T.C. SAKARYA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

¹⁶⁸⁻¹⁷⁸Yb İZOTOP ZİNCİRİ ÇEKİRDEĞİNİN DEV DİPOL REZONANSLARININ ARAŞTIRILMASI

YÜKSEK LİSANS TEZİ Sevinj ALİYEVA

Enstitü Anabilim Dalı

: FİZİK

Tez Danışmanı

: Prof. Dr. Filiz ERTUĞRAL YAMAÇ

Kasım 2018

T.C. SAKARYA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

168-178Yb İZOTOP ZİNCİRİ ÇEKİRDEĞİNİN DEV DİPOL REZONANSLARININ ARAŞTIRILMASI

YÜKSEK LİSANS TEZİ

Sevinj ALİYEVA

0

Enstitü Anabilim Dalı

FİZİK

Bu tez 01.11.2018 tarihinde aşağıdaki jüri tarafından oybirliği / oyçokluğu ile kabul edilmiştir.

Prof. Dr.

Elşen VELİ

Jüri Başkanı

E.R

Prof. Dr.

Recep AKKAYA

Üye

Prof. Dr. Filiz ERTUĞRAL YAMAÇ

Üye

BEYAN

Tez içindeki tüm verilerin akademik kurallar çerçevesinde tarafımdan elde edildiğini, görsel ve yazılı tüm bilgi ve sonuçların akademik ve etik kurallara uygun şekilde sunulduğunu, kullanılan verilerde herhangi bir tahrifat yapılmadığını, başkalarının eserlerinden yararlanılması durumunda bilimsel normlara uygun olarak atıfta bulunulduğunu, tezde yer alan verilerin bu üniversite veya başka bir üniversitede herhangi bir tez çalışmasında kullanılmadığını beyan ederim.

Sevinj ALIYEVA 01.11.2018

TEŞEKKÜR

Yüksek lisans çalışmamda danışmanlığımı üstlenerek, bilgi ve tecrübelerini benimle paylaşan, destek olan Sayın Prof. Dr. Filiz ERTUĞRAL YAMAÇ'a, teşekkürlerimi sunarım.

Katkı ve yardımlarından dolayı Sayın Dr. Nilüfer DEMİRCİ SAYĞI, Dr. Emre TABAR, Doç. Dr. Hakan YAKUT, Prof. Dr. Ali KULİEV, Doç. Dr. Ekber GULİYEV, Prof. Dr. Recep AKKAYA, Prof. Dr. Yusuf ATALAY, Hüseynqulu QULİYEV, Gamze HOŞGÖR, Elif KEMAH, Doaa AHMET'e bilgi ve tecrübelerinden istifade ettiğim Fizik bölümünün bütün hocalarına teşekkür ederim.

Benim için ellerinden gelen herşeyin en güzelini yapmaya çalışan hayatımın gerçekleri, sevgilerinin, maddi, manevi desteklerinin hiç bitmeyeceği ailem, Etibar ALİYEV, Sevda ALİYEVA, Lalezar Şahnaz BABAYEVA, Tellixanım ALİZADE, Höküme BABAYEVA'ya, , bana kendimi özel hissettiren, dostum, sırdaşım olan nişanlım Senan BABAYEV'e sonsuz teşekkür ederim.

Bu tez çalışmasının maddi açıdan desteklenmesine olanak sağlayan Sakarya Ünversitesi Bilimsel Araştırma Projeler Koordinatörlüğüne ve Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TÜBİTAK) Komisyon Başkanlığına (Proje No:117F245) teşekkür ederim.

İÇİNDEKİLER

TEŞEKKÜR	i
İÇİNDEKİLER	ii
SİMGELER VE KISALTMALAR LİSTESİ	iv
ŞEKİLLER LİSTESİ	vi
TABLOLAR LİSTESİ	ix
ÖZET	xi
SUMMARY	xii

BÖLÜM 1.

GİRİŞ	1
-------	---

BÖLÜM 2.

NÜKLEER MODELLER VE DEV DİPOL REZONANS UYARILMASI	5
2.1. Tek parçacık kabuk modeli	5
2.2. Süperakışkan model	9
2.2.1. Kuaziparçacık rastgele faz yaklaşımı	12
2.3. Dev Dipol Rezonans	15

BÖLÜM 3.

ÇİFT-ÇİFT DEFORME ÇEKİRDEKLERDE $I^{\pi} = 1^{-}$ SEVİYELERİ	N
ELEKTRİK DİPOL UYARILMALARI	22
3.1. Simetri Kırınımları, Sahte Haller ve Etkin Kuvvetler	22
3.2. Çift-Çift Deforme Çekirdekler İçin QRPA Metodu	23
3.2.1. Öteleme ve Galileo değişmez olmayan QRPA model	24
3.2.2. Öteleme değişmez QRPA model (TI QRPA)	29

3.2.3. Galileo değişmez QRPA model (GI QRPA)	32
3.2.4. Öteleme ve Galileo değişmez QRPA model (TGI QRPA)	36
3.3. Deforme Çekirdeklerde Elektrik Dipol Uyarılmaları	39
BÖLÜM 4.	
ÇİFT-ÇİFT DEFORME ÇEKİRDEKLERDE ELEKTRİK DEV DİPOL	
REZONANS UYARILMA SEVİYELERİNİN ÖZELLİKLERİ	42
4.1. Dipol Fotoabsorbsiyon Tesir Kesiti	42
4.2. Toplam Kuralları	45
4.3. İntegre Edilmiş Tesir Kesitleri	48
4.4. Radyasyon Kalınlığı	49
4.5. Deforme Çekirdeklerde Enerji Seviyeleri ve Tek Parçacık	
Asimptotik Nilsson Kuantum Numaraları	
	52
4.6. Dev Rezonans Genişliği	52 58
4.6. Dev Rezonans Genişliği	52 58
4.6. Dev Rezonans Genişliği BÖLÜM 5.	52 58
4.6. Dev Rezonans Genişliği BÖLÜM 5. BULGULAR	52 58 61
4.6. Dev Rezonans Genişliği BÖLÜM 5. BULGULAR	52 58 61
4.6. Dev Rezonans Genişliği BÖLÜM 5. BULGULAR BÖLÜM 6.	52 58 61
4.6. Dev Rezonans Genişliği BÖLÜM 5. BULGULAR BÖLÜM 6. TARTIŞMA VE ÖNERİLER	52 58 61 96
4.6. Dev Rezonans Genişliği BÖLÜM 5. BULGULAR BÖLÜM 6. TARTIŞMA VE ÖNERİLER	52586196
4.6. Dev Rezonans Genişliği BÖLÜM 5. BULGULAR BÖLÜM 6. TARTIŞMA VE ÖNERİLER	52 58 61 96 99
4.6. Dev Rezonans Genişliği BÖLÜM 5. BULGULAR BÖLÜM 6. TARTIŞMA VE ÖNERİLER KAYNAKLAR EKLER	52 58 61 96 99 105

