling of the Ada Trafo-Stadyum power distribution lines is extended to cover all distribution lines in Sakarya Region, by connecting several Simulink blocks of several point of the distribution systems, it is possible to calculate the value of voltage, current, active and reactive power. Thus, all parameters within the system, like transformers ratio, cable diameters, relay, cutter, separator etc, will be determined by using the model. Moreover, performing the power flow and short circuit analysis, the calculated parameters and charts will be study on the computer.

BÖLÜM 1. GİRİŞ

1.1. Giriş

Bu tez çalışmasında, Sakarya Elektrik Dağıtım A.Ş.'ye bağlı Ada Trafo-Stadyum Dağıtım sisteminde bulunan 34,5/0,4 kV luk 8 adet trafo incelenecek ve Matlab Simulink kullanılarak, kısa devre ve güç akışı analizleri yapılacak kısa devre akımları bulunarak, sistem içinde güçler ölçülerek uygun değerde elemanın kullanılmasının önemi anlatılacaktır. Çalışmalarda gerçek veriler kullanılmıştır.

Ada-Trafo Stadyum dağıtım sisteminde Sakarya ilini besleyen iki adet paralel 100 Mva değerindeki trafodan biri olan 154/33.6 kv değerinde ada trafo adı verilen trafo, İmamhatip, Ahmet Akkoç İ.Ö.O, Kraas alışveriş merkezi, Katlı Pazar yeri, askerlik şubesi, yuvam sokak, lüleci sokak ve gökçe sokak yakınında bulunan trafolar sistemde ele alınacaktır. Trafo parametreleri ayrıntılı olarak hesaplanarak ve matlab simulink modelleri oluşturulacaktır.

Sistemde kullanılan S=100 Mva, S=400 Kva, S=630 Kva, S=1000 Kva görünen güçlerindeki trafoların analizleri yapılacak, test raporları incelenerek, kısa devre ve boşta çalışma karakteristikleri adım adım hesaplanarak simulink modelleri oluşturulacaktır. Bu değerler hesaplanırken trafoların test raporları trafo satan firmalardan temin edilerek, matlab simulinkte test raporlarını sağlayıp sağlamadığı kontrol edilecektir.

Ada trafo - stadyum dağıtım sisteminde Sedaş 'tan trafo, hat ve yük parametreleri temin edilerek sistem, bu değerler kullanılarak matlab simulink ortamında modellenecektir. Enerji dağıtım şebekesi simulink modeline dönüştürülerek akım, gerilim, aktif ve reaktif güç simulink blokları bu simulink modeli üzerine bağlanarak

sistem detaylı bir biçimde incelenecektir. Böylece sistemin çeşitli noktalarında akım değerlerinin ve aktif - reaktif güç değerlerinin bulunması amaçlanmıştır.

1.2. Enerji Hatlarında Şebeke Arızaları:

Simetrik 3 faz ve asimetrik tek faz, iki faz ve toprak arızasıdır. Şebekenin yıldız noktası topraklanmışsa; bir fazlı toprak kısa devresi, topraklanmamışsa veya bir bobin üzerinden topraklanmışsa buna da bir fazlı toprak teması denir.

Şekil 1.1. Yıldız Noktasının Topraklanması

Şekil 1.2. Yıldız Noktasının Bobin Üzerinden Topraklanması

1.3. Kısa Devre Hata Türleri ve Bazı Kabuller:

Birbirlerine göre simetrik olan güç sistemlerinde kısa devre akım hesaplamaları, simetrik hatalar ve simetrik olmayan hatalar olarak iki başlık altında incelenir. Üç fazlı kısa devre simetrik bir hatadır. Simetrik olmayan hatalar ise; bir faz – toprak kısa devresi, iki fazlı toprak temassız kısa devre ve iki fazlı toprak temaslı kısa devre hata türleridir. Hata türünün simetrik olarak adlandırılmasının nedeni, hata esnasında sistemde dolaşan akımların fazlara göre genliklerinin değişmemesidir. Simetrik olmayan hatalarda ise hata akımlarının genlikleri fazlara göre değişir. Simetrik hatanın incelenmesi diğerine göre kolaydır. Üç fazlı kısa devrede sistemin yalnızca doğru bileşen devresine ilişkin bara empedans ve admitans matrisleri kullanılır. (Zira bu hata türünde ters bileşen ve sıfır bileşen devreye ilişkin akım ve gerilim değerleri sıfırdır.)

Üç fazlı kısa devre hesaplamalarında hesap kolaylaştırıcı bazı kabuller:

a) Transformatörlerin yalnızca reaktans değerleri göz önüne alınır; sarım dirençleri, şönt admitans değerleri ve faz kayması göz önüne alınmaz.

b) İletim hatlarının yalnızca doğru bileşen devre reaktansları hesaba katılır, seri dirençleri ve şönt admitansları hesaba katılmaz.

c) Senkron makine, geçici darbe reaktansının (subtransient)gerisindeki sabit gerilim kaynağı ile temsil edilir. Armatür direnci, çıkık kutup etkisi ve doyma ihmal edilir.d) Tüm dönmeyen yüklerin empedansları ihmal edilir.

e) 50 beygir gücünden az senkron motorlar göz önüne alınmaz ya da senkron makine senkron makine gibi temsil edilir.

Yukarıda belirtilen kabuller hesap kolaylaştırmak için kullanılmakla beraber hesaplama sonuçlarında büyük hatalara sebep olmazlar. Fakat bu kabuller her şartta da kullanılamazlar. Örnek olarak dağıtım sistemlerinde direnç etkisi hata akımını azaltır ve bu yüzden ihmal edilemez.

Simetrik olmayan hatanın incelenmesinde ise simetrik hatalardan farklı olarak dengesiz akım ve gerilim değerlerinden dolayı, sisteme ilişkin ters bileşen ve sıfır

bileşen devre bara empedans ve admitans matrislerine ihtiyaç duyulur. Bu tür hatalarda sisteme ilişkin akım, gerilim, empedans ve parametreler dönüşüm matrisleri yardımıyla simetrili bileşen devre büyüklüklerine dönüştürülürler. Hesaplamalar simetrili bileşen devre büyükleri kullanılarak yapılır. Bulunan değerler tekrar ters dönüşüm matrisleri yardımıyla gerçek değerlere dönüştürülürler.

Şekil 1.3. İletim Hattında Üç Fazlı Kısa Devre Gösterimi

Dengeli hatalarda sisteme ilişkin empedansların doğru bileşen değeri kullanılmaktadır. Simetrik olmayan hatalarda ise (akım ve gerilim değerleri dengesiz olduğundan) sistemdeki empedansların doğru bileşen değerlerine ilaveten ters ve sıfır bileşen değerleri de göz önüne alınır. Hata öncesi sistem dengeli olduğu için doğru, ters ve sıfır bileşen devreler arasında kuplaj bulunmamaktadır ve dolayısıyla bu devrelere ilişkin I_1 , I_2 ve I_0 akımları da sıfırdır [2].

1.4. Güç akışı

Güç akışı veya yük akışı bir güç sisteminin sürekli hal çalışma koşullarını teşkil eder. Tipik yük akışı sonuçları bara gerilimleri ve hat akımlarıdır. Güç akışı hesaplaması, güç sistem tasarım ve analizinde temel bir çalışmadır. Yük akışı problemi klasik güç sistem mühendisliğinin temel problemlerinden biridir.

Çoğu elektrik devre analizinde şebeke bilinen empedans gerilim kaynağı ve akım kaynaklarını içerir. Bununla beraber yük akışı probleminde şönt empedansdan ziyade aktif ve reaktif güçler çoğu şebeke baralarında belirtilmiştir. Çünkü yüklerin çoğu sabit güç yükleridir. Yani onlara uygulanan gerilim makul sınırlar içinde sabit kalır.

Güç sistem yükleri alt istasyonlarda, büyük tüketicilerde, Türk elektrik üreticisi kurumlarda yakın olarak takip edebilir. Günlük, haftalık, mevsimlik yük tahminleri yapılabilir. Üretim ve planlama amaçları için yıllık tepe yük talebi ve elektrik firmaları için enerji tahminleri yapılır.

Yük akışı probleminin amacı, bara gerilimlerini hat, transformatör, kablo, güç akışlarını, empedanslarını, yükleri hesaplamak ve üretimleri belirlemektir. İdeal olarak sistem çalışması için hesaplanmış bara gerilimleri kabul edilebilir oranlar içinde kalmalıdır.

Güç sistemi planlamasında ve çalışma uygulamasında aşağıdaki veriler bilinir.

 Yük baralarında yük talebi Pi+jQi dir. Bu baralar için Pi+jQi bilindiğinden onlar PQ barası (yük barası) olarak bilinir.

 2) Generatör barasında aktif güç üretimi Pi ve programlanan bara gerilimleri Vi dir. Pi,Vi bu baralar için bilindiğinden bu baralar generatör barası (PV barası) denir.
 3) Sistemde en az bir generatör salınım barası olarak işlem görmelidir. Bu baranın aktif güç çıkışı tüm sistemin aktif güç dengesizliğini kompanze etmek için ayarlanır.

Pü-Pyük-Pkomp=0 ifadesi generatör sistem gerilimi için referans açıyı kurmakta da kullanılır. Bundan dolayı bu generatörün bağlı olduğu baraya salınım barası denir.

Tablo 1.1. Güç Sistem Baralarının Yük Akışı İçin Sınıflandırılması

Baralar	Bilinenler	Bilinmeyenler
PQ (yük barası)	P,Q	V,&
PV (besleme barası)	P,V	&,Q
V&(salınım barası)	V,&	P,Q

Güç akışı problemi yukarıda verilen sınırlamalar altında bara gerilimlerini ve hat akımlarını bulmaktır. Yük akışı probleminde her barada dört parametre vardır. Bunlar sırasıyla gerilimin genliği V, gerilimin açısı &, aktif güç P ve reaktif güç Q dur. Bunlardan en az ikisi belli iken diğer ikisi hesaplanabilir. Çoğu baralar için P ve Q güçleri bellidir. Buradan V ve & hesaplanır. P ve Q değerlerinin belli olmadığı baralardan dolayı sistem kayıpları daha önceliklidir. Bu yüzden besleme baralarından biri salınım barası olarak seçilmelidir. Yani bu baranın P gücü kayıpları da karşılayacaktır. Salınım barası genellikle merkezde ve en büyük generatör olarak seçilir. Bu generatörün gerilim açısı &=0 olarak alınır.

BÖLÜM 2. KISA DEVRE HESAPLAMALARI

Matlab simulinkte modellenecek olan Adapazarı Tedaş Ada-Trafo Stadyum elektrik dağıtım sisteminde, sistemin herhangi bir noktasında üç fazlı kısa devre, iki fazlı kısa devre, iki faz toprak kısa devresi ve bir faz toprak kısa devresi oluşabilir. Ada Trafo Stadyum dağıtım sisteminin matlab simulinkte modellemesi yapıldıktan sonra çeşitli noktalarda kısa devre akım ve gerilimleri; modellenen sisteme simulink blokları bağlanarak, simulink programı vasıtasıyla bilgisayar ortamında bulunmaktadır.

Bu bölümde; bilgisayar yazılım programı kullanmadan üç fazlı kısa devre, iki fazlı kısa devre, iki faz toprak kısa devre türlerinde bileşen devreler yardımıyla; bileşen devre akımları ve bileşen devre gerilimlerinin nasıl bulunduğu, bu değerlerin bulunmasından sonra; bu değerlerin gerçek sisteme ilişkin değerlere dönüştürülerek gerilimlerin ve akımların nasıl bulunacağı formüller yardımıyla anlatılacaktır.

2.1. Üç Fazlı Kısa Devre Hesaplamaları

Şekil 2.1.'de bileşen devrelerin hata noktalarından bakıldığında görülen Thevenin eşdeğeri gösterilmiştir. Şekilden görüldüğü gibi yalnızca doğru bileşen devresinde, değeri hata öncesi gerilim değeri $V_{\rm H}$ 'ye eşit olan gerilim kaynağı vardır.

a) Simetrili bileşen devreleri

 b) Hata uçlarından görülen Thevenin eşdeğeri

Şekil 2.1. Üç Fazlı Dengeli Sistemde Simetrili Bileşen Devre Gösterimi

$$V_a = 0, V_b = 0, V_c = 0$$
 (2.1)

olur. (2.1) eşitliği ile verilen ilk kullanılırsa;

a=1/120°

$$\begin{bmatrix} \mathbf{V}_0 \\ \mathbf{V}_1 \\ \mathbf{V}_2 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \\ 1 & \mathbf{a} & \mathbf{a}^2 \\ 1 & \mathbf{a}^2 & \mathbf{a} \end{bmatrix} \begin{bmatrix} \mathbf{V}_a \\ \mathbf{V}_b \\ \mathbf{V}_c \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} Volt$$
(2.2)

elde edilir. Şekil 2.1.(b) 'de tüm hata türlerinde kullanılabilecek bileşen devre gösterimleri verilmiştir. Bu gösterimler matrisel formda

$$\begin{bmatrix} \mathbf{V}_0 \\ \mathbf{V}_1 \\ \mathbf{V}_2 \end{bmatrix} = \begin{bmatrix} 0 \\ \mathbf{V}_H \\ 0 \end{bmatrix} - \begin{bmatrix} Z_o & 0 & 0 \\ 0 & \mathbf{Z}_1 & 0 \\ 0 & 0 & \mathbf{Z}_2 \end{bmatrix} \begin{bmatrix} \mathbf{I}_o \\ \mathbf{I}_1 \\ \mathbf{I}_2 \end{bmatrix} Volt$$
(2.3)

olarak elde edilir. (2.2) eşitliğinin sonuçları (2.3) eşitliğinde yerine konulursa bileşen devre akımları;

$$\begin{bmatrix} \mathbf{I}_{o} \\ \mathbf{I}_{1} \\ \mathbf{I}_{2} \end{bmatrix} = \begin{bmatrix} 0 \\ \mathbf{V}_{H} / \mathbf{Z}_{1} \\ 0 \end{bmatrix} A$$
(2.4)

değerine eşit olur. (2.4) eşitliği şekil 2.1 (b)'de kullanılırsa, şekil 2.2. ile verilen bileşen devre gösterimleri elde edilir.

2.3. eşitliğinde gerilim yerine akım vektörü kullanılırsa;

$$I_{a} = I_{0} + I_{1} + I_{2}$$

$$I_{b} = I_{0} + a^{2} * I_{1} + a^{*} I_{2}$$

$$I_{c} = I_{0} + a^{*} I_{1} + a^{2} * I_{2}$$
(2.5)

 I_0 : Sıfır bileşen devre akımı

 I_1 : Doğru bileşen devre akımı

I₂: Ters bileşen devre akımı

gerçek sisteme ilişkin üç fazlı kısa devre akım değerleri bulunur;

Şekil 2.2. Üç Fazlı Arızada Bileşen Devre Bağlantıları.

$$\begin{bmatrix} \mathbf{I}_{a} \\ \mathbf{I}_{b} \\ \mathbf{I}_{c} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & \mathbf{a}^{2} & \mathbf{a} \\ 1 & \mathbf{a} & \mathbf{a}^{2} \end{bmatrix} \begin{bmatrix} \mathbf{I}_{0} \\ \mathbf{I}_{1} \\ \mathbf{I}_{2} \end{bmatrix} = \begin{bmatrix} \frac{\mathbf{V}_{H}}{\mathbf{Z}_{1}} \\ \mathbf{a}^{2} \frac{\mathbf{V}_{H}}{\mathbf{Z}_{1}} \\ \mathbf{a} \frac{\mathbf{V}_{H}}{\mathbf{Z}_{1}} \end{bmatrix}$$
(2.6)

Son eşitlikte V_H , kısa devre barasına ilişkin hata öncesi kısa devre noktasındaki gerilim vektörü, Z_1 ise hatalı baradan devreye bakıldığında görülen Thevenin empedans değeridir.[2]

2.2. İki Fazlı Kısa Devre Hesaplamaları

Şebekenin bir noktasında şekil 2.3'de gösterildiği gibi Z_H direnci üzerinden iki fazlı bir kısa devrenin oluşması durumunda, a, b ve c fazlarına sahip gerçek sistemin faznötr gerilim değerleri ve hat akımları;

$$\mathbf{V}_{b} - \mathbf{V}_{c} = \mathbf{Z}_{H} \mathbf{I}_{b}, \qquad \mathbf{I}_{a} = 0, \quad \mathbf{I}_{c} = -\mathbf{I}_{b}$$
(2.7)

Şekil 2.3. İletim Hattında İki Fazlı Kısa Devre Gösterimi.

olur. (2.7) eşitliği ile verilen akım ile ilgili ilk koşullar aşağıdaki eşitliklerinde kullanılırsa;

 $\mathbf{I}_{\mathbf{a}} = \mathbf{I}_{\mathbf{0}} + \mathbf{I}_{\mathbf{1}} + \mathbf{I}_{\mathbf{2}}$

$$I_{b} = I_{0} + a^{2} * I_{1} + a^{*} I_{2}$$

$$I_{c} = I_{0} + a * I_{1} + a^{2} * I_{2}$$

$$\begin{bmatrix} \mathbf{I}_{0} \\ \mathbf{I}_{1} \\ \mathbf{I}_{2} \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \\ 1 & \mathbf{a} & \mathbf{a}^{2} \\ 1 & \mathbf{a}^{2} & \mathbf{a} \end{bmatrix} \begin{bmatrix} 0 \\ \mathbf{I}_{b} \\ -\mathbf{I}_{b} \end{bmatrix} = \begin{bmatrix} 0 \\ \frac{1}{3} (\mathbf{a} - \mathbf{a}^{2}) \mathbf{I}_{b} \\ \frac{1}{3} (\mathbf{a}^{2} - \mathbf{a}) \mathbf{I}_{b} \end{bmatrix}$$
Amper (2.8)

elde edilir. (2.7) ifadelerinde gerilim ile ilgili sınırlar (2.8) ve (2.5) eşitliklerinde kullanılırsa;

$$\begin{bmatrix} \mathbf{V}_0 \\ \mathbf{V}_1 \\ \mathbf{V}_2 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \\ 1 & \mathbf{a} & \mathbf{a}^2 \\ 1 & \mathbf{a}^2 & \mathbf{a} \end{bmatrix} \begin{bmatrix} \mathbf{V}_a \\ \mathbf{V}_b \\ \mathbf{V}_c \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \text{ Volt}$$
(2.8)

$$(\mathbf{V}_{o} + \mathbf{a}^{2}\mathbf{V}_{1} + \mathbf{a}\mathbf{V}_{2}) - (\mathbf{V}_{o} + \mathbf{a}\mathbf{V}_{1} + \mathbf{a}^{2}\mathbf{V}_{2}) = \mathbf{Z}_{H}(\mathbf{I}_{o} + \mathbf{a}^{2}\mathbf{I}_{1} + \mathbf{a}\mathbf{I}_{2})$$
(2.9)

bulunur. (2.8) eşitliğinden;

$$\mathbf{I}_{0} = 0, \ \mathbf{I}_{2} = -\mathbf{I}_{1} \tag{2.10}$$

elde edilir. Son iki eşitlikten;

$$\mathbf{V}_1 - \mathbf{V}_2 = \mathbf{Z}_H \mathbf{I}_1 \tag{2.11}$$

bulunur. (2.10) ve (2.11) eşitlikleri iki fazlı kısa devrenin hata koşullarıdır. Bu koşullardan elde edilen bileşen devre gösterimleri şekil 2.4.'de görülmektedir.

Şekil 2.4. İki Fazlı Arızada Bileşen Devre Bağlantıları

Şekil 2.4.'den

$$\mathbf{I}_{1} = -\mathbf{I}_{2} = \frac{\mathbf{V}_{\mathrm{H}}}{(\mathbf{Z}_{1} + \mathbf{Z}_{2} + \mathbf{Z}_{\mathrm{H}})}, \quad \mathbf{I}_{0} = 0$$
(2.12)

elde edilir. (2.12) eşitliği (2.6) ifadesinde kullanılırsa;

$$\mathbf{I}_{b} = \mathbf{I}_{o} + \mathbf{a}^{2}\mathbf{I}_{1} + \mathbf{a}\mathbf{I}_{2} = (\mathbf{a}^{2} - \mathbf{a})\mathbf{I}_{1}$$
(2.13)

$$\mathbf{I}_{b} = \frac{-j\sqrt{3}\mathbf{V}_{H}}{(\mathbf{Z}_{1} + \mathbf{Z}_{2} + \mathbf{Z}_{H})}$$
(2.14)

$$\mathbf{I}_{c} = \mathbf{I}_{o} + \mathbf{a}\mathbf{I}_{1} + \mathbf{a}^{2}\mathbf{I}_{2} = (\mathbf{a} - \mathbf{a}^{2})\mathbf{I}_{1} = -\mathbf{I}_{b}$$
(2.15)

bulunur. Bileşen devrelere ilişkin gerilim değerleri ise (2.12) ifadesi ile verilen bileşen devre akımlarının (2.6) eşitliğinde yerine konulması ile elde edilir [2].

2.3. İki Faz-Toprak Kısa Devre Hesaplamaları

Şebekenin bir noktasında şekil 2.5.'de gösterildiği gibi iki fazın \mathbf{Z}_{H} direnci üzerinden bir kısa devre oluşturması durumunda a, b ve c fazlarına sahip gerçek sistemin faznötr gerilim değerleri ve hat akımları arasında;

$$\mathbf{V}_{bt} = \mathbf{V}_{ct} = \mathbf{Z}_{H}(\mathbf{I}_{b} + \mathbf{I}_{c}), \qquad \mathbf{I}_{a} = 0$$
(2.16)

Şekil 2.5. İletim Hattında İki Faz-toprak Kısa Devre Gösterimi

ilişkisi vardır.(2.16) eşitliğinde I_a değeri $I_a = I_0 + I_1 + I_2$ ifadesinde yerine konulursa;

$$\mathbf{I}_{0} + \mathbf{I}_{1} + \mathbf{I}_{2} = 0 \tag{2.17}$$

elde edilir. (2.16) eşitliğinde gerçek sisteme ilişkin gerilim ifadeleri (2.8)'de kullanılırsa;

$$(\mathbf{V}_{o} + \mathbf{a}\mathbf{V}_{1} + \mathbf{a}^{2}\mathbf{V}_{2}) = (\mathbf{V}_{o} + \mathbf{a}^{2}\mathbf{V}_{1} + \mathbf{a}\mathbf{V}_{2})$$
(2.18)

elde edilir. Bu ifade kısaltılırsa;

$$\mathbf{V}_2 = \mathbf{V}_1 \tag{2.19}$$

bulunur.

$$I_b = I_0 + a^2 * I_1 + a^* I_2$$

$$I_{c} = I_{0} + a * I_{1} + a^{2} * I_{2}$$

ve (2.8) eşitliği (2.16) ifadesinde kullanılırsa;

$$(\mathbf{V}_{o} + \mathbf{a}^{2}\mathbf{V}_{1} + \mathbf{a}\mathbf{V}_{2}) = \mathbf{Z}_{H}(\mathbf{I}_{o} + \mathbf{a}^{2}\mathbf{I}_{1} + \mathbf{a}\mathbf{I}_{2} + \mathbf{I}_{o} + \mathbf{a}\mathbf{I}_{1} + \mathbf{a}^{2}\mathbf{I}_{2})$$
(2.20)

elde edilir. Son ifadede (2.19) eşitliği kullanılırsa;

$$(\mathbf{V}_{o} - \mathbf{V}_{1}) = \mathbf{Z}_{H}(2\mathbf{I}_{o} - \mathbf{I}_{1} - \mathbf{I}_{2})$$

$$(2.21)$$

bulunur. (2.21) eşitliğinde (2.17) ifadesi kullanılırsa;

$$(\mathbf{V}_{0} - \mathbf{V}_{1}) = 3\mathbf{Z}_{H}\mathbf{I}_{0}$$

$$(2.22)$$

elde edilir.

