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  SUMMARY 

 

 

Keywords: Software-Defined Networking, Anomaly Detection, Machine Learning, 

Testbed 

 

In recent years, the Software-Defined Networking (SDN) approach has emerged with 

the aims of making computer networks more flexible. Although the SDN application 

on Google's internal network demonstrates the usefulness of the Software-Defined 

Network approach and the promise of future technology, security is a vital concern 

that cannot be ignored. In the SDN architecture, the attacker can now attack the 

network from any of the three planes because the Data Plane is separated from the 

Control Plane. Machine learning algorithms are methods used to detect attacks 

and intrusions on computer networks and can also be used for SDN. 
 

In this study, a new testbed has been implemented for anomaly detection in SDN. The 

testbed formed has several components such the POX controller, an IDS module 

implemented in POX, and a trained machine learning algorithm. The system examines 

flow statistics sent by OpenFlow switches and decides whether they are benign or 

malicious. In case a malicious flow has been detected, the controller will send a flow 

modification message, instructing the switch to block the attacking host from 

communicating in the network. To validate the testbed, a ping flood attack has been 

launched and malicious flows were detected and successfully blocked. Experimental 

results show that using machine learning, flow-based anomaly detection in SDN can 

be realized. 
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 YAZILIM TANIMLI AĞLARDA MAKİNE ÖĞRENİMİ                                     

İLE ANOMALİ TESPİTİ 

  
 

 

  ÖZET 

 

 

Anahtar kelimeler: Yazılım Tanımlı Ağ, Anomali Tespiti, Makine Öğrenimi, Test       

Düzeneği.  

 

Son yıllarda, bilgisayar ağlarını daha esnek bir hale getirmeyi amaçlayan Yazılım 

Tanımlı Ağ yaklaşımı ortaya çıkmıştır. Google’ın iç ağındaki Yazılım tanımlı ağ 

uygulaması, Yazılım Tanımlı Ağ (SDN) yaklaşımının kullanışlılığını ve gelecek 

vadeden bir teknoloji olacağını kanıtlamasına rağmen güvenlik konusu göz ardı 

edilemeyecek hayati bir sorundur. SDN mimarisinde, Veri Düzlemini Kontrol 

Düzleminden ayrıldığı için saldırganlar artık üç düzlemden herhangi birinden ağa 

saldırabilirler. Makine öğrenimi algoritmaları, bilgisayar ağlarına yapılan saldırıları ve 

izinsiz girişleri tespit etmede kullanılan yöntemlerdir ve Yazılım Tanımlı Ağlar için de 

kullanılabilir.  

 

Bu çalışmada Yazılım Tanımlı Ağlarda anomali tespiti için yeni bir test ortamı 

oluşturulmuştur. Oluşturulan test ortamının POX denetleyici, POX içerisinde 

geliştirilmiş bir IDS modülü ve eğitilmiş makine öğrenimi algortiması gibi çeşitli 

bileşenleri vardır. Sistem OpenFlow anahtarı tarafından gönderilen akış istatistiklerini 

inceleyerek bu akışa ait yararlı ya da zararlı kararını verir. Zararlı bir akış tespit edilmesi 

durumunda Yazılım Tanımlı Ağ denetleyici saldırganın ağ ile iletişiminin kesilmesi 

için anahtara akış düzenleme mesajı gönderir. Geliştirilen test ortamının doğrulanması 

için ping saldırısı uygulandı ve zararlı akışların sistem tarafından başarıyla tespit 

edilerek engellendiği görüldü. Elde edilen deneysel sonuçlar, makine öğrenimini 

kullanarak, Yazılım Tanımlı Ağlarda  akış tabanlı anomali tespitinin 

gerçekleştirilebileceğini göstermektedir. 

 
 



 
 

 
 

CHAPTER 1. INTRODUCTION 

 

 

                                                                                                                                                              

The networking world is trying to catch up with the other branches of IT such as the 

Server Virtualization world. Networking folks are working hard to make networks 

more programmable. Computer networks are difficult to manage. They are made up 

of a lot of devices ranging from routers and switches to middleboxes. Unfortunately, 

nowadays, these devices are being managed on a box-by-box bases and network 

outages are mostly the direct results of human errors in configuring the networking 

devices [1], [2], [3], [4], [5]. Moreover, there is no platform that would allow us to 

have a single view of the network and can help us manage all of its components. 

