T.C. SAKARYA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

İNCE DANELİ ZEMİNLERDE DRENAJLI KAYMA DİRENCİ PARAMETRELERİNİN TAYİNİ

YÜKSEK LİSANS TEZİ Merve İSPİROĞLU

Enstitü Anabilim Dalı	:	İNŞAAT MÜHENDİSLİĞİ
Enstitü Bilim Dalı	:	GEOTEKNİK

Tez Danışmanı: Doç. Dr. Ertan BOL

Kasım 2016

BEYAN

Tez içindeki tüm verilerin akademik kurallar çerçevesinde tarafımdan elde edildiğini, görsel ve yazılı tüm bilgi ve sonuçların akademik ve etik kurallara uygun şekilde sunulduğunu, kullanılan verilerde herhangi bir tahrifat yapılmadığını, başkalarının eserlerinden yararlanılması durumunda bilimsel normlara uygun olarak atıfta bulunulduğunu, tezde yer alan verilerin bu üniversite veya başka bir üniversitede herhangi bir tez çalışmasında kullanılmadığını beyan ederim.

Merve İSPİROĞLU 10.11.2016

TEŞEKKÜR

Yüksek lisans eğitimim boyunca değerli bilgi ve deneyimlerinden yararlandığım, her konuda bilgi ve desteğini almaktan çekinmediğim, araştırmanın planlanmasından yazılmasına kadar tüm aşamalarında yardımlarını esirgemeyen, teşvik eden, tüm çalışmalarımız süresince kendisinden her türlü desteği gördüğüm ve öğrencisi olmakla her zaman gurur duyduğum sayın danışman hocam Doç. Dr. Ertan BOL'a, çalışmam boyunca yardımlarını esirgemeyen Doç. Dr. Aşkın ÖZOCAK'a ve Yrd. Doç. Dr. Sedat SERT'e teşekkürlerimi sunarım.

Laboratuvar olanakları konusunda anlayış ve yardımlarını esirgemeyen bilgi ve deneyimlerinden yararlandığım Laboratuvar Görevlisi Recep EYÜPLER'e teşekkür ederim.

İÇİNDEKİLER

TEŞEKKÜR	i
İÇİNDEKİLER	ii
SİMGELER VE KISALTMALAR LİSTESİ	v
ŞEKİLLER LİSTESİ	vi
TABLOLAR LİSTESİ	X
ÖZET	xi
SUMMARY	xii

BÖLÜM 1.

GİRİŞ	1
1.1. Amaç	2
1.2. Kapsam	3

BÖLÜM 2.

KAYNAK ARAŞTIRMASI	5
2.1. Zeminlerin Kayma Direnci	5
2.2. Mohr- Coulomb Göçme Hipotezi	6
2.3. Efektif Gerilmeler ve Kayma Mukavemeti	8
2.4. Kum Zeminlerin Kayma Direnci	9
2.5. Kil Zeminlerin Kayma Direnci	11
2.6. Drenajlı ve Drenajsız Kayma Direncinin Tanımı	15
2.7. Drenajlı ve Drenajsız Koşullar İçin Analiz	17
2.8. Geoteknik Mühendisliğinde Drenajlı Kayma Direncinin Önemi	18
2.9. Zeminlerin Kayma Direncinin Belirlenmesi	19
2.9.1. Kesme kutusu deneyi	19
2.9.2. Serbest basınç deneyi	21

2.9.3. Üç eksenli basınç deneyi	22
2.9.4. Arazi deneyleri	26

BÖLÜM 3.

MATERYAL VE YÖNTEM	27
3.1. Materyal	27
3.2. Yöntem	27
3.2.1. Zeminlerin drenajlı kayma direncinin belirlenmesi	27
3.3. Drenajlı Kayma Direncinin Deneysel Yöntemler İle Belirlenmesi	28
3.3.1. Kesme kutusu deney prosedürü	29
3.3.2. Konsolidasyon deneyleri	31
3.3.3. Konsolidasyonlu-drenajsız üç eksenli basınç deneyi	33

BÖLÜM 4.

ARAŞTIRMA BULGULARI	35
4.1. Kullanılan Numunelerin Geoteknik Özellikleri	36
4.1.1. Likit limit deneyi	36
4.1.2. Plastik limit deneyi	39
4.1.3. Hidrometre deneyi	39
4.1.4. Piknometre deneyi	41
4.2. Numune Hazırlama Tekniği	46
4.3. Kesme Hızının Belirlenmesi	48
4.4. Konsolidasyonlu-Drenajsız Üç Eksenli Basınç Deney Sistemi	50
4.4.1. Üç eksenli deney numunelerinin hazırlanması ve deney	51
4.4.2. Hesaplamalar	54
4.5. Kesme Kutusu Deneyi	56
4.5.1. Kesme kutusu deney numunelerinin hazırlanması ve deney	57
4.5.2. Hesaplamalar	61

BÖLÜM 5.

TARTIŞMA VE SONUÇ	67
3	

5.1. Konsolidasyonlu-Drenajsız Üç Eksenli Deney Sonuçları	68
5.2. Kesme Kutusu Deney Sonuçları	69
5.3. Kesme Kutusu ve Konsolidasyonlu-Drenajsız (CU) Üç Eksenli	
Basınç Deneyi Sonuçlarının Karşılaştırılması	69
KAYNAKLAR	70
EKLER	72

ÖZGEÇMİŞ 113

SİMGELER VE KISALTMALAR LİSTESİ

ΔSTM	· Amerikan standartları
ASTM	
В	: Doygunlujk orani
c	: Kohezyon
c'	: Efektif kohezyon
CD	: Konsolidasyonlu-drenajlı deney
CI	: Orta plastisiteli kil
CL	: Düşük plastisiteli kil
CPT	: Koni penetrasyon deneyi
Cu	: Drenajsız kayma direnci
C _v	: Konsolidasyon katsayısı
CU	: Konsolidasyonlu-drenajsız deney
d_{f}	: Yenilme için tahmin edilen yatay hareket
ΔH	: Düşey hareket
Δu	: Boşluk suyu basıncı değişimi
ΔV	: Hacim değişimi
$\Delta \sigma$: Gerilme değişimi
$\Delta\sigma_c$: Hidrostatik basınç değişimi
φ	: Kayma direnci açıcı
φ'	: Efektif kayma direnci açıcı
Gs	: Özgül ağırlık
3	: Eksenel deformasyon
h	: Numune boyu
İDO	: Înce dane oranı
k	: Permeabilite veya hidrolik iletkenlik
K_0	: Sükunetteki toprak basıncı

KY	: Kil yüzdesi
LL	: Likit limit (%)
MH	: Yüksek plastisiteli silt
MI	: Orta plastisiteli silt
ML	: Düşük plastisiteli silt
NL	: Normal yüklenmiş kil

OCR	: Aşırı konsolidasyon oranı
PI	: Plastisiteindisi
PL	: Plastik limit (%)
q _u	: Serbest basınç dayanımı
Rd	: Kesme hızı
σ'	: Efektif gerilme
σ.'	: Ön konsolidasyon basıncı
SPT	: Standart penetrasyon deneyi
Sr	: Doygunluk derecesi
t	: Birincil konsolidasyonun başlangıcından itibaren ikincil
	konsolidasyonun sonuna kadar olan süre
$t_{\rm f}$: Yenilme için tahmin edilen toplam zaman
t ₅₀	: %50 oturmanın olduğu zaman dilimi
t ₉₀	: %90 oturmanın olduğu zaman dilimi
t ₁₀₀	: %100 oturmanın olduğu zaman dilimi
τ	: Kayma direnci
δ	: Yatay hareket
WL	: Likit limit

ŞEKİLLER LİSTESİ

Şekil 2.1.	Coulomb sürtünme teorisi	6
Şekil 2.2.	Mohr-Coulomb hipotezine göre kırılma durumu	7
Şekil 2.3.	Toplam ve efektif gerilme mohr daireleri	9
Şekil 2.4.	Kesme kutusu deneyinde normal gerilme ve kayma direnci bağıntısı	11
Şekil 2.5.	Normal ve aşırı konsolide zeminler için kayma gerilmesi - kayma	
	deformasyonu ilişkisi	13
Şekil 2.6.	Dolguda güvenlik	14
Şekil 2.7.	Yarmada güvenlik	15
Şekil 2.8.	Drenajlı ve drenajsız gerilme izleri ile kesme dayanımları	17
Şekil 2.9.	Doygun kil için drenajlı ve drenajsız dayanım zarfları	18
Şekil 2.10.	Kesme kutusu deney düzeneği	21
Şekil 2.11.	Serbest basınç dayanımına göre kıvamı	22
Şekil 2.12.	Laboratuvar ortamında üç eksenli hücre kesme deney düzeneği	25
Şekil 3.1.	Direkt kesme kutusu deney düzeneği	29
Şekil 3.2.	Kesme kutusunda sonuçların yorumlanması	31
Şekil 3.3.	Konsolidasyon katsayısının logaritma yöntemiyle bulunuşu	32
Şekil 3.4.	Konsolidasyon katsayısının karekök yöntemiyle bulunuşu	32
Şekil 3.5.	CU deneyde normal ve aşırı konsolide killer için $\sigma\text{-}\epsilon$, Δu ve $\sigma_1{'}$ ve $\sigma_3{'}$	
	eğrileri σ_1'/σ_3'	34
Şekil 4.1.	Numunenin tas içine yerleştirilmesi	37
Şekil 4.2.	Numunede oyuk açma bıçağıyla yarık açılması ve vuruşlar yapılması	37
Şekil 4.3.	Numunede oyuk açma bıçağıyla yarık açılması ve vuruşlar yapılması	38
Şekil 4.4.	Bir miktar numunenin etüvde kurutulmak üzere metal kaba alınması	38
Şekil 4.5.	Buzlu cam üzerinde plastik limit için numunelerin bekletilmesi ve	
	deneyin yapılması	39
Şekil 4.6.	50 gr numunenin perhidrol ile yakılması	40

Şekil 4.7.	Deney için numunenin hazırlanması	40
Şekil 4.8.	Numunenin düzeneğe yerleştirilmesi ve hidrometre okumalarının	
	alınması	41
Şekil 4.9.	Suyun vakum aleti yardımıyla damıtılması	42
Şekil 4.10.	Piknometrenin ağırlığının ölçülmesi ve numunenin dövülmesi	42
Şekil 4.17.	Adapazarı silt için zaman - sıkıştırma eğrileri (r = 100-200 kPa)	41
Şekil 4.11.	Numunenin piknometreye koyulması ve tartılması	43
Şekil 4.12.	Vakum öncesi numuneye su koyulması ve vakumlama aşaması	43
Şekil 4.13.	Piknometre, numune ve su	44
Şekil 4.14.	Piknometre, numune ve su	44
Şekil 4.15.	Piknometre deneyinin şematik gösterimi	45
Şekil 4.16.	Numunelerin plastisite kartındaki yerleri	46
Şekil 4.17.	Siltli kil deney numunesinin bulamaç haline getirilmesi	47
Şekil 4.18.	. Deney numunesinin hücreye yerleştirilmesi	48
Şekil 4.19.	. Deney numunesinin askıya yerleştirilmesi	48
Şekil 4.20.	Üç eksenli basınç deney sistemi	50
Şekil 4.21.	Üç eksenli deney hücresi şematik kesiti	51
Şekil 4.22.	. Üç eksenli deney için numunenin hazırlanması işlemi	52
Şekil 4.23.	. Doyurma aşamasının bilgisayar arayüzünden takip edilmesi	53
Şekil 4.24.	. Deney sonucu kesilen siltli kil numunesi örneği	54
Şekil 4.25.	. Siltli kil numunesine ait 100 kPa, 200 kPa ve 300kPa çevre basıncı	
	altında deney sırasında alınan okuma değerleri	55
Şekil 4.26.	. Siltli kil numunesinin deviatör gerilme-eksenel deformasyon grafiği	55
Şekil 4.27.	. Siltli kil numunesinin boşluk suyu basıncı-eksenel deformasyon	
	grafiği	56
Şekil 4.28.	. Siltli kil numunesinin kesme gerilmesi-normal gerilme grafiği	56
Şekil 4.29.	Kesme kutusu şematik kesiti	57
Şekil 4.30.	. Kesme kutusu deneyi için numune alımı	58
Şekil 4.31.	Kesme kutusu deneyi için numunenin düzeneğe yerleştirilme işlemi	58
Şekil 4.32.	Numunenin konsolidasyona bırakılma işlemi	59
Şekil 4.33.	. Konsolidasyon sonucu ortaya çıkan verilerin örneği	60
Şekil 4.34.	. 1 Nolu numunenin (Siltli Kil) kesme hızlarının hesaplanması	62

Şekil 4.35.	1 Nolu numunenin (Siltli Kil) konsolidasyonlu-drenajsız (CU) ve	
	kesme kutusu deney sonucu	64
Şekil 4.36.	Kesme kutusu ve konsolidasyonlu-drenajsız (CU) deney sonuçlarının	
	karşılaştırılması	64
Şekil 4.37.	CU deneyinden elde edilen sürtünme açıları ve kil yüzdeleri arasındaki	
	ilişki	65
Şekil 4.38.	Kesme kutusu deneyinden elde edilen sürtünme açıları ile kil yüzdeleri	
	arasındaki ilişki	66
Şekil 4.39.	Kesme hızları ile kil oranları arasındaki ilişki	66

TABLOLAR LİSTESİ

Tablo 2.1.	Kırılma-yenilme kriterleri	8
Tablo 4.1.	Numunelerin geoteknik özellikleri	46
Tablo 4.2.	Numuneleri kesme hızları değerler	62
Tablo 4.3.	Kesme kutusu deneyi sonuçları	63
Tablo 4.4.	Konsolidasyonlu-drenajsız (CU) üç eksenli hücre kesme deneyleri	63

ÖZET

Anahtar kelimeler: Direkt Kesme Deneyi, kesme hızı, drenajlı şartlar, siltli zeminler

Kayma direnci parametreleri toplam (drenajsız) ve efektif (drenajlı) parametreler olmak üzere ikiye ayrılır. Yükleme sonrası suyun sistemden hemen çıkabileceği (drene olabileceği) iri daneli zeminlerde gerçekleştirilen analizlerde drenajlı parametrelerin kullanılması uygundur. Drenajsız kayma direnci parametreleri; ince daneli (killi-siltli) zeminlerin yükleme sonrası kısa sürede drene olamayacağı durum için geçerlidir. Bununla birlikte ince daneli zeminlerinde uzun süreli stabilite analizlerinde, suyun sistemden bu uzun süre zarfında çıkabileceği varsayımı yapılarak, drenajlı parametrelerin kullanılması gerekmektedir.

Zeminlerin kayma mukavemetini laboratuvarda ölçmek için kullanılan ekipmanların başında Kesme Kutusu deneyi gelir. Kesme Kutusu deneyi iki rijit plaka arasına yerleştirilen numunenin üzerine normal gerilme uygulandıktan ve bu yük altında sıkışması (konsolidasyonu) tamamlandıktan sonra önceden belirlenmiş bir düzlem boyunca yanal olarak kesilmesi için gerekli maksimum kesme gerilmesinin bulunması şeklinde gerçekleştirilir.

Mevcut kesme kutusu düzeneklerinde suyun numune içinden çıkmasına (drenaja) engel olmak imkânsız olduğundan bu deney yöntemi ile bulunan parametrelerin drenajlı olduğu kabul edilir. Bu sebepten dolayı kesme kutusunda kesme hızının numune içinde boşluk suyu basıncı oluşmasına müsaade etmeyecek bir hızda kesilmesi gerekmektedir. Dolayısı ile iri daneli zeminlerin yüksek permeabilitesi (geçirgenliği) nedeni ile kesme hızı yüksek iken, ince daneli zeminlerde düşük permeabiliteden dolayı kesme hızı oldukça yavaş olmaktadır. Literatürde kesme kutusu ile yapılan deneylerde kesme hızının tahmini için geliştirilmiş konsolidasyon hızına bağlı birtakım ampirik formülasyonlar mevcuttur. Bu durum kesme kutusu deneyine başlamadan önce numunenin konsolidasyon hızının tayinine yönelik, zaman ve işgücü kaybına yol açan, ön işlemlerin yapılmasını zorunlu hale getirmektedir. Bu çalışmanın amacı siltli numunelerin drenajlı ve drenajsız kayma direnci parametrelerinin kesme kutusu deney aleti ile ölçmeye yönelik olacaktır. Literatürde kabul gören kesme hızı yaklaşımlarının bir karşılaştırılması yapılacaktır.

DETERMINATION OF DRAINED SHEAR STRENGTH PARAMETERS IN FINE GRAINED SOILS

SUMMARY

Keywords: Direct shear test, shearing rate, drained condition, silty soil

Shear strength parameters of soils can be divided as drainedand undrained conditions. Drained parameters are proper to be used for the conditions, where pore water can drain out of the soil easily, under external loading. There is no change in pore water pressure due to external loading. Drained parameters are valid for coarse grained soils and fine grained soils if the rate of the load is slow enough not to generate excess pore pressure in the system. On the other hand, undrained condition occurs when the pore water cannot drain out of the soil. The rate of the load is much quicker in undrained loading than the rate at which pore water can drain out. In undrained conditions, a large part of the load is carried by the pore water, as a result pore pressures increase. For long term stability analysis in fine grained soils, drained parameters can be used accepting the pore water can drain out of the soil. For dynamic conditions, if the rate of the loading is fast enough as in the earthquakes, even coarse grained soils can experience undrained loading.

Direct shear test is one of the most commonly used laboratory tests to determine the shear strength of soils. In direct shear test, the test sample is placed in a rigid box which is divided horizontally into two halves. After the sample is consolidated by a constant vertical compressive force, a horizontal force is applied to the upper half of the box. The maximum shear stress can be obtained by plotting shear stress values versus horizontal displacements. The tests are run several times for various vertical stresses and shear strength parameters are determined by using related plots.

It is not possible to prevent completely the drainage of the water out of the sample in available shear box test systems. To ensure the drained condition, the rate of the shearing should be selected as slow as not to allow the occurrence of excess pore water pressure. This results a faster rate for coarse grained soils and much slower rate for fine grained soils with low permeability. Some empirical correlations, which use consolidation characteristics of the soils, are available in the literature, regarding the rate of the shearing.

BÖLÜM 1. GİRİŞ

Günümüzde yapım teknikleri ve yapısal analiz yöntemlerindeki gelişmelere bağlı olarak büyük yapılar inşa edilmeye başlanılmıştır. Bu yapıların proje aşamasındaki analizlerinin daha gerçekçi ve doğru yapılabilmesi için, yapım aşamasındaki koşullar iyi belirlenmeli ve modellemeler buna göre yapılmalıdır. Yapısal modelleme yaparken yapının alacağı yükler, bölgenin deprem kosulları, yapının kullanım amacı gibi özelliklere dikkat edilmelidir. Bu koşulların en önemlilerinden birisi yerel zemin koşulları içerisinde zeminlerin aldığı yükler altındaki gösterdiği davranışıdır. Yerel zemin koşullarının ve yapı zemin etkileşiminin iyi belirlenmesi ve analizlerin doğru şekilde yapılabilmesi için zeminin, fiziksel ve mekanik özelliklerinin iyi belirlenmesi gerekmektedir. Bu özelliklerin belirlenmesi için arazi ve laboratuarlarda birçok deney yapılmaktadır. Yerel zemin koşullarının belirlenmesinde zeminin iyi şekilde incelenmesi gerekmektedir. Bundan dolayı zeminde sondaj işlemleri yapılmaktadır. Sondaj esnasında arazi deneylerinin bazıları uygulanabilmekte fakat bu deneyler zemin parametrelerinin tümünün belirlenmesinde yeterli olmamaktadır. Zemin parametrelerinin belirlenmesi için, araziden alınan zemin numuneleri üzerinde bir takım laboratuvar deneyleri uygulanmaktadır. Yapısal analizlerde gerçeğe yakın modelleme yapabilmek, zemin özelliklerini gerçeğe yakın şekilde belirlemesi ilemümkündür. Zemin özellikleri parametrelerinin doğru belirlenmesi için, mevcut zemin koşullarının laboratuvar ortamına doğru şekilde yansıtılması gerekmektedir.