(2.17), (2.19) ve (2.22) eşitlikleri birlikte ele alınırsa şekil 3.10'da verilen bileşen devre modeli elde edilir.

Şekil 2.6.'dan doğru bileşen devre akımı;

$$\mathbf{I}_{1} = \frac{\mathbf{V}_{\mathrm{H}}}{\mathbf{Z}_{1} + \left[\mathbf{Z}_{2} / / (\mathbf{Z}_{\mathrm{o}} + 3\mathbf{Z}_{\mathrm{H}})\right]} = \frac{\mathbf{V}_{\mathrm{H}}}{\mathbf{Z}_{1} + \left[\frac{\mathbf{Z}_{2} (\mathbf{Z}_{\mathrm{o}} + 3\mathbf{Z}_{\mathrm{H}})}{\mathbf{Z}_{2} + \mathbf{Z}_{\mathrm{o}} + 3\mathbf{Z}_{\mathrm{H}}}\right]}$$
(2.23)

Şekil 2.6. İki Faz-toprak Kısa Devresinde Bileşen Devre Bağlantıları.

Akım bölücü formülü yardımı ile ters ve sıfır bileşen devre akımları;

$$\mathbf{I}_{2} = (-\mathbf{I}_{1})(\frac{\mathbf{Z}_{o} + 3\mathbf{Z}_{H}}{\mathbf{Z}_{2} + \mathbf{Z}_{o} + 3\mathbf{Z}_{H}})$$
(2.24)

$$\mathbf{I}_{o} = (-\mathbf{I}_{1})(\frac{\mathbf{Z}_{2}}{\mathbf{Z}_{2} + \mathbf{Z}_{o} + 3\mathbf{Z}_{H}})$$
(2.25)

eşitlikleri kullanılarak elde edilir. Gerçek sisteme ilişkin akım değerleri ise (2.24) - (2.25) eşitliklerinin

$$I_a = I_0 + I_1 + I_2$$

$$I_b = I_0 + a^2 * I_1 + a^* I_2$$

$$I_{c} = I_{0} + a * I_{1} + a^{2} * I_{2}$$

Bileşen devre gerilimleri ise bileşen devre akımlarının (2.3) eşitliğinde yerlerine konulmaları ile elde edilirler. Bileşen devre gerilim değerleri bulunduktan sonra (2.8) eşitliği yardımı ile gerçek sisteme ilişkin gerilim değerleri bulunur [2].

BÖLÜM 3. SİMULİNK İLE ENERJİ DAĞITIM SİSTEMLERİ ANALİZİ

3.1. Matlab Simulink Yazılım Programının Avantajları ve Kullanım Alanları

Simulink dinamik sistemleri modellemeye ve simulasyonu (benzetimini) gerçekleştirmeye yarayan bir yazılım programıdır. Matlab kontrol, görüntü işleme, istatistik, optimizasyon, bulanık mantık, sinir ağları, sayısal işaret işleme, güç sistemleri, filtre dizaynı, genetik algoritma, grafik, veritabanı, web sunucusu, finans vb. gibi bir çok alanda güvenli bir şekilde kullanılabilecek araç kutuları (toolbox) içerir. Bu araç kutuları matlab simulinkte kullanılır.

Matlab Simulinkte araç kutuları yardımıyla bir çok problem çözülmekte, güçlü ve kullanışlı grafik çizim imkanları sunulmaktadır. Bu programlama dili sayısal analiz anlamında matematiksel ihtiyaçları gideriyor, mesleki problemleri rahatlıkla çözebilecek bir altyapı hazırlıyor. Çok teferruata girmemesi, basit kullanışlı ve karmaşık problemleri kolaylaştırması bakımından iyi bir seçim olarak ön plana çıkıyor. Matlab simulink bu özellikleriyle mühendislik alanlarında kullanılabilecek önemli yazılım programlarından biri olarak ön plana çıkıyor [1].

3.2. Adapazarı Tedaş Ada Trafo – Stadyum Dağıtım Sisteminin Simulink Ortamında Gerçekleştirilmesi

Bu bölümde Sakarya Elektrik Dağıtım A.Ş nin, Sakarya İl Müdürlüğü 'nün 154 kV / 33.6 kV ana indirici merkez (Ada Trafo) ve stadyum da bulunan trafo merkezinden İmam Hatip Lisesi, Ahmet Akkoç, Kraas, Katlı Pazar, Gökçe Sokak, Lüleci Sokağı, Yuvam Sokağı ve Askerlik Şubesi yakınında bulunan trafolara elektrik enerjisinin dağıtılması incelenecektir [4]

Şekil 3.1. Ada Trafo - Stadyum Enerji Dağıtım Şebekesi

3.2.1. Stadyum dağıtım sisteminde bulunan trafolar

Sakarya Şehri'ne elektrik enerjisi sağlayan iki paralel bağlı trafodan birisi Ada Trafo (154/33.6 kV) çevirme oranı, S=100 MVA değerindedir. 1- İmamhatip Lisesi Civarında Bulunan Trafonun Parametreleri: DYN=11 34,5/0,4 kV COS Ø=0,935 2-Ahmet Akkoç İlköğretim Okulu Civarında Bulunan Trafonun Parametreleri:
DYN=11 34.5/0,4 kV COS Ø=0,935
KADEME=5 S=1000 kVA

3-Kraas Hipermarket Civarında Bulunan Trafonun Parametreleri: DYN=11 34.5/0,4 KV COS Ø=0,936 KADEME=5 S=1000 kVA

4-Katlı Pazar Civarında Bulunan Trafonun Parametreleri:

DYN=11 34.5/0,4 kV COS Ø=0,935 KADEME=5 S=1000 kVA

5-Askerlik Şubesi Civarında Bulunan Trafonun Parametreleri:

DYN=11 34.5/0,4 kV COS Ø=0,933 KADEME=6 S=1000 kVA

6-Yuvam Sokak Civarında Bulunan Trafonun Parametreleri:

DYN=11 34.5/0,4 kV COS Ø=0,935 KADEME=6 S=1000 kVA

7-Lüleci Sokak Civarında Bulunan Trafonun Parametreleri:

7.1- DYN=11 34.5/0,4 kV COS Ø=0,934
KADEME=5 S=1000 kVA
7.2- DYN=11 34.5/0,4 kV COS Ø=0,934
KADEME=5 S=1000 kVA

8-Gökçe Sokak Civarında Bulunan Trafonun Parametreleri:

DYN=11 34.5/0,4 kV COS Ø=0,935 KADEME=5 S=400 kVA S=Trafo Görünür Gücü,

P= Aktif Güç,

Q_L= İndüktif Reaktif Güç,

1-İmamhatip civarındaki trafo gücü=S=400 kVA

P=400*cos Ø=400*0.935=374 kW, QL=400*sin20.771=141.859 kVAR

🙀 Block Paran	neters: Three-	Phase Parallel RI	LC L 🖻	×
– Three-Phase F	Parallel RLC Loa	ad (mask) (link)		h
Implements a t	nree-phase par	allel RLC load.		
Parameters				
Configuration	r' (grounded)		-	
Nominal phase	e-to-phase volta	ige Vn (Vrms)		
400				
Nominal freque	ency fn (Hz):			Ĩ
50				
Active power f	° (W):			
374e3				
Inductive read	tive Power QL	(positive var):		
141.859e3				
Capacitive rea	ctive power Qo	: (negative var):		U
Q				
Measurements	None		-	
ОК	Cancel	Help	Apply	

Şekil 3.2. İmamhatip Civarındaki Trafonun Müşterinin Çektiği Aktif ve Reaktif Güçler ve 3 Faz Yükün Blok Parametreleri

2-Ahmet Akkoç civarındaki trafo gücü=S=1000 kVA

P=1000*cos Ø=1000*0.935=935 kW, QL=1000*sin 20.771=354.647 kVAR

🙀 Block Parameters: Three-Phase Parallel RLC L
Three-Phase Parallel RLC Load (mask) (link)
Implements a three-phase parallel RLC load.
Parameters
Configuration Y (grounded)
Nominal phase-to-phase voltage Vn (Vrms)
400
Nominal frequency fn (Hz):
50
Active power P (W):
935e3
Inductive reactive Power QL (positive var):
354.647e3
Capacitive reactive power Qc (negative var):
Q
Measurements None
OK Cancel Help Apply

Şekil 3.3. Ahmet Akkoç Civarındaki Trafonun Müşterinin Çektiği Aktif ve Reaktif Güçler ve 3 Faz Yükün Blok Parametreleri

3-Kraas civarındaki trafo gücü=S=1000 kVA

 $P=1000*\cos \emptyset=1000*0.936=936 \text{ kW}, Q_L=1000*\sin 20.609=351.999 \text{ kVAR}$

Block Parameters: Three-Phase Parallel RLC L 🔜	-
Three-Phase Parallel RLC Load (mask) (link)	f
Implements a three-phase parallel RLC load.	
Parameters	
Configuration Y (grounded)	
Nominal phase-to-phase voltage Vn (Vrms)	
400	
Nominal frequency fn (Hz):	Ξ
50	
Active power P (W):	
936e3	
Inductive reactive Power QL (positive var):	
351.999e3	
Capacitive reactive power Qc (negative var):	
0	Ш
Measurements None	
OK Cancel Help Apply	

Şekil 3.4. Kraas Civarındaki Trafonun Müşterinin Çektiği Aktif ve Reaktif Güçler ve 3 Faz Yükün Blok Parametreleri

4-Katlı Pazar civarındaki trafo gücü S=1000 kVA

 $P{=}1000{*}cos \not 0{=}1000{*}0.935{=}935 \text{ kW}, Q_{L}{=}1000{*}sin \ 20.771{=}354.647 \text{ kVAR}$
🙀 Block Parameters: Three-Phase Parallel RLC L 💻								
Three-Phase Parallel RLC Load (mask) (link)								
Implements a three-phase parallel RLC load.								
Parameters								
Configuration Y (grounded)								
Nominal phase-to-phase voltage Vn (Vrms) 400								
Nominal frequency fn (Hz): 50								
Active power P (W): 935e3								
Inductive reactive Power QL (positive var): 354.647e3								
Capacitive reactive power Qc (negative var): 0								
Measurements None								
OK Cancel Help Apply								

Şekil 3.5. Katlı Pazar Civarındaki Trafonun Müşterinin Çektiği Aktif ve Reaktif Güçler ve 3 Faz Yükün Blok Parametreleri

5-Askerlik Şubesi civarındaki trafo gücü S=1000 kVA

P=1000*cos Ø=1000*0.933=933 kW. QL=1000*sin 21.092=359.876 kVAR

😝 Block Parameters: Three-Phase Parallel KLC L.	. 🚥
Three-Phase Parallel RLC Load (mask) (link)	
Implements a three-phase parallel RLC load.	
Parameters	
Configuration Y (grounded)	-
Nominal phase-to-phase voltage Vn (Vrms)	
400	
Nominal frequency fn (Hz):	
50	
Active power P (W):	
933e3	
Inductive reactive Power QL (positive var):	
359.876e3	
Capacitive reactive power Qc (negative var):	
0	
Measurements None	-
OK Cancel Help /	Apply

Şekil 3.6. Askerlik Şubesi Civarındaki Trafonun Müşterinin Çektiği Aktif ve Reaktif Güçler ve 3 Faz Yükün Blok Parametreleri

6-Yuvam Sokak civarındaki trafo gücü S=1000 kVA

P=1000*cos Ø=1000*0.936=936 kW, QL=1000*sin 20.609=354.647 kVAR

Block Parameters: Three-Phase Parallel RLC L 🔜							
Three-Phase Parallel RLC Load (mask) (link)							
Implements a three-phase parallel RLC load.							
Parameters							
Configuration Y (grounded)							
Nominal phase-to-phase voltage Vn (Vrms)							
400							
Nominal frequency fn (Hz):							
50							
Active power P (W):							
935e3							
Inductive reactive Power QL (positive var):							
354.647e3							
Capacitive reactive power Qc (negative var):							
U							
OK Cancel Help Apply							

Şekil 3.7. Yuvam Sokak Civarındaki Trafonun Müşterinin Çektiği Aktif ve Reaktif Güçler ve 3 Faz Yükün Blok Parametreleri

7-Lüleci sokak civarındaki 2 adet 1000 kVA 'lık trafo S=1000 kVA

Q_L=1000*sin 20.932=359.259*2=714.546 kVAR

🙀 Block Parameters: Three-Phase Parallel RLC Load4 🛛 💻	_ ک						
Three-Phase Parallel RLC Load (mask) (link)	h						
Implements a three-phase parallel RLC load.							
Parameters							
Configuration Y (grounded)							
Nominal phase-to-phase voltage Vn (Vrms)							
400							
Nominal frequency fn (Hz):							
50							
Active power P (W):							
1868e3							
Inductive reactive Power QL (positive var):							
714.546e3							
Capacitive reactive power Qc (negative var):							
0	L						
Measurements None							
OK Cancel Help Apply							

Şekil 3.8. Lüleci Sokak Civarındaki Trafonun Müşterinin Çektiği Aktif ve Reaktif Güçler ve 3 Faz Yükün Blok Parametreleri

8-Gökçe sokak civarındaki trafo gücü S=400 kVA

P=400*cos Ø=1000*0.935=374 kW QL=400*sin 20.771=141.859 kVAR

🙀 Block Parameters: Three-Phase Parallel RLC L 🗮	ζ					
Three-Phase Parallel RLC Load (mask) (link)	h					
Implements a three-phase parallel RLC load.						
Parameters	1					
Configuration Y (grounded)						
Nominal phase-to-phase voltage Vn (Vrms)						
400						
Nominal frequency fn (Hz):						
50						
Active power P (W):						
374e3						
Inductive reactive Power QL (positive var):						
141.859e3						
Capacitive reactive power Qc (negative var):						
0	ľ					
Measurements None						
OK Cancel Help Apply						

Şekil 3.9. Gökçe Sokak Civarındaki Trafonun Müşterinin Çektiği Aktif ve Reaktif Güçler ve 3 Faz Yükün Blok Parametreleri

3.2.2. XLPE yalıtkanlı tek damarlı orta gerilim kabloları

3.2.2.1. Yapısı

- 1. Bakır iletken
- 2 .İç yarı iletken tabaka
- 3. XLPE izole
- 4. Dış yarı iletken tabaka
- 5. Yarı iletken krep kağıdı
- 6 .Konsantrik iletken
- 7. Bakır bant
- 8. Koruma bandı
- 9. PVC dış kılı

3.2.2.2. Kullanıldığı yerler

Bu kablolarda dielektrik kayıpları küçüktür. Endüstri bölgelerinin ve yerleşim merkezlerinin elektrik enerjisi ile beslenmesinde, yük artışı beklenen şebekelerde, dahilde, hariçte, toprak altında ve kablo kanallarında kullanılır [5].

Anma gerilimi :	Test gerilimi AC:
U0/U=3.6/6 kV	11 kV
U0/U=6/10 kV	15 kV
U0/U=8.7/15 kV	22 KV
U0/U=20.3/35 kV	51 kV

3.2.3. Teknik bilgiler

Maksimum işletme sıcaklığı 90°C, maksimum kısa devre sıcaklığı 250°C aşağıdaki akım taşıma kapasiteleri toprak sıcaklığı 20°C hava sıcaklığı 30°C, 1 K.m/W ve 0.70 yükleme derecesi şartlarında geçerlidir [5].

20.3/35 kV												
				1000 m.	20°C'da			Akım taşıma kapasitesi				
Nominal Kesit		Dış çap yaklaşık	Net ağırlık yaklaşık	kablo için sevk makara tipi	iletken DC direnci (max.)	Çalışm indükt yaklaş	a ansı ık	Çalışma kapasitesi yaklaşık Topra		akta	Havada	
mm2		mm	kg/km	m	Ω / km	mH/km	mH/km	MF/km		A A		A A
1x35/16	rm	34	1320	180	0.524	0.77	0.51	0.11	214	192	233	202
1x50/16	rm	35	1480	180	0.387	0.75	0.48	0.12	251	226	279	241
1x70/16	rm	37	1740	200	0.268	0.71	0.46	0.14	306	276	348	299
1x95/16	rm	38	2040	200	0.193	0.68	0.44	0.15	363	329	421	362
1x120/16	rm	40	2350	210	0.153	0.66	0.42	0.16	410	373	483	416
1x150/25	rm	41	2680	220	0.124	0.64	0.40	0.17	449	415	540	469
1x185/25	rm	43	3100	220	0.0991	0.62	0.39	0.18	503	468	615	536
1x240/25	rm	45	3760	220	0.0754	0.60	0.37	0.20	576	541	718	630

Tablo 3.1. Xlpe Yalıtkanlı Tek Damarlı Orta Gerilim Kablosu

Tezde 1x95/16 mm2 ve 1x240/25 mm2 nominal kesitinde ve OOO şeklinde montaj edilen kablolar kullanılmıştır.

3.2.4. A.C. güç kaynağı, hat parametreleri, kesicilerin değeri ve simulink modeli

💓 Block Parameters: AC Voltage Source 🛛 🔤	<u> </u>
AC Voltage Source (mask) (link)	'nŕ
Ideal sinusoidal AC Voltage source.	
Parameters	-
Peak amplitude (V):	
154000*sqrt(2)/sqrt(3)	
Phase (deg):	
0	
Frequency (Hz):	
50	Ш
Sample time:	
0	
OK Cancel Help Apply	

Şekil 3.10. Ada Trafo Girişine Bağlanan A.C Güç Kaynağı Blok Parametreleri

Block Parameters: AC Voltage Source2
AC Voltage Source (mask) (link)
Ideal sinusoidal AC Voltage source.
Parameters
Peak amplitude (V):
154000*sqrt(2)/sqrt(3)
Phase (deg):
120
Frequency (Hz):
50
Sample time:
OK Cancel Help Apply

Şekil 3.11. Ada Trafo Girişine Bağlanan A.C Güç Kaynağı 120 Derece Faz Farkı Uygulanması Blok Parametreleri

1	🙀 Block Parameters: AC Voltage Source1
	AC Voltage Source (mask) (link)
	Ideal sinusoidal AC Voltage source.
	Parameters
	Peak amplitude (V):
	154000*sqrt(2)/sqrt(3)
	Phase (deg):
	240
	Frequency (Hz):
	50
1	Sample time:
	Measurements None
	OK Cancel Help Apply

Şekil 3.12. Ada Trafo Girişine Bağlanan A.C Güç Kaynağı 240 derece Faz Farkı Uygulanması Blok Parametreleri

🙀 Block Param	eters: B1	Take-	<u> </u>					
– Breaker (mask)	(link)		ſ					
Implements a circuit breaker with internal resistance Ron. Ron model and cannot be set to zero.								
When the external control mode is selected, a Simulink logica control the breaker operation. When the signal becomes great breaker closes instantaneously. When it becomes zero, the br next current zero-crossing.								
Parameters								
Breaker resistar	nce Ron (Ohm):	:						
0.01	0.01							
Initial state (0 for 'open' , 1 for 'closed'):								
0								
Snubber resista	nce Rs (Ohms)	:						
1e6								
Snubber capac	itance Cs (F):							
inf								
Switching times	Switching times (s):							
0								
External control of switching times								
Measurements None								
<u> </u>			•					
OK	Cancel	Help	Apply					

Şekil 3.13. Sistemde Kullanılan Herhangi Bir Kesici Blok Parametreleri

Ada Trafo - Stadyum elektrik dağıtım sisteminde tüm kesicilerde şekil 3.13.'deki blok parametreleri kullanılmıştır.

Table 2.2 Ada	Trofo Stodymm	Enorii Doğutum	Sistemindo Uot	Magafa dağarlari
1 auto 5.2. Aua	TIAIO Stauvuili	Ellern Dagitinn	Sistemmue nat	wiesale degenen

Ada Tm-Kapalı Salon Arası	2640 mt
Kapalı Salon-Yazlık Arası	1300 mt
Yazlık-İmamhatip Arası	300 mt
İmamhatip-Ahmet Akkoç Arası	550 mt
Ahmet Akkoç-Kraas Arası	500 mt
Kraas-Katlı Pazar Arası	350 mt
Katlı Pazar-Askerlik Şubesi	
Arası	300 mt
Yazlık-Gökçe Sokak Arası	350 mt
,	
Gökçe Sokak-Lüleci Arası	300 mt
Lüleci-Yuvam Arası	300 mt
Yuvam-Askerlik Şubesi Arası	400 mt

Şekil 3.14. Enerji Dağıtım Sisteminde Tüm Trafolar Arası Kullanılan Üç Faz Pi Modeli

Şekil 3.15. Pi Eşdeğer Devre Modeli (Pi Section Line)

Bir iletim hattı için, direnç, endüktans ve kapasitans aynı tarzda bu hat boyunca sınıflanır. Bu sınıflanan iletim hattının şekil 3.15.'de gösterilen simulink modeli elde edilir [1].

