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ÇOKLU SENSÖR ÇOKLU HEDEF İZLEME PROBLEMLERİ 

ÜZERİNE BİR DAĞITILMIŞ KALMAN FİLTRESİ YAKLAŞIMI 

 

ÖZET 

 

Anahtar kelimeler: Dağıtık Kalman Filtresi, Çoklu sensör sistemler, Hedef takibi, 

çoklu hedef takibi sistemleri. 

 

Doğru pozisyon ve hedeflerin sayısı hava trafik kontrol ve füze savunması için çok 

önemli bilgilerdir. Bu çalışma, çoklu sensorlü çoklu hedef takibi sistemlerindeki veri 

füzyonu ve durum tahmini problemlerı için dağıtık Kalman Filtreleme Algoritması 

sunmaktadır. Problem, radar olarak her biri kendi veri işleme birimine sahip aktif 

sensörlerin hedef alanını gözlemlemesini esas almaktadır.  Bu durumda her bir 

sistemin iz sayısı olacaktır. Çalışmada önerilen dağıtık Kalman Filtresi, başta füze 

sistemleri olmak üzere savunma sistemlerinde hareketli hedeflerin farklı sensörlerle 

izlerini kestirmek ve farklı hedefleri ayrıd etmek için kullanmaktır. Önerilen teknik, 

çoklu sensör sisteminden gelen verileri işleyen iki aşamalı veri işleme yaklaşımını 

içermektedir. İlk aşamada, her yerel işlemci kendi verilerini ve standart Kalman filtresi 

ise en iyi kestirimi yapmak için kullanılmaktadır. Sonraki aşamada bu kestirimler en 

iyi küresel bir kestirimi yapmak amacıyla dağıtık işlem modunda elde edilir. Bu 

çalışmada iki radar sistemi iki yerel Kalman filtresi ile uçakların pozisyonunu 

kestirmek amacıyla kullanılmakta, ardından bu kestirimler merkez işlemciye 

iletilmektedir. Merkez işlemci doğrulama maksadıyla bu bilgileri birleştirip küresel bir 

kestirim üretmektedir. Önerilen model uygulama olarak dört senaryo üzerinde test 

edildi. İlk senaryoda, tek bir hedef iki sensor tarafından izlenirken, ikincisinde, iki 

hedeften oluşan uzay herhangi bir sensor tarafından izlenmekte, üçüncüsünde, iki 

hedefin de herhangi bir sensor tarafından aynı anda izlenmesi, son olarak ise iki 

sensörden her birinin toplam üç hedeften herhangi ikisini izlediği senaryo göz önüne 

alınmıştır. Önerilen tekniğin performansı hata kovaryans matrisi kullanılarak 

değerlendirildi ve yüksek doğruluk ve optimal kestirim elde edildi. Uygulama 

sonuçları önerilen tekniğin yeteneğinin, yerel sensörlerce belirlenen ortak hedeflerin 

merkezi sistem tarafından ayırd edilebildiğini göstermiştir. 
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SUMMARY 

 

 

Keywords: Decentralized kalman filter, Estimation, Multi-sensor, Multi-target, Target 

tracking.  

 

For air traffic control and missile defense, the accurate position and the numbers of 

targets are the most important information needed. This thesis presents a decentralized 

kalman filtering algorithm (DKF) for data fusion and state estimation problems in 

multi-sensor multi-target tracking system. The problem arises when several sensors 

carry out surveillance over a certain area and each sensor has its own data processing 

system. In this situation, each system has a number of tracks. The DKF is used to 

estimate and separate the tracks from different sensors represent the targets, when the 

ability to track targets is essential in missile defense. The  proposed technique is a two 

stage data processing technique which processes data from multi sensor system. In the 

first stage, each local processor uses its own data to make the best local estimation 

using standard kalman filter and then these estimations are then obtained in parallel 

processing mode to make best global estimation. In this work, two radar systems are 

used as sensors with two local Kalman filters to estimate the position of an aircraft 

and then they transmit these estimations to a central processor, which combines this 

information to produce a global estimation. The proposed model is tested on four 

scenarios, firstly, when there is one target and the two sensors are tracking the same 

target, secondly, when there are two targets and any sensor is tracking one of them, 

thirdly, when there are two targets and any sensor is tracking both of them and finally, 

when two sensors are used to track three targets and any sensor tracks any two of them. 

The performance of the proposed technique is evaluated using measures such as the 

error covariance matrix and it gave high accuracy and optimal estimation. The 

experimental results showed that the proposed method has the ability to separate the 

joint targets detected by the local sensors. 

 

 

 

 

 

 



 
 

 

 

 

CHAPTER 1. INTRODUCTION 

 

 

1.1. Thesis Introduction 

 

Tracking is the process of filtering noisy measurements from one or more sensors such 

as radar, sonar or video to achieve the best possible estimation of the state of the target 

given the state and measurement model with possibly uncertain target-measurement 

associations [1, 2]. The purpose of a tracking system [3-6] is to determine the location 

or direction of a target on a neer-continous basis. The ability to track targets is essential 

in many applications. Well-established military applications include missile defense 

and battlefield situational awareness. Civilian applications are ever-growing, ranging 

from traditional applications such as air traffic control and building surveillance to 

emerging applications like supply chain management and wildlife tracking [7]. Target 

tracking is a necessary part of systems that perform functions such as surveillance, 

guidance or obstacle avoidance [1, 8]. Often the data measured by tracking devices are 

not exact and must be first filtered to improve the estimations [9]. This occurs due to 

a factor called “noise”. There are two types of noise; the measurement noise is caused 

by inaccuracies in the tracking device, and state noise is caused by turbulence or human 

error and other environmental factors [10]. Noise results from multiple factors: 

atmospheric interference, impreciseness of the radar’s measurements, turbulence 

affecting the target’s movement, and human inability to navigate in a perfectly straight 

line. Measurements taken at irregular time intervals also complicate the estimation 

process. Data-filtering target trackers are utilized in many situations to provide an 

estimation of the position and velocity of a target at the time of measurement. They 

are commonly utilized in air traffic control, navigation, and collision avoidance 

systems. Such fields have always sought improved accuracy in their predictions [8]. 
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The basic principle of tracking is to combine measurement data with mathematical 

model of how the target is likely to move [11]. The state model describes the evolution 

of the target between two consecutive time increments; typically a set of differential 

equations highlighting the mathematic model of the target was used for the target 

model. While the measurement model links the target state vector to the measurement 

vector. Such models allow the system to predict both the state vector of the target and 

the measurement based on current state of target. The prediction is then combined with 

sensor measurements to produce an estimation of the target state. 

 

There are some fundamental limitations of environment-based descriptions in a single 

source of sensor information towards to multi-sensor systems. Tracking in multi-

sensor networks has gained popularity for several major reasons: (1) As the cost of 

sensors and devices rapidly decrease, they can be deployed in large numbers to achieve 

wide area coverage and their increased density allows sensors to reside far closer to 

the objects being sensed, improving sensing quality and discrimination. (2) Dense 

sensors enable overlapping coverage, which may result in increased robustness and 

improved accuracy. (3) Diverse sensing modalities provide complementary 

information. This diversity in sensing modalities can be exploited to provide accurate 

and rich information about the target. (4) Spatial sensing diversity greatly mitigates 

the effects of obstructions on line-of-sight sensors [7, 12].  

 

Multiple-target tracking is one such application that can benefit from multiple sensing 

modalities [13]. The multiple-target tracking problem [14] extends the scenario to a 

situation where the number of targets may not be known and varies with time, and the 

measurements which have originated from targets are not known since some of them 

may be due to false alarms [15]. Multiple target tracking plays an important role in 

many areas of engineering such as surveillance [16], computer vision, network and 

computer security, and sensor networks [17]. In order to deal with more than one 

target, the multiple targets tracking system requires handling the discrete uncertainty 

of measurement origin [1]. This is known as the data association problem. For this 

purpose, several algorithms have been put forward. This includes the nearest neighbor 

(NN) algorithm which associates the measurement to the closest predicted target [18]. 
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The joint probabilistic data association (JPDA) algorithm forms a set of probabilistic 

hypotheses over every possible target-measurement association [1, 3], which 

constitute the weights of the weighted innovation expression over the set of 

measurements used for the filter update. 

 

In a multi-sensor multi-target tracking system, observations obtained by multiple 

sensors are usually sent to a fusion center for processing [19]. Data fusion is the 

process of combining information from these different sources to provide a robust and 

complete description of an environment or process of interest [20, 21].  

 

In last few decades, several researches have been developed various methods for target 

localization and tracking with different sensing modalities in sensor network. The 

Kalman Filter is a recursive process used to filter random inaccuracies in 

measurements to predict the most likely position and velocity (or any dimension based 

on position and time) of a moving target based on real-time position coordinate feeds. 

It considers the probability of a target’s position and then updates its “belief” in the 

location of the target [22]. The advent and growth of computer science in the last half 

century allowed for application of the recursive linear filtering solution presented in 

Rudolf Emil Kalman’s 1960 paper [23]. In this paper, Kalman described his new 

approach to linear filtering, a series of recursive equations that seek to minimize error 

by decreasing the covariance, increasing accuracy of the filter’s prediction as each 

position coordinate is provided by target trackers such as radars. 