SİMGELER VE KISALTMALAR LİSTESİ

β	: Çekirdeğin deformasyon parametresi
Δ	: Gap parametresi
δ	: Ortalama alan potansiyelinin deformasyon parametresi
λ	: Kimyasal potansiyel
π	: Parite
$\alpha^+(\alpha)$: Kuaziparçacık üretme (yok etme) operatörü
σ_{abs}	: Fotoabsorbsiyon tesir kesiti
Γ_0	: Dipol radyasyon kalınlığı
Γ_{red}	: İndirgenmiş dipol radyasyon kalınlığı
А	: Kütle numarası
a ⁺ (a)	: Parçacık üretme (yok etme) operatörü
B(<i>E</i> 1)	: İndirgenmiş elektrik dipol uyarılma ihtimali
EWSR	: Enerji ağırlıklı toplam kuralı
GI	: Galileo değişmez
HS	: Harmonik salınıcı
Ι	: Spin
J	: Açısal momentum operatötrü
Κ	: Toplam açısal momentumun simetri eksenindeki izdüşümü
Ν	: Nötron sayısı
NEWSR	: Enerji ağırlıklı olmayan toplam kuralı
NRF	: Nüklear rezonans flüoresans
NTGI	: Öteleme ve Galileo değişmez olmayan
$Q^+(Q)$: Fonon üretme (yoketme) operatörü
QED	: Kuantum elektrodinamiği
QRPA	: Kuaziparçacık rastgele faz yaklaşımı
R	: Nükleer yarıçap

RPA	: Rastgele faz yaklaşımı
sp	: Tek parçacık
sqp	: Tek kuaziparçacık
TDA	: Tamm-Dancoff yaklaşımı
TGI	: Öteleme ve Galileo değişmez
TI	: Öteleme değişmez
TRK	: Thomas-Reiche-Kuhn toplam kuralı
WS	: Woods-Saxon potansiyeli
Yb	: İterbiyum
Ζ	: Atom numarası
σ	: Spin operatörü
τ	: İzotopik spin operatörü

ŞEKİLLER LİSTESİ

Şekil 1.1. Mikroskpik tasvirde dev rezonans. Ortalama alanda dolu olan taban	
seviyesi(soldaki), bir parçacık-bir boşluk durumu (ortadaki) ve iki	
parçacık-iki boşluk durumu (sağdaki)	1
Şekil 2.1. Nükleer Potansiyeller	6
Şekil 2.2. Nükleer dipol uyarılma spektrumu	16
Şekil 2.3. Küresel (sol) ve deforme (sağ) çekirdeklerde dev rezonans	16
Şekil 2.4. Çekirdeğin dev rezonans modları	18
Şekil 4.1. Deforme çekirdeklerin K=0 ve K=1 modları salınım modları	44
Şekil 4.2. Dipol radyasyon kalınlığı ve spin	49
Şekil 4.3. Deforme çekirdekler için asimptotik kuantum numaraları	52
Şekil 4.4. 44 <z<88 için="" nilsson="" proton="" seviyeleri<="" td="" tek=""><td>55</td></z<88>	55
Şekil 4.5. 58 <n<136 için="" nilsson="" nötron="" seviyeleri<="" td="" tek=""><td>56</td></n<136>	56
Şekil 4.6. Kütle numarası A'nın fonksiyonu olarak IVGDR'nin genişliği	58
Şekil 4.7. A≥40 çekirdekler için GR genişliğinin kütle numarasına (üst) ve	
deformasyon parametresi büyüklüğünün kütle numarasına karşı (alt)	
deneysel sonuç sistematiği	58
Şekil 5.1. Çift-çift ¹⁶⁸ Yb çekirdeğinin TGI-QRPA, TI-QRPA, GI-QRPA, NTGI-	
QRPA modellerinde B(E1) değerlerinin karşılaştırılması	69
Şekil 5.2. Çift-çift ¹⁷⁰ Yb çekirdeğinin TGI-QRPA, TI-QRPA, GI-QRPA, NTGI-	
QRPA modellerinde B(E1) değerlerinin karşılaştırılması	70
Şekil 5.3. ¹⁷⁰ Yb çekirdeğinin öteleme ve Galileo değişmez modelde hesaplanan	
1 ⁻ 1 ve 1 ⁻ 0 uyarılmalarına karışan sahte hallerin dağılımı	71
Şekil 5.4. Çift-çift ¹⁷² Yb çekirdeğinin TGI-QRPA, TI-QRPA, GI-QRPA, NTGI-	
QRPA modellerinde B(E1) değerlerinin karşılaştırılması	72
Şekil 5.5. Çift-çift 174Yb çekirdeğinin TGI-QRPA, TI-QRPA, GI-QRPA, NTGI-	
QRPA modellerinde B(E1) değerlerinin karşılaştırılması	73

