
SAKARYA UNIVERSITY

INSTITUTE OF SCIENCE AND TECHNOLOGY

ANOMALY DETECTION IN
SOFTWARE-DEFINED NETWORKING

USING MACHINE LEARNING

M.Sc. THESIS

Soumaine BOUBA MAHAMAT

Department : COMPUTER AND INFORMATION

ENGINEERING

Supervisor : Prof. Dr. Celal ÇEKEN

June 2018

 DECLARATION

I declare that all the data in this thesis was obtained by myself in academic rules, all

visual and written information and results were presented in accordance with academic

and ethical rules. There is no distortion in the presented data. In case of utilizing other

people’s works they were refereed properly according to scientific norms. The data

presented in this thesis has not been used in any other thesis in this university or in

any other university.

Soumaine BOUBA MAHAMAT

28.6.2018

i

 ACKNOWLEDGEMENT

Firstly, I would like to thank ALLAH for keeping me healthy and helping me

complete my thesis. Without his help, I wouldn’t be where I am now.

With deep appreciation and respect, I would like to give credit to my research and

thesis supervisor Prof. Dr. Celal ÇEKEN for his great support since I started my

research and for allowing me to be part of his research team at the IoT Laboratory in

the Department of Computer and Information Engineering.

My thanks are also to YTB (Yurtdışı Türkler ve Akraba Topluluklar Başkanlığı), the

institution which financed my studies and stay for three years in Turkey. To my

family members, my friends in Sakarya, and my collaborators in the IoT Lab

especially Ahmed DIRIE, thank you for everything.

ii

TABLE OF CONTENTS

ACKNOWLEDGMENT...…………………………………………....................

i

TABLE OF CONTENTS.……………………………………………………..... ii

LIST OF SYMBOLS AND ABBREVIATIONS…………………………........... iv

LIST OF FIGURES.. ………………………………………………………….... v

LIST OF TABLES …………………………………………………………........ vi

SUMMARY……………………………………………………………………... vii

ÖZET……………………………………………………………………. viii

CHAPTER 1.

INTRODUCTION………………………………………………............................

1.1. Problem statement...

1.2. Thesis goals ..

1.3. Thesis structure ...

CHAPTER 2.

BACKGROUND AND LITERATURE REVIEW...

 2.1. History of SDN...

 2.2. SDN security overview...

 2.3. Network Anomaly Detection: A Machine Learning Perspective

 2.4. Literature Review ..

CHAPTER 3.

METHODOLOGY...

 3.1. Intrusion detection..

 3.2. Controller of choice: POX..

 3.3. OpenFlow Protocol...

 3.3.1. OpenFlow switch……………………………………………….

1

5

5

5

6

6

9

11

11

13

13

14

15

15

iii

 3.3.2. Flow table……………………………………………………….

 3.3.3. Flow stats……………………………………………………….

 3.4. Data Collection………………………………………………………...

 3.5. Training the machine learning algorithm……………………………....

 3.5.1. Python Scikit-learn……………………………………………...

 3.5.2. Decision tree algorithm…………………………………………

 3.5.3. K Nearest Neighbors (KNN)……………………………………

 3.5.4. Confusion Matrix………………………………………………..

 3.5.5. Accuracy…………………………………………………………

 3.6. DDoS flood attack: detection and mitigation…………………………..

 3.7. Limitations of the project………………………………………………

CHAPTER 4.

EXPERIMENTAL IMPLEMENTATION...

 4.1. Tools used for the testbed..

 4.1.1. Mininet...

 4.1.2. POX Controller..

 4.1.3. Our Machine Learning Algorithm...

 4.2. Environment ..

 4.2.1. Topology..

 4.2.2. Attack Scenario..

 4.3. Results...

CHAPTER 5.

CONCLUSION ANF FUTURE WORK...

REFERENCES..

RESUME...

16

16

17

17

18

18

19

19

20

21

21

22

22

22

22

23

25

25

27

28

 29

30

34

iv

 LIST OF SYMBOLS AND ABBREVIATIONS

API

BGP

CART

CE

CLI

DC

: Application Programming Interface

: Border Gateway Protocol

: Classification and Regression Trees

: Control Elements

: Command Line Interface

: Domain Controller

DDoS : Distributed Denial of Service

DoS

DT

FE

ICMP

ID3

IETF

IT

LAN

NCP

NFV

ONF

RCP

: Denial of Service

: Decision Trees

: Forward Elements

: Internet Control Message Protocol

: Iterative Dichotomiser 3

: Internet Engineering Task Force

: Information Technology

: Local Area Network

: Network Control Point

: Network Function Virtualization

: Open Networking Foundation

: Routing Control Point

SDN : Software Defined Networking

SYN : Synchronize

TCP

VINI

VLAN

VM

: Transmission Control Protocol

: Virtual Network Infrastructure

: Virtual Local Area Network

: Virtual Machine

v

 LIST OF FIGURES

Figure 1.1. SDN Architecture ...

 1

Figure 1.2. Ping Demo using SDN Network ... 2

Figure 1.3. Poseidon Stack .. 4

Figure 2.1. Google’s OpenFlow WAN ... 9

Figure 2.2. Attacks in SDN .. 10

Figure 2.3. Taxonomy of Attack Related Tools 11

Figure 2.4. Detection Loop Operation ... 12

Figure 3.1. Intrusion Detection Systems: A Taxonomy 14

Figure 3.2. Main Components of an OpenFlow Switch 15

Figure 3.3. Structure of Match Information ... 16

Figure 3.4. Structure of Flow Information .. 16

Figure 3.5. Training the Machine Learning Algorithm.............................

Figure 3.6. DDoS Attack Structure ..

17

21

Figure 4.1. Import Libraries ... 23

Figure 4.2. Dataset ... 23

Figure 4.3. Classification ... 24

Figure 4.4. Making Prediction ... 24

Figure 4.5. Evaluating the Model .. 25

Figure 4.6. Model Persistence ... 25

Figure 4.7. Launching the POX Controller and the IDS Module............. 25

Figure 4.8. Launching the Network Topology .. 26

Figure 4.9. Flow Stats ... 26

Figure 4.10. Topology Created in Mininet .. 27

Figure 4.11. Sequence Diagram .. 28

Figure 4.12. Ping Flood Attack Detection and Mitigation....................... 28

vi

 LIST OF TABLES

 Table 3.1. Confusion Matrix (General) ..

