T.C. SAKARYA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

DEPREM VE PATLATMA VERILERININ BIRBIRINDEN AYIRT EDILMESI

YÜKSEK LİSANS TEZİ

Jeof.Müh. Pınar DENİZ

Enstitü Anabilim Dalı	:	JEOFİZİK MÜHENDİSLİĞİ
Tez Danışmanı	:	Prof.Dr.Gündüz HORASAN

Ocak 2010

T.C. SAKARYA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

DEPREM VE PATLATMA VERILERININ BIRBIRINDEN AYIRT EDILMESI

YÜKSEK LİSANS TEZİ

Jeof.Müh. Pınar DENİZ

Enstitü Anabilim Dalı : JEOFİZİK MÜHENDİSLİĞİ

Tez Danışmanı

: Prof.Dr.Gündüz HORASAN

Bu tez 12/ 01 /2010 tarihinde aşağıdaki jüri tarafından Oybirliği ile kabul edilmiştir.

G. Worasa

Prof.Dr. Gündüz HORASAN Jüri Başkanı

Prof.Dr. Aysun GÜNEY Üye

n Sola

Prof.Dr.Ruhi SAATÇILAR Üye

TEŞEKKÜR

Konuyu bana öneren ve çalışma süresince her türlü desteği veren değerli hocam Sayın Prof.Dr. Gündüz HORASAN' a teşekkür ederim.

Çalışmamda kullandığım veri arşivinin oluşması Kandilli Rasathanesi ve Deprem Araştırma Enstitüsü (KRDAE) - Ulusal Deprem İzleme Merkezi (UDİM) tarafından sağlanmıştır. Başta KRDAE-UDIM Müdürü Sayın Dr. Doğan KALAFAT olmak üzere emeği geçen tüm arkadaşlarıma teşekkür ederim.

Çalışmalarım süresince değerli fikir ve önerileriyle beni bilgilendiren Sayın Prof. Dr. S.Balamir ÜÇER' e teşekkür ederim.

Bütün çalışmam boyunca gerek fikirleri gerekse bilgileri ile bana yol gösteren, yardım ve desteğini esirgemeyen, değerli arkadaşım Mühendis Yavuz GÜNEŞ' e teşekkür ederim.

Çalışmam sırasında bana fikir ve bilgisiyle destek olan arkadaşım Yüksek Mühendis Ayşegül KÜSMEZER' e teşekkür ederim.

Çalışmam sırasında bana önerileriyle destek olan arkadaşım Dr. Kıvanç KEKOVALI' ya teşekkür ederim.

Manevi destekleri ile her zaman yanımda olan aileme çok teşekkür ederim.

İÇİNDEKİLER

TEŞEKKÜR	ii
İÇİNDEKİLER	iii
KISALTMALAR LİSTESİ	v
ŞEKİLLER LİSTESİ	vi
TABLOLAR LİSTESİ	ix
ÖZET	xi
SUMMARY	xii
BÖLÜM 1.	
GİRİŞ	1

BÖLÜM 2.

BURSA	A	BÖLGES	Sİ'NİN	N 10	YILLIK	SİSM	İK AK	ΓİVİTES	İNİN
İSTATİ	İSTİ	İK OLAR	AK İI	NCELEN	MESİ				5
2	.1.F	arklı Bü	yüklül	x (Md) .	Aralıklar	ındaki O	luş Sayıl	arının Y	illara
Göre D	ağıl	ımı							5
2	.2.	Md≤3.1	Olan	Aktivite	nin Saat	(GMT)	Bazında	Yıllara	Göre
Dağılın	11								7
2	.3.	Md>3.1	Olan	Aktivite	nin Saat	(GMT)	Bazında	Yıllara	Göre
Dağılın	11								10

BÖLÜM 3.

DEPREM VE YAPAY PATLATMALARIN AYIRT EDİLMESİ	12
3.1.Kullanılan Veriler ve Yöntemler	12
3.1.1. Veriler	12
3.1.2.Yöntemler	15

3.1.2.1. Maksimum S/P dalgası genlik oranlarının hesabı	15
3.1.2.2. Sismogramda tanımlanan iki zaman penceresinin	
güçlerinin oranı (complexity) ile spektrumların alçak ve yüksek frekanslı	
pencerelerinin spectral oranlarının (SR) hesabı	20
3.1.2.3. Düşey bileşen hız sismogramı ve spektrumunu	
kullanarak deprem ve patlatmaların ayrımı	25
BÖLÜM 4.	
SONUÇLAR	34
KAYNAKLAR	49
ÖZGEÇMİŞ	51

KISALTMALAR LİSTESİ

ADVT	: Abdulvahap deprem istasyonu
ARMT	: Armutlu deprem istasyonu
С	: Complexity
GEMT	: Gemlik deprem istasyonu
GMT	: Greenwich Mean Time
GMT	: Generic Mapping Tools
KAF	: Kuzey Anadolu Fayı
KRDAE	: Kandilli Rasathanesi ve Deprem Araştırma Enstitüsü
LDF	: Linear Discriminate Function
Md	: Duration Magnetüd (Süreye bağlı büyüklük)
MDNY	: Mudanya deprem istasyonu
Р	: Primer (birincil) dalga
PITSA	: Programmable Interactive Toolbox for Seismological Analysis
S	: Sekonder (ikincil) dalga
SPSS	: Statistical Package for the Social Sciences
SR	: Spektral Ratio (spektrum oranı)
UDİM	: Ulusal Deprem İzleme Merkezi

ŞEKİLLER LİSTESİ

Şekil 1.1.	Gemlik-Geyve arasında Kuzey Anadolu Fayı (KAF)	1
Şekil 1.2.	Bursa ili tarihsel döneme ait şiddetli depremler	2
Şekil 1.3.	40.0-40.7°K enlemleri ve 28.7-29.8°D boylamları ile tanımlanan	
	bölgedeki taş ocaklarının arazi gözlemlerinden, uydu verilerinden	
	ve jandarma komutanlıklarından edinilen bilgilerden belirlenen	
	konumları	3
Şekil 1.4.	Gemlik bölgesindeki arazi gözlemlerinden belirlenen taş ocağının görüntüsü.	4
Şekil 1.5.	Orhangazi bölgesindeki arazi gözlemlerinden belirlenen taş	
	ocağının görüntüsü	4
Şekil 2.1.	Çalışma bölgesinde oluşan 10 yıllık sismik aktivite (KOERİ,	
	UDİM). Kuzey Anadolu Fayı'nın Geyve-İznik-Gemlik	
	uzantısı	6
Şekil 2.2.	Çalışma alanındaki 10 yıllık sismik aktivitenin, farklı büyüklük	
	(Md) aralıklarındaki oluş sayılarının yıllara bağlı değişimi	6
Şekil 2.3.	Çalışma alanındaki 10 yıllık, büyüklüğü Md≤3.1 olan sismik	
	aktivitenin saat (GMT) bazında yıllara göre dağılımı	7
Şekil 2.4.	Çalışma alanındaki 10 yıllık, büyüklüğü Md≤3.1 olan sismik	
	aktivitenin saat (GMT) bazında toplu dağılımı	9
Şekil 2.5.	Çalışma alanındaki 10 yıllık, büyüklüğü Md >3.1 olan sismik	
	aktivitenin saat (GMT) bazında yıllara göre dağılımı	10
Şekil 2.6.	Çalışma alanındaki 10 yıllık, büyüklüğü Md >3.1 olan sismik	
	aktivitenin saat (GMT) bazında toplu dağılımı	11
Şekil 3.1.	ADVT, ARMT, GEMT ve MDNY istasyonlarının ve Gemlik	
	bölgesindeki taş ocakların istasyonlara uzaklıklarının uydu	
	görüntüsü	13

Şekil 3.2.	ADVT, ARMT, GEMT ve MDNY istasyonlarının ve Orhangazi	
	bölgesindeki taş ocaklarının istasyonlara uzaklıklarının uydu	
	görüntüsü	13
Şekil 3.3.	Mart 2006-Mayıs 2009 tarihleri arasında bölgede olan sismik	
	aktivite, istasyonların yerleri ve taş ocaklarının konumları	14
Şekil 3.4.	Çalışma alanındaki Mayıs 2006-Mart 2009 tarihleri arasındaki	
	sismik aktivitenin saat (GMT) bazında dağılımı a) Md \leq 3.1,	
	b) Md > 3.1	14
Şekil 3.5.	ADVT istasyonundaki sismik veriler kullanılarak düşey bileşen	
	hız sismogramının maksimum S dalgası genliğinin maksimum P	
	dalgası genliğine oranının, maksimum S dalgası genliğinin	
	logaritmasına karşılık LDF kullanılarak elde edilen çizimi	16
Şekil 3.6.	ARMT istasyonundaki sismik veriler kullanılarak düşey bileşen	
	hız sismogramının maksimum S dalgası genliğinin maksimum P	
	dalgası genliğine oranının, maksimum S dalgası genliğinin	
	logaritmasına karşılık LDF kullanılarak elde edilen çizimi	17
Şekil 3.7.	GEMT istasyonundaki sismik veriler kullanılarak düşey bileşen	
	hız sismogramının maksimum S dalgası genliğinin maksimum P	
	dalgası genliğine oranının, maksimum S dalgası genliğinin	
	logaritmasına karşılık LDF kullanılarak elde edilen çizimi	18
Şekil 3.8.	MDNY istasyonundaki sismik veriler kullanılarak düşey bileşen	
	hız sismogramının maksimum S dalgası genliğinin maksimum P	
	dalgası genliğine oranının, maksimum S dalgası genliğinin	
	logaritmasına karşılık LDF kullanılarak elde edilen çizimi	19
Şekil 3.9.	ADVT istasyonundaki sismik veriler kullanılarak düşey bileşen	
	hız sismogramının güçlerinin oranı complexity (C) nin spektral	
	orana (SR) karşılık LDF kullanılarak elde edilen çizimi	21
Şekil 3.10.	ARMT istasyonundaki sismik veriler kullanılarak düşey bileşen	
	hız sismogramının güçlerinin oranı complexity (C) nin spektral	
	orana (SR) karşılık LDF kullanılarak elde edilen çizimi	22
Şekil 3.11.	GEMT istasyonundaki sismik veriler kullanılarak düşey bileşen	
	hız sismogramının güçlerinin oranı complexity (C) nin spektral	
	orana (SR) karşılık LDF kullanılarak elde edilen çizimi	23

vii

Şekil 3.12. MDNY istasyonundaki sismik veriler kullanılarak düşey bileşen hız sismogramının güçlerinin oranı complexity (C) nin spektral orana (SR) karşılık LDF kullanılarak elde edilen çizimi.....