Şekil 5.6. Çift-çift ¹⁷⁶ Yb çekirdeğinin TGI-QRPA, TI-QRPA, GI-QRPA, NTGI-	
QRPA modellerinde B(E1) değerlerinin karşılaştırılması	74
Şekil 5.7. Çift-çift ¹⁷⁸ Yb çekirdeğinin TGI-QRPA, TI-QRPA, GI-QRPA, NTGI-	
QRPA modellerinde B(E1) değerlerinin karşılaştırılması	75
Şekil 5.8. Çift-çift ¹⁶⁸⁻¹⁷⁸ Yb izotop zinciri çekirdeklerinin K=0 ve K=1 dallarında	
TGI-QRPA modelinden elde edilmiş toplam indirgenmiş geçiş	
olasılığı değerlerinin karşılaştırılması	76
Şekil 5.9. Çift-çift ¹⁶⁸⁻¹⁷⁸ Yb izotoplarının K=0 ve K=1 dallarındaki teorik (Yb-t)	
ve formülle (Yb-f) bulunan toplam B(E1) değeri oranlarının	
karşılaştırılması	77
Şekil 5.10. Deforme çift-çift 168-178Yb izotoplarının K=0 ve K=1 dallarının	
ortalama enerji değerlerinin A ile değişiminin karşılaştırılması	78
Şekil 5.11. Deforme ¹⁶⁸⁻¹⁷⁸ Ybizotoplarının K=0 ve K=1 dallarının ortalama enerji	
değerlerinin N/Z oranı ile değişiminin karşılaştırılması	79
Şekil 5.12. Çift-çift ¹⁶⁸⁻¹⁷⁸ Yb izotoplarının TGI-QRPA modelinden elde edilen	
K=0 ve K=1 dallarının B(E1) değerlerinin karşılaştırılması	80
Şekil 5.13. Çift-çift ¹⁶⁸⁻¹⁷⁸ Yb izotop zinciri çekirdeklerinin TGI QRPA modelde	
izovektör ve izoskaler katkılarının enerjiye bağlı dağılımı	82
Şekil 5.14. Çift-çift ¹⁶⁸⁻¹⁷⁸ Yb izotop zinciri çekirdeklerinin K=0 ve K=1 dalları	
için elektrik dipol enerji ağırlıklı toplamlarının yüzdelik dağılımının	
gösterilmesi	83
Şekil 5.15. Çift-çift ¹⁶⁸⁻¹⁷⁸ Yb izotop zinciri çekirdeklerinin toplam	
fotoabsorbsiyon tesir kesitlerinin TGI ile elde edilen teorik değerleri	
ile deneysel verilerin karşılaştırılması	84
Şekil 5.16. Çift-çift ¹⁶⁸⁻¹⁷⁸ Yb izotop zinciri çekirdeklerinin TGI QRPA modelde	
K=0 ve K=1 dalları için enerjiye bağlı indirgenmiş radyasyon	
kalınlığı Γ_0 değerlerinin enerji spektrumundaki dağılımı	86
Şekil 5.17. Çift-çift ¹⁶⁸⁻¹⁷⁸ Yb izotop zinciri çekirdeklerinin TGI QRPA modelde	
K=0 ve K=1 dalları için toplam enerjiye bağlı indirgenmiş radyasyon	
kalınlığı Γ_0 değerlerinin karşılaştırılması	87

Şekil 5.18. Çift-çift ¹⁶⁸⁻¹⁷⁸ Yb izotop zinciri çekirdeklerinin TGI QRPA modelde	
K=0 ve K=1 dalları için toplam radyasyon kalınlığı Γ_0 değerlerinin	
karşılaştırılması	87
Şekil 5.19. Çift-çift ¹⁶⁸⁻¹⁷⁸ Yb izotop zinciri çekirdeklerinin TGI QRPA modelde	
K=0 ve K=1 dalları için enerjiye bağlı indirgenmiş radyasyon	
kalınlığı Γ_0 değerlerinin enerji spektrumundaki dağılımı	88
Şekil 5.20. ¹⁷⁴ Yb izotopu için K=0 ve K=1 dallarının TGI QRPA ile hesaplanan	
$\boldsymbol{\sigma}_0$ integre edilmiş tesir kesitleri sonuçlarının deneysel verilerle	
karşılaştırılması	89
Şekil 5.21. ¹⁷⁴ Yb izotopu için K=0 ve K=1 dallarının TGI QRPA ile hesaplanan	
σ_{-1} integre edilmiş tesir kesitleri sonuçlarının deneysel verilerle	
karşılaştırılması	90
Şekil 5.22. ¹⁷⁴ Yb izotopu için K=0 ve K=1 dallarının TGI QRPA ile hesaplanan	
σ_{-2} integre edilmiş tesir kesitleri sonuçlarının deneysel verilerle	
karşılaştırılması	90
Şekil 5.23. ¹⁶⁸ Yb izotopunun K=0 dalı için Nilsson kuantum numaraları	92
Şekil 5.24. ¹⁶⁸ Yb izotopunun K=1 dalı için Nilson kuantum numaraları	93
Şekil 5.25. ¹⁶⁸⁻¹⁷⁸ Yb izotoplarının $I^{\pi}K = 1^{-1}$ ve $I^{\pi}K = 1^{-0}$ geçişleri için TGI QRPA	
ile hesaplanan enerji seviyelerinin deneysel verilerle	
karşılaştırılması	94