Block Parameters: Pi Section Line
Pi Section Line (mask) (link)
PI section transmission line.
Parameters
Frequency used for R L C specification (Hz)
50
Resistance per unit length (Ohms/km):
0.0754
Inductance per unit length (H/km):
0.6e-3
Capacitance per unit length (F/km):
0.2e-6
Length (km):
3.94
Number of pi sections:
1
OK Cancel Help Apply

Şekil 3.16. 1*240 mm2 Kesitinde Kullanılan Kablonun Pi Modelinde Kullanılan Blok Parametreleri

Ada Trafo-Stadyum elektrik dağıtım sisteminde şekil 3.16.'daki blok parametreleri kullanılmıştır.

Ada Trafo-Stadyum elektrik dağıtım sisteminde tüm trafolar arası Şekil 3.17. deki blok parametreleri kullanılmıştır.

Block Parameters: Pi Section Line	— X
Pi Section Line (mask) (link)	
PI section transmission line.	
Parameters	
Frequency used for R L C specification	(Hz)
50	
Resistance per unit length (Ohms/km):	
0.193	
Inductance per unit length (H/km):	
0.68e-3	
Capacitance per unit length (F/km):	
0.15e-6	
Length (km):	
0.3	
Number of pi sections:	
UK Cancel He	Ip Apply

Şekil 3.17. 1*95 mm2 Kesitinde Kullanılan Kablonun Pi Modelinde Kullanılan Blok Parametreleri

Frequency Used For RLC Specification (Hz) : Hatta kullanılan RLC için kullanılan frekans

Resistance Per Unit Length (Ohms/km) : Hattın birim uzunluk başına direnci

Inductance Per Unit Length (H/km) : Hattın birim uzunluk başına endüktansı

Capacitance Per Unit Length (F/km): Hattın birim uzunluk başına kapasitansı

Length(km): Hattın uzunluğu kilometre cinsinden

Number Of Pi Section: Pi modeli sayısı

3.2.5. 400 kVA - 630 kVA - 1000 kVA - 100 MVA 'lık transformatörlerin analizi, test raporlarının incelenmesi, kısa devre ve boşta çalışma karakteristikleri ve karakteristiklerin simulinkte incelenmesi

Ada trafo stadyum dağıtım sisteminin simulink ortamında modellenebilmesi için S=400 kVA, 630 kVA, 1000 kVA gücünde olan trafoların R_1 (Primer Sargı Direnci), L_1 (Primer Sargı Endüktansı), R_2 (Sekonder Sargı Direnci), L_2 (Sekonder Sargı Endüktansı) ve R_m (Mıknatıslanma Direnci), X_m (Mıknatıslanma endüktansı) değerlerini her bir trafo gücü için ayrı ayrı inceleyerek hesaplamak gerekir. Daha sonra bulunacak bu değerler matlab simulinkte simulink library browser içindeki Sim Power Systems Elements içindeki Three Phase Transformer (üç fazlı trafo) Two Windings (İki Sarımlı) trafo kutucuğuna girmek gerekir. Bu değerler trafo araç kutusunda yerine konulur.

S=400 kVA, 630 kVA, 1000 kVA ve 100 MVA görünür gücündeki transformatörlerin kısa devre testi yapılarak R_1 (Primer Sargı Direnci), L_1 (Primer Sargı Endüktansı), R₂ (Sekonder Sargı Direnci), L₂ (Sekonder Sargı Endüktansı) değerleri bulunacaktır. Bu değerler bulunduktan sonra Matlab Simulinkte transformatörlerin blok parametreleri üzerine yazılacaktır. Açık devre testi yapılarak transformatörler için R_m (Mıknatıslanma Direnci), X_m (Mıknatıslanma ise değerleri bulunacak Simulinkteki endüktansı) ve daha sonra Matlab transformatörlerin blok parametrelerine bu değerler yazılacaktır. Örnek olarak S=1000 kVA için kısa devre ve açık devre testleri sonunda bulunan değerler Şekil 3.22 de gösterilmiştir.

3.2.5.1. S=1000 kVA transformatörlerin analizi, test raporlarının incelenmesi, kısa devre ve boşta çalışma karakteristiklerinin bulunması

Şekil 3.18. S=1000 kVA lık Transformatörün Üçgen-Yıldız Bağlantı şekilleri

Şekil 3.19. S=1000 KVA lık Transformatörün Eşdeğer Devresi

Primer Devrenin R_Y ve X_Y değerlerinin denkliği R'_Y ve X'_Y dir. R_m ve X_m transformatörün magnetik parametreleridir.

R_m:Mıknatıslanma direnci, X_m: Mıknatıslanma Reaktansı,

Nominal voltaj değeri 34500 V, Nominal Güç: 1000 kVA, Frekans 50 Hz.

Kısa Devre Testi:

 R_m ve X_m gibi magnetik değerler Şekil 3.19.'daki eşdeğer devreye paralel olarak bağlanmaktadır. Bu değerler R_Δ , X_Δ , R'_Y ve X'_Y değerlerinden çok çok küçüktür. İhmal edilir.

Verilen değerler

$$\sum_{1}^{3} P_{sci} = 9092 Watt Psci:Trafonun Kısa devre gücü (3faz)$$

 $u_k = 6$, (Bağıl Gerilim düşümü),

 $I_{sc} = 16.74A$ (K1sa devre ak1m1),

$$\frac{\sum_{i=1}^{3} P_{sci}}{3} = 9092/3 = 3030 = 1195 * I_{sc} * \cos \phi \Rightarrow \cos \phi = 0.151 \Rightarrow \phi = 81.28^{\circ}$$

Δ: Trafonun Üçgen Bağlantı Gösterimi

Y: Trafonun Yıldız Bağlantı Gösterimi

VP P: Faz faz arası gerilim değeri

 $P_{\rm s\ c\ i}$: Kısa devre gücü $I_{\rm s\ c}$:Kısa devre akımı eq: indisi denkliği gösteriyor.

Şekil 3.20. S=1000 kVA lık Transformatörün Sekonderinin Kısa Devre Edilmesi

$$Z_{eq} = \frac{V_{phase}}{I_{sc}} = \frac{1195}{16.74} = 71.38\Omega$$
 (K1sa devre empedansi)

 $R_{eq} = Z_{eq} \cos \phi = 71.38 * \cos 81.28^{\circ} = 10.821 \Omega$

$$X_{eq} = Z_{eq} \sin \phi = 71.38 * \sin 81.28^{\circ} = 70.55\Omega$$

$$\mathbf{R}_{\Delta} / 3 \cong \mathbf{R}_{Y}^{'}; \ \mathbf{X}_{\Delta} / 3 \cong \mathbf{X}_{Y}^{'}$$

$$R_{\Delta}/3 = R_{eq}/2 \Longrightarrow R_{\Delta} = 16.23\Omega; X_{\Delta}/3 = X_{eq}/2 \Longrightarrow X_{\Delta} = 105.825\Omega$$

$$X_{\Delta}/(2*pi*50) = L_{\Delta} = 0.336$$
 H

$$R_{\Delta}/3 \cong R'_{Y} \implies R'_{Y} = \frac{16.23}{3} = 5.41\Omega; \ X_{\Delta}/3 \cong X'_{Y} \implies X'_{Y} = \frac{105.825}{3} = 35.275\Omega$$

$$R'_{Y} = (\frac{V_{\Lambda}}{V_{Y}})^{2} R_{Y} \Rightarrow (\frac{34500}{400})^{2} R_{Y} = 5.41\Omega \Rightarrow R_{Y} = 7.27 * 10^{-4} \Omega$$

$$X'_{Y} = (\frac{V_{\Delta}}{V_{Y}})^{2} X_{Y} \Rightarrow (\frac{34500}{400})^{2} X_{Y} = 35.275\Omega \Rightarrow X_{Y} = 0.00474\Omega$$

$$X_{Y}/(2*pi*50) = L_{Y} = 1.508*10^{-5} H$$

$$R_{\Delta} = 16.23 \Omega$$
, $L_{\Delta} = 0.336 H$, $R_y = 7.27e-4$ ve $L_y = 1.508e-5$

Bulunan değerler Şekil 3.22 S=1000 kVAlık transformatör için yerine konulmuştur.

Açık Devre Testi:

Verilen Değerler

$$\sum_{1}^{3} P_{o} = 1908.7 Watt \qquad P_{0} = Trafonun boşta çalışma gücü (Üç faz),$$

 $I_o = 13.396A$ (Boşta çalışma akımı),

$$\frac{\sum_{i=1}^{3} P_{o_i}}{3} = 1908.7/3 = 636.23 W = \frac{400}{\sqrt{3}} * I_o * \cos \phi_o \Rightarrow \cos \phi_o = 0.205 \Rightarrow \phi = 78.132^{\circ}$$

Şekil 3.21. S=1000 kVA lık Transformatörün Boşta Çalışma Durumunda Eşdeğer Devre

$$R_{m} >> R'_{Y}; X_{m} >> X'_{Y}$$

$$Z_{o} = \frac{V_{Yphase}}{Io} = \frac{400/\sqrt{3}}{13.396} = 17.235\Omega$$
 (boşta çalışma empedansı)

$$R_{o} = \frac{400 / \sqrt{3}}{13.396 * \cos \phi_{o}} = 83.826 \Omega = \frac{R_{m}}{3}$$

$$X_{o} = \frac{400 / \sqrt{3}}{13.396 * \sin \phi_{o}} = 17.617 \Omega = \frac{X'_{m}}{3}$$

$$\frac{R_{m}}{3} = (\frac{34500}{400})^{2} \frac{R_{m}}{3} = (\frac{34500}{400})^{2} \frac{83.826}{3} \Longrightarrow R_{m} = 1870.758 \text{k}\Omega$$

$$\frac{X_{m}}{3} = (\frac{34500}{400})^{2} \frac{X_{m}}{3} = (\frac{34500}{400})^{2} \frac{17.617}{3} \Longrightarrow X_{m} = 393.162 \text{k}\Omega$$

$$L_m = X_m / (2 * pi * 50) = 393162 / (2 * pi * 50) = 1251.47 H = L_m$$

 $L_m = 1251.47 * 3/sqrt(3)$

L_m=1251.47*3/sqrt(3) [3]

$$R_m = 623583*3 = 1870.758 \text{ k}\Omega$$
, $L_m = (1251.47*3)/\sqrt{3} \text{ H}$

Bulunan bu değerler Şekil 3.22 de S=1000 kVAlık transformatör için yerine konulmuştur.

3.2.5.2. S=1000 kVA transformatörün matlab simulink modeli

Şekil 3.22. S=1000 kVA ve f=50 Hz lik trafonun blok parametreleri

S=1000 kVA değerindeki trafoyu simulinkte oluşturmak için ele alalım.

Units (birimler) SI veya PU birim değerler sistemlerinde olmaktadır. Tezde SI birim sistemi kullanılmıştır.

Nominal Power(güç)=1000 kVA, Nominal Frequancy (frekans)=50 Hz

 V_1 : Ph-Ph(Faz-Faz) rms(etkin değeri)=34500 V,

V₂ : Ph-Ph(Faz-Faz) rms(etkin değeri)=400 V alınır.

Winding 1 (ABC) connection:Delta (D11), Sarım 1 bağlantı biçimi üçgen tip

Winding 2 (abc) connection:Yn, Sarım 2 bağlantı biçimi yıldız nötrdür.[1]

3.2.5.3. S=630 kVA transformatörlerin analizi, test raporlarının incelenmesi, kısa devre ve boşta çalışma karakteristiklerinin bulunması

Şekil 3.23. S=630 kVA lık Transformatörün Üçgen-Yıldız Bağlantı Şekilleri

Şekil 3.24. S=630 kVAlık transformatörün eşdeğer devresi

Primer Devrenin R_y ve X_y değerlerinin denkliği R'_y ve X'_y dir. R_m ve X_m transformatörün magnetik parametreleridir.

R_m: Mıknatıslanma direnci X_m: Mıknatıslanma Reaktansı Nominal voltaj değeri 34500 V, Nominal Güç: 630 kVA, Frekans 50 Hz

Kısa Devre Testi:

 R_m ve X_m gibi magnetik değerler Şekil 3.24 deki eşdeğer devreye paralel olarak bağlanmaktadır. Bu değerler R_{Δ} , X_{Δ} , R'_{Y} ve X'_{Y} değerlerinden çok çok küçüktür. İhmal edilir.

 $\sum P_{k \ d \ i} = 5728$ (3 faz toplam kısa devre gücü) $P_{k \ d \ i} / 3 = 5728/3 = 1909.33$ Watt $P_{k \ d \ i} = 10.542$ A (Kısa devre akımı) 1909.33=855.503*10.542*cos Ø cos Ø= 0.2117 Ø =77.778°

Şekil 3.25. S=630 kVA lık Transformatörün Sekonderinin Kısa Devre Edilmesi

$$V_{f a z} = (34500/\sqrt{3}) * \% 4.295 = 855.503 V$$

$$Z_{e q} = V_{f a z} / I_{k d} = 855.503/10.542 = 81,1518 \Omega$$
 (K1sa devre empedansı)

 $R_{e q} = Z_{e q}^* \cos \emptyset = 81.1518 * 0.2117 = 17.1798 \Omega$

$$X_{e q} = Z_{e q}^* \sin \emptyset = 81.1518 * \sin 77.778^\circ = 79.3124 \Omega$$

 $R_{\Delta}/3 \cong R'_{Y}$ $X_{\Delta}/3 \cong X'_{Y}$

$$R_{\Delta}/3 = R_{e q}/2$$
 $R_{\Delta}/3 = 17.1798/2$ $R_{\Delta} = 25.7697 \Omega$

 $X_{\Delta}/3 = X_{e \ a}/2$ $X_{\Delta}/3 = 79.3124/2$ $X_{\Delta} = 118.9686 \Omega$

$$X_{\Delta}/(2*pi*50) = L_{\Delta}$$
 $L_{\Delta} = 0.37888 H$

$$R_{\Delta}/3 \cong R'_{Y}$$
 $R'_{Y} = 25.7697/3 = 8.5899 \Omega$

$$X_{\Delta}/3 \cong X'_{Y}$$
 $X'_{Y} = 118.9686/3 = 39.6562$ Ohm

$$R'_{Y} = (V_{\Delta}/V_{y}) * R_{y}$$
 (34500/400)² * $R_{y} = 8.5899$ $R_{y} = 1.1547e-3$

$$X'_{Y} = (V_{\Delta}/V_{y}) * X_{y}$$
 (34500/400)² * $X_{y} = 39.6562$ $X_{y} = 5.33e-3$

$$X_y$$
/ (2*pi*50)= 5.33*10e-3/314= 1.69745e-5 H [3]

Açık Devre Testi

 $\sum P_0 = 1354.1$ Watt (3 faz toplam boşta çalışma gücü)

$$P_{0i}/3 = 1354.1/3 = 451.367 \text{ W}$$
 $I_0 = 7.072 \text{ A(Boşta çalışma akımı)}$

 $451.367 = (400/\sqrt{3}) * I_0 * \cos \emptyset$ $\cos \emptyset = 451.367/1633.2076 = 0.276368$

Ø=73.9564°

Şekil 3.26. S=630 kVA lık Transformatörün Boşta Çalışma Durumunda Eşdeğer Devre

 $R_{m} >> R'_{Y}; X_{m} >> X'_{Y}$ $Z_{0} = V_{y f a z} / I_{0} = (400 / \sqrt{3}) / 7.072 = 32.6555 \Omega$

 $R_0 = (V_{y \ f \ a \ z}) / (I_0 \cos \emptyset) = 230.94 / 1.946183 = 118.663 \ \Omega = R'_m / 3 \qquad R'_m = 355.989 \Omega$

 $X_0 = (V_{y \ f \ a \ z}) / (I_0 * \sin \emptyset) = 230.94/6.767714 = 34.12378\Omega = X_m'/3 X_m' = 102.37134 \Omega$

$$R_m/3 = (34500/400)^2 * R_m'/3 \qquad R_m = 2648224.42 \Omega$$

 $X_m/3 = (34500/400)^2 * X_m'/3 \qquad X_m = 761546.7965 \Omega$

 $L_m = X_m / (2*pi*50) = 2425.308269 \text{ H}$ $L_m = 2425.308269*3/(\text{sqrt}(3))$

- U_1 : Trafo hat gerilimi(primer)
- U₂: Trafo hat gerilimi(sekonder)
- Uk: Trafonun bağıl gerilim düşümü
- Ib: Trafonun bağıl akım yüzdesi

 U_{1ha} * % U_k =34500 * % 4.2954=1481.913 V

$$U_{2 h a t} * \% U_k = 400 * \% 4.2954 = 17.1816 V$$

$$I_{1\ h\ a\ t} = [630000/(34500*\sqrt{3})] *\% I_b = 10.5429*\%0.778 = 0.082 \text{ A}$$

 $I_{2 h a t} = [630000/(400*\sqrt{3})] * \% I_b = 909.327*\% 0.778 = 7.07456$

3.2.5.4. S=400 kVA transformatörlerin analizi, test raporlarının incelenmesi, kısa devre ve boşta çalışma karakteristiklerinin bulunması

Şekil 3.27. S=400 kVA lık Transformatörün Üçgen-Yıldız Bağlantı Şekilleri

Şekil 3.28. S=400 kVA lık Transformatörün Eşdeğer devresi

Primer Devrenin R_Y ve X_Y değerlerinin denkliği R'_Y ve X'_Y dir. R_m ve X_m transformatörün magnetik parametreleridir.

R_m:Mıknatıslanma direnci X_m: Mıknatıslanma Reaktansı Nominal voltaj değeri 34500 V. Nominal Güç : 400 kVA. Frekans 50 Hz [3]

Kısa Devre Testi:

Verilen değerler $\sum P_{k \ d \ i} = 4165$ (3 faz toplam kısa devre gücü)

 $P_{k \ d \ i} / 3 = 4165/3 = 1388.33$ Watt $I_{k \ d} = 6.693$ A (K1sa devre ak1m1)

1388.33=975.294*6.693*cosØ

 $\cos \emptyset = 0.21268, \ \emptyset = 77.72^{\circ}$

Şekil 3.29. S=400 kVAlık transformatörün sekonderinin kısa devre durumunda eşdeğer devresi

 $V_{f a z} = (34500/\sqrt{3}) * \% 4.8964 = 975.294 V$

 $Z_{e q} = V_{f a z} / I_{k d} = 975.294/6.693 = 145.7185 \Omega$ (K1sa devre empedansı)

 $R_{e q} = Z_{e q}^* \cos \emptyset = 145.7185 * 0.21268 = 30.9928 \Omega$

 $X_{e} = Z_{e} + \sin \emptyset = 145.7185 + \sin 77.72^\circ = 142.3844 \Omega$

 $R_{\Delta}/3 \cong R'_{Y}$ $X_{\Delta}/3 \cong X'_{Y}$

 $R_{\Delta}/3=R_{e~g}/2$ $R_{\Delta}/3=30.9928/2$ $R_{\Delta}=46.4892 \Omega$

- $X_{\Delta}/3 = X_{e q}/2$ $X_{\Delta}/3 = 142.3844/2$ $X_{\Delta} = 213.5766 \Omega$
- $X_{\Delta}/(2*pi*50) = L_{\Delta}$ $L_{\Delta} = 0.68018 \text{ H}$
- $R_{\Delta}/3 \cong R'_{Y}$ R'_{Y} =46.4892/3=15.4964 Ω
- $X_{\Delta}/3 \cong X'_{Y}$ $X'_{Y} = 213.5766/3 = 71.1922$ ohm
- $R'_{Y} = (V_{\Delta}/V_{y}) * R_{y}$ (34500/400)² * $R_{y} = 15.4964$ $R_{y} = 2.083e-3$

$$X'_{Y} = (V_{\Delta}/V_{y}) * X_{y}$$
 (34500/400)² * $X_{y} = 71.1922$ $X_{y} = 9.57e-3$

$$X_y$$
/ (2*pi*50)= 9.57*10e-3/314= 3.04777e-5 H

 R_{Δ} = 46.4892 Ω , L_{Δ} = 0.68018 H, R_y =2.083e-3 ve L_y =3.04777e-5 H

Bulunan değerler Şekil 3.31 de S=400 kVAlık transformatör için yerine konulmuştur.

Açık Devre Testi

 $\sum P_0 = 1083.6$ Watt (3 faz toplam boşta çalışma gücü)

 $P_{0i}/3 = 1083.6/3 = 361.2 \text{ W}$ I₀= 6.511 A(Boşta çalışma akımı)

 $361.2 \text{ W}=(400/\sqrt{3})*I_0*\cos \emptyset$ $\cos \emptyset = 361.2/1503.65=0.2402$ $\emptyset=76.1^\circ$

Şekil 3.30. S=400 kVA lık transformatörün boşta çalışma durumunda eşdeğer devre

$$\begin{split} &R_{m} >> R_{Y}^{'}; \ X_{m} >> X_{Y}^{'} \\ &Z_{0} = V_{y \ f \ a \ z} / \ I_{0} = (400/\sqrt{3}) / \ 6.511 = 35.469 \ \Omega \\ &R_{0} = (V_{y \ f \ a \ z} \) / \ (I_{0} * \cos \emptyset) = 230.94 / 1.5639 = 147.669 \ \Omega = R_{m}^{\ \prime} / 3 \qquad R_{m}^{\ \prime} = 443.007 \ \Omega \end{split}$$

 $X_0 = (V_{y f a z}) / (I_0 * \sin \emptyset) = 230.94 / 6.32 = 36.541 \Omega = X'_m / 3 X'_m = 109.623 \Omega$

 $R_m/3 = (34500/400)^2 * R_m'/3$ $R_m = 3299556.761 \Omega$

 $X_m/3 = (34500/400)^2 * X''_m /3$ $X_m = 815492.3484 \Omega$

 $L_m = X_m / (2*pi*50) = 2597.10939 \text{ H}$ $L_m = 2597.10939*3 / (sqrt(3) R_m = 3299556.761 \Omega$

 $L_m = (2597.10939*3) / \sqrt{3}$) H

Bulunan bu değerler Şekil 3.31 de S=400 kVAlık transformatör için yerine konulmuştur.

- *U*₁: Trafo hat gerilimi(primer)
- U₂: Trafo hat gerilimi(sekonder)
- Uk: Trafonun bağıl gerilim düşümü
- Ib: Trafonun bağıl akım yüzdesi
- $U_{1 h a t} * \% U_{k} = 34500 * \% 4.8964 = 1689.258 V$

 $U_{2 h a t} * \% U_k = 400 * \% 4.8964 = 19.5856$ V

$$I_{1\ h\ a\ t} = [400000/(34500^*\sqrt{3})] *\% I_b = 6.693^* \% 1.128 = 0.07549 \text{ A}$$

$$I_{2 h a t} = [400000/(400*\sqrt{3})] * \% I_b = 577.35*\% 1.128 = 6.07456$$

3.2.5.5. S=400 kVA transformatörün matlab simulink modeli

S=400 kVA değerindeki trafoyu simulinkte oluşturmak için ele alalım.