These are among the reasons why Software Defined Networking (SDN) is 

happening.  

 

SDN is a promising technology offering many possibilities. Vendors such as Cisco, 

HP, Juniper, etc. are greatly benefiting from the innovations that SDN is offering. In 

fact, Cisco has even revised its Certification track to include SDN related topics [6].                                    

 

SDN is made up of three layers or planes: The Infrastructure Layer (Data Plane), The 

Control Layer (Control Plane), and the Application Layer (Application Plane) [7].  

 

 

 

 

 

  

Figure 1.1. SDN Architecture [7] 
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With the decoupling of the Data Plane from the Control Plane, the Data Plane is now 

made up of devices that solely do forwarding. Through this decoupling, SDN 

promises that users would be able to buy switches from any vendor and use them in 

their networks.                                                                                                          

The Control Plane is made of one or more controllers which control one or more 

switches in the Data Plane. The Control Plane allows us to have a general view of the 

network from a single point, something traditional networks can’t generally do.  

Using protocols such as OpenFlow, the Controller and switches exchange messages 

back and forth.  

We would like to pinpoint a misconception here. Because the intelligence is removed 

from the switches in the Data Plane, a lot of people think that all packets have to go 

through the Controller in the Control Plane. The fact is that, only the first packet goes 

to the Controller. After that first ICMP request and reply, the flows are then cached 

into the switch’s flow table for a limited time and therefore subsequent packets don’t 

have to go through the Controller.   

 

Figure 1.2. shows us the results of a host named h1 pinging another host named h2. 

As we can see, the first ping took 1.38ms however the subsequent pings took far less 

time. This is due to the fact that the first ping goes through the controller. The flow is 

then cached into the switch’s flow table and subsequent pings are forwarded directly 

without the need to forward them to the controller.                                                                                                                                                                                                         

 

Figure 1.2. Ping Demo using an SDN Network 
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Through APIs (REST API for example), application developers can develop 

applications for the Application Plane. The Application Plane is believed to be what 

will make SDN worth it.  

With the blessings of SDN comes a great challenge. Decoupling the Controlling 

Plane from Data Plane has its advantages; however, it opens up the doors to attacks. 

SDN networks can be attacked in many different ways. The control plane is 

considered as the brain of SDN and presents the risk of a single point of failure. If an 

attacker manages to compromise the controller, then the whole network is 

compromised. Despite this fact, it is mentioned that the benefits of a centralized 

control plane far outweigh the risk of single point of failure [8]. The single point of 

failure issue can be alleviated by ensuring high availability systems. To tackle this 

and other issues, security risks related to SDN could be mitigated through 

encryption, deep packet inspection, access control lists, etc [9].   

SDN Security will be discussed in great details in Chapter 2: Background and 

Literature Review.  

Machine learning techniques have long existed and used in different areas of 

computer science. With the emergence of SDN, researchers thought about 

implementing machine learning algorithms in this new technology. In a research 

paper titled knowledge-defined networking [10], the authors described experiments 

whereby data is gathered from hosts, processed using machine learning, and used the 

results to manage the SDN controller configuration and forwarding. A joint effort 

between Cisco and Ericsson resulted in a framework named MILA. Using time series 

data in OpenDaylight, they presented a demo on how to apply machine learning in 

SDN and generate meaningful data from it [11].  

From a security perspective, a lot of effort has been done as well to demonstrate the 

usefulness of machine learning in SDN anomaly detection. The Poseidon project was 

a joint effort between CyberReboot and Lab41 [12]. Their goal was to investigate 

how machine learning could provide automation and security to SDN. Poseidon was 
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made up of three parts: A monitor module that interacts with the controller through a 

northbound API, a main module that updates the network through what it learned 

from the machine learning classifications, and a database to store models. Poseidon 

and similar efforts have proven that machine learning could be useful for intrusion 

detection in SDN.  

 

 

 

Figure 1.3. Poseidon Stack [12] 
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1.1.  Problem Statement 

Networks have always been expensive, difficult to manage, and take longer to be 

implemented. This creates a lot of frustration in companies and governments. SDN 

has the goal of changing that. By decoupling the Control Plane from the Data Plane, 

a lot of opportunities are created. However, with the blessings of SDN comes a 

burden. As we open up the network, naturally attack vectors increase and security 

becomes a real concern. Networks are now being targeted from any of the three 

planes.  