TABLOLAR LİSTESİ

Tablo 4.1.	Deforme çekirdeklerde E1 geçişinde asimptotik kuantum numaraları	
	için seçim kuralları	57
Tablo 5.1.	Çift-çift ¹⁶⁸⁻¹⁷⁸ Yb izotoplarının β_2 , δ_2 deformasyon parametreleri	61
Tablo 5.2.	Çift-çift 168-178Yb izotoplarının süperakışkan model çiftlenim	
	korelasyonu parametreleri	62
Tablo 5.3.	Çift-çift 168-178Yb izotop zinciri çekirdeklerinin, 8-20 MeV enerji	
	bölgesinde Öteleme+Galileo değişmez olmayan modele göre K=0	
	ve K=1 durumları için hesaplanan $\sum B(E1)$, $\sum B(E1)\omega$, $\overline{\omega}$	
	değerlerinin karşılaştırılması	64
Tablo 5.4.	Çift-çift 168-178Yb izotop zinciri çekirdeklerinin, 8-20 MeV enerji	
	bölgesinde Galileo değişmez modele göre K=0 ve K=1 durumları	
	için hesaplanan $\sum B(E1)$, $\sum B(E1)\omega$, $\overline{\omega}$ değerlerinin karşılaştırılması	
		65
Tablo 5.5.	Çift-çift 168-178Yb izotop zinciri çekirdeklerinin, 8-20 MeV enerji	
	bölgesinde Öteleme değişmez modele göre K=0 ve K=1 durumları	
	için hesaplanan $\sum B(E1)$, $\sum B(E1)\omega$, $\overline{\omega}$ değerlerinin karşılaştırılması	
		66
Tablo 5.6.	Çift-çift 168-178Yb izotop zinciri çekirdeklerinin, 8-20 MeV enerji	
	bölgesinde Öteleme+Galileo değişmez modele göre K=0 ve K=1	
	durumları için hesaplanan $\sum B(E1)$, $\sum B(E1)\omega$, $\overline{\omega}$ değerlerinin	
	karşılaştırılması	67
Tablo 5.7.	¹⁶⁸⁻¹⁷⁸ Yb izotoplarının K=0 ve K=1 dallarının integre edilmiş tesir	
	kesitleri	89
Tablo 5.8.	Çift-çift ¹⁶⁸⁻¹⁷⁸ Yb çekirdeklerinin 1 ⁻ 0 ve 1 ⁻ 1 uyarılmalarının, TGI	
	QRPA ile hesaplanan en büyük B(E1) değerlerinin elektrik dipol	

	karakteristiklerinin (enerji, B(E1), Nilsson kuantum sayıları ve	
	genlik ([Nnz $\Lambda\Sigma$], ψ ss'i) değeri) karşılaştırılması	92
Tablo 5.9.	¹⁶⁸ Yb çekirdeğinin 8-20 MeV aralığı enerji spektrumunda iki	
	kuaziparçacık (nötron-nötron ya da proton-proton çiftlenimleri-nn-	
	pp) seviye sayıları	93

ÖZET

Anahtar kelimeler: Elektrik dipol uyarılmaları, dev dipol rezonans, ¹⁶⁸⁻¹⁷⁸Yb, QRPA, deformasyon, çift-çift çekirdek.

Bu tez çalışmasında ¹⁶⁸⁻¹⁷⁸Yb izotop zinciri çekirdeklerinin spini ve paritesi $I^{\pi} = 1^{-}$ olan elektrik dipol uyarılmalarının yüksek enerji bölgesinde bulunan dev dipol rezonans (GDR) özellikleri araştırılmıştır. Çift-çift deforme özellikte olan bu izotopların sistematik GDR özellikleri Kuazi Parçacık Rastgele Faz (QRPA) yaklaşımı cercevesinde incelenmistir. Bu yaklaşımla ortalama potansiyelin kırılan simetrisinin restorasyonunda ayrılabilir izoskaler ve izovektör etkilesmeler özuyumlu olarak belirlenmiştir. İzovektör dipol-dipol etkileşmeleri içeren modelde, deforme cekirdeklerde K=0 ve K=1 dallarında GDR'nin yarılmasını, enerjilerini, deneysel verilere uygun bir şekilde açıklamaktadır. Öteleme ve Galileo değişmezliğin restore edildiği Model (TGI QRPA) ile restorasyonun gerçekleşmediği (NTGI QRPA), yalnız öteleme değişmezliğin (TI QRPA) ve yalnız Galileo değişmezliğin (GI QRPA) restore edilmesiyle elde edilen modeller karşılaştırılmıştır. Buradan, gerçekleştirilen restorasyonların spektruma karışan sıfır enerjili sahte hallerin (Goldstone modu) ayrılmasına katkısı incelenmiştir. Hamiltonyen'e eklenen restorasyon kuvvetlerinin B(E1) spektrumunda dağılımı değiştirdiği ve B(E1) gücünü azaltarak seviye sayılarını arttırdığı görülmüştür.

Çift-çift ¹⁶⁸⁻¹⁷⁸Yb izotoplarının $I^{\pi}K = 1^{-1}$ ve $I^{\pi}K = 1^{-0}$ geçişleri için ayrı ayrı indirgenmiş geçiş olasılıkları B(E1), enerji ağırlıklı indirgenmiş geçiş olasılıkları ω B(E1), enerji (ω_i), fotoabsorbsiyon tesir kesiti (σ_{abs}), asimptotik kuantum numaraları [$Nn_z \Lambda \Sigma$], radyasyon kalınlıkları Γ (E1), indirgenmiş radyasyon kalınlıkları Γ_{red} (E1) ve integre edilmiş tesir kesitleri σ_0 , σ_{-1} , σ_{-2} değerleri TGI QRPA model çerçevesinde hesaplanmıştır. Hesaplamalar sonucunda GDR bölgesinde Δ K=1 dalının baskın olduğu görülmüştür. Deneysel verilerle karşılaştırma yapılabilen en karakteristik büyüklük olan toplam fotoabsorbsiyon tesir kesitlinin deforme ¹⁶⁸⁻¹⁷⁸Yb izotopları için K=0 dalında 11-12 MeV; K=1 dalında 15-16 MeV aralıklarında enerji maksimumlarına sahip olduğu görülmüştür. İncelenen izotoplar için iki hörgüçlü yapıya sahip spektrumlar deneysel veriler ile uyumlu sonuçlar vermiştir.