Temel taşıma gücü, istinat duvarı ve heyelan analizi gibi plastik denge problemlerinin çözümünde zeminlerin kayma direnci parametrelerinin doğru bir şekilde belirlenmesi gerekmektedir. Zemin türü ve yükleme hızına bağlı olarak, bu denge problemlerin çözümünde kullanılacak kayma direnci parametreleri toplam gerilme veya efektif gerilme parametreleri cinsinden olabilmektedir. Drenajlı ve drenajsız parametrelerinin doğru bir şekilde belirlenebilmesi, kayma direnci parametrelerinin kullanılacak olduğu stabilite problemlerinin çözümünde büyük önem taşımaktadır. Şev stabilitesi ve stabilite analizleri geoteknik mühendisliğinin ve zemin mekaniğinin önemli konularından biri olmuştur. Ülkemizde bulunan şevlerde belirli bir süreden sonra stabilite problemleriyle karşılaşılmaktadır. Bu da kayma direnci parametrelerinin önemini göstermektedir. İnşaat yapımı esnasında ya da inşaat bitiminde meydana gelen şev stabilite problemleri zeminin geçirgenliği ile ilgili olarak drenajlı dayanım veya drenajsız dayanım kullanılarak yapılabilir. İnşaat sırasında ince daneli zeminlerin çoğunun geçirgenliği (permeabilitesi) az miktarda drenaj meydana gelecek kadar düşüktür. Bu sebepten dolayı ince daneli zeminler için drenajsız kayma dayanımı parametreleri kullanılarak çözüme gidilir. İri daneli zeminlerde ise drenaj mümkün olduğundan dolayı drenajlı kayma dayanımı parametreleri kullanılır.

Bu çalışmada drenajlı kayma direnci parametrelerini belirlemek için farklı geoteknik özelliklere sahip numuneler üzerinde, farklı konsolidasyon basınçları altında konsolidasyonlu-drenajsız (CU) üç eksenli basınç deneyi ve kesme kutusu deneyleri yapılmıştır. CU (konsolidasyonlu-drenajsız) deneyde, boşluk suyu basıncı ölçülebildiğinden zeminin hem drenajlı hem de drenajsız kayma direnci parametreleri elde edilebilirken, kesme kutusu deneyinde numunenin kesmeye karşı davranışına bakılmış ve boşluk suyu basıncı ölçülemediğinden doygunluk kazanmış numune, drenaja müsaade edilecek hızda kesilmiştir. Deneylerin sonucu irdelenerek, elde edilen parametreler arasında farklar incelenmiştir.

1.1. Amaç

Direkt kesme kutusu deney aletinde ve konsolidasyonlu-drenajsız (CU) üç eksenli basınç deney düzeneğinde zeminlerin kayma direnci parametrelerini drenajlı ve drenajsız koşullar altında tayin etmek ve her iki deney düzeneği ile bulunan parametrelerin karşılaştırılmasını yapmak bu tezin amacını oluşturmaktadır.

Bu amaca yönelik olarak farklı özelliklere sahip numuneler üzerinde konsolidasyonlu-drenajsız (CU) üç eksenli hücre kesme deneyleri gerçekleştirilmesi

hedeflenmiştir. Bunun yanında kesme kutusu deneyi ile drenajsız kayma direncini belirleyebilmek için drenaja müsade edecek kesme hızının belirlenmesi amaçlanmıştır. Bu amacı gerçekleştirebilmek için literatürde kesme hızının tayinine yönelik araştırmalar yapılmış ve yaygın kabul gören yöntemlere göre hız belirlenmesi yapılmıştır.

1.2. Kapsam

İlk kısımda çalışmanın genel olarak neleri içerdiği ve bu çalışmanın yapılma nedeninden bahsedilmiştir. Ayrıca yapılan bu çalışmada konsolidasyonlu-drenajsız üç eksenli basınç deneyi ve kesme kutusu deneyleri yapılarak zeminlerin drenajlı kayma direnci parametreleri belirlenmiş olup bu iki deney sonucu elde edilen drenajlı kayma direnci parametreleri karşılaştırılmıştır.

Tezin ikinci kısımında, kum ve kil zeminlerin kayma direncinden ve zeminlerde göçmeyi tanımlayan kırılma hipotezlerinden Mohr-Coulomb göçme hipotezinden, kayma direncini etkileyen faktörlerden, arazide ve laboratuvarda yapılan deneylerden söz edilmiştir.

Çalışmanın üçüncü kısmında, zeminlerin drenajlı kayma direnci ile genel bilgileri, analizleri ve tanımları, geoteknik mühendisliğinde drenajlı ve drenajsız kayma direncinin yeri ve önemi, laboratuvar ortamında yapılan deney yöntemleri, zeminlerin drenajlı kayma direnci parametreleri ile geoteknik özellikleri arasındaki ilişkileri incelenmiştir.

Dördüncü kısımda, deneyde yapılan çalışmalardan, kullanılan numunelerin geoteknik özelliklerinden, numunelerin fiziksel özelliklerini belirleyen sınıflandırma deneylerinin yapılışlarından ve deneylerde kullanılacak olan numuneleri hazırlama yöntemlerinden, drenajlı kayma direnci parametrelerini belirlemek için yapılan laboratuvar deney yöntemlerinden ve bu yöntemlerin hesaplanma aşamaları ve örnekleri verilmiştir. Çalışmanın beşinci yani son kısmında ise yapılan kesme kutusu deneyi ve konsolidasyonlu-drenajsız üç eksenli basınç deneylerinin sonuçları karşılaştırılmıştır. Deneylerden elde edilen drenajlı kayma direnci açısı ile zeminlerin geoteknik özellikleri arasında ilişkiler kurulmuştur. Bu çalışmalar sonucu elde edilen genel sonuçlar bu bölümde verilmektedir.

BÖLÜM 2. KAYNAK ARAŞTIRMASI

2.1. Zeminlerin Kayma Direnci

Zeminlerin kayma direnci (kayma mukavemeti) zemin mekaniğinin en önemli konularından biri olarak nitelendirilebilir. Zeminlerde göçme, kırılma, yenilme veya kayma, ortamın uygulanan gerilmelere dayanma yeteneğinin kaybolması olarak tarif edilebilir. Zeminler üzerine uygulanan yüklerin yol açtığı gerilmeler belirli sınır değerleri aştığı zaman, diğer malzemelerde olduğu gibi, göçme veya farklı oranlarda şekil değişimleri meydana gelir. Bir zemin kütlesi içindeki her nokta göçme durumuna ulaşmak üzere olduğu anda o zemin kütlesinin plastik dengeye (geri dönüşü olmayan deformasyonlara) ulaştığı kabul edilir. Zeminin kayma mukavemeti; uygulanan yüklere karşı göçme oluşmadan karşı koyabileceği en büyük kayma gerilmesidir [1]. Başka bir ifade ile göçme düzlemi boyunca kaymaya karşı (kayma direnci açısı) ϕ , ve kohezyon c gibi parametrelerle ifade edilebilir. Zeminin en önemli kayma mukavemeti parametresi ϕ ' dir.

Kayma direncinin ilk incelemesi Coulomb tarafından yapılmıştır. Zeminlerin kayma direnci basitçe, boşluk oranı (*e*), zeminin türü, etkisinde kaldığı gerilmeler (σ) ve yapı dokusuna bağlıdır [2].

Coulomb (1776) tarafından kayma direncinin ilk incelemesi killi zeminler üzerinde yapılmış ve killi zeminin kayma direncinin "*kohezyon*" adı verilen tek parametre ile (*c*) temsil edilmesi ilkesini getirilmiştir. Gerçekte kohezyon moleküler bağ içeren malzemelerin mekanik/fiziksel bir özelliğidir. Jeolojik malzemelerde "*gerçek kohezyon*" kaya minerallerinin kor kayaçlarda olduğu gibi ısıl bir kaynakla bağlanması veya bir çimentolayıcı maddenin matrise girmesi ile belirlenebilir [2].

Bunun dışında tek istisna aşırı konsolide killerde kısıtlı bir değer taşıyan kohezyon değeridir. Buna karşın "*görünür kohezyon*", zemin tanelerinin birbirlerine bağlanma özelliği olarak ifade edilmektedir. Söz konusu bağlanmanın; su tablası üzerindeki zeminlerde oluşabilen negatif boşluk suyu basınçlarından (*kılcallık*), kesme sırasında oluşabilen hacimsel genleşmeye bağlı gelişen negatif aşırı boşluk suyu basınçlarından veya partikül kenetlenmesinden ileri geldiği söylenebilir [3].

Zeminlerin kayma direncinin matematisel bir ifade ile gösterimi Coulomb (1776) ve Tresca ile başlanmıştır.

2.2. Mohr- Coulomb Göçme Hipotezi

Zeminler için göçmeye yol açan normal ve kayma gerilmelerinin ortak etkisini göz önüne alan ilk hipotez Mohr-Coulomb tarafından geliştirilmiştir. Bu hipoteze göre zeminlerin kayma mukavemeti, Coulomb sürtünme yasasına dayanmaktadır. Şekil 2.1.'de birbirleri üzerinde kaydırılmaya çalışılan iki blok yer almaktadır. Hareketin gerçekleşmesi için uygulanan H kuvvetinin bloklar arasındaki sürtünme kuvvetini yenmesi gerekir [4].

Şekil 2.1. Coulomb sürtünme teorisi [4]

Coulomb (1776)' un çalışmasından sonra bir matematikçi olan Mohr (1900) zeminler için geçerli olan kırılma/kayma hipotezini geliştirmiştir. Araştırmacı çalışmasında Coulomb' un yaklaşımından farklı bir formülasyon getirmiştir. Mohr Kırılma Hipotezi zeminin kayma direncinin (*s*) tarifini "*belirli bir düzlemde normal gerilme* σ' ya bağlı olarak beliren kesme gerilmesi τ' nun zeminin taşıyabileceği bir maksimum değer τ_{f}' ye erişmesi" olarak yapmıştır. Mohr hipotezinin zaman içinde Coulomb' un yatay bağıntısı ile birleştirilerek τ ekseninde "kohezyon" olarak nitelendirilen bir ordinat değeri ile (c), daneler arasında normal gerilme düzeyine bağlı olarak uyanan ϕ eğimli bir doğrudan oluşmuş özel bir bağıntıya dönüştüğü görülmektedir (Şekil 2.2.). Bu durumda doğrunun düşey eksen ile birleştiği nokta c (kohezyon), yatayla yaptığı açı ϕ (kayma direnci açıcısı) ise (kayma direnci) ile ifade edilirse, kayma direnci;

Şekil 2.2. Mohr-Coulomb hipotezine göre kırılma durumu

 $\tau = c + \sigma tan\phi$

olarak gösterilebilir.

Her iki teorinin göz önüne almadığı efektif gerilme ilkesi Terzaghi tarafından geliştirilince konu esasta bu üç araştırmacının çalışmalarının bileşimi olarak geoteknikte uygulama bulmuştur [2]. Böylelikle zeminlerin kayma direnci günümüzde toplam (drenajsız) ve efektif (drenajlı) gerilmeler cinsinden ifade edilmektedir. Yumuşak kilde kısa süreli problemlerin çözümünde drenajsız kayma direncinin (cu) elde edilmesi yeterli olurken aynı kilde uzun süreli bir yarmada su zemin içinden sızmaya yeteri kadar vakit bulabileceğinden efektif (drenajlı) parametrelerin (c' ve ϕ') kullanılması uygun olmaktadır. İnce dane (kil ve silt) oranı az olan iri daneli (kum ve çakıl) malzemelerde ise yükleme esnasında oluşan aşırı boşluk suyu basınçları hızla sönümleneceği için bu tip zeminlerin bulunduğu geoteknik problemlerde genellikle drenajlı kayma direnci parametreleri

(2.1)

kullanılmaktadır. Mohr-Coulomb hipotezi dışında zaman içinde başka hipotezler de yapılmıştır. Zeminlerin sünek olduğu kabulü ile çözüme giden bu teorilerden bazıları Tablo 2.1.'de gösterilmektedir. Tablodaki σ_t malzemenin çekme dayanımı, k ise denklem değişmezini ifade etmektedir.

Tablo 2.1.Kırılma-yenilme kriterleri [2]				
Teori	Bağıntı			
Tresca-Coulomb	σ_1 - σ_3 =2k			
Geliștirilmiș Tresca	$(\sigma_1\text{-}\sigma_3) = k_2(\sigma_1\text{+}\sigma_2\text{+}\sigma_3)$			
Von Mises	$(\sigma_1 - \sigma_3)^2 + (\sigma_1 - \sigma_2)^2 + (\sigma_1 - \sigma_2)^2 = 2k_3^2$			
Geliştirilmiş Von Mises	$(\sigma_1 - \sigma_3)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_1 - \sigma_2)^2 = 2k_4^2 (\sigma_1 + \sigma_2 + \sigma_3)^2$			
Mohr – Coulomb	$(\sigma_1 - \sigma_3) = k_5^2(\sigma_1 + \sigma_3)$			
Griffith (gevrek)	$\sigma_1 = \sigma_t(\sigma_1 + 3\sigma_3 < 0)$			
	$(\sigma_1 - \sigma_3)^2 = 8k_6(\sigma_1 + 3\sigma_3 > 0)$			

2.3. Efektif Gerilmeler ve Kayma Mukavemeti

Şev stabilitesi ve stabilite analizleri geoteknik mühendisliğinin önemli problemlerinden biridir. Bu analizler zeminin türü, yüklemenin hızı ve drenajlı veya drenajsız duruma göre belirlenir. Boşluk suyu basınçları zeminlerin kayma direnci için önemli bir parametredir. Zeminin toplam ve efektif gerilme türünden belirlenen kayma direnci değerleri farklılıklar gösterebilmektedir. Mohr-Coulomb göçme hipotezine göre kayma direnci bağıntısı efektif gerilmeler cinsinden yazılırsa;

$$\tau_f = c' + (\sigma - u) tan\phi'$$
(2.2)

olarak ifade edilir. Burada *c*' ve ϕ ' efektif gerilme cinsinden sırası ile kohezyonu ve kayma direnci açısını, göçme düzlemine etki eden (σ -u) efektif gerilmeyi göstermektedir. Efektif ve toplam gerilmeleri için çizilmiş mohr daireleri ve kırılma zarfları Şekil 2.3.'te görülmektedir.

Şekil 2.3. Toplam ve efektif gerilme mohr daireleri

2.4. Kum Zeminlerin Kayma Direnci

Silt ve kil gibi ince daneli zeminlerde danenin yapısı ve daneleri çevreleyen su moleküllerinin tutunması ve daneler arasında bir ara yüzey meydana getirerek daneleri birbirine yapıştırması sebebiyle meydana gelen bir kayma direnci parametresi vardır. Bu parametre de zemin mekaniğinde kohezyon olarak isimlendirilir. Normal gerilme etkisi sıfır olsa bile silt ve kil gibi ince daneli zeminlerde bir miktar kayma mukavemeti kohezyon sebebiyle bulunur. *c* ile gösterilen kohezyonun değeri temiz kum ve çakıllarda sıfırdır. Silt ve killerde su muhtevası ve plastisiteye bağlı olarak değişir. İri daneli olarak nitelendirilen temiz kum zeminlerde sürtünme birinci derecede etkili olmaktadır ve bu zeminlerde kohezyon parametresi sıfır olarak alınmaktadır.

Çakıl, kum gibi iri daneli zeminlerde meydana gelen geçirgenlik değeri fazla olduğundan yükleme esnasında boşluk suyu zemin içerisinden kolaylıkla çıkabilmektedir. Bunun sonucu olarak boşluk suyu basıncında da herhangi bir artış ortaya çıkmadığından dolayı kumların, arazi yüklemeleri esnasındaki durumları ve davranışları belirlenirken drenajlı kayma direnci açısının bulunması yeterlidir. Bu nedenle kum zeminler için kayma direnci bağıntısı denklem (3.1)'deki gibi ifade edilir.

$$\tau = \sigma' \times tan\varphi' \tag{2.3}$$

Kum zeminlerin kayma mukavemeti açısını (ϕ) etkileyen faktörler;

Dane biçimi: Yuvarlak daneler ile köşeli daneler arasında aynı sürtünme ve kilitlenme etkisi görülmemektedir. Köşeli daneler arasında bu etki önemli boyutlara ulaşmaktadır.

Dane boyutu: Üniform veya düzgün dane dağılımlı kumların sahip olduğu kayma direnci açısıiyi derecelenmiş zeminlerinkinden daha düşüktür.

Doygunluk derecesi: Kum doygunluğunu yitirdiğinde efektif çapa da bağlı olarak ortaya çıkan kılcallık etkisi kumda görünür kohezyon etkisi oluşturmaktadır.

Birim hacim ağırlık ve boşluk oranı: Birim hacim ağırlık azaldıkça ve boşluk oranı arttıkça kumun kayma direnci de azalmaktadır.

Çimentolanma: Organik ve anorganik etkenlerle çimentolanma meydana gelebilir. Bu etki kumda kayma direncini arttırmaktadır. Özellikle deniz ortamlarında görülebilir.

Efektif gerilmeler: Aşırı konsolidasyon olayı killerde etkili olduğu kadar kumlarda da etkilidir ve bu olay kumların kayma direncini yükseltir.

Kumun kayma direnci en kolay şekilde laboratuvar da kayma direnci parametrelerinin ölçümünde kullanılan ilk yöntem olan kesme kutusu deneyi ile belirlenebilir. Bütün belirtilen bu unsurlar göz önüne alınarak, laboratuvarda yapılacak olan deneyler sonucunda elde edilecek kayma mukavemeti açısının doğru olabilmesi için deney numunesi ile arazi sıkılığının aynı olması gerekmektedir.

Bunun nedeni, sıkılık derecesine bağlı olarak kayma mukavemeti açısı geniş bir aralıkta değişmesidir [5]. Kesme kutusu deneyinin yapılabilmesi için eşit birim ağırlıklardaki en az iki ya da üç numune farklı gerilmeler altında konsolide edilir ve her bir numune bu farklı gerilmeler altında belirli kesme hızı ile kesilirken, yatay ve düşey deformasyon değerleri ile kesme kuvveti ölçülüp kaydedilir. Şekil 2.4.'te normal gerilme (σ) ye karşı en büyük kayma gerilmesine (τ) grafiği çizildiğinde, numuneye ait kırılma zarfı elde edilmiştir. Orijinden geçen bu doğru kayma direncinin normal gerilmeyle doğru orantılı olduğunu göstermektedir.

Şekil 2.4. Kesme kutusu deneyinde normal gerilme ve kayma direnci bağıntısı

2.5. Kil Zeminlerin Kayma Direnci

Kayma direnci konusunda kumlarla killeri ayıran en belirgin özelliklerin kumların yüksek geçirimliliği ve killerde de jeolojik geçmişin daha etkili olması olarak söylenebilir. Kil zeminlerin davranışları çakıl kum ve plastik olmayan siltlerden çok daha karmaşıktır. Killerin kayma direnci, içerdiği danelerin mikroskobik boyutları nedeniyle daneler arası yüzey kuvvetlerinden önemli ölçüde etkilenmektedir. Gevşek kumlarla normal yüklenmiş killer, sıkı kumlarla da aşırı konsolide killerin gerilmedeformasyon(σ - ε), boşluk suyu basıncı-hacim değişimi (u- ΔV) bağıntılarında paralellik ve kritik durumlarında tam benzerlik, bulunmaktadır [2]. Kil zeminlerin kayma direncini etkileyen faktörler;

- 1. Geçerli yükleme ve drenaj koşulları,
- 2. Kesilme hızı,
- 3. Çimentolanma,
- 4. Kilin kıvam limiti,
- 5. Su muhtevası,
- 6. Kil mineralinin cinsi, dane boyutu ve şekli,
- 7. Daneler arası çekme veya itme kuvvetleri,
- 8. Kullanılan ölçüm teknikleri,
- 9. Kullanılan numunenin kalitesidir.

Araştırmalar sonucunda edinilen verilere göre killer normal yüklenmiş yani tamamen konsolide olmuş (*NL*), aşırı konsolide olmuş yani önceden yüklenmiş (*OCR*) ve fisürlü aşırı konsolide killer olarak gruplara ayrılmıştır. Şekil 2.5.'te normal ve aşırı konsolide zeminler için kayma gerilmesi-kayma deformasyonu ilişkisi görülmektedir.

Şekil 2.5. Normal ve aşırı konsolide zeminler için kayma gerilmesi-kayma deformasyonu ilişkisi

Killerde en önemli durumlardan biri dolgu ve kazı esnasında meydana gelen kritik durumlardır. Şekil 2.6.'da doygun kil üzerindeki dolguda kesme gerilmesi, boşluk suyu basıncı ve güvenlik sayısının zamanla değişimi görülmektedir.

Şekil 2.6. Dolguda güvenlik [6]

Uygulanan kayma gerilmesi miktarı yani dolgu yüksekliğinin yapımı arttıkça boşluk suyu basıncının arttığı ve daha sonra aynı yer altı su seviyesine geri döndüğü, emniyet gerilmesinin ise kayma gerilmesi arttıkça azaldığı, kayma gerilmesi maksimum olduğu andan sonra arttığı gözlemlenmiştir.

Şekil 2.7.'de kildeki kazı esnasında ve sonrasında kesme gerilmesi, boşluk suyu basıncı ve güvenlik sayısının zamanla değişimi görülmektedir.

Şekil 2.7. Yarmada güvenlik [6]

Uygulanan kayma gerilmesi miktarı yani yarma miktarı arttıkça boşluk suyu basıncının azaldığı ve daha sonra aynı yer altı su seviyesine geri döndüğü, emniyet gerilmesinin ise yarma miktarı arttıkça azaldığı gözlemlenmiştir.