1.2.  Thesis Goals  

Our goal is to create a flow-based anomaly detection system in SDN using machine 

learning algorithms. We will use an algorithm that would allow us to automatically 

detect and stop attacks. 

 

1.3.  Thesis Structure 

In Chapter 2, we will talk about the History of SDN and SDN Security in details. We 

will also discuss Machine Learning in SDN and do some Literature Review. Chapter 

3 will discuss the methodology used in this Thesis. In Chapter 4, we will discuss the 

Implementation and Results of our research. Finally, we will conclude the Thesis in 

Chapter 5. 



 

 

 

 

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 

 

A little history and literature review will be discussed in this chapter. 

2.1. History of SDN  

Software Defined Networking (SDN) might seem at first as a completely new 

technology. However, it is a series of many efforts trying to make the network more 

flexible. Feamster et. al. [13] mentioned that some of the ideas of SDN date back to 

at least 20 years ago or even more. The authors also mentioned that some ideas in 

SDN root back to active networking, which had the goal of making the network 

programmable.  

One of SDN’s goals is Central Network Control. The origin of central network 

control can be traced back to at least the 1980s in the AT&T’s Network Control Point 

(NCP) [14], [15]. They were geared towards Telephone Networks. The goal was to 

separate the Control Plane from the Data Plane. NCPs allowed AT&T to deploy 

services on demand and introduce new services rapidly. NCPs are still in use today.  

In the 1990s, the concept of programmability in networks and network virtualization 

started emerging with various technologies such as Active Networks, Switchlets, and 

VINI.  

As defined by [16], “An active network is a network in which the nodes are 

programmed to perform custom operations on the messages that pass through the 

node.”. Middleboxes (Firewalls, proxies, etc.) are some examples of Active 

Networks. Active Networking was used by researchers to introduce the concept of 

programmable networks. It came out when the internet was taking off. The 

motivation behind active networks was to accelerate innovations as it took around 10 

years from prototyping and testing to the deployment of new technologies. Somehow 
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SDN has the same motivation as active networking: Accelerate innovation and 

deployment in computer networks. Funding from agencies such as DARPA 

encouraged researchers to continue their research in Active Networking [17], [18]. 

However, network operators were frustrated with their inability to deploy new 

technologies in the network. Some of the reasons why active networking couldn’t 

succeed was because of timing. There was no killer app or a clear application for 

active networks as there is for SDN (OpenFlow). Besides, unlike SDN, Active 

Networking put too much focus on the end user as a programmer instead of the 

network operator [19]. Moreover, hardware ASICs were also expensive. Some of the 

contributions of Active Networking include programmable functions and network 

virtualization. Notable projects in Active Networks include ANTS [20], SwitchWare 

[21], Smart Packets [22], Open Signaling [23], and Tempest (Switchlets) [24]. 

Let us now talk about network virtualization. As mentioned earlier, SDN has some of 

its roots from network virtualization as well. Network Virtualization is the ability to 

create logical networks that are separated from the underlying physical hardware 

infrastructure [25].  Network Virtualization allows us to create different logical 

topologies by using the same devices. Probably the most popular Network 

Virtualization Technology is Virtual LANs (VLANs), which are still in use today. 

Nowadays however, some of the most popular Network Virtualization technologies 

come from vendors such as Oracle, VMWare, Nicira, and Citrix. Other network 

virtualization technologies that existed earlier include Switchlets [24], and VINI.   

VINI (Virtual Network Infrastructure) came into existence in 2006. The idea was to 

build a virtual network infrastructure that would allow experimenters and researchers 

to create their own virtual networks on top of the same underlying physical topology. 

VINI also had the goal of bridging the gap between lab or small-scale experiments 

and live deployment [26].  

The History of Central Network Control was mostly in the context of Phone 

Networks and Circuit-Switched Networks. This discussion would be incomplete 

without introducing the History of Packet-Switched Networks.  
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In 2003, the FORCES protocol was standardized by the IETF [27], [28]. The 

standard defined protocols that would allow multiple Control Elements (CE) to 

control Forwarding Elements (FE). Again, we see the concepts of separating the 

Control Plane from the Data Plane, and Controllers controlling forwarding devices 

which exist in SDN here. The challenge for the protocol was that it required 

standardization, adoption, and deployment of new hardware (Which are the same 

problems of previous projects).  