INVESTIGATIONS OF THE GIANT DIPOLE RESONANCE IN ¹⁶⁸⁻ ¹⁷⁸ Yb ISOTOPES

SUMMARY

Keywords: Electric dipole transition, giant dipole resonance, ¹⁶⁸⁻¹⁷⁸Yb, QRPA, deformation, even-even nuclei.

Giant dipole resonance (GDR) feature of the electric dipole excitations with spin and parity $I^{\pi} = 1^{-}$ in the high energy region has been searched for the ¹⁶⁸⁻¹⁷⁸Yb isotopes in this thesis. The systematic of GDR structure of even-even deformed ¹⁶⁸⁻¹⁷⁸Yb isotopes has been investigated in the framework of the Quasi-Random Phase Approximation (QRPA). Separable isoscaler and isovector interactions in the restoration of broken symmetries in the mean-field potential have been determined self consistently. The model consisting of isovector dipole-dipole interactions successfully explains the K = 0 and K = 1 branch of GDR and energy in an agreement with experimental data. The models in which translational and Galilean invariance non-restored (NTGI QRPA), only translational invariance restored (TI QRPA) and only Galilean invariance (GI QRPA) restored have been compared and the contribution of these models to discrimination of zero energy spurious states (Goldstone mode) from the spectrum. The restoration forces added to the Hamiltonian has changed the distribution of B(E1) spectrum, weaken the B(E1) and increased the number of levels.

The reduced transition probabilities B(E1), energy weighted reduced transition probabilities ω B(E1), energy (ω_i), photoabsoprtion cross section (σ_{abs}) and Nilsson asymptotic quantum numbers [$Nn_z\Lambda\Sigma$], radiation witdh Γ (E1), reduced radiation witdh Γ_{red} (E1) and integrated cross sections σ_0 , σ_{-1} , σ_{-2} have been calculates for even-even ¹⁶⁸⁻¹⁷⁸Yb isotopes using TGI QRPA model. The calculations revealed that the Δ K=1 branch of the GDR region dominates the energy spectrum. One the convenient parameter which is comparable with experimental data is photoabsoprtion cross section (σ_{abs}) is found that having a peak around 11-12 MeV in the K = 0 branch and 15-16 MeV in the K = 1 branch. These double humps structure are in good agreement with experimental data.

BÖLÜM 1. GİRİŞ

Nükleonlar arasındaki etkin küvvetlerin sorumlu olduğu ve nükleer yapı fiziğinde teorik ve deneysel olarak incelenen, modelerin belirlenmesinde büyük öneme sahip olan kollektif uyarılmalar önemli konulardan biri olmuştur (Harakeh ve Woude 2001; Ring ve Schuck, 2004). Kolektif uyarılmalar içerisinde var olan dipol uyarılmalar paritelerine göre ikiye ayrılır. Bunlardan spini ve paritesi: $I^{\pi}=1^+$ olanlar manyetik dipol (M1), $I^{\pi}=1^-$ olanlar ise elektrik dipol (E1) karakterlidir. Kollektif uyarılmalara verilebilecek örneklerden biri deforme çekirdeklerde gözlenen dev dipol rezonans (Giant Dipole Resonance-GDR) olarak adlandırılan yüksek uyarılma enerjili elektrik dipol (E1) uyarılmalarıdır (Habs, 2013). GDR'nin makroskopik ve mikroskopik açılardan tanımları farklıdır. Çekirdekteki nötronların protonlara karşı titreşimleri makroskopik tanımı olarak ifade edilirken, mikroskobik olarak parçacık-boşluk (p-h) seviyelerinin süperpozisyonu olarak tanımlanmaktadır (Varlamov ve ark., 1999; Harakeh ve Woude, 2001; Oishi, ve ark., 2016).

Şekil 1.1. Mikroskpik tasvirde dev rezonans. Ortalama alanda dolu olan taban seviyesi(soldaki), bir parçacık-bir boşluk durumu (ortadaki) ve iki parçacık-iki boşluk durumu (sağdaki)

Mikroskopik olarak, parçacık-boşluk uyarılmalarının süperpozisyonu olarak ifade edilebilinir (Şekil 1.1.).

GDR bölgesi özellikleri küresel çekirdekler için oldukça çalışılmış bir konudur. Ancak deforme çekirdeklerde daha fazla çalışmaya ihtiyaç bulunmaktadır. Deforme çekirdeklerin elektrik dev dipol rezonans özellikleri araştırılırken bazı kuantum sayıları ön plana çıkmaktadır. Deforme çekirdeklerde eksenel simetriden dolayı K kuantum sayısı korunmaktadır ve $I^{\pi}=1^-$ seviyelerinde simetri eksenine dik yönde olan K=±1 ve simetri eksenine paralel yönde olan titreşimlere karşı gelen K=0 gibi iki bağımsız dalı görülmektedir (Okamoto 1958). Bu dallar güç parametrelerinin teorik olarak belirlenmesinde, modellerin test edilmesinde dikkate alınmaktadır.

Elektrik dipol uyarılmalarının ürettiği dev dipol rezonans (GDR) hakkında ilk kez Migdal 1945 yılında öngörü oluşturmuş ilerleyen zamanlarda Baldwin ve Klaiber (1947) tarafından bu öngörüler deneysel olarak genişletilmiştir. Deforme çekirdekler için bu ilk çalışmalardan günümüze dek özellikle fotoabsorbsiyon deneyleri ile çekirdeklerin bazı temel özellikleri araştırılmış, GDR modu ile ilgili yapılan deneysel çalışmalar ile toplam fotoabsorbsiyon tesir kesiti ¹⁷⁴Yb (Gurevich ve ark., 1980), integre edilmiş tesir kesitleri ¹⁷⁴Yb (Gurevich ve ark., 1981) ve toplam rezonans genişliği ¹⁷⁴Yb (Gurevich ve ark., 1978), ¹⁷⁴Yb (Youngblood ve ark., 1977) izotopları için araştırılmıştır. Deneysel çalışmalar gelecekte yapılcak teorik çalışmalara öngörü oluşturmuştur. Bunun tam tersi olarak teorik çalışmaların da gelişen teknolojiyle birlikte gelecekte çekirdeğin farklı özelliklerinin inceleneceği deneylere öngörü oluşturması gerekmektedir. Fakat GDR modunun incelendiği teorik çalışmalar fazla sayıda değildir. Literatürdeki bu eksiklik birçok deneysel çalışmada da belirtilmiştir (Paar ve ark., 2007; Kapitonov, 2015; Scheck ve ark., 2016).