24

26

28

30

32

- Şekil 3.13. ADVT istasyonunda kayıt edilen 2006 08 14 12:59:32 Md= 2.6 ve 2007 12 23 09:46:41 Md=3.0 verisinin a) taş ocağı patlatması sismogramı ve spektrumunun pitsa programındaki görüntüsü b) deprem sismogramı ve spektrumunun pitsa programındaki görüntüsü c) taş ocağı patlatması ve deprem sismogramı ve spektrumu görüntüsü.
- Şekil 3.14. ARMT istasyonunda kayıt edilen 2008 01 12 14:37:43 Md= 2.3 ve 2008 10 09 16:33:15 Md=2.7 verisinin a) taş ocağı patlatması sismogramı ve spektrumunun pitsa programındaki görüntüsü b) deprem sismogramı ve spektrumunun pitsa programındaki görüntüsü c) taş ocağı patlatması ve deprem sismogramı ve spektrumu görüntüsü.
- Şekil 3.15. GEMT istasyonunda kayıt edilen 2006 08 15 16:12:09 Md= 2.6 ve 2009 01 08 23:07:29 Md=3.0 verisinin a) taş ocağı patlatması sismogramı ve spektrumunun pitsa programındaki görüntüsü b) deprem sismogramı ve spektrumunun pitsa programındaki görüntüsü c) taş ocağı patlatması ve deprem sismogramı ve spektrumu görüntüsü.
- Şekil 3.16. MDNY istasyonunda kayıt edilen 2008 07 21 15:17:35 Md=2.8 ve2008 09 19 23:59:38 Md= 2.8 verisinin a) taş ocağı patlatması sismogramı ve spektrumunun pitsa programındaki görüntüsü b) deprem sismogramı ve spektrumunun pitsa programındaki görüntüsü c) taş ocağı patlatması ve deprem sismogramı ve spektrumu görüntüsü.....
- Şekil 4.1. Çalışma alanı için Mayıs 2006-Mart 2009 tarihleri arasında seçilen sismik olayların gün içinde saatlere (GMT) göre dağılımı 36
- Şekil 4.2.Çalışmanın sonucunda taş ocağı patlatmalarının çıkarıldıktan
sonraki durumu36

TABLOLAR LİSTESİ

Tablo 3.1.	Şekil 3.5'de verilen olayların sayısal ve yüzdelik olarak	
	sınıflandırılması	16
Tablo 3.2.	Şekil 3.6'da verilen olayların sayısal ve yüzdelik olarak	
	sınıflandırılması	17
Tablo 3.3.	Şekil 3.7'de verilen olayların sayısal ve yüzdelik olarak	
	sınıflandırılması	18
Tablo 3.4.	Şekil 3.8'de verilen olayların sayısal ve yüzdelik olarak	
	sınıflandırılması	19
Tablo 3.5.	Şekil 3.9'da verilen olayların sayısal ve yüzdelik olarak	
	sınıflandırılması	21
Tablo 3.6.	Şekil 3.10'da verilen olayların sayısal ve yüzdelik olarak	
	sınıflandırılması	22
Tablo 3.7.	Şekil 3.11'de verilen olayların sayısal ve yüzdelik olarak	
	sınıflandırılması	23
Tablo 3.8.	Şekil 3.12'de verilen olayların sayısal ve yüzdelik olarak	
	sınıflandırılması	24
Tablo 4.1.	ADVT istasyonuna ait 40.0-40.7°K enlemleri ve 28.7-29.8°D	
	boylamları için hesaplanan parametreler, deprem ve patlatma	
	sınıflandırması. Kompleksiti (Complexity, C): Düşey bileşen hız	
	sismogramının iki zaman penceresindeki (P dalgası varış	
	zamanı-1.5 sn; 1,5-8) güçlerinin oranı, SR: Düşey bileşen hız	
	sismogramının düşük (1-7 Hz) ve yüksek frekanslı (7-15 Hz)	
	kısımlarının spektral oranı, S/P:Düşey bileşen hız	
	sismogramında S/P dalgası genlik oranı, LogS: Maksimum S	
	dalgası genliğinin logaritması	38

- Tablo 4.2. ARMT istasyonuna ait 40.0-40.7°K enlemleri ve 28.7-29.8°D boylamları için hesaplanan parametreler, deprem ve patlatma sınıflandırması. Kompleksiti (Complexity, C): Düşey bileşen hız sismogramının iki zaman penceresindeki (P dalgası varış zamanı-1.5 sn; 1,5-8) güçlerinin oranı, SR: Düşey bileşen hız sismogramının düşük (1-7 Hz) ve yüksek frekanslı (7-15 Hz) kısımlarının spektral oranı, S/P:Düşey bileşen hız sismogramında S/P dalgası genlik oranı, LogS: Maksimum S dalgası genliğinin logaritması....
- Tablo 4.3. GEMT istasyonuna ait 40.0-40.7°K enlemleri ve 28.7-29.8°D boylamları için hesaplanan parametrelerin tümü, deprem ve patlatma sınıflandırması. Kompleksiti (Complexity, C): Düşey bileşen hız sismogramının iki zaman penceresindeki (P dalgası varış zamanı-1.5 sn; 1,5-8) güçlerinin oranı, SR: Düşey bileşen hız sismogramının düşük (1-7 Hz) ve yüksek frekanslı (7-15 Hz) kısımlarının spektral oranı, S/P: Düşey bileşen hız sismogramında S/P dalgası genlik oranı, LogS: Maksimum S dalgası genliğinin logaritması.
- Tablo 4.4. MDNY istasyonuna ait 40.0-40.7°K enlemleri ve 28.7-29.8°D boylamları için hesaplanan parametrelerin tümü, deprem ve patlatma sınıflandırması. Kompleksiti (Complexity, C): Düşey bileşen hız sismogramının iki zaman penceresindeki (P dalgası varış zamanı-1.5 sn; 1,5-8) güçlerinin oranı, SR: Düşey bileşen hız sismogramının düşük (1-7 Hz) ve yüksek frekanslı (7-15 Hz) kısımlarının spektral oranı, S/P: Düşey bileşen hız sismogramında S/P dalgası genlik oranı, LogS: Maksimum S dalgası genliğinin logaritması.

43

47

41

ÖZET

Anahtar kelimeler: Deprem, Taş ocağı patlatması, Doğrusal ayırt etme fonksiyonu, Bursa bölgesi

Bir bölgeye yerleştirilen sismik kayıtçılar ile o bölgenin sismik etkinliğini takip edebiliriz. Bu kayıtçılar bölgede meydana gelen deprem aktivitelerini kaydettiği gibi taş ocağı patlatmalarınıda kaydetmektedir. Gerçek sismik etkinliği belirlemek için patlatmaları depremlerden ayırmak gereklidir.

Bu çalışmada Bursa, Gemlik, Orhangazi ve Yenişehir civarındaki sismik aktiviteler incelenmiştir. Düşey hız sismogramlarının maksimum S dalgası ile maksimum P dalgası genliklerin oranı (S/P) ve güçlerinin oranı (Complexity,C) ile spektrumlarının spektral oranları (SR) hesaplanmıştır. Doğrusal ayırt fonksiyon (linear discriminate function, LDF) kullanılarak deprem ve patlatma olayları ayırt edilmiştir. Bunun için 2006-2009 yıllarına ait deprem kataloğu ile Abdulvahap (ADVT), Armutlu (ARMT), Gemlik (GEMT), Mudanya (MDNY) geniş bantlı istasyonlar kullanılarak süreye bağlı büyüklüğü Md≤3.1 olan 165 sismik olay için 4 istasyona ait toplam 225 sayısal düşey hız sismogramları kullanılmıştır.

Bu çalışmanın amacı Bursa bölgesi için doğal sismik aktiviteler ile yapay kaynaklı patlatmaların birbirinden ayrılması ve sadece deprem verilerinin olduğu katalogların hazırlanmasıdır. Böylece bu bölgede yapılan mikro deprem etkinliği aktif fayların haritalanması ve b değerlerinin hesaplanmasında daha güvenilir veri grupları kullanılmış olacaktır.

DISCRIMINATION OF QUARRY BLASTS AND EARTHQUAKES

SUMMARY

Key Words: Earthquake, quarry blast, linear discriminant function, Bursa and surrounding area

It is possible to monitor seismic activities in a region by operating seismic recorders. These recorders will record quarry blasts as well as earthquakes in the region. Therefore we have to discriminate earthquakes and quarry blasts for the identification of real seismicity

In this study the seismicity in Bursa, Gemlik, Orhangazi and Yenişehir regions have been investigated. The maximum S waves and P waves amplitude ratio (S/P), power ratio (Complexity, C) and additionally spectral ratio (SR) in time and frequency domains from vertical velocity seismograms were calculated. Earthquakes and quarry blasts records are discriminated by using linear discriminant function (LDF) analysis. 225 seismic records of 165 events recorded by Abdulvahap (ADVT), Armutlu (ARMT), Gemlik (GEMT) and Mudanya (MDNY) broadband stations during May, 2006 and March, 2009 with duration magnitüd Md≤3.1 are used.

The aim of this study is to discriminate natural seismic activities and artifical explosions and to prepare an explosion free earthquake cataloge for Bursa region. So reliable data can be use for studies such as mapping active faults, microearthquake activities and calculating b values, in the region.

BÖLÜM 1. GİRİŞ

Gemlik Körfezi, Marmara Denizi'nin güneydoğusunda yer alan, yaklaşık 35 km uzunlukta ve 15 km genişlikte, D–B yönünde uzanan bir havzayı denizin doldurması ile oluşmuştur. Körfezin en derin olduğu yerin derinliği 110 m'dir. Körfezin ortasında yer alan KB–GD uzanımlı elips şekilli bir çukurluk (Burgaz Çukurluğu), buna bitişik, D–B yönünde uzanan bir denizaltı yükselimi (Gemlik Sırtı) mevcuttur (Şekil 1.1).

Kuzey Anadolu Fay'ının (KAF) Geyve-İznik-Gemlik kolu üzerinde küçük ve büyük sismik aktiviteler izlenmektedir. Yakın geçmişte yıkıcı depremler meydana gelmemiştir fakat tarihsel kayıtlara göre hasara ve can kaybına neden olan depremler olmuştur. KRDAE kataloğuna göre M.S. 128 depremi Kuzey Anadolu Fay zonunun Geyve-İznik-Gemlik kolu üzerinde meydana gelmiştir ve bu depremin magnitüdü 7 civarındadır. Şekil 1.2'deki 11.04.1855 Bursa depremi ciddi hasarlara ve 1300 kişinin ölümüne neden olmuştur [1]. 24.10.2006'da meydana gelen Gemlik Körfezi depremi ise 5.3 büyüklüğündedir.

Şekil 1.1. Gemlik-Geyve arasında Kuzey Anadolu Fayı (KAF)

Şekil 1.2. Bursa ili tarihsel döneme ait şiddetli depremler

Gemlik ve Orhangazi civarının jeolojik yapısı grovak ve kireçtaşlarından ibaret olup aşınmalara, çöküntülere ve kaymalara maruz kalmıştır. Birçok yerlerde sert kayaçların sivrildiğini ve çöküntülerin olduğu toprakaltı tabakalarının düzensizliğini görmek mümkündür. Bursa ovası genel olarak Kuzey Anadolu Fayı'nın etkisindedir. Neojen birimleri ve alüvyonla örtülmüş bir tektonik çöküntü alanıdır. Orhangazi ve civarında 1990 yılı itibarıyla orta ve büyük boyutlu birçok taş ocağı bulunmaktadır. Bu ocaklardaki taş üretimi bloktaş, mıcır, kireç, mozayik toz üretimlerine yöneliktir [2, 3].

40.0-40.7°K enlemleri ve 28.7-29.8°D boylamları arasında kalan çalışma bölgesinde Bursa ili ve civarında birçok taş ocağı olduğu bilgisi Jandarma İl ve İlçe Komutanlıklarından alınmıştır. Edinilen bilgiye göre Gemlik'te Aydınlar Taş Ocağı, Aydın Madencilik Taş Ocağı, Kaptaş Madencilik Taş Ocağı, Diabas Mermer Taş Ocağı; Orhangazi'de Göçay Madencilik Taş Ocağı, Örgün Madencilik Taş Ocağı, Karadeniz Madencilik Taş Ocağı, Ortaş Madencilik Taş Ocağı, Yenişehir'de karayollarına ait Simge Mat Taş Ocağı; Yalova'da Bahadır Madencilik Taş Ocağı ve Bursa ilinde birçok taş ocakları bulunmaktadır. Şekil 1.3'de konumları işaretlenen taş ocaklarından Gemlik ve Orhangazi'dekiler Şekil 1.4 ve Şekil 1.5'deki hem arazi gözlemlerinden hem de jandarma komutanlıklarından alınan bilgilere dayanarak, diğerleri ise uydu verilerinden ve jandarma komutanlıklarından alınan bilgilerle işaretlenmiştir.