19

 Table 3.2. Confusion Matrix (Our Project)... 20

vii

 SUMMARY

Keywords: Software-Defined Networking, Anomaly Detection, Machine Learning,

Testbed

In recent years, the Software-Defined Networking (SDN) approach has emerged with

the aims of making computer networks more flexible. Although the SDN application

on Google's internal network demonstrates the usefulness of the Software-Defined

Network approach and the promise of future technology, security is a vital concern

that cannot be ignored. In the SDN architecture, the attacker can now attack the

network from any of the three planes because the Data Plane is separated from the

Control Plane. Machine learning algorithms are methods used to detect attacks

and intrusions on computer networks and can also be used for SDN.

In this study, a new testbed has been implemented for anomaly detection in SDN. The

testbed formed has several components such the POX controller, an IDS module

implemented in POX, and a trained machine learning algorithm. The system examines

flow statistics sent by OpenFlow switches and decides whether they are benign or

malicious. In case a malicious flow has been detected, the controller will send a flow

modification message, instructing the switch to block the attacking host from

communicating in the network. To validate the testbed, a ping flood attack has been

launched and malicious flows were detected and successfully blocked. Experimental

results show that using machine learning, flow-based anomaly detection in SDN can

be realized.

viii

 YAZILIM TANIMLI AĞLARDA MAKİNE ÖĞRENİMİ

İLE ANOMALİ TESPİTİ

 ÖZET

Anahtar kelimeler: Yazılım Tanımlı Ağ, Anomali Tespiti, Makine Öğrenimi, Test

Düzeneği.

Son yıllarda, bilgisayar ağlarını daha esnek bir hale getirmeyi amaçlayan Yazılım

Tanımlı Ağ yaklaşımı ortaya çıkmıştır. Google’ın iç ağındaki Yazılım tanımlı ağ

uygulaması, Yazılım Tanımlı Ağ (SDN) yaklaşımının kullanışlılığını ve gelecek

vadeden bir teknoloji olacağını kanıtlamasına rağmen güvenlik konusu göz ardı

edilemeyecek hayati bir sorundur. SDN mimarisinde, Veri Düzlemini Kontrol

Düzleminden ayrıldığı için saldırganlar artık üç düzlemden herhangi birinden ağa

saldırabilirler. Makine öğrenimi algoritmaları, bilgisayar ağlarına yapılan saldırıları ve

izinsiz girişleri tespit etmede kullanılan yöntemlerdir ve Yazılım Tanımlı Ağlar için de

kullanılabilir.

Bu çalışmada Yazılım Tanımlı Ağlarda anomali tespiti için yeni bir test ortamı

oluşturulmuştur. Oluşturulan test ortamının POX denetleyici, POX içerisinde

geliştirilmiş bir IDS modülü ve eğitilmiş makine öğrenimi algortiması gibi çeşitli

bileşenleri vardır. Sistem OpenFlow anahtarı tarafından gönderilen akış istatistiklerini

inceleyerek bu akışa ait yararlı ya da zararlı kararını verir. Zararlı bir akış tespit edilmesi

durumunda Yazılım Tanımlı Ağ denetleyici saldırganın ağ ile iletişiminin kesilmesi

için anahtara akış düzenleme mesajı gönderir. Geliştirilen test ortamının doğrulanması

için ping saldırısı uygulandı ve zararlı akışların sistem tarafından başarıyla tespit

edilerek engellendiği görüldü. Elde edilen deneysel sonuçlar, makine öğrenimini

kullanarak, Yazılım Tanımlı Ağlarda akış tabanlı anomali tespitinin

gerçekleştirilebileceğini göstermektedir.

CHAPTER 1. INTRODUCTION

The networking world is trying to catch up with the other branches of IT such as the

Server Virtualization world. Networking folks are working hard to make networks

more programmable. Computer networks are difficult to manage. They are made up

of a lot of devices ranging from routers and switches to middleboxes. Unfortunately,

nowadays, these devices are being managed on a box-by-box bases and network

outages are mostly the direct results of human errors in configuring the networking

devices [1], [2], [3], [4], [5]. Moreover, there is no platform that would allow us to

have a single view of the network and can help us manage all of its components.

These are among the reasons why Software Defined Networking (SDN) is

happening.

SDN is a promising technology offering many possibilities. Vendors such as Cisco,

HP, Juniper, etc. are greatly benefiting from the innovations that SDN is offering. In

fact, Cisco has even revised its Certification track to include SDN related topics [6].

SDN is made up of three layers or planes: The Infrastructure Layer (Data Plane), The

Control Layer (Control Plane), and the Application Layer (Application Plane) [7].

Figure 1.1. SDN Architecture [7]

2

With the decoupling of the Data Plane from the Control Plane, the Data Plane is now

made up of devices that solely do forwarding. Through this decoupling, SDN

promises that users would be able to buy switches from any vendor and use them in

their networks.

The Control Plane is made of one or more controllers which control one or more

switches in the Data Plane. The Control Plane allows us to have a general view of the

network from a single point, something traditional networks can’t generally do.

Using protocols such as OpenFlow, the Controller and switches exchange messages

back and forth.

We would like to pinpoint a misconception here. Because the intelligence is removed

from the switches in the Data Plane, a lot of people think that all packets have to go

through the Controller in the Control Plane. The fact is that, only the first packet goes

to the Controller. After that first ICMP request and reply, the flows are then cached

into the switch’s flow table for a limited time and therefore subsequent packets don’t

have to go through the Controller.

Figure 1.2. shows us the results of a host named h1 pinging another host named h2.

As we can see, the first ping took 1.38ms however the subsequent pings took far less

time. This is due to the fact that the first ping goes through the controller. The flow is

then cached into the switch’s flow table and subsequent pings are forwarded directly

without the need to forward them to the controller.