Units (birimler) SI veya PU birim değerler sistemlerinde olmaktadır. Tezde SI birim sistemi kullanılmıştır.

Nominal Power(güç)=400 kVA, Nominal Frequancy (frekans)=50 Hz

 V_1 Ph-Ph(Faz-Faz) rms(etkin değeri)=34500 V,

V₂ Ph-Ph(Faz-Faz) rms(etkin değeri)=400 V alınır.

Winding 1 (ABC) connection:Delta (D11), Sarım 1 bağlantı biçimi üçgen tip Winding 2 (abc) connection:Yn, Sarım 2 bağlantı biçimi yıldız nötrdür.[1]

Aşağıda trafonun matlab simulinkte blok parametreleri verilmiştir.

😝 Block Param	eters: imamha	atip	
Three-Phase Transformer (Two Windings) (mask) (link)			
This block implements a three-phase transformer by using three transformers. Set the winding connection to 'Yn' when you way neutral point of the Wye.			
Click the Apply conversion of p	Click the Apply or the OK button after a change to the Units po conversion of parameters.		
Parameters			
Units SI			
Nominal power [400e3, 50]	and frequency	[Pn(VA) , fn(Hz)]
Winding 1 (ABI	C) connection :	Delta (D11)	E
Winding parameters [V1 Ph-Ph(Vrms) , R1(Ohm) , L1(H)] [34500 46.4892 0.68018]			
Winding 2 (abo) connection :	Yn	
Winding param [400 2.083e-3	eters [V2 Ph-Pł 3.04777e-5]	n(Vrms) , R2(Ohrr	n) , L2(H)]
📃 Saturable d	ore		
Magnetization	resistance Rm (Ohm)	
3295556.761			
Magnetization	reactance Lm (H	4)	
2597.10939*3	/sqrt(3)		
Measurements	None		
<u>دارم</u>			
ОК	Cancel	Help	Apply

Şekil 3.31. S=400 kVA ve f=50 Hz lik Trafonun Blok Parametreleri

3.2.5.6. S=100 MVA transformatörlerin analizi, test raporlarının incelenmesi, kısa devre ve boşta çalışma karakteristiklerinin bulunması

Şekil 3.32. S=100 MVA lık Transformatörün Yıldız-Yıldız Bağlantı şekilleri

 $154000\sqrt{3}$

 $33600/\sqrt{3}$

Şekil 3.33. S=100 MVA lık Transformatörün Eşdeğer Devresi

Açık Devre Testi

 $\sum P_{0 i} = 39.635 \text{ kW} (3 \text{ faz toplam boşta çalışma gücü})$

 $P_{0 i}/3 = 39.635/3 = 13212 \text{ kW}$ $I_0 = 0.7904 \text{ A}(\text{Boşta çalışma akımı})$

 $13.212 \text{ kW} = (33600/\sqrt{3}) * I_0 * \cos \emptyset \cos \emptyset = 13.212/15332.9451 = 0.861673$

Ø=30.4969°

Şekil 3.34. S=100 MVA lık Transformatörün Boşta Çalışma Durumunda Eşdeğer Devre

$$R_{m} >> R'_{Y}; X_{m} >> X'_{Y}$$

 $Z_0 = V_{y f a z} / I_0 = (33600 / \sqrt{3}) / 0.7904 = 24543.23 \Omega$ (Boşta çalışma empedansı)

$$R_0 = (V_{y \ f \ a \ z}) / (I_0 \cos \emptyset) = (33600 / \sqrt{3}) / 0.681066 = 28483.243 \ \Omega = R_0$$

 $X_0 = (V_{y \ f \ a \ z}) / (I_0 * \sin \emptyset) = (33600 / \sqrt{3}) / 0.401097 = 48364.782 \Omega = X_0$

$$R_m = (154000/33600)^2 R_0$$
 $R_m = 598256.339 \Omega$

 $X_m = (154000/33600)^2 R_0$ $X_m = 1015844.208 \Omega$

 $L_m = X_m / (2*pi*50) = 3235.172 L_m = 3235.172*3/sqrt(3)$

$$R_m = 598256.339 \,\Omega$$

$$L_m = (3235.172*3)/\sqrt{3}$$
 H

Bulunan bu değerler Şekil 3.36 da S=100 MVAlık transformatör için yerine konulmuştur.

Kısa Devre Testi:

Verilen değerler

 $\sum P_{k \ d \ i} = 2481 \text{ kW}$ (3 faz toplam kısa devre gücü)

 $P_{k \ d}$ / 3= 2481/3= 827 kW I_{k c} = 374.7 A (K1sa devre akimi)

 $\cos \emptyset = 0.20807 \ \emptyset = 78^{\circ}$

Şekil 3.35. S=100 MVA lık Transformatörün Sekonderinin Kısa Devre Durumunda Eşdeğer Devre

 $V_{f a z} = (154000/\sqrt{3}) * \%11.93 = 10607.44 V$

 $Z_{e q} = V_{f a z} / I_{k d} = 10607.44/374.7 = 28.309 \Omega$ (K1sa devre empedansı)

 $R_{eq} = Z_{eq} * \cos \emptyset = 28.309 * 0.20807 = 5.88091 \Omega$

 $X_{e q} = Z_{e q} * \sin \emptyset = 28.309 * \sin 78^\circ = 28.28585 \Omega$

- $R_{y} \cong R'_{y}$ $X_{y} \cong X'_{y}$
- $R_y = R_{e q}/2$ $R_y = 2.94455 \Omega$
- $X_y = X_{e q}/2$ $X_y = 13.832956 \Omega$

 $X_y/(2*pi*50) = L_y$ $L_y = 0.044054$ H

$$\mathbf{R}_{\mathbf{y}} \cong \mathbf{R}_{\mathbf{y}}^{'} \qquad \qquad \mathbf{X}_{\mathbf{y}} \cong \mathbf{X}_{\mathbf{y}}^{'}$$

$$R'_{Y} = (V_{y}/V_{y}) * R_{y}$$
 (154000/33600)² * $R_{y} = 2.94455$ $R_{y} = 0.1401912 \Omega$

$$X'_{y} = (V_{y}/V_{y}) * X_{y}$$
 (154000/33600)² * $X_{y} = 13.832956$ $X_{y} = 0.658583$ H

$$X_y/(2*pi*50) = 9.57*10e-3/314 = 2.0974e-3 H$$

 R_y = 2.94455 Ω , L_y = 0.044054 H, R_y =0.1401912 ve L_y =2.0974e-3 H Bulunan değerler Şekil 3.36 da S=100 MVAlık transformatör için yerine konulmuştur.

$$I_{1 h a t} = [10000000/(154000*\sqrt{3})] = 374.9027 A$$

$$I_{2 h a t} = [10000000/(33600*\sqrt{3})] = 1718.3043 \text{ A } I_{1 h a t} = I_{1 f a z} I_{2 h a t} = I_{2 f a z}$$

$$I1_0 = [10000000/(154000*\sqrt{3})]*\%I_b = 74.9027*\% 0.046 = 0.17245 \text{ A}$$

$$I2_0 = [10000000/(33600*\sqrt{3})]* \% I_b = 1718.3043*\% 0.046 = 0.7904 \text{ A}$$

3.2.5.7 S=100 MVA Transformatörün Matlab Simulink Modeli

S=100 MVA değerindeki trafoyu simulinkte oluşturmak için ele alalım.

Units (birimler) SI veya PU birim değerler sistemlerinde olmaktadır. Tezde SI birim sistemi kullanılmıştır.

Nominal Power(güç)=100 MVA, Nominal Frequancy (frekans)=50 Hz

V₁=Ph-Ph(Faz-Faz) rms(etkin değeri)=154000 V,
V₂=Ph-Ph(Faz-Faz) rms(etkin değeri)=33600 V alınır.
Winding 1 (ABC) connection: Yn,, Sarım 1 bağlantı biçimi üçgen tip
Winding 2 (abc) connection: Yn, Sarım 2 bağlantı biçimi yıldız nötrdür.[1]
Aşağıda trafonun blok parametreleri verilmiştir.

🙀 Block Parameters: ADA TRAFO 📃 🐱			
Three-Phase Transformer (Two Windings) (mask) (link)			
This block implements a three-phase transformer by using three transformers. Set the winding connection to 'Yn' when you wa neutral point of the Wye.			
Click the Apply or the OK button after a change to the Units po conversion of parameters.			
Parameters			
Units SI			
Nominal power and frequency [Pn(VA) , fn(Hz)] [100e6, 50]			
Winding 1 (ABC) connection : Yn			
Winding parameters [V1 Ph-Ph(Vrms) , R1(Ohm) , L1(H)] [154000 2.94455 0.044054]			
Winding 2 (abc) connection : Yn			
Winding parameters [V2 Ph-Ph(Vrms) , R2(0hm) , L2(H)] [33600 0.1401912 2.0974e-3]			
Saturable core			
Magnetization resistance Rm (Ohm) 598256.339			
Magnetization reactance Lm (H)			
3235.172*3/sqrt(3)			
Measurements None			
OK Cancel Help Apply			

Şekil 3.36. S=100 MVA ve f=50 hz lik Trafonun Blok Parametreleri

$I_{1 \text{ hat}} = \frac{S}{\sqrt{3} V_{1 \text{ FF}}}$	$\frac{1000000}{\sqrt{3}*34500}$	16.73 A	Üçgen sargı hat akımı (A)
$I_{2 \text{ hat}} = \frac{S}{\sqrt{3}V_{2 \text{ FF}}}$	$\frac{1000000}{\sqrt{3} * 400}$	1443 A	Yıldız sargı hat akımı (A)
$I_{1 \text{ faz}} = \frac{I_{1 \text{ hat}}}{\sqrt{3}}$	16.734/3	9.66 A	Üçgen sargı akımı (A)
$I_{2faz} = I_{2hat}$	$\frac{1000000}{\sqrt{3} * 400}$	1443 A	Yıldız sargı faz akımı (A)
$I_{1_0} = I_{1hat} * boşta akım yüzdesi$	16.73*(0.928%)	0.1552 A	Üçgen boşta hat akımı (A)
$I_{1_0} = I_{1 \text{ faz}} * \text{ boşta } \text{ akım yüzdesi}$	9.66*(0.928%)	0.0896 A	Üçgen boşta sargı akımı (A)
$I2_{1_0} = I_{2hat} * boşta akım yüzdesi$	1443* (0.928%)	13.39 A	Yıldız sargı boşta hat akımı (A)
$I2_{1_0} = I_{2faz} * boşta akım yüzdesi$	1443* (0.928%)	13.39 A	Yıldız sargı boşta sargı akımı (A) Üçgen sürekli kısa devre
I _{1hat} /(kisa devre geri lim orani)	16.73 /(5.98%)	279.7 A	hat akımı (A)
I _{2hat} /(kısa devre gerilim oranı)	1443 /(5.98%)	24126 A	Yıldız sürekli kısa devre hat akımı (A)
I _{1faz} /(kısa devre geri lim oranı)	9.66 /(5.98%)	161.5 A	Üçgen sürekli kısa devre faz akımı (A)
I _{2 faz} /(kısa devre geri lim oranı)	1443 /(5.98%)	24126 A	Yıldız sürekli kısa devre faz akımı (A)
U _{1hat} *(kısa devre geri lim oranı)	34500*(5.98%)	2064 V	Üçgen hat kısa devre gerilimi (V)
U _{2hat} *(kısa devre geri lim oranı)	400*(5.98%)	23.93 V	Yıldız hat kısa devre gerilimi (V)
U _{1faz} *(kısa devre geri lim oranı)	34500*(5.98%)	1192 V	Üçgen faz kısa devre gerilimi (V)
$U_{2 \text{faz}} * (\text{kus devre geri lim oran1})$	400*(5.98%)	23.93 V	Yıldız faz kısa devre gerilimi (V)
Z _{1faz}	$\frac{\mathrm{U}_{1\mathrm{faz}}}{\mathrm{I}_{1\mathrm{faz}}} = \frac{2064}{9.66}$	213.66	Üçgen kısa devre empedansı
Z _{2faz}	$\frac{U_{2faz}}{\sqrt{3}I_{2faz}} = \frac{23.93}{\sqrt{3}1443}$	0.0096	Yıldız kısa devre empedansı (Ohm)

Tablo 3.3 S=1000 KVA Gücündeki Trafo İçin Trafonun Parametreleri Kullanılarak Adım Adım Trafo Değerleri Hesabı

R _{1faz}	$\left(\frac{P_{\text{ln}}}{3}\right)/I_{\text{lfaz}}^{2} = \left(\frac{9092}{3}\right)/(9.66)^{2}$	32.47	Üçgen kısa devre direnci (ohm)
R _{2faz}	$\left(\frac{P_{1n}}{3}\right)/I_{2 \text{ faz}}^2 = \left(\frac{9092}{3}\right)/(1443)^2$	0.0015	Yıldız kısa devre direnci (ohm)
X _{1 faz}	$\sqrt{Z_{1faz}^2 - R_{1faz}^2}$	211.17	Üçgen kısa devre empedansı (ohm)
L _{1faz}	X _{1faz} /(2*pi*50)	0.6722	Üçgen kısa devre selfi (henry)
X _{2faz}	$\sqrt{Z_{2 \text{ faz}}^2 - R_{2 \text{ faz}}^2}$	0.0095	Yıldız kısa devre empedansı (ohm)
L _{2faz}	X _{2 faz} /(2*pi*50)	0,00003	Yıldız kısa devre selfî (henry)
I _{1fe-s arg 1} (akımın aktif bileşeni)	$\frac{P_o}{3} / U_{1hat} = \frac{1909}{3} / 34500$	0.0184 A	Üçgen faz sargı boşta çalışma aktif akımı(A)
I _{2fe-s arg 1} (akımın aktif bileşeni)	$\frac{P_o}{3} / U_{2s \arg 1} = \frac{1909}{3} / (400 / \sqrt{3})$	2.7554 A	Yıldız faz sargı boşta çalışma aktif akımı(A)
I _{1fe-s arg 1} (akımın aktif bileşeni)	$\frac{P_o}{3} / U_{1hat} = \frac{1909}{3} / 34500$	0.0184 A	Üçgen faz sargı boşta çalışma aktif akımı(A)
I _{1fe – hat} (akımın aktif bileşeni)	$I_{1fe-s \arg 1} * \sqrt{3}$	0.0319 A	Üçgen hat boşta çalışma aktif akımı
R_{1fe} (s arg 1)	$\frac{P_{o}/3}{(I_{fe-s arg 1})^{2}} = \frac{1909/3}{0.0184^{2}}$	1.8705*10 ⁶	Faz başına demir magnetik devre kayıp direnci (ohm)primerden bakılınca gözüken
$R_{2fe}(s \operatorname{arg} 1)$	$\frac{P_{o}/3}{(I_{2 \text{fe}-s \text{ arg } 1})^{2}} = \frac{1909/3}{2.7554^{2}}$	83.81	Faz başına demir magnetik devre kayıp direnci(ohm)sekonderden bakılınca gözüken
cos φ _o (boşta güç katsayısı) (primer=sekonder)	$\cos \phi_{0} = \frac{P_{0}}{\sqrt{3} * 34500} * I_{1-0}$ $\cos \phi_{0} = \frac{1909}{\sqrt{3} * 34500 * 0.1552}$	0.205	(boşta güç katsayısı) (primer=sekonder)
φ ₀	$\cos^{-1}\phi_0$	78.17	Boşta güç katsayısı açısı -derece
X _{1fe} (s arg 1)	34500 /(tan $\phi_0 * I_{2 \text{ fe}}$)	3.94* 10 ⁵	Faz başına demir magnetik devre kayıp empedansı (ohm)
L_{1fe} (s arg 1)	$\frac{X_{1 \text{fe}}(\text{s arg }1)}{2*\text{pi}*50}$	1.277* 10 ³	Faz başına demir magnetik devre kayıp selfi (henry)
X _{2 fe} (s arg 1)	231 /(tan $\phi_0 * I_{2fe}$)	17.59	Faz başına demir magnetik devre kayıp empedansı (ohm) sekonderden bakıldığında gözüken değer

Tablo 3.3 (Devam)

L_{2fe} (s arg 1)	$\frac{X_{2fe}(s \arg 1)}{2*pi*50}$	0.056 H	Faz başına demir magnetik devre kayıp selfi (henry)sekonderden gözüken
Z _{lfe}	$X_{1fe} * R_{1fe} / (X_{1fe} + R_{1fe})$	325430	Üçgen magnetik devre empedansı
Z _{2fe}	$X_{2fe} * R_{2fe} / (X_{2fe} + R_{2fe})$	14.54 ohm	Yıldız magnetik devre empedansı
$I_{1Xfe-hat} \\ (akımın reaktif bileşeni)$	V_{1hat} / X_{1fe}	0.0876 A	Yıldız faz sargı boşta çalışma reaktif akımı(A)
I _{2Xfe} – hat (akımın reaktif bileşeni)	$(V_{2hat}/\sqrt{3})/X_{2fe}$	13.129 A	Üçgen faz sargı boşta çalışma reaktif akımı(A)

3.2.6. S=400 kVA - 1000 kVA- 100 MVA trafoların kısa devre ve boşta çalışma karakteristiklerinin matlab simulink ortamında incelenmesi

Şekil 3.37. S=400 kVA Değerindeki Trafonun Matlab Simulinkte Sekonderinin Kısa Devre Edilmesi (devre 1) ve Primerinin Kısa Devre Edilmesi (devre2) Sonucu Kısa Devre Gücü ve Kısa Devre Akımının Bulunması

S=400 kVA değerindeki trafo kısa devre edilince tek faz kısa devre gücü 1387 W bulunmuştur. Primer kısa devre akımı 6.69 A, sekonder kısa devre akımı 577 A dir. Sistemdeki A.C Gerilim kaynaklarına 120 derece faz farkı uygulanmıştır.

Block Parameters: TRAFO	×
Three-Phase Transformer (Two Windings) (mask) (link)	- I
This block implements a three-phase transformer by using three single-phas transformers. Set the winding connection to 'Yn' when you want to access neutral point of the Wye.	e the
Click the Apply or the OK button after a change to the Units popup to confi conversion of parameters.	rm the
Parameters	
Units SI	•
Nominal power and frequency [Pn(VA) , fn(Hz)] [400e3, 50]	
Winding 1 (ABC) connection : Delta (D11)	•
Winding parameters [V1 Ph-Ph(Vrms) , R1(Ohm) , L1(H)]	
[34500 46.4892 0.68018]	
Winding 2 (abc) connection : Yn	•
Winding parameters [V2 Ph-Ph(Vrms) , R2(Ohm) , L2(H)]	
[400 2.083e-3 3.04777e-5]	
Saturable core	
Magnetization resistance Rm (Uhm)	
Magnetization repetance Lim (H)	
2597.10939*3/sqrt(3)	
Measurements None	Ţ
OK Cancel Help	Apply

Şekil 3.38. S=400 kVA f=50 Hz 34,5/0,4 kv Değerindeki Trafonun Blok Parametreleri

 $U_{1\ h\ a\ t} \ * \ \% \ U_k = 34500 * \% \ 4.8964 = 1689.258 \ \mathrm{V}$

 $U_{2 h a t} * \% U_k = 400 * \% 4.8964 = 19.5856$ V

🙀 Block Parameters: AC Voltage Source
AC Voltage Source (mask) (link)
Ideal sinusoidal AC Voltage source.
Parameters
Peak amplitude (V):
sqrt(2)*1689.258/sqrt(3)
Phase (deg):
0
Frequency (Hz):
50
Sample time:
0
Measurements None
OK Cancel Help Apply

Şekil 3.39. S=400 kVA Trafonun Sekonderinin Kısa Devre Edilmesinde Primer Tarafındaki AC Gerilim Kaynağının Blok Parametreleri

Diock Parameters: AC Voltage Source3
AC Voltage Source (mask) (link)
Ideal sinusoidal AC Voltage source.
Parameters
Peak amplitude (V):
sqrt(2)*19.5856/sqrt(3)
Phase (deg):
0
Frequency (Hz):
50
Sample time:
Measurements None
OK Cancel Help Apply

Şekil 3.40. S=400 kVA Trafonun Sekonderinin Kısa Devre Edilmesinde Sekonder Tarafındaki AC Gerilim Kaynağının Blok Parametreleri

Şekil 3.41. S=400 kVA Değerindeki Trafonun Matlab Simulinkte Sekonderinin Boşta Çalıştırılması Durumunda (devre 3) ve Primerinin Boşta Çalıştırılması Durumunda (devre4) Sonucu Boşta Çalışma Gücü ve Boşta Çalışma Akımının Bulunması

S=400 kVA değerindeki trafo kısa devre edilince tek faz boşta çalışma gücü 361 W bulunmuştur. Primer boşta çalışma akımı 0.07534 A, sekonder boşta çalışma akımı 6.497 A(yaklaşık) dir.

$$I_{1 h a t} = [40000/(34500*\sqrt{3})]*\% I_b = 6.693*\% 1.128 = 0.07549 \text{ A}$$
$$I_{2 h a t} = [40000/(400*\sqrt{3})]*\% I_b = 577.35*\% 1.128 = 6.5125 \text{ A}$$
🙀 Block Parameters: AC Voltage Source6	
AC Voltage Source (mask) (link)	
Ideal sinusoidal AC Voltage source.	
Parameters	
Peak amplitude (V):	
sqrt(2)*34500/sqrt(3)	
Phase (deg):	
0	
Frequency (Hz):	
50	
Sample time:	
0	
Measurements None	▼
OK Cancel	Help Apply

Şekil 3.42. S=400 kVA Trafonun Sekonderinin Boşta Çalışması Durumunda Primer Tarafındaki AC Gerilim Kaynağının Blok Parametreleri

Block Parameters: AC Voltage Source10	×
AC Voltage Source (mask) (link)	
Ideal sinusoidal AC Voltage source.	
Parameters	
Peak amplitude (V):	
sqrt(2)*400/sqrt(3)	
Phase (deg):	
0	
Frequency (Hz):	
50	
Sample time:	
0	
Measurements None	-
OK Cancel Help	Apply

Şekil 3.43. S=400 kVA Trafonun Sekonderinin Boşta Çalıştırılması Durumunda Sekonder Tarafındaki AC Gerilim Kaynağının Blok Parametreleri

Şekil 3.44. S=1000 kVA Değerindeki Trafonun Matlab Simulinkte Sekonderinin Kısa Devre Edilmesi (devre 1) ve Primerinin Kısa Devre Edilmesi (devre2) Sonucu Kısa Devre Gücü ve Kısa Devre Akımının Bulunması

S=1000 kVA değerindeki trafo kısa devre edilince tek faz kısa devre gücü 3028 W bulunmuştur. Primer kısa devre akımı 16.72 A,sekonder kısa devre akımı 1442 A dir. Bu değerler yaklaşık değerlerdir.Sistem simulinkte 0.2 sn çalıştırılmıştır.