2.6. Drenajlı ve Drenajsız Kayma Direncinin Tanımı

Drenajlı ve drenajsız koşul kavramları zemin mekaniği ve geoteknik mühendisliği açısından önemli bir yere sahiptir. Bu kavramlar zeminin yükleme sırasında bazı değişimlere uğradığı zamanın uzunluğuna kıyasla, suyun zeminde içeri ya da dışarı akma kolaylığı ve hızı ile ilgilidir. Yükte ortaya çıkan değişimlerin boşluk suyu basıncında değişime sebep olması en önemli noktadır.

Drenajlı durum, zemine uygulanan yük altında zeminde değişim meydana gelmesi esnasında suyun zemin içerisine girebildiği ya da çıkabildiği durumdur. Zemine yük geldiğinde zeminde bazı değişimler oluşur. Oluşan bu değişimlere tepki olarak boşluk hacmi azaldığı ya da yükseldiği zaman su zemine serbest bir şekilde girip çıkabildiğinden dolayı, drenajlı koşullar altında zeminin altında kaldığı yükteki değişimler zeminin boşluklarındaki su basıncında herhangi bir değişime neden olmaz. Zeminin aldığı yükler ile aşırı boşluk suyu basıncı oluşmayacak şekilde zeminin yavaş yüklendiği durum ise drenajlı dayanım durumudur. Arazideki drenajlı koşullar, yükler zemin üzerinde zemin drene olabilecek kadar uzun kalması sonucu ya da yüklerin zemin kütlesine yavaş yavaş uygulanması sonucu meydana gelir. Laboratuvardaki drenajlı koşullarda ise, zemin yüklenirken boşluk suyu basınçları oluşmayacak şekilde deney numunelerinin yavaş yavaş yüklenmesi sonucu oluşur.

Drenajsız durum ise, zemine uygulanan yük altında zeminde değişim meydana gelmesi esnasında suyun zemin içerisine giremediği ya da çıkamadığı durumdur. Su zemin içine giremediğinde ya da çıkamadığında, zeminin altında kaldığı yükteki değişim zeminin boşluklarındaki su basıncında değişime sebep olur. Drenajsız dayanım, zeminin drenajsız koşullardaki yükler altında yenildiği zamanki dayanımıdır. Arazide drenajsız koşullar, zemin kütlesi üzerine yapılan yüklemeler zeminin drenaj hızından daha hızlı şekilde uygulanırsa drenajsız koşullar olur. Laboratuvardaki drenajsız dayanım ise, numunenin koruyucu kılıf (membran) içine yerleştirerek, numunenin drene olamayacak kadar hızlı yüklenmesiyle elde edilir, bu sırada drenaj vanaları kapalıdır. Şekil 2.8.'de kesme kutusu deney numunesinin gerilme izleri ile drenajlı ve drenajsız yenilme durumu için kesme dayanımları görülmektedir. Drenajlı gerilme izi kesme gerilmesinde artışta ve yatay düzlem üzerinde sabit efektif gerilmeye karşılık gelecek şekilde düşeydir. Kesme gerilmesindeki artışa boşluk suyu basıncındaki artıştan dolayı azalan efektif gerilme eşlik ettiğinden, drenajsız gerilme izi sola doğru eğrilir.

Şekil 2.8. Drenajlı ve drenajsız gerilme izleri ile kesme dayanımları

Drenajlı ve drenajsız koşulun farkı zamandır. Drenajsız koşuldan drenajlı koşula geçmek, zamanın belirlenmesi ve zemin kütlesinin özelliklerine bağlıdır.

2.7. Drenajlı ve Drenajsız Koşullar İçin Analiz

Drenajlı koşullar tüm zeminler denge durumuna gelecek biçimde ve yüklerden kaynaklı hiçbir aşırı boşluk suyu basıncı olmayacak şekilde, yükteki değişimlerin yeteri kadar düşük olduğu durumlardır. Zemin içindeki su durağan olabilir ya da zemin içindeki su miktarını etkilemeyecek şekilde yani herhangi bir artış veya azalış olmayacak şekilde zeminde sızıntı gözlemlenebilir. Bu koşullar altında drenajlı analiz yapılması uygundur. Drenajlı analiz için toplam birim ağırlık, efektif kesme dayanımı parametreleri ve boşluk suyu basınçlarının bilinmesi gereklidir.

Drenajsız koşullar için, yüklerdeki değişimler suyun zemine girme ya da çıkma hızından fazla ise bu koşul drenajsız koşuldur. Boşluk suyu basınçları, zeminin davranışından dış yüklerde oluşan farklılıklara tepki olarak belirlenir. Bu şartların sağlanması durumda drenajsız analizler uygundur. Drenajsız analiz için toplam birim ağırlıklar ve kesme dayanımı parametreleri gereklidir. (c= toplam gerilme kohezyonu, s_u =drenajsız kesme dayanımı ve ϕ_u = toplam gerilme sürtünme açısı). Şekil 2.9.'da doygun kil için drenajlı ve drenajsız dayanım zarfları görülmektedir.

Şekil 2.9. Doygun kil için drenajlı ve drenajsız dayanım zarfları

2.8. Geoteknik Mühendisliğinde Drenajlı Kayma Direncinin Önemi

Yapıların üzerine inşa edildiği ortamların statik ve dinamik yükleri taşıyabilmeleri açısından çeşitli mühendislik parametreleri, zemin koşullarının, yapı zemin etkileşiminin, fiziksel-mekanik özelliklerinin ve zemin parametrelerinin iyi belirlenmesi ve analiz yapılması gerekmektedir.

Geoteknik mühendisliğinin önemli konularından biri şev stabilitesi ve stabilite analizleridir. Ülkemizde bulunan şevlerin belirli bir süreden sonra önemli stabilite problemleriyle karşılaşılması kayma direnci parametrelerinin önemini göstermektedir.

Bu problemlerin çözümünde ise, zeminin geçirgenliğine bağlı olarak drenajlı ya da drenajsız dayanım kullanılarak inşaat aşamasındaki ya da bitimindeki şev duraylılığının analizi yapılabilir. İnce daneli zeminlerin çoğunun geçirgenliği inşaat esnasında çok azdır. Bu yüzden ince daneli zeminler için, toplam gerilme analizi ile beraber karakterize edilen drenajsız kesme dayanımları kullanılır. Serbestçe drene olan zeminler için ise drenajlı dayanımlar kullanılır [7].

2.9. Zeminlerin Kayma Direncinin Belirlenmesi

Zeminlerin gerilme-şekil değiştirme davranışının ve kayma mukavemetinin doğru bir şekilde belirlenebilmesi için, deney koşulları ile doğal koşulların olabildiğince benzer olması gerekmektedir. Kayma mukavemeti zeminin arazide yüklenmeden önce yerindeki başlangıç durumunu yansıtan konsolidasyon basıncı, boşluk oranı, su muhtevası, suya doygunluk derecesi gibi faktörlerden, arazi yükleme türü ve hızından ve drenaj koşullarından etkilenmektedir [5].

Zeminlerin kayma mukavemetini belirlemek için kullanılan birçok laboratuvar ve arazi deney yöntemleri geliştirilmiştir. Kumlu ve yumuşak killi zeminler gibi zeminlerde numune alımının zor olduğu arazi deney sonuçlarından yararlanılmaktadır. Killi zeminlerin drenajsız kayma dirençleri ile arazi deneylerinde yapılan deneylerde bulunan kayma dirençleriarasında farklılıklar bulunmaktadır. Kayma direnci parametrelerini belirlemek amacıyla yapılan SPT, CPT ve kanatlı kesici veyn deneyi arazi deneylerinin başlıcalardır. Zeminlerin kayma direnci parametrelerini bulabilmek için kullanılan laboratuvar deney yöntemlerinden kesme kutusu deneyi, serbest basınç deneyi ve üç eksenli basınç en yaygın olan deneylerdir.

2.9.1. Kesme kutusu deneyi

Kesme deneyleri kayma direnci parametrelerinin ölçümünde kullanılmış ilk metottur. Kesme kutusunun ilk denemesi 1776' da Coulomb tarafından yapılmış [8] ve laboratuvar deney yöntemleri ile zeminlerin kayma direncinin ölçümü ilk olarak 1846'da Fransız mühendis Alexandre Collin tarafından yapılmıştır [9]. Collin'in kullandığı deney aleti, günümüzde kullanılan kesme kutusu deney aletine benzemektedir. Günümüzde kullanılan kesme kutusu deney aleti yirminci yüzyılın ilk yarısında son şeklini almıştır [10].

Günümüzde yaygın olarak kullanılan kesme kutusu 1932 yılında Harvard (ABD) Casagrande tarafından tasarlanmıştır. Dört yıl sonra Gilboy sabit devirli motor kullanarak deplasman (deformasyon) kontrollü deneylerin yapılmasına olanak sağlamıştır. Bishop (1946) bu deney sisteminin tasarımındaki gelişmeleri ve prensiplerini tanıtmıştır. Çoğu kesme kutusu makineleri halihazırda deplasman kontrolü prensibine dayanmaktadır. Bu makine deplasman hızları açısından geniş bir yelpaze sunar [11].

Kesme kutusu deneyi uzun zamandan beri kullanılan en eski yöntemlerden biridir. Kesme kutusu deneyinin amacı özellikleri farklı olan kohezyonlu veya kohezyonsuz zemin numunesine kesme etkisi uygulayarak zemin numunesinin kayma direnci parametrelerini bulmaktır. Bu deney kohezyonlu ve kohezyonsuz zeminler için uygundur fakat kum zeminler için en uygun yöntemdir. Kesme kutusu deneyinde zemin numunesi dikdörtgen kesitli iki parçadan oluşan rijit bir kutu içine yerleştirilmektedir. Uygulanan bir kesme kuvveti altında, kutunun üst parçası sabit kalmak şartıyla alt parçası yatay bir düzlem boyunca hareket edebilmekte ve böylece numunenin ortasından geçen yatay düzlem boyunca zemin kaymaya zorlanmaktadır. Numune üzerine normal gerilme uygulayarak, böylece kesmeden önce zeminin konsolide olması ve kesme sırasında normal gerilmelerin kontrol altında tutulması sağlanmaktadır.

Kesme kutusu deneyinde numuneyi kesme hızı, zeminin arazideki drenaj şartlarına göre seçilir. Yüksek geçirimliliğe sahip olan kum ve çakıl gibi (iri daneli) zeminler, özel durumlar (deprem yükleri gibi) haricinde uygulamalarda, drenajın sağlanması ile boşluk suyu basınçlarının oluşmayacağı kabul edilmektedir. Düşük permeabiliteye sahip olan kil ve silt gibi zeminlerde kısa zamanlı stabilite analizlerinde toplam gerilmelere göre, drenajın sağlanacağı kabul edilerek uzun süreli stabilite analizlerinde ise efektif gerilmelere göre çalışılmalıdır [12].

Kesme kutusu deneyi en çok kumların kayma direnci parametrelerini belirlemek için kullanılmaktadır. Şev ve yamaç stabilitesi gibi problemlerde kullanmak için kesme kutusundan elde edilen verilere ihtiyaç duyulmaktadır. Bununla birlikte, kesme kutusu deneylerinde kayma direnci parametrelerinin farklı zemin türleri için bulmak zor olmaktadır. Bu da kesme kutusu deney aletinde boşluk suyu basınçlarının

ölçülememesinden kaynaklanmaktadır. Buna karşın kesme kutusu deneyi yaygın olarak kullanılan laboratuvar deney yöntemlerinden biridir.

Şekil 2.10. Kesme kutusu deney düzeneği

Deneyin en sakıncalı yanı ise, kesilmeye zorlanan yüzeyin zeminin en zayıf kayma yüzeyi olmayabileceğidir. Kesme sırasında oluşan boşluk suyu basıncının ölçülememesi, göçmeye ulaşmadan önceki gerilme seviyelerinde asal gerilme doğrultularının belirsiz olması ve kırılma düzlemi boyunca gerilme dağılımının üniform olmaması bu deneyin kısıtlayıcı yönlerini oluşturmaktadır. Ayrıca, kalıcı kayma mukavemetinin belirlenebildiği deformasyona ulaşmak için deneyin durdurularak geriye alınması ve çevrimler halinde yapılması da birtakım sorunlar yaratabilmektedir [2].

2.9.2. Serbest basınç deneyi

Bu deneyde silindirik bir zemin numunesine sadece eksenel doğrultuda yükleme verilmektedir. Eksenel yük artışları altında gerilme-şekil değiştirme eğrileri elde edilmektedir. Aynı zamanda ortaya çıkan numunenin boy kısalması ölçülmektedir. Eksenel gerilmenin en büyük değeri zeminin serbest basınç mukavemet değerini göstermektedir. Yanal destek olmaksızın bu deney, kendisini dik tutabilecek özelliklere sahip numuneler üzerinde uygulanmaktadır. Bundan dolayı bu deney kum

zeminlerde uygulanamaz. Deney esnasında zeminin drenaj koşulları kontrol edilemediğinden dolayı yükleme hızlı yapılarak zeminin drenajsız kayma direnci parametreleri elde edilir. Yüklemeden önce zemini konsolide edememek ve boşluk suyu basıncının ölçülememesi deneyin kısıtlayıcı yanlarıdır. Bu özelliklere rağmen bu deney killerin drenajsız kayma direncini bulmak için kullanılan yaygın bir yöntemdir. Bu deney ile zeminin göçme anındaki yenilme durumunu gösteren Mohr daireleri ve drenajsız kayma direnci zarfi çizilebilir. Tablo 2.2.'de killerin kıvamı ve serbest basınç dayanımları arasındaki ilişki verilmiştir.

-		
Kıvam	q _{u(kPa)}	
Çok yumuşak	<25	
Yumuşak	25-50	
Orta katı	50-100	
Katı	100-200	
Çok katı	200-400	
Sert	>400	

Şekil 2.11. Serbest basınç dayanımına göre kıvamı [13]

2.9.3. Üç eksenli basınç deneyi

Üç eksenli basınç deneyi, genellikle kendini tutabilen, kohezyonlu zeminler için uygulanan bir yöntemdir fakat deney yönteminde yapılacak bazı değişiklikler sayesinde kohezyonsuz zeminlerde de uygulanabilir.

Üç eksenli basınç deney düzeni ile zeminin arazi koşullarında sahip olacağı kayma direncini gerçeğe en yakın olarak belirlemek mümkündür. Deney aşamaları aşağıdaki gibi sıralanabilir;

Aşama 1: Zemin, arazi koşullarında belirli jeolojik yüklerin etkisi altında kalmaktadır. Böyle bir ortamdan alınan numuneye, deneye başlamadan önce arazi koşullarına yaklaşmak için her üç doğrultuda da hidrostatik gerilme uygulanır.
Aşama 2: Zemin numunesine tek doğrultuda eksenel basınç uygulanarak, gerilme deformasyon değişimleri belirlenir. Kırılmanın gerçekleştiği gerilme değeri kaydedilir. Zeminin permeabilitesiyle orantılı olarak (buna bağlı olarak) yükleme hızı belirlenir. Drenaja müsaade edilmediğinde, boşluk suyu basıncında meydana gelen değişim; drenajlı durumda ise numunenin hacminde oluşan değişikliği belirlenmektedir. Deney, farklı konsolidasyon ve drenaj durumları için uygulanabilir.

Üç eksenli basınç deney yöntemi, en gelişmiş yöntem olarak da bilinmektedir. Bunun sebebi arazi koşullarını laboratuvar ortamında gerceğe yakın sekilde modelleyebilmesidir. Bunun sonucu olarak kayma direnci parametreleri gerçeğe yakın olarak saptanabilir. Üç eksenli basınç deneyinde, bir hücre içerisine silindir biçimdeki zemin numunesi yerleştirilir ve daha sonra deneyde, hücreye hava veya su basıncı yardımıyla zemin numunesine hidrostatik bir basınç uygulanır. Numune etrafında bulunan koruyucu membran sayesinde hücre içerisinde bulunan zemin numunesinin sudan etkilenmesini ve suyla temasını önler ve zemin numunesinin içine ve dışına ayrı ayrı basınçlar uygulanmasını sağlar. Eksenel gerilme, numune üzerinde olan başlığa temas eden bir piston yardımıyla numuneye etkir. Eğer drenaj istenirse, numune alt ve üst başlıklara bağlı bulunan kanallar yardımıyla kontrol edilebilmektedir.

Deneyde, zemin numunesine birbirine dik üç doğrultuda asal gerilmeler uygulanmaktadır. En büyük gerilme σ_1 , en küçük gerilme σ_3 , orta eksenel gerilme ise σ_2 olmak üzere; Deney başında;

$$\sigma_1 = \sigma_2 = \sigma_3 \tag{2.4}$$

denklemine eşittir. Deney süresince; $\sigma_2 = \sigma_3$ olacaktır. σ_1 ise kırılma gerçekleşinceye kadar arttırılacaktır. Deney esnasında en büyük gerilme olan σ_1 uygulanan eksenel gerilme ile hücre basıncının toplamına eşittir.

Konsolidasyonsuz - Drenajsız Deneyler (UU): Konsolidasyonsuz - drenajsız deneylerde, zemin suyunun hem hücre basıncı uygulanmasında hem de eksenel yükleme esnasında numuneden dışarı çıkmasına müsaade edilmemektedir.

Konsolidasyonlu - Drenajsız Deneyler (CU): Numune deneye başlamadan önce, arazi şartlarında bulunduğu çevre gerilmesine eşdeğer bir basınç altında konsolide edilir. Daha sonra eksenel yükleme uygulanması esnasında numune içindeki suyun dışarı çıkmasına yani drene olmasına izin verilmezken, konsolidasyonlu -drenajsız deneylerde kesme işlemi sırasında boşluk suyu basıncı ölçülebilmektedir. Böylelikle efektif gerilmelere göre de kayma direnci parametreleri elde edilebilir.

Konsolidasyonlu - Drenajlı Deneyler (CD): Hidrostatik hücre basıncı uygulanması ve eksenel yükleme aşamasında drenaja izin verilebilen deneylerdir. Konsolidasyonlu– drenajsız üç eksenli deneyde olduğu gibi numune kesme işleminden önce belirlenen basınç altında konsolide işlemini gerçekleştirir ve konsolide tamamlandıktan sonra drenaj koşulları tümüyle sağlanarak, uygulanan kesme gerilmelerinin boşluk suyu basıncında herhangi bir artış gerçekleştirmemesi için numune çok düşük hızda kesilmektedir. Böylece ortaya çıkan kayma direnci parametreleri sadece efektif gerilme türünden elde edilecektir.

Farklı türlerde üç eksenli basınç deneyleri uygulayarak, arazideki zemin tabakalarının farklı yükleme ve drenaj koşulları altında gösterecekleri gerilme-şekil değiştirme davranışlarını ve kayma mukavemetlerini belirlemek mümkündür.

Drenajlı koşullarda uygulanan basınç altında, zeminde hacim değişimleri oluşurken, drenajsız koşullarda boşluk suyu basıncında artışlar meydana gelmektedir. Zemin, başlangıçta suya doygunluk derecesine bağlı olarak davranışlarında farklılıklar gösterebilmektedir. Suya doygun zeminin hacim değiştirme davranış eğrileri ile ödometre deneyinde ortaya çıkan konsolidasyon davranış eğrileri birbirine büyük ölçüde benzerlik göstermektedir. Kısmen suya doygun zeminde ise ilk olarak ani bir hacim azalması (boşluklardaki havanın sıkışması sonucu) oluşurken, daha sonra suya doygun zemininkine benzeyen bir davranış ortaya çıkmaktadır. Tamamı suya doygun zeminde ise, hacim sabit kalırken, boşluk suyu basıncında oluşan hidrostatik basınca eşit bir artış meydana gelmektedir. Doygun olmayan zeminde önce bir miktar hacim değişikliği (sıkışma) ve boşluk suyu basıncında küçük artışlar meydana gelmekte daha yüksek basınçlar altında ise zemin içindeki hava hacmi iyice küçüldüğü için, hacim sabit kalmakta ve hidrostatik basınç artışları oranında boşluk suyu basıncı artışı meydana gelmeye başlamaktadır. Drenajsız durumda hidrostatik basınç altında oluşan boşluk suyu basıncı artışlarını zeminin doygunluk derecesini belirlemek için kullanmak mümkündür. Meydana gelen boşluk suyu basıncı artışının uygulanan hidrostatik basınca oranı,

$$B = \frac{\Delta u (boşluksuyubasıncıdeğişimi)}{\Delta \sigma c (hidrostatikbasınçartışı)}$$
(2.2)

Suya doygunluk derecesi S = % 100 olan zeminlerde B = 1.0 değerini alırken, kısmen suya doygun zeminlerde (B<1.0) olmaktadır. Şekil 2.12.'de üç eksenli hücre kesme deney düzeneği görülmektedir.