 

Therefore, the aim of this study was to numerically design a system capable of 

effectively estimates the position of some targets (aircrafts) and determines if these 

targets data are representing same targets or different targets. The proposed system is 

composed of decentralized kalman filter (DKF) and multi-sensor system. The DKF is 

a two stage data processing technique which processes data from multi sensor system. 

In the first stage, each local processor uses its own data to make a best local estimation 

using standard kalman filter and then these estimations are then obtained in parallel 

processing mode to make the best global estimation. 
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1.2. Problem Statement 

 

The problem arises when several sensors carry out surveillance over a certain area and 

each sensor has its own data processing system. Assume that at one time some targets 

are detected by sensor 1 and again some targets are detected by sensor2. The question 

arises as to whether these targets detected by the second sensor are the same targets 

detected by the first sensor or new targets. Futhermore, where these targets detected in 

the first time will be in the future. 

 

1.3. Thesis Objective 

 

The main objective of the thesis is to numerically design a tracking system capable of 

estimating the positions of multi-targets and determine whether these targets tracked 

by one sensor are the same targets tracked by another sensor or new targets in a multi-

sensor system using decentralized kalman filter method. 

 

1.4. Motivation 

 

In the case of the air traffic control radar, correct knowledge of the number of targets 

present is important in preventing target collisions. In the case of the military radar it 

is important for properly assessing the number of targets in a threat and for target 

interception. 

 

1.5. Thesis Organization 

 

This thesis has been organized as follows: 

Chapter 2: provides some background such as brief information on estimation theory, 

multi-sensor systems, data fusion and general introduction to kalman filtering and 

multi-targets tracking with some historical background. 

Chapter 3: presents the material and methods used in this study. 

Chapter 4: presents and discusses the obtained results. 
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Chapter 5: this chapter provides the conclusions drawn up from the thesis. It describes 

the main outcome of this thesis, and what more can be done in the future. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

 

 

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 

 

 

2.1. Why Tracking and Prediction are Needed in a Radar 

  

Let first start by indicating why tracking and prediction are needed in radar. Assume 

fan-beam surveillance radar such as shown in Figure 2.1. For such radar the fan beam 

rotates continually through 360˚, typically with a period of 10 sec. Such radar provides 

two-dimensional information about a target. The first dimension is the target range 

(i.e., the time it takes for a transmitted pulse to go from the transmitter to the target 

and back); the second dimension is the azimuth of the target, which is determined from 

the azimuth angle, the fan beam is pointing at when the target is detected [1]. Figure 

2.2. and 2.3. show examples of fan-beam radars[1, 25].  

 

Assume that at time t=t1 the radar is pointing at scan angle ϴ and two targets are 

detected at ranges R1 and R2; see Figure 2.4. Assume that on the next scan at time 

t=t1+T, again two targets are detected; see Figure 2.4. 
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Figure 2.1. Example of fan-beam surveillance radar [11]. 

 

The question arises as to whether these two targets detected on the second scan are the 

same two targets or two new targets. The answer to this question is important for 

civilian air traffic control radars and for military radars. In the case of the air traffic 

control radar, correct knowledge of the number of targets present is important in 

preventing target collisions. In the case of the military radar, it is important for properly 

assessing the number of targets in a threat and for target interception [11].  

 

Assume two echoes are detected on the second scan. Assume that it is correctly 

determined that these two echoes are from the same two targets as observed on the 

first scan. The question then arises as to how to achieve the proper association of the 

echo from target 1 on the second scan with the echo from target 1 on the first scan and 

correspondingly the echo of target 2 on the second scan with that of target 2 on the 

first scan. 
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 Figure 2.2. Multifunction PATRIOT electronically scanned phased-array radar used to do dedicated track on 

many targets while doing search on time-shared basis [25].  

 

 

 
Figure 2.3. L-band fan-beam track-while-scan Pulse Acquisition Radar of HAWK system, which is used by 17 

U.S. allied countries and was successfully used during Desert Storm [1].   
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Figure 2.4. Tracking problem [1].  

 

If an incorrect association is made, then an incorrect velocity is attached to a given 

target. For example, if the echo from target 1 on the second scan is associated with the 

echo from target 2 of the first scan, then target 2 is concluded to have a much faster 

velocity than it actually has. For the air traffic control radar this error in the target’s 

speed could possibly lead to an aircraft collision; for a military radar, a missed target 

interception could occur.  

 

The chances of incorrect association could be greatly reduced if we could accurately 

predict ahead of time where the echoes of targets 1 and 2 are to be expected on the 

second scan. Such a prediction is easily made if we had an estimate of the velocity and 

position of targets 1 and 2 at the time of the first scan. Then we could predict the 

distance target 1 would move during the scan to scan period and as a result have an 

estimate of the target’s future position. 

 

2.2. Estimation Theory 

 

Many modern complex systems may be classified as estimation systems, combining 

several sources of (often redundant) data in order to arrive at an estimate of some 
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unknown parameters [27]. State estimation is virtually applicable to all areas of 

engineering and science. Any discipline that is concerned with the mathamatical 

modeling of its systems is a likely (perhaps inevitable) candidate for state estimation. 

This includes electrical engineering, mechanical engineering, chemical engineering, 

aerospace engineering, robotics, economics, ecology, biology, and many others. The 

possible applications of state estimation theory are limited only by the engineer’s 

imagination, which is why state estimation become such widely researched and applied 

discipline in the past few decades. State-space theory and state estimation was initially 

developed in the 1950s and 1960s, and since then there have been a huge number of 

applications [28]. 

 

State estimatiıon is interesting to engineers for at least two reasons: 

- Often, an engineer needs to estimate the system states in order to implement 

state-feedback controller. For example, the electrical engineer needs to 

estimate the winding current of a motor in order to estimate its position. The 

aerospace engineer needs to estimate the attitude of a satellite in order to 

control its velocity. The ecnomist needs to estimate economic growth in order 

to try to control unemployment. The medical doctor needs to estimate blood 

sugar levels in order to control heart and respiration rates. 

- Often, an engineer needs to estimate the system states because those states are 

interesting in their own rights. For example, if an engineer wants to measure 

the health of an engineering system, it may be necessary to estimate the internal 

condition of the system using a state estimation algorithm. An engineer might 

want to estimate satellite position in order to more intelligently schedule future 

satellite activities. An economist might want to estimate economic growth in 

order to make political point. A medical doctor might want to estimate blood 

sugar levels in order to evaluate the health of a patient. 

 

The application contexts can be deterministic or probabilistic and the resulting 

estimations  are required to have some optimality and reliability properties. Estimation 

is often characterized as prediction, filtering or smothing, depending on the intended 

objectives and the available observational information. Prediction usually implies the 
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extension in some manner of the domain of validity of the information. Filtering 

usually refers to the extraction of the true signal from the observations. Smoothing 

usually implies the elimination of some noisy or useless component in the observed 

data. Optimal estimation always guarantees closed-loop system stability even in the 

event of high estimator gains [27].  

 

State estimation is critical for a number of reasons: Accurate state estimates make 

control much easier, and allow better control actions to be selected [28]. In addition, 

state estimation is a super set of diagnosis, so faults and undersirable state can be 

detected to allow remedial actions to be taken. Finally, state estimation can provide 

prognostic information, identifying components or systems that are likely to fail soon 

and should be repaired or replaced. A key aspect of state estimation is that it is rarely 

certain. There is inevitably some ambiguity in the sensor data received from a system, 

and it is of great use to have a state estimation that represents the uncertainty explicitly 

[29, 30]. This is for several reasons: First, a probability distribution representing the 

uncertainty can summarize all the telemetry received by the state estimator so far, 

making it easier to keep the state estimation up to date. Secondly, this probabilistic 

representation is of use in decision making by allowing the effects of planned future 

actions to be evaluated in states that have low probability but potentially catastrophic 

outcomes, rather than only in the most likely state. Finally, probabilistic information 

is of use for prognostics and maintenance, providing information about components 

that could have failed, or are degraded but not yet faulty [26].  

 

One of the prime contributing factors to the success of the present-day estimation and 

control theory is the ready availability of high-speed, large-memory digital computers 

for solving the equations [25]. 
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2.3. Multi-Targets Tracking 

 

Target tracking is the process of filtering noisy measurements from one or more 

sensors to achieve the best possible estimation of the state of the target [27]. The 

purpose of a tracking system is to determine the location or direction of a target on a 

neer-continous basis. The ability to track targets is essential in many application [3]. 

Well-established military applications include missile defense and battlefield 

situational awareness. Civilian applications are ever-growing, ranging from traditional 

applications such as air traffic control and building surveillance to emerging 

applications like supply chain management and wildlife tracking. 

 

The basic principle of tracking is to combine measurement data with mathematical 

model of how the target is likely to move. A model is a set of differential equations 

that describes, for instance, the relations between position, velocity and acceleration. 