Sistemdeki A.C Gerilim kaynaklarına 120 derece faz farkı uygulanmıştır.

🙀 Block Parameters: TRAFO1 🧮	x
Three-Phase Transformer (Two Windings) (mask) (link)	ď
This block implements a three-phase transformer by using three single-phase transformers. Set the winding connection to 'Yn' when you want to access the neutral point of the Wye.	
Click the Apply or the OK button after a change to the Units popup to confirm the conversion of parameters.	
Parameters	51
Units SI	
Nominal power and frequency [Pn(VA) , fn(Hz)] [1000e3, 50]	
Winding 1 (ABC) connection : Delta (D11)	
Winding parameters [V1 Ph-Ph(Vrms) , R1(Ohm) , L1(H)] [34500 16.23 0.336]	
Winding 2 (abc) connection : Yn	
Winding parameters [V2 Ph-Ph(Vrms) , R2(Ohm) , L2(H)]	
[400 7.27e-4 1.508e-5]	
Saturable core	
Magnetization resistance Rm (Ohm)	
623366°3	
Magnetization reactance Lm (H) 1251 47*3/sort(3)	
	Ш
OK Cancel Help Apply	

Şekil 3.45. S=1000 kVA f=50 Hz 34,5/0,4 kv Değerindeki Trafonun Blok Parametreleri

Block Parameters: AC Voltage Source	×
AC Voltage Source (mask) (link)	
Ideal sinusoidal AC Voltage source.	
Parameters	
Peak amplitude (V):	
sqrt(2)*2064/sqrt(3)	
Phase (deg):	
0	
Frequency (Hz):	
50	
Sample time:	
0	
Measurements None	•
OK Cancel He	elp Apply

Şekil 3.46. S=1000 kVA Trafonun Sekonderinin Kısa Devre Edilmesinde Primer Tarafındaki AC Gerilim Kaynağının Blok Parametreleri

Block Parameters: AC Voltage Source3
AC Voltage Source (mask) (link)
Ideal sinusoidal AC Voltage source.
Parameters
Peak amplitude (V):
sqrt(2)*23.93/sqrt(3)
Phase (deg):
0
Frequency (Hz):
50
Sample time:
Measurements None
OK Cancel Help Apply

Şekil 3.47. S=400 KVA Trafonun Sekonderinin Kısa Devre Edilmesinde Sekonder Tarafındaki AC Gerilim Kaynağının Blok Parametreleri

Şekil 3.48. S=400 kVA Değerindeki Trafonun Matlab Simulinkte Sekonderinin Boşta Çalıştırılması Durumunda (devre 3) ve Primerinin Boşta Çalıştırılması Durumunda (devre4) Sonucu Boşta Çalışma Gücü ve Boşta Çalışma Akımının Bulunması

S=1000 kVA değerindeki trafo boşta çalıştırılınca tek faz boşta çalışma gücü 636.2 W bulunmuştur. Primer boşta çalışma akımı 0.1551 A,sekonder boşta çalışma akımı 13.38 A (yaklaşık) dir.

Block Parameters: AC Voltage Source6
AC Voltage Source (mask) (link)
Ideal sinusoidal AC Voltage source.
Parameters
Peak amplitude (V):
sqrt(2)*34500/sqrt(3)
Phase (deg):
0
Frequency (Hz):
50
Sample time:
0
Measurements None
OK Cancel Help Apply

Şekil 3.49. S=1000 kVA Trafonun Sekonderinin Boşta Çalışması Durumunda Primer Tarafındaki AC Gerilim Kaynağının Blok Parametreleri

Block Parameters: AC Voltage Source10	— X
AC Voltage Source (mask) (link)	
Ideal sinusoidal AC Voltage source.	
Parameters	
Peak amplitude (V):	
sqrt(2)*400/sqrt(3)	
Phase (deg):	
0	
Frequency (Hz):	
50	
Sample time:	
0	
Measurements None	•
OK Cancel Help	Apply

Şekil 3.50. S=1000 kVA Trafonun Sekonderinin Boşta Çalıştırılması Durumunda Sekonder Tarafındaki AC Gerilim Kaynağının Blok Parametreleri

Şekil 3.51. S=100 MVA Değerindeki Trafonun Matlab Simulinkte Sekonderinin Kısa Devre Edilmesi (devre 1) ve Primerinin Kısa Devre Edilmesi (devre2) Sonucu Kısa Devre Gücü ve Kısa Devre Akımının Bulunması

S=100 MVA değerindeki trafo kısa devre edilince tek faz kısa devre gücü 827 kW bulunmuştur. Primer kısa devre akımı 374.8 A,sekonder kısa devre akımı 1718 A dir. Bu değerler yaklaşık değerlerdir.Sistem simulinkte 0.2 sn çalıştırılmıştır.

Sistemdeki A.C Gerilim kaynaklarına 120 derece faz farkı uygulanmıştır.

Block Parameters: TRAFO1	
Three-Phase Transformer (Two Windings) (mask) (link)	
This block implements a three-phase transformer by using three single-ph transformers. Set the winding connection to $\gamma n'$ when you want to accele neutral point of the Wye.	iase iss the
Click the Apply or the OK button after a change to the Units popup to co conversion of parameters.	nfirm the
Parameters	
Units SI	-
Nominal power and frequency [Pn(VA), fn(Hz)]	
[100e6, 50]	
Winding 1 (ABC) connection : Yn	-
Winding parameters [V1 Ph-Ph(Vrms) , B1(Ohm) , L1(H)]	
[154000 2.94455 0.044054]	
Winding 2 (abc) connection : Yn	-
Winding parameters [V2 Ph-Ph(Vrms) , R2(Ohm) , L2(H)]	
[33600 0.1401912 2.0974e-3]	
Saturable core	
Magnetization resistance Rm (Ohm)	
598256.339	
Magnetization reactance Lm (H)	
3235.172*3/sqrt(3)	
Measurements None	-
·····	
	Applu

Şekil 3.52 . S=100 MVA f=50 Hz 154/33.6 kV Değerindeki Trafonun Blok Parametreleri

 $I_{1\ h\ a\ t}\ = [10000000/(154000*\sqrt{3}\,)] = 374.9027 \mathrm{A}$

 $I_{2 h a t} = [10000000/(33600*\sqrt{3})] = 1718.3043 \text{A}$

Block Parame	ters: AC Voltage Source		_
AC Voltage Sour	e (mask) (link)		
Ideal sinusoidal A	C Voltage source.		
Parameters			
Peak amplitude	V]:		
sqrt(2)*18372.2/	sqrt(3)		
Phase (deg):			
0			
Frequency (Hz):			
50			
Sample time:			
0			
Measurements N	one		
	OK Ca	ncel Help	Apply

Şekil 3.53. S=100 MVA Trafonun Sekonderinin Kısa Devre Edilmesinde Primer Tarafındaki AC Gerilim Kaynağının Blok Parametreleri

Block Parameters: AC Voltage Source3	X
AC Voltage Source (mask) (link)	
Ideal sinusoidal AC Voltage source.	
Parameters	
Peak amplitude (V):	
sqrt(2)*4008.48/sqrt(3)	
Phase (deg):	
0	
Frequency (Hz):	
50	
Sample time:	
0	
Measurements None	•
OK Cancel Help A	Apply

Şekil 3.54. S=100 MVA Trafonun Sekonderinin Kısa Devre Edilmesinde Sekonder Tarafındaki AC Gerilim Kaynağının Blok Parametreleri

 $U_{1\ h\ a\ t} \ * \ \% \ U_{k}{=}154000{*}\%11{,}93{=}18372.2 \ \mathrm{V}$

 $U_{2 h a t} * \% U_k = 33600 * \% 11,93 = 4008.48$ V

Şekil 3.55. S=100 MVA Değerindeki Trafonun Matlab Simulinkte Sekonderinin Boşta Çalıştırılması Durumunda (devre 3) ve Primerinin Boşta Çalıştırılması Durumunda (devre4) Sonucu Boşta Çalışma Gücü ve Boşta Çalışma Akımının Bulunması

S=100 MVA değerindeki trafo boşta çalıştırılınca tek faz boşta çalışma gücü 13.21 kW bulunmuştur. Primer boşta çalışma akımı 0.1724 A, sekonder boşta çalışma akımı 0.7904 A (yaklaşık) dir.

 $I \ 1_0 = [10000000/(154000*\sqrt{3})]* \% I_b = 374.9027*\%0.046=0.17245 \text{ A}$

 $I 2_0 = [10000000/(33600*\sqrt{3})]* \% I_b = 1718.3043*\% 0.046 = 0.7904 \text{ A}$

Block Parameters: AC Voltage Source6	×
AC Voltage Source (mask) (link)	
Ideal sinusoidal AC Voltage source.	
Parameters	
Peak amplitude (V):	
sqrt(2)×154000/sqrt(3)	
Phase (deg):	
0	
Frequency (Hz):	
50	_
Sample time:	
Measurements None	
OK Cancel Help App	yly

Şekil 3.56. S=100 MVA Trafonun Sekonderinin Boşta Çalışması Durumunda Primer Tarafındaki AC Gerilim Kaynağının Blok Parametreleri

Block Parameters: AU Voltage Source10	<u> </u>
AC Voltage Source (mask) (link)	
Ideal sinusoidal AC Voltage source.	
Parameters	
Peak amplitude (V):	
sqrt(2)*33600/sqrt(3)	
Phase (deg):	
0	
Frequency (Hz):	
50	
Sample time:	
Measurements None	•
OK Cancel Help A	pply

Şekil 3.57. S=100 MVA Trafonun Sekonderinin Boşta Çalıştırılması Durumunda Sekonder Tarafındaki AC Gerilim Kaynağının Blok Parametreleri

BÖLÜM 4. ADA TRAFO-STADYUM DAĞITIM SİSTEMİNİN MATLAB SİMULİNKTE MODELLENMESİ

Şekil 4.1. Ada Trafo-Stadyum Dağıtım Sisteminin Matlab Simulinkte Modeli

Sakarya Elektrik Dağıtım A.Ş. 'nin, Sakarya İl Müdürlüğü 'nün 154 kV / 33.6 kV Ana indirici Merkez (Ada Trafo) ve Stadyum da bulunan Trafo Merkezinden İmamhatip Lisesi, Ahmet Akkoç ilköğretim okulu, Kraas alışveriş merkezi, Katlı Pazar, Gökçe Sokak, Lüleci Sokağı, Yuvam Sokağı ve Askerlik Şubesi yakınında bulunan trafolara elektrik enerjisinin dağıtılmasının modeli matlab simulinkte oluşturulmuştur [1].

Şekil 4.2. Kraas Alışveriş Merkezi Civarındaki Trafonun Çıkının A fazından Geçen Akımın Grafiğinin Bulunması için Matlab Simulinkte Modellenmesi

Şekil 4.3. İşaretin (karakökünün ortalamasını bir periyot boyunca alır) Simulink Modeli

Şekil 4.4. İşaretin (karakökünün ortalamasını bir periyot boyunca alır) Blok Parametreleri

Şekil 4.5. Akım Ölçerin Simulink Modeli

Block Parameters: Current Measurement	×
Current Measurement (mask) (link)	h
Ideal current measurement.	
Parameters	
Output signal : Complex	Ţ
OK Cancel Help A	.pply

Şekil 4.6. Akım Ölçerin Blok Parametreleri

Şekil 4.7. Kraas Alışveriş Merkezi Civarındaki Trafonun Çıkının A Fazından Geçen Akımın Grafiği

0.00001 saniyelik discrete (ayrık zamanda), 1,5 saniye matlab simulinkin çalıştırılmasıyla yukarıdaki grafik bulunmuştur. Kraas civarında trafoda A fazında başlangıçta 0-0.02 saniye arasında akım tepe noktasına çıkmış (1470 A) civarı ve 0,2 saniyede 1424 A, 0,4 saniyede 1395 A, 0,6 saniyede 1376 A, 0,8 saniyede 1366 A, 1 saniyede 1360, 1,4 saniye den sonra akım yaklaşık 1355 A seviyesindedir.

S=1000 kVA, f=50 hz değerinde olan kraas alışveriş merkezi civarındaki trafoda;

COS Ø=0,936 (Müşterinin çektiği akımın oranı)

P=1000*cos Ø=1000*0.936=936 kW QL=1000*sin 20.609=351.999 kVAR

🙀 Block Parameters: Three-Phase Parallel RLC L 🔜	5
Three-Phase Parallel RLC Load (mask) (link)	'n
Implements a three-phase parallel RLC load.	
Parameters	
Configuration Y (grounded)	
Nominal phase-to-phase voltage Vn (Vrms)	
400	
Nominal frequency fn (Hz):	E
50	
Active power P (W):	
936e3	
Inductive reactive Power QL (positive var):	
351.999e3	
Capacitive reactive power Qc (negative var):	
0	
Measurements None	
OK Cancel Help Apply	

Şekil 4.8. Kraas Alışveriş Merkezi Civarındaki Trafonun Beslediği Müşterinin P (aktif güç), QL (endüktif reaktif güç) Değerleri

Şekil 4.9. Gökçe Sokak Civarındaki Trafonun Çıkının A Fazından Geçen Akımın Grafiğinin Bulunması İçin Matlab Simulinkte Modellenmesi

🙀 Function Block Parameters: RMS 📃	
RMS (mask) (link)	ſ
This block measures the root mean square value of instantaneous current or voltage signal connected to the input of the block. The RMS value is calculated over a running window of one cycle of the specified fundamental frequency.	Ш
Parameters	
Fundamental frequency (Hz):	Ц
OK Cancel Help Apply	

Şekil 4.10. İşaretin (karakökünün ortalamasını bir periyot boyunca alır) Blok Parametreleri

Şekil 4.11. Gökçe Sokak Civarındaki Trafonun Çıkışının A Fazından Geçen Akımın Grafiği

0.00001 saniyelik discrete (ayrık zamanda), 1.5 saniye matlab simulinkin çalıştırılmasıyla yukarıdaki grafik bulunmuştur. Kraas civarında A fazında başlangıçta 0-0.02 saniye arasında akım tepe noktasına çıkmış (592 A) civarı ve 0.2

saniyede 570 A, 0.4 saniyede 558 A, 0.6 saniyede 551 A, 0.8 saniyede 547 A, 1 saniyede 545 A, 1.4 saniye den sonra akım yaklaşık 543.5 A seviyesindedir.

S=400 kVA, f=50 Hz değerinde olan kraas civarındaki trafoda;

COS Ø=0,935(Müşterinin çektiği akımın oranı)

P=400*cos Ø=1000*0.935=374 kW QL=400*sin 20.771=141.859 kVAR

🙀 Block Parameters: Three-Phase Parallel RLC L 🔜
Three-Phase Parallel RLC Load (mask) (link)
Implements a three-phase parallel RLC load.
Parameters
Configuration Y (grounded)
Nominal phase-to-phase voltage Vn (Vrms)
400
Nominal frequency fn (Hz):
50
Active power P (W):
374e3
Inductive reactive Power QL (positive var):
141.859e3
Capacitive reactive power Qc (negative var):
0
Measurements None
OK Cancel Help Apply

Şekil 4.12. Gökçe Sokak Civarındaki Trafonun Beslediği Müşterinin P (aktif güç), QL (endüktif reaktif güç) Değerleri

Şekil 4.13. Ada Trafo-Stadyum Dağıtım Sisteminde Stadyumdaki Kesicilerde Üç Faz Kısa Devre Olması Durumunda Simulink Modeli

Şekil 4.14 . Üç faz Kısa Devre Hatasının Simulink Modeli

🙀 Block Paran	neters: Three-F	Phase Fault	X
– Three-Phase F	ault (mask) (link)	ſ
Use this block any phase and directly from th If you check th input will appe	to program a fau Ithe ground. You e dialog box or a ne 'External cont ar.	ult (short-circuit) t u can define the apply an external rol' box , the exte	oetween fault timing logical signal. ernal control
Parameters			
📝 Phase A F	ault		
📝 Phase B F	ault		
📝 Phase C F	ault		
Fault resistanc	es Ron (ohms)	:	
0.001			
📝 Ground Fa	ult		
Ground resista	nce Rg (ohms) :		
0.001			
📃 External co	ontrol of fault tim	ing :	
Transition stat	us [1,0,1):		
[1]			
Transition time	s (s):		
[1.2]			
Snubbers resis	tance Rp (ohms	s] :	U
Теб			
Snubbers Cap	acitance Cp (Fa	radj	
ОК	Cancel	Help	Apply

Şekil 4.15. Üç faz Kısa Devre Hatasının Blok Parametreleri

Transition status: geçiş durumu

Transition time: geçiş zamanı

Şekil 4.16. Stadyumdaki Kesicilerde Sistem Çalıştıktan 1.2 Saniye Sonra 3 faz Kısa Devre Olması Durumunda Stadyum Çıkışında C Fazından Akan Akımın Grafiği

Stadyumda bulunan kesicilerin seçimini yapmak için şekil 4.16.'daki grafiğe baktığımızda 1.2 saniye anında kesici üzerinden 1.43 kA değerinde yaklaşık olarak akım geçmektedir. Kesici seçimi 1.43 kA değerinin bir üstüne dayanabilen kesici olmalıdır.

Stadyumdaki kesicilerde sistem çalıştıktan 1.2 saniye sonra 3 faz kısa devre olması durumunda Kraas alışveriş merkezi civarında ve gökçe sokak civarında bulunan trafoların çıkışındaki A fazından geçen akım grafikleri Şekil 4.7 ve Şekil 4.11.'de gösterilmiştir.

Şekil 4.17. Stadyumdaki Kesicilerde Sistem Çalıştıktan 1.2 Saniye Sonra 3 Faz Kısa Devre Olması Durumunda Kraas Alışveriş Merkezi Civarında Bulunan Trafonun Çıkışında A Fazından Akan Akımın Grafiği

Sistem çalıştırıldıktan 1.22 saniye civarında Kraas alışveriş merkezi civarındaki trafonun A fazından geçen akım 460 A düşmektedir. Gittikçe sıfır değerine doğru azalmaktadır. Üç faz kısa devre devre olmadan önce 1.4 saniye civarında 1355 A akım akmaktaydı. Sistem belli bir zaman sonra çökecektir.

Şekil 4.18. Stadyumdaki Kesicilerde Sistem Çalıştıktan 1.2 Saniye Sonra 3 Faz Kısa Devre Olması Durumunda Gökçe Sokak Civarında Bulunan Trafonun Çıkışında A Fazından Akan Akımın Grafiği

Sistem çalıştırıldıktan 1.22 saniye civarında Gökçe sokak civarındaki trafonun A fazından geçen akım 193 A düşmektedir. Gittikçe sıfır değerine doğru azalmaktadır.

Üç faz kısa devre devre olmadan önce 1.4 saniye civarında 543.5 A akım akmaktaydı. Sistem belli bir zaman sonra çökecektir.

Şekil 4.19. Ada Trafo-Stadyum Dağıtım Sisteminde Ahmet Akkoç Civarındaki Trafo ile Kraas Alışveriş Merkezi Civarındaki Üç Faz Toplam Aktif Güç ve Reaktif Gücün Bulunması İçin Oluşturulan Matlab Simulink Modeli

Şekil 4.20. Akım Ölçü Aleti Simulink Bloğu

Şekil 4.21. Gerilim Ölçü aleti Simulink Bloğu

Şekil 4.22 .Tek Faz İçin Aktif Güç ve Reaktif Gücün Bulunması İçin Simulink Bloğu

Şekil 4.23. Ahmet Akkoç Civarındaki Trafo ile Kraas Alışveriş Merkezindeki Trafolar Arasındaki Üç Faz Toplam Aktif Güç ve Reaktif Güç Değerleri Grafiği

P:Aktif Güç Q:Reaktif Güç

Grafikte Ahmet Akkoç civarındaki trafo ile Kraas alışveriş merkezindeki trafo arasında başlangıç anında sabit kaldığı yere kadar (sabit kalmıyor küçük değişimler oluyor) P=2.7 MW Q=1.16 MVAR oluyor.

4.1. Ada Trafo-Stadyum Enerji Dağıtım Sisteminde Çeşitli Noktalarda Normal Çalıştırma, Kısa Devre Durumunda Akım Değerleri ve Aktif-Reaktif Güç Değerleri

	0.02 sn	0.2 sn	0.6 sn	1 sn	1.4 sn
1-İmamhatip civarındaki trafo					
Giriş :	7.071 A	6.763 A	6.455 A	6.362 A	6.335 A
Çıkış:	589.7 A	570.5 A	550.9 A	545.1 A	543.4 A
2-Ahmet Akkoç İ.Ö.O civarındaki trafo					
Giriş :	17.6 A	16.88 A	16.11 A	15.86 A	15.78 A
Çıkış:	1468 A	1424 A	1376 A	1360 A	1355 A
3-Kraas alışveriş merkezi civarındaki trafo					
Giriş :	17.57 A	16.85 A	16.1 A	15.86 A	15.77 A
Çıkış:	1467 A	1423 A	1375 A	1359 A	1354 A
4-Katlı Pazar yeri civarındaki trafo					
Giriş :	17.59 A	16.86 A	16.1 A	15.85 A	15.77 A
Çıkış:	1468 A	1423 A	1375 A	1359 A	1354 A
5-Askerlik şubesi civarındaki trafo					
Giriş :	17.64 A	16.88 A	16.1 A	15.85 A	15.77 A
Çıkış:	1471 A	1425 A	1375 A	1359 A	1354 A
6-Yuvam sokak civarındaki trafo					
Giriş :	17.59 A	16.87 A	16.1 A	15.85 A	15.77 A
Çıkış:	1468 A	1424 A	1375 A	1359 A	1354 A
7-Lüleci sokak civarındaki trafo					
Giriş :	35.24 A	33.77 A	32.22 A	31.71 A	31.55 A
Çıkış:	2940 A	2850 A	2751 A	2719 A	2709 A
8-Gökçe sokak civarındaki trafo					
Giriş :	7.07 A	6.76 A	6.452 A	6.36 A	6.333 A
Çıkış:	589.6 A	570.3 A	550.7 A	544.9 A	543.3 A

Tablo 4.1. Ada Trafo-Stadyum Dağıtım Sisteminde Dengeli Sistemde Trafoların Giriş ve Çıkışlarında A Fazından Akan Akım Değerleri (Sistemin Normal Çalışması)

Adapazarı Tedaş 'ın stadyum dağıtım sisteminde sistem içindeki trafoların A fazına (primer) giren ve trafoların (sekonder) tarafından çıkan akım değerleri (sistemin normal çalıştığı kabul edilerek) tablo 4.1.'de gösterilmiştir.