Figure 1.2. Ping Demo using an SDN Network

3

Through APIs (REST API for example), application developers can develop

applications for the Application Plane. The Application Plane is believed to be what

will make SDN worth it.

With the blessings of SDN comes a great challenge. Decoupling the Controlling

Plane from Data Plane has its advantages; however, it opens up the doors to attacks.

SDN networks can be attacked in many different ways. The control plane is

considered as the brain of SDN and presents the risk of a single point of failure. If an

attacker manages to compromise the controller, then the whole network is

compromised. Despite this fact, it is mentioned that the benefits of a centralized

control plane far outweigh the risk of single point of failure [8]. The single point of

failure issue can be alleviated by ensuring high availability systems. To tackle this

and other issues, security risks related to SDN could be mitigated through

encryption, deep packet inspection, access control lists, etc [9].

SDN Security will be discussed in great details in Chapter 2: Background and

Literature Review.

Machine learning techniques have long existed and used in different areas of

computer science. With the emergence of SDN, researchers thought about

implementing machine learning algorithms in this new technology. In a research

paper titled knowledge-defined networking [10], the authors described experiments

whereby data is gathered from hosts, processed using machine learning, and used the

results to manage the SDN controller configuration and forwarding. A joint effort

between Cisco and Ericsson resulted in a framework named MILA. Using time series

data in OpenDaylight, they presented a demo on how to apply machine learning in

SDN and generate meaningful data from it [11].

From a security perspective, a lot of effort has been done as well to demonstrate the

usefulness of machine learning in SDN anomaly detection. The Poseidon project was

a joint effort between CyberReboot and Lab41 [12]. Their goal was to investigate

how machine learning could provide automation and security to SDN. Poseidon was

4

made up of three parts: A monitor module that interacts with the controller through a

northbound API, a main module that updates the network through what it learned

from the machine learning classifications, and a database to store models. Poseidon

and similar efforts have proven that machine learning could be useful for intrusion

detection in SDN.

Figure 1.3. Poseidon Stack [12]

5

1.1. Problem Statement

Networks have always been expensive, difficult to manage, and take longer to be

implemented. This creates a lot of frustration in companies and governments. SDN

has the goal of changing that. By decoupling the Control Plane from the Data Plane,

a lot of opportunities are created. However, with the blessings of SDN comes a

burden. As we open up the network, naturally attack vectors increase and security

becomes a real concern. Networks are now being targeted from any of the three

planes.

1.2. Thesis Goals

Our goal is to create a flow-based anomaly detection system in SDN using machine

learning algorithms. We will use an algorithm that would allow us to automatically

detect and stop attacks.

1.3. Thesis Structure

In Chapter 2, we will talk about the History of SDN and SDN Security in details. We

will also discuss Machine Learning in SDN and do some Literature Review. Chapter

3 will discuss the methodology used in this Thesis. In Chapter 4, we will discuss the

Implementation and Results of our research. Finally, we will conclude the Thesis in

Chapter 5.

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

A little history and literature review will be discussed in this chapter.

2.1. History of SDN

Software Defined Networking (SDN) might seem at first as a completely new

technology. However, it is a series of many efforts trying to make the network more

flexible. Feamster et. al. [13] mentioned that some of the ideas of SDN date back to

at least 20 years ago or even more. The authors also mentioned that some ideas in

SDN root back to active networking, which had the goal of making the network

programmable.

One of SDN’s goals is Central Network Control. The origin of central network

control can be traced back to at least the 1980s in the AT&T’s Network Control Point

(NCP) [14], [15]. They were geared towards Telephone Networks. The goal was to

separate the Control Plane from the Data Plane. NCPs allowed AT&T to deploy

services on demand and introduce new services rapidly. NCPs are still in use today.

In the 1990s, the concept of programmability in networks and network virtualization

started emerging with various technologies such as Active Networks, Switchlets, and

VINI.

As defined by [16], “An active network is a network in which the nodes are

programmed to perform custom operations on the messages that pass through the

node.”. Middleboxes (Firewalls, proxies, etc.) are some examples of Active

Networks. Active Networking was used by researchers to introduce the concept of

programmable networks. It came out when the internet was taking off. The

motivation behind active networks was to accelerate innovations as it took around 10

years from prototyping and testing to the deployment of new technologies. Somehow

7

SDN has the same motivation as active networking: Accelerate innovation and

deployment in computer networks. Funding from agencies such as DARPA

encouraged researchers to continue their research in Active Networking [17], [18].

However, network operators were frustrated with their inability to deploy new

technologies in the network. Some of the reasons why active networking couldn’t

succeed was because of timing. There was no killer app or a clear application for

active networks as there is for SDN (OpenFlow). Besides, unlike SDN, Active

Networking put too much focus on the end user as a programmer instead of the

network operator [19]. Moreover, hardware ASICs were also expensive. Some of the

contributions of Active Networking include programmable functions and network

virtualization. Notable projects in Active Networks include ANTS [20], SwitchWare

[21], Smart Packets [22], Open Signaling [23], and Tempest (Switchlets) [24].

Let us now talk about network virtualization. As mentioned earlier, SDN has some of

its roots from network virtualization as well. Network Virtualization is the ability to

create logical networks that are separated from the underlying physical hardware

infrastructure [25]. Network Virtualization allows us to create different logical

topologies by using the same devices. Probably the most popular Network

Virtualization Technology is Virtual LANs (VLANs), which are still in use today.

Nowadays however, some of the most popular Network Virtualization technologies

come from vendors such as Oracle, VMWare, Nicira, and Citrix. Other network

virtualization technologies that existed earlier include Switchlets [24], and VINI.

VINI (Virtual Network Infrastructure) came into existence in 2006. The idea was to

build a virtual network infrastructure that would allow experimenters and researchers

to create their own virtual networks on top of the same underlying physical topology.

VINI also had the goal of bridging the gap between lab or small-scale experiments

and live deployment [26].

The History of Central Network Control was mostly in the context of Phone

Networks and Circuit-Switched Networks. This discussion would be incomplete

without introducing the History of Packet-Switched Networks.