Bu çalışmada, Kandilli Rasathanesi ve Deprem Araştırma Enstitüsünün (KRDAE, UDİM) ADVT, ARMT, GEMT, MDNY istasyonlarında, Mayıs 2006-Mart 2009 tarihleri arasında kaydedilen sayısal düşey bileşen hız sismogramları kullanılarak Bursa, Gemlik, Orhangazi, ve Yenişehir bölgelerinde yapılan patlatmaların bölgedeki depremlerden ayırt edilmesine çalışılmıştır.

Şekil 1.3. 40.0-40.7°K enlemleri ve 28.7-29.8°D boylamları ile tanımlanan bölgedeki taş ocaklarının arazi gözlemlerinden, uydu verilerinden ve jandarma komutanlıklarından edinilen bilgilerden belirlenen konumları

Şekil 1.4. Gemlik bölgesindeki arazi gözlemlerinden belirlenen taş ocağının görüntüsü

Şekil 1.5. Orhangazi bölgesindeki arazi gözlemlerinden belirlenen taş ocağının görüntüsü

BÖLÜM 2. BURSA BÖLGESİNİN 10 YILLIK SİSMİK AKTİVİTESİNİN İSTATİSTİK OLARAK İNCELENMESİ

2.1. Farklı Büyüklük (Md) Aralıklarındaki Oluş Sayılarının Yıllara Göre Dağılımı

40.0-40.7°K enlemleri ve 28.7-29.8°D boylamları arasında kalan bölgede 1999-2009 yılları arasında oluşan 10 yıllık sismik aktivite dağılımının haritası Şekil 2.1'de gösterilmiştir. Haritaların çiziminde haritalama programı, GMT kullanılmıştır [4].

Bölgedeki sismik aktivitenin, farklı büyüklük (Md) aralıklarındaki oluş sayılarının yıllara bağlı olarak değişimi incelendiğinde büyüklüğü Md>3.1 olanlar yıllara bağlı olarak azalma gösterirken Md≤3.1 olanlarda azalma olmamakta düzenli bir değişim gözlenmemektedir (Şekil 2.2). Bunlardan anlaşılacağı üzere büyüklüğü Md≤3.1 olan sismik aktivitelerin dağılımının hem yapay kaynaklı patlatmalardan hem de depremlerden olduğunu düşünebiliriz.

Şekil 2.1. Çalışma bölgesinde oluşan 10 yıllık sismik aktivite (KOERİ, UDİM). Kuzey Anadolu Fayı'nın Geyve-İznik-Gemlik uzantısı

Şekil 2.2. Çalışma alanındaki 10 yıllık sismik aktivitenin, farklı büyüklük (Md) aralıklarındaki oluş sayılarının yıllara bağlı değişimi

2.2. Md≤3.1 Olan Aktivitenin Saat (GMT) Bazında Yıllara Göre Dağılımı

Şekil 2.3'de 40.0-40.7°K enlemleri ve 28.7-29.8°D boylamları arasında kalan çalışma bölgesinde, 1999-2009 yılları arasında olmuş, büyüklüğü Md≤3.1 olan sismik aktivitenin (KRDAE, UDİM) saat (GMT) bazında yıllara göre dağılımı ve Şekil 2.4'de 10 yıllık sismik aktivitenin saat (GMT) bazında dağılımının toplu grafiği, sismik etkinliğin en büyük değere gün içinde 11-12 GMT, 14-16 GMT saat dilimlerinde ulaştığını göstermektedir. Sismik aktivite 15-16 GMT saat diliminde ise en yüksek değere ulaşmaktadır. GMT bazındaki saatler yerel saat olarak 13-14, 16-18 saatlerine karşılık gelmektedir. Yapay patlatmaların gün içinde olduğunu göz önünde bulundurursak sismik etkinliğin yerel çalışma saatleri olan 9-18 (7-16 GMT) arasında daha fazla olduğu dikkat çekmektedir.

Şekil 2.3. Çalışma alanındaki 10 yıllık, büyüklüğü Md≤3.1 olan sismik aktivitenin saat (GMT) bazında yıllara göre dağılımı

Şekil 2.3. devam

Şekil 2.4. Çalışma alanındaki 10 yıllık, büyüklüğü Md≤3.1 olan sismik aktivitenin saat (GMT) bazında toplu dağılımı

10 12 14 SAAT (GMT)

2.3 Md > 3.1 Olan Aktivitenin Saat (GMT) Bazında Yıllara Göre Dağılımı

Şekil 2.5'de 40.0-40.7°K enlemleri ile 28.7-29.8°D boylamları arasında kalan çalışma bölgesinde, 1999-2009 yılları arasında olmuş, büyüklüğü Md>3.1 olan sismik aktivitenin (KRDAE, UDİM) saat (GMT) bazında yıllara göre dağılımı ve Şekil 2.6'da 10 yıllık sismik aktivitenin saat (GMT) bazında dağılımının toplu grafiği, saat bazında dağılımın rastgele olduğunu göstermektedir. Bu durum yapay kaynaklı patlatmaların büyüklüğünün Md≤3.1 olduğunu güçlendirmektedir.

Şekil 2.5. Çalışma alanındaki 10 yıllık, büyüklüğü Md >3.1 olan sismik aktivitenin saat (GMT) bazında yıllara göre dağılımı

Şekil 2.5. devam

Şekil 2.6. Çalışma alanındaki 10 yıllık, büyüklüğü Md >3.1 olan sismik aktivitenin saat (GMT) bazında toplu dağılımı

BÖLÜM 3. DEPREM VE YAPAY PATLATMALARIN AYIRT EDİLMESİ

3.1. Kullanılan Veriler ve Yöntemler

3.1.1.Veriler

Bu çalışmada 40.0-40.7°K enlemleri ile 28.7-29.8°D boylamları arasında kalan bölgede, Mayıs 2006-Mart 2009 tarihleri arasında ADVT, ARMT, GEMT, MDNY istasyonlarının kaydettiği büyüklüğü Md≤3.1 olan 165 sismik olay için 4 istasyona ait toplam 225 sayısal düşey bileşen hız sismogramları kullanılmıştır (KRDAE, UDİM). ADVT 19.05.2006, ARMT 17.12.2007, GEMT 07.07.2006, MDNY 09.07.2008 tarihlerinde kurulmuştur. Şekil 3.1 ve 3.2'de bu istasyonların yerleri ve Bursa bölgesindeki taş ocaklarına uzaklıkları görülmektedir. Şekil 3.3'de bölgedeki Mart 2006-Mayıs 2009 arasındaki sismik aktivite, istasyonların yerleri ve taş ocaklarının konumları gösterilmektedir. Çalışma yılları arasındaki sismik aktivitenin saat (GMT) bazında dağılımının toplu grafiği, büyüklüğü Md≤3.1 olan sismik aktivitenin däğılımının rastgele olduğunu göstermektedir. Bu durum yapay kaynaklı patlatmaların büyüklüğünün Md≤3.1 olduğunu güçlendirmektedir (Şekil 3.4).

Deprem kataloglarından deprem ve patlatma ayrımını sadece taş ocaklarının yerlerini ve istasyonlara olan uzaklıklarını kullanarak ve istatistik bilgilerine bakarak yapmak mümkün değildir. Bu ayrımı yapmak için farklı yöntemler kullanılır. Bu yöntemler deprem ve patlatma ayrımında Lg/Pg ve Lg/Rg oranı Wüster (1993) tarafından Vogtland (Almanya/Çekoslavakya) bölgesi için kullanılmıştır. Norveç'in batısı için de Pn/Sn ve Pn/Lg oranı Baumgard ve Young (1990) tarafından kullanılmıştır.

Amerika Birleşik Devletleri'nde yapılan deprem ve patlatma ayrımı çalışmalarında 1989'da Lg/Pg ve Lg/Rg genlik oranları kullanılmıştır. Gitterman ve Shapira (1993) sismik enerjiye ait spektrumun alçak ve yüksek frekanslarını oranlayarak (1-3 Hz/6-8 Hz) deprem ve patlatma ayrımı yapmıştır.

Şekil 3.1. ADVT, ARMT, GEMT ve MDNY istasyonlarının ve Gemlik bölgesindeki taş ocakların istasyonlara uzaklıklarının uydu görüntüsü (Google Earth)

Şekil 3.2. ADVT, ARMT, GEMT ve MDNY istasyonlarının ve Orhangazi bölgesindeki taş ocaklarının istasyonlara uzaklıklarının uydu görüntüsü (Google Earth)

Şekil 3.3. Mart 2006-Mayıs 2009 tarihleri arasında bölgede olan sismik aktivite, istasyonların yerleri ve taş ocaklarının konumları

Şekil 3.4. Çalışma alanındaki Mayıs 2006-Mart 2009 tarihleri arasındaki sismik aktivitenin saat (GMT) bazında dağılımı a) $Md \le 3.1$, b) Md > 3.1

3.1.2. Yöntemler

3.1.2.1. Maksimum S/P dalgası genlik oranlarının hesabı

Her sismik olay için düşey bileşen hız sismogramlarından maksimum P dalgası ve maksimum S dalgası genlik değerleri okunarak oranlanır. Maksimum S/P dalgası genlik oran değerlerinin, maksimum S dalgalarının logaritmalarına (logS) karşılık çiziminden doğrusal ayrık fonksiyon (linear discriminant function-LDF) geçirilerek deprem ve patlatma olayları birbirinden ayırt edilir. Sismik olayların parametrelerin hesaplanmasında HYPO71PC programı kullanılmıştır [5].

ADVT, ARMT, GEMT, MDNY istasyonlarındaki sismik veriler kullanılarak düşey bileşen hız sismogramının maksimum S dalgası genliğinin maksimum P dalgası genliğine oranının, maksimum S dalgası genliğinin logaritmasına karşılık doğrusal ayırt etme fonksiyonu (linear discrimanate function-LDF) kullanılarak elde edilen çizimi sırasıyla Şekil 3.5, 3.6, 3.7, 3.8'de ve olayların sınıflandırılması ise sırsıyla Tablo 3.1, 3.2, 3.3, 3.4'de verilmektedir. Bu yönteme göre deprem ve patlatma ayrımı minumum % 98.1'lik doğrulukla yapılmıştır [6,7].