Böylece matlab simulinkte bir sistemin modellenmesi sonucunda sistemin herhangi bir noktasında akım değerleri bulunmaktadır. Bu akım değerlerine bakılarak kesici, sigorta, termik magnetik şalterler seçilmektedir.

	0.6 sn	1 sn	1.4 sn
1-İmamhatip civarındaki trafo			
Giriș :	1.554 A	0.979 A	0.617 A
Çıkış:	115.2 A	72.5 A	45.58 A
2-Ahmet Akkoç İ.Ö.O civarındaki trafo			
Giriş :	3.682 A	2.433 A	1.608 A
Çıkış:	273.8 A	180.7 A	119.2 A
3-Kraas alışveriş merkezi civarındaki trafo			
Giriş :	3.671 A	2.416 A	1.59 A
Çıkış:	272.9 A	179.4 A	117.9 A
4-Katlı Pazar yeri civarındaki trafo			
Giriş :	3.718 A	2.434 A	1.594 A
Çıkış:	276.4 A	180.8 A	118.2 A
5-Askerlik şubesi civarındaki trafo			
Giriş :	3.795 A	2.471 A	1.609 A
Çıkış:	282.1 A	183.5 A	119.3 A
6-Yuvam sokak civarındaki trafo			
Giriş :	3.705 A	2.434 A	1.599 A
Çıkış:	275.4 A	180.7 A	118.6 A
7-Lüleci sokak civarındaki trafo			
Giriş :	7.453 A	4.903 A	3.226 A
Çıkış:	554.1 A	364.1 A	239.2 A
8-Gökçe sokak civarındaki trafo			
Giriş :	1.56 A	0.9789 A	0.6142 A
Çıkış:	115.7 A	72.49 A	45.37 A

Tablo4.2. Ada Trafo-Stadyum Dağıtım Sisteminde Sistemin Çalışmaya Başlamasından 0.5 Saniye Sonra Stadyum Kesici Girişinde Üç Faz Kısa Devre Durumunda Trafoların Giriş ve Çıkışında A Fazından Akan Akım Değerleri

Sistem çalışırken en ciddi kısa devrelerden biri olan üç faz kısa devre stadyum kesici girişinde uygulanarak sistem içindeki trafoların A fazına (primer) giren ve trafoların (sekonder) tarafından çıkan akım değerleri (üç faz kısa devre durumunda) Tablo 4.2.' de gösterilmiştir.

Sistemin herhangi bir noktasında bir kısa devre olması durumunda sistem içinde istenilen bir noktada akım değerleri bulunmakta, sistem içinde bulunan kesici, sigorta, termik magnetik şalter v.b devre elemanlarının sistem için yeterli değerde olup olmadığı anlaşılabilmektedir.

			0.2 sn	0.6 sn	1 sn	1.4 sn
1-İmamh	atip civarındaki trafo					
	Giriş :	P:	336 kw	335.6 kw	335.3 kw	335.2 kw
		Q:	144.6 kvar	144.6 kvar	144.6 kvar	144.6 kvar
2-Ahmet	Akkoç İ.Ö.O civarındaki trafo					
	Giriș :	P:	832.2 kw	831.2 kw	830.6 kw	830.3 kw
		Q:	367.9 kvar	367.9 kvar	367.9 kvar	367.9 kvar
3-Kraas a	lışveriş merkezi civarındaki trafo					
	Giriş :	P:	832.9 kw	831.9 kw	831.4 kw	831.1 kw
		Q:	365.5 kvar	365.5 kvar	365.6 kvar	365.6 kvar
4-Katlı P	azar yeri civarındaki trafo					
	Giriş :	P:	831.7 kw	830.7 kw	830.2 kw	829.9 kw
		Q:	367.7 kvar	367.7 kvar	367.7 kvar	367.7 kvar
5-Askerli	k şubesi civarındaki trafo					
	Giriş :	P:	829.6 kw	828.5 kw	828 kw	827.7 kw
		Q:	372.1 kvar	372.1 kvar	372.1 kvar	372.1 kvar
6-Yuvam	sokak civarındaki trafo					
	Giriş :	P:	831.9 kw	830.9 kw	830.3 kw	830 kw
		Q:	367.8 kvar	367.8 kvar	367.8 kvar	367.8 kvar
7-Lüleci	sokak civarındaki trafo					
	Giriş :	P:	1662 kw	1660 kw	1659 kw	1658 kw
		Q:	740.1 kvar	740.2 kvar	740.2 kvar	740.2 kvar
8-Gökçe	sokak civarındaki trafo					
	Giriș :	P:	335.9 kw	335.5 kw	335.3 kw	335.1 kw
		Q:	144.6 kvar	144.6 kvar	144.6 kvar	144.6 kvar

Tablo4.3. Ada Trafo Stadyum Dağıtım Sisteminde Trafo Girişlerindeki Üç Faz Toplam Aktif ve Reaktif Güç Değerleri

Adapazarı Tedaş dağıtım sisteminde trafoların giriş noktalarında üç faz toplam aktif ve reaktif güçler Tablo 4.3.'de gösterilmiştir. Matlab simulinkte sistemin modellenmesi sonucunda sistem içinde tüm noktalarda aktif ve reaktif güç değerleri bulunmaktadır. Böylece sistem içinde trafoların müşteri tarafında kompanzasyon ihtiyaç olup olmadığı belirlenebilmektedir.

	0.2 sn	0.6 sn	1 sn
1-İmamhatip-Ahmet Akkoç civarındaki trafolar arası			
P:	2.433 Mw	2.43 Mw	2.429 Mw
Q:	1.05 Mvar	1.051 Mvar	1.051 Mvar
2-Ahmet Akkoç-Kraas alış.merkezi civarındaki trafolar arası			
P:	2.709 Mw	2.706 Mw	2.704 Mw
Q:	1.159 Mvar	1.159 Mvar	1.16 Mvar
3-Kraas alış.merkezi-Katlı Pazar yeri civarındaki trafolar arası			
P:	0.7681 Mw	0.7682 Mw	0.7666 Mw
Q:	0.3616 Mvar	0.3616Mvar	0.3616 Mvar
4-Yuvam sokak-Askerlik şubesi civarındaki trafolar arası			
P:	0.8932 Mw	0.8921 Mw	0.8915 Mw
Q:	0.3625 Mvar	0.3625Mvar	0.3625 Mvar
5-Lüleci Sokak -Yuvam sokak civarındaki trafolar arası			
P:	1.725 Mw	1.723 Mw	1.722 Mw
Q:	0.7094 Mvar	0.7095Mvar	0.7095 Mvar
6-Gökçe sokak-Lüleci Sokak civarındaki trafolar arası			
P:	3.387 Mw	3.383 Mw	3.381 Mw
Q:	1.434 Mvar	1.434 Mvar	1.434 Mvar

Tablo4.4. Ada Trafo-Stadyum Dağıtım Sisteminde Trafolar Arasındaki Üç Faz Toplam Aktif ve Reaktif Güç Değerleri

Adapazarı Tedaş dağıtım sisteminde trafolar arasındaki üç faz toplam aktif ve reaktif güçler Tablo 4.4.'de gösterilmiştir.

Böylece matlab simulinkte güç akışı analizleri yapılmakta sistemin herhangi bir noktasında aktif ve reaktif güç değerleri bulunabilmektedir.

BÖLÜM 5. SONUÇLAR VE ÖNERİLER

Bu çalışmada Simulink programı kullanılarak, Adapazarı Tedaş Ada Trafo – Stadyum elektrik dağıtım sisteminde çeşitli noktalarda kısa devre ve güç akışı incelenmiştir. Simulink vasıtası ile modelleme yapılarak çok karmaşık sistemler basit birimlere indirgenebilmektedir. Sistemler ayrıntılı biçimde analiz edilerek sorunlar çözülmekte, tasarımlar yapılmaktadır. Uygulama olarak Sakarya Tedaş Elektrik Dağıtım A.Ş.'nin Ada Trafo - Stadyum Dağıtım sistemi modellenmiştir. Akım, gerilim ve aktif - reaktif güç değerleri yükün durumuna göre analiz edilmiştir.

Sistemde 100 MVA görünür gücünde 1 adet, 400 kVA görünür gücünde 2 adet, 2000 kVA görünür gücünde 1 adet ve 1000 kVA görünür gücünde 5 adet trafo, 1*95+16 mm^2 ve 1*240 +25 mm^2 kablo kesitleri kullanılmıştır. Sistemin normal çalışması durumunda;

1- S=400 kVA gücündeki 2 adet trafodan 0.02 ile 1.4 saniye arası 7-6.3 A (primer tarafı), 589-543 A (Sekonder tarafı) akım geçmiştir. Üç faz aktif ve reaktif güç değeri trafonun primer tarafında P= 336 kW (aktif güç) ,Q=144 kVAR (reaktif güç) civarındadır.

2- S=1000 kVA gücündeki 5 adet trafodan 0.02 ile 1.4 saniye arası 17.6-15.8 A (primer tarafı), 1470-1355 A (Sekonder tarafı) akım geçmiştir. Üç faz aktif ve reaktif güç değeri trafonun primer tarafında P= 832 kW (aktif güç), Q=367 kVAR (reaktif güç) civarındadır.

3- S=2000 kVA gücündeki 5 adet trafodan 0.02 ile 1.4 saniye arası 35.2-31.6 A (primer tarafı), 2940-2709 A (Sekonder tarafı) akım geçmiştir. Üç faz aktif ve

reaktif güç değeri trafonun primer tarafında P= 1660 kW (aktif güç), Q=740 kVAR (reaktif güç) civarındadır.

Stadyumda bulunan kesici girişinde üç faz kısa devre olması durumunda herhangi bir fazda bir sistemde 1.2 saniye anında kesici üzerinden 1.43 kA değerinde yaklaşık olarak akım geçmektedir. Kesici seçimi 1.43 kA değerinin bir üstüne dayanabilen kesici olmalıdır. Bunun gibi sistem üzerinde çeşitli noktalarda kısa devre analizleri yaparak uygun değerde kesici, ayırıcı, sigorta, röle değerleri seçilebilir.

Adapazarı Ada Trafo-Stadyum dağıtım sisteminde Ahmet Akkoç civarındaki trafo ile Kraas alışveriş merkezindeki trafo arasındaki üç faz toplam aktif ve reaktif gücü bulmak için sisteme simulink blokları bağladığımızda P=2.7 MW Q=1.16 MVAR olarak buluyoruz. Bu örnek gibi enerji dağıtım sistemi içinde istediğimiz noktalardaki aktif ve reaktif güç değerlerini bulabiliriz.

Tedaş Ada Trafo-Stadyum dağıtım sistemi sistemin bir parçasıdır. Bu modelleme Sakarya Elektrik Dağıtım Anonim Şirketinden gelen talep üzerine, ilerde yapılacak çalışmalara bir ışık tutma, bir başlangıç oluşturma amacıyla yapılmıştır. Bu simulink modeli genişletilerek bütün Adapazarı dağıtım sistemi içinde simulink modeli oluşturulabilinir, kısa devre ve güç analizleri yapılabilir. Bu Ada Trafo-Stadyum sisteminin modellemesinde sistemin dağıtım sisteminin bir kısmı modellenmiş, dağıtım sistemindeki hatlar, trafolar, yükler tanıtılmış, bunların hesaplamaları yapılmıştır. Daha sonra simulink ortamında bu parametrelerin nasıl uygulanacağı anlatılmıştır.

Sistemin çeşitli noktalarında normal çalışma durumunda ve kısa devre anında akım, aktif ve reaktif güç değerleri bulunmuştur. Böylece herhangi bir sorun anında gerçek sistemi modelleyip analiz ettiğimizde, çıkabilecek sorunları önceden hazırlayıp müdahale edebilir ve bilgisayarda modelleme yaparak büyük zaman, enerji ve malzeme kaybından tasarruf sağlayabiliriz. Kesici, sigorta, termik-magnetik şalter, röle v.b gibi sistem koruma elemanlarını kısa zamanda uygun değerlerde seçerek sistemin düzgün çalışmasını gerçekleştirebiliriz.

KAYNAKLAR

- [1] ARİFOĞLU, U. Matlab 7.04 Simulink ve Mühendislik Uygulamaları, Alfa Yayınları, İstanbul, 2005
- [2] ARİFOĞLU, U. Güç Sistemlerinin Bilgisayar Destekli Analizi, Alfa Yayınları, İstanbul, 2002
- [3] Eltaş Dağıtım ve Güç Tranformatörleri (Distribution and Power Transformers)
- [4] SEDAŞ Genel Müdürlüğü, Sakarya İl Müdürlüğü, Tesis Planlama Başmühendisliği, Adapazarı Merkez Orta Gerilim Tek Hat Şeması, Kapalı Spor Salonu – Stadyum İnd. Trf. Merk. Arası
- [5] www.aktemkablo.com 15.01.2008

EKLER

•

EK-A: S=1000 kVA ve F=50 Hz Değerindeki Trafonun Test Raporu

Œ	3	EL Atatü TEL	TAS TRANSFO rk Organize Sana : 0 (232) 376 77 61	RMATĆ yi Bölge: L (3 Hat)	ÖR SA si 1000	NAYİ V IG Sokak TELEFAI	E TİC No:21 KS: 0(2	CAR B.Ç 32)	ET A.Ş. IĞLİ-İZM 376 77 64	İR	
		TRA	NSFORMATÖR R	UTIN T	EST R	APORU			1999	110	
MÜŞTERİ :	EVRIM ELEK	TRİK			PROJE	NO: MYE	0.1000	.34.	AL.AE.25	.G	
TARİH :	05.07.2007				RAPOR	NO: 07-3	361				
MARKA :	ELTAŞ	MAKİNA NO:	07-170	F	ABRİKA	NO:		TİP :		E	LT-1000
STANDART :	MYD-95/012-C	KALİ	TE GÜVENCE SİSTEMİ	TSE-ISO	-EN 900	1-2000		İMAL	TARİHİ:	(07/2007
GÜÇ (KVA) :	1000	FAZ SAYISI:	3		FREKAN	IS (Hz) :	50	BAĞ.	GRUBU:	[DYN-11
GARANTI EDI	LEN DEĞERLER:	Po: 20	00 W	Pcu :	10	500 W	1	Uk :	6,00) %	
TOLERANSLA	R : Po: + 0	%	Pcu: + 0 %	Uk: ±	: 10 %	т	OPLAN	1 KA	/IP: + (0 %	
	TRANSF	ORMATÖR			SAR		NCLE	RİNİ	N ÖLCÜL	MES	t
	GERILIM V	/E AKIMLARI		TS 267	7 MAD	DE 2.3.2.				05	.07.2007
GE	RİLİMLER (V)	AKI	MLAR (A)	ÖLÇÜM A	NINDAK	SARGI SICA	KLIĞI:		32,4	°C	
PRIME	R SEKONDI	ER PRIMER	SEKONDER	YG SAR	GISI (S	2)		AG S	ARGISI (r	nΩ)	
1 2850	D			R1U1V	= 9,72			R2U2	N = 0,62		
3000	D			R1V1W	= 9,73			R2V2	N = 0,65		
3 3150	n			R1W1U	= 9.70			R2W2	N = 0.65	197	
4 33000	n				5110				0,00		
5 3450	0 400/23	31 16,735	1443,376								
6 3600	0				K	ISA DEV	RE GI	ERİL	İMİNİN	VE	
					Y	ÜK KAYIP	LARI	NIN	ÖLÇÜLM	EST	S. MILESE
				TSE 267	MADD	E 2.3.4.				05	.07.2007
BOŞT	A KAYIPLAR	IN VE AKIML	ARIN			AMPERMET	RE(A)	VOL	TMETRE (V)	W/A"	TTMETRE(W
	ÖLÇÜ	ILMESİ		SKALA Ç		1			1,732		1
TSE 267 MADD	E 2.3.5.		05.07.2007	ÇARPAN	1	16,75	57		192,4		3118
	AMPERMETRE(A)	VOLTMETRE (V)	WATTMETRE(W)	A.T.*	1 2	16,66	51		191,6		2996
SKALA Ç.	1	1,732	1	G.T.*	1 3	16,80	00		190,6	TOP	2978
ÇARPAN 1	13,613	230,87	1050,2	CENEL	OKT :	16,/3	9	1	191,53	TOP:	9092
A.I.* 1 2	14 894	230.98	484.3	GENEL	GARFAIN	I 16	730	1.0	2064	Du	9097
OPT -	13 396	231.097	TOP: 1908 7			III - 10	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	UK-	2001	ILK-	JUJE
GENEL CARPAN	13,390	1.732	1								
GENEL GRIGTER	Th: 13.396	Un: 400	Po : 1908.7	Wcu (75°C)	=	10286	.091	W		
Th0% :	0.928		101 000,	(incu (1001						
<u> </u>				75		=	6.01	56			
				15	Cloren	/-	0,01				
EN	DUKLENEN (SERILIM DEN	EYI	70 100	0	GULAN	AN GE	RIL	IM DENE	:11	07 2007
TS 10902 MAI	DDE 2.7		05.07.2007	TS 109	02 MAI	DDE 2.1.2	-	10	cône	05	.07.2007
GERILIM	FREKANS	SURE	SONUÇ		G	RILIM	FREKA	INS	SURE	-	SONUÇ
				Y.G.	/	U KV	50	HZ	60 sn.	199333	GEÇTI
800 V	150 Hz	40 sn.	GEÇTI	A.G.	139339	3 kV	50	Hz	60 sn.	139333	GEÇTI
	ÖLÇÜ BOŞ YÜI TO	LEN BÜYÜKLÜ STAKİ KAYIPLARI KTEKİ KAYIPLARI PLAM KAYIPLARI % IB	KLER (W) (W) (W) (W)	TESTLE	RDE E	LDE EDİL 1909 10286 12195 0,928	EN DE	ĞER	LER		
		04 114				6.016				1	

EK-B: S=630 kVA ve F=50 Hz Değerindeki Trafonun Test Raporu

Ę.	3	EL Atatü TEL	TAS TRANSFO rk Organize Sana : 0 (232) 376 77 6	DRMATÖF iyi Bölgesi 1 (3 Hat)	R SA 1000	NAYİ V 6 Sokak TELEFA	/E TİC/ No:21 E KS: 0(23	ARET A. I.ÇİĞLİ-İ 2) 376 77	Ş. ZMİR 64	
		TRA		RUTIN TES	ST R.	APORU				
1ÜŞTERİ :	ELSA ELEKTR	liκ		PI	ROJE	NO: MY	D.630.3	4.AL.AE.2	0.G	
TARİH :	01.08.2007			RA	APOR	NO: 07-	465			
MARKA :	ELTAS	MAKINA NO:	07-322	FAE	BRIKA	NO:	T	IP :	i. (ELT-630
STANDART :	630	FAT SAYISI	3	FI FI	REKAN	NS (Hz) :	50 B	AG.GRUBU:	1. (DYN-11
CADANTI EDI		Bo: 14	50 W	Peu ·	66	50 10/	<u> </u>	k · 4	50 %	
GARANTIEDI	DEN DEGERLER.	PO. 11.	D	111. 1 1	0.00		TODIAM	WANTD .	1,50 %	
TOLERAINSLA	R PO: +U	70	Pcu: + 0 %	UK: ±1	10 70		TOP LAM	MATTP :	+ 0 70	
	TRANSF	ORMATOR	1	TC 267	SAF	GI DIRI	ENÇLER	ININ OLÇ	ULMES	00 2007
GE			MLAR (A)	ÖLCÜM ANI	INDAK	I SARGI SICA	AKLIĞI:	37.9		
PRIME	SEKONDE	R PRIMER	SEKONDER.	YG SARGI	SI (S	2)	A	G SARGISI	(mΩ)	
1 28500)			R1U1V = 15,15 . R2U2N = 1,1					,14	
30000)			R1V1W =	15,1	.5	R	2V2N = 1	,16	
3 31500)			R1W1U =	15,1	2	R	2W2N = 1	,20	
4 33000)									
5 3450	0 400/23	31 10,543	909,327							
6 36000					v	USA DEV	RE GE		IN VE	
				TSE 267	MADD	E 2.3.4.	LAKIN	LIN OLÇO	01	.08.2007
BOST	A KAYIPLAR	IN VE AKIML	ARIN			AMPERME	TRE(A)	VOLTMETRE	(V) WA	TTMETRE(W
	ÖLÇÜ	LMESI		SKALA Ç.		1		1,732		1
TSE 267 MADD	2.3.5.		01.08.2007	ÇARPAN	1	10,5	35	849,4	_	1950,2
CVALA C	AMPERMETRE(A)	1 732	WATIMETRE(W)	A.I.* 1	2	10,4	06	848.8		1906.8
CARPAN 1	7.127	231,32	671.7	0.1. 1	ORT :	10,5	42	848,40	TOP:	5728,3
A.T.* 1 2	6,160	230,72	268,9	GENEL ÇA	RPAN	1		1,732		1
G.T.* 1 3	7,928	231,00	413,5			In = 10),542 U	k= 1469	Pk=	5728
ORT :	7,072	231,013	TOP: 1354,1							
GENEL ÇARPAN	Th · 7 072	Lin: 400	Po : 1354.1	Wei (7	5°C)	=	6454.5	98	W	
Th% ·	0.778	100	101	[501					
				75 °C	Uk %	6 =	4.295	4		
				L •	1					
EN		SERTI TH DEN	FYI		1	IYGUI AN	AN GE	RILIM DE	NEYİ	
TS 10902 MAI	DDE 2.7	orrester brit	01.08.2007	TS 10902	2 MA	DDE 2.1.2			01	.08.2007
GERILIM	FREKANS	SÜRE	SONUÇ		G	ERİLİM	FREKAN	IS SÜR	E	SONUÇ
			and and a second	Y.G.	1	70 kV	50 H	z 60 s	sn.	GEÇTİ
800 V	150 Hz	40 sn.	GEÇTİ	A.G.		3 kV	50 H	z 60 :	sn.	GEÇTİ
800 V	150 112	<u> 40 511.</u>		10.0		<u> </u>	1 30 1	2 00	2111	
	ÖLÇÜ	ILEN BÜYÜKLÜ	KLER	TESTLER	DEE		LEN DE	SERLER		
	BO	STAKİ KAYIPLARI	(W)			1354				
	YÜ	KTEKİ KAYIPLARI	(W)			6454			_	
	TO	PLAM KAYIPLARI	(W)			/808			-	
		% IB			-	4 205	*		-	
		70 UK				7,255				