8

In 2003, the FORCES protocol was standardized by the IETF [27], [28]. The

standard defined protocols that would allow multiple Control Elements (CE) to

control Forwarding Elements (FE). Again, we see the concepts of separating the

Control Plane from the Data Plane, and Controllers controlling forwarding devices

which exist in SDN here. The challenge for the protocol was that it required

standardization, adoption, and deployment of new hardware (Which are the same

problems of previous projects).

In 2004, the Routing Control Platform (RCP) came into existence [29]. RCP used the

already existing BGP routing protocol to control the routing decisions made by BGP

speaking routers. The main limitation of RCP was that it could handle only BGP

speaking routers, while in reality a network operator might want to control a much

wider range of routing protocols.

Ethane came out in 2007 [30] and offered a network architecture for the enterprise.

In an Ethane network, all connectivity is controlled through a central server called

the Domain Controller (DC). Clients joining the network for the first time have to

connect to the DC first and be authenticated before getting access to other resources

in the network. The drawback was that Ethane required custom switches that

supported the protocol.

The ultimate goal was to find a solution that would work with existing protocols, yet

it wouldn’t require customizing the hardware. The answer was OpenFlow. OpenFlow

[31] was developed by a group of engineers at Stanford University in 2008, with the

first version being released in 2009 and updates in 2012 and 2015 [32] . Currently,

OpenFlow is being managed by the Open Networking Foundation (ONF), a non-

profit organization funded by companies such as Google, Facebook, HP, Microsoft,

etc. [33]. OpenFlow has gotten so popular that it is being used in the live networks of

some of these giant companies. In fact, in a presentation in 2012, Google’s Urs

Hoelzle described how Google was using the OpenFlow protocol to run its internal

WAN. They first started to run OpenFlow enabled switches concurrently with

9

traditional switches, and then ended up removing all traditional network switches and

their internal WAN is currently completely OpenFlow enabled [32].

Figure 2.1. Google’s OpenFlow WAN [32]

2.2. SDN Security Overview

One of the hot topics in SDN is security. Many researchers and companies believe

that Security will be one of the keys to SDN’s success. Secure Data, Control, and

Application planes will pave the way to the wide adoption of SDN among companies

and educational institutions.

With SDN, the network is being opened up as the “brain” of the network is being

centralized at the Control Plane. SDN networks are also programmable. Opening up

the network and introducing the notion of programmability in SDN is a double-edged

sword, as both bring in new opportunities as well as increases attack vectors. As

illustrated in Figure 2.2., SDN networks could be attacked from any layer [34].

10

Figure 2.2. Attacks in SDN [34]

At the Application Plane, programmable applications will be introduced. Failure in

securely developing those applications could potentially lead to attacks.

The Control Plane is naturally a huge target as it controls the whole network. One of

the issues is that the Controller could be a single point of failure, as in, if the

controller fails then the whole network fails as well. By compromising the controller,

the attacker could change the network traffic behavior [35]. Therefore, a highly fault-

tolerant Control Plane is needed [36],[37].

Last but not least, an attacker can compromise the data plane and be able to sniff the

packets that go through the network.

All of the above-mentioned facts lead to the need of securing Software Defined

Networks.

11

2.3. Network Anomaly Detection: A Machine Learning Perspective

Dr. Dhruba Kumar Bhattacharyya (Tezpur University) and Dr. Jugal Kumar Kalita

(University of Colorado) wrote an excellent book titled: “Network Anomaly

Detection: A Machine Learning Perspective” [38]. We wrote a review of the book.

The authors mentioned that attack patterns might not be easy to find; this is where

machine learning comes in. Because machine learning detection techniques are based

on behavior and not specific patterns, they give us the ability to detect even unknown

attacks. Some Machine Learning techniques used to detect network anomalies are:

Supervised Learning, Unsupervised Learning, Probabilistic Learning, Soft

Computing, and Combination Learners. From a machine learning perspective,

network anomaly detection could be considered as a classification problem since the

goal is to classify the traffic as normal or malicious. Existing network anomaly

classification methods work in one these four modes: supervised anomaly detection,

unsupervised anomaly detection, semi-supervised anomaly detection, and hybrid

anomaly detection. As a side note, the authors also discussed some attack-related

tools.

Figure 2.3. Taxonomy of Attack Related Tools [38]

2.4. Literature Review

Different attempts have been done to detect anomalies in SDN using Machine

Learning. One of the most popular example is a paper written by Braga et al.[39] in

which they proposed a lightweight DDoS flooding attack detection using

NOX/OpenFlow. However, NOX is a deprecated controller and is no longer used

12

nowadays. Figure 2.4 demonstrates the detection loop they used in their

implementation. The IDS was developed as a NOX application. It was made up of a

flow collector, feature extractor and a classifier. The flow collector periodically

collects flows from the OpenFlow switches. Six features are then extracted and given

as input to the Self Organizing Maps (SOM) algorithm to do the classification. These

features are: Average of Packets per flow (APf), Average of Bytes per flow (ABf),

Average of Duration per flow (Adf), Percentage of Pair-flows (PPf), Growth of

Single flows (GSf), and Growth of Different Ports (GDP). If an attack is then

detected, an alert will be triggered.

Figure 2.4. Detection Loop Operation [39]

Abubakar, A. and Pranggono, B. proposed a machine learning based intrusion

detection system in SDN. However, they haven’t implemented the algorithm into the

SDN structure and left it as a future work. Dongsoo Lee wrote his thesis on

Improving Detection Capability of flow-based IDS in SDN [40]. In fact, part of our

work is based on his thesis. Nonetheless, the author didn’t provide the machine

learning algorithm, thus we ended up building our own algorithm to detect DDoS

attacks in the network. Moreover, instead of using the KDD99 dataset which is a

very old and outdated dataset, we used flow statistics from the switches in our

network and made a dataset out of them. We then trained our algorithm with that

data and used it to do the anomaly detection.