The model is used to calculate, to predict, where the target will be in the future. The 

prediction is then combined with sensor measurements to produce an estimate of the 

target state. The reason of using a model is to reduce the influence of the measurement 

noise. It also makes it possible to predict where the target will be in between 

measurements and thereby creating more of a smooth track rather than just estimates 

at discrete time points [31]. A complete tracking system must be able to deal with more 

than one target. This fact adds to the complexity of the system. Since function dealing 

with associating measurements to the right tracks, track initiation and deletion has to 

be implemented. Multiple-target tracking is one such application that can benefit from 

multiple sensing modalities [32]. Multiple-target tracking play an important role in 

many areas of engineering such as surveillance, computer vision [33], network and 

computer security [34], and sensor network [35]. The multiple-target tracking problem 

extends the scenario to a situation where the number of targets may not be known and 

varies with time. The measurements which have originated from targets are not known 

since some of them may be due to false alarms. We are now requierd to estimate the 

positions of an unknown number of targets, based on observations of the targets 

corrupted by noise, with the possibilities that there may be missed detections  and that 

observations  may be false alarms due to clutter [36]. 
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2.4. Multi-sensor System 

 

In a single sensor system, one sensor is selected to monitor the system or its 

surrounding environment [37, 38]. However, many advanced and complex 

applications require large number of sensors, rendering single sensor systems 

inadequate. A multi-sensor system employs several sensors to obtain information in a 

real world environment full of uncertainty and change [39]. This means various types 

of sensors and different sensor technologies are employed, where some of these 

sensors have overlapping measurement domains. Multiple-sensors provide more 

information and hence a better and more precise understanding of a system. Moreover, 

a single sensor is not capable of obtaining all the required information reliably at all 

times in varying environments. Furthermore, as the size and complexity of a system 

increases, so does the number and diversity of sensors required to capture its 

description. These are the primary motivating issues behind multi-sensor systems. 

There is a considerable amount of literature on the limitations of single sensor systems 

and the merits of multi-sensor systems [40-42]. Multi-sensor systems have found 

applications in process control, robotics, navigation, aerospace and defense systems. 

 

The advantages of multi-sensor systems include the followings [43]: 

- Failure of a single sensor does not mean complete failure of the entire system 

because the other snsors can continue to be used. Overlap between sensor 

domains gives the system some degree of redundancy. Consequently, when 

sensor failure occurs, the system under goes graceful degradation and not 

catastrophic failure. 

- Different types of sensors can be used to give a more complete picture of the 

environment. Thus, different sensor technologies are utilized in the same 

application to provide improved system performance. 

- Erroneous readings from a single sensor do not necessarily have a drastic effect 

on the system since information about the same environment can be obtained 
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from other sensors. This property is particularly reinforced when there is 

extensive overlapping of sensor domains. 

- Geographical diversity is provided by information from sensors placed at 

different positions in the sensed environment. 

- Sensor selection is more flexible and effective as several sensors can be 

selected to monitor one specific task in a system. Thus, cheaper, redundant and 

complimentary sensors can be chosen as opposed to a single expensive sensor, 

while retaining the same reliability and increasing survivability [44]. 

The disadvantages of multi-sensor systems: 

- Need to solve the data association problem where we determine the 

correspondence between targets in different sensors [45]. 

- Need to determine how the data is going to be sent between sensors. Will the 

data be collected at a centralized node and processed there? Processed at each 

sensor individually and results transmitted to centralized node? Distributed 

fusion to remove the need for a centralized node? [46]. 

 

2.5. Sensor Data Fusion 

 

Target tracking addresses the problem of combining sensed data and target history to 

provide accurate and timely knowledge of the location of one or more moving object 

[7].  

 

In order for the advantage of multi-sensor systems to be realized, it is essential that the 

information provided by the sensors is interpreted and combined in such a way that a 

reliable, complete and coherent description of the system is obtained. This is the data 

fusion problem. Multi-sensor fusion is the process by which information from many 

sensors is combined to yield an improved description of the observed system [47]. 

Fusion methods can either be quantitative, qualitative or hybrid of both. Quantitative 

methods are based on numerical techniques while qualitative ones are based on 

symbolic representation of information. Examples of quantitative methods include 

statistical decision theory, identification techniques and probabilistic theory. 
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Qualitative methods include expert systems, heuristics, behavioral and structural 

modeling [48].  

 

2.5.1. Fusion architectures 
 

The taxonomy of fusion architectures corresponding to different fusion algorithms can 

be reduced to three general categories: centralized, hierarchical and decentralized [49]. 

In this section only introductory notes and illustrative diagrams are presented.  

 

 2.5.1.1. Centralized architectures 

 

A fully centralized multi-sensor system comprises a control processor with direct 

connections to all sensor devices. Each of these devices obtains data about the 

environment which is forwarded to the central processor. The central processor is 

responsible for collecting readings from the sensor devices and processing the 

information obtained. Figure 2.1. illustrates a centralized fusion system. 

 

Conceptually, the algorithms used are similar to those for single sensor systems and 

hence relatvely simple. Resource allocation is easy because the central processor has 

an over all view of the system. The central processor makes decisions based on the 

maximum possible information from the system. Since the central processor is fully a 

ware of the information from each sensor and its activities there should be no 

possibility of task or fusion duplication. Although centralized multi-sensor systems are 

an improvement on single sensor systems, they have a number of disadvantages. This 

include severe computational loads imposed on the central processor, the possibility 

of catastrophic failure(due to failure of the central node), high communication 

overheads and inflexibility to changes of application or sensor technology [27]. 
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Figure 2.5. Fusion Centralized Architecture 

 

2.5.1.2. Hierarchical architectures 

 

A typical hierarchical architecture is shown in Figure 2.2.  the principle of a hierarchy 

is to reduce the communication and computational problems of centralized systems by 

distributing data fusion tasks amongst a hierarchy of processors. In a hierarchy there 

is still a central processor acting as a fusion center. Processors constituting local fusion 

centers, locally process information and send it to the central processor. Extensive use 

of such systems has been made in robotics and surveillance applications. In fact, most 

advanced system today are generally variants of hierarchical structures. Although 

these systems have the advantage of distributing the computational load, they still 

retain some of the disadvantages associated with the centralized model. In addition to 

these problems, they have more implementational drawbacks which include algorithm 

requirements for sensor level tracking and data fusion, and vulnerability to 

communication bottlenecks [50,51]. 

 

2.5.1.3. Decentralized architectures 

 

Most of the drawbacks of centralized and hierarchical architectures are resolved by 

using a fully decentralized architecture[52,52]. The advantage of fully decentralized 

systems provide the basis and motivation for the estimation and tracking algorithm 
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developed in this thesiss. Consequently. Such systems are formally defined and 

discussed in chapter (3). 

 

 

Figure 2.6. Fusion Hierarchical Architecture. 

 

3.6. Kalman Filter 

 

Kalman filtering, also known as linear quadratic estimation (LQE), is an algorithm that 

uses a series of measurements observed over time, containing statistical noise and 

other inaccuracies, and produces estimates of unknown variables that tend to be more 

precise than those based on a single measurement alone, by using Bayesian 

inference and estimating a joint probability distribution over the variables for each 

timeframe. The filter is named after Hungarian Emigre Rudolf E. Kalman, 

although Thorvald Nicolai Thiele [54, 55] and Peter Swerling developed a similar 

algorithm earlier. Richard S. Bucy of the University of Southern California contributed 

to the theory, leading to it often being called the Kalman–Bucy filter. Stanley F. 

Schmidt is generally credited with developing the first implementation of a Kalman 

filter. He realized that the filter could be divided into two distinct parts, with one part 

for time periods between sensor outputs and another part for trajectory estimation for 

the Apollo program leading to its incorporation in the Apollo navigation computer. 

This Kalman filter was first described and partially developed in technical papers by 

Swerling (1958), Kalman (1960) [56] and Kalman and Bucy (1961). 

https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Statistical_noise
https://en.wikipedia.org/wiki/Bayesian_inference
https://en.wikipedia.org/wiki/Bayesian_inference
https://en.wikipedia.org/wiki/Joint_probability_distribution
https://en.wikipedia.org/wiki/Rudolf_E._K%C3%A1lm%C3%A1n
https://en.wikipedia.org/wiki/Thorvald_Nicolai_Thiele
https://en.wikipedia.org/wiki/Peter_Swerling
https://en.wikipedia.org/wiki/University_of_Southern_California
https://en.wikipedia.org/wiki/Stanley_F._Schmidt
https://en.wikipedia.org/wiki/Stanley_F._Schmidt
https://en.wikipedia.org/wiki/Project_Apollo
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The Kalman filter has numerous applications in technology. A common application is 

for guidance, navigation and control of vehicles, particularly aircraft and spacecraft. 

Furthermore, the Kalman filter is a widely applied concept in time series analysis used 

in fields such as signal processing and econometrics. Kalman filters also are one of the 

main topics in the field of robotic motion planning and control, and they are sometimes 

included in trajectory optimization. The Kalman filter has also found use in modeling 

the central nervous system's control of movement. Due to the time delay between 

issuing motor commands and receiving sensory feedback, use of the Kalman filter 

provides the needed model for making estimates of the current state of the motor 

system and issuing updated commands [57]. Kalman filters have been vital in the 

implementation of the navigation systems of U.S. Navy nuclear ballistic missile 

submarines, and in the guidance and navigation systems of cruise missiles such as the 

U.S. Navy's Tomahawk missile and the U.S. Air Force's Air Launched Cruise Missile. 