Şekil 3.5. ADVT istasyonundaki sismik veriler kullanılarak düşey bileşen hız sismogramının maksimum S dalgası genliğinin maksimum P dalgası genliğine oranının, maksimum S dalgası genliğinin logaritmasına karşılık doğrusal ayırt etme fonksiyonu (linear discrimanate function-LDF) kullanılarak elde edilen çizimi

Tablo 3.1. Şekil 3.5'de verilen olayların sayısal ve yüzdelik olarak sınıflandırılması

			Kestiril		
		Tip	Patlatma	Deprem	Toplam
Orjinal	Sayı	Patlatma	23	1	24
		Deprem	0	29	29
	%	Patlatma	95,8	4,2	100,0
		Deprem	0	100,0	100,0

% 98.1'lik doğrulukla orijinal gruplar sınıflandırıldı

Şekil 3.6. ARMT istasyonundaki sismik veriler kullanılarak düşey bileşen hız sismogramının maksimum S dalgası genliğinin maksimum P dalgası genliğine oranının, maksimum S dalgası genliğinin logaritmasına karşılık doğrusal ayırt etme fonksiyonu (linear discrimanate function-LDF) kullanılarak elde edilen çizimi

Tablo 3.2.	. Şekil 3.6'c	da verilen olaylar	rın sayısal ve	yüzdelik olarak	sınıflandırılması
	,	2	2	2	

			Kestirilebilir tür		
		Tip	Patlatma	Deprem	Toplam
Orijinal	Sayı	Patlatma	9	0	9
		Deprem	0	37	37
	%	Patlatma	100,0	,0	100,0
		Deprem	0	100,0	100,0

% 100'lük doğrulukla orijinal gruplar sınıflandırıldı

Şekil 3.7. GEMT istasyonundaki sismik veriler kullanılarak düşey bileşen hız sismogramının maksimum S dalgası genliğinin maksimum P dalgası genliğine oranının, maksimum S dalgası genliğinin logaritmasına karşılık doğrusal ayırt etme fonksiyonu (linear discrimanate function-LDF) kullanılarak elde edilen çizimi

Tablo 3.3.	Sekil 3.7	'de verilen ola	ayların sayıs	al ve vüzdelik	olarak sın	ıflandırılması
			· j · · · · · · j · ·			

			Kestiril	ebilir tür	
		Tip	Patlatma	Deprem	Toplam
Orjinal	Sayı	Patlatma	56	0	56
		Deprem	,0	29	29
	%	Patlatma	100,0	,0	100,0
		Deprem	,0	100,0	100,0

% 100'lük doğrulukla orijinal gruplar sınıflandırıldı

Şekil 3.8. MDNY istasyonundaki sismik veriler kullanılarak düşey bileşen hız sismogramının maksimum S dalgası genliğinin maksimum P dalgası genliğine oranının, maksimum S dalgası genliğinin logaritmasına karşılık doğrusal ayırt etme fonksiyonu (linear discrimanate function-LDF) kullanılarak elde edilen çizimi

Tablo 3.4. Şekil 3.8'de verilen olayların sayısal ve yüzdelik olarak sınıflandırılması

			Kestiril	Kestirilebilir tür			
		Tip	Patlatma	Deprem	Toplam		
Orjinal	Sayı	Patlatma	6	0	6		
		Deprem	0	35	35		
	%	Patlatma	100,0	0	100,0		
		Deprem	0	100,0	100,0		

% 100'lük doğrulukla orijinal gruplar sınıflandırıldı

3.1.2.2. Sismogramda tanımlanan iki zaman penceresinin güçlerinin oranı (complexity) ile spektrumlarının alçak ve yüksek frekanslı pencerelerinin spektral oranlarının (SR) hesabı

Her bir sismik olay için düşey bileşen hız sismogramlarının iki zaman penceresindeki güçlerinin oranları, complexity (C) hesaplanır.

$$C = {}_{t1} \int {}^{t2} S^{2}(t) dt / {}_{t0} \int {}^{t1} S^{2}(t) dt$$
(3.1)

 t_0 sinyalin başlangıç zamanını belirtir (P dalgası varış zamanı). Bu çalışmada t_1 ve t_2 1.5 ve 8 sn alınmıştır [8].

Düşey hız bileşen sismogramlarının spektrumlarının alçak ve yüksek frekanslı kısımları oranlanarak spectral oran (SR) parametresi bulunur.

$$SR = {}_{h1} \int {}^{h2}a(f) df / {}_{11} \int {}^{12}a(f) df$$
(3.2)

Burada h₁ ve h₂ yüksek frekans, I₁ ve I₂ alçak frekans aralık değerlerini belirtir. Bu çalışmada alçak frekans aralığı için 1-7 Hz, yüksek frekans aralığı için 7-15 Hz alınmıştır. Kullanılan sayısal verilerin örnekleme sayısı 50 olduğu için spektrumların oranlanmasında maksimum frekans değeri olarak 25 Hz alınmıştır. Zaman ve frekans ortamında sismik olayların genlik spektrumlarının hesaplanmasında Interaktif Sismoloji Analiz Paketi, PITSA kullanılmıştır [9].

Güçlerinin oranları (complexity) değerlerinin sismogramların spektrumlarının düşük (1-7 Hz) ve yüksek frekanslı (7-15 Hz) pencerelerindeki spektral oranlarına (SR) karşılık çiziminden doğrusal ayırt etme fonksiyonu (linear discriminate function-LDF) geçirilerek deprem ve patlatma olayları birbirinden ayırt edilir [10,11,12]. Deprem ve taş ocağı patlatmalarının ayrımı ve doğrusal ayırt etme fonksiyonun çiziminde İstatistik Analiz Paketi, SPSS, 17 (SPSS Inc.) kullanılmıştır [13].

ADVT, ARMT, GEMT, MDNY istasyonlarındaki sismik veriler kullanılarak düşey bileşen hız sismogramının güçlerinin oranı complexity (C) nin spektral orana (SR) karşılık doğrusal ayırt etme fonksiyonu (linear discrimanate function-LDF) kullanılarak elde edilen çizimi sırasıyla Şekil 3.9, 3.10, 3.11, 3.12'de ve olayların

sınıflandırılması ise sırasıyla Tablo 3.1, 3.2, 3.3, 3.4'de verilmektedir. Bu yönteme göre deprem ve patlatma ayrımı minumum % 91.3'lük doğrulukla yapılmıştır.

Şekil 3.9. ADVT istasyonundaki sismik veriler kullanılarak düşey bileşen hız sismogramının güçlerinin oranı complexity (C) nin spektral orana (SR) karşılık doğrusal ayırt etme fonksiyonu (linear discrimanate function-LDF) kullanılarak elde edilen çizimi

Tablo 3.5. Şekil 3.9'da verilen olayların sayısal ve yüzdelik olarak sınıflandırılması

			Kestiril		
		Тір	Patlatma	Deprem	Toplam
Orjinal	Sayı Patlatma		23	1	24
		Deprem	2	27	29
	%	Patlatma	95,8	4,2	100,0
		Deprem	6,9	93,1	100,0

% 94.3'lük doğrulukla orijinal gruplar sınıflandırıldı

Şekil 3.10. ARMT istasyonundaki sismik veriler kullanılarak düşey bileşen hız sismogramının güçlerinin oranı complexity (C) nin spektral orana (SR) karşılık doğrusal ayırt etme fonksiyonu (linear discrimanate function-LDF) kullanılarak elde edilen çizimi

Tablo 3.6. Şekil 3.10'da verilen olayların sayısal ve yüzdelik olarak sınıflandırılması

			Kestiril	ebilir tür	
		Tip	Patlatma	Deprem	Toplam
Orjinal	Sayı	Patlatma	9	0	9
		Deprem	4	33	37
	%	Patlatma	100,0	,0	100,0
		Deprem	10,8	89,2	100,0

% 91.3'lük doğrulukla orijinal gruplar sınıflandırıldı

Şekil 3.11. GEMT istasyonundaki sismik veriler kullanılarak düşey bileşen hız sismogramının güçlerinin oranı complexity (C) nin spektral orana (SR) karşılık doğrusal ayırt etme fonksiyonu (linear discrimanate function-LDF) kullanılarak elde edilen çizimi

Tablo 3.7. Şekil 3.11'de verilen olayların sayısal ve yüzdelik olarak sınıflandırılması

			Kestiril	ebilir tür	
		Tip	Patlatma	Deprem	Toplam
Orjinal	Sayı	Patlatma	56	0	56
		Deprem	1	28	29
	%	Patlatma	100,0	,0	100,0
		Deprem	3,4	96,6	100,0

% 98.8'lik doğrulukla orijinal gruplar sınıflandırıldı

Şekil 3.12. MDNY istasyonundaki sismik veriler kullanılarak düşey bileşen hız sismogramının güçlerinin oranı complexity (C) nin spektral orana (SR) karşılık doğrusal ayırt etme fonksiyonu (linear discrimanate function-LDF) kullanılarak elde edilen çizimi

Tablo 3.8. Şekil 3.12'de verilen olayların sayısal ve yüzdelik olarak sınıflandırılması

			Kestiril		
		Tip	Patlatma	Deprem	Toplam
Orjinal	Sayı Patlatma		6	0	6
		Deprem	1	34	35
	%	Patlatma	100,0	0	100,0
		Deprem	2,9	97,1	100,0

% 97.6'lık doğrulukla orijinal gruplar sınıflandırıldı

3.1.2.3. Düşey bileşen hız sismogramı ve spektrumunu kullanarak deprem ve patlatmaların ayrımı

Her bir sismik olay için düşey bileşen hız sismogramının spektrumları alınarak deprem ve patlatma ayrımı yapılmıştır. ADVT, ARMT, GEMT, MDNY istasyonları için deprem ve patlatmaya ait sismogramlar ve spektrumları sırasıyla Şekil 3.13, 3.14, 3.15, 3.16'da görülmektedir. Şekillerden de görüldüğü gibi deprem ve patlatma verisinin sismogramları ve spektrumları birbirinden farklıdır.

Bu çalışmada kullanılan patlatma sismogramında P dalgası maksimum genliği S dalgası maksimum genliğinden daha büyüktür. Patlatmaya ait sismogramda Rg fazı görülmektedir. Depreme ait sismogramda ise P dalgası genliği S dalgası genliğinden daha küçüktür ve Rg fazı yoktur.

Patlatmalarda oluşan yer titreşimleri, daha az enerjili olmaları ve daha kısa uzaklıklara yayınmaları nedeni ile depremlerde oluşan yer titreşimlerine göre daha düşük genliklere ve daha yüksek baskın frekanslara sahiptirler. Dalga ve patlatmaların yayınım hızları dalganın ilerlediği ortamın elastik özelliklerine bağlı olarak değişir [14].

b)

Şekil 3.13. ADVT istasyonunda kayıt edilen 2006 08 14 12:59:32 Md= 2.6 ve 2007 12 23 09:46:41 Md=3.0 verisinin a) taş ocağı patlatması sismogramı ve spektrumunun pitsa programındaki görüntüsü b) deprem sismogramı ve spektrumunun pitsa programındaki görüntüsü c) taş ocağı patlatması sismogramı ve spektrumu (solda) ve deprem sismogramı ve spektrumu (sağda) görüntüsü

- (1) Düşey bileşen hız sismogramı
- (2) Zaman ortamı
- (3) Frekans ortamı

Patlatma

2006 08 14 12:59:32 GMT Md= 2.6 Lokasyon 40.319 N, 29.684 E

Deprem

2007 12 23 09:46:41 GMT d= 3.0 Lokasyon 40.627 N, 29.126 E

c)

Şekil 3.13. devam

a)

0)

Şekil 3.14. ARMT istasyonunda kayıt edilen 2008 01 12 14:37:43 Md= 2.3 ve 2008 10 09 16:33:15 Md=2.7 verisinin a) taş ocağı patlatması sismogramı ve spektrumunun pitsa programındaki görüntüsü b) deprem sismogramı ve spektrumunun pitsa programındaki görüntüsü c) taş ocağı patlatması sismogramı ve spektrumu (solda) ve deprem sismogramı ve spektrumu (sağda) görüntüsü

- (1) Düşey bileşen hız sismogramı
- (2) Zaman ortamı
- (3) Frekans ortamı

Patlatma

2008 01 12 14:37:43 GMT Md= 2.3 Lokasyon 40.681 N, 29.381 E

Deprem

2008 10 09 16:33:15 GMT Md= 2.7 Lokasyon 40.671 N, 29.185 E

c)