CHAPTER 3. METHODOLOGY

We integrated a flow logger module that logs flow statistics received from the

OpenFlow switches. Three features (Duration, Packet Count, Byte Count) are then

extracted from the statistics and sent to the machine learning algorithm. The

algorithm then decides either this is a benign or a malicious flow. If it is malicious,

the controller will be triggered and the attacker will be blocked from sending any

more traffic into the network.

Machine learning has benefited a lot of fields in science, and it is about time to make

use of it in computer networks. By using a classifier, we could train an algorithm to

classify traffic flows as either benign or malicious.

3.1. Intrusion Detection

In computer networking, intrusion detection is a technology that allows us to detect

suspicious activities and trigger an alarm when such activities are detected. Intrusion

detection systems can be classified in terms location or detection methods as shown

in figure 3.1. Intrusion detection systems in general have the same basic goal: detect

intrusions and alert the network administrator in some way. If they are able to

prevent the detected attacks, then they are called Intrusion Detection and Prevention

Systems (IDPS).

14

Figure 3.1. Intrusion Detection Systems: A Taxonomy

A host-based IDS is installed directly into a host whereas a network-based IDS is

placed in the network to have a global view and detect attacks that target the network

as a whole.

Signature-based IDSs are based on specific attack patterns and are very good at

detecting known attacks. They also have low false positive rates. However, they have

a hard time detecting zero-day attacks. One of the most popular open-source

signature-based IDSs is snort.

Anomaly-based IDSs base their detection on behaviors. They build-up a normal

behavior for the network and report any unusual or suspicious activities.

A hybrid IDS is one that combines both signature-based and anomaly-based

techniques.

3.2. Controller of Choice: POX

SDN offers a wide range of controllers. They range from commercial to open source

ones. POX is a python based open source SDN controller. Because we developed our

algorithm using python scikit-learn, we prefered using a python-based conroller.

POX comes by default with the Mininet VM and needs no extra setup to make it

15

work. Using POX, we can create our own modules. It works perfectly with

OpenFlow which is the primary and most well-known southbound API [41].

3.3. OpenFlow Protocol

One of the first SDN standards that existed was OpenFlow. It is the communication

protocol between the control plane and the data plane. Devices need to support the

OpenFlow protocol in order to communicate in an OpenFlow environment. Some of

the benefits of OpenFlow are programmability and centralized intelligence.

Programmability enables innovation by accelerating the integration of new features

and services.

3.3.1. OpenFlow Switch

Figure 3.2. depicts the main components of an OpenFlow switch.

Figure 3.2. Main Components of an OpenFlow Switch [42]

The OpenFlow channel is an interface between the switch and a controller. In an

OpenFlow switch, there is one or more flow tables and a group table.

16

3.3.2. Flow Table

In a flow table there are flow entries. The components of a flow entry are:

- match field

- priority

- counters

- instructions

- timeouts

- cookies

3.3.3. Flow Stats

We collect flow statistics from the switches periodically and extract features to be

given as input to the machine learning algorithm. A request using

ofp_flow_stats_request() is sent to all switches connected to the controller. The

switches reply by sending the flow statistics. The information that is a response to a

flow stats request is as follows:

Figure 3.3. Structure of Match Information [40]

Figure 3.4. Structure of Flow Information [40]

17

3.4. Data Collection

Based on their sources, datasets can be classified into three groups: Public Datasets,

Private Datasets, and Network Simulation Datasets [38]. Network simulation datasets

are created by simulating normal and attack traffic by considering various attack

scenarios. In this project, we are using a network simulation dataset which we

created by extracting three features (Duration, Packet Count, and Byte Count) from

the flow statistics sent by the switches. The biggest advantage of our approach is that

we can easily update our algorithm by simulating new attacks and retraining the

algorithm with the new dataset.

3.5. Training the Machine Learning Algorithm

We trained the machine learning algorithm on a Ubuntu 14 machine. We compared

the accuracy of two algorithms and ended up using the K Nearest Neighbors

algorithm since it had a better accuracy than the decision trees algorithm.

Figure 3.5. Training the Machine Learning Algorithm

18

3.5.1. Python Scikit-learn

Scikit-learn is a simple and efficient python library for data analysis and Machine

Learning. It is built on NumPy, SciPy, and Matplotlib. Using Scikit-learn, we can do

classification, regressions, clustering, data preprocessing, and many other Machine

Learning related tasks. As of October 2017, version 0.19.1 was available for

download. Scikit-learn was used for data preprocessing, training, testing, and model

persistence. Model persistence is a technique used to save a trained algorithm in a

format that would allow us to import it later on for predictions without the need to

retrain the algorithm.

3.5.2. Decision Trees Algorithm

Decision Trees (DTs) are supervised learning algorithms used for both classification

and regression problems. They are easy to understand and interpret, can be

visualized, and can handle both numerical and categorical data.

Some DT algorithms are ID3, C.45, C5.0 and CART. Ross Quilan developed ID3 in

1986. To construct a tree, the algorithm divides attributes into two groups: the most

dominant and the others. Entropy and information gains of each attribute is then

calculated. The latest version release of Quinlan’s is C5.0 which is more accurate.

Scikit-learn supports the Classification and Regression Trees (CART). Leo Breiman,

a statistician at the University of California, Berkeley contributed greatly in the

development of this algorithm. As its names indicates, this algorithm is capable of

doing both classification and regression. The CART algorithm provides a basis for

other algorithms such random forests.

One disadvantage of decision trees is that sometimes they could generate over-

complex trees that do not generalize the data well.

19

3.5.3. K Nearest Neighbors (KNN)

The KNN roots back to the beginning of the 1950s, with Fix and Hodges’ work on

pattern classification [43]. The K Nearest Neighbors is one of the simplest algorithms

and the value of K has a huge influence on the classification problem. Generally, one

of three formulas is used for calculating the distance between the data points. These

are: The Euclidean Distance, the Manhattan Distance, and the Minkowski Distance.

The Euclidean distance is the distance between two points in a Euclidean space. It is

calculated as follows [44]:

 (3.1)

Where x and y are the two points and k is the number of neighbors to choose. If K is

equal to three for example, then the new data point will be compared to the three

closest neighbors and will be classified in the class of the two closest ones.