Şekil 2.12. Laboratuvar ortamında üç eksenli hücre kesme deney düzeneği (SAÜ)

2.9.4. Arazi deneyleri

Bazen dayanımın arazide ölçülmesi laboratuvar deneylerinde meydana gelen bazı sebeplerden dolayı tercih edilmektedir. Yumuşak killer için yaygın olarak kullanılan yöntemler konik penetrasyon deneyi ve kanatlı kesme deneyidir. Standart penetrasyon deneyi daha çok daneli zeminler için uygundur. Zeminden örnek alınırken karşılaşılan örselenme problemleri çoğu zaman arazi deneyi sayesinde ortadan kalkmaktadır.

BÖLÜM 3. MATERYAL VE YÖNTEM

3.1. Materyal

Araştırmada, geoteknik açıdan farklı özelliklere sahip numuneler üzerinde farklı konsolidasyon yükleri altında direkt kesme kutusu deneyi ve konsolidasyonludrenajsız üç eksenli basıç deneyleri yapılmıştır. Ayrıca numunelerin fiziksel özelliklerini belirlemek amacıyla likit limit, plastiklimit, piknometre ve hidrometre deneyleri gibi sınıflandırma deneyleri yapılmıştır.

3.2. Yöntem

3.2.1. Zeminlerin drenajlı kayma direncinin belirlenmesi

Drenajlı durum, zeminin maruz kaldığı yükte değişim oluşturabilecek bir zaman aralığında suyun zemine girebildiği ya da çıkabildiği durumdur. Yükte meydana gelen değişimlere tepki olarak boşluk hacmi azaldığı veya arttığı zaman su serbest bir şekilde zemine girip çıkabildiği için, drenajlı koşullar altında zemin üzerine gelen yükteki değişimler zeminin boşluklarındaki su basıncında değişime neden olmaz.

Drenajlı dayanım, altında kaldığı yükler altında zeminde aşırı boşluk suyu basıncı oluşmayacak şekilde zeminin yavaş yüklendiği andaki dayanımdır. Arazideki drenajlı koşullar, zeminin üzerindeki yüklerin zemin drene olana kadar kalması sonucu ve yüklerin zemine yavaş yavaş uygulanması sonucunda ortaya çıkar. Laboratuvardaki drenajlı koşullar ise, zemin yük aldığında aşırı boşluk suyu basınçları oluşmayacak şekilde zeminin oldukça yavaş yüklenmesi sonucunda meydana gelir.

Zemin içindeki su durağan ya da zaman içinde sızmada değişiklik olmayacak şekilde ve zemin içindeki su miktarında yükselme veya azalma meydana gelmeyecek şekilde

düzenli sızma gösterebilir. Bu durumda bu şartların sağlanması halinde drenajlı analiz yapılması uygundur. Drenajlı analiz için şunlar gereklidir:

- 1. Toplam birim ağırlıklar
- 2. Efektif gerilme kesme dayanımı parametreleri
- Hidrostatik su seviyelerinden veya dengeli sızma analizlerinden belirlenen boşluk basınçları.

3.3. Drenajlı Kayma Direncinin Deneysel Yöntemler İle Belirlenmesi

Bir zeminin kayma direncini ölçümünün en eski çalışması Fransız mühendis Alexandre Collin (1846)'e aittir ve Alexandre Collin tarafından belirgin özellikleri açıklanmıştır.

İngiltere'de günümüzde gelişmiş halde bulunan kesme kutusu aletinin ilkel hali Bell (1915) tarafından yapılmış ve en eski ölçümler yine Bell tarafından gerçekleştirilmiştir. Ayrıca Bell, ilk kez değişik zemin tipleri üzerinde kesme kutusu deneyi yapmış ve bu deneylerin sonucunu yayımlamış bir bilim adamıdır [14]. Kesme kutusu günümüzdeki modern halini 1932 yılında A. Casagrande Harvard (USA)'da vermiştir. Günümüzde, kesme kutusu deney aleti çok geniş aralıkta yerdeğiştirme hızına sahiptir. Hız, dakikada birkaç milimetreden 10000 kat daha yavaş olacak şekle kadar değişebilmektedir.

Zeminlerin drenajlı parametreleri laboratuvarda daha çok üç eksenli hücre kesme deneyleri ile kesme kutusu deneylerinden bulunmaktadır. Boşluk suyu basıncının değişimi açısından yapılacak üç eksenli deneyler üç gurupta toplanabilir:

- a- Konsolidasyonsuz Drenajsız Deneyler (UU)
- b- Konsolidasyonlu Drenajsız Deneyler (CU)
- c- Konsolidasyonlu Drenajlı Deneyler (CD)

Yukarıdaki üç eksenli hücre kesme deneylerinden efektif parametreleri bulmaya yönelik olarak CU ve CD deneyleri kullanılmaktadır.

Üç eksenli hücre kesme deneyinde boşluk suyu basınçları ölçülebilir ve kontrol edilebilir olduğundan hem drenajlı hem de drenajsız parametrelerin bu deney ile tayininde bir problem yoktur. Ancak özellikle şev ve yamaç stabilitesi gibi problemlerde kesme kutusundan gelen verilere ihtiyaç duyulmaktadır. Bununla birlikte, kesme kutusu deneylerinde söz konusu parametrelerinin farklı zemin türleri için elde edilmesinde birtakım zorluklar bulunmaktadır.

3.3.1. Kesme kutusu deney prosedürü

Kesme kutusu deneyinde, zemin numunesi dikdörtgen veya dairesel kesitli ve iki parçadan oluşan rijit bir kutu içine yerleştirilmektedir. Uygulanan bir kesme kuvveti altında, kutunun üst parçası sabit tutulurken alt parçası yatay bir düzlem üzerinde hareket edebilmekte ve böylece numunenin ortasından geçen yatay bir düzlem boyunca zemin kaymaya zorlanmaktadır. Numune üzerine normal gerilme uygulayarak, kesmeden önce zeminin konsolide olması ve kesme sırasında normal gerilmelerin kontrol altında tutulması mümkün olmaktadır ve belirli bir normal gerilme altında uygulanan kesme kuvveti ile meydana gelen yatay yerdeğiştirmeler ölçülmektedir.

Şekil 3.1. Direkt kesme kutusu deney düzeneği

Şekil 3.1.'de görüldüğü gibi, kare veya daire kesitli A alanına sahip örnek üstteki kapaktan metal kesme kutusunun içine yerleştirildikten sonra su ile doldurulur ve zeminin arazide almakta olduğu gerilmeler dolayında bir normal gerilmeye (σ =N/A) tabi tutulur. Bu yük altında konsolidasyon tamamlandıktan sonra uygulanan kesme kuvveti (τ) ile gereken hızda kesilir. Bu sırada alınan ölçümler yatay hareket (δ), düşey hareket (Δ H) ve kesme kuvvetidir (τ). Kesme sırasında beliren ancak bu düzenek ile ölçülemeyen fazla boşluk suyu basınçlarının (u) sönümü kesme hızına bağlıdır. Bu deney drenajlı kabul edildiğinden kesme sırasında numune içinde aşırı boşluk suyu basıncı oluşmayacak bir hızda kesilmelidir. Numune içinde gelişen aşırı boşluk suyu basınçları numunenin altında ve üstünde bulunan delikli (poröz/porous) taşlar vasıtası ile sönümlenir. Bununla birlikte, bu deneyde numune ne denli hızlı kesilirse kesilsin drenaj tümüyle önlenemeyeceğinden, gerçek Konsolidasyonlu-Drenajsız (CU) deneyin gerçekleşmeyeceği kabul edilmektedir.

Kesme Kutusu deneyi üç veya dört numune üzerinde gerçekleştirilir [4]. Şekil 3.2.'de bir kesme kutusu deneyinde sonuçların gösterilmesi sunulmaktadır. Kesme kutusunda farklı normal gerilmeler için yatay deformasyona (δ) karşılık kesme gerilmesi (τ) diyagramları çizilir (Şekil 3.2.a). Üç veya dört deney için de tekrarlanan bu işlem sonucunda her bir normal gerilmeye karşılık gelen kesme gerilmeleri Normal gerilme (σ) - kesme gerilmesi (τ) diyagramına tasınır (Sekil 3.2.b). Tüm noktalardan geçen ortalama doğru zeminin kırılma (yenilme) doğrusunu verir. Doğrunun eğiminin ark tanjantı kayma direnci açısını (ϕ), τ eksenini kestiği nokta ise kohezyon (c) parametrelerini verir. Bu parametrelere kayma direnci parametreleri adı verilir. Ayrıca yine yatay deformasyona (δ) karşılık düsey deformasyon (ΔH) diyagramları da gösterilir (Şekil 3.2.c). Sıkı kum ve aşırı konsolide killerde kesme sırasında oluşan kayma gerilmeleri bir maksimum değere (τ_f) (*peak/maximum shear* stress) ulasır, yatay hareketin devam eden asamalarında ise kayma gerilmeleri genelde düser ve sonunda sabit bir değere ulaşır. Ancak normal ve hafif aşırı konsolide killer ile gevşek kumlarda kesme aşamasında bir tepe (peak) noktasına ulaşılamayabilir ve bu durumda %20 deformasyona karşılık gelen gerilme son kesme gerilmesi olarak hesaba katılır (Şekil 3.2.d).

Şekil 3.2. Kesme kutusunda sonuçların yorumlanması

3.3.2. Konsolidasyon deneyleri

Zemin daneleri arasında, boşluklarda yer alan su (boşluk suyu) ince daneli zeminlerde yükleme sonucu hemen dışarı çıkamaz. Bu durumdan dolayı boşluk suyu basıncında artmalar meydana gelir. Artan boşluk suyu basınçları ile zeminde su akımı meydana gelir ve boşluk suyu zamanla dışarı çıkar. Zaman (t) faktörünü de içinde barındıran ve boşluklardaki suyun bir yük altında dışarı atılması olayına konsolidasyon adı verilmektedir.

Konsolidasyon zaman bağlı olarak gelişen bir süreçtir, bazı zeminlerde 100 yıla varan uzun bir süreci alabilmektedir. Yüklemeler nedeniyle zemin hacminde değişimler meydana gelir ve özellikle ince daneli zeminlerde oturma miktarını belirlemek amacıyla konsolidasyon deneyi uygulanır. Zeminin permabilite (geçirimlilik) k değeri biliniyorsa Casagrande ve Taylor karekök yöntemine göre zeminin sıkışma katsayısı bulunarak konsolidasyon hızı elde edilir.

Casagrande logaritma yönteminde %50 konsolidasyonun tamamlandığı süre olan t_{50} elde edilirken (3.1), Taylor karekök yönteminde konsolidasyonun %90 seviyesine ulaştığı t_{90} değeri elde edilir (3.2).

$$c_{v} = 0.197 \frac{\left(2H/2\right)^{2}}{t_{50}}$$
(3.1)

$$c_{v} = 0,848 \frac{\left(2H/2\right)^{2}}{t_{90}}$$
(3.2)

Şekil 3.3.'te Casagrande logaritma ve Taylor karekök yöntemlerine bağlı olarak konsolidasyon katsayılarının elde edildiği grafikler görülmektedir.

Şekil 3.3. Konsolidasyon katsayısının logaritma yöntemiyle bulunuşu

Şekil 3.4. Konsolidasyon katsayısının karekök yöntemiyle bulunuşu

3.3.3. Konsolidasyonlu-drenajsız üç eksenli basınç deneyi

Numune deneye başlanmadan arazide bulunduğu çevre basıncına eşdeğer bir basınca tabi tutularak konsolide edilir. Bu iki şekilde gerçekleştirilmektedir. Basit uygulamada numune çevre basıncına her yönden eşit olarak tabi tutulmakta ve oluşan fazla boşluk suyu basıncının sönümlenmesine izin verilmektedir. Daha gerçekçi ancak zahmetli deney uygulamasında ise zeminin yerinde sükûnet durumunda (K_0) bulunduğu göz önüne alınmalıdır. Yanal basınç artırılırken düşey basınç sadece $\sigma_1=\sigma_3/K_0$ oranında yükseltilmektedir. Konsolidasyon tamamlandıktan sonra kesme aşaması drenaja izin verilmeden gerçekleştirilmekte ve boşluk suyu basıncı bu sırada ölçüldüğünden deney sonuçlarını toplam ve efektif gerilmelere göre değerlendirme olanağı belirmektedir. [2].

Bu deneyde belirlenen konsolidasyon gerilmeleri altında numune konsolide edilir. Bu yükler hidrostatik ya da hidrostatik olmayan gerilmeler olabilir. Konsolidasyon işlemi tamamlandıktan sonra drenaj vanaları kapatılır ve numune drenajsız kesmede yenilme anına kadar yüklenir. Kesme işlemi esnasında meydana gelen boşluk suyu basınçları sürekli olarak ölçülür. Aynı zamanda toplam ve efektif gerilmelerin ikisi de kesme ve yenilme esnasında hesaplanabilir.

Eksenel gerilme dereceli olarak ya da sabit şekilde arttırılabilir. Kesme işlemi esnasında meydana gelen boşluk suyu basıncı pozitif ya da negatif olabilir. Bu durum numunenin kesme esnasında büzülme ya da genişlemesinden kaynaklı olabilir. Konsolidasyonlu-drenajsız deneyde hacim değişikliğine izin verilmez. Bu sebepten dolayı numune içine su akışı gerçekleşmez. Hacim değişimi olmadığından hacim değişimindeki eğilim boşluk suyunda basınç oluşmasına neden olur. Kesme işlemi esnasında numune büzülmeye ya da konsolide olmaya çalışırsa meydana gelecek boşluk suyu basıncı pozitif olur. Fakat numune büzülmek ister ve suyu gözeneklerinden atmaya çalışır fakat başaramazsa, normal konsolide killerde pozitif boşluk suyu basıncı meydana gelir. Kesme esnasında numune genişlemek ya da şişmek isterse oluşacak olan boşluk suyu basıncı negatif olur. Numune genişlemek ister ve suyu gözeneklerine çekmeye çalışır fakat başaramaz. Aşırı konsolide killerde

negatif boşluk suyu basıncı meydana gelebilir. Şekil 3.5.'te CU deneyi için normal ve aşırı konsolide killer için gerilme-birim deformasyon eğrileri görülmektedir. Şekilde görüldüğü gibi birim deformasyon artarken gerilme en yüksek değerine ulaşmış ve daha sonra azalmıştır. Boşluk suyu basıncı-birim deformasyon grafiğinde ise normal konsolide killerde pozitif boşluk suyu basıncı artarken, aşırı konsolide killerde boşluk suyu basıncı negatife dönüşmektedir. Diğer bir grafik ise efektif gerilme oranı-deformasyon grafiğidir. Bu grafikte aşırı konsolide kilde efektif gerilme oranı erken zaman aralığında maksimum değere ulaşmaktadır.

Şekil 3.5. CU deneyde normal ve aşırı konsolide killer için σ - ε , Δu ve σ_1' ve σ_3' eğrileri σ_1'/σ_3' [15]

BÖLÜM 4. ARAŞTIRMA BULGULARI

Drenajlı kayma direnci parametrelerini elde etmek amacıyla direkt kesme kutusu ve konsolidasyonlu - drenajsız üç eksenli basınç deneyi yöntemleri uygulanmıştır ve yapılan deneyler sonucu elde edilen kayma direnci parametreleri karşılaştırılmıştır. Deneyler sonucu drenajlı kayma direnci açısı, zeminlerin likit limit, plastik limit, plastisite indisi elde edilmiştir. Sınıflandırma deneylerine (TS 1500) bağlı olarak ise kil yüzdesi ve ince dane oranları belirlenmiştir. Daha sonra kayma direnci parametrelerini (c ve ϕ) elde edebilmek için numuneler üzerinde, farklı konsolidasyon basınçları altında (100 kPa, 200 kPa ve 300 kPa) konsolidasyonludrenajsız üç eksenli basınç deneyi (CU) ve direkt kesme kutusu deneyi yapılmıştır.

Deneylerde kullanılan numunelerin geoteknik özelliklerini belirlemek için laboratuvarda gerekli deneyler yapılmıştır. Konsolidasyonlu-drenajsız üç eksenli basınç deneyinde; Siltli kil, Adapazarı kili ve Düzce kili olarak belirlenen numunelere üç farklı hücre basıncı altında (100 kPa, 200 kPa ve 300 kPa) kesilen üç numunelik, Yalova kili ve Tüvasaş kili için ise 100 kPa ve 200 kPa'lık normal gerilme altında kesilen iki numunelik bir deney seti oluşturmuştur. Kesme kutusu deneyinde ise Siltli kil, Adapazarı kili, Düzce kili ve Tüvasaş kili için 100 kPa, 200 kPa'lık normal gerilme altında kesilen iki numunelik bir deney seti oluşturmuştur. Kesme kutusu deneyinde ise Siltli kil, Adapazarı kili, Düzce kili ve Tüvasaş kili için 100 kPa, 200 kPa ve 300 kPa'lık normal gerilme altında kesilen üç numunelik bir deney seti, Yalova kilinde ise 100 kPa ve 200 kPa'lık normal gerilme altında kesilen iki numunelik bir deney seti oluşturmuştur.

Yapılan deneyler sonucu elde edilen drenajlı kayma direnci açıları ile zeminlerin geoteknik özellikleri incelenmiştir. Ayrıca iki farklı deney yöntemi ile belirlenen drenajlı kayma direnci açıları karşılaştırılmıştır.

4.1. Kullanılan Numunelerin Geoteknik Özellikleri

Bu çalışmada zeminlerin kayma direnci parametrelerini belirlemek için 5 farklı geoteknik özelliklere sahip numuneler üzerinde, farklı konsolidasyon basınçları altında (100*kPa*, 200 *kPa* ve 300*kPa*), konsolidasyonlu-drenajsız üç eksenli basınç deneyleri (CU) ve kesme kutusu deneyleri yapılarak sonucu elde edilen kayma direnci parametrelerinin zeminin geoteknik özellikleri ile ilişkilerinin incelenmesi, ayrıca kesme kutusu ve konsolidasyonlu–drenajsız üç eksenli basınç deneyi sonucu elde edilen kayma direnci parametrelerinin karşılaştırılması amaçlanmıştır. Bu amaçlar doğrultusunda ilk olarak farklı geoteknik özelliklere sahip Siltli kil numunesi (Sakarya Üniversitesi zemin mekaniği laboratuvarı örselenmiş numune), Adapazarı kili, Düzce kili, Yalova kili ve Tüvasaş kili olmak üzere 5 farklı numune elde edilmiştir. Beş farklı numune üzerinde yapılan deneyler sonucu elde edilen, likit limitleri (w_L), plastik limitleri (w_P), plastisite indisleri (I_P), özgül birim hacim ağırlıkları (Gs), ince dane oranları (İDO) ve kil yüzdeleri (KY) incelenmiştir.

4.1.1. Likit limit deneyi

Zeminin plastik katı halden sıvı hale geçtiği noktadaki su içeriğini likit limiti ifade eder. Casagrande aletinin çanak kısmına koyulan zemin numunesinde oluşturulan yarığın, çanağın 25 defa düşürülmesiyle kapanmasına karşılık gelen su muhtevası olarak hesaplanır. Yarığın 25 düşüşte belirtildiği kadar kapanmasını sağlayacak su muhtevasını elde etmek zor olduğundan, yarığın farklı düşüş sayılarında kapanmasını sağlayan su içerikleri ve vuruş sayıları grafiğe aktarılır; 25 vuruşa karşılık gelen su muhtevası LL olarak ifade edilir.

Deneye başlamadan önce numuneler kurutulmuş, havanda dövülmüş ve zemin 40 numaralı (0,425) elekten elenmiştir. Numune bir kap içerisine konularak çok az miktarlarda damıtık su kademeli olarak numuneye ilave edilmiş ve her defasında numune iyice karıştırılmıştır. Deneye başlamadan önce casagrande aleti iyice temizlenmiştir. Casagrande aletinin içine hazır durumdaki numuneden spatula yardımı ile bir miktar alınarak tasın içerisine yerleştirilmiştir. Tas içerisine

yerleştirilen numunenin yüzeyi yatay olacak şekilde düzeltilmiştir. Tas içine yerleştirilen numunenin düz zemine paralel olmasına özen gösterilmiştir. Şekil 4.1.'de numunenin casagrande aletine yerleştirilme işlemi görülmektedir.

Şekil 4.1. Numunenin tas içine yerleştirilmesi

Tas içerisine yerleştirilen numunenin ortasından standart yarık açma bıçağı ile bir yarık açılmıştır. Aletin kolu saniyede 2 düşüş yapacak şekilde çevrilmiştir ve vuruşlar sayılmıştır. Bu sırada numunenin ortasında açılmış olan yarıktaki kapanma yaklaşık 1,3 cm olduğunda çevirme işlemi durdurulmuştur. Şekil 4.2.'de ve Şekil 4.3.'te numunede yarık açılma işlemi ve vuruşların yapılması görülmektedir.