Şekil 3.14. devam

b)

Şekil 3.15. GEMT istasyonunda kayıt edilen 2006 08 15 16:12:09 Md= 2.6 ve 2009 01 08 23:07:29 Md=3.0 verisinin a) taş ocağı patlatması sismogramı ve spektrumunun pitsa programındaki görüntüsü b) deprem sismogramı ve spektrumunun pitsa programındaki görüntüsü c) taş ocağı patlatması sismogramı ve spektrumu (solda) ve deprem sismogramı ve spektrumu (sağda) görüntüsü (1) Düşey bileşen hız sismogramı

(2) Zaman ortamı

(3) Frekans ortamı

Patlatma

2006 08 15 16:12:09 GMT Md= 2.6 Lokasyon 40.530 N, 29.281 E

Deprem

2009 01 08 23:07:29 GMT Md= 3.0 Lokasyon 40.635 N, 29.018 E

c)

Şekil 3.15. devam

b)

Şekil 3.16. MDNY istasyonunda kayıt edilen 2008 07 21 15:17:35 Md= 2.8 ve 2008 09 19 23:59:38 Md= 2.8 verisinin a) taş ocağı patlatması sismogramı ve spektrumunun pitsa programındaki görüntüsü b) deprem sismogramı ve spektrumunun pitsa programındaki görüntüsü c) taş ocağı patlatması sismogramı ve spektrumunun (solda) ve deprem sismogramı ve spektrumu (sağda) görüntüsü (1) Düşey bileşen hız sismogramı

(2) Zaman ortamı

(3) Frekans ortamı

Patlatma

2008 07 21 15:17:35 GMT Md= 2.8 Lokasyon 40.555 N, 29.229 D

Deprem

2008 09 19 23:59:38 GMT Md= 2.8 Lokasyon 40.632 N, 29.010 D

Şekil 3.16. devam

BÖLÜM 4. SONUÇLAR

Bu çalışmada 40.0-40.7°K enlemleri ile 28.7-29.8°D boylamları arasında kalan bölge için KRDAE, UDİM'in Mayıs 2006-Mart 2009 tarihleri arasında ADVT, ARMT, GEMT, MDNY istasyonlarının kaydettiği büyüklüğü Md≤3.1 olan 165 sismik olay için 4 istasyona ait toplam 225 sayısal düşey hız sismogramları kullanılmıştır. Patlatma verilerini deprem verilerinden ayırt etmek için Bursa, Gemlik, Orhangazi, Yenişehir ve civarındaki sismik aktiviteler incelenmiştir.

Bursa bölgesindeki sismik aktivite maksimum genliklerin oranı (S/P), sinyalin iki zaman penceresindeki güçlerinin oranı (Complexity,C) ile spektrumlarının düşük ve yüksek frekanslı pencerelerinin spektral oranları (SR) hesaplanmış ve doğrusal ayırt etme fonksiyonu (linear discriminate function, LDF) kullanılarak ayırt edilmiştir. Ayrıca düşey hız sismogramları ve spektrumları da patlatma deprem ayrımında kullanılmıştır. Bu çalışmada kullanılan sismik olayların lokasyon bilgileri ve bu çalışmadan elde edilen parametreler her bir istasyon için verilmiştir (Tablo 4.1, 4.2, 4.3, 4.4).

Birinci yöntemde her bir sismik olay için düşey bileşen hız sismogramından maksimum S/P dalgası genlik oranları ve maksimum S dalgası genliklerinin logaritması hesaplanmış ve doğrusal ayırt etme fonksiyonu (linear discriminate function, LDF) ile deprem ve patlatmalar birbirinden ayırt edilmiştir. Bu ayrıma göre ADVT, ARMT, GEMT, MDNY istasyonlarının kaydettiği sismik olaylar sırasıyla % 98.1, %100, %100 ve %100 doğrulukla belirlenmiştir.

İkinci yöntemde sinyalin iki zaman penceresindeki güçlerinin oranı (Complexity,C) ile spektrumlarının düşük ve yüksek frekanslı pencerelerinin spektral oranları (SR) hesaplanmış ve doğrusal ayırt etme fonksiyonu (linear discriminate function, LDF) ile deprem ve patlatmalar birbirinden ayırt edilmiştir. Burada iki zaman penceresi

olarak P dalgası varış zamanı t_0 -1.5 sn ve 1.5-8 sn; frekans olarak düşük (1-7 Hz) ve yüksek frekans (7-15 Hz) kullanılmıştır. Buradaki ayrıma göre ADVT, ARMT, GEMT, MDNY istasyonlarının aldığı sismik olaylar sırasıyla % 94.3, %91.3, % 98.8 ve %97.6 doğrulukla belirlenmiştir. Bu yöntemdeki ayrıma göre şekillerden ve sınıflandırmalardan anlaşılacağı üzere complexity değişkeni depremlerde daha büyük değerlere ulaşırken patlatmalarda daha düşük değerler almaktadır.

Üçüncü yöntemde düşey bileşen hız sismogramları ve spektrumları kullanılarak deprem ve patlatma ayrımı yapılmıştır. Patlatma sismogramında P dalgası maksimum genliği S dalgası maksimum genliğinden daha büyüktür ve Rg fazı görülmektedir. Depreme ait sismogramda ise P dalgası maksimum genliği S dalgası maksimum genliği

Çalışma alanı için seçilen sismik olayların gün içindeki saatlere (GMT) göre dağılımı Şekil 4.1'de verilmektedir. Mayıs 2006-Mart 2009 tarihleri arasında büyüklüğü Md≤3.1 olan sismik aktivitenin saat (GMT) bazında yıllara göre dağılımının toplu olarak grafiklenmesine baktığımızda 14-15 GMT saat diliminde en yüksek değere ulaştığını görmekteyiz. Sismik etkinliğin yerel çalışma saatleri olan 9-18 (7-16 GMT) arasında daha fazla olduğu dikkat çekmektedir.

Şekil 4.2'de çalışma sonucunda patlatma olarak belirlenen olayların çıkartıldıktan sonraki dağılımı görülmektedir. Depremlere ait dağılıma bakıldığında belirli bir saatte yığılma görülmemektedir ve rastgele bir dağılım söz konusudur.

Şekil 4.3'de bu çalışmada kullanılan ve sınıflaması yapılan sismik olayların,taş ocaklarının ve istasyonların yerlerinin haritası görülmektedir. Taş ocağı patlatması olarak karar verilen sismik olaylar taş ocaklarının olduğu yerlere denk gelmektedir. Çalışmada tabaka kalınlıkları 5.4 km ve 26.2 km P dalgası hızları 4.5 km/sn ve 5.91 km/sn olan 1-D hız modeli kullanılmıştır [15].

Bu çalışmanın sonucunda incelen 165 sismik olayın 73 adedinin (%44) patlatma, 92 adedinin (%56) deprem olduğu belirlenmiştir. Bu çalışmanın amacı Bursa bölgesindeki Gemlik, Orhangazi ve Yenişehir civarı için sismik aktiviteler ile yapay

kaynaklı patlatmaların birbirinden ayrılması ve sadece deprem verilerinin olduğu katalogların hazırlanmasıdır. Böylece Bursa ve çevresinde mikro deprem aktivitesinin haritalanması, aktif faylar ve b değerlerinin hesaplanması gibi yapılan her türlü çalışmada daha güvenilir veri grupları kullanılmış olacaktır.

Şekil 4.1. Çalışma alanı için Mayıs 2006-Mart 2009 tarihleri arasında seçilen sismik olayların gün içinde saatlere (GMT) göre dağılımı

Şekil 4.2. Çalışmanın sonucunda taş ocağı patlatmalarının çıkarıldıktan sonraki durumu

Şekil 4.3. Çalışmada incelenen ve sınıflaması yapılan sismik olaylar, taş ocakları ve istasyonlar

Tablo 4.1. ADVT istasyonuna ait 40.0-40.7°K enlemleri ile 28.7-29.8°D boylamları için hesaplanan parametrelerin tümü, deprem ve patlatma sınıflandırması. Kompleksiti (Complexity, C): Düşey bileşen hız sismogramının iki zaman penceresindeki (P dalgası varış zamanı-1.5 sn; 1,5-8) güçlerinin oranı, SR: Düşey bileşen hız sismogramının düşük (1-7 Hz) ve yüksek frekanslı (7-15 Hz) kısımlarının spektral oranı, S/P: Düşey bileşen hız sismogramında S/P dalgası genlik oranı, LogS: Maksimum S dalgası genliğinin logaritması

No	Tarih (gün:ay:yıl)	Saat (sa:dk:sn)	Enlem (K)	Boylam (D)	Derinlik (km)	Magnitüd (Md)	S/P	LogS	С	SR	Tanı
1	03.08.2006	12:59:05	40.33	29.15	16.3	2.7	0.471	3.506	1.487	0.487	Patlatma
2	14.08.2006	12:59:32	40.32	29.68	23.2	2.6	0.316	4.222	0.590	0.916	Patlatma
3	15.08.2006	16:12:09	40.53	29.28	10.2	2.6	0.565	3.809	1.333	0.483	Patlatma
4	26.09.2006	09:04:30	40.62	29.19	18.6	2.8	3.945	4.184	1.938	0.798	Deprem
5	03.10.2006	09:46:26	40.34	29.10	11.2	2.7	0.515	3.506	1.412	0.399	Patlatma
6	24.10.2006	14:52:01	40.45	29.03	14.6	3.0	2.169	4.169	8.715	0.496	Deprem
7	24.10.2006	22:43:04	40.44	29.04	22.4	2.6	1.559	3.100	1.981	0.716	Deprem
8	25.10.2006	01:01:14	40.42	29.01	9	2.9	1.266	3.473	8.979	0.543	Deprem
9	25.10.2006	02:45:01	40.44	29.05	26.6	2.6	1.223	3.061	3.646	0.970	Deprem
10	25.10.2006	03:36:59	40.45	29.02	24.6	2.7	1.226	3.473	3.911	1.063	Deprem
11	25.10.2006	11:12:07	40.47	29.06	15.8	2.9	1.807	3.977	6.814	0.787	Deprem
12	25.10.2006	15:02:53	40.23	29.25	25.9	2.7	0.636	3.499	1.867	0.888	Patlatma
13	28.10.2006	11:36:19	40.65	29.22	5.4	2.9	2.019	3.901	12.545	0.976	Deprem
14	28.10.2006	12:06:18	40.62	29.20	24.5	2.6	3.569	3.825	20.235	1.256	Deprem
15	28.10.2006	20:35:59	40.65	29.23	5.5	3.1	4.008	4.180	18.878	1.587	Deprem
16	12.11.2006	10:12:14	40.56	29.25	7.5	2.8	0.471	3.588	0.886	0.548	Patlatma
17	16.11.2006	16:08:17	40.66	29.22	5.6	2.7	2.736	4.236	11.075	0.696	Deprem
18	17.11.2006	02:12:54	40.42	29.02	16.8	2.6	1.519	3.267	6.581	1.003	Deprem
19	26.11.2006	04:04:44	40.48	29.00	4.8	2.8	1.264	3.711	5.589	1.161	Deprem
20	08.01.2007	23:33:22	40.42	28.99	5.4	3.1	1.581	3.756	2.856	1.136	Deprem
21	09.03.2007	15:16:27	40.58	29.24	5	2.9	0.403	3.698	0.773	0.365	Patlatma