Çekirdeğin yapısı çalışmalarında çekirdeklerin özellikleri ve dev rezonans kollektif modlari ilgi çekici konular olmuştur. Bu tez çalışmasında çift-çift ¹⁶⁸⁻¹⁷⁸Yb izotop zinciri çekirdeğinin $I^{\pi} = 1^{-}$ seviyelerinin yüksek enerjili GDR modunun sistematiği ve özellikleri, ortalama alan potansiyelinde saf izoskaler ve izovektör ayrılabilir etkileşmelerin özuyumlu olarak belirlenmesiyle serbest parametresiz bir metot kullanılarak QRPA model çerçevesinde incelenmiştir. Bu çalışmada, QRPA bazında restorasyonun gerçekleşmediği (Nan Translational Galilean Invariant-NTGI), yalnız öteleme değişmezliğin (Translational Invariant-TI), yalnız Galileo değişmezliğin (Galilean Invariant-GI) ve hem öteleme hem Galileo değişmezliğin (Translational Galilean Invariant-TGI) restore edildiği dört model elde edilmiştir. Bu dört model temelinde yapılan hesaplamalar ile restorasyonların B(E1) gücüne ve enerji spektrumunun dağılımına etkisi araştırılmıştır. Deforme çekirdeklerde spektruma karışan sıfır enerjili sahte hallerin (Goldstone modu) ayrılmasına bu dört modelin katkısı karşılaştırılmıştır. Öteleme ve Galileo değişmez QRPA yaklaşımı kullanılarak indirgenmiş geçiş olasılıkları, enerji ağırlıklı toplam kuralları, ortalama enerjiler, fotoabsorbsiyon tesir kesitleri, enerji ağırlıklı ve ağırlıksız radyasyon kalınlıkları, integre edilmiş tesir kesitleri, Nilsson kuantum sayıları incelenmiştir (Kuliev ve ark., 2000).

Bu çalışmada kullanılan TGI QRPA modelinde ortalama alan ve çiftlenim potansiyellerinin neden olduğu öteleme ve Galileo değişmezliğin restore edildiği bir kırınımlı hamiltoniyen kullanılmış ve NTGI, GI ve TI modellerinden farkı ortaya konmaya çalışılmıştır. Kullanılan model ile deforme ¹⁶⁸⁻¹⁷⁸Yb izotop zinciri çekirdeğinin dev dipol rezonans özellikleri araştırılmıştır. TGI QRPA ile hesaplanan K=0 ve K=1 dallarının toplam B(E1) değerlerinin oranları, deformasyonun değişimiyle nasıl değişmektedir ve GDR bölgesinde K'nın hangi dalı baskındır? sorularına cevap aranmıştır.

İkinci bölümde nükleer teorinin gelişiminde katkı sağlayan çekirdek modelleri hakkında bilgilere kısaca değinilmiş, ayrıca kolektif uyarılma modlarına, bu modlardan elektik dipol geçişlerine, bu geçişlerin ve tek parçacık enerjileri ile dalga fonksiyonlarının hesaplanmasında kullanılan Woods-Saxon potansiyelinin özelliklerine yer verilmiştir. Bu çalışmada kullanılan teori süperakışkan modelini temel aldığından bu bölümde süperakışkan modelden elde edilen temel denklemler verilmiştir. Ayrıca dev dipol rezonansın temel özellikleri incelenmiştir.

Üçüncü bölümde ortalama alan potansiyeli nedeni ile ortaya çıkan simetri kırınımından bahsedilmiştir. Kırılan bu simetrilerin onarılması için etkin kuvvetlerin ortalama alan potansiyeli ile özuyumlu olarak seçilmesini sağlayan kuantum mekaniksel Pyatov yöntemi ele alınmıştır. Söz konusu olan yöntem QRPA metodu

çerçevesinde, ¹⁶⁸⁻¹⁷⁸Yb deforme çift-çift çekirdeğinin, yalnızca öteleme değişmezlik (TI), yalnızca Galileo değişmezlik (GI) ve hem öteleme hem de Galileo değişmezliği (TGI) restore etmek için kullanılmıştır. Bu bölümde ayrıca elde edilen analitik ifadelere yer verilmiştir.

Dördüncü bölümde, elektrik dipol geçişin karakteristik özelliklerinden olan radyasyon kalınlıkları ve fotoabsorbsiyon tesir kesitleri, fotoabsorbsiyon tesir kesitlerinin elde edilmesinde kullanılan enerji ağırlıklı ve enerji ağırlıksız toplam kuralları, deforme çekirdeklerde enerji seviyeleri ve tek parçacık asimptotik Nilsson kuantum numaraları, dev rezonans genişliğinden elde edilen analitik ifadelere yer verilmiştir. Fotoabsorbsiyon tesir kesitlerinde görülen yarılma ve Lorentz parametreleri incelenmiştir.

Beşinci bölümde çift-çift ¹⁶⁸⁻¹⁷⁸Yb izotop zinciri için elde edilen sayısal sonuçlar sunulmuştur. ¹⁶⁸⁻¹⁷⁸Yb çift-çift deforme çekirdeği için $I^{\pi}K = 1^{-1}$ ve $I^{\pi}K = 1^{-0}$ geçişlerinde indirgenmiş geçiş olasılıkları (B(E1)), enerji ağırlıklı indirgenmiş geçiş olasılıkları ω B(E1), enerji (ω_i) değerleri, K=0 ve K=1 dallarından elde edilen toplam fotoabsorbsiyon tesir kesiti (σ_{abs}) sonuçları verilmiştir. Bundan başka elektrik dipol geçişlerinin bazı karakteristik özellikleri olan, asimptotik kuantum numaraları ([$Nn_z\Lambda\Sigma$]), radyasyon kalınlıkları Γ (E1), indirgenmiş radyasyon kalınlıkları Γ_{red} (E1) ve integre edilmiş tesir kesitlerinden σ_0 , σ_{-1} , σ_{-2} elde edilen sonuçlar sunulmuştur. İncelenen izotoplar deneysel veriler ile uyumlu sonuçlar vermiştir.