Şekil 4.2. Numunede oyuk açma bıçağıyla yarık açılması ve vuruşlar yapılması

Şekil 4.3. Numunede oyuk açma bıçağıyla yarık açılması ve vuruşlar yapılması

Şekil 4.4.'te alet durdurulduktan sonra ıspatula yardımıyla 1,3 cm'lik kapanmanın olduğu bölgeden bir miktar numune alınarak metal bir kaba koyulması işlemi görülmektedir. Numunenin ağırlığı hassas terazide tartılarak kaydedilmiştir. Daha sonra numunenin içeriğinin belirlenmesi için numune etüve konulmuştur. Aletin tasında kalan numune tamamen alınarak önceki kabına konulmuştur. Tas tamamen temizlenip kurulandıktan sonra yeni deney için hazır hale getirilmiştir. Kapta bulunan numuneye bir miktar daha damıtık su ilave edilerek iyice karıştırılmıştır. İşlemler deney bitene kadar aynı şekilde tekrarlanmıştır.

Şekil 4.4. Bir miktar numunenin etüvde kurutulmak üzere metal kaba alınması

4.1.2. Plastik limit deneyi

Likit limit deneyi için hazırlanan numuneden bir miktar alınarak numune cam levha üzerine konulup bir miktar kuruması beklenmiştir. Daha sonra avuç içi ile yuvarlanarak zemin çubukları haline getirilmeye çalışılmıştır. Şekil 4.5.'te plastik limit deneyi için numunenin bekletilmesi ve deneyin yapılışı görülmektedir. Zemin çubukları 3 mm çubuklar haline geldiğinde, çatlamaların ve kopmaların başlama anı gözlemlenerek zeminler, metal bir kap içerisinde koyulup tartılarak kütlesi kaydedilip etüve koyulmuştur.

Şekil 4.5. Buzlu cam üzerinde plastik limit için numunelerin bekletilmesi ve deneyin yapılması

4.1.3. Hidrometre deneyi

Deneyde 1000 ml ölçekli mezür (ölçme silindiri), termometre, terazi, etüv, kronometre ve su banyosu kullanılmıştır. 200 nolu elekten elenen ince malzemeden 50 gr alınıp, etüvde 24 saat bekletilmiştir. Etüvden alınan numune 50 gr a karşılık 75 ml perhidrol ile yakılarak tekrar etüve koyulmuştur ve yine 24 saat bekletilmiştir. Kurutulan numunenin ağırlığı tekrar ölçülerek organik madde miktarı tayin edilmiştir. Yakılan numune etüvden çıkarıldığında üzerine ayrıştırıcı madde (sodyum hekzametafosfat) eklenerek iyice karıştırılmıştır. Ayrıştırma aygıtına (mikser) konan bu malzeme üzerine saf su eklenerek malzeme ve ayrıştırıcı maddenin iyice karıştırılması sağlanmıştır. Şekil 4.6.'da deneye başlamadan numunenin yakılma işlemi görülmektedir.

Şekil 4.6. 50 gr numunenin perhidrol ile yakılması

Ayrıştıma aygıtından (mikser) alınan numune daha sonra numune mezur içerisine koyulmuş ve 1000 ml yi tamamlayacak şekilde üzerine su eklenmiştir. Okumalara başlamadan önce, süspansiyonun bulunduğu bu mezürün açık ağzı bir elin avuç içine yapıştırılıp, birkaç kez baş aşağı getirilerek karışımın homojen duruma gelmesi için bu işlem yapılmıştır ve kronometre çalıştırılarak deneye başlanmıştır. Şekil 4.7.'de hidrometre deneyi için numunenin hazırlanma aşamaları görülmektedir.

Şekil 4.7. Deney için numunenin hazırlanması

Hidrometre ince boyunlu üst kesimden tutularak yavaşça süspansiyona batırılmıştır. 0,50, 1, 2, 4, 8, 15, 30, 60, 120, 240, 1440 dakikalarda hidrometre okumaları menüsküsün tepesinden okunup ve yazılmıştır. Şekil 4.8.'de numunenin

hazırlanması ve hidrometre okumalarının alımı gösterilmektedir. Son hidrometre okuması da alındıktan sonra, süspansiyon yıkamalı elek analizinden geçirilmiştir. Elek üstü kalan numune metal bir kaba koyularak kuru ağırlığının alınması için etüve koyulmuştur.

Şekil 4.8. Numunenin düzeneğe yerleştirilmesi ve hidrometre okumalarının alınması

4.1.4. Piknometre deneyi

Numunenin özgül ağırlığını tayin etmek için piknometre deneyi yapılmıştır. Bu deneyde hassas terazi, damıtık su, vakum aleti, piknometre, huni, etüv kullanılmıştır. Piknometre iyice yıkanıp, belirli oranlara sahip olan numuneler ve piknometre etüve konularak kuruması sağlanmıştır. İlk olarak deneyde kullanılacak damıtılmış suyun içerisindeki havanın dışarı çıkması vakum makinasıyla sağlanmıştır. Şekil 4.9.'da suyun vakumlama işlemi görülmektedir.

Şekil 4.9. Suyun vakum aleti yardımıyla damıtılması

Kuru numuneler ve piknometre etüvden alınmıştır. Piknometreler hassas terazide tartılarak piknometre ağırlığı değeri elde edilmiştir. Şekil 4.10.'da piknometre ağırlıklarının ölçülme ve numunenin ezilerek deney için hazır hale getirilmesi gösterilmektedir.

Şekil 4.10. Piknometrenin ağırlığının ölçülmesi ve numunenin dövülmesi

Belli oranlardaki numuneler iyice ezilerek toz haline getirilmiştir. Numuneler, numaralandırılmış piknometrelere huni yardımıyla yerleştirilmiştir. Şekil 4.11.'de numunenin piknometrelere doldurulması ve tartılması işlemleri görülmektedir. Hassas terazide piknometre içindeki numune ile tartılarak (piknometre+numune) ağırlığı elde edilmiştir.

Şekil 4.11. Numunenin piknometreye koyulması ve tartılması

Daha sonra numunenin üzerine bir miktar su eklenerekiçi su dolu piknometre vakuma yerleştirilmiştir. Şekil 4.12.'de vakumlama aşamasındaki numuneler gösterilmektedir.

Şekil 4.12. Vakum öncesi numuneye su koyulması ve vakumlama aşaması

Böylece piknometre içindeki hava vakum ile boşaltılmıştır. Vakumda boşaltım esnasında piknometrelerin içindeki numunelerde hava kabarcıkları gözlenmiştir. Hava çıkışı tamamlandıktan sonra piknometre vakumdan alınmıştır. Vakumdan alınan piknometreler pipet yardımıyla ağızlarına kadar damıtık su ile doldurulmuştur. Şekil 4.13.'te vakumdan çıkan numuneler üzerine damıtık su doldurularak işlemi görülmektedir.

Şekil 4.13. Piknometre, numune ve su

Altta çökel, üstte damıtık suya yakın derişimde numunenin suyu birikmiş olup (vakum+piknometre+su+numune) ağırlığı tartılarak değerler kaydedilmiştir. Daha sonra piknometreler iyice yıkayıp temizlendikten sonra piknometrelerin içine hava baloncuğu kalmayacak ve tamamı dolacak şekilde damıtık su doldurup kurulanıp hassas terazi ile (piknometre+su) ağırlığı tartılmıştır. Şekil 4.14.'te son aşama olarak piknometrelere damıtık su doldurularak ağırlıklarının alınması işlemi gösterilmektedir. Hesaplar yapılarak sonuçlar kaydedilmiştir.

Şekil 4.14. Piknometre, numune ve su

Veriler ve Hesaplama işlemleri ise Şekil 4.15.'te şematik olarak gösterilmektedir;

 W_1 = Piknometre Ağırlığı W_2 =(Piknometre + Numune) Ağırlığı W_3 = (Vakum+Piknometre+Su+Numune) Ağırlığı W_4 =(Piknometre+Su) Ağırlığı

Şekil 4.15. Piknometre deneyinin şematik gösterimi

Konsolidasyonlu-drenajsız üç eksenli basınç deneyinde ve kesme kutusu deneyinde kulllanılan numuneler zemin mekaniği laboratuvarında hazır olarak bulunan örselenmiş Siltli kil, Adapazarı kent meydanından elde edilen Adapazarı kili, Düzce ilinden getirilen numune Düzce kili, Yalova ilinden getirilen numune Yalova kili ve Tüvasaş'dan getirilen numune Tüvasaş kili olarak isimlendirilmiştir. Yapılan kıvam limit deney sonuçlarına göre numunelerin likit limitlerinin %30 ile %53 arasında, plastik limitlerinin %21 ile %29 arasında, plastisite indislerinin ise %8 ile %31 arasında değiştiği belirlenmiştir. Numunelerin içerisindeki kil yüzdeleri %11 ile %43arasında, silt yüzdeleri ise %57 ile %89 arasındadeğişmektedir. Yapılan piknometre deneyi sonucu numunelerin özgül ağırlıkları 2,6 ile 2,77 arasında değiştiği bulunmuştur.

Sınıflandırma deneyleri sonucu, numuneler TS1500/2000'e göre sınıflandırılmıştır. Siltli kil düşük plasitisiteli kil (CL), Adapazarı kili orta plastisiteli kil (CI), Düzce kili yağlı kil (CH), Yalova kili orta plastisiteli kil (CI), Tüvasaş kili orta plastisiteli kil (CI) olarak belirlenmiştir. Numunelerin özellikleri ve plastisite kartındaki yerleri Tablo 4.1.'de ve Şekil 4.1.'de görülmektedir.

No	Numune Adı	W _L	w _p	PI	% Kil	% Silt	% Kum	GS	Sınıf (TS1500/2000)
1	Siltli Kil	31	8	23	11	89	0	2.63	CL
2	Adapazarı Kili	45	24	21	22	78	0	2.71	CI
3	Düzce Kili	53	21	31	43	57	0	2.77	СН
4	Yalova Kili	47	29	19	18	82	0	2.6	CI
5	Tüvasaş Kili	48	26	22	17	81	2	2.76	CI

Tablo 4.1. Numunelerin geoteknik özellikleri

Şekil 4.16. Numunelerin plastisite kartındaki yerleri

4.2. Numune Hazırlama Tekniği

Numuneler ilk olarak havanda dövülerek ezilmiş daha sonra 40 nolu elekten elenmiş ve altında kalan numuneler ile direkt kesme kutusu için yaklaşık 2 kg numuneye 1000 ml su katılarak karışım oluşturulmuştur. Şekil 4.17.' de elenen siltli kil numunesinin su ile bulamaç haline getirilip deneye hazırlanması işlemi görülmektedir.

Şekil 4.17. Siltli kil deney numunesinin bulamaç haline getirilmesi

Bu karışım daha sonra konsolidasyonlu-drenajsız deney için 10 cm çapındaki hücrelere, kesme kutusu deneyi için 20 cm çapındaki hücrelere doldurmuştur. Doldurma esnasında numunenin içinde hava kalmaması için spatula yardımıyla hücre içerisindeki numune karıştırılmıştır. Numunenin içerisindeki suyun dışarı çıkması ve konsolide olması için laboratuvardaki yükleme askılarına asılmıştır. Askıdaki numuneye 20 cm çapındaki hücrelerde bulunan numuneler için 80 kg'lık yükleme yapılarak numunenin 100 kPa, 200 kPa ve 300 kPa altında konsolide olması sağlanırken, 10 cm çapındaki hücrelerde bulunan numuneler için 20 kg'lık yükleme yapılarak numunenin yine 100 kPa, 200 kPa ve 300 kPa gerilme altında konsolide olması sağlanmıştır. Böylece numune içerisindeki su dışarı çıkartılarak numunenin konsolide olması sağlanmıştır. Şekil 4.18.'de ve Şekil 4.19.'da kesme kutusu ve konsolidasyonlu-drenajsız deney için hazırlanan bulamacın hücrelere yerleştirilmesi ve hazırlanan hücrelerin askıya yerleştirilip konsolide olması işlemi görülmektedir.

Şekil 4.18. Deney numunesinin hücreye yerleştirilmesi

Şekil 4.19. Deney numunesinin askıya yerleştirilmesi

4.3. Kesme Hızının Belirlenmesi

Konsolide olan numune askıdan alınarak kesme kutusu deneyi için hücreden çıkarılıp deney düzeneğine yerleştirilmiştir. Kesme kutusu deneyinde boşluk suyu basıncı ölçülemediğinden dolayı numuneler drene olacak olan suyun çıkış hızından daha küçük bir hızla kesilmek durumundadır. Numuneleri kesme işlemine başlamadan önce, numuneler kesme kutusu deney düzeneğinde konsolide edilmesi sağlanmıştır. Pratik uygulamalarda, üzerinde deney yapılan zeminin genellikle konsolidasyon özellikleri dikkate alınarak uygun bir kesme hızı seçilmiştir. Bu hız yapılan konsolidasyon deneyi sonucunda elde edilen değerler vasıtası ile elde edilmiştir. Kesme hızları logaritma yöntemi, karekök yöntemi, ASTM (D3080/D3080M–11)' ye

ve BS' nin öngördüğü formüllere göre hesaplanmıştır ve numuneler hesaplanan hız değerlerine göre kesilmiştir.

ASTM (D3080/D3080M-11)' ye göre yenilme için tahmin edilen toplam zaman (t_f), dakika cinsinden ;

$$t_f = 50 \cdot t_{50} \tag{4.2}$$

formülü ile hesaplanması önerilmiştir. Burada t_{50} = Deney için gerekli normal gerilme altında % 50 konsolidasyona ulaşmak için gerekli zamandır (*dakika*). Eğer konsolidasyon deneyinde deformasyona karşılık karekök zaman grafiği kullanılacak olursa toplam yenilme zamanı yine dakika cinsinden;

$$t_f = 11.6 \cdot t_{90} \tag{4.3}$$

formülü ile hesaplanabilir. Burada t_{90} = Deney için gerekli normal gerilme altında %90 konsolidasyona ulaşmak için gerekli zamandır (*dakika*). Tüm bunlar hesaplandıktan sonra kesme hızı (R_d , *mm/dak*) aşağıdaki şekilde hesaplanır;

$$R_d = \frac{d_f}{t_f} \tag{4.4}$$

Burada d_f = yenilme için tahmin edilen yatay hareket (*mm*) ve t_f = yenilme için tahmin edilen toplam zaman (*dak*)'dır. Gibsonve Henkel (*1954*) kesme kutusunda drenajlı deney için yenilmeiçin tahmin gerekli minimum zamanın;

$$t_f = \frac{h^2}{2 \cdot c_v \cdot (1 - U_c)}$$
(4.5)

formülü ile elde edilebileceğini ifade etmektedirler. Burada h: numune yüksekliğinin yarısı, c_v : konsolidasyon katsayısı ve U_c : orta düzlem sönümlenme oranıdır. Sönümlenme oranı normalde minimum 0.95 (%95 boşluk suyu basıncı sönümlenmesi) olarak kullanılır. Yenilme için tahmin edilen deformasyon miktarı tahmin edilerek kesme hızı hesaplanır. Eğer kesme için gerekli zaman hesaplanan minimum zamandan önce yenilme meydana gelirse sonuçlar geçersiz olur. BS 1377-7:1990' da ise yenilme için gerekli zamanın %100 konsolidasyon için gerekli zamana bağlı (t_{100}) olarak

$$t_f = 12.7 \cdot t_{100} \tag{4.6}$$

formülü ile bulunabileceğini ifade etmektedir.

4.4. Konsolidasyonlu-Drenajsız Üç Eksenli Basınç Deney Sistemi

Drenajlı kayma direnci parametrelerini elde edebilmek için kullanılan deney yöntemlerinden biri de konsolidasyonlu-drenajsız üç eksenli basınç deney yöntemidir. Üç eksenli deney sisteminde yükleme kolu, üç eksenli hücre, alt başlık ve üst başlık, yük ölçüm saati, deformasyon ölçüm saati, basınç hücreleri, boşluk suyu basıncı ölçüm sistemi, koruyucu membran, filtre kâğıdı ve poroz taş deney düzeneğinin temel parçalarıdır. Şekil 4.20'de üç eksenli basınç deneyi sistemi görülmektedir.

Şekil 4.20. Üç eksenli basınç deney sistemi

Üç eksenli hücre alt başlık, üst başlık, hücre gövdesi, çelik çubuklar ve yükleme pistonundan meydana gelmektedir. Alt başlıkta üç drenaj kanalı girişi mevcuttur. Boşluk suyu basıncı çoğunlukla numunenin tabanından ölçülebildiği gibi, ayrıca numunenin tabanından drenaj da meydana gelebilir. Şekil 4.21.'de üç eksenli deney hücresinin şematik kesiti gösterilmektedir.

Şekil 4.21. Üç eksenli deney hücresi şematik kesiti

4.4.1. Üç eksenli deney numunelerinin hazırlanması ve deney

Bulamaç halindeki aynı zamanda ve aynı şartlarda hazırlanan 3 adet numune 50 mm çaplı 130 mm yüksekliğindeki hücrelere yerleştirilmiştir. Daha sonra hücre içindeki bulamaç yükleme sistemine yerleştirilmiştir. 100 kPa konsolidasyon basıncında bekletilen numunede oturmalar tamamlandıktan ve gerekli boyut ve ağırlık ölçüleri alındıktan sonra üç eksenli deney düzeneğine yerleştirilmiştir. Üç eksenli hücreye yerleştirilen numunenin etrafı drenajı hızlandırmak için ince filtre kâğıtları ile sarılmıştır. Numunenin alt ve üst kısmına 50 mm çapında poroz taş yerleştirilmiş ve üzerine aynı çapta kesilmiş filtre kâğıdı yerleştirilmiştir. Bu işlemden sonra numune içindeki suyun aşağı ve yukarıda bulunan poroz taşlara hareketini kolaylaştırmak amacı ile numune etrafına filtre kâğıdı sarılmıştır. Daha sonra numunelerin çevre basıncı için verilen sudan etkilenmesini önlemek amacıyla korucu membran numune üzerine geçirilmiştir. Numune ringlerle alt ve üst başlıklara sabitlendikten sonra hücre kapatılarak çevre basıncı verilmeye hazır hale getirilmiştir. Şekil 4.22.'de konsolidasyonlu-drenajsız deney için numunenin düzeneğe yerleştirilmesi işlemleri sırasıyla görülmektedir.

Şekil 4.22. Üç eksenli deney için numunenin hazırlanması işlemi

Konsolidasyonlu-drenajsız üç eksenli hücre kesme deneyi; doyurma, konsolidasyon ve kesme olmak üzere üç aşamadan meydana gelir. Doyurma aşamasında numunenin boşluklarının tamamının su ile dolu olması sağlanmaktadır. Bu işlem numune çevresine ve numune içine verilen basınçların farkının 10 kPa civarında olması ile sağlanmaktadır. Numune çevre basıncı 50 kPa iken geri basınç 40 kPa civarında tutulmakta ve bu suretle suyun zemin boşluklarına hareket etmesi sağlanmaktadır. Daha sonra basınçlar kademe kademe arttırılarak numune içine giren su miktarı ile her çevre basıncı artışında da boşluk suyu basıncı oranı hesaplanmaktadır. Herhangi bir kademede B = 0.95' in üzerine çıktığında numune doygun kabul edilmekte ve uygun konsolidasyon basınçları ayarlanmaktadır. Şekil 4.23.'te doyurma aşamasının değerleri görülmektedir. Değerler bilgisayardaki programın ara yüzünden okunmuştur.

Şekil 4.23. Doyurma aşamasının bilgisayar arayüzünden takip edilmesi

Üç ayrı numune için her numuneye sırasıyla 600 kPa, 700 kPa ve 800 kPa'lık hücre basıncı ve 500 kPa'lık geri basınç verilerek numuneler üzerine hidrostatik bir basınç uygulanmıştır. Numunelerin bu basınçlar altında konsolide olması beklenmektedir. Konsolidasyon süresi zemin cinsine ve tabiki permeabiliteye bağlı olarak 3 gün ve 1 hafta arasında değişmiştir.

Konsolidasyonda numunelerin suya doygun olması gerektiğinden havanın tamamının dışarı çıkması beklenmiş olup 100 kPa, 200 kPa ve 300 kPa ile numuneler konsolide edilmiştir. Hücre basıncı geri basınca eşit olduğu an numuneler konsolidasyonunu tamamlamış olup, konsolide tamamlandığında su çıkma işlemi gerçekleşmiştir. Bu aşamadan sonra konsolidasyonunu tamamlamış numune kesilme aşamasına geçmek için hazırdır. Kesme işlemine numunede %20 deformasyon meydana gelene kadar devam edilmiştir. Şekil 4.24.'te konsolidasyonlu-drenajsız üç eksenli basınç deneyi ile kesilen siltli kil numunesini örneği verilmiştir.

Şekil 4.24. Deney sonucu kesilen siltli kil numunesi örneği

4.4.2. Hesaplamalar

Konsolidasyonlu-drenajsız üç eksenli deneyinde, düşey deformasyona karşılık gelen, düşey yük değerleri (P) ve boşluk suyu basıncı değerleri alınmıştır (u). Şekil 4.25.'te Siltli kil numunesine ait 100, 200 ve 300 kPa'lık çevre basıncı altında deney esnasında alınan okumalar görülmektedir ve deney sırasında alınan veriler yardımı ile numuneye ait eksenel deformasyon (ε) – deviatör gerilme ($\Delta \sigma$), eksenel deformasyon (ε) - boşluk suyu basıncı (u) ve normal gerilmeye (σ) – kesme gerilmesi (τ) eğrileri çizilmiştir. Siltli kil numunesine ait bu eğriler Şekil 4.26.'da, Şekil 4.27.'de ve Şekil 4.28'de görülmektedir.