In 2004, the Routing Control Platform (RCP) came into existence [29]. RCP used the 

already existing BGP routing protocol to control the routing decisions made by BGP 

speaking routers. The main limitation of RCP was that it could handle only BGP 

speaking routers, while in reality a network operator might want to control a much 

wider range of routing protocols.    

Ethane came out in 2007 [30] and offered a network architecture for the enterprise.  

In an Ethane network, all connectivity is controlled through a central server called 

the Domain Controller (DC). Clients joining the network for the first time have to 

connect to the DC first and be authenticated before getting access to other resources 

in the network. The drawback was that Ethane required custom switches that 

supported the protocol.  

The ultimate goal was to find a solution that would work with existing protocols, yet 

it wouldn’t require customizing the hardware. The answer was OpenFlow. OpenFlow 

[31] was developed by a group of engineers at Stanford University in 2008, with the 

first version being released in 2009 and updates in 2012 and 2015 [32] .  Currently, 

OpenFlow is being managed by the Open Networking Foundation (ONF), a non-

profit organization funded by companies such as Google, Facebook, HP, Microsoft, 

etc. [33]. OpenFlow has gotten so popular that it is being used in the live networks of 

some of these giant companies. In fact, in a presentation in 2012, Google’s Urs 

Hoelzle described how Google was using the OpenFlow protocol to run its internal 

WAN. They first started to run OpenFlow enabled switches concurrently with 
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traditional switches, and then ended up removing all traditional network switches and 

their internal WAN is currently completely OpenFlow enabled [32].  

      

 

 

         

 

 

 

 

Figure 2.1. Google’s OpenFlow WAN [32] 

2.2. SDN Security Overview 

One of the hot topics in SDN is security. Many researchers and companies believe 

that Security will be one of the keys to SDN’s success. Secure Data, Control, and 

Application planes will pave the way to the wide adoption of SDN among companies 

and educational institutions.  

With SDN, the network is being opened up as the “brain” of the network is being 

centralized at the Control Plane. SDN networks are also programmable. Opening up 

the network and introducing the notion of programmability in SDN is a double-edged 

sword, as both bring in new opportunities as well as increases attack vectors.  As 

illustrated in Figure 2.2., SDN networks could be attacked from any layer [34]. 
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Figure 2.2. Attacks in SDN [34] 

 

At the Application Plane, programmable applications will be introduced. Failure in 

securely developing those applications could potentially lead to attacks. 

The Control Plane is naturally a huge target as it controls the whole network. One of 

the issues is that the Controller could be a single point of failure, as in, if the 

controller fails then the whole network fails as well. By compromising the controller, 

the attacker could change the network traffic behavior [35]. Therefore, a highly fault-

tolerant Control Plane is needed [36],[37]. 

Last but not least, an attacker can compromise the data plane and be able to sniff the 

packets that go through the network.  

All of the above-mentioned facts lead to the need of securing Software Defined 

Networks.    
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2.3. Network Anomaly Detection: A Machine Learning Perspective 

 

Dr. Dhruba Kumar Bhattacharyya (Tezpur University) and Dr. Jugal Kumar Kalita 

(University of Colorado) wrote an excellent book titled: “Network Anomaly 

Detection: A Machine Learning Perspective” [38]. We wrote a review of the book. 

The authors mentioned that attack patterns might not be easy to find; this is where 

machine learning comes in. Because machine learning detection techniques are based 

on behavior and not specific patterns, they give us the ability to detect even unknown 

attacks. Some Machine Learning techniques used to detect network anomalies are: 

Supervised Learning, Unsupervised Learning, Probabilistic Learning, Soft 

Computing, and Combination Learners. From a machine learning perspective, 

network anomaly detection could be considered as a classification problem since the 

goal is to classify the traffic as normal or malicious. Existing network anomaly 

classification methods work in one these four modes: supervised anomaly detection, 

unsupervised anomaly detection, semi-supervised anomaly detection, and hybrid 

anomaly detection. As a side note, the authors also discussed some attack-related 

tools.  