EK-C: S=400 kVA ve F=50 Hz Değerindeki Trafonun Test Raporu

C		D	EL' Atatür TEL:	FAŞ TRANSF(k Organize San 0 (232) 376 77 6	ORMA ayi Bölg i1 (3 Hal	TÖR S Iesi 100 :)	ANAYİ \ 06 Sokak TELEFA	/E TİC No:21 MKS: 0(2.	ARET B.ÇIĞL 32) 37(A.Ş. İ-İZM 5 77 64	İR	
			TRAN	SFORMATÖR	RUTIN	TEST F	RAPORU				110	
IÜŞTI	ERÍ: E	BOLEM ELEKT	хiк			PROJ	E NO: MY	D.400.3	4.AL.A	AE.24.0	3	
ARIH	1 ; 0	9.05.2007		07.404		RAPO	R NO: 07-	-222				T 400
TARKA	ADT.	ELTAS M	AKINA NO:	07-106	TTET	FABRIK	A NO:	İ	MAL T		0	E1-400
TAND UC (I	ART:	MTD-95/012-C	AZ CAVICI:	2 GUVENCE SISTER	11 130-1		NIC (U=) +	E0 E	MAL TA		D	VN-11
105 (M	(VA):	400 [r	AZ SATISI.	3		TREN	1000	<u> </u>		4 50		THE LL
GAR	ANTI EDILI	EN DEGERLER:	Po: 112	0 VV 0	PC	u: 4	1900 VV	U	ук:	4,50	%	
TOLE	ERANSLAR	: Po: +09	6	Pcu: + 0 %	Uk :	± 10 %	6	TOPLAM	KAYIP	·: + (0%	
		TRANSFO	RMATÖR			SA	RGI DİR	ENÇLER	inin	ÖLÇÜL	MESİ	
		GERILIM VE	AKIMLARI		TS 2	67 MAI	DDE 2.3.2				09.	05.2007
	GER	İLİMLER (V)	AKIN	ILAR (A)	ÖLÇÜ	M ANINDA	Kİ SARGI SIC	AKLIĞI:		27,1	°C	
	PRIMER	SEKONDER	PRIMER	SEKONDER	YG SARGISI (Ω) AG SARGISI (n				(mΩ)			
1	28500				R1U1	V = 30	,90	F	82U2N	= 1,70		
2	30000				R1V1W = 30,90 R2V2N					= 1,80		
1	31500				R1W1	U = 30	,90	F	R2W2N	= 1,80		
4	33000											
5	34500	400/231	6,694	577,350	_							111.19
6	36000						KISA DE	VRE GE	RILIM	IININ	VE	
							YUK KAYI	PLARIN	IN O	LÇULM	ESI	05 2007
					TSE 2	67 MAD	DE 2.3.4.		VOI THE		09.	.05.2007
	BOŞTA	KAYIPLARIN	VE AKIMLA	ARIN	CICAL A	-	AMPERMI	ETRE(A)	VOLTME	TRE (V)	WAI	IMETRE(W)
	-	OLÇUL	MESI	00.05.2007	SKALA	iç. Milti	67	00	1,/	5 1		1401.6
SE 26	MADDE	Z.3.5.	VOLTMETRE AA	WATTMETDEAUA	A T *	1 2	6.6	65	90	3.6		1304 7
CV/	UA C	1	1 732	1	GT*	1 3	6.7	04	96	3.9	-	1368.7
ARPAN		6.874	231.15	586,0		ORT	6,6	93	964	1,20	TOP:	4165,0
	1 2	5,533	231,13	263,6	GEN	EL ÇARPA N	v 1		1,7	732		1
.T.*		7,127	230,84	234,0			In = 6	5,693 (Jk=	1670	Pk=	4165
\.Т.* .Т.*	1 3		231,040	TOP: 1083,6								
.т.* э.т.*	1 3 ORT :	6,511		4				10.10.1		10.0		
GENEL	1 3 ORT : CARPAN	6,511	1,732	1		/ ==0.		the second second second second second second second second second second second second second second second se	102	W		
GENEL	1 3 ORT : CARPAN	6,511 1 b: 6,511 (1,732 Jn: 400	1 Po: 1083,6	Wcu	(75°C) =	4843,5				
T.* T.* GENEL	1 3 ORT : . ÇARPAN I 1	6,511 1 b: 6,511 U ,128	1,732 Jn: 400	1 Po: 1083,6	Wcu	(75°C) =	4843,5				
T.* 6.T.* GENEL	1 3 ORT : . ÇARPAN I 1	6,511 1 b: 6,511 U ,128	1,732 Jn: 400	1 Po: 1083,6	Wcu 75	(75°C °C Uk) =	4843,9	54			
T.* i.T.* GENEL	1 3 ORT : . ÇARPAN I 1	6,511 1 b: 6,511 ,128	1,732 Jn: 400	1 Po: 1083,6	Wcu 75	(75°C °C ∪k) =	4843,9	54			
GENEL	1 3 ORT : _ CARPAN I 1, 1,	6,511 1 b: 6,511 (,128	1,732 Jn: 400	1 Po: 1083,6	Wcu 75	(75°C °C Uk) = % = UYGULAI	4843,5 4,896	54 RİLİM	DENI	EYİ	
T.* GENEL b% :	1 3 ORT : . CARPAN I I 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	6,511 1 b: 6,511 ,128 DÜKLENEN GE DE 2.7	1,732 Jn: 400 ERILIM DENR	1 Po: 1083,6 09.05.2007	Wcu 75 TS 1	(75°C °C UK) = % = UYGULAI ADDE 2.1.2	4843,5 4,896 NAN GE	54 RİLİM	I DENI	e vi 09	.05.2007
T.* GENEL b% :	1 3 ORT : . CARPAN 1 1 1 902 MADI RILIM	6,511 1 b: 6,511 ,128 DÜKLENEN GE DE 2.7 FREKANS	1,732 Jn: 400 ERÎLÎM DENE SÜRE	1 Po: 1083,6 99.05.2007 SONUC	Wcu 75 TS 1	(75°C °C Uk 0902 M) = % = UYGULAI ADDE 2.1.7 GERILIM	4843,5 4,896 VAN GE 2 FREKA	54 RILIM	I DENI	e vi 09	.05.2007 SONUÇ
A.T.* GENEL 10% : 10	1 3 ORT : . CARPAN 1 1 1 1 902 MADI RILIM	6,511 1 b: 6,511 0 0 0 0 0 0 0 0 0 0 0 0 0	1,732 Jn: 400 ERÎLÎM DENE SÜRE	1 Po: 1083,6 9.05.2007 SONUÇ	Wcu 75 TS 1 Y.G.	(75°C °C Uk 0902 M) = % = UYGULAN ADDE 2.1.1 GERILIM 70 kV	4843,5 4,896 VAN GE 2 FREKA 50 I	54 Rilim NS Hz 6	DENI SÜRE 0 sn.	e vi 09	.05.2007 50NUÇ geçtî
A.T.* G.T.* GENEL Ib% : TS 10 GEI	1 3 ORT : CARPAN I I 1 1 1 902 MADI RILIM	6,511 1 b: 6,511 1 vita 6,511 0 0 0 0 0 0 0 0 0 0 0 0 0	1,732 Jn: 400 ERÎLÎM DENE SÜRE	1 Po: 1083,6 99.05.2007 SONUÇ	Wcu 75 TS 1	(75°C °C Uk 0902 M) = % = UYGULAI ADDE 2.1.1 GERILIM 70 kV	4843,5 4,896 VAN GE 2 FREKA	54 RILIM	U DENI	e vi 09.	.05.200 50NUÇ
A.T.* GENEL ID% : TS 10 GEI 800	1 3 ORT: .CARPAN 1 1 1 902 MAD RILIM 1 0 V	6,511 1 b: 6,511 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	1,732 Jn: 400 ERÎLÎM DENE SÜRE 40 sn. EN BÜYÜKLÜ	1 Po: 1083,6 09.05.2007 SONUÇ GEÇTÎ	Wcu 75 TS 1 Y.G. A.G.	(75°C °C Uk 0902 M) = % = UYGULAI ADDE 2.1.1 GERILIM 70 kV 3 kV ELDE EDI	4843,: 4,896 2 FREKA 50 I 50 I	RILIM NS Hz 6 Hz 6 K	SÜRE 0 sn. 0 sn.	09.	.05.2007 50NUÇ GEÇTÎ GEÇTÎ
* 	1 3 ORT: .çARPAN I 1 1 1 902 MADI RILIM I 0 V	6,511 1 b: 6,511 0 0 0 0 0 0 0 0 0 0 0 0 0	1,732 Jn: 400 ERÎLÎM DENE SÜRE 40 sn. EN BÜYÜKLÜ	1 Po: 1083,6 09.05.2007 SONUÇ GEÇTÎ KLER	Wcu 75 TS 1 Y.G. A.G.	(75°C °C Uk 0902 M) = % = ADDE 2.1 GERILIM 70 kV 3 kV ELDE EDI	4843,2 4,896 2 FREKA 50 1 50 1	S4 RILIM NS Hz 6 Hz 6 GERLE	SÜRE 0 sn. 0 sn.	09	.05.2007 SONUÇ GEÇTİ GEÇTİ
* 	1 3 ORT : .çARPAN I 1 1 902 MADI 902 MADI 902 V	6,511 1 b: 6,511 1 b: 6,511 0 0 0 0 0 0 0 0 0 0 0 0 0	1,732 Jn: 400 ERÎLÎM DENE SÜRE 40 sn. EN BÜYÜKLÜ AKÎ KAYIPLARI FEKÎ KAYIPLARI	1 Po: 1083,6 09.05.2007 SONUÇ GEÇTİ KLER (W) (W)	Wcu 75 TS 1 Y.G. A.G.	(75°C °C Uk 0902 M) = % = ADDE 2.1.1 GERILIM 70 kV 3 kV ELDE EDI 1084 4843	4843,2 4,896 2 FREKA 50 1 50 1	RILIM NS Hz 6 Hz 6 GERLE	SÜRE 0 sn. 0 sn.		.05.2007 SONUÇ GEÇTİ GEÇTİ
A.T.* GENEL b% : 15 10 GENEL 800	1 3 ORT : .çARPAN I 1 1 1 902 MADI 902 MADI 902 MADI	6,511 1 b: 6,511 (128 DÜKLENEN GE DE 2.7 FREKANS 150 Hz ÖLÇÜL BOŞT YÜKT TOPI	1,732 Jn: 400 ERÎLÎM DENE SÜRE 40 sn. EN BÛYÛKLÛ AKÎ KAYIPLARI EKÎ KAYIPLARI AM KAYIPLARI	1 Po: 1083,6 09.05.2007 SONUÇ GEÇTİ KLER (W) (W)	Wcu 75 TS 1 Y.G. A.G.	(75°C °C Uk 0902 M) = % = ADDE 2.1.1 GERILIM 70 kV 3 kV ELDE EDI 1084 4843 5927	4843,2 4,896 2 FREKA 50 I 50 I	RILIM NS Hz 6 Hz 6 K	SÜRE 0 sn. 0 sn.	09	.05.2007 SONUÇ GEÇTİ GEÇTİ
S.T.* GENEL D% : S 10 GEI 800	1 3 ORT : .çARPAN I 1 1 902 MADI 902 MADI 902 MADI 902 V	6,511 1 6,511 1 6,511 0 0 0 0 0 0 0 0 0 0 0 0 0	1,732 Jn: 400 ERÎLÎM DENE SÜRE 40 sn. EN BÜYÜKLÜ AKÎ KAYIPLARI EKÎ KAYIPLARI AM KAYIPLARI % TR	1 Po: 1083,6 09.05.2007 SONUÇ GEÇTÎ KLER (W) (W) (W)	Wcu 75 TS 1 Y.G. A.G.	(75°C °C Uk 0902 M) = % = ADDE 2.1.1 GERILIM 70 kV 3 kV ELDE EDI 1084 4843 5927 1,128	4643,5 4,896 2 FREKA 50 I 50 I	RİLİM NS Hz 6 Hz 6 ĞERLE	SÜRE 0 sn. 0 sn.		.05.2007 SONUÇ GEÇTÎ GEÇTÎ

TEST REPORT

Test Results	Test department
transformer	ETP-PB 020.01-0
Type: DOR 112000/130E Ser.no.: 15441	0 Sheet no.: 1

Standards: IEC / DIN

In addition to routine tests following type-resp. special tests have been performed :

No

Acoustic sound level

Temperature rise test

Zero-sequence impedance

Insulation resistance

➢ Lightning impulse test ➢ Partial discharge measurement

Capacitance and loss angle

Results:

referred to 100MVA; 75°C; Tap: 13

No-loa	No-load loss		o-load current Load loss		No-load current		Impedance	ce voltage
meas.:	guar.:	meas .:	guar.:	meas.:	guar.:	meas .:	guar.:	
39,635kW	40,00kW	0,046%	0,100%	345,60kW	345,00kW	11,93%	12,00%	

Tolerances for:

commercial: technical: Loss: +0%;

Loss: +15%; Sum of loss: +10%, Impedance voltage: ±10%, No-load current: 30%

Acoustic sound level:

Sound pressure level

	Dooding both	
Cooling	meas .:	guar.:
ONAN	dB	dB
ONAF	dB	dB

Temperature rise test:

Cooling	Top oil	HV	LV	
ONAN	K	K	K	K
ONAF	K	K	K	K

Temperature rise limit Top oil: 55 K Winding: 60 K

OFFEL

Connection:

Vector group: YNyn 0	
Present voltage as delivered by EBG:	
154000/33600V	

Results of electrical tests:

- Test object has withstood all dielectric tests.
- All test results are within limited tolerances.

Number of pages of the test record: 26...