SAKARYA ÜNİVERSİTES fühendisl saat Mühe

CARYA UNIVERSITESI endislik Fakültesi Mähendisliği Bölümü mik Laboratuvan			ÜÇ EKSENLİ HÜCRE KESME DENEYİ (CU)							
Proje :		NİŞSAN								
Örneğin Alındığı Yer :			Deneyi Y	apan:	M.İ	1				
Örneğin Tanım :	Kahverengi		Kesme Hız,mm/dk :		0,5	1				
Sondaj No :			Kuvvet Hal	13362	1					
Derinlik :	Lab		Kuvvet Halk. Kats. :		2,9873	1				
Tarih :	16.11.2015		Gs :		2,63]				
DENI	EY NO :	1		2		3	1			
Çevre Basıncı	100	200			300					
Örnek Çapı	5,00		5,00	5,00		1				
Örnek Yüksekliği	10,75		10,50	10,44		1				
Yaş Numune Ağırlığ	404,83		396,24	390,24		1				
Deney Sonu Zemin A	392,19		382,39	371,70		1				
Kuru Numune Ağırlığ	311,285		305,50		303,38]				
Örnek Alanı	19,63		19,63		19,63]				
Örnek Hacmi	211,08		206,17		204,99					
Su Ağırlığ	93,545		90,74		86,86]				
Su Muhteva:	30,05		29,70		28,63					
Deney Öncesi B.H.A. (kr	18,81		18,85		18,68					
Deney Sonrası B.H.A. (kr	18,23		18,20		17,79					
Kuru Birim Hac. Ağ. (kr	14,47		14,54		14,52					
Dane Hacmi	118,36		116,16		115,35					
Boşluk Hacmi (92,72		90,01		89,64					
Porozit	43,93		43,66		43,73					
Boşluk C	0,78		0,77		0,78					
Doygunluk Dereces	100,00		100,00		96,90					
Drenajsız Elastisite Mod.(I	8,39		13,37		18,55					

Şekil 4.25. Siltli kil numunesine ait 100 kPa, 200 kPa ve 300kPa çevre basıncı altında deney sırasında alınan okuma değerleri

Numune üzerine uygulanan büyük asal gerilme; hücre basıncı ve deviatör gerilmenin toplamına eşittir.

$$\sigma_1 = \sigma_3 + \Delta \sigma \tag{4.7}$$

Şekil 4.26. Siltli kil numunesinin deviatör gerilme-eksenel deformasyon grafiği

Şekil 4.27. Siltli kil numunesinin boşluk suyu basıncı-eksenel deformasyon grafiği

Şekil 4.28. Siltli kil numunesinin kesme gerilmesi-normal gerilme grafiği

4.5. Kesme Kutusu Deneyi

Kayma direnci parametrelerini belirlemek için kullanılan bir diğer yöntem kesme kutusu deneyidir. Yapılan kesme kutusu deneyi ile bulunan kayma direnci parametrelerini konsolidasyonlu-drenajsız üç eksenli basınç deneyinden bulunan parametrelerle karşılaştırılmıştır. Bu amaçlar doğrultusunda hazırlanan numuneler üzerinde kesme kutusu deneyi yapılmıştır.

Kesme kutusu deneyi zeminlerin kayma direncinin belirlenmesinde özellikle kumlar için en yaygın olarak kullanılanlaboratuvar deney yöntemidir. Şekil 4.29.'de kesme şematik kesiti verilmiştir.

Şekil 4.29.Kesme kutusu şematik kesiti

Kesme kutusu deney aleti motor, kutuyu iten bir kısım, hareket eden alt parça, sabit üst parça, numunenin düzgün yerleştirilmesini sağlayan vidalar, kuvvet halkasından okuma alabilmek için yükü kuvvet halkasına iletmeye yarayan kol ve kuvvet halkasından oluşmaktadır.

Yapılan deneyler, 6 cm x 6 cm en kesitli kesme kutusu deney aletleri ile yapılmıştır. Üç ayrı numune kesileceği 100 kPa, 200 kPa ve 300 kPa normal gerilmeler altında konsolide edilmiştir. Elde edilen konsolidasyon sonuçlarından ASTM [10]'nin öngördüğü formüllere göre hızlar hesaplanmış olup numunelerin kesme hızları elde edilmiştir. Kesme işlemine 12 mm yerdeğiştirme deformasyonuna kadar devam edilmiştir.

4.5.1. Kesme kutusu deney numunelerinin hazırlanması

Deneyde ilk olarak numuneler hücreden çıkarılmıştır. Şekil 4.30.'da kesme kutusu deney düzeneğine yerleştirmek için silindir hücre içerisinden numune alımı görülmektedir.

Şekil 4.30. Kesme kutusu deneyi için numune alımı

Doldurulan numune tokmak yardımıyla düzeltilmiştir. Numunenin toplam ağırlığı belirlenip ve kaydedilmiştir. Daha sonra numune kesme kutusu deney düzeneğinin içerisine yerleştirilmiştir. Şekil 4.31.'de kesme kutusu deneyi için alınan numunenin hazırlanarak düzeneğe yerleştirme işlemleri görülmektedir.

Şekil 4.31. Kesme kutusu deneyi için numunenin düzeneğe yerleştirilme işlemi

Numune kesme kutusuna yerleştirildikten sonra, konsol kol üzerine yük konularak istenilen normal gerilme altında (100 kPa, 200 kPa ve 300 kPa) konsolidasyon aşamasına bırakılmıştır. Numunenin suya doygun olabilmesi için kesme kutusu içerisine su doldurulmuş ve kesme hızlarının belirlenebilmesi için konsolidasyona
bırakılmıştır. Şekil 4.32.'de kesme kutusu deney düzeneğine yerleştirilen numunenin konsolidasyon aşaması ve bu aşamada alınan okuma değerleri görülmektedir.

Şekil 4.32. Numunenin konsolidasyona bırakılma işlemi

Kesme hızını hesaplayabilmek için konsolidasyon değerleri okunmuştur. Bulunan değerler vasıtası ile kesme hızları logaritma yöntemi, karekök yöntemi, ASTM [10]' ye ve BS' nin öngördüğü formüllere göre hesaplanmıştır. Şekil 4.33.'de Konsolidasyon sonucu ortaya çıkan verilerin örneği görülmektedir.

Şekil 4.33. Konsolidasyon sonucu ortaya çıkan verilerin örneği

Numune 0.024 mm/dak. kesme hızında kesilmek için hazırlanmıştır. Okumaların doğru ve düzenli olarak alınması için deneye başlamadan saatlerin göstergeleri sıfıra ayarlanmıştır.

Numunenin kesme işlemi, 12 mm yerdeğiştirme miktarına (%20 deformasyon) izin verilecek kadar 0.24 mm/dak. hız değeri ile kesilmiştir. Kesme işlemi esnasında

yatay deformasyonlar, düşey deformasyonlar ve kesme kuvvetleri takip edilerek, belirli aralıklarla yatay deformasyona karşılık gelen kuvvet halkasından okuma değerleri alınmıştır. Deney numunesini düzenekten çıkarabilmek için ilk olarak kesme kutusu hücresindeki su ve konsol yük üzerindeki ağırlıklar alınmıştır. Kesme kutusunun düzenekten çıkabilmesi için vidalar alınarak, numune üst ve alt parçayla birlikte deney düzeneğinden çıkarılmıştır.

4.5.2. Hesaplamalar

Kesme kutusu deneyinde kesme hızının belirlenmesine yönelik olarak kesme hücresine yerleştirilen numune üzerine uygulanan normal yük altındaki deformasyonları 24 saat boyunca devamlı okuma alınarak izlenmiştir. Logaritma ve karekök yöntemi ile hesaplanan sırası ile konsolidasyonun %50 ve %90' ının tamamlanması için gerekli t₅₀ ve t₉₀ zamanları bulunmuştur. Örnek olarak 1 nolu numune (Siltli Kil) üzerinde ASTM' nin her iki yöntemine göre bulunmuş t50 ve t90 zamanları ile hesaplanmış kesme hızları Şekil 4.32.'de görülmektedir. Şekilden de anlaşılacağı üzere 100 kPa, 200 kPa ve 300 kPa normal gerilme altında kesilecek numuneler için kesme hızları sırası ile 0.23, 0.3 ve 0.40 olarak hesaplanmıştır. Bu şekilde elde edilen kesme hızlarında tüm numuneler üzerinde uygulanmış olan drenajlı kesme kutusu deneylerinin sonuçları Tablo 4.2.'de verilmektedir. Yine örnek olarak 1 nolu numune üzerinde uygulanmış olan drenajlı kesme kutusu deneyinin sonucu Şekil 4.34.'te verilmektedir. Buna göre Siltli Kilin efektif kohezyonu (c') 13 kPa ve efektif sürtünme açısı (ϕ') 26° olarak bulunmuştur. Ayrıca tüm zeminlerin tümünde drenajlı kesme kutusu deneyleri ile üç eksenli konsolidasyonlu drenajsız (CU) deneyler yürütülmüştür. CU deney sonuçları Tablo 4.3.'te verilmiştir. CU deney sonucuna örnek olarak yine 1 Nolu numunenin (Siltli Kil) Konsolidasyonlu-Drenajsız (CU) ve kesme kutusu deney sonucu Sekil 4.35.'de verilmektedir. Kesme kutusu ve CU deney sonuçlarına göre elde edilen efektif kohezyon ve sürtünme açıları arasındaki ilişkilere bakıldığında; efektif kohezyonun her iki deney türünde farklılıklar gösterdiği, efektif sürtünme sonuçlarının ise doğrusal bir ilişki sunduğu anlaşılmıştır. Tablo 4.2.'de numunelerin hesaplanan kesme hızları görülmektedir.

Şekil 4.34.1 Nolu numunenin (Siltli Kil) kesme hızlarının hesaplanması

Numune	Hız	Hız	Hız	Hız	Hız	Hız	Hız	Hız	Hız
Adı	t ₅₀ -100 kPa	t90-100 kPa	t ₅₀ -200 kPa	t90-200 kPa	t ₅₀ -300 kPa	t90-300 kPa	ort-100 kPa	ort-200 kPa	ort-300 kPa
Siltli Kil	0,240	0,230	0,300	0,320	0,400	0,400	0,235	0,310	0,400
Adapazan	0,040	0,040	0,040	0,040	0,080	0,080	0,040	0,040	0,080
Kili									
Düzce Kili	0,027	0,026	0,034	0,030	0,030	0,020	0,027	0,032	0,025
Yalova	0,039	0,060	0,032	0,050			0,050	0,041	
Kili									
Tüvasaş	0,690	0,610	0,400	0,260	0,340	0,270	0,650	0,330	0,305
Kili									

Tablo 4.2. Numuneleri kesme hızları değerleri

Numune Adı	$\rho(kN/m^3)$	е	c' (kPa)	ø' (derece)
Siltli Kil	19.74	0.83	13	26
Adapazarı Kili	17.45	1.14	33	16
Düzce Kili	18.29	1.01	15	22
Yalova Kili	20.34	0.56	10	24
Tüvasaş Kili	18.33	1.09	0	31
	Numune Adı Siltli Kil Adapazarı Kili Düzce Kili Yalova Kili Tüvasaş Kili	Numune Adı ρ (kN/m³) Siltli Kil 19.74 Adapazarı Kili 17.45 Düzce Kili 18.29 Yalova Kili 20.34 Tüvasaş Kili 18.33	Numune Adı ρ(kN/m³) e Siltli Kil 19.74 0.83 Adapazarı Kili 17.45 1.14 Düzce Kili 18.29 1.01 Yalova Kili 20.34 0.56 Tüvasaş Kili 18.33 1.09	Numune Adıρ(kN/m³)ec' (kPa)Siltli Kil19.740.8313Adapazarı Kili17.451.1433Düzce Kili18.291.0115Yalova Kili20.340.5610Tüvasaş Kili18.331.090

Tablo 4.3.Kesme kutusu deneyi sonuçları

Tablo 4.4.Konsolidasyonlu-drenajsız (CU) üç eksenli Hücre kesme deneyleri

No	Numune Adı	$\rho(kN/m^3)$	e	c (kPa)	¢(derece)	c' (kPa)	¢' (derece)
1	Siltli Kil	18.78	0.78	52	16	2	35
2	Adapazarı Kili	18.01	1.05	34	16	35	29
3	Düzce Kili	18.42	1.01	1	15	0	33
4	Yalova Kili	20.5	0.56	34	19	0	36
5	Tüvasaş Kili	18.62	0.95	2	33	0	43

Şekil 4.35. 1 Nolu numunenin (Siltli Kil) konsolidasyonlu-drenajsız (CU) ve kesme kutusu deney sonucu

Şekil 4.36. Kesme kutusu ve konsolidasyonlu-drenajsız (CU) deney sonuçlarının karşılaştırılması

Şekil 4.36.'da her iki deney sonucu elde edilen deney sonuçlarının ilişkisi gösterilmiştir. Bu ilişkiye göre; CU deneyden bulunan efektif sürtünme açısı kesme kutusundan bulunan efektif sürtünme açısından yaklaşık 13[°] daha yüksek cıkmaktadır. Ayrıca direkt kesmekutusu deney sonucuna göre siltli kil numunesi için drenajlı kayma direnci açısı 26[°], kohezyon değeri ise 13 olarak elde edilmiştir. Ayrıca normal gerilmelere karşılık kayma gerilmelerinin belirli bir doğru üzerinde olması deneysel çalışmalarının doğru sonuçlar verdiğini göstermektedir. Şekil 4.37.'de CU deneyinden elde edilen sürtünme açıları ile numunelerin içerisindeki kil yüzdeleri ile ilişkişi görülmektedir. Numunelerin içerişindeki kil yüzdeleri arttıkça sürtünme açılarının azaldığı görülmektedir. Şekil 4.38.'de ise kesme kutusu deneyinden elde edilen sürtünme açısı değerleri ve numuneler içerisindeki kil yüzdeleri arasındaki ilişki görülmektedir. Burada da numuneler içerisindeki kil yüzdeleri arttıkça sürtünme açısı değerlerinin azaldığı görülmektedir. Şekil 4.39.'da kesme hızları ile kil yüzdeleri arasındaki ilişki görülmektedir. Kil yüzdeleri arttıkça kesme hızlarının azaldığı elde edilmiştir. Diğer numuneler üzerindeki deneysel çalışmalarda da buna benzer sonuçlar vermiştir.

Şekil 4.37. CU deneyinden elde edilen sürtünme açıları ve kil yüzdeleri arasındaki ilişki

Şekil 4.38. Kesme kutusu deneyinden elde edilen sürtünme açıları ile kil yüzdeleri arasındaki ilişki

Şekil 4.39. Kesme hızları ile kil oranları arasındaki ilişki

BÖLÜM 5. TARTIŞMA VE SONUÇ

Bu çalışmada TS1500/2000 sınıflandırma sitemine göre kil simgesi (*C*) almış olan ancak farklı oranlarda silt (M) yüzdelerine sahip 5 farklı numune üzerinde üzerinde drenajlı kayma direnci parametrelerini belirlemek amacıyla yapılan konsolidasyonludrenajsız (CU) üç eksenli basınç deneyi ve kesme kutusu deneyleri ile numunelerin drenajlı kayma direnci parametreleri standartlarda (BS ve ASTM) yazan prosedürlere uygun olarak elde edilmiştir. Kesme kutusu ve CU deney sonuçlarına göre elde edilen efektif kohezyon ve sürtünme açıları arasındaki ilişkilere bakıldığında; efektif kohezyonun her iki deney türünde farklılıklar gösterdiği, efektif sürtünme sonuçlarının ise doğrusal bir ilişki sunduğu anlaşılmıştır.

Direkt kesme kutusu deneyinde %20 deformasyona izin verilecek şekilde kayma direnci parametreleri belirlenmiş, konsolidayonlu-drenajsız (CU) üç eksenli basınç deneyinde ise %20 eksenel deformasyona karşılık gelen kayma direnci parametreleri elde edilmiştir. Her iki deney sonucu elde edilen kayma direnci parametreleri ayrı ayrı incelenmiş ve bu deneyler sonucu elde edilen kayma direnci parametreleri karşılaştırılmıştır. Bulunan ilişkiye göre; CU deneyden bulunan efektif sürtünme açısından yaklaşık 13[°] daha yüksek çıktığı görülmüştür.

Konsolidasyonlu-drenajsız üç eksenli deney sonucu elde edilen kayma direnci parametrelerinden kayma direnci açıcısının (\$) kesme kutusu deney sonucu elde edilen kayma direnci parametrelerinden daha büyük olduğu bulunmuştur. Ayrıca numuneler içerisindeki kil yüzdeleri arttıkça CU ve kesme kutusu deneyinden elde edilen sürtünme açılarının ve kesme kutusu için elde edilen kesme hızlarının azaldığı görülmüştür.

5.1. Konsolidasyonlu-Drenajsız Üç Eksenli Deney Sonuçlar

Geoteknik özellikleri belirlenmiş 3 tanesi 3 lü, 2 tanesi 2 li setten oluşan toplamda toplamda 13 adetten oluşan 5 farklı geoteknik özelliklere göre numune üzerinde 100 kPa, 200 kPa ve 300 kPa'lık basınç gerilmeleri altında konsolidasyonlu-drenajsız üç eksenli basınç deneyi yapılmıştır.

Bu deneyde numunelerde artan birim eksenel kısalma ile birlikte deviatör gerilmenin öncelikle artış gösterdiği, belirli bir pik değere ulaşıldıktan sonra deviatör gerilmenin artan deformasyonla azalmaya başladığı ve sonunda artık deformasyonla da değişmeyen sabit bir değer aldığı görülmektedir. Yaklaşık %17 birim eksenel kısalmadan sonra deviatör gerilmenin çok fazla değişmediği görülmektedir. 100 kPa, 200 kPa ve 300 kPa altında Siltli kil numunesinin drenajlı kayma direnci parametrelerini belirlemek için Mohr dairesi çizilmiştir. CU deneyi sonucuna göre Siltli kil numunesi için drenajlı kayma direnci açısı 35° ve kohezyon 2 kPa olarak bulunmuştur. Drenajsız kayma parametreleri ise mohr daireleri sonucu Siltli kil numunesi için 16° kayma direnci açısı ve 52 kPa kohezyon değeri elde edilmiştir.

Konsolidasyonlu-drenajsız (CU) deneydedrenajsız kayma direnci parametreleri de belirlenebilmektedir. Ek de siltli kil numunesinin drenajsız kayma direnci parametrelerini elde etmek için çizilmiş mohr daireleri de görülmektedir. Çizilen Mohr daireleri sonucu Siltli kil numunesi için 16° drenajsız kayma direnci açısı ve 52 kPa kohezyon değeri elde edilmiştir. Ayrıca numuneler üzerinde gerçekleştirilen üç eksenli deney sonuçlarından eldeedilen drenajlı kayma direnci açıları 35°-49° arasında, drenajsız kayma direnci açıları 16°-33° arasında değişmektedir. Drenajlı deneyden elde edilen kohezyon ise 0-2 kPa arasında, drenajsız deneyde ise (-12)-(52) arasında kPa değişmektedir. Numunelerin konsolidasyonlu-drenajsız deney sonuçları Ek1 kısmında bulunmaktadır.

5.2. Kesme Kutusu Deney Sonuçları

Geoteknik özellikleri belirlenmiş 4 tanesi 3 lü,1 tanesi 2 li setten oluşan toplamda toplamda 14 adetten oluşan 5 farklı geoteknik numune üzerinde 100 kPa, 200 kPa ve 300 kPa'lık basınç gerilmeleri altında direkt kesme kutusu deneyi yapılmıştır.

Siltli kil için yapılan kesme kutusu deney sonucu Siltli kil numunesi için 26° drenajlı kayma direnci açısı ve 13 kPa kohezyon değeri elde edilmiştir. Ayrıca numuneler üzerinde gerçekleştirilen kesme kutusu deney sonuçlarından elde edilen drenajlı kayma direnci açıları 12°-31° arasında değişmektedir. Drenajlı deneyden elde edilen kohezyon ise 0-33 kPa arasında değişmektedir. Numunelerin direkt kesme kutusu deney ayrıntıları Ek1 kısmında bulunmaktadır.