 

Figure 2.3. Taxonomy of Attack Related Tools [38] 

2.4. Literature Review 

Different attempts have been done to detect anomalies in SDN using Machine 

Learning. One of the most popular example is a paper written by Braga et al.[39] in 

which they proposed a lightweight DDoS flooding attack detection using 

NOX/OpenFlow. However, NOX is a deprecated controller and is no longer used 
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nowadays. Figure 2.4 demonstrates the detection loop they used in their 

implementation. The IDS was developed as a NOX application. It was made up of a 

flow collector, feature extractor and a classifier. The flow collector periodically 

collects flows from the OpenFlow switches. Six features are then extracted and given 

as input to the Self Organizing Maps (SOM) algorithm to do the classification. These 

features are: Average of Packets per flow (APf), Average of Bytes per flow (ABf), 

Average of Duration per flow (Adf), Percentage of Pair-flows (PPf), Growth of 

Single flows (GSf), and Growth of Different Ports (GDP). If an attack is then 

detected, an alert will be triggered. 

 

 

 

 

 

 

 

 

Figure 2.4. Detection Loop Operation [39] 

Abubakar, A. and Pranggono, B. proposed a machine learning based intrusion 

detection system in SDN. However, they haven’t implemented the algorithm into the 

SDN structure and left it as a future work. Dongsoo Lee wrote his thesis on 

Improving Detection Capability of flow-based IDS in SDN [40]. In fact, part of our 

work is based on his thesis. Nonetheless, the author didn’t provide the machine 

learning algorithm, thus we ended up building our own algorithm to detect DDoS 

attacks in the network. Moreover, instead of using the KDD99 dataset which is a 

very old and outdated dataset, we used flow statistics from the switches in our 

network and made a dataset out of them. We then trained our algorithm with that 

data and used it to do the anomaly detection. 



 

 

 

 

CHAPTER 3. METHODOLOGY 

 

                                                                                                                                                   

We integrated a flow logger module that logs flow statistics received from the 

OpenFlow switches. Three features (Duration, Packet Count, Byte Count) are then 

extracted from the statistics and sent to the machine learning algorithm. The 

algorithm then decides either this is a benign or a malicious flow. If it is malicious, 

the controller will be triggered and the attacker will be blocked from sending any 

more traffic into the network.  

Machine learning has benefited a lot of fields in science, and it is about time to make 

use of it in computer networks. By using a classifier, we could train an algorithm to 

classify traffic flows as either benign or malicious.  

3.1. Intrusion Detection  

In computer networking, intrusion detection is a technology that allows us to detect 

suspicious activities and trigger an alarm when such activities are detected. Intrusion 

detection systems can be classified in terms location or detection methods as shown 

in figure 3.1. Intrusion detection systems in general have the same basic goal: detect 

intrusions and alert the network administrator in some way. If they are able to 

prevent the detected attacks, then they are called Intrusion Detection and Prevention 

Systems (IDPS).  
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Figure 3.1. Intrusion Detection Systems: A Taxonomy 

A host-based IDS is installed directly into a host whereas a network-based IDS is 

placed in the network to have a global view and detect attacks that target the network 

as a whole.  

Signature-based IDSs are based on specific attack patterns and are very good at 

detecting known attacks. They also have low false positive rates. However, they have 

a hard time detecting zero-day attacks. One of the most popular open-source 

signature-based IDSs is snort.  

Anomaly-based IDSs base their detection on behaviors. They build-up a normal 

behavior for the network and report any unusual or suspicious activities.  

A hybrid IDS is one that combines both signature-based and anomaly-based 

techniques.  

3.2. Controller of Choice: POX 

SDN offers a wide range of controllers. They range from commercial to open source 

ones. POX is a python based open source SDN controller. Because we developed our 

algorithm using python scikit-learn, we prefered using a python-based conroller. 

POX comes by default with the Mininet VM and needs no extra setup to make it 
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work. Using POX, we can create our own modules. It works perfectly with 

OpenFlow which is the primary and most well-known southbound API [41].  

3.3. OpenFlow Protocol 

One of the first SDN standards that existed was OpenFlow. It is the communication 

protocol between the control plane and the data plane. Devices need to support the 

OpenFlow protocol in order to communicate in an OpenFlow environment. Some of 

the benefits of OpenFlow are programmability and centralized intelligence. 