It is also used in the guidance and navigation systems of the NASA Space Shuttle and 

the attitude control and navigation systems of the International Space Station[58-60]. 

 

The kalman fılter theory, in its various forms, has become a fundamental tool for 

analyzing and solving a broad class of estimation problems.  

 

2.6.1. Reasons for using the Kalman Filter 

 

Since the steady-state Kalman filter is identical to the Benedict–Bordner filter, the 

question arises as to why we should use the Kalman filter. The benefits accrued by 

using the Kalman filter are summarized as [61-63]: 

- Provides running measure of accuracy of predicted position needed for weapon 

kill probability calculations; impact point prediction calculation 

- Permits optimum handling of measurements of accuracy that varies with n; 

missed measurements; nonequal times between measurements. 

- Allows optimum use of a priori information if available. 

- Permits target dynamics to be used directly to optimize filter parameters. 

https://en.wikipedia.org/wiki/Guidance,_navigation_and_control_(engineering)
https://en.wikipedia.org/wiki/Time_series
https://en.wikipedia.org/wiki/Signal_processing
https://en.wikipedia.org/wiki/Econometrics
https://en.wikipedia.org/wiki/Trajectory_optimization
https://en.wikipedia.org/wiki/U.S._Navy
https://en.wikipedia.org/wiki/Ballistic_missile_submarine
https://en.wikipedia.org/wiki/Ballistic_missile_submarine
https://en.wikipedia.org/wiki/Tomahawk_missile
https://en.wikipedia.org/wiki/U.S._Air_Force
https://en.wikipedia.org/wiki/AGM-86_ALCM
https://en.wikipedia.org/wiki/NASA
https://en.wikipedia.org/wiki/Space_Shuttle
https://en.wikipedia.org/wiki/Attitude_dynamics_and_control
https://en.wikipedia.org/wiki/International_Space_Station
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- Addition of random-velocity variable, which forces Kalman filter to be always 

stable. 

 

In the real world the target will not have a constant velocity for all time. There is 

actually uncertainty in the target trajectory, the target accelerating or turning at any 

given time. Kalman allowed for this uncertainty in the target motion by adding a 

random component to the target dynamics. 

 

2.6.2. The continuous time kalman filter 

 

The continuous time Kalman filter is used when the measurements are continuous 

functions of time. Linear, time-varying state models are commonly expressed 

through state-space methods. Intrinsic to any state model are three types of variables: 

(1) input variables, (2) state variables, and (3) output variables, all generally 

expressed as vectors. The state model identifies the dynamic and interaction of these 

variables. The aforementioned variables will now be defined more formally [27]. 

 

Input-Output Variables: The input and output variables characterize the interface 

between the physical system and the external world. The input reflects the 

excitations delivered to the physical system, whereas the output reflects the signal 

returned to the external world. 

 

State Variables: The state variables represent meaningful physical variables or 

linear combinations of such variables. For example, the state vector is a set of n 

variables, whose values describe the system behavior completely. 

The diagram in Figure 4.1. illustrates the general composition of a linear, time 

varying state model. 
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Figure 2.7. the general composition of a linear, time varying state model [27]. 

 

From the figure, the following first-order, degree-n vector differential equation can 

be written [27]: 

 

ẋ(t) = F( t ) x( t) + G( t ) u( t)                                                                              (2.1) 

 

y( t) = H( t) x( t) + D( t ) u( t)                                                                              (2.2) 

 

with initial state:  

x(to)=xo 

 

where x( t) ϵ Rm is the state vector ( vector of the state variables), u( t)ϵ Rm is the 

system input vector, and y( t) ϵ Rm is system output vector. The matrices F(t), G(t), 

H(t), and D(t) have entries which are piecewise continuous, real valued functions of 

time. 

 

Consider now an n-dimensional signal x(t), which is referred to as the state of the 

system or simply the state vector. (The state vector is not a measurable quantity, 

analogous to the one-dimensional input signal of the Wiener problem.). Then, the 

following time-varying linear system driven by white noise will be assumed to 

represent the process [27, 42, 87]: 

 

𝐝 𝐱(𝐭)

𝐝𝐭
= F(t)x(t) + G(t)w(t)                                                                                                                             (2.3) 
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where  x( t) = a  state  vector  of  dimension  n x  1, which  represents  the  error 

model states, F( t ) = an n x n matrix, which describes the system and error model 

dynamics, G( t ) = an n x r  matrix, often called the noise gain matrix [this matrix 

scales the whi e-noise inputs and sums them with the desired combinations of the 

states x( t )], which represents the effect  of the input dynamics and w( t ) = a vector 

of stochastic inputs of dimensions r x 1 (or zero-mean white-noise process). 

The solution of the first-order time-varying vector differential equation (2.3) is 

given by: 

 

x(t, to) = ∅(t, to)x(to) + ∫∅(t, τ)G(τ)

t

to

w(τ)dτ                                                         (2.4) 

 

where the state transition matrix ∅( t, t0 ) is a solution of the homogeneous 

matrix linear differential equation 

 

𝐝 ∅(t,to)

𝐝𝐭
= F(to)∅(t, to)                                                                                                                                          (2.5) 

 

with the initial condition 

∅(t, to)  =I 

where I is the identity matrix. 

 

Suppose now there are available m measurements that are linearly related to the 

state and are corrupted by additive white noise: 

 

z( t) = H ( t ) x( t) + v( t)                                                                                            (2.6) 

Equation (2.5) states that the output, which is a measurable quantity, is an m-

dimensional vector z(t). This observation vector is composed of a known linear 

combination of the states vector with an m-dimensional noise vector v( t). The m x n 

observation matrix H (t) represents the linear relationship that exists between the 

state and the observation   vector. Assuming the prior statistics of the noise processes 

to be white, Gaussian, zero mean processes, then the following apply: 



22 
 

  
 

E{w(t)}=E{v(t)}=0 , E{x(0)}= µx(0) 

 

E{w(t)wT(τ)}=Q(t)δ(t-τ) 

 

E{v(t)vT(τ)}=R(t)δ(t-τ) 

 

E{v(t)wT(τ)}=0  

 

Where E{ }= expectation operator, 

 

µx(0) = mean of x(0), 

 

δ(t)= Dirac delta function, 

 

Q(t)= an r x r matrix, known as the covariance matrix of the state model uncertainties 

(system noise strength). 

R(t)= an m x m matrix, known as the covariance matrix of the observation noise ( 

measurement  noise strength). 

It should be noted from the above equations that the white-noise sequences w( t) 

and v( t) are uncorrelated. 

Given the above model, the best estimate of the state vector x(t) according to a linear 

combination of the measurements z(t) and the present state estimates x̂(t) so as to 

minimize the performance index 

 

E{[x(t)- x̂(t)]T[x(t)- x̂(t)]}=minimum                                                                      (2.7) 

 

The solution to this problem is the well-known Kalman-Bucy filter [1, 41, 42]. The 

equation for the optimal estimator: 

 

𝐝 x̂(t)

𝐝𝐭
= F(t)x̂(t) + K(t)[z(t) − H(t)x̂(t)]                                                                                              (2.8) 
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The optimal Kalman filter estimates of the state x̂(t) are obtained from a weighted 

combination of predictions based upon the system model and corrections based upon 

the measurements. This optimal estimator, Equation (2.8) is based on the correct 

information of initial conditions, noise covariance and system. 

 

The Kalman gain matrix K (t) is an n x m matrix of the coefficients, which is 

determined by solving a nonlinear differential equation of the Riccati type. Now, 

define an error covariance matrix P(t) by [27,42]: 

 

P(t)=E{[x(t)- x̂(t)]T[x(t)- x̂(t)]}                                                                                (2.9) 

 

The nonlinear matrix Riccati differential equation, also called the covariance equation, 

is [27]: 

 

𝐝 P(t)

𝐝𝐭
= F(t) P(t) + P(t)FT(t) - P(t)HT (t) R-1(t) H(t) P(t) + G(t) Q(t) GT(t)              (2.10) 

Where: 

P(to)= cov{x(to,x̂(to)]} 

 

The propagation of the error covariance matrix P( t) is independent of measurements; 

it depends only on the system dynamics F(t) and system noise Q(t). Consequently, if 

H (t) = [0], no measurements are available, and Equation (4.10) reduces to the linear 

covariance equation: 

 

Ṗ(t) = F(t) P(t) + P(t) FT (t) + G(t) Q(t) GT (t) 

Furthermore, if v(t) in Equation (4.6) were identically zero, then the covariance 

matrix equation (4.10) would be singular, since R(t ) would be a null matrix. 

The filter generates an x (estimate of the state) which minimizes the variances on the 

diagonal of P(t). The optimal Kalman gain matrix is determined from the auxiliary 

relation: 
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K(k)= P(t)HT (t) R-1(t) 

 

The properties of the fil1er that make it useful as an estimation model can be 

summarized as follows [27]:  

- At a given time t, the filter generates an unbiased estimate x of the state vector 

x; that is, the expected value of the estimate is the value of the state vector at 

time t.  

- The estimate is a minimum-variance estimate.  

- The filter is recursive, meaning it does not store past data.  