5.3. Kesme Kutusu ve Konsolidasyonlu-Drenajsız (CU) Üç Eksenli Basınç Deneyi Sonuçlarının Karşılaştırılması

Bu çalışmada drenajlı kayma direnci parametrelerini incelemek için seçilen likit limiti %30 ile %53 arasında, plastisite indisi %21 ile %29 arasında bulunan 5 adet zemin numunesi üzerinde konsolidasyonlu-drenajsız üç eksenli basınç deneyi ve direkt kesme kutusu deneyleri yapılmıştır. Konsolidasyonlu-drenajsız üç eksenli basınç deneyi ile direkt kesme kutusu deney sonuçları arasında ilişki kurulmuş ve drenajlı kayma direnci açısı ile numunelerin kıvam limitleri ve diğer geoteknik özellikleri birlikte incelenmiştir. Özellikle zeminlerin kayma direnci açısının likit limit (w_L), plastik limit (w_p), plastisite indisi (IP) ve kayma direnci ile değişimi incelenmiştir.

KAYNAKLAR

- [1] Das, B.M. Principles of Geotechnical Engineering. Cengage Learning, 8. Education PWS – KENT Publishing Company, Boston, 2010.
- [2] Önalp, A. Geoteknik Bilgisi 1 Zeminler ve Mekaniği. Birsen Yayınevi, İstanbul, 2007.
- [3] Coduto, D.P. Geoteknik Mühendisliği İlkeler ve Uygulamalar. Prentice Hall, 1998.
- [4] Bardet, J.P. Experimental Soil Mechanics. Prentice Hall. Upper Saddle River. New Jersey,1997.
- [5] Özaydın, K. Zemin Mekaniği. Birsen Yayınevi, İstanbul, 2010.
- [6] Bishop, A.W. and Bjerrum, L. The Relevance Of The Triaxial Test To The Solution Of Stability Problems. Proceedings Of The ASCE Research Conference On The Shear Strenght Of Cohesive Soils, Boulder, CO, 1960
- [7] Duncan, J.M., Wright, S.G. Zemin Şevlerin Duraylılığı. Gazi Kitabevi, Ankara, 2005.
- [8] Lambe, T.W., Whitman, R.V. Soil Mechanics. John Wiley, New York, 1969.
- [9] Head, K.H. Manual Of Soil Laboratory Testing. Volume 2. Pentech London, 1982.
- [10] ASTM D3080/D3080M-11 Standard Test Method For Direct Shear Test Of Soils Under Consolidated Drained Condisitons.
- [11] Asmirza, M.S. Direct Shear Testing. Lecture Papers. USU Instutional Repository, 2004.
- [12] Mitchell, J.K. Fundamentals Of Soil Behaviour. Second Edition, John Wiley & Sons, New York, 1993.
- [13] Özaydın, K. Zemin Mekaniği. Birsen Yayınevi, İstanbul, 2000.
- [14] Skempton, A.W. Zemin Mekaniği. İstanbul Teknik Üniversitesi Yayınları, 1958.

[15] Holtz, R.D., Kovacs, W.D. An Introduction to Geotechnical Engineering. Prentice Hall, Englewood Cliffs, Nj, 1981.

EKLER

EK 1: Numunelerin Fiziksel Özellikleri

a.)Silt

		LİKİT LİMİT TAYİNİ			PLASTIK LIMIT	
Deney No	1	2	3	4	Deney No	1
Kap No	349	340	335	306	Kap No	382
Kap+Örnek	36,461	26,614	28,165	31,03	Kap+Örnek	23,216
Kap+Kuru Örnek	34,011	25,072	26,45	29,205	Kap+Kuru Örnek	22,847
Kap Ağırlığı	25,65	19,94	21,15	23,64	Kap Ağırlığı	21,21
Kuru Örnek	8,361	5,132	5,3	5,565	Kuru Örnek	1,637
Su Ağırlığı	2,45	1,542	1,715	1,825	Su Ağırlığı	0,369
Vuruş	38	27	16	12	Su Muhtevası	22,54123396
Su Muhtevası	29,30271499	30,04676539	32,35849057	32,79424978	Plastik Limit	22,54123396

	1.Numune
piknometre ağırlığı	26,429
piknometre+numune	36,429
vakum+piknometre+su+numun	85,919
piknometre+su	79,687

	2.Numune
piknometre ağırlığı	28,119
piknometre+numune	38,119
vakum+piknometre+su+numun	86,324
piknometre+su	80,175

	3.Numune
piknometre ağırlığı	21,137
piknometre+numune	31,137
vakum+piknometre+su+numun	77,482
piknometre+su	71,284

	4.Numune
piknometre ağırlığı	25,956
piknometre+numune	35,956
vakum+piknometre+su+numun	85,47
piknometre+su	79,256

GS 1	2,65392781
GS 2	2,59672812
GS 3	2,63019463
GS 4	2,64131009
ORT GS	2,63

b.)Adapazarı Kili

		LİKİT LİMİT TAYİNİ			PLASTIK LIMIT	
Deney No	1	2	3	4	Deney No	1
Kap No	7	6	157	8	Kap No	154
Kap+Örnek	23,415	24,053	25,997	25,617	Kap+Örnek	16,029
Kap+Kuru Örnek	19,635	20,093	21,128	20,695	Kap+Kuru Örnek	15,088
Kap Ağırlığı	10,994	10,836	10,497	10,659	Kap Ağırlığı	11,187
Kuru Örnek	8,641	9,257	10,631	10,036	Kuru Örnek	3,901
Su Ağırlığı	3,78	3,96	4,869	4,922	Su Ağırlığı	0,941
Vuruş	41	30	21	16	Su Muhtevası	24,12201999
Su Muhtevası	43,74493693	42,77843794	45,80001881	49,0434436	Plastik Limit	24,12201999

	1.Numune
piknometre ağırlığı	26,535
piknometre+numune	36,537
vakum+piknometre+su+numune	85,376
piknometre+su	79,14

	2.Numune
piknometre ağırlığı	27,208
piknometre+numune	37,208
vakum+piknometre+su+numune	86,332
piknometre+su	79,955

	3.Numune
piknometre ağırlığı	25,957
piknometre+numune	35,951
vakum+piknometre+su+numune	85,636
piknometre+su	79,292

	4.Numune
piknometre ağırlığı	26,561
piknometre+numune	36,559
vakum+piknometre+su+numune	85,554
piknometre+su	79,253

GS 1	2,6558683
GS 2	2,76014353
GS 3	2,73808219
GS 4	2,70435488
ORT GS	2,71461222

c.)Düzce Kili

		LİKİT LİMİT TAYİNİ			PLASTIK LIMIT	
Deney No	1	2	3	4	Deney No	1
Кар No	308	356	312	340	Kap No	369
Kap+Örnek	35,436	33,646	35,906	33,95	Kap+Örnek	23,58
Kap+Kuru Örnek	31,341	29,333	31,114	28,737	Kap+Kuru Örnek	23,274
Kap Ağırlığı	23,12	21,12	22,36	19,34	Kap Ağırlığı	21,84
Kuru Örnek	8,221	8,213	8,754	9,397	Kuru Örnek	1,434
Su Ağırlığı	4,095	4,313	4,792	5,213	Su Ağırlığı	0,306
Vuruş	36	29	22	13	Su Muhtevası	21,33891213
Su Muhtevası	49,81145846	52,51430659	54,74068997	55,47515164	Plastik Limit	21,33891213

	1.Numune
piknometre ağırlığı	26,537
piknometre+numune	34,558
vakum+piknometre+su+numune	84,232
piknometre+su	79,094

	3.Numune
piknometre ağırlığı	26,813
piknometre+numune	34,828
vakum+piknometre+su+numune	85,705
piknometre+su	80,599

	2.Numune
piknometre ağırlığı	27,532
piknometre+numune	35,122
vakum+piknometre+su+numune	84,689
piknometre+su	79,846

	4.Numune
piknometre ağırlığı	26,559
piknometre+numune	34,176
vakum+piknometre+su+numune	84,145
piknometre+su	79,244

GS 1	2,78217135
GS 2	2,7630142
GS 3	2,75524235
GS 4	2,8044919
ORT GS	2,77622995

d.)Yalova Kili

		LİKİT LİMİT TAYİNİ			PLASTİK LİMİT	
Deney No	1	2	3	4	Deney No	1
Kap No	349	344	380	332	Kap No	308
Kap+Örnek	38,792	29,867	32,358	29,383	Kap+Örnek	26,937
Kap+Kuru Örnek	34,683	26,592	28,658	26,386	Kap+Kuru Örnek	26,08
Kap Ağırlığı	25,65	19,53	21,2	20,47	Kap Ağırlığı	23,106
Kuru Örnek	9,033	7,062	7,458	36,061	Kuru Örnek	2,974
Su Ağırlığı	4,109	3,275	3,7	2,997	Su Ağırlığı	0,857
Vuruş	41	30	16	14	Su Muhtevası	28,81640888
Su Muhtevası	45,48876342	46,3749646	49,61115581	50,65922921	Plastik Limit	28,81640888

Γ

	1.Numune
piknometre ağırlığı	27,207
piknometre+numune	32,214
vakum+piknometre+su+numune	83,149
piknometre+su	80,005

	2.Numune
piknometre ağırlığı	26,071
piknometre+numune	31,112
vakum+piknometre+su+numune	82,673
piknometre+su	79,613

	3.Numune
piknometre ağırlığı	27,531
piknometre+numune	31,434
vakum+piknometre+su+numune	82,235
piknometre+su	79,83

	4.Numune
piknometre ağırlığı	25,954
piknometre+numune	30,061
vakum+piknometre+su+numune	81,771
piknometre+su	79,261

GS 1	2,68760064
GS 2	2,54467441
GS 3	2,60547397
GS 4	2,57169693
ORT GS	2,60236149

d.)Tüvasaş Kili

		LİKİT LİMİT TAYİNİ			PLASTIK LIMIT	
Deney No	1	2	3	4	Deney No	1
Kap No	367	381	314	333	Kap No	337
Kap+Örnek	25,694	31,926	35,1	34,403	Kap+Örnek	28,074
Kap+Kuru Örnek	23,585	29,35	31,806	29,896	Kap+Kuru Örnek	26,68
Kap Ağırlığı	19,05	23,988	25,206	21,198	Kap Ağırlığı	21,413
Kuru Örnek	4,535	5,362	6,6	36,061	Kuru Örnek	5,267
Su Ağırlığı	2,109	2,576	3,294	4,507	Su Ağırlığı	1,394
Vuruş	33	28	18	13	Su Muhtevası	26,46667932
Su Muhtevası	46,50496141	48,04177546	49,90909091	51,81650954	Plastik Limit	26,46667932

	1.Numune
piknometre ağırlığı	27,207
piknometre+numune	34,829
vakum+piknometre+su+numune	84,733
piknometre+su	79,967

	3.Numune
piknometre ağırlığı	26,071
piknometre+numune	31,357
vakum+piknometre+su+numune	82,985
piknometre+su	79,58

	2.Numune
piknometre ağırlığı	27,531
piknometre+numune	32,457
vakum+piknometre+su+numune	82,846
piknometre+su	79,65

	4.Numune
piknometre ağırlığı	25,954
piknometre+numune	31,314
vakum+piknometre+su+numune	82,558
piknometre+su	79,167

GS 1	2,66876751
GS 2	2,84739884
GS 3	2,81020734
GS 4	2,72219401
ORT GS	2,76214192

EK2: Cu Grafikleri

SAKARYA ÜNİVERSİTESİ Mühendi İnşaat Mül eknik L

KARYA ÜNİVERSİTESİ tendislik Fakültesi t Mühendisliği Bölümü telik Laboratuvan			ÜÇ E	EKSENL DEN	i hü Eyi	CRE KE (CU)	SME
Proje :			S	İLT			1
Örneğin Alındığı Yer :				Deneyi Y	apan:	M.İ	1
Örneğin Tanım :		Kahverengi		Kesme Hiz,m	m/dk:	0,5	1
Sondaj No :				Kuvvet Hal	k. No :	13362	1
Derinlik :		Lab		Kuvvet Halk.	Kats.:	2,9873	1
Tarih :		16.11.2015			Gs:	2,63	1
DEN	EY NO :	1		2		3	i
Çevre Basıncı	(kpa):	100		200		300	1
Örnek Çapı	(cm):	5,00		5,00	5,00		1
Örnek Yüksekliği	(cm):	10,75		10,50		10,44	1
Yaş Numune Ağırlığ	ģi (gr) :	404,83		396,24	390,24		1
Deney Sonu Zemin A	ś. (gr) :	392,19		382,39	371,70		1
Kuru Numune Ağırlığ	ģi (gr) :	311,285		305,50	303,38		1
Örnek Alanı	(cm²):	19,63		19,63	19,63		1
Örnek Hacmi (cm³) :		211,08		206,17	204,99		1
Su Ağırlığ	ģi (gr) :	93,545		90,74		86,86	1
Su Muhteva:	sı (%) :	30,05		29,70		28,63	1
Deney Öncesi B.H.A. (kn/m³) :		18,81		18,85		18,68	1
Deney Sonrası B.H.A. (kn/m³) :		18,23		18,20		17,79	1
Kuru Birim Hac. Ağ. (kn/m³) :		14,47		14,54		14,52	1
Dane Hacmi (cm³) : 118,		118,36		116,16		115,35	1
Boşluk Hacmi (cm ⁵) : 92,72			90,01		89,64		
Porozite (%) : 43,93			43,66		43,73	1	
Boşluk (Drani :	0,78		0,77		0,78	
Doygunluk Derece:	si (%) :	100,00		100,00		96,90	
Drenajsız Elastisite Mod.(MPa): 8,39			13,37		18,55		

SU BASINCI

TOPLAM GER

σ_{d1}	203	σ_{31}
σ_{d2}	300	σ_{11}
σ_{d_3}	361	σ_{32}
U _{wf1}	20	σ_{12}
U _{wf2}	90	σ ₃₃
U _{wf3}	160	σ_{13}

RİLME	EFEKTİF GER
100	σ'_{31}
303	σ' ₁₁
200	σ' ₃₂
500	σ' ₁₂
300	σ' ₃₃
661	σ' ₁₃

RİLME	SONUÇ	LAR
80	С	52
283	Ø	16
110	C '	2
410	ø'	35
140		
501		

SAKARYA ÜNİVERSİTESİ Mühendislik Fakültesi İnşaat Mühendisliği Bolümü Geceknik Laborauvan

Orovenink Laboraruvari						<u> </u>
Proje :	Adapazarı Kili					
Örneğin Alındığı Yer :		Laboratuvar	Deneyi Yapan		apan :	M.İ
Örneğin Tanım :		Kahverengi		Kesme Hiz, mi	m/dk:	0,5
Sondaj No :				Kuvvet Hal	k. No :	13362
Derinlik :		Lab		Kuvvet Halk.	Kats.:	2,9873
Tarih :		26.04.2016			Gs:	2,71
DENE	YNO:	1		2		3
Çevre Basıncı (kpa):	100		200		300
Örnek Çapı	(cm) :	5,00		5,00		5,00
Örnek Yüksekliği	(cm) :	10,2		10,91		10,35
Yaş Numune Ağırlığ	i (gr) :	371,464		391,98	374,29	
Deney Sonu Zemin Ağ. (gr) :		361,33		373,65		350,96
Kuru Numune Ağırlığı (gr) :		269,492		281,76		270,38
Örnek Alanı (cm²) :		19,63		19,63		19,63
Örnek Hacmi (cm³):	200,28	214,22		203,22	
Su Ağırlığ	i (gr) :	101,972	110,23		103,91	
Su Muhtevas	a (%) :	37,84		39,12		38,43
Deney Öncesi B.H.A. (kn	/m³):	18,20		17,95		18,07
Deney Sonrası B.H.A. (kn	/m³):	17,70	17,11		16,94	
Kuru Birim Hac. Ağ. (kn	/m³):	13,20	12,90		13,05	
Dane Hacmi (cm⁵):	99,44	103,97			99,77
Boşluk Hacmi (cm⁵):	100,83	110,25		103,45	
Porozite	e (%) :	50,35		51,47	50,91	
Boşluk O	ranı:	1,01	1,06		1,04	
Doygunluk Dereces	i (%) :	100,00	99,98		100,00	
Drenajsız Elastisite Mod.(M	ИРа):	3,91		9,67		13,16

SU BASINCI					
σ_{d1}	85				
$\sigma_{\!d2}$	192				

σ_{d3} U_{wf 1}

U_{wf 2}

U_{wf 3}

85	
192	
250	
49	

131

195

TOPLAM GERİLME						
σ_{31}	100					
σ_{11}	185					
σ_{32}	200					
σ_{12}	392					
σ_{33}	300					
σ_{13}	550					

EFEKTİF GERİLME

σ'_{31}	51
σ'_{11}	136
σ'_{32}	69
σ'_{12}	261
σ'33	105
σ'_{13}	355

SONU	IÇLAR
С	8

Ø	17
с'	0
ø'	40

SAKARYA ÜNİVERSİTESİ Mühendislik Fakültesi İnşaat Mühendisliği Bölümü Geoteknik Laboratuvan

Proje :	Düzce Kili					
Örneğin Alındığı Yer :	Düzce Kili			Deneyi Yapan :		M.İ.
Örneğin Tanım :		Kızıl		Kesme Hiz, mi	m/dk :	0,2
Sondaj No :		Lab. Num.		Kuvvet Hal	k. No :	13352
Derinlik :				Kuvvet Halk.	Kats.:	2,9873
Tarih :		08.06.2016			Gs:	2,77
DENE	Y NO :	1		2		3
Cevre Basinci	kpa):	100		200		
Örnek Çapı	(cm):	5,00		5,00		
Örnek Yüksekliği	(cm) :	9,99		9,85		
Yaş Numune Ağırlığ	(gr) :	364,49		366,78		
Deney Sonu Zemin Ağ	. (gr) :	357,11		351,79		
Kuru Numune Ağırlığ	i (gr) :	269,51		269,00		
Örnek Alanı (cm²):	19,63		19,63		
Örnek Hacmi (cm³)∶	196,15		193,40		
Su Ağırlığ	; (gr) :	94,98		97,78		
Su Muhtevas	a (%) :	35,24		36,35		
Deney Öncesi B.H.A. (kn	/m³):	18,23		18,60		
Deney Sonrası B.H.A. (kn	/m³):	17,86		17,84		
Kuru Birim Hac. Ağ. (kn	n/m³): 13,48		13,64			
Dane Hacmi (cm⁵):	97,30		97,11		
Boşluk Hacmi ((cm ⁵): 98,86			96,29		
Porozite	e (%) :	50,40		49,79		
Boşluk O	ranı :	1,02		0,99		
Doygunluk Dereces	si (%) :	96,08		100,00		
Drenajsız Elastisite Mod.(M	MPa):	2,68		7,51		

SU BASI	'NCI	TOPLAM GERİLME			EFEKTİF GERİLME			SONUÇLAR		
σ_{d_1}	74		σ_{31}	100		σ'_{31}	30		С	-12
σ_{d2}	183		σ_{11}	174		σ'_{11}	104		Ø	21
U _{wf1}	70		σ ₃₂	200		σ' ₃₂	48		C '	0
U _{wf2}	152		σ_{12}	383		σ' ₁₂	231		ø'	49

SAKARYA ÜNİVERSİTESİ Mühendislik Fakültesi İnpart Mühendisliği Bölümü Geoteknik Labonstuvan

Proje :	YALOVA					
Örneğin Alındığı Yer :		Altınova - Subaşı		Deneyi Yapan :		M.İ.
Örneğin Tanım :		Kahve-Yeşil		Kesme Hız,m	m/dk:	0,2
Sondaj No :		SK-2		Kuvvet Hal	k. No :	13352
Derinlik :		06.01.1900		Kuvvet Halk.	Kats. :	2,9873
Tarih :		17.05.2016			Gs:	2,6
DEN	EY NO :	1		2		3
Çevre Basıncı	(kpa) :	100		200		
Örnek Çapı	(cm) :	5,01		5,05		
Örnek Yüksekliği	i (cm) :	9,96		9,95		
Yaş Numune Ağırlığ	ğı (gr) :	407,36		419,28		
Deney Sonu Zemin Ağ. (gr) :		418,31		435,26		
Kuru Numune Ağırlığı (gr) :		339,28		358,54		
Örnek Alanı (cm²) :		19,71		20,03		
Örnek Hacmi	(cm³) :	196,35		199,29		
Su Ağırlığ	ğı (gr) :	68,08		60,74		
Su Muhteva:	sı (%) :	20,07	16,94			
Deney Öncesi B.H.A. (kr	n/m³):	20,35		20,64		
Deney Sonrası B.H.A. (kr	n/m³):	20,90	21,43			
Kuru Birim Hac. Ağ. (kn/m³) :		16,95	17,65			
Dane Hacmi (cm³) :		130,49	137,90			
Boşluk Hacmi	(cm³) :	65,85		61,39		
Porozit	:e (%) :	33,54		30,81		
Boşluk (Orani :	0,50		0,45		
Doygunluk Derece:	erecesi (%) : 100,00			98,93		
Drenajsız Elastisite Mod.(MPa):	6,49		8,41		