Altıncı bölümde tez çalışmasından elde edilen sonuçlar özetlenerek, gelecekte yapılabilecek deneysel ve teorik çalışmalar için öngörü oluşturmuştur.

BÖLÜM 2. NÜKLEER MODELLER VE DEV DİPOL REZONANS UYARILMASI

Çekireği anlamak için insanlık önce maddeyi anlamaya çalışmıştır. Zaman geçdikce nükleer fizik olayları, nükleer yapı fiziğinde yapılan deneylerin gelişimi nükleer modellere olan ilgiyi arttırmıştır. Bu bölümde tek parçacık kabuk modeli, süperakışkan model, kuaziparçacık rastgele faz yaklaşımı ve dev dipol rezonans uyarılması hakkında bilgilere yer verilmiştir.

2.1. Tek Parçacık Kabuk Modeli

Nükleer tek parçacık kabuk modeli Mayer, Haxel ve Jensen, Suess (1950) tarafından geliştirilmiştir. Temeli Pauli dışarlama ilkesine dayanan kabuk modeli, atom çekirdeğinin sıvı damlası gibi değil, atom gibi kabuk yapısına sahip olmasıyla gelişmeye başlamıştır. Pauli dışarlama ilkesinde, yarım spinlere sahip olan protonlar ve nötronlar (elektronların yanı sıra) Fermi–Dirac istatistiklerine uymak zorundadırlar. Kabuk modeli, spin (J) ve parite (P) gibi nükleer taban durumlarının kuantum karakteristiklerini açıklamakta başarılı olmuştur. Bununla birlikte, bazı uyarılmış durumların doğasını ve spin-yörünge etkileşimi gibi olayları da açıklamakta önemli bilgiler sağlamıştır (Ishkanov ve Kapitanov, 2015).

Kabuk modeli üzerine kurulan atom teorisinin, atom yapısının karmaşıklığını açıklamaktakı büyük başarısı aynı teorinin çekirdek yapısına uygulanabilirliliği üzerinde durulmasına neden olmuştur. Ancak bu model nükleer yapıya uygulandığında bazı zorluklar ile karşılaşılmıştır. Bazı çekirdeklerin bağlanma enerjilerinde yaranmış zorlukları açıklamak için kullanılan, genel olarak sihirli sayılar adlandırılan proton ya da nötron sayıları 2, 8, 20, 28, 50, 82 ve 126 olarak verilir (Iskhanov ve Kapitanov, 2015). Sihirli sayılar Schrödinger dalga denklemi çeşitli nükleer potansiyeller ile çözülerek elde edilmeye çalışılmıştır. Kullanılan ilk potansiyel kare kuyu

potansiyelidir. Bu potansiyel kullanıldığında elde edilen sonuçlar ilk üç sihirli sayıyı açıklamakta başarılı olmuştur (2, 8, 20, 34, 58, ...) (Soloviev, 1976). Kullanılan diğer potansiyel Harmonik Osilatör potansiyeli olmuştur, fakat bu potansiyel de beklenen sonucu vermemiştir. Harmonik Osilatör potansiyeli ile elde edilen sihirli sayılar 2, 8, 20, 40, 70, 112 ve 168'dir. Kullanılan bir diğer potansiyel Nilsson potansiyelidir. Bu potansiyel ile ilgili bilgi Bölüm 4.5.'de verilmiştir.

Bir diğer potansiyel olan Woods-Saxon potansiyeli ile tek parçacıklı bir sistemi tanımlamak mümkündür. Spin-orbit etkileşimlerinin eklenmesiyle gerçek nükleer potansiyel olarak elde edilen Woods-Saxon potansiyeli Haxel ve ark. (1949) ile Mayer (1950) tarafından geliştirilmiştir. Nükleer potansiyel Şekil 2.2.'de gösterilen sonlu derinlikte ve küresel simetrik olan Woods-Saxon potansiyeli ile temsil edilebilinir. Nilsson potansiyeli yüksek duvarlı olduğundan iyi bir yaklaşım değildir. Asimptotik kuantum numaraları her iki potansiyel için geçerlidir.

Şekil 2.1.Nükleer Potansiyeller (Kaynak: <u>http://atlas.physics.arizona.edu/~shupe/Indep Studies 2015/Notes Go</u> <u>ethe Univ/A6 SphShell and Deformed.pdf</u>)

Burada, nükleer yarıçap R potansiyelin merkezden iki defe uzaklaştığı mesafedir. Woods-Saxon potansiyeli yüzey etrafındaki kısmı saçılma reaksiyonları için çok önemlidir. Woods-Saxon potansiyeli çekirdek içerisinde nükleonların yoğunluk dağılımını çok iyi ifade eder ve çekirdek dışında üstel (eksponansiyel) olarak sıfıra gitmektedir. İki kısımdan oluşan Woods-Saxon potansiyelinin birinci kısımı nükleonların ürettiği izoskaler ve izovektör ortalama alan potansiyeli, ikinci kısım ise spin-orbital potansiyelidir (Soloviev, 1976). Hamiltonyen operatörü:

$$H = \frac{\hbar}{2m} \nabla^2 + \frac{-V_0^{\tau}}{1 + \exp((r - R)/a)} - V_{ls}(r) ls.$$
(2.1)

şeklinde ifade edilmektedir. Burada V_0^{τ} parametresinin açık hali

$$V_0^{\tau} = V_0 + V_1^{\tau} \tag{2.2}$$

şeklindedir. Burada

$$V_0(r) = -\frac{V_0}{1 + \exp[(r - R_0)/a]}$$
(2.3)

$$V_1^{\tau} = \tau_z \eta \frac{N - Z}{A} V_0 \quad ; \qquad \eta = \frac{V_1}{4V_0}$$
(2.4)

ikinci kısımı ifade eden V_{ls} spin-orbital potansiyeli,

$$V_{ls}(r) = -\xi \frac{1}{r} \frac{dV(r)}{dr}$$
(2.5)

şeklindedir.