Programmability enables innovation by accelerating the integration of new features 

and services.  

3.3.1.  OpenFlow Switch 

Figure 3.2. depicts the main components of an OpenFlow switch.  

 

 

 

 

 

 

 

Figure 3.2. Main Components of an OpenFlow Switch [42] 

 

The OpenFlow channel is an interface between the switch and a controller. In an 

OpenFlow switch, there is one or more flow tables and a group table.  
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3.3.2.  Flow Table 

In a flow table there are flow entries. The components of a flow entry are: 

- match field 

- priority 

- counters 

- instructions 

- timeouts 

- cookies 

3.3.3.  Flow Stats 

We collect flow statistics from the switches periodically and extract features to be 

given as input to the machine learning algorithm. A request using 

ofp_flow_stats_request() is sent to all switches connected to the controller. The 

switches reply by sending the flow statistics. The information that is a response to a 

flow stats request is as follows:  

 

 

 

 

Figure 3.3. Structure of Match Information [40] 

 

 

 

 

 

Figure 3.4. Structure of Flow Information [40] 
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3.4. Data Collection 

Based on their sources, datasets can be classified into three groups: Public Datasets, 

Private Datasets, and Network Simulation Datasets [38]. Network simulation datasets 

are created by simulating normal and attack traffic by considering various attack 

scenarios. In this project, we are using a network simulation dataset which we 

created by extracting three features (Duration, Packet Count, and Byte Count) from 

the flow statistics sent by the switches. The biggest advantage of our approach is that 

we can easily update our algorithm by simulating new attacks and retraining the 

algorithm with the new dataset.   

3.5. Training the Machine Learning Algorithm 

 

We trained the machine learning algorithm on a Ubuntu 14 machine. We compared 

the accuracy of two algorithms and ended up using the K Nearest Neighbors 

algorithm since it had a better accuracy than the decision trees algorithm.   

 

Figure 3.5. Training the Machine Learning Algorithm 
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3.5.1.  Python Scikit-learn 

Scikit-learn is a simple and efficient python library for data analysis and Machine 

Learning. It is built on NumPy, SciPy, and Matplotlib. Using Scikit-learn, we can do 

classification, regressions, clustering, data preprocessing, and many other Machine 

Learning related tasks. As of October 2017, version 0.19.1 was available for 

download. Scikit-learn was used for data preprocessing, training, testing, and model 

persistence. Model persistence is a technique used to save a trained algorithm in a 

format that would allow us to import it later on for predictions without the need to 

retrain the algorithm.  

3.5.2.  Decision Trees Algorithm 

Decision Trees (DTs) are supervised learning algorithms used for both classification 

and regression problems. They are easy to understand and interpret, can be 

visualized, and can handle both numerical and categorical data.  

Some DT algorithms are ID3, C.45, C5.0 and CART. Ross Quilan developed ID3 in 

1986. To construct a tree, the algorithm divides attributes into two groups: the most 

dominant and the others. Entropy and information gains of each attribute is then 

calculated. The latest version release of Quinlan’s is C5.0 which is more accurate. 

Scikit-learn supports the Classification and Regression Trees (CART). Leo Breiman, 

a statistician at the University of California, Berkeley contributed greatly in the 

development of this algorithm. As its names indicates, this algorithm is capable of 

doing both classification and regression. The CART algorithm provides a basis for 

other algorithms such random forests.  

One disadvantage of decision trees is that sometimes they could generate over-

complex trees that do not generalize the data well.    
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3.5.3.  K Nearest Neighbors (KNN) 

The KNN roots back to the beginning of the 1950s, with Fix and Hodges’ work on 

pattern classification [43]. The K Nearest Neighbors is one of the simplest algorithms 

and the value of K has a huge influence on the classification problem. Generally, one 

of three formulas is used for calculating the distance between the data points. These 

are: The Euclidean Distance, the Manhattan Distance, and the Minkowski Distance. 

The Euclidean distance is the distance between two points in a Euclidean space. It is 

calculated as follows [44]:  

 

        (3.1)  

Where x and y are the two points and k is the number of neighbors to choose. If K is 

equal to three for example, then the new data point will be compared to the three 

closest neighbors and will be classified in the class of the two closest ones.  