- The filter is linear or it must be linearized 

- In applying the Kalman filtering theory, we make the following model 

assumptions: 

- The state vector x(t) exists at the time t in a random environment (i.e., system 

dynamics) that is Gaussian with zero mean and covariance matrix Q(t).  

- The state vector, which is unknown, can be estimated using observations or 

data samples that are functions of the state vector. 

- An observation made at a point in time t is corrupted by uncorrelated, Gaussian 

noise, having a zero mean and covariance matrix R(t). 

 

2.6.2. The discrete Kalman Filter 

 

In 1960, R.E. Kalman published his famous paper describing a recursive solution to 

the discrete-data linear filtering problem [56]. Since that time, due in large part to 

advances in digital computing; the Kalman filter has been the subject of extensive 

research and application, particularly in the area of autonomous or assisted navigation. 

A very "friendly" introduction to the general idea of the Kalman filter can be found in 

Chapter 1 of [64], while a more complete introductory discussion can be found in [65], 

which also contains some interesting historical narrative. More extensive references 

include [66], [64], [67], [68], and [69]. 
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2.6.2.1. The process to be estimated 

 

The Kalman filter addresses the general problem of trying to estimate the state X ∈

Rn of a first-order, discrete-time controlled process that is governed by the linear 

difference equation:  

 

X(k + 1) = F(k)X(k) + BU(k) + W(k)                                                                                       (2.1) 

 

with a measurement  z ∈ Rn that is:  

 

z(k) = H(k)X(k) + V(k)                                                                                                     (2.2) 

 

The random variables W(k) and V(k) represent the process and measurement noise 

(respectively). They are assumed to be independent (of each other), white, and with 

normal probability distributions  

P(W) = N(0, Q)                                                                                                      (2.3) 

 
P(V) = N(0, R)                                                                                                       (2.4) 

 

The n × n matrix F in the difference equation (2.1) relates the state at time step k to 

the state at step k+1, in the absence of either a driving function or process noise. 

The n × l  matrix B relates the control input U ∈ Rn to the state X. The m × n matrix 

H in the measurement equation (2.2) relates the state to the measurement z (k). 

 

2.6.2.2. The computational origins of the filter 

 

We define  X̂−(k) ∈ Rn (note the "super minus") to be our a priori state estimate at 

step k given knowledge of the process prior to step k, and  X̂(k) ∈ Rn to be our a 

posteriori state estimate at step k given measurement z(k). We can then define a priori 

and a posteriori estimate errors as 

 

e−(k) = X(k) − X̂ −(k)  and 

 

(1.1) (1.1) (1.1) (1.1) 
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e(k) = X(k) − X̂(k) 

 

The a priori estimate error covariance is then  

 

P−(k) = E[e−(k)e−(k)T]                                                                                                    (2.5) 

 

and the a posteriori estimate error covariance is  

 

P(k) = E[e(k)e(k)T]                                                                                                          (2.6) 

 

In deriving the equations for the Kalman filter, we begin with the goal of finding an 

equation that computes an a posteriori state estimate X̂(k) as a linear combination of 

an a priori estimate X̂ −(k)   and a weighted difference between an actual 

measurement z(k) and a measurement prediction  H(k)X̂ −(k)   as shown below in 

(2.7).  

X̂(k) = X̂  −(k)  + K(z(k) − H(k)X̂ −(k))                                                                                    (2.7) 

 

The difference (z(k) − H(k)X̂ −(k)) in Equation (2.7) is called the measurement 

innovation, or the residual. The residual reflects the discrepancy between the predicted 

measurement H(k)X̂ −(k) and the actual measurement z(k). A residual of zero means 

that the two are incomplete agreement. 

 

The n × m matrix K in Equation (2.7) is chosen to be the gain or blending factor that 

minimizes the a posteriori error covariance (2.6). This minimization can be 

accomplished by first substituting(2.7)  into the above definition for e(k), substituting 

that into Equation (2.6), performing the indicated expectations, taking the derivative 

of the trace of the result with respect to K, setting that result equal to zero, and then 

solving for K. One form of the resulting K that minimizes (2.6) is given by Equation 

(2.8). 

K(k) = P−(k)H(k)TH(k)P−(k)H(k)T + R)−1                                                      (2.8) 

           =
P−(k)H(k)T

H(k)P−(k)H(k)T+R(k)
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Looking at Equation (2.8) we see that as the measurement error 

covariance R(k) approaches zero, the gain K weights the residual more heavily. 

Specifically, 

 

 lim
R(k)→0

K(k) = H−1(k) 

 

On the other hand, as the a priori estimate error covariance P−(k) approaches zero, the 

gain K weights the residual less heavily. Specifically, 

 

lim
P(k)→0

K(k) = 0 

 

Another way of thinking about the weighting by K is that as the measurement error 

covariance R(k) approaches zero, the actual measurement z(k) is "trusted" more and 

more, while the predicted measurement H(k)X̂ −(k)    is trusted less and less. On the 

other hand, as the a priori estimate error covariance P−(k) approaches zero the actual 

measurement z(k) is trusted less and less, while the predicted 

measurement H(k)X̂ −(k)    is trusted more and more. 

 

2.6.2.3. The probabilistic origins of the filter 

 

The justification for Equation (2.7) is rooted in the probability of the a priori 

estimate X̂ −(k)     conditioned on all prior measurements z(k) (Baye's rule). For now 

let it suffice to point out that the Kalman filter maintains the first two moments of the 

state distribution, 

 

E[X(k)] = X̂(k) 

 

E[(X(k) − X̂(k))(X(k) − X̂(k))T] = P(k) 
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The a posteriori state estimate (2.7) reflects the mean (the first moment) of the state 

distribution it is normally distributed if the conditions of (2.3) and (2.4) are met. The 

a posteriori estimate error covariance (2.6) reflects the variance of the state distribution 

(the second non-central moment). In other words, 

 

 P(X(k)|z(k)) = N(E[X(k)], E[(X(k) − X̂(k))(X(k) − X̂(k))T]) 

                          = N(X̂(k), P(k)) 

 

2.6.2.4. The discrete Kalman Filter algorithm 

 

The Kalman filter estimates a process by using a form of feedback control: the filter 

estimates the process state at some time and then obtains feedback in the form of 

(noisy) measurements. As such, the equations for the Kalman filter fall into two 

groups: time update equations and measurement update equations. The time update 

equations are responsible for projecting forward (in time) the current state and error 

covariance estimates to obtain the a priori estimates for the next time step. The 

measurement update equations are responsible for the feedback i.e. for incorporating 

a new measurement into the a priori estimate to obtain an improved a posteriori 

estimate. 

 

The time update equations can also be thought of as predictor equations, while the 

measurement update equations can be thought of as corrector equations. Indeed the 

final estimation algorithm resembles that of a predictor-corrector algorithm for solving 

numerical problems as shown below in Figure 2.7. 

 

http://cs.brown.edu/stc/education/course95-96/Kalman-Filters/kalman.htm#6154
http://cs.brown.edu/stc/education/course95-96/Kalman-Filters/kalman.htm#6161
http://cs.brown.edu/stc/education/course95-96/Kalman-Filters/kalman.htm#6324
http://cs.brown.edu/stc/education/course95-96/Kalman-Filters/kalman.htm#7391
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Figure 2.8. The ongoing discrete Kalman filter cycle. 

 

The time update projects the current state estimate ahead in time. The measurement 

update adjusts the projected estimate by an actual measurement at that time. Notice the 

resemblance to a predictor- corrector algorithm. 

 

The specific equations for the time and measurement updates are presented below 

in Table 2.1. and Table 2.2. 

Table 2.1. Time updates equations 

 X̂(k + 1) = F(k)X̂(k) + BU(k)                                                                                          (2.9) 

P−(k + 1) = F(k)P(k)FT(k) + Q(k)                                                                                         (2.10) 

 

Table 2.2. Measurement updates equations 

K(k) = P−(k)HT(k)(H(k)P−(k)HT(k) + R(k))−1                                                         (2.11) 

X̂(k) = X̂  −(k)  + K(z(k) − H(k)X̂ −(k))                                                                        (2.12) 

P(k) = (1 − K(k)H(k))P−(k)                                                                                                     (2.13) 

http://cs.brown.edu/stc/education/course95-96/Kalman-Filters/kalman.htm
http://cs.brown.edu/stc/education/course95-96/Kalman-Filters/kalman.htm
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The first task during the measurement update is to compute the Kalman gain, K(k). 

Notice that the equation given here as (2.11) is the same as (2.8). The next step is to 

actually measure the process to obtain z(k), and then to generate an a posteriori state 

estimate by incorporating the measurement as in (2.12). Again (2.12) is 

simply (2.7) repeated here for completeness. The final step is to obtain an a posteriori 

error covariance estimate via equation (2.13). 

 

After each time and measurement update pair, the process is repeated with the previous 

a posteriori estimates used to project or predict the new a priori estimates. This 

recursive nature is one of the very appealing features of the Kalman filter it makes 

practical implementations much more feasible than (for example) an implementation 

of a Weiner filter which is designed to operate on all of the data directly for each 

estimate. The Kalman filter instead recursively conditions the current estimate on all 

of the past measurements.  