3.5.4. Confusion Matrix

It is a table that allows us to measure the performance of a classifier. It is generally

represented as follows:

Table 3.1. Confusion Matrix (General)

20

The True Positive (TP) is the representation of data points that have been correctly

classified as malicious. The True Negative (TN) represents data points or flows that

have been correctly classified as benign. The False Positive (FP) indicates the

amount of misclassified flows. Last but not least, the False Negative (FN) shows the

number of malicious flows that couldn’t be detected by the algorithm. Below is the

confusion matrix derived from our algorithm.

 Table 3.2. Confusion Matrix (Our Algorithm)

As we can see, there is no false negative observations in our algorithm.

3.5.5. Accuracy

Accuracy is the measurement of correctly predicted data points. It is the sum of the

correctly classified flows divided by the total number of flows. Our algorithm

showed an accuracy of 0.99%.

 (3.2)

It is worth noting that despite this metric being useful, it isn’t always enough to

confirm the accuracy of a classifier. Other metrics such as the Cumulative Accuracy

Profile Curve [45].

21

3.6. DDoS Flood Attack: Detection and Mitigation

A DDoS attack is an attempt by the attacker to consume the resources of the victim

until it becomes unavailable. This type of attack is one of the most well known

attacks; however, there is still no effective solutions to stop them completely.

A distributed denial of service (DDoS) attack contains three main parts as shown in

Figure 3.6. The attacker first selects a group of vulnerable systems (zombies) and

installs attack systems in them. The attacker will then launch attack commands to the

zombies using a secure channel to carry out the DDoS attack on the target, making it

more difficult to trace the origin of the attack.

Figure 3.6. DDoS Attack Structure

3.7. Limitations of the Project

Our algorithm has been trained to detect ping flood attacks only. Therefore, as of

now, it is not able to detect other types of attacks. Besides, the algorithm should be

implemented in a real-world environment to analyze its behavior.

CHAPTER 4. EXPERIMENTAL IMPLEMENTATION

In this chapter, we will present the experimental implementation of the project.

4.1. Tools used for the Testbed

Several tools have been used to implement this project.

4.1.1. Mininet

Mininet [46] is a network emulation tool for rapid prototyping of software defined

networks. With a single command, Mininet allows us to create a virtual network

running real kernel. This tool is useful for teaching and research. It is probably the

best way to learn about SDN and the OpenFlow protocol. With it, we can easily

interact with our network using an API or the Command Line Interface (CLI).

Briefly it is a fast tool that runs real programs and allows the customization of packet

forwarding. It can be run on a laptop in a virtual machine.

Mininet has its limitations as well. These include resource consumption, usage of a

single Linux kernel for all virtual hosts, and isolation from our LAN and internet

(We may use NAT to connect Mininet to our LAN).

4.1.2. POX Controller

In SDN, a controller is the brain of the network. Switches have no intelligence in

them and receive instructions from controllers. As our machine learning algorithm is

developed in python, we decided to use the python based POX controller [47] which

23

comes by default with Mininet. The POX controller and Mininet work perfectly

together. POX was inspired by the NOX controller which is currently deprecated.

POX can’t support python3 and works only with python2.7. It also supports

OpenFlow1.0 only.

4.1.3. Our Machine Learning Algorithm

We built the algorithm based on python Scikit-learn. The algorithm was trained using

the dataset that we created earlier.

Figure 4.1. Import Libraries

We start off by importing the necessary libraries. As we can see, most of the libraries

are part of sklearn.

Figure 4.2. Dataset

We import the dataset through pandas (pd). We then split it into training and testing

sets. By precising the test set size as 0.25 (25% of the whole dataset), pandas

automatically allocates the remaining 75% of the data to the training set.

24

Figure 4.3. Classification

The classifiers we chose for this project are the K Nearest Neighbors (KNN) and

decision trees. We compared the two algorithms and the KNN had the highest

accuracy. One of the biggest advantages of Scikit-learn in that classifiers can easily

be changed with a single line of code. If we want to, let’s say, train our algorithm

with the Random Forest algorithm, we can just import its library and add it to the

model variable.

Figure 4.4. Making Predictions

Making predictions is as simple as doing classification. We can then save our

predictions to a file as can be seen.

25

Figure 4.5. Evaluating the Model

The model can then be evaluated to get an idea of how well it would perform later

on. These evaluation criteria will be discussed in greater details.

Figure 4.6. Model Persistence

Using joblib, the model can be persisted. The goal of model persistence is to save the

model in a format that will allow us to import it to our particular project.

4.2. Environment

Mininet is used to create the virtual environment that will allow us to carry out tests

and validate our testbed. In this topology, one host will act as an attacker and another

host will act as a victim.

4.2.1. Topology

To lunch the system, we will need to first launch the POX controller and the IDS

Module that will allow us to detect the attacks.

Figure 4.7. Launching the POX Controller and the IDS Module

26

The IDS Module starts monitoring the network for attacks as soon as the controller is

launched. The controller is listening on port 6633.

Figure 4.8. Launching the Network Topology

In Figure 4.8, we have basically created a tree topology network and connected it

remotely to the controller on port 6633. In this topology, we have four hosts, three

switches, and one controller.

We now have a functioning network and hosts can ping each other successfully.

Figure 4.9. Flow Stats

The IDS sends flow stats requests using POX’s ofp_flow_stats_request messages and

the three switches reply by sending their flow statistics. Three features (Duration,

Packet Count, Byte Count) are then extracted and forwarded to the flow IDS module.

This module then checks the flow and decides if it is benign or malicious.

27

Figure 4.10. Topology Created in Mininet

4.2.2. Attack Scenario

To carry out a ping flooding attack, the attacker will send tens of thousands of

packets per second to the victim, flooding it with unnecessary echo request packets.

Figure 4.11. illustrates a sequence diagram, where it explains the attack scenario and

how the testbed deals with ping flooding attacks. In the sequence diagram shown

below, the attacker sends a normal ping and it goes to the OpenFlow enabled switch.