3.5.4.  Confusion Matrix 

It is a table that allows us to measure the performance of a classifier. It is generally 

represented as follows: 

Table 3.1. Confusion Matrix (General) 
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The True Positive (TP) is the representation of data points that have been correctly 

classified as malicious. The True Negative (TN) represents data points or flows that 

have been correctly classified as benign. The False Positive (FP) indicates the 

amount of misclassified flows. Last but not least, the False Negative (FN) shows the 

number of malicious flows that couldn’t be detected by the algorithm. Below is the 

confusion matrix derived from our algorithm. 

 

 

                                                                                                                                              

                Table 3.2. Confusion Matrix (Our Algorithm) 

As we can see, there is no false negative observations in our algorithm. 

3.5.5.  Accuracy 

Accuracy is the measurement of correctly predicted data points. It is the sum of the 

correctly classified flows divided by the total number of flows. Our algorithm 

showed an accuracy of 0.99%.  

 

                               (3.2)  

 

It is worth noting that despite this metric being useful, it isn’t always enough to 

confirm the accuracy of a classifier. Other metrics such as the Cumulative Accuracy 

Profile Curve [45].  
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3.6. DDoS Flood Attack: Detection and Mitigation  

A DDoS attack is an attempt by the attacker to consume the resources of the victim 

until it becomes unavailable. This type of attack is one of the most well known 

attacks; however, there is still no effective solutions to stop them completely.  

A distributed denial of service (DDoS) attack contains three main parts as shown in 

Figure 3.6. The attacker first selects a group of vulnerable systems (zombies) and 

installs attack systems in them. The attacker will then launch attack commands to the 

zombies using a secure channel to carry out the DDoS attack on the target, making it 

more difficult to trace the origin of the attack.    

 

Figure 3.6. DDoS Attack Structure 

 

3.7. Limitations of the Project 

Our algorithm has been trained to detect ping flood attacks only. Therefore, as of 

now, it is not able to detect other types of attacks. Besides, the algorithm should be 

implemented in a real-world environment to analyze its behavior.  



 

 

 

 

CHAPTER 4. EXPERIMENTAL IMPLEMENTATION 

 

                                                                                                                                                             

In this chapter, we will present the experimental implementation of the project.  

4.1. Tools used for the Testbed 

Several tools have been used to implement this project.  

4.1.1.  Mininet  

Mininet [46] is a network emulation tool for rapid prototyping of software defined 

networks. With a single command, Mininet allows us to create a virtual network 

running real kernel. This tool is useful for teaching and research. It is probably the 

best way to learn about SDN and the OpenFlow protocol. With it, we can easily 

interact with our network using an API or the Command Line Interface (CLI). 

Briefly it is a fast tool that runs real programs and allows the customization of packet 

forwarding. It can be run on a laptop in a virtual machine.  

Mininet has its limitations as well. These include resource consumption, usage of a 

single Linux kernel for all virtual hosts, and isolation from our LAN and internet 

(We may use NAT to connect Mininet to our LAN).  

4.1.2.  POX Controller 

In SDN, a controller is the brain of the network. Switches have no intelligence in 

them and receive instructions from controllers. As our machine learning algorithm is 

developed in python, we decided to use the python based POX controller [47] which 
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comes by default with Mininet. The POX controller and Mininet work perfectly 

together. POX was inspired by the NOX controller which is currently deprecated.  

POX can’t support python3 and works only with python2.7. It also supports 

OpenFlow1.0 only.  

4.1.3.  Our Machine Learning Algorithm 

We built the algorithm based on python Scikit-learn. The algorithm was trained using 

the dataset that we created earlier. 

 

Figure 4.1. Import Libraries 

We start off by importing the necessary libraries. As we can see, most of the libraries 

are part of sklearn.  

 

 

Figure 4.2. Dataset 

We import the dataset through pandas (pd). We then split it into training and testing 

sets. By precising the test set size as 0.25 (25% of the whole dataset), pandas 

automatically allocates the remaining 75% of the data to the training set.  
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Figure 4.3. Classification 

The classifiers we chose for this project are the K Nearest Neighbors (KNN) and 

decision trees. We compared the two algorithms and the KNN had the highest 

accuracy. One of the biggest advantages of Scikit-learn in that classifiers can easily 

be changed with a single line of code. If we want to, let’s say, train our algorithm 

with the Random Forest algorithm, we can just import its library and add it to the 

model variable.  