Tablo 4.1. devam

No	Tarih (gün:ay:yıl)	Saat (sa:dk:sn)	Enlem (K)	Boylam (D)	Derinlik (km)	Magnitüd (Md)	S/P	LogS	С	SR	Tanı
22	06.04.2007	15:26:24	40.55	29.25	7.2	2.6	0.486	3.114	7.767	0.482	Patlatma
23	30.04.2007	14:58:41	40.55	29.23	3.9	2.8	0.203	3.614	2.766	0.285	Patlatma
24	14.05.2007	11:35:27	40.20	29.67	8	2.6	0.382	3.604	0.890	0.709	Patlatma
25	07.06.2007	15:15:51	40.55	29.24	9.6	2.8	0.579	3.912	1.131	0.413	Patlatma
26	04.07.2007	12:40:30	40.45	29.30	3.2	2.6	0.335	3.150	0.699	0.828	Patlatma
27	05.07.2007	16:35:54	40.55	29.31	17.2	2.2	0.812	3.530	1.714	1.111	Patlatma
28	24.07.2007	09:54:35	40.33	29.15	12.6	2.5	0.298	3.435	0.733	0.738	Patlatma
29	01.10.2007	14:26:09	40.58	29.23	6	2.7	0.388	4.009	1.201	0.450	Patlatma
30	07.10.2007	16:13:37	40.46	29.29	12.6	2.4	0.255	2.805	0.339	0.606	Patlatma
31	01.11.2007	03:49:13	40.66	29.10	4.6	2.9	4.111	3.748	19.794	0.988	Deprem
32	02.12.2007	05:39:28	40.67	29.19	4.4	3.0	1.531	4.235	8.844	1.252	Deprem
33	14.12.2007	19:51:31	40.65	29.13	7.3	3.0	3.357	4.658	15.965	0.939	Deprem
34	23.12.2007	09:46:41	40.63	29.13	9.5	3.0	3.186	4.395	14.686	0.937	Deprem
35	07.04.2008	09:37:09	40.64	29.17	7	3.0	2.380	4.175	11.329	1.290	Deprem
36	28.05.2008	14:02:00	40.63	29.17	12.1	2.4	2.547	4.026	18.420	1.336	Deprem
37	02.06.2008	10:36:28	40.64	29.15	5.4	3.0	1.105	3.911	3.677	1.247	Deprem
38	11.06.2008	16:52:56	40.63	29.13	6.2	2.9	1.699	4.136	14.594	1.230	Deprem
39	18.06.2008	15:23:38	40.58	29.22	5	3.0	0.404	3.611	1.664	0.417	Patlatma
40	21.07.2008	15:17:35	40.56	29.23	5.2	2.8	0.326	3.432	1.396	0.491	Patlatma
41	27.08.2008	11:38:08	40.19	29.61	8.3	2.8	0.973	0.713	0.343	3.556	Patlatma
42	19.09.2008	23:59:38	40.63	29.01	5.4	2.8	1.192	3.290	5.978	1.220	Deprem
43	06.10.2008	17:10:52	40.63	29.03	5.4	2.9	1.604	4.259	7.235	1.198	Deprem
44	08.10.2008	12:13:41	40.20	29.65	15.2	2.6	0.286	3.353	0.618	0.717	Patlatma

Tablo	4.1.	devam
-------	------	-------

No	Tarih (gün:ay:yıl)	Saat (sa:dk:sn)	Enlem (K)	Boylam (D)	Derinlik (km)	Magnitüd (Md)	S/P	LogS	С	SR	Tanı
45	16.10.2008	14:30:13	40.50	29.22	5	2.6	1.524	3.386	10.671	0.785	Deprem
46	05.11.2008	13:43:44	40.26	29.75	12	2.5	0.456	3.253	1.007	0.720	Patlatma
47	09.11.2008	17:14:46	40.34	29.69	12.2	2.3	1.639	4.166	4.938	1.235	Deprem
48	23.11.2008	18:09:31	40.63	29.09	3.7	3.1	1.256	3.908	4.656	0.736	Deprem
49	26.11.2008	12:43:39	40.21	29.71	27.5	2.3	0.210	3.392	0.420	1.115	Patlatma
50	27.11.2008	13:38:25	40.21	29.62	10.4	2.3	0.430	3.449	1.195	0.748	Patlatma
51	08.12.2008	13:26:02	40.32	29.26	7.6	2.7	1.781	3.575	8.382	1.077	Deprem
52	09.02.2009	12:26:03	40.21	29.63	4.5	2.7	0.272	3.454	0.535	1.007	Patlatma
53	06.03.2009	23:48:48	40.64	29.13	5.2	2.8	3.139	3.763	18.265	1.179	Deprem

Tablo 4.2. ARMT istasyonuna ait 40.0-40.7°K enlemleri ile 28.7-29.8°D boylamları için hesaplanan parametrelerin tümü, deprem ve patlatma sınıflandırması. Kompleksiti (Complexity, C): Düşey bileşen hız sismogramının iki zaman penceresindeki (P dalgası varış zamanı-1.5 sn; 1,5-8) güçlerinin oranı, SR: Düşey bileşen hız sismogramının düşük (1-7 Hz) ve yüksek frekanslı (7-15 Hz) kısımlarının spektral oranı, S/P: Düşey bileşen hız sismogramında S/P dalgası genlik oranı, LogS: Maksimum S dalgası genliğinin logaritması

No	Tarih (gün:ay:yıl)	Saat (sa:dk:sn)	Enlem (K)	Boylam (D)	Derinlik (km)	Magnitüd (Md)	S/P	LogS	С	SR	Tanı
1	21.12.2007	15:00:25	40.52	29.168	3.2	1.9	1.525	3.838	7.037	1.413	Deprem
2	23.12.2007	09:46:41	40.627	29.126	9.5	3.0	3.841	5.113	18.134	0.878	Deprem
3	12.01.2008	14:37:43	40.681	29.381	3.1	2.3	0.316	3.558	0.972	0.950	Patlatma
4	14.01.2008	12:53:51	40.289	29.121	3.6	2.6	0.643	3.447	2.454	1.498	Patlatma
5	03.06.2008	20:27:45	40.652	29.052	5.4	2.7	1.971	4.415	7.357	0.959	Deprem
6	03.06.2008	21:06:47	40.6	29.034	16.8	2.2	1.543	3.687	14.321	0.931	Deprem
7	04.06.2008	07:54:21	40.447	29.192	5	2.6	1.845	3.581	10.517	0.223	Deprem
8	08.06.2008	02:41:21	40.666	29.073	5.4	2.6	2.190	3.946	9.421	1.188	Deprem
9	12.06.2008	00:39:40	40.641	29.131	6.8	2.7	1.938	4.255	6.063	1.149	Deprem
10	12.06.2008	00:50:25	40.697	29.163	5.4	2.6	3.316	4.083	11.012	1.511	Deprem
11	18.06.2008	14:30:55	40.676	29.382	6	2.6	0.286	3.450	1.017	0.815	Patlatma
12	18.06.2008	14:52:29	40.672	29.357	4.5	2.7	0.291	3.570	0.972	0.561	Patlatma
13	02.07.2008	09:11:05	40.475	29.031	10.6	2.0	2.624	4.236	7.927	1.149	Deprem
14	07.07.2008	03:37:32	40.43	29.031	6.5	2.9	2.426	4.496	8.606	1.148	Deprem
15	10.07.2008	03:01:50	40.435	29.024	4	3.0	3.547	4.725	15.495	1.130	Deprem
16	18.07.2008	19:23:46	40.274	28.784	3.6	2.8	1.772	3.584	2.418	1.582	Deprem
17	21.07.2008	15:17:35	40.555	29.229	5.2	2.8	0.978	4.187	4.796	0.526	Patlatma
18	06.08.2008	01:44:14	40.609	29.031	5	2.6	2.228	4.144	6.474	1.326	Deprem
19	19.09.2008	23:59:38	40.632	29.01	5.4	2.8	3.714	4.726	14.773	1.626	Deprem
20	22.09.2008	09:48:22	40.669	29.363	26.3	2.4	0.392	3.433	1.198	0.731	Patlatma
21	30.09.2008	21:05:32	40.657	29.054	5.7	2.6	1.970	4.028	9.597	1.411	Deprem

Tablo	4.2.	devam
-------	------	-------

No	Tarih (gün:ay:yıl)	Saat (sa:dk:sn)	Enlem (K)	Boylam (D)	Derinlik (km)	Magnitüd (Md)	S/P	LogS	С	SR	Tanı
22	05.10.2008	06:37:34	40.603	29.042	5	1.3	3.148	4.564	11.944	1.626	Deprem
23	09.10.2008	16:33:15	40.671	29.185	16.2	2.7	3.677	4.495	13.212	1.038	Deprem
24	16.10.2008	14:30:13	40.503	29.223	5	2.6	2.842	4.552	10.987	0.313	Deprem
25	22.10.2008	00:32:41	40.599	28.962	10.6	2.2	4.305	4.813	12.966	1.883	Deprem
26	30.10.2008	20:07:24	40.592	29.031	13.2	2.4	2.773	4.679	11.841	1.279	Deprem
27	02.11.2008	20:59:42	40.631	29.069	10.3	2.3	2.910	3.971	13.457	1.754	Deprem
28	05.11.2008	18:21:39	40.658	29.008	9.2	2.5	3.346	4.746	11.812	1.723	Deprem
29	07.11.2008	11:34:07	40.463	29.129	6.4	2.7	1.776	4.498	3.296	2.378	Deprem
30	09.11.2008	10:51:09	40.472	29.13	9	2.7	1.855	5.083	4.452	2.696	Deprem
31	12.11.2008	01:48:50	40.434	28.99	5	2.3	1.619	4.129	4.946	1.305	Deprem
32	15.11.2008	11:02:34	40.574	29.418	16	2.1	0.323	3.336	1.246	0.771	Patlatma
33	15.11.2008	11:07:32	40.656	29.406	4.6	2.2	0.462	3.371	1.454	1.071	Patlatma
34	30.11.2008	13:58:41	40.625	29.03	9	2.6	2.641	4.759	15.010	1.095	Deprem
35	02.12.2008	13:27:19	40.301	29.074	20	2.7	0.496	4.233	1.458	1.534	Patlatma
36	03.12.2008	20:21:01	40.609	29.033	5.6	2.7	3.377	4.661	15.958	1.405	Deprem
37	06.12.2008	08:09:53	40.406	28.988	14	2.1	1.714	3.976	2.844	1.418	Deprem
38	15.12.2008	15:44:03	40.414	28.923	3.3	2.8	1.918	4.627	3.885	1.124	Deprem
39	17.12.2008	21:36:33	40.507	29.223	5.4	1.9	1.890	4.008	5.282	1.329	Deprem
40	07.01.2009	23:56:56	40.389	29.324	13	2.1	1.873	3.916	5.716	1.402	Deprem
41	12.01.2009	20:45:59	40.611	29.008	6.2	3.0	4.920	5.401	16.131	0.884	Deprem
42	28.01.2009	15:50:03	40.474	29.213	6.6	2.8	2.121	3.923	6.958	0.675	Deprem
43	30.01.2009	01:56:57	40.379	28.976	3.8	2.5	1.169	3.937	3.466	1.508	Deprem
43	30.01.2009	01:56:57	40.379	28.976	3.8	2.5	1.169	3.937	3.466	1.508	Deprem
44	06.03.2009	23:48:48	40.636	29.131	5.2	2.8	1.737	4.081	11.162	0.769	Deprem
45	22.03.2009	16:37:47	40.604	29.132	7.8	2.3	2.764	4.050	12.637	0.856	Deprem
46	30.03.2009	00:37:00	40.579	29.049	5	1.4	3.625	3.871	18.609	2.621	Deprem