SU BASINCI			TOPLAM GERİLME			EFEKTİF GERİLME			SONUÇLAR	
σ_{d_1}	186		σ_{31}	100		σ'_{31}	81		С	33
σ_{d2}	281		σ_{11}	286		σ' ₁₁	267		Ø	19
U _{wf1}	19		σ ₃₂	200		σ' ₃₂	116		C'	0
U _{wf2}	84		σ_{12}	481		σ' ₁₂	397		ø'	35

SAKARYA ÜNİVERSİTESİ Mühendislik Fakültesi İnşaat Mühendisliği Bölümü Geoteknik Laboratuvan

Proje :						
Örneğin Alındığı Yer :	Mithat	tpaşa / Adapazarı / S	Deneyi Yapan :		R.E.	
Örneğin Tanım :		Kahve-Yeşil		Kesme Hız,mm/dk :		0,2
Sondaj No :		AÇ-1		Kuvvet Halk. No :		13352
Derinlik :		1.60-2.00		Kuvvet Halk. Kats. :		2,9873
Tarih :		19.04.2016		Gs:		2,76
DENI	EY NO :	1	2			3
Çevre Basıncı	(kpa):	100		200		
Örnek Çapı	(cm):	5,00		5,00		
Örnek Yüksekliği	(cm) :	10,21		9,67		
Yaş Numune Ağırlığ	;i (gr) :	372,83		367,81		
Deney Sonu Zemin Ağ	;. (gr) :	357,42		359,97		
Kuru Numune Ağırlığ	270,84		281,40			
Örnek Alanı (19,63		19,63			
Örnek Hacmi (200,47		189,87			
Su Ağırlığ	101,99		86,41			
Su Muhtevas	sı (%) :	37,66		30,71		
Deney Öncesi B.H.A. (kn	ı/m³)∶	18,24		19,00		
Deney Sonrası B.H.A. (kr	17,49		18,60			
Kuru Birim Hac. Ağ. (kr	13,25		14,54			
Dane Hacmi	98,13		101,96			
Boşluk Hacmi	102,34		87,91			
Porozit	51,05		46,30	46,30		
Boşluk C	1,04		0,86			
Doygunluk Dereces	99,66		98,29			
Drenajsız Elastisite Mod.(I	6,34		12,41			

SU BASINCI			TOPLAM GERİLME			EFEKTİF GERİLME			SONUÇLAR	
σ_{d_1}	240		σ_{31}	100		σ'_{31}	61		С	2
σ_{d_2}	474		σ_{11}	340		σ'_{11}	301		Ø	33
U _{wf1}	39		σ_{32}	200		σ' ₃₂	117		C '	0
U _{wf2}	83		σ_{12}	674		σ' ₁₂	591		ø'	43

EK 3:Kesme Kutusu Grafikleri

SAKARYA ÜNİVERSİ Mühendislik Fakültesi İnpar Mühendislik Bölümü Geostenik Laboraruran	itesi	KESME KUTUSU DENEYİ				
Proje :		MERVE İSPİROĞLU				
Örneğin Alındığı Yer :			SILT			
Örneğin Tanım :			Kahverengi			
Deney No :		2	Kesme Hiz,mm/dk :	0.24-0.24-0.40		
Derinlik :	Yü	zey	Kuvvet Halk. Kats. :	2,9832		
Tarih :	15.01	.2016	Düşey Saat Kats. :	0,01		
Deneyi Yapan :	Μ	.Ĭ.	Gs :	2,63		
DENEY NO :		1	2	3		
Gerilme (kpa) :	1(00	200	300		
Örnek Boyutu (cm) :	6:	x 6	6x6	6x6		
Örnek Yüksekliği (cm) :	2,	00	2,00	2,00		
Örnek Alanı (cm²) :	36	,00	36,00	36,00		
Örnek Hacmi (cm³) :	72	,00	72,00	72,00		
Halka+Zemin Ağırlığı (gr) :	305	i,91	304,46	303,84		
Halka Ağırlığı (gr) :	159),84	159,84	159,84		
Zemin Ağırlığı (gr) :	146	6,07	144,62	144,00		
Deney Sonu Zemin Ağ. (gr) :	138	3,44	135,97	135,17		
Kuru Zemin Ağırlığı (gr) :	110),84	100,00	100,00		
Su Ağırlığı (gr) :	35	,23	44,62	44,00		
Su Muhtevası (%) :	31	,78	44,62	44,00		
Deney Öncesi B.H.A. (kn/m ³) :	19	,90	19,70	19,62		
Deney Sonrası B.H.A. (kn/m ³) :	20	,26	20,32	20,52		
Düşey Saat İk Okuma (mm) :		00	2000	2000		
Düşey Saat Son Okuma (mm) :	18	62	1823	1795		
Sikişma (mm) :	1,	38	1,77	2,05		
Boşluk Oranı :	0,	71	0,89	0,89		
Doygunluk Derecesi (%) :	100	00,00	100,00	100,00		

SAKARYA ÜNİVERSİTESİ
Mühendislik Fakültesi
Înşaat Mühendisliği Bölümü
Georeknik Laboratuvan

U							
Proje :	MERVE İSPİROĞLU						
Örneğin Alındığı Yer :	Laboratuvar - ADAPAZARI KİLİ						
Örneğin Tanım :	Kahverengi						
Numune No :	2	2 Kesme Hiz,mm/dk :					
Derinlik :	Yüzey	Kuwet Halk, Kats. :	2,9832				
Tarih :	22.02.2016	Düşey Saat Kats. :	0,01				
Deneyi Yapan :	R.E.	Gs :	2,71				
HIZ:	0,04	0,05	0,08				
Gerilme (kpa) :	100	200	300				
Örnek Boyutu (cm) :	6x6	6x6	6x6				
Örnek Yüksekliği (cm) :	2,50	2,50	2,50				
Örnek Alanı (cm²) :	36,00	36,00	36,00				
Örnek Hacmi (cm³) :	90,00	90,00	90,00				
Halka+Zemin Ağırlığı (gr) :	298,43	296,93	300,25				
Halka Ağırlığı (gr) :	137,07	137,07	141,07				
Zemin Ağırlığı (gr) :	161,36	159,86	159,18				
Deney Sonu Zemin Ağ. (gr) :	152,27	150,04	150,87				
Kuru Zemin Ağırlığı (gr) :	112,91	113,92	114,73				
Su Ağırlığı (gr) :	48,45	45,94	44,45				
Su Muhtevası (%) :	42,91	40,33	38,75				
Deney Öncesi B.H.A. (kn/m³) :	17,59	17,42	17,35				
Deney Sonrası B.H.A. (kn/m³) :	17,72	18,13	18,49				
Düşey Saat İlk Okuma (mm) :	2000	2000	2000				
)üşey Saat Son Okuma (mm) :	1841	1755	1724				
Sıkışma (mm) :	1,59	2,45	2,76				
Boşluk Oranı :	1,16	1,14	1,13				
Doygunluk Derecesi (%) :	100,00	95,78	93,26				

KESME KUTUSU

DENEYİ

SAK
Müh
Insaat
Geotek

KARYA ÜNİVERSİTESİ tendislik Fakültesi t Mühandisliği Bölümü

Mühendislik Fakültesi İnşaat Mühendisliği Bölümü Geoteknik Laboratuvan	DENEYİ							
Proje :		MERVE İSPİROĞLU						
Örneğin Alındığı Yer :			Kil					
Örneğin Tanım :			Kızıl					
Deney No :		1	(esme Hiz,mm/dk :	0.027-0.032-0.025				
Derinlik :	Yü	zey	Kuwet Halk. Kats. :	2,82				
Tarih :	10.05	.2016	Düşey Saat Kats. :	0,01				
Deneyi Yapan :	Μ	.i.	Gs :	2,77				
DENEY NO :		1	2	3				
Gerilme (kpa) :	1(00	200	300				
Örnek Boyutu (cm) :	6)	(6	6x6	6x6				
Örnek Yüksekliği (cm) :	2,	50	2,50	2,50				
Örnek Alanı (cm²) :	36	,00	36,00	36,00				
Örnek Hacmi (cm³) :	90	,00	90,00	90,00				
Halka+Zemin Ağırlığı (gr) :	304	1,35	304,27	305,71				
Halka Ağırlığı (gr) :	136	6,93	136,93	136,93				
Zemin Ağırlığı (gr) :	167	7,42	167,34	168,78				
Deney Sonu Zemin Ağ. (gr) :	161	1,02	157,93	157,36				
Kuru Zemin Ağırlığı (gr) :	123	3,91	123,29	124,87				
Su Ağırlığı (gr) :	43	,51	44,05	43,91				
Su Muhtevası (%) :	35	,11	35,73	35,16				
Deney Öncesi B.H.A. (kn/m³) :	18	,25	18,24	18,40				
Deney Sonrası B.H.A. (kn/m³) :	18	,58	18,53	18,68				
Düşey Saat İlk Okuma (mm) :	20	00	2000	2000				
)üşey Saat Son Okuma (mm) :	18	62	1823	1795				
Sikişma (mm) :	1,	38	1,77	2,05				
Boşluk Oranı :	1,	01	1,02	1,00				
Doygunluk Derecesi (%) :	96	,12	96,83	97,75				

KESME KUTUSU

SAKARYA ÜNİVERSİTESİ Mühendislik Fakültesi İnşar Məhendisliği Bolumü Geoteknik Laboratuvan

KESME KUTUSU DENEYİ

Proje :	AL	TINOVA HEYELAN A	LANI
Örneğin Alındığı Yer :		\	
Örneğin Tanımı, :			
Sondaj No :	SK-2	Kesme Hiz,mm/dk :	0,038
Derinlik :	6	Kuvvet Halk. Kats. :	2,9873
Tarih :	25.03.2016	Düşey Saat Kats. :	0,01
Deneyi Yapan :	R.E.	Gs :	2,6
DENEY NO :	1	2	3
Gerilme (kPa) :	100	200	
Örnek Boyutu (cm) :	6x6	6x6	
Örnek Yüksekliği (cm) :	2,00	2,00	
Örnek Alanı (cm²) :	36,00	36,00	
Örnek Hacmi (cm³) :	72,00	72,00	
Halka+Zemin Ağırlığı (gr) :	309,37	309,08	
Halka Ağırlığı (gr) :	159,97	159,97	
Zemin Ağırlığı (gr) :	149,40	149,11	
Deney Sonu Zemin Ağ. (gr) :	149,67	148,35	
Kuru Zemin Ağırlığı (gr) :	121,13	120,27	
Su Ağırlığı (gr) :	28,27	28,84	
Su Muhtevası (%) :	23,34	23,98	
Deney Öncesi B.H.A. (kN/m ³) :	20,36	20,32	
Deney Sonrası B.H.A. (kN/m ³) :	20,77	21,50	
Düşey Saat İlk Okuma (mm) :	2000	2000	
Düşey Saat Son Okuma (mm) :	1964	1880	
Sikişma (mm) :	0,36	1,20	
Boşluk Oranı :	0,55	0,56	
Dovgunluk Derecesi (%) :	100.00	100.00	

SONUÇLAR		Peak	Reziduel
Kohezyon,	c =	10	0
Kayma Direnci Açısı,	Ø=	24	17

	SA
("S))	Mül
Ŵ	Geote

KARYA ÜNİVERSİTESİ ihendislik Fakültesi aat Mühendisliği Bölümü

Mühendislik Fakültesi İnşaat Mühendisliği Bölümü Geoteknik Laboratuvan	DENEYİ							
Proje :			MERVE İSPİROĞLU					
Örneğin Alındığı Yer :			TÜVASAŞ					
Örneğin Tanım :			Kahve					
Deney No :	AÇ-	1	(esme Hiz,mm/dk :	0.6-0.3-0.27				
Derinlik :	1.60-2	2.00	Kuwet Halk. Kats. :	2,9873				
Tarih :	25.04.	2016	Düşey Saat Kats. :	0,01				
Deneyi Yapan :	M.İ		Gs :	2,76				
DENEY NO :	1		2	3				
Gerilme (kpa) :	10	D	200	300				
Örnek Boyutu (cm) :	6x6	5	6x6	6x6				
Örnek Yüksekliği (cm) :	2,0	0	2,00	2,00				
Örnek Alanı (cm²) :	36,0)0	36,00	36,00				
Örnek Hacmi (cm³) :	72,0	00	72,00	72,00				
Halka+Zemin Ağırlığı (gr) :	244,	34	245,40	297,55				
Halka Ağırlığı (gr) :	111,	80	111,19	160,69				
Zemin Ağırlığı (gr) :	132,	54	134,21	136,86				
Deney Sonu Zemin Ağ. (gr) :	181,	79	124,37	182,53				
Kuru Zemin Ağırlığı (gr) :	94,4	13	94,24	97,07				
Su Ağırlığı (gr) :	38,1	1	39,97	39,79				
Su Muhtevası (%) :	40,3	36	42,41	40,99				
Deney Öncesi B.H.A. (kn/m³) :	18,0)6	18,29	18,65				
Deney Sonrası B.H.A. (kn/m³) :	26,1	8	19,10	27,39				
Düşey Saat İlk Okuma (mm) :	200	0	2000	2000				
Düşey Saat Son Okuma (mm) :	189	2	1774	1816				
Sıkışma (mm) :	1,0	8	2,26	1,84				
Boşluk Oranı :	1,1	0	1,11	1,05				
Dovgunluk Derecesi (%)	100	00	100.00	100.00				

KESME KUTUSU

SONUÇLAF	R	
Kohezyon,	c =	0
Kayma Direnci Açısı,	Ø=	31

		σ=	100	kPa	σ=	200	kPa	σ=	300	kPa
t (dak)	t ^{1/2}	Okuma	Fark	Oturma	Okuma	Fark	Oturma	Okuma	Fark	Oturma
0,000	0,000	0	0	0,000	0	0	0,000	0	0	0,000
0,067	0,258	52	52	0,052	75	75	0,150	80	80	0,160
0,142	0,376	55	55	0,055	80	80	0,160	95	95	0,190
0,25	0,50	64	64	0,064	90	90	0,180	108	108	0,216
0,50	0,71	75	75	0,075	103	103	0,206	126	126	0,252
1,00	1,00	88	88	0,088	124	124	0,248	152	152	0,304
2,25	1,50	110	110	0,110	160	160	0,320	183	183	0,366
4,00	2,00	125	125	0,125	165	165	0,330	192	192	0,384
6,25	2,50	130	130	0,130	168	168	0,336	195	195	0,390
9	3	133	133	0,133	170	170	0,340	196	196	0,392
16	4	134	134	0,134	169	169	0,338	199	199	0,398
25	5	135	135	0,135	172	172	0,344	200	200	0,400
36	6	136	136	0,136	174	174	0,348	201	201	0,401
49	7	136	136	0,136	173	173	0,346	201	201	0,402
64	8	136	136	0,136	174	174	0,348	201	201	0,403
81	9	137	137	0,137	174	174	0,348	202	202	0,403
100	10	137	137	0,137	175	175	0,350	202	202	0,404
121	11	137	137	0,137	175	175	0,350	203	203	0,406
240	15	137	137	0,137	175	175	0,350	204	204	0,408
540	23	137	137	0,137	176	176	0,352	205	205	0,409
1440	38	138	138	0,138	177	177	0,354	205	205	0,410

a.) Silt

b.) Düzce Kili

		σ=	100	kPa	σ=	200	kPa	σ=	300	kPa
t (dak)	t ^{1/2}	Okuma	Fark	Oturma	Okuma	Fark	Oturma	Okuma	Fark	Oturma
0,000	0,000	0	0	0,000	0	0	0,000	0	0	0,000
0,067	0,258	40	40	0,040	60	60	0,120	55	55	0,110
0,142	0,376	43	43	0,043	63	63	0,126	61	61	0,122
0,25	0,50	46	46	0,046	67	67	0,134	66	66	0,132
0,50	0,71	49	49	0,049	73	73	0,146	71	71	0,142
1,00	1,00	54	54	0,054	81	81	0,162	81	81	0,162
2,25	1,50	62	62	0,062	96	96	0,192	95	95	0,190
4,00	2,00	71	71	0,071	108	108	0,216	115	115	0,230
6,25	2,50	80	80	0,080	124	124	0,248	130	130	0,260
9	3	89	89	0,089	136	136	0,272	148	148	0,296
16	4	107	107	0,107	161	161	0,322	166	166	0,332
25	5	121	121	0,121	181	181	0,362	188	188	0,376
36	6	131	131	0,131	190	190	0,380	215	215	0,430
49	7	137	137	0,137	197	197	0,394	230	230	0,460
64	8	140	140	0,140	200	200	0,400	240	240	0,480
81	9	142	142	0,142	202	202	0,404	244	244	0,488
100	10	144	144	0,144	203	203	0,406	246	246	0,492
121	11	145	145	0,145	204	204	0,408	248	248	0,496
240	15	146	146	0,146	206	206	0,412	250	250	0,500
540	23	147	147	0,147	207	207	0,414	252	252	0,504
1440	38	148	148	0,148	209	209	0,418	254	254	0,508

c.) Yalova Kili

		σ=	100	kPa	σ=	200	kPa	σ=	300	kPa
t (dak)	t ^{1/2}	Okuma	Fark	Oturma	Okuma	Fark	Oturma	Okuma	Fark	Oturma
0,000	0,000	0	0	0,000	0	0	0,000	0	0	0,000
0,067	0,258	35	35	0,035	60	60	0,120	72	72	0,144
0,142	0,376	37	37	0,037	62	62	0,124	72	72	0,144
0,25	0,50	39	39	0,039	64	64	0,128	72	72	0,144
0,50	0,71	41	41	0,041	67	67	0,134	72	72	0,144
1,00	1,00	44	44	0,044	70	70	0,140	72	72	0,144
2,25	1,50	49	49	0,049	74	74	0,148	72	72	0,144
4,00	2,00	53	53	0,053	79	79	0,158	72	72	0,144
6,25	2,50	57	57	0,057	84	84	0,168	72	72	0,144
9	3	60	60	0,060	88	88	0,176	72	72	0,144
16	4	66	66	0,066	96	96	0,192	72	72	0,144
25	5	71	71	0,071	102	102	0,204	72	72	0,144
36	6	75	75	0,075	105	105	0,210	72	72	0,144
49	7	77	77	0,077	108	108	0,216	72	72	0,144
64	8	79	79	0,079	111	111	0,222	72	72	0,144
81	9	80	80	0,080	112	112	0,224	72	72	0,144
100	10	81	81	0,081	112	112	0,224	72	72	0,144
121	11	81	81	0,081	113	113	0,226	72	72	0,144
240	15	82	82	0,082	114	114	0,228	72	72	0,144
540	23	83	83	0,083	115	115	0,230	282	282	0,564
1440	38	83	83	0,083	115	115	0,230	283	283	0,566

d.) Tüvasaş Kili

		σ=	150	kPa	σ=	300	kPa	σ=	300	kPa
t (dak)	t ^{1/2}	Okuma	Fark	Oturma	Okuma	Fark	Oturma	Okuma	Fark	Oturma
0,000	0,000	0	0	0,000	0	0	0,000	0	0	0,000
0,067	0,258	50	50	0,050	81	81	0,162	50	50	0,100
0,142	0,376	60	60	0,060	93	93	0,186	60	60	0,120
0,25	0,50	65	65	0,065	105	105	0,210	75	75	0,150
0,50	0,71	75	75	0,075	122	122	0,244	90	90	0,180
1,00	1,00	85	85	0,085	147	147	0,294	115	115	0,230
2,25	1,50	93	93	0,093	180	180	0,360	146	146	0,292
4,00	2,00	96	96	0,096	195	195	0,390	163	163	0,326
6,25	2,50	98	98	0,098	201	201	0,402	168	168	0,336
9	3	99	99	0,099	205	205	0,410	170	170	0,340
16	4	101	101	0,101	207	207	0,414	172	172	0,344
25	5	102	102	0,102	209	209	0,418	174	174	0,348
36	6	102	102	0,102	212	212	0,424	175	175	0,350
49	7	103	103	0,103	215	215	0,430	176	176	0,352
64	8	104	104	0,104	217	217	0,434	177	177	0,354
81	9	104	104	0,104	218	218	0,436	178	178	0,356
100	10	105	105	0,105	219	219	0,438	178	178	0,356
121	11	105	105	0,105	220	220	0,440	179	179	0,358
240	15	106	106	0,106	222	222	0,444	181	181	0,362
540	23	107	107	0,107	225	225	0,450	182	182	0,364
1440	38	108	108	0,108	226	226	0,452	184	184	0,368

ÖZGEÇMİŞ

Merve Ispiroğlu, 27.04.1992'da Sakarya'da doğdu. İlk, orta ve lise eğitimini Sakarya'da tamamladı. 2008 yılında Atatürk Anadolu Lisesi'nden mezun oldu. 2010 yılında başladığı Sakarya Üniversitesi İnşaat Mühendisliği Bölümü'nü 2014 yılında bitirdi. 2014 yılında Sakarya Üniversitesi Fen Bilimleri Enstitüsü'nde yüksek lisans eğitimine başladı. 2015 yılında Karasu Belediyesi'nde İnşaat Mühendisliği olarak çalışmaya başladı devamında yüksek lisans eğitimine devam etti.