                                                                                                                                                                                                       

Figure 4.4. Making Predictions 

Making predictions is as simple as doing classification. We can then save our 

predictions to a file as can be seen.  
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Figure 4.5. Evaluating the Model 

The model can then be evaluated to get an idea of how well it would perform later 

on. These evaluation criteria will be discussed in greater details.  

 

 

Figure 4.6. Model Persistence 

Using joblib, the model can be persisted. The goal of model persistence is to save the 

model in a format that will allow us to import it to our particular project.  

4.2. Environment 

Mininet is used to create the virtual environment that will allow us to carry out tests 

and validate our testbed. In this topology, one host will act as an attacker and another 

host will act as a victim.  

4.2.1.  Topology 

To lunch the system, we will need to first launch the POX controller and the IDS 

Module that will allow us to detect the attacks.  

 

Figure 4.7. Launching the POX Controller and the IDS Module 
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The IDS Module starts monitoring the network for attacks as soon as the controller is 

launched. The controller is listening on port 6633. 

Figure 4.8. Launching the Network Topology 

In Figure 4.8, we have basically created a tree topology network and connected it 

remotely to the controller on port 6633. In this topology, we have four hosts, three 

switches, and one controller.  

We now have a functioning network and hosts can ping each other successfully.  

 

 

Figure 4.9. Flow Stats 

The IDS sends flow stats requests using POX’s ofp_flow_stats_request messages and 

the three switches reply by sending their flow statistics. Three features (Duration, 

Packet Count, Byte Count) are then extracted and forwarded to the flow IDS module. 

This module then checks the flow and decides if it is benign or malicious. 
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Figure 4.10. Topology Created in Mininet 

4.2.2. Attack Scenario  

To carry out a ping flooding attack, the attacker will send tens of thousands of 

packets per second to the victim, flooding it with unnecessary echo request packets. 

Figure 4.11. illustrates a sequence diagram, where it explains the attack scenario and 

how the testbed deals with ping flooding attacks. In the sequence diagram shown 

below, the attacker sends a normal ping and it goes to the OpenFlow enabled switch. 

The switch checks the flow table, and because the destination is unknown to the 

switch (table miss), it forwards the packet to the SDN controller (packet-in) to ask 

for the destination of the packet. The SDN controller replies with a packet-out which 

includes information needed by the switch, then the switch stores the destination of 

the route into its flow table. The attacker then launches the DoS attack. When the 

controller detects the attack, it will send an alert and block the attacker from sending 

any more packets into the network.  
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Figure 4.11. Sequence diagram 

4.3. Results 

After setting up and running the environment, we execute a ping flood attack to test 

our algorithm. As seen in the screen shots, as soon as the flooding begins, the IDS 

shows in its log messages that a malicious flow has been detected and the POX 

controller is triggered to take an action and drop subsequent packets from the 

attacking host. 

 

Figure 4.12. Ping Flood Attack Detection and Mitigation 

 



 

 

 

 

CHAPTER 5. CONCLUSION AND FUTURE WORK 

 

                                                                                                                                                            

In this project, we proposed an IDS that allows us to detect ping flood attacks in an 

SDN network. The results show that choosing a network simulation dataset has its 

advantages as it allowed us to detect attacks. Machine learning with Scikit-learn 

gives us more flexibility as the algorithm can be changed in literally two lines of 

code. The dataset can also be easily updated to try other or new types of attacks.  

Mininet is a powerful tool and probably the best way to learn about SDN. Through it, 

we can emulate networks and connect them to any types of controllers in no time.  

Machine learning has its benefits, and for SDN to become more powerful and 

flexible, more and more machine learning algorithms should be tested and 

implemented in SDN.  

Overall, despite POX still supporting only python2.7, it can also help in developing 

IDSs. However, the developers of POX should consider updating it to python3 and 

include support for newer versions of OpenFlow (as of this writing, POX still 

supports OpenFlow 1.0 only).  

As part of future work, new attack vectors could be implemented and tested as well. 

Implementing the algorithm in a hybrid environment, such as implementing directly 

into snort would be very interesting. This way, we will be able to do signature-based 

and anomaly-based intrusion detection simultaneously. 
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