Tablo 4.3. GEMT istasyonuna ait 40.0-40.7°K enlemleri ile 28.7-29.8°D boylamları için hesaplanan parametrelerin tümü, deprem ve patlatma sınıflandırması. Kompleksiti (Complexity, C): Düşey bileşen hız sismogramının iki zaman penceresindeki (P dalgası varış zamanı-1.5 sn; 1,5-8) güçlerinin oranı, SR: Düşey bileşen hız sismogramının düşük (1-7 Hz) ve yüksek frekanslı (7-15 Hz) kısımlarının spektral oranı, S/P: Düşey bileşen hız sismogramında S/P dalgası genlik oranı, LogS: Maksimum S dalgası genliğinin logaritması

No	Tarih (gün:ay:yıl)	Saat (sa:dk:sn)	Enlem (K)	Boylam (D)	Derinlik (km)	Magnitüd (Md)	S/P	LogS	С	SR	Tanı
1	30.07.2006	18:50:02	40.44	29.17	30.3	2.4	3.331	3.559	11.958	1.379	Deprem
2	03.08.2006	12:59:05	40.33	29.15	16.3	2.7	0.357	4.037	0.779	0.874	Patlatma
3	09.08.2006	15:49:07	40.45	29.17	10.2	2.6	2.289	3.275	5.867	1.743	Deprem
4	15.08.2006	16:12:09	40.53	29.28	10.2	2.6	0.563	4.319	2.717	0.631	Patlatma
5	30.08.2006	14:56:54	40.44	29.19	9	2	0.119	4.809	2.368	0.479	Patlatma
6	30.09.2006	11:57:19	40.47	29.22	5	1.9	0.521	4.751	0.382	0.534	Patlatma
7	03.10.2006	09:46:26	40.34	29.10	11.2	2.7	0.542	4.149	2.164	0.626	Patlatma
8	24.10.2006	22:10:45	40.45	29.05	22.4	2.8	3.146	4.300	14.545	1.433	Deprem
9	24.10.2006	22:43:04	40.44	29.04	22.4	2.6	1.890	3.866	3.121	1.532	Deprem
10	25.10.2006	07:28:43	40.48	29.30	5	1	0.117	3.319	0.267	0.546	Patlatma
11	25.10.2006	01:01:14	40.42	29.01	9	2.9	1.905	4.240	8.141	0.794	Deprem
12	25.10.2006	02:45:01	40.44	29.05	26.6	2.6	1.927	3.759	10.981	1.150	Deprem
13	28.10.2006	11:36:19	40.65	29.22	5.4	2.9	1.857	4.464	5.262	0.978	Deprem
14	10.11.2006	15:13:20	40.47	29.18	4.6	2.3	0.897	4.382	1.469	0.579	Patlatma
15	12.11.2006	10:12:14	40.56	29.25	7.5	2.8	0.468	4.216	1.768	0.619	Patlatma
16	15.11.2006	09:22:18	40.45	29.17	11.1	2.3	0.119	4.485	1.546	0.793	Patlatma
17	16.11.2006	16:08:17	40.66	29.22	5.6	2.7	2.419	4.989	5.815	0.841	Deprem
18	26.11.2006	04:04:44	40.48	29.00	4.8	2.8	3.147	4.739	9.460	1.772	Deprem
19	27.11.2006	14:16:08	40.46	29.25	2.3	2.1	0.426	3.819	0.348	0.835	Patlatma
20	11.12.2006	14:48:24	40.47	29.23	5	2.5	0.283	3.852	1.120	0.942	Patlatma
21	24.12.2006	16:08:37	40.47	29.28	3.4	2.1	0.418	3.219	2.543	1.046	Patlatma

Tablo 4.3. devam

No	Tarih (gün:ay:yıl)	Saat (sa:dk:sn)	Enlem (K)	Boylam (D)	Derinlik (km)	Magnitüd (Md)	S/P	LogS	С	SR	Tanı
22	12.01.2007	14:52:57	40.46	29.20	3.8	2.6	0.272	3.467	2.268	1.137	Patlatma
23	06.02.2007	12:00:56	40.44	29.19	6.4	2.5	0.165	4.927	2.573	1.198	Patlatma
24	09.02.2007	14:52:24	40.44	29.19	5	2.6	0.321	4.928	0.519	1.246	Patlatma
25	09.03.2007	15:16:27	40.58	29.24	5	2.9	0.447	4.413	1.599	0.667	Patlatma
26	22.03.2007	10:54:47	40.49	29.29	5.5	2.6	0.178	4.182	3.124	1.246	Patlatma
27	06.04.2007	15:26:24	40.55	29.25	7.2	2.6	0.773	3.980	2.942	0.732	Patlatma
28	16.04.2007	07:20:43	40.52	29.24	11.2	1.7	0.715	3.192	3.347	1.257	Patlatma
29	30.04.2007	14:58:41	40.55	29.23	3.9	2.8	0.793	4.727	2.239	0.633	Patlatma
30	31.05.2007	14:11:09	40.45	29.15	5	2.6	0.216	4.521	0.137	1.325	Patlatma
31	07.06.2007	15:15:51	40.55	29.24	9.6	2.8	0.510	4.567	2.982	0.547	Patlatma
32	08.06.2007	12:49:43	40.46	29.18	3.1	2.2	0.768	3.287	4.128	1.325	Patlatma
33	09.06.2007	15:06:24	40.45	29.17	4.9	1.7	0.141	4.074	3.621	1.346	Patlatma
34	10.06.2007	15:07:05	40.45	29.21	3.6	2.1	0.260	4.775	3.712	1.456	Patlatma
35	11.06.2007	14:14:44	40.44	29.18	6.7	2.2	0.401	3.156	0.643	1.458	Patlatma
36	04.07.2007	12:40:30	40.45	29.30	3.2	2.6	0.417	4.370	0.806	1.144	Patlatma
37	20.07.2007	11:38:34	40.49	29.22	3.9	2.7	0.282	3.417	2.198	1.458	Patlatma
38	23.07.2007	14:34:44	40.46	29.21	3	2.6	0.212	4.120	1.024	1.469	Patlatma
39	24.07.2007	09:54:35	40.33	29.15	12.6	2.5	0.403	4.064	0.981	0.799	Patlatma
40	01.10.2007	14:26:09	40.58	29.23	6	2.7	0.466	4.694	3.097	0.618	Patlatma
41	07.10.2007	16:13:37	40.46	29.29	12.6	2.4	0.859	4.351	1.105	0.979	Patlatma
42	24.10.2007	10:46:19	40.43	29.22	4.4	2.6	0.303	4.758	0.542	1.542	Patlatma
43	12.01.2008	14:37:43	40.68	29.38	3.1	2.3	0.389	3.514	1.101	1.586	Patlatma
44	14.01.2008	12:53:51	40.29	29.12	3.6	2.6	0.374	3.609	0.967	0.938	Patlatma

Tablo 4.3. devam

No	Tarih	Saat	Enlem	Boylam	Derinlik	Magnitüd	S/P	LogS	С	SR	Tanı
110	(gün:ay:yıl)	(sa:dk:sn)	(K)	(D)	(km)	(Md)	5/1	LUSS	Ŭ		Tuni
45	29.02.2008	15:45:36	40.43	29.20	3.1	2.4	0.417	3.718	2.167	1.543	Patlatma
46	19.04.2008	08:43:06	40.47	29.21	5	2.5	0.717	4.617	2.945	1.578	Patlatma
47	22.04.2008	14:40:25	40.44	29.20	5	2	0.291	3.617	1.763	1.674	Patlatma
48	03.06.2008	20:27:45	40.65	29.05	5.4	2.7	1.891	4.190	7.388	1.487	Deprem
49	11.06.2008	16:52:56	40.63	29.13	6.2	2.9	4.222	4.833	13.621	1.186	Deprem
50	12.06.2008	11:06:37	40.31	29.13	8	2.8	0.871	4.049	3.712	0.595	Patlatma
51	12.06.2008	00:39:40	40.64	29.13	6.8	2.7	1.810	3.822	6.298	1.120	Deprem
52	12.06.2008	00:50:25	40.70	29.16	5.4	2.6	2.163	3.907	6.441	1.272	Deprem
53	18.06.2008	14:30:55	40.68	29.38	6	2.6	0.349	3.432	0.822	1.446	Patlatma
54	18.06.2008	14:52:29	40.67	29.36	4.5	2.7	0.282	3.447	0.750	1.108	Patlatma
55	18.06.2008	15:23:38	40.58	29.22	5	3.0	0.728	4.759	4.785	0.523	Patlatma
56	01.07.2008	12:45:23	40.45	29.18	5	2.5	0.490	4.916	3.258	1.678	Patlatma
57	07.07.2008	15:43:21	40.48	29.29	5.8	2.8	0.926	4.394	4.613	0.499	Patlatma
58	07.07.2008	03:37:32	40.43	29.03	6.5	2.9	2.169	4.258	5.417	1.351	Deprem
59	21.07.2008	15:17:35	40.56	29.23	5.2	2.8	0.710	4.619	3.090	0.581	Patlatma
60	21.07.2008	14:34:49	40.53	29.24	5.3	2.7	1.807	4.471	13.397	0.179	Deprem
61	06.08.2008	01:44:14	40.61	29.03	5	2.6	2.184	3.734	10.078	1.483	Deprem
62	21.08.2008	04:23:07	40.55	28.86	5.2	2.6	1.196	3.778	4.620	1.746	Deprem
63	26.08.2008	10:45:07	40.29	29.13	13.1	2.2	0.779	3.743	2.305	0.556	Patlatma
64	22.09.2008	09:48:22	40.67	29.36	26.3	2.4	0.571	3.403	1.376	0.980	Patlatma
65	05.10.2008	06:37:34	40.60	29.04	5	1.3	3.410	3.748	14.341	1.541	Deprem
66	06.10.2008	17:10:52	40.63	29.03	5.4	2.9	3.700	5.181	15.514	1.236	Deprem
67	09.10.2008	16:33:15	40.67	29.19	16.2	2.7	2.207	5.032	6.937	1.241	Deprem

Tablo 4.3. devam

No	Tarih (gün:ay:yıl)	Saat (sa:dk:sn)	Enlem (K)	Boylam (D)	Derinlik (km)	Magnitüd (Md)	S/P	LogS	С	SR	Tanı
68	18.10.2008	07:10:20	40.51	29.24	5	2.5	0.908	3.912	0.569	1.679	Patlatma
69	26.10.2008	09:38:43	40.52	29.31	5	1.8	0.290	4.892	0.896	1.745	Patlatma
70	26.10.2008	08:27:10	40.57	29.28	12.3	2.4	1.969	4.128	11.745	0.211	Deprem
71	30.10.2008	20:07:24	40.59	29.03	13.2	2.4	3.551	4.181	17.424	1.543	Deprem
72	31.10.2008	10:32:38	40.43	29.02	9.9	2.5	2.375	4.074	6.202	1.461	Deprem
73	01.11.2008	08:28:04	40.50	29.26	5	2.3	0.218	4.225	2.168	1.784	Patlatma
74	02.11.2008	20:59:42	40.63	29.07	10.3	2.3	3.582	3.459	15.042	1.630	Deprem
75	14.11.2008	13:04:40	40.46	29.21	5	2.5	0.317	3.277	1.754	1.845	Patlatma
76	15.11.2008	11:02:34	40.57	29.42	16	2.1	0.513	3.552	1.051	1.181	Patlatma
77	15.11.2008	11:07:32	40.66	29.41	4.6	2.2	0.839	3.424	2.084	1.341	Patlatma
78	25.11.2008	10:41:06	40.66	29.38	17.2	1.9	0.437	3.516	1.237	1.535	Patlatma
79	02.12.2008	13:27:19	40.30	29.07	20	2.7	0.888	3.901	3.181	1.341	Patlatma
80	08.01.2009	23:07:29	40.64	29.02	5	3.0	3.686	5.210	14.225	1.190	Deprem
81	10.01.2009	14:46:20	40.49	29.16	5	1.5	0.277	4.307	1.643	1.873	Patlatma
82	10.01.2009	17:01:46	40.42	29.28	28.2	2.1	1.523	3.620	7.166	0.306	Deprem
83	13.01.2009	15:47:11	40.59	29.25	5	3.0	1.516	3.986	8.519	0.250	Deprem
84	12.03.2009	05:15:16	40.53	29.22	5	2.1	1.267	3.534	6.636	0.303	Deprem
85	30.03.2009	00:37:00	40.58	29.05	5	1.4	1.287	3.463	4.673	1.550	Deprem