 

2.7.  Literature Review 

 

In last few decades, several researches have been developed for target localization and 

tracking with different sensing modalities in sensor network. 

 

In 1986, Kuo-Chu Chang, Chee-Yee Chong and Yaakou Bar-Shalom from the 

Department of Electrical Engineering and Computer Science in Connecticut university 

in United States [70] used the joint probabilistic data association (JPDA) algorithm to 

track multiple targets in a cluttered environment. In their work, each node first 

performs the tracking functions with the JPDA algorithm using the local sensor 

measurements and sends the processed results to other nodes. The receiving node then 

fuses the information from other nodes with its local information to arrive at a better 

estimate.  A distributed version of the JPDA algorithm, which takes into account the 

fusion problem, is derived by adopting the linear fusion algorithm of Chong [71] and 

Speyer [72]. 

In 1990, Carlson N.A from Integrity Systems, a small aerospace engineering firm 

located in Winchester [73] introduced a decentralized scheme named federated kalman 

http://cs.brown.edu/stc/education/course95-96/Kalman-Filters/kalman.htm#7496
http://cs.brown.edu/stc/education/course95-96/Kalman-Filters/kalman.htm#6549
http://cs.brown.edu/stc/education/course95-96/Kalman-Filters/kalman.htm#7496
http://cs.brown.edu/stc/education/course95-96/Kalman-Filters/kalman.htm#7496
http://cs.brown.edu/stc/education/course95-96/Kalman-Filters/kalman.htm#7060
http://cs.brown.edu/stc/education/course95-96/Kalman-Filters/kalman.htm#7496
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filter based on the square root of the kalman filter. The federated filter yields estimates 

that are globally optimal, or conservatively suboptimal, depending upon the master 

filter processing rate.    

 

In 1991 and 2001, Leonid I.Perlovsky from Nichols research corporation and Oxford 

university [3, 74] also, applied a previously developed a hierarchical Maximum 

Likelihood Adaptive Neural System (MLANS) to the problem of tracking multiple 

objects in heavy clutter. This is a type of neural network that incorporates a model-

based concept, leading to greatly increased learning efficiency compared to 

conventional, nonparametric neural networks [75]. This neural network has a 

hierarchical, two-layer structure: the bottom, signal modeling layer and the top, 

classification layer.  In this approach the MLANS performs a fuzzy classification of 

all objects in multiple frames into multiple classes of tracks and random clutter [74]. 

 

In 1992, Daniel Avitzour from ELTL electronics industries in Israel [76] developed 

maximum-likelihood (ML) procedures for multi-target tracking use expectation-

maximization (EM) for data association. The algorithm is applied to multi-target 

trajectory estimation of constant-velocity targets from direction measurements taken 

by a moving sensor. He assumed that the targets are  independent, their number and  

probability of detection are known, an unknown number of targets can be handled by 

performing ML estimation for different target numbers and selecting the number 

leading to greatest likelihood . The sensor moves in a known trajectory in the plane, 

taking a snapshot of the scene at prescribed instants. As a result, the measurement from 

a target is the direction from sensor to target, contaminated by additive Gaussian noise 

of zero mean and known variance. Using these measurements the estimates of the 

target position and velocities are achieved.  

 

In 2001, Rickard Karlsson and Fredrik Gustafsson from the department of electrical 

engineering in Linkoping university in Sweden [77] introduced a Bayesian data 

association method (Monte Carlo data association) based on the particle filter idea and 

the joint probabilistic data association(JPDA) hypothesis calculations for multi-target 

tracking in a cluttered environment. A comparison between the JPDA and the 
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probabilistic multi-hypothesis tracking method is also made. They have assumed time-

invariant target models, and they used the same Bayesian approach as in [78], for the 

estimation. In addition, they extend the idea and introduce hypothesis calculations 

according to the JPDA method. In the proposed method the clutter or false alarm model 

is assumed uniformly distributed in the volume and the number of false alarms for a 

given time is assumed to be Poisson distributed and the RMSE is used to describe the 

performance. As a result, they reached that for non-linear problems and problems 

where the noise distribution is highly non-Gaussian, the proposed algorithms may 

increase the overall tracking performance. 

 

In 2006, N.Shrivastava, R.Mudumbai, U.Madhow and S.Suri from the department of 

computer science in California University [79] identified the fundamental limits of 

tracking performance that can be achieved with binary proximity sensors. They 

designed a geometric algorithm using an Occam’s razor approach to compute a 

piecewise linear path that approximates the trajectory within this fundamental limit of 

accuracy. 

 

In 2009, Songhwai Oh, Stuart Russell, and Shankar Sastry from the department of 

electrical engineering and computer sciences in California University [80] developed 

Markov Chain Monte Carlo (MCMC) data association method for solving a real-time 

multi-target tracking problems in a cluttered environment. In statistics, MCMC 

methods are a class of algorithms for sampling from a probability distribution based 

on constructing a Markov Chain that has the desired distribution as its equilibrium 

distribution. The state of the chain after a number of steps is then used as a sample of 

the desired distribution. The quality of the sample improves as a function of the 

number of steps [82]. The presented method is tested to achieve two technical results. 

The first is a theorem showing that, when the number of targets is fixed, single-scan 

MCMC data association is a fully polynomial randomized approximation scheme for 

joint probabilistic data association (JPDA). And the second technical result is the 

complete specification of the transition structure for a multi-scan version of MCMC 

that includes detection failure, false alarms, and track initiation and termination [80].  
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In 2011, Sheldon Xu and Anthony Chang from Cornell University [82] presented an 

approach for training a function for dynamically adjusting Kalman filter measurement 

error covariance, in attempt to tune a Kalman filter to favor better suited tracking 

algorithms, and penalize ill-suited ones, during runtime. Unfortunately, they have 

mixed results. Though their method increased tracking accuracy in one type of 

environment, it was matched or outperformed by the baseline CamShift algorithm in 

most cases. Thus, they were only partly successful in increasing robustness over 

CamShift. 

 

In 2014 Michael Beard,Ba Tuong Vo and Ba-Ngu Vo from the defence science and 

technology organization and the department of electrical and computer engineering in 

Australia [83] developed aprincipled Bayesian solution to the multi-target tracking 

problem based on the theory of random finite sets and implementation based on the 

generalised labelled multi-Bernoulli filter. 

 

In 2014, K. Meier and A. Desai from Ira A. Fulton College of Engineering and 

Technology [84] implemented a Kalman filter to track the range, range rate, bearing, 

and bearing rate of a maneuvering aircraft with unknown varying accelerations using 

sensors that only measure the bearing angle and the range of the aircraft 

. 



 
 

 

 

 

CHAPTER 3. MATERIALS AND METHODS 

 

 

This chapter discusses the concepts of decentralized Kalman filtering with parallel 

processing capabilities, for use in distributed multi-sensor multi-target systems and 

how to use the DKF to estimate and separate the tracks from different sensors represent 

the targets. Also, we will explain our MATLAB implementation and the experiments 

we did.   

 

3.1. Decentralized Kalman Filter  

 

It is a well-known fact that the conventional kalman filter provides the best sequential 

linear, unbiased estimate, or globally optimal estimate, when noise processes are 

jointly Gaussian. However, in practice the use of a large centralized kalman filter may 

not be feasible due to such factors as: (1) computational burden, (2) high data rate and 

(3) accuracy specifications. As a result decentralized or parallel versions of standard 

kalman filter began to receive increasing attention in recent years [27,85-90]. 

 

The study of decentralized filters began as an attempt to reduce throughput. Figure.1 

illustrates the decentralized or parallel filter architecture. As the figure shows the 

decentralized kalman filtering can be defined as two stage data processing techniques 

which process data from multi sensor system [91]. In the first stage, each local 

processor uses its own data to make a best local estimate. These estimates are then 

obtained in parallel processing mode. The local estimates are then fused by a master 

filter to make a best global estimate of the state vector of the master system. In this 

design, a number of sensor-dedicated local filters run in parallel, the outputs being 

fused into a master filter, yielding estimates that are globally optimal. As a result, 

the filtering duties are divided so that each measurement is processed in a local 

filter, which contains only those states that are directly relevant to the measurement. 
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The state estimates and covariances of a given local filter are then weighted and 

combined in the master filter, whose own state is the fusion of all the local filter 

states. This hierarchical filtering structure provides some important improvements: 

(1) increasing the data throughput by local parallel processing, (2) reducing the 

required bandwidth for information transmission to a central processor, and (3) 

allowing for a more fault-tolerant system design [27]. 

 

A decentralized Kalman filtering system consists of a bank of N local subsystems, 

each local filter generating estimates of the full state vector. All decentralized Kalman 

filtering mechanizations require some processing at the local level, that is, at the 

subsystem level [86]. Depending on the type of application, these local processed 

data may then be sent to a central processing unit (also referred to as a master 

filter, fusion center, or collating unit) that combines the local results in order to 

generate a global or central result. The decentralized mechanization discussed here 

is the most attractive one, since it require no inter processor communications and 

no communication from the collating filter back to the local filters (that is, 

bidirectional communication). In other words, the local Kalman filters are stand 

alone, in that each of them generates estimates based solely on its own available 

raw data. This allows the local filters to run in parallel at a faster rate [27]. 