Date:1998 04 03	meas.:Prillinger	Release:	
		(1)	ientromaschines

pi DOR 112 000/130 € Seri No 1) andart IEC 76 Imalat Yili 3) ekans Hz 50 Soğutma Tipi ONAN / ONAF Binsi T olasyon Seviyesi KV YG / L1636 AB2 82 KV AG / L1 170 AC 70 Baglanti Grubu YNyn 0 ominal Gûç KVA 80 000 / 100 000 KVA 80 000 / 100 000 KVA 80 000 / 100 000 ominal Gûç KVA 80 000 / 100 000 KVA 80 000 / 100 000 Kisa Devre AZ, 75- ominal Akm A 300 / 375 A 1 375 / 1718 Higili Gûç KVA (100 000 sa Devre Akm A 300 / 375 A 1 375 / 1718 Max Kisa S a Seri No Tipi ELIN - SN / 500 L2 / 350 / 350 / 12 G Sol 350 / 12 G Sol 350 / 12 G Sol 350 / 12 G Sol 350 / 12 G Sol 350 / 12 G Sol 350 / 12 G Sol 350 / 12 G Sol 350 / 12 G Sol 350 / 12 G Sol 350 / 12 G Sol 350 / 12 G Sol 350 / 12 G Sol 350 / 12 G Sol 350 / 12 G Sol 350 / 12 G Sol 350 / 12 G Sol 350 / 12 G Sol 350 / 12 G Sol 350 / 12 G <t< th=""><th colspan="7">3 Fazlı Yağli-Transformatör</th><th colspan="4">EBG Transformatoren GmbH & Co</th></t<>	3 Fazlı Yağli-Transformatör							EBG Transformatoren GmbH & Co			
andart IEC 76 Imalat Yili 3) ekans Hz 50 Soğutma Tipi ONAN / ONAF Cinsi T olasyon Seviyesi KV YG / L153 40232 KV AG / L1170 AC 70 Baglanti Grubu Yilyn 0 ominal Gûç KVA 80 000 / 100 000 KVA 80 000 / 100 000 KVA 80 000 / 100 000 ominal Gûç KVA 80 000 / 100 000 KVA 80 000 / 100 000 KVA 80 000 / 100 000 ominal Akım A 300 / 375 A 1 375 / 1718 İngli Gûç KVA 100 000 isa Devre Akımı KA 3,550 KA ////////////////////////////////////	Tipi 🗌	DOR 112 000 / 130 E IEC 76] Seri No] İmalat Yılı		1) 3)		
ekans H2 50 Soğutma Tipi ONAN / ONAF Cinsi T olasyon Seviyesi KV GO / Lisso AE275- (So 000 / 100 000 KVA Bağlantı Grubu Yhyn 0 ominal Güç KVA 60 000 / 100 000 KVA 80 000 / 100 000 KVA ominal Akım 1 177 100 V 33 600 Gerilimi % ///.43 ominal Akım A 300 / 375 A 1 375 / 1718 İnglinti Güç KVA ///.9 ominal Akım A 300 / 375 A 1 375 / 1718 İnglinti Güç KVA 4///.43 ademe Değiştirici Tipi ELIN - SN / 500 L2 / 350 / 126 Seri No Seri No 3 3 V Vekeek Gerilim A 4/1 Sevigesi KV Li 1350 AC 14 10 V Vekeek Gerilim Bağlantı Uçlar. 10	Standart										
blasyon Seviyesi KV V YG / L ¹⁶ 55 d2 ²⁵ d2 pominal G0ç KVA 80 000 / 100 000 tVA 80 000 / 100 000 tVA 80 000 / 100 000 KVA 80 000 / 100 000 KVA 80 000 / 100 000 KVA 80 000 / 100 000 KVA 80 000 / 100 000 KVA 80 000 / 100 000 KVA 80 000 / 100 000 KVA 80 000 / 100 000 KVA 80 000 / 100 000 KVA 80 000 / 100 000 KVA 80 000 / 100 000 KVA 80 000 / 100 000 KVA 80 000 / 100 000 KVA 80 000 / 100 000 KVA 80 000 / 100 000 KVA 80 000 / 100 000 KVA 80 000 / 100 000 KVA 80 000 / 100 000 KVA 80 000 / 100 000 KVA 80 000 / 12 G 80 KVA 1 375 / 1718 100 100 000 KVA 80 00 / 375 KA / // / 33 1 375 / 1718 100 100 000 KVA 80 00 / 375 KA // // 73 80 / 350 / 12 G 80 KVA 100 000 V 200 ZV V 10	rekans Hz	50 Soğutma Tipi ON			AN / ONAF	Cinsi		T			
ominal Güç KVA 80 000 / 100 000 KVA 80 000 / 100 000 1 177 100 V 33 600 Gerilini 22,75 ominal Akım A 300 / 375 A 1 375 / 1718 İlgili Güç KVA 100 000 isa Devre Akımı A 300 / 375 A 1 375 / 1718 İlgili Güç KVA 100 000 isa Devre Akımı A 300 / 375 A 1 375 / 1718 İlgili Güç KVA 100 000 isa Devre Akımı KA 3.50 KA //// 3.62 Devre Süresi 3 ademe Değiştirici Tipi ELIN - SN / 500 / 12 / 050	zolasyon Seviyesi	kV 🔼	YG / LI 650 AC 275 -	kV	AG /	LI 170 AC 70	Bağlantı G	irubu 🗌	YNyn	0	
1 177 100 V 33 600 Kisa Devre % ///.43 25 130 900 A 1375/1718 ligili Gig K/A ///.43 25 130 900 A 1375/1718 ligili Gig K/A ///.43 25 130 900 A 1375/1718 ligili Gig K/A ///.43 3600 Seri No A 1375/1718 ligili Gig K/A ///.43 3600 Seri No A 1375/1718 ligili Gig K/A ///.43 3600 Bolt No A 1375/1718 ligili Gig K/A ///.43 3600 Seri No A 1375/1718 ligili Gig K/A ///.43 3600 Seri No A	lominal Güç	kVA	80 000 / 100 000	kVA	80 0	00 / 100 000					
ominal erilim 134, 13, 139 V 154 000 V 33 600 Kisa Devre Gerilimi % ///.4,3 25 130 900 A 1375 / 1718 Ingili Güç KVA 100 000 isa Devre Akımı KA 3,50 KA ///.4,3 Max. Kısa ///.4,43 Seri No 4) ademe Değiştirici Tipi ELIN - SN / 500 L2 / 350 / 350 / 12 G Seri No 4) Nominal Akım A 441 Seviyesi S 3 Veckex Gerilim Valation of the second		1	177 100	i				Γ	12,7	5	
Similar 25 130 900 A 1375/1718 ligili Güç KV////////////////////////////////////	Nominal	13, 13B V	154 000	Īv		33 600	Kisa Devr Gerilimi	e %	11.9	13	
ominal Akım A 300/375 A 1375/1718 İlgili Güç KVA 100.000 Akım A 3,50 KA /3.62 Max. Kısa Bazerre Akımı Ademe Değiştirici Tipi ELIN - SN / 500 L2 / 350 / 12 G Seri No Vulus Akım A 441 Seviyesi Vulus Akım A 44 Simif Tipi Bağlantı Akım X 45 Simif Tipi Bağlantı Akım A 44 Simif Tipi Bağlantı Akım A 44 Simif Tipi Bağlantı Akım A 44 Simif Tipi Bağlantı 44.m A 44 Simif Tipi Bağlantı 44.m A 44 Simif Tipi Bağlantı 44.m A 44 Simif Tipi Bağlantı 44.m A 44 Simif Tipi Bağlantı 44.m A 44 Simif Tipi Bağlantı 44.m A 44 Simif Tipi Bağlantı 44.m A 44 Simif Tipi Bağlantı 41.m 4 44 Simif Tipi Bağlantı 41.m 4 44 Simif Tipi Bağlantı 41.m A		25	130 900	i	[Ē	10.0	73	
Issa Devre Akimi KA 3,50 KA /3.62 Max. Kisa Devre No S ademe Değiştirici Tipi ELIN - SN / 500 L2 / 350 / 12 G So / 350 / 12 G Seviesi A Nominal Akim A 441 Seviesi WL II 350 AC 14 Poz. Gerlim. V ONAF Bağlantı Vüksek Cerlim Bağlantı Akim A ONAF Bağlantı Vüksek Cerlim 1000000000000000000000000000000000000	Vominal Akım	A	300/375	A	1	375/1718	İlgili Güç	kVA	100 0	000	
ademe Değiştirici Tipi ELIN - SN / 500 L2 / 350 / 12 G Devre Surgesi 4) Nominal Akım A 4411 Seviyesi KV Li 350 AC 14 Nominal Akım A 4411 Seviyesi KV Li 350 AC 14 Nominal Akım A 4411 Seviyesi KV Li 350 AC 14 Nominal Akım A 4411 Seviyesi KV Li 350 AC 14 Nominal Akım A 4411 Seviyesi KV Li 350 AC 14 Nominal Akım A 4411 Seviyesi KV Li 350 AC 14 Nominal Akım Poz Gerilin V ONAN Bağlantı Nominal Akım Nominal Akım Yi Xisek Gerilim Bağlantı Nominal Akım Nomina	Kısa Devre Akımı	kA	3,50] kA	[13.62	Max. Kisa	. s	3		
Nominal Akım A 441 İzolaşyon KV Li 350 AC 14 Poz Berilim V ONAF Bağlantu ONAF Bağlantu Vüksek Garilim Bağlantu Uçları: 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	'ademe Değiştirici	Tipi ELIN - SN / 500			L2 / 350 / 350 / 12 G		Seri No		4)		
Open Genilin V Arm A DNAM Condition DNAM Condition DNAM Down Bailantu DNAM Down Bailantu DNAM Down Bailantu DNAM Down Bailantu DNAM Down Bailantu DNAM Down Bailantu DNAM Down Bailantu DNAM Down Bailantu DNAM Down Bailantu DNAM Down Bailantu DNAM Down Bailantu DNAM Down Bailantu DNAM Down Bailantu DNAM Down Bailantu DNAM Down Down Bailantu DNAM Down Bailantu DNAM Down <thdown< th=""> <thdown< th=""> <thdown< td="" th<=""><td></td><td></td><td>Nominal A</td><td>kim A</td><td>[</td><td>441</td><td>İzolasyon</td><td>kV</td><td>1350 A</td><td>AC 14</td></thdown<></thdown<></thdown<>			Nominal A	kim A	[441	İzolasyon	kV	1350 A	AC 14	
Index Index <thindex< th=""> Index <thi< td=""><td></td><td>19</td><td>EN 21/</td><td></td><td>Poz</td><td>Gerilim V</td><td>Akim</td><td>A I</td><td>Bañla</td><td>inti</td></thi<></thindex<>		19	EN 21/		Poz	Gerilim V	Akim	A I	Bañla	inti	
UNX 1 - 1 Mark of the first market market 2U 2W N Display of the first market Displas Display of the first market	100 A				Vi	rsek Gerilim	Bañlanti Licia	ONAF	1W - 1N		
DIXXT-Trip Arm transformatörü 2Ú 2W 10 173 175 264 330 16 11 173 280 267 333 15 4 171 326 270 337 14 13 16 107 475 278 334 13 6 107 475 278 344 13 5 7 165 550 278 344 13 5 10 159 775 289 353 10 11 177 850 288 357 9 10 13 164 000 300 375 4 17 13 164 000 300 376 4 17 14 152075 304 380 15 16 15 150150 304 380 15 17 14 162075 333 428 8 17 15 150150 306 333 417 9 14 142 450 324 405 15 17				ZN	1	177 100	261	326	17	1	
3 17/3 220 287 333 19 3 17/3 220 287 333 19 4 171 320 273 341 13 5 169 400 273 341 13 6 167 475 278 345 12 7 185 560 282 385 10 9 161 700 288 357 9 10 19775 288 366 7 11 197 8800 283 306 7 13 154 000 300 375 4 11 197 785 288 306 16 13 154 000 300 375 5 13 154 000 300 375 5 13 154 000 300 375 5 14 152 075 304 380 16 15 16 16 16 16 16 16 162 225 328 306 12 5 20 100 2626 </td <td></td> <td></td> <td>20</td> <td>2W</td> <td>2</td> <td>175 175</td> <td>264</td> <td>330</td> <td>16</td> <td></td>			20	2W	2	175 175	264	330	16		
$\frac{44207047413}{14}$ $\frac{1}{12}$	Akim tratolarinin	P1 511 7			3	173 250	267	333	15		
andder 10^{-1} 10 10 10 10 10 10 10 10 10 10 10 10 10	sekonderleri acık devre birakılma-	P2 2 52			5	169 400	273	341	13	1	
10 10 <td< td=""><td>malidiri</td><td></td><td></td><td></td><td>6</td><td>167 475</td><td>276</td><td>345</td><td>12</td><td></td></td<>	malidiri				6	167 475	276	345	12		
$\frac{2}{2} \sum_{n=2}^{2} 22 \sum_{n=2}^{2}$	/				7	165 550	279	349	11	5 -	
2N 2U 2V 2W 1U 1V 1W 1U 1V 1W 11 157 850 228 366 7 11 155 822 296 370 6 11 155 822 296 370 6 11 155 822 296 370 6 11 155 822 296 370 6 13 154 000 300 375 4 13 154 000 300 375 4 13 154 000 300 375 4 14 152 075 304 380 15 15 15 150 150 306 385 15 16 144 250 324 400 11 17 144 250 324 400 11 18 144 275 320 400 12 19 144 250 338 422 8 22 136 675 338 422 8 22 136 675 338 422 8 22 136 675 338 422 8 23 130 900 353 441 5 10 13 8600 1375 1718 11 151 S2 1718 / 1,5 10 3M5 Toplam Ağırlık 1 97,30 Taşıma Rğırlığı 1 81,90 Aktif Kişim Ağırlığı 1 81,90 Siparis No: 5)	O' () 0 0	$O 1NO \rightarrow$		8	163 625	282	353	10	1	
$\frac{10}{10} + 10$	2N 2	2U 2V 2	W)		9	161 700	286	357	9	1	
10 10 10 10 10 10 10 10				1	10	159 775	289	361	8	1	
$\frac{10}{10} + \frac{17}{10} + \frac{17}{10} + \frac{17}{10} + \frac{17}{10} + \frac{17}{10} + \frac{17}{10} + \frac{18}{10} + \frac{17}{10} + \frac{18}{10} + 18$	411	417			11	157 850	293	366	7		
10 154 000 300 375 4 133 154 000 300 375 4 133 154 000 300 375 4 133 154 000 300 375 4 133 154 000 300 375 4 134 152 075 304 386 15 15 150 150 308 385 15 15 150 150 302 400 12 16 144 225 312 390 13 18 144 275 320 400 12 20 104 225 333 417 9 22 104 225 333 442 8 19 142 450 324 405 6 22 134 750 244 405 6 23 134 750 244 405 6 24 132 825 348 405 6 15 138 600 1375 1718 1730 33 600 1375 171		IV			12	100 920	290	370	5		
Image: constraint of the second s	χQ	Q	0 /		13	154 000	300	375	4	1 -	
10 10 10 10 10 10 11 10 12 12 1390 14 16 146 225 312 390 14 13 14 150 150 306 386 15 16 146 225 312 390 14 14 146 300 316 395 13 16 395 13 16 148 225 312 390 14 17 146 300 316 395 13 16 148 225 324 400 12 5 17 146 300 324 405 11 12 12 136 600 333 417 9 12 138 600 333 417 9 12 1396 675 338 4422 8 22 130 800 353 441 5 12 130 600 333 417 9 13 12 138 600 333 417 9 13 13 136 130 13 13 13 13 13 13 14 13 14 14 14 15	\			1	138	101 000	000	oro -	17	1	
10 10 10 10 10 10 10 10 11 10 12 130 14 10 12 130 14 10 12 10 10 11 <	(E)	24			14	152 075	304	380	16		
$\frac{16}{17} \frac{146}{146} \frac{225}{312} \frac{390}{395} \frac{14}{13}$ $\frac{16}{17} \frac{146}{146} \frac{225}{320} \frac{316}{400} \frac{395}{13}$ $\frac{16}{18} \frac{144}{144} \frac{375}{320} \frac{300}{400} \frac{12}{12}$ $\frac{16}{19} \frac{142}{450} \frac{324}{405} \frac{400}{11} \frac{15}{12}$ $\frac{19}{19} \frac{142}{450} \frac{324}{405} \frac{400}{11} \frac{15}{12}$ $\frac{19}{19} \frac{142}{450} \frac{324}{405} \frac{400}{11} \frac{15}{12}$ $\frac{19}{19} \frac{142}{450} \frac{324}{405} \frac{400}{12} \frac{11}{12}$ $\frac{19}{20} \frac{142}{405} \frac{322}{400} \frac{400}{12} \frac{11}{12}$ $\frac{10}{20} \frac{140}{140} \frac{525}{320} \frac{329}{411} \frac{411}{10} \frac{1}{10}$ $\frac{11}{22} \frac{136}{136} \frac{675}{338} \frac{422}{428} \frac{8}{7} \frac{7}{24}$ $\frac{138}{134} \frac{600}{353} \frac{343}{441} \frac{428}{5} \frac{6}{5}$ $\frac{1}{25} \frac{130}{300} \frac{353}{441} \frac{441}{5}$ $\frac{1}{25} \frac{130}{300} \frac{353}{441} \frac{441}{5}$ $\frac{1}{25} \frac{130}{300} \frac{353}{441} \frac{441}{5}$ $\frac{1}{25} \frac{130}{300} \frac{353}{441} \frac{441}{5}$ $\frac{1}{25} \frac{1718}{171} \frac{1}{15} \frac{10}{3} \frac{315}{315} \frac{1718}{1718} \frac{1}{15}$ $\frac{1}{10} \frac{315}{315} \frac{1718}{1718} \frac{1}{15} \frac{97,30}{1718} \frac{1}{18,50}$ $\frac{1}{20} \frac{132}{42} \frac{42}{132} \frac{42}{132} \frac{42}{132} \frac{1}{10} \frac{1}$					15	150 150	308	385	15		
$\frac{1}{10} + \frac{1}{10} $	15				16	148 225	312	390	14	1	
$\frac{18}{124} = \frac{144375}{320} = \frac{320}{400} = \frac{12}{12}$ $\frac{18}{19} = \frac{144375}{142450} = \frac{320}{324} = \frac{400}{12} = \frac{1}{12}$ $\frac{18}{19} = \frac{144375}{142450} = \frac{320}{324} = \frac{400}{12} = \frac{1}{12}$ $\frac{18}{19} = \frac{144375}{142450} = \frac{320}{324} = \frac{400}{11} = \frac{1}{12}$ $\frac{18}{19} = \frac{144375}{122450} = \frac{320}{324} = \frac{400}{11} = \frac{1}{12}$ $\frac{18}{19} = \frac{142450}{324} = \frac{324}{405} = \frac{400}{11} = \frac{1}{12}$ $\frac{18}{19} = \frac{142450}{324} = \frac{324}{405} = \frac{400}{11} = \frac{1}{12}$ $\frac{11}{138600} = \frac{333}{333} = \frac{411}{10} = \frac{1}{12}$ $\frac{11}{138600} = \frac{333}{333} = \frac{411}{10} = \frac{1}{12}$ $\frac{11}{138600} = \frac{333}{333} = \frac{411}{10} = \frac{1}{12}$ $\frac{11}{138600} = \frac{333}{333} = \frac{411}{10} = \frac{1}{10}$ $\frac{11}{22} = \frac{1}{130} = \frac{1}{10}$ $\frac{11}{10} = \frac{1}{10} = \frac{1}{10}$			10		17	146 300	316	395	13		
$\frac{19}{5} + \frac{142}{5} + \frac{35}{5} + \frac{35}{5} + \frac{35}{5} + \frac{35}{5} + \frac{10}{5} + \frac{10}{10} + \frac{10}{10} + \frac{10}{5} + \frac{10}{$	4 54 4	Sa .	4		18	144 375	320	400	12		
$\frac{20}{140} \frac{140}{525} \frac{529}{333} \frac{411}{10} \frac{10}{9}$ $\frac{20}{12} \frac{140}{138} \frac{525}{333} \frac{529}{411} \frac{411}{10} \frac{10}{9}$ $\frac{21}{138} \frac{138}{675} \frac{338}{338} \frac{422}{428} \frac{8}{7}$ $\frac{23}{134750} \frac{343}{343} \frac{428}{425} \frac{7}{6}$ $\frac{23}{25} \frac{132425}{130900} \frac{343}{353} \frac{441}{5} \frac{5}{5}$ $\frac{138}{25} \frac{411}{10} \frac{10}{9}$ $\frac{140}{22} \frac{225}{338} \frac{411}{15} \frac{10}{9}$ $\frac{110}{22} \frac{132}{125} \frac{239}{134750} \frac{343}{248} \frac{428}{7} \frac{7}{6}$ $\frac{12}{25} \frac{132}{130900} \frac{343}{353} \frac{422}{441} \frac{8}{5}$ $\frac{132}{25} \frac{132}{130900} \frac{343}{353} \frac{422}{441} \frac{8}{5}$ $\frac{12}{25} \frac{132}{130900} \frac{343}{353} \frac{422}{441} \frac{8}{5}$ $\frac{132}{25} \frac{132}{130900} \frac{343}{353} \frac{422}{441} \frac{8}{5}$ $\frac{132}{25} \frac{132}{130900} \frac{343}{353} \frac{422}{441} \frac{8}{5}$ $\frac{132}{25} \frac{132}{130900} \frac{343}{353} \frac{422}{441} \frac{8}{5}$ $\frac{132}{25} \frac{132}{130900} \frac{343}{353} \frac{422}{441} \frac{8}{5}$ $\frac{132}{25} \frac{132}{130900} \frac{343}{353} \frac{422}{441} \frac{8}{5}$ $\frac{132}{25} \frac{132}{130900} \frac{343}{353} \frac{422}{441} \frac{8}{5}$ $\frac{132}{25} \frac{132}{130900} \frac{353}{353} \frac{441}{5}$ $\frac{132}{25} \frac{132}{130900} \frac{353}{353} \frac{441}{5}$ $\frac{132}{25} \frac{132}{130900} \frac{353}{353} \frac{441}{5}$ $\frac{132}{25} \frac{132}{130900} \frac{353}{353} \frac{441}{5}$ $\frac{132}{25} \frac{132}{130900} \frac{1375}{1718} \frac{171}{5}$ $\frac{133}{50} \frac{1375}{1718} \frac{1718}{15}$ $\frac{133}{50} \frac{1375}{1718} \frac{1718}{15}$ $\frac{133}{50} \frac{1375}{1718} \frac{1718}{15}$ $\frac{133}{50} \frac{1375}{1718} \frac{1718}{15}$ $\frac{138}{50} \frac{18}{50}$ $\frac{110}{5} \frac{110}{5} \frac{110}{5}$ $\frac{110}{5} \frac{110}{5} \frac{110}{5}$ $\frac{110}{5} \frac{110}{5}$ \frac	36 0 36 0			•1N	19	142 450	324	405	11	5 -	
$\frac{21}{138607} \frac{138607}{338} \frac{333}{417} \frac{417}{9} \frac{9}{8}$ $\frac{21}{138607} \frac{138607}{338} \frac{333}{428} \frac{417}{9} \frac{9}{8}$ $\frac{21}{23} \frac{134750}{343} \frac{343}{428} \frac{428}{7}$ $\frac{24}{132825} \frac{348}{343} \frac{428}{435} \frac{6}{6}$ $\frac{25}{130900} \frac{353}{441} \frac{5}{5}$ $\frac{1}{25} \frac{130900}{353} \frac{341}{441} \frac{5}{5}$ $\frac{1}{25} \frac{130900}{353} \frac{353}{441} \frac{5}{5}$ $\frac{1}{25} \frac{130900}{353} \frac{1718}{441} \frac{5}{5}$ $\frac{1}{25} \frac{130900}{353} \frac{1718}{441} \frac{5}{5}$ $\frac{1}{25} \frac{1718}{15} \frac{1718}{15} \frac{1718}{15}$ $\frac{1}{25} \frac{1718}{15} \frac{1718}{15} \frac{1718}{15}$ $\frac{1}{25} \frac{1718}{15} \frac{1718}{15} \frac{1718}{15}$ $\frac{1}{25} \frac{1718}{15} \frac{1718}{15} \frac{1718}{15}$ $\frac{1}{25} \frac{1718}{15} \frac{1718}{15} \frac{1718}{15}$ $\frac{1}{25} \frac{1718}{15} \frac{1718}{15} \frac{1718}{15}$ $\frac{1}{25} \frac{1718}{15} \frac{1718}{15} \frac{1718}{15}$ $\frac{1}{25} \frac{1718}{15} \frac{1718}{15} \frac{1718}{15}$ $\frac{1}{25} \frac{1718}{15} \frac{1718}{15} \frac{1718}{15}$ $\frac{1}{25} \frac{1718}{15} \frac{1718}{15} \frac{1718}{15}$ $\frac{1}{25} \frac{1718}{15} \frac{1718}{15} \frac{1718}{15}$ $\frac{1}{25} \frac{1718}{15} \frac{1718}{15} \frac{1718}{15} \frac{1718}{15}$ $\frac{1}{25} \frac{1718}{15} \frac{1718}{15} \frac{1718}{15} \frac{1718}{15} \frac{1718}{15}$ $\frac{1}{25} \frac{1718}{15}$	50 50 04 50	50 04	50 50		20	140 525	329	411	10	1	
$\frac{22}{136} \frac{134}{750} \frac{338}{343} \frac{422}{428} \frac{8}{7} \frac{1}{24} \frac{1}{132} \frac{825}{343} \frac{428}{435} \frac{8}{5} \frac{1}{25} \frac{1}{130000} \frac{1}{353} \frac{441}{5} \frac{5}{5} \frac{1}{5} \frac{1}{25} \frac{1}{130000} \frac{1}{353} \frac{1}{5} $			10 T° 10	1W	21	138 600	333	417	9		
15-1 15-1 15-1 15-1 15-1 15-1 15-1 15-1 12-2 34-3 420 7 17 132 625 34-3 420 7 12-2 132 625 34-3 420 7 132 625 34-3 441 5 12-2 130 900 353 441 5 Akim Transformatörü 1 1 Alçak Gerilim Bağlantı Uçları: 2W - 2V - 2U - 2N Akim Transformatörü 1			1 A		22	136 675	338	422	8		
17 17 17 17 17 130 900 353 441 5 1 Akım Transformatörü Alçak Gerillim Bağlantı Uçları: 2W - 2V - 2U - 2N 33<600	15 0 1 18 1	50-16	150-15		23	134 /50	343	428	1		
0 0	17 20 17		17-10-10		24	132 825	348	435	5	1	
Alçak Gerilim Bağlantı Uçları: 2W - 2V - 2U - 2N Akım Transformatörü 33 600 1 375 1 718 Akım Transformatörü Akım A VA Sınıf T1 S1 - S2 1 718 / 1,5 10 3M5 Toplam Ağırlık 1 97,30 Taşıma Ağırlık 1 97,30 Taşıma Ağırlık 1 97,30 Taşıma Ağırlığı 81,90 Aktif Kisim 4 58,30 Ağırlığı 1 8,50 Siparis No: 5) Siparis No: 5)					2.5	100 000	000				
Image: Participation of the second state of the second	L°°	×°.	L°.		A	çak Gerilim	Bağlantı Uç	ları: 2W - 2\	/ - 2U - 2N		
Akım Transformatörü Tipi Bağlantı Akım A VA Sınıf T1 S1 - S2 1 718 / 1,5 10 3M5 Toplam Ağırlık t 97,30 Taşıma Rğırlığı t 81,90 Aktif Kisim Ağırlığı t 81,90 Aktif Kisim Ağırlığı t 58,30 Yağ Ağırlığı t 58,30 Siparis No: 5) Siparis No: 5) Inz - Austria Siparis No: 5) Inz - Austria	2	2	1 <u> </u> 2			33 600	1 375	1 718		_	
Tipi Bağlantı Akım A VA Sınıf T1 S1 - S2 1 718 / 1,5 10 3M5 Toplam Ağırlık t 97,30 Taşıma Ağırlığı Taşıma Ağırlığı t 81,90 Aktif Kisim Ağırlığı t 58,30 Yağ Ağırlığı Taşıma Körlığı t 18,50 Siparis No: 5)	Akım Transformatörü	Ì									
T1 S1-S2 1718/1,5 10 3M5 Toplam Ağırlık t 97,30 Taşıma Ağırlığı Taşıma Ağırlığı 81,90 Aktir Kisim Ağırlığı 1 81,90 Yağ Ağırlığı 1 18,50 Siparis No: 5) Siparis No: 5)	Tipi	Bağlantı	Akım A	VA	4	Sinif					
Taşıma Ağırlığı 81,90 Aktir Kısım 1 Ağırlığı 1 Yağı Ağırlığı 1 Siparis No: 5) 1		S1 - S2	1 718 / 1,5	1()	3M5	Toplam /	Ağırlık t	97,	30	
Akur, Kisim 1 58,30 Ağırlığı 1 18,50 Siparis No: 5) 1 1		.*:	ŀ][Taşıma		81,	90	
Yağ Ağırlığı 1 18,50 Siparis No: 5) Inz - Austria							Ağırlığı		58,	30	
Siparis No: 5)							Yağ Ağır	liği d	18,	,50	
T_{20} 132 A2 - 1) $f_{102} = Austria$				Siparis	No: 5)		N. Site	Care Care			
T 20 132 42 - 1) Linz - Austria						\frown	-				
LU IULIA AUDUID	T 20 132 A2 -	1)	1			e D	Linz -	Austria	Э		

ÖZGEÇMİŞ

Onur Acar, 06.06.1982 de Adapazarı'nda doğdu. İlkokul eğitimini Ahmet Akkoç İlkokulu'nda, orta ve lise eğitimini Sakarya Anadolu Lisesi'nde tamamladı. 2000 yılında Sakarya Anadolu Lisesi Fen Bilimleri Bölümünden mezun oldu. 2001 yılında başladığı Sakarya Üniversitesi Elektrik-Elektronik Mühendisliği bölümünü 2005 yılında bitirdi. 2005 yılında Sakarya Üniversitesi Elektrik-Elektronik Mühendisliği Ana Bilim dalı Elektrik Bölümünde Yüksek Lisansa başladı.2007 yılının mart ayında Sakarya İl Özel İdaresi'nde çalışmaya başladı.Sakarya İl Özel İdaresi'nde Elektrik-Elektronik Mühendisi olarak yapı denetim görevlisi görevini sürdürmektedir