The switch checks the flow table, and because the destination is unknown to the

switch (table miss), it forwards the packet to the SDN controller (packet-in) to ask

for the destination of the packet. The SDN controller replies with a packet-out which

includes information needed by the switch, then the switch stores the destination of

the route into its flow table. The attacker then launches the DoS attack. When the

controller detects the attack, it will send an alert and block the attacker from sending

any more packets into the network.

28

Figure 4.11. Sequence diagram

4.3. Results

After setting up and running the environment, we execute a ping flood attack to test

our algorithm. As seen in the screen shots, as soon as the flooding begins, the IDS

shows in its log messages that a malicious flow has been detected and the POX

controller is triggered to take an action and drop subsequent packets from the

attacking host.

Figure 4.12. Ping Flood Attack Detection and Mitigation

CHAPTER 5. CONCLUSION AND FUTURE WORK

In this project, we proposed an IDS that allows us to detect ping flood attacks in an

SDN network. The results show that choosing a network simulation dataset has its

advantages as it allowed us to detect attacks. Machine learning with Scikit-learn

gives us more flexibility as the algorithm can be changed in literally two lines of

code. The dataset can also be easily updated to try other or new types of attacks.

Mininet is a powerful tool and probably the best way to learn about SDN. Through it,

we can emulate networks and connect them to any types of controllers in no time.

Machine learning has its benefits, and for SDN to become more powerful and

flexible, more and more machine learning algorithms should be tested and

implemented in SDN.

Overall, despite POX still supporting only python2.7, it can also help in developing

IDSs. However, the developers of POX should consider updating it to python3 and

include support for newer versions of OpenFlow (as of this writing, POX still

supports OpenFlow 1.0 only).

As part of future work, new attack vectors could be implemented and tested as well.

Implementing the algorithm in a hybrid environment, such as implementing directly

into snort would be very interesting. This way, we will be able to do signature-based

and anomaly-based intrusion detection simultaneously.

REFERENCES

[1] Jonathan Crane, “Outage Prevention: Taking Humans Out Of The IT

Equation,” forbes, 2012. [Online]. Available:

https://www.forbes.com/sites/ciocentral/2012/10/22/outage-prevention-taking-

humans-out-of-the-it-equation/#3603b7504dd1, Access Date: 09-Oct-2017.

[2] Kathleen Hickey, “What’s behind most data center outages? -- GCN,” 2016.

[Online]. Available: https://gcn.com/articles/2016/02/09/data-center-

outages.aspx, Access Date: 09-Oct-2017.

[3] Press Release, “Global Survey: Complexity, Change and Human Factors

Cause Network Outages - The Data Center Journal,” 2016. [Online].

Available: http://www.datacenterjournal.com/global-survey-complexity-

change-human-factors-cause-network-outages/, Access Date: 09-Oct-2017.

[4] J. Networks Inc, “What’s Behind Network Downtime? Proactive Steps to

Reduce Human Error and Improve Availability of Networks,” 2008.

[5] Rachel King, “Amazon Web Services Outage Caused by Human Error: A

Typo | Fortune,” 2017. [Online]. Available:

http://fortune.com/2017/03/02/amazon-cloud-outage/, Access Date: 09-Oct-

2017.

[6] E. Description, “Cisco Certified Network Associate,” 2016.

[7] “Software-Defined Networking (SDN) Definition - Open Networking

Foundation.” [Online]. Available: https://www.opennetworking.org/sdn-

definition/, Access Date: 13-Jun-2018.

[8] “Single Point of Failure. Not. - Open Networking Foundation.” [Online].

Available: https://www.opennetworking.org/news-and-events/blog/single-

point-of-failure-not/, Access Date: 05-Jun-2018.

[9] “SDN FAQ | Network World.” [Online]. Available:

https://www.networkworld.com/article/2167706/lan-wan/lan-wan-sdn-

faq.html, Access Date: 05-Jun-2018.

[10] A. Mestres et al., “Knowledge-Defined Networking,” Jun. 2016.

[11] “OpenDaylight Summit 2016: OpenDaylight Machine Learning &

Artifici...” [Online]. Available:

https://opendaylightsummit2016.sched.com/event/80Nz, Access Date: 05-Jun-

2018.

[12] “Machine-Learning for Network Security: There’s an App for That.” [Online].

Available: https://gab41.lab41.org/machine-learning-for-network-security-

theres-an-app-for-that-e9bc01139f19, Access Date: 05-Jun-2018.

[13] N. Feamster, J. Rexford, and E. Zegura, “The Road to SDN: An Intellectual

History of Programmable Networks,” ACM Sigcomm Comput. Commun., vol.

44, no. 2, pp. 87–98, 2014.

[14] C. D. Richard, Broadcasting and Optical Communication Technology -

Richard C. Dorf - Google Books, Third Edition. California: Taylor & Francis

Group, 2006.

[15] N. Feamster, “Software Defined Networking,” Georg. Inst. Technol., p. 11.

[16] Margaret Rouse, “What is active network? - Definition from WhatIs.com,”

2005. [Online]. Available:

http://searchnetworking.techtarget.com/definition/active-network, Access

Date: 10-Oct-2017.

[17] N. Feamster, J. Rexford, and E. Zegura, “The road to SDN,” ACM SIGCOMM

Comput. Commun. Rev., vol. 44, no. 2, pp. 87–98, 2014.

[18] J. M. Smith, “Reflections on Active Networking,” Pennsylvania, 2003.

[19] K. L. Calvert, S. Bhattacharjee, E. Zegura, and J. Sterbenz, “Directions in

active networks,” IEEE Commun. Mag., vol. 36, no. 10, pp. 72–78, 1998.

[20] W. David, Andrew Whitaker, and Jan, “Active Networks at UW,” University

of Washington. [Online]. Available:

http://research.cs.washington.edu/networking/ants/, Access Date: 10-Oct-

2017.

[21] University of Pennsylvania, “The SwitchWare Project.” [Online]. Available:

http://dsl.cis.upenn.edu/switchware/, Access Date: 10-Oct-2017.