 

 

Figure 3.1. The decentralized kalman filter architecture 
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3.2. Problem Formulation 

 

The standard discrete-time linear target dynamic models of the tracking systems 

associated with the i-th local sensor are defined as [27] (p.351): 

 

Xi(k) = Fi(k)Xi(k − 1) + Bi(k)Ui(k) + Gi(k)Wi(k);    i = 1,… , N                                      (3.1) 

 

Where Xi(k) is the state vector corresponding to the i-th sensor at time k; it consist of 

all the parameters that are estimated by the filter , Fi is a known transition matrix ; it 

transforms a given state at time (k-1) to another state at time k, Ui(k) is an input control 

matrix with gain Bi, Wi(k) is the white gaussian process noise with zero mean and 

covariance Qi(k), Gi(k) is the noise gain matrix for the i-th sensor and N is the total 

distributed  sensors in the tracking system.  

 

The measurements of sensor i from the target at time k can also be performed according 

to the model below [27] (p.351): 

 

zi(k) = Hi(k)Xi(k) + Vi(k)       ;      i = 1,… . . , N                                                                        (3.2) 

Where zi(k) is the measurement or observation vector at time k recived by the i-th 

sensor, Hi(k) is the measurement or observation matrix  corresponding to the i-th 

sensor. It relates the components of the true state vector to the measurements. 

Moreover,the measurement matrix is computed at each measurement time and contais 

the partial derivatives of the measurement equations and finally Vi(k) is the 

measurement noise associated with zero mean and known covariance Ri.  

 

The true state of the system Xi(k) cannot be directly observed ,and the kalman filter 

(KF) provides an algorithm to determine an estimate X̂i(k) . Kalman filter algorithm 

involves two stages: prediction and measurement update[92] (p.347). The standard 

local kalman filter equations for the prediction stage are given by equation (3.3) and 

(3.4) [27] (p.350). 
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 X̂i(k|k − 1) = Fi(k)X̂i(k − 1|k − 1) + Bi(k)Ui(k)                                                                 (3.3) 

 

Pi(k) = Fi(k)Pi(k − 1|k − 1)Fi
T(k) + Gi(k)Qi (k)Gi

T(k)                                                         (3.4) 

 

And the measurement update equations are given by equation (5) and (6) [27] (p.350). 

 

 X̂i(k|k) = X̂i(k|k − 1) + Ki(k)[zi(k) − Hi(k)X̂i(k|k − 1)]                                                   (3.5) 

 

Pi(k|k) = Pi(k|k − 1) − Ki(k)Hi(k)Pi(k|k − 1)                                                                         (3.6) 

 

Where Pi(k) is the error  covariance  matrix corresponding to the i-th sensor at time k 

. that is, this matrix represents the covariance of the difference between the true state 

vector Xi(k) and the estimated state vector X̂i(k) [27] (p.97): 

 

Pi(k) = E([Xi(k) − X̂i(k)][Xi(k) − X̂i(k)]
T)                                                                     (3.7) 

 

In minimizing the diagonal elements of Pi(k) ,each of the filter estimation rms errors 

is minimized. The error sources may be initial uncertainties in  X̂i(0), the process Wi(k) 

, or the measurements noise Vi(k).  

And K(k) represent the kalman gain which can be calculated using equation (3.8) [27] 

(p.121): 

 

Ki(k) = Pi(k|k − 1)Hi(k). [Hi(k)Pi(k|k − 1)Hi
T(k) + Ri(k)]

−1                                         (3.8) 

 

The global target dynamic model and measurement model of the central tracking 

system are defined by equation (9) and (10) below [27] (p.352): 

 

 X(k) = F(k)X(k − 1) + G(k)W(k)                                                                                            (3.9) 

 

Zi = Ci(k)X(k) + Vi(k) ;    i = 1,… . , N                                                                                   (3.10) 

 

Where : 
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 X(k) = [X1
T(k), X2

T(k), …… , XL
T(k)]T  

 

F(k) = block diag(F1(k), F2(k), … , FL(k)) 

 

G(k) = block diag(G1(k), G2(k),… , GL(k))  

 

W(k) = [W1
T(k),W2

T(k),… ,WL
T(k)]T 

 

Zi(k) = [z1
T(k), z2

T(k), …… , zLi
T (k)]T 

 

Ci(k) = [C1
T(k), C2

T(k),…… , CLi
T (k)]T 

 

Vi(k) = [V1
T(k), V2

T(k),…… , VLi
T(k)]T 

Where L is the total number of the target in the surveillance region, Li are the targets 

seen by the i-th sensor and Ci(k) is the measurement or observation matrix for the 

globel filter which is calculated using equation (3.11). 

 

Ci(k) = Hi(k)Di(k)                                                                                                           (3.11) 

 

Di(k) Is a time varying matrix which is used to associate the local kalman filter with 

the central processor and for track to track correlation in the fusion Algorithm [93]. 

Di(k) Reflect which of the targets are observed by the i-th sensor [27]. The sensor 

fusion algorithm based on track to track correlation has recently been considered in 

[93]. 

 

From all the above equations the central or global equations for the prediction stage 

and the measurement update can be defined as below: 

 

P(k) = F(k)P(k − 1|k − 1)FT(k) + G(k)Q(k)GT(k)                                                             (3.12) 

 

X̂(k|k − 1) = F(k)X̂(k − 1|k − 1)                                                                                   (3.13) 
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Ki(k) = P(k|k − 1)Ci(k). [Ci(k)P(k|k − 1)Ci
T(k) + Ri(k)]

−1                                            (3.14) 

 

M(k) = [ ∑ Di
TN

i=1 (K)Di(k) ]
−1                                                                                       (3.15) 

 

P(k|k) = [I − ∑ Ki(k)Ci(k).M(k)N
i=1 ]P(k|k − 1)                                               (3.16) 

 

A(k) = [I − ∑Ki(k)Ci(k).M(k)

N

i=1

] F(k)                                                                                   (3.17) 

 

PHI = P(k|k)Di
T(k) Pi

−1(k|k)                                                                                           (3.18) 

 

SI(k|k) = A(k)X̂(k − 1|k − 1)  − ∑ PHI(k)N
i=1 X̂i(k − 1| − 1) . M(k);                             (3.19) 

X̂(k|k) = SI(k|k) + ∑PHIi(k)X̂i(k|k).M(k)

N

i=1

                                                                        (3.20) 

3.2.1. Fusion Algorithm 

 

In this approach, the local sensor performs its own data association and estimation for 

those targets seen by it. A time-varying matrix Di(k) used to associate the local 

processors with the central processor and for track to track correlation is defined in our 

fusion algorithm. The Di(k) arises in decentralized filtering which indicates the targets 

are tracked by each individual local sensor. The fusion algorithm in the central 

processor is applied to combine the local sensor track results with this matrix. Such a 

matrix is defined as follows: 

 

Di(k) = [Di
jk
] ;     j = 1,2,… , Li  , k = 1,2,… , L                                                                (3.21) 

 

where is an n by n block that indicates which targets are seen by the i-th sensor, and 

the n is the order of state vector for each target. For example, the jk-th block is set to 

be the identity matrix if the k-th target is seen by this sensor. Figure 3.2. show the basic 

decentralized kalman filter flow diagram. 
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Figure 3.2. The decentralized Kalman filter flow diagram [94]. 

 

3.3. MATLAB Implementation 

 

The algorithm is implemented using MATLAB program. In this work, two radar 

systems are used as sensors with two local kalman filters to estimate the position of an 

aircrafts and then they transmit these estimates to a central processor, which combines 

this information to produce an optimal estimate and separate the tracks from different 

sensors represent the targets. The proposed model is tested four times as follow: 

 

3.3.1. Two sensors tracking the same target 
 

Firstly, the probosed model are tested when their is one target in the sensors region, 

and any one of the sensors tracked the same target as shown in figure 3.3. when the 

two sensor are tracking the same constant-velocity target. The target state space is 

defined in terms of 2D cartesian position and velocity vectors. 
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X = [X Y Ẋ Y ̇ ]T 

With initial conditions: 

Target1# [0km          5km          0.4km/s      -0.2km/s] 

And the sampling interval is chosen to be 1 second  

Fi(k) = [

1 0 
0     1      

    
1   0
0    1

0 0 
0     0      

    
1   0
0    1

], Hi(k) = [
1 0
0 1

    0 0
    0 0

]  

and the standard deviation of system noise is 0.03km. The white Gaussian process and 

measurement noise is generated using a random number generator function where the 

standard deviation of measurement noise is 0.3km for position error and 0.03km/s for 

velocity error for both sensors. 

 

 

Figure 3.3. The two sensors tracking the same target. 