Tablo 4.4. MDNY istasyonuna ait 40.0-40.7°K enlemleri ile 28.7-29.8°D boylamları için hesaplanan parametrelerin tümü, deprem ve patlatma sınıflandırması. Kompleksiti (Complexity, C): Düşey bileşen hız sismogramının iki zaman penceresindeki (P dalgası varış zamanı-1.5 sn; 1,5-8) güçlerinin oranı, SR: Düşey bileşen hız sismogramının düşük (1-7 Hz) ve yüksek frekanslı (7-15 Hz) kısımlarının spektral oranı, S/P: Düşey bileşen hız sismogramında S/P dalgası genlik oranı, LogS: Maksimum S dalgası genliğinin logaritması

No	Tarih (gün:ay:yıl)	Saat (sa:dk:sn)	Enlem (K)	Boylam (D)	Derinlik (km)	Magnitüd (Md)	S/P	LogS	С	SR	Tanı
1	10.07.2008	03:01:50	40.44	29.02	4	3.0	1.243	5.080	2.249	1.780	Deprem
2	18.07.2008	11:31:02	40.27	29.15	15.9	2.6	0.379	3.965	1.142	1.303	Patlatma
3	18.07.2008	19:23:46	40.27	28.78	3.6	2.8	1.965	4.393	1.208	2.105	Deprem
4	21.07.2008	15:17:35	40.56	29.23	5.2	2.8	0.360	4.179	0.680	1.395	Patlatma
5	06.08.2008	01:44:14	40.61	29.03	5	2.6	1.537	4.083	3.792	1.536	Deprem
6	21.08.2008	04:23:07	40.55	28.86	5.2	2.6	1.483	4.330	9.452	1.419	Deprem
7	24.08.2008	23:12:48	40.38	29.05	12.8	2.0	1.654	4.534	0.922	1.678	Deprem
8	25.08.2008	00:35:11	40.30	29.01	11.8	2.0	1.208	4.303	2.242	2.284	Deprem
9	26.08.2008	10:45:07	40.29	29.13	13.1	2.2	0.405	3.952	1.391	1.422	Patlatma
10	31.08.2008	00:25:17	40.24	28.97	4.1	2.7	1.568	5.133	3.650	1.564	Deprem
11	19.09.2008	23:59:38	40.63	29.01	5.4	2.8	1.350	4.652	3.724	1.689	Deprem
12	22.09.2008	09:48:22	40.67	29.36	26.3	2.4	0.633	3.535	1.729	1.080	Patlatma
13	30.09.2008	21:05:32	40.66	29.05	5.7	2.6	1.386	3.893	6.183	2.298	Deprem
14	06.10.2008	17:10:52	40.63	29.03	5.4	2.9	1.745	5.391	4.889	1.790	Deprem
15	30.10.2008	01:44:18	40.45	29.17	10.3	2.0	2.061	3.880	5.391	1.523	Deprem
16	30.10.2008	20:07:24	40.59	29.03	13.2	2.4	1.655	4.266	1.966	1.609	Deprem
17	02.11.2008	20:59:42	40.63	29.07	10.3	2.3	1.822	3.660	3.668	2.013	Deprem
18	05.11.2008	18:21:39	40.66	29.01	9.2	2.5	2.860	4.197	1.932	1.699	Deprem
19	07.11.2008	11:34:07	40.46	29.13	6.4	2.7	2.093	4.604	7.467	1.898	Deprem
20	08.11.2008	12:13:31	40.27	29.16	15.1	2.1	0.694	3.707	1.936	1.069	Patlatma
21	09.11.2008	10:51:09	40.47	29.13	9	2.7	1.603	4.979	6.951	1.977	Deprem
22	12.11.2008	01:48:50	40.43	28.99	5	2.3	2.154	4.554	5.780	2.582	Deprem

Tablo 4.4. devam

No	Tarih (gün:av:vıl)	Saat (sa:dk:sn)	Enlem (K)	Boylam (D)	Derinlik (km)	Magnitüd (Md)	S/P	LogS	С	SR	Tanı
23	23.11.2008	18:09:31	40.63	29.09	3.7	3.1	2.958	5.256	10.344	0.889	Deprem
24	24.11.2008	05:24:44	40.19	28.90	3.9	2.8	2.987	5.079	11.624	2.009	Deprem
25	25.11.2008	10:41:06	40.66	29.38	17.2	1.9	0.727	3.855	1.501	1.335	Patlatma
26	03.12.2008	20:21:01	40.61	29.03	5.6	2.7	2.624	4.172	2.627	1.822	Deprem
27	06.12.2008	08:09:53	40.41	28.99	14	2.1	2.411	4.955	5.076	2.082	Deprem
28	15.12.2008	15:44:03	40.41	28.92	3.3	2.8	0.505	5.396	1.589	2.681	Deprem
29	17.12.2008	21:36:33	40.51	29.22	5.4	1.9	1.317	4.026	3.773	1.745	Deprem
30	07.01.2009	23:56:56	40.39	29.32	13	2.1	1.894	3.635	3.148	2.397	Deprem
31	12.01.2009	20:45:59	40.61	29.01	6.2	3.0	4.813	5.295	5.088	1.591	Deprem
32	13.01.2009	18:45:19	40.38	28.93	9.5	2.5	2.495	4.162	6.663	1.993	Deprem
33	15.01.2009	20:53:13	40.70	29.16	5	3.0	2.720	4.662	9.238	1.705	Deprem
34	28.01.2009	15:50:03	40.47	29.21	6.6	2.8	1.039	3.836	4.042	1.185	Deprem
35	10.02.2009	00:35:00	40.61	29.08	4.9	3.0	3.723	5.585	10.438	0.705	Deprem
36	11.02.2009	21:52:27	40.59	29.03	25.7	1.6	3.128	3.672	12.698	1.586	Deprem
37	06.03.2009	23:48:48	40.64	29.13	5.2	2.8	1.486	4.149	7.190	1.174	Deprem
38	09.03.2009	06:05:47	40.41	28.96	12.4	2.4	1.667	4.823	3.344	2.022	Deprem
39	13.03.2009	15:17:38	40.48	29.21	5	2.2	1.420	3.903	4.753	1.323	Deprem
40	22.03.2009	15:37:10	40.59	28.97	5	2.1	1.970	4.406	5.117	1.530	Deprem
41	22.03.2009	16:37:47	40.60	29.13	7.8	2.3	1.167	3.730	3.449	2.154	Deprem

KAYNAKLAR

- [1] UCARKUS, G., BARKA, A., AKYÜZ, S., Gemlik Fay Zonu'nun Paleosismisitesi, ATAG-4 Bildiri özetleri, s: 34, 2000.
- [2] UZ. B., Kalaycıdere (Orhangazi-Bursa) ve civarının jeolojik etüd ile taşkireç ve çevre ile ilintilerinin araştırılması, İ.T.Ü. Y.B.Y.K. Uygar Merkezi, Rapor 37/90, 1990.
- [3] KUŞÇU, İ., OKAMURA, M., MATSUOKA, H., ÖZALP, S. AWATA, Y., Gemlik Körfezi'ndeki (GD Marmara Denizi) Sualtı Aktif Faylar, 2006.
- [4] WESSEL, P., and SMITH, W.H.F., New version of the generic mapping tools (GMT) Version 3.0 released, Trans., AGU, EOS, 76, 329, 1995.
- [5] LEE, W. H. K., LAHR, J. C., HYPO71, A Computer Program for Determining Hypocenter, Magnitude, and First Motion Pattern of Local Earthquakes. Open File Report, U. S. Geological Survey, 100 pp., 1972.
- [6] TAYLOR, S.R., DENNY, M.D., VERGINO, E.S., GLASER, R.E., 1989. Regional discrimination between NTS-explosions and earthquakes. Bulletin Seismological Society of America 79, 1142–1176.
- [7] WÜSTER, J., Discrimination of chemical explosions and earthquakes in central Europe—a case study, Bull. Seismol. Soc. Am. 83, 1184-1212, 1993.
- [8] KIM, S. G., Y. C. PARK, W. Y. KIM, Discrimination of small earthquakes and artificial explosions in the Korean Peninsula using Pg/Lg ratios, Geophys. J. Int. 134, 267-276, 1998.
- [9] SCHERBAUM, F. and JOHNSON, J., 1992, Programmable Interactive Toolbox for Seismological Analysis (PITSA). In: Lee, W.H.K. (eds), IASPEI Software Library, USA, V 5, 269 pp., 1992.
- [10] BAUMGARDT, D.R., YOUNG, G.B., Regional seismic waveform discriminants and case-based event identification using regional arrays. Bulletin Seismological Society of America Part B 80, 1874–1892, 1990.

- [11] KIM, W. Y., D. W. SIMPSON, and P. G. RICHARDS, High-Frequency Spectra of Regional Phases from Earthquakes and Chemical Explosions, Bull. Seism. Soc. Am. 84, 1365-1386, 1994.
- [12] GITTERMAN, Y., V. PINKY, and A. SHAPIRA, Spectral classification methods in monitoring small local events by the Israel seismic net-work, J. Seism. 2, 237-256, 1998.
- [13] SPSS V.17.0 SPSS for Windows. SPSS Inc. 2005.
- [14] HORASAN, G., BOZTEPE-GÜNEY, A.,KUSMEZER, A., MUSAOĞLU, N., Contamination of seismicity catalogs by quarry basts: An example from Istanbul and its vicinty, northwestern Turkey. Journal of Asian Earth Sciences 34: 90-99, doi:10.1016/j.jseaes.2008.03.012, 2009.
- [15] KALAFAT, D., GÜRBÜZ, C. ve ÜÇER, S. B, 1987, Batı Türkiye'de Kabuk ve Üst Manto Yapısının Araştırılması, Deprem Araştırma Bülteni, Sayı 59, 43-64.

ÖZGEÇMİŞ

Pınar DENİZ, 31.01.1973'de İstanbul'da doğdu. İlk, orta, lise eğitimini İstanbul'da tamamladıktan sonra 1997 yılında İstanbul Üniversitesi, Jeofizik Mühendisliği Bölümü'nden dereceyle mezun oldu. 2002 yılında Boğaziçi Üniversitesi, Kandilli Rasathanesi ve Deprem Araştırma Enstitüsü, Ulusal Deprem İzleme Merkezi'nde Jeofizik Mühendisi olarak göreve başladı. Halen aynı kurumda görev yapmaktadır.