[22] B. E. Schwartz Al et al., “Smart Packets for Active Networks.”

[23] A. T. Campbell, I. Katzela, K. Miki, and J. Vicente, “Open signaling for

ATM, internet and mobile networks (OPENSIG’98),” ACM SIGCOMM

Comput. Commun. Rev., vol. 29, no. 1, p. 97, 1999.

[24] S. Rooney, J. E. van der Merwe, S. A. Crosby, and I. M. Leslie, “The

Tempest: a framework for safe, resource assured, programmable networks,”

IEEE Commun. Mag., vol. 36, no. 10, pp. 42–53, 1998.

[25] SDxCentral, “What is Network Virtualization? - Definition,” 2017. [Online].

Available: https://www.sdxcentral.com/sdn/network-

virtualization/definitions/whats-network-virtualization/, Access Date: 10-Oct-

2017.

[26] A. Bavier, N. Feamster, M. Huang, L. Peterson, and J. Rexford, “In VINI

Veritas: Realistic and Controlled Network Experimentation,” ACM Sigcomm

Comput. Commun., p. 12, 2006.

[27] H. Khosravi, “RFC 3654 - Requirements for Separation of IP Control and

Forwarding,” 2003.

[28] J. Hadi Salim, Z. R. Haas, E. H. IBM Khosravi, E. W. Intel Wang, and E. L.

Dong, “Forwarding and Control Element Separation (ForCES) Protocol

Specification,” 2010.

[29] N. Feamster, H. Balakrishnan, J. Rexford, A. Shaikh, and J. van der Merwe,

“The case for separating routing from routers,” Proc. ACM SIGCOMM Work.

Futur. Dir. Netw. Archit. - FDNA ’04, p. 5, 2004.

[30] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown, and S. Shenker,

“Ethane,” in Proceedings of the 2007 conference on Applications,

technologies, architectures, and protocols for computer communications -

SIGCOMM ’07, 2007, vol. 37, no. 4, pp. 1–12.

[31] B. et al. Heller, “OpenFlow Switch Specification 1.5.1,” 2015.

[32] SDxCentral, “Special Report : OpenFlow and SDN – State of the Union,”

2016.

[33] “Open Networking Foundation is an operator led consortium leveraging SDN,

NFV and Cloud technologies to transform operator networks and business

models.” [Online]. Available: https://www.opennetworking.org/, Access Date:

11-Oct-2017.

[34] S. Luo, M. Dong, K. Ota, J. Wu, and J. Li, “A Security Assessment

Mechanism for Software-Defined Networking-Based Mobile Networks,”

Sensors, vol. 15, no. 12, pp. 31843–31858, Dec. 2015.

[35] “SDN security issues: How secure is the SDN stack?” [Online]. Available:

http://searchsdn.techtarget.com/news/2240214438/SDN-security-issues-How-

secure-is-the-SDN-stack, Access Date: 04-Nov-2017.

[36] A. J. Gonzalez, G. Nencioni, B. E. Helvik, and T. Asa, “A Fault-Tolerant and

Consistent SDN Controller,” 2016.

[37] M. Azab and J. A. B. Fortes, “Towards proactive SDN-controller attack and

failure resilience,” 2017 Int. Conf. Comput. Netw. Commun. ICNC 2017, pp.

442–448, 2017.

[38] J. Kalita, Network Anomaly Detection. 2013.

[39] R. Braga, E. Mota, and A. Passito, “Lightweight DDoS Flooding Attack

Detection Using NOX / OpenFlow Network-Based Mechanisms Using SDN

Network-Based Mechanisms Using SDN,” pp. 408–415, 2018.

[40] L. Dongsoo, “Improving Detection Capability of Flow-based IDS in SDN,”

2015.

[41] “What are SDN Southbound APIs? - Where they are used.” [Online].

Available: https://www.sdxcentral.com/sdn/definitions/southbound-interface-

api/, Access Date: 02-Jun-2018.

[42] “OpenFlow Switch Specification,” 2015.

[43] L. Peterson, “K-nearest neighbor,” Scholarpedia, vol. 4, no. 2, p. 1883, 2009.

[44] S. Sayad, “K Nearest Neighbors.”

[45] Alaa Khaled, “Classification Models Performance Evaluation — CAP Curve,”

2017. [Online]. Available: https://medium.com/@lotass/classification-models-

performance-evaluation-c3a91562793, Access Date: 03-Jul-2018.

[46] “Mininet.” [Online]. Available: http://mininet.org/download/. [Access Date:

01-Jun-2018].

[47] “Installing POX — POX Manual Current documentation.” [Online].

Available: https://noxrepo.github.io/pox-doc/html/#, Access Date: 01-Jun-

2018.

RESUME

Soumaine Bouba Mahamat was born on 01.01.1989 in N’djamena, Chad. He

completed his primary school at Lycée de la Réussite in N’djamena, and his

secondary school at Lycée Ibnou-Cina in 2008. He then went to the City of Zaria in

Nigeria to study English Language in January 2009. The same year he went to

Malaysia and started his Bachelor’s Degree in Information and Communication

Technology at KUIS. He graduated from KUIS in 2012. In 2013, Soumaine got a job

offer from Computer Golfe Tchad where he worked as a Network Engineer for

almost three years. In July 2015, he received a scholarship offer from YTB (Yurtdışı

Türkler ve Akraba Topluluklar Başkanlığı) and came to Turkey to further his

Masters studies at Sakarya University. Soumaine holds multiple certificates such as

the Cisco CCNA which he received on July 17, 2017 and a Fiber Optics Installation

Technician Certificate. He has been socially very active since his days in Malaysia.

He used to be the Representative of International Students at the IT Department in

KUIS. He was also the Chairman of the Welfare Committee of AFROKARYA

(Sakarya African Students Association) and the representative of Chadian students in

Sakarya at UDETTC (Union of Chadian Students in Turkey and Cyprus). He was

responsible of Communication at UDETTC and is currently its Head of Academic

and Social Affairs.

	201807311416
	Anomaly Detection in SDN Using Machine Learning