 

3.3.2. Two sensors tracking two different targets 
 

Secondly, the probosed model are tested when their are two targets in the sensors 

region, and any one of the sensors tracked one of the targets as shown in Figure 3.4.  

when the two sensor are tracking two constant-velocity targets. The targets state space 

is defined in terms of 2D cartesian position and velocity vectors. 
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X = [X Y Ẋ Y ̇ ]T 

With initial conditions: 

Target1# [0km          5km          0.4km/s      -0.2km/s] 

Target2# [0km          2km          0.4km/s       0.2km/s] 

And the sampling interval is chosen to be 1 second  

 

Fi(k) = [

1 0 
0     1      

    
1   0
0    1

0 0 
0     0      

    
1   0
0    1

],       Hi(k) = [
1 0
0 1

    0 0
    0 0

] 

 

and the standard deviation of system noise is 0.03km. The white Gaussian process and 

measurement noise is generated using a random number generator function where the 

standard deviation of measurement noise is 0.3km for position error and 0.03km/s for 

velocity error for both sensors. 

 

Figure 3.4. The two sensors tracking two different targets. 

 

3.3.3. Two sensors tracking same two targets 
 

Theirdly, the probosed model are tested when their are two targets in the sensors 

region, and any one of the sensors tracked both of them as shown in Figure 4.5. When  
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the two sensor are tracking two constant-velocity targets. The targets state space is 

defined in terms of 2D cartesian position and velocity vectors. 

X = [X Y Ẋ Y ̇ ]T 

With initial conditions: 

Target1# [0km          5km          0.5km/s      -0.2km/s] 

Target2# [0km          1km          0.5km/s       0.2km/s] 

And the sampling interval dt is chosen to be 1 second 

 

Fi(k) =

[
 
 
 
 
 
 
 
1 0   
0 1   

0 0   
0 0   

1 0   
0 1   

0 0
0 0

0 0
0 0

   1 0
   0 1

   0 0
   0 0

   1 0
   0 1

0 0
0 0

   0 0
   0 0

   1 0
   0 1

   0 0
  0 0

0 0   
0 0   

0 0
0 0

   0 0
   0 0

   1 0
   0 1]

 
 
 
 
 
 
 

,       Hi(k) = [

1 0    
0 1    

0 0
0 0

    0 0    
    0 0    

0 0
0 0

0 0    
0 0    

1 0
0 1

    0 0
    0 0

    0 0
    0 0

] 

 

and the standard deviation of system noise is 0.03km. The white Gaussian process and 

measurement noise is generated using a random number generator function where the 

standard deviation of measurement noise is 0.3km for position error and 0.03km/s for 

velocity error for both sensors. 
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Figure 3.5. The two sensors tracking same two targets. 

 

3.3.4. Two sensors tracking three different targets 

 

Finally, the probosed model are tested when their is three targets in the sensors region, 

and any one of the sensors tracked two  targets as shown in Figure 3.6. The target state 

space is defined in terms of 2D cartesian position and velocity vectors. 

X = [X Y Ẋ Y ̇ ]T 

With initial conditions: 

Target1: [0km          5km          0.5km/s      -0.1km/s] 

Target2: [0km          1km          0.5km/s      0.1km/s] 

Target3: [0km          3km          0.5km/s      -0.1km/s] 

 The  sampling interval dt is chosen to be 1 second.         

                                                  Fi(k) =

[
 
 
 
 
 
 
 
1 0   
0 1   

0 0   
0 0   

1 0   
0 1   

0 0
0 0

0 0
0 0

   1 0
   0 1

   0 0
   0 0

   1 0
   0 1

0 0
0 0

   0 0
   0 0

   1 0
   0 1

   0 0
  0 0

0 0   
0 0   

0 0
0 0

   0 0
   0 0

   1 0
   0 1]
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and the standard deviation of system noise is 0.03 km. The white Gaussian process and 

measurement noise is generated using a random number generator function where the 

standard deviation of measurement noise is 0.3 km for position error and 0.03 km/s for 

velocity error for both sensors. 

 

 

Figure 3.6. Two sensors tracking three different targets. 

 



 
 

 

 

 

CHAPTER 4. RESULTS AND DISCUSSION 

 

 

This chapter present and discusses the results of the experiments we explained in the 

previous chapter. We designed and analyzed a decentralized Kalman filter technique 

for use in estimating the position of an aircrafts and separate the tracks from different 

sensors represent the targets. The achieved numerical simulations results are as follow: 

 

4.1. The Results Of Two Sensors Tracking The Same Target 

 

The experiment results for the first model when the two sensors are tracking the same 

constant-velocity target as we discussed in (3.3.1) are shown in Figure 4.1.-4.2. and 

4.3.  

 

We can see that the central kalman filter estimates as shown on Figure 4.3. is more 

accurate than the  local kalman filter estimates for sensor1 and sensor2 which are 

represented by green and red lines in Figure 4.1. and Figure 4.2. respectively.We can 

see also that the central processor detected that the data came from sensor1 and sensor2 

representing same target which is our main problem. 



47 
 

  
 

 

Figure 4.1. Tracking results of sensor 1 for one target state. 

 

 

Figure 4.2. Tracking results of sensor 2 for one target state. 
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Figure 4.3. Tracking results of the central processor for one target state. 

 

4.2. The Results Of Two Sensors Tracking Two Different Targets 

 

The experiment results for the second model when the two sensors are tracking two 

constant-velocity targets as we discussed in (3.3.2) are shown on Figure 4.4-4.5and 

4.6. We can see  that the central processor as shown on figure 4.6 has the ability to 

analyze and seperate the data coming from sensor1 (target1) and sensor2 (target2) 

Figure 4.4. and Figure 4.5. to determine that it is  representing two different  targets.  
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      Figure 4.4. Tracking results of sensor 1 when the two sensors are tracking two different targets 

 

 

Figure 4.5. Tracking results of sensor 2 when the two sensors are tracking two different targets 



50 
 

  
 

 

       Figure 4.6. Tracking results of the central processor when the two sensors are tracking two different targets. 

 

4.3. The Results Of Two Sensors Tracking Same Two Targets 

 

Figure 4.7-4.8. and 4.9. shows the experiment results for the theird model when the 

two sensors are tracking  the same two constant-velocity targets as discussed on section 

(3.3.3). We can see that sensor1 tracked target1 and target2 as in Figure 4.7. and 

sensor2 also tarcked  target1 and target2 as in Figure 4.8. which meen that the two 

targets are tracked by the two sensors in the same time and that is detected by the 

central processor as shown on Figure 4.9.  
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Figure 4.7. Tracking results of sensor 1 when the two sensors are tracking same two targets. 

 

 

Figure 4.8. Tracking results of sensor 2 when the two sensors are tracking same two targets. 
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         Figure 4.9. Tracking results of the central processor when the two sensors are tracking same two targets. 

 

4.4. The Results Of Two Sensors Tracking Three Different Targets 

 

The experimental results in Figure 4.10.-4.11. and 4.12. shows that the proposed 

algorithm gived globel positions estimates as shown in Figure 4.12. comparing to  the 

local filter estimates as in Figure 4.10. and Figure 4.11. and it have the ability to 

differentiate between targets. We can see that sensor1 tracked target1 and target2 when 

sensor2 tarcked each of target2 and target3 which meen that target2 are tracked by the 

two sensors in the same time and that is detected by the central processor as shown on 

Figure 4.12.  
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Figure 4.10. Tracking results of sensor 1 when the two sensors are tracking three different targets. 

 

 

Figure 4.11. Tracking results of sensor 2 when the two sensors are tracking three different targets. 
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Figure 4.12. Tracking results of the central processor when the two sensors are tracking three different targets. 

 

From all the above results we can see that the central processor has the ability to 

separate between the data representing same targets and the data representing different 

targets. In addition, when the target tracked by the two sensors at same time, the central 

processor give better estimate than the single track by one sensor. 

 

 

 

 

 

 

 

 



 
 

 

 

 

CHAPTER 5. CONCLUSION AND SUGGESTED FUTURE 

WORK 

 

5.1. Conclusions 

 

This thesis has presented the decentralized kalman filter algorithm for multi-sensor 

multi-target tracking problems. It is used to defferentiate the tracking objects whether 

it representing same target or different targets which is a real problem in many 

applications such as air traffic control and missile defense. Numerical simulations 

and previous results showed that:  

- Decentralized kalman filter algorithm could be successfully used to help in 

tracking targets using multi-sensors systems.  

- The proposed algorithm gived globel positions estimates comparing to the 

local filter estimates  

- Proposed algorithm have the ability to differentiate between targets. 

- Decentralized kalman filter algorithm succeeded to differentiate between 

targets in the states of single target, two different targets tracked by differnet 

sensors, two different targets tracked by both of the sensors and  three targets 

tracked by two sensors with one target common between them. 

- This decentralization make the ability to test a single sensor performance easy, 

since the output of each local sensor filter can be tested. The sensor have low 

performance can be removed from the sensor network befor it affects the total 

filter output.  

- Also this algorithm distribute the computational load and targets information 

among many sensors. 

- When the target tracked by the two sensors at same time the central processor 

give better estimate than the single track by one sensor. 

 



56 
 

  
 

5.2. Suggested Future Work 

 

In the future work we can consider the following points: 

- Design the hardware part of the proposed work and test it in the real life. 

- Test the proposed algorithm when a random sensor is tracking multi-targets 

provided that some of the targets are common between all the sensors taking 

into account the speed and acceleration expectations. 

- study the effect of increasing the number of sensors and targets in our system 

to the over all accurecy. 

- Study the ability of the proposed algorithm to detect and classify  the tracked 

targets type . 
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