Woods-Saxon potansiyelinin izovektör (V_l) kısmından dolayı nötron ve proton sistemlerinin derinliği birbirinden farklıdır:

$$V_0^N = V_0(r) \left[1 - 0.63 \frac{N - Z}{A} \right]$$

$$V_0^Z = V_0(r) \left[1 + 0.63 \frac{N - Z}{A} \right]$$
(2.6)

Burada $V_0=53 \text{ MeV}$, $R_0=r_0A^{1/3}$, $r_0=1.24x10^{-13}\text{ cm}$, $a=0,63x10^{-13}\text{ cm}$ yüzey kalınlığı, $\xi = 0.263 \times [1+2(N-Z/A] (10^{-13}\text{ cm})^2 \text{ spin-yörünge etkileşme parametresidir (Kuliev ve Pyatov, 1968). <math>V_0^{\tau}$ ve V_{ls} potansiyel ifadelerine proton seviyeleri hesaplanırken Coulomb potansiyeli eklenmelidir. Yüzey etkisi ihmal edildiğinde Coulomb potansiyeli:

$$V_{c}(r) = \frac{(Z-1)e^{2}}{r} \begin{cases} \frac{3r}{2R_{0}} - \frac{1}{2}(r/R_{0})^{3} & , \quad r \le R_{0} \\ 1 & , \quad r > R_{0} \end{cases}$$
(2.7)

şekilde yazılır.

Deforme çekirdekler için Woods-Saxon potansiyeli (Faessler ve Sheline, 1966; Ring ve Schuck, 2004).

$$V(r,\beta,\phi) = -V_0 \left[1 + exp\left(\frac{r - R(r,\beta,\phi)}{a(\beta,\phi)}\right) \right]^{-1}$$
(2.8)

$$V_{ls}(r,\beta,\theta) = 2\xi(\boldsymbol{p} \times \boldsymbol{s})gradV(r,\beta,\theta)$$
(2.9)

Burada β ve *p* sırasıyla deformasyon parametresi, çizgisel momentumu ifade etmektedir (Soloviev, 1976).

2.2. Süperakışkan Model

Çekirdeklerin süperakışkanlık özelliğinin temelinde, nükleon-nükleon çifti korelasyonları olduğu bilinmektedir. Bu korelasyonlar nükleonlar arasındaki rezidüal etkileşimlerdir. Bu yüzden, bu korelasyona genel olarak süper iletken çifti korelasyonları adı verilmiştir. Kısa menzilli çiftlenim etkileşimi çekirdeklerin özelliklerinin açıklanmasında önemli bir rol oynamaktadır. Kısa menzilli çiftlenim etkileşimi rezidüel etkileşimden ayrmak mümkündür. Kabuk modelinde rezidüel etkileşimi dikkate almak zor olduğundan korelasyon hesabı yapılmamaktadır, yani çekirdek kendine özgü bir alan içerisinde (öz uyumlu-self consistent) bağımsız olarak hareket ettiği varsayılmaktadır.

Bağımsız-parçacık modelinde olduğu gibi Süperakışkan modelde de, çekirdeğin içindeki bağımsız nükleonların, tek parçacık halleri ile karakterize edildiği düşünülmektedir. Deforme çekirdeklerin enerji spektrumunda enerji aralığının (gap) varlığı süperiletken metallerin enerji spekrumlarında da enerji aralığının olması durumu, çekirdekler için süperakışkan modelin Bogolyubov tarafından kuantum mekaniksel olarak geliştirilmesi ile sonuçlanmıştır. Bogolyubov parçacık uzayını kuazi parçacık uzayını genişleterek bağımsız parçacıklar modelini bağımsız kuazi parçacık modeline dönüştüren Hartree-Fock-Bogolyubov (HFB) yaklaşımını geliştirmiştir. Barden, Cooper, Schieffer (BCS teorisi) tarafından, Bogolyubov'un çalışmaları süperiletkenlik olayını açıklamak için kullanılmıştır. Süperiletkenlik özelliğinin çekirdeğe uygulanmasıyla ortaya çıkan bu model süperakışkan model olarak isimlendirilmiştir.

Süperakışkan çalışmalarının temelinde ikinci kuantumlama formalizmi yatmaktadır. BCS modelini formalize etmek için parçacık operatörlerini Bogolyubov kuaziparçacıklarına dönüştürmek gerekmektedir. Bu dönüşüm Bogolyubov tarafından önerilen kanonik dönüşümler ile gerçekleştirilir.

$$a_{s\sigma}^{+}a_{s'\sigma'} + a_{s'\sigma'}a_{s\sigma}^{+} = \delta_{ss'}\delta_{\sigma\sigma'}$$

$$a_{s\sigma}a_{s'\sigma'} + a_{s'\sigma'}a_{s\sigma} = 0$$

$$a_{s\sigma}^{+}a_{s'\sigma'}^{+} + a_{s'\sigma'}^{+}a_{s\sigma}^{+} = 0$$
(2.10)

Kuaziparçacık tasvirinde parçacık üretme ve yok etme operatörleri aşağıdaki gibidir.

$$a_{s\sigma} = u_{s}\alpha_{s,-\sigma} + \sigma v_{s}\alpha_{s\sigma}^{+}$$

$$a_{s\sigma}^{+} = u_{s}\alpha_{s,-\sigma}^{+} + \sigma v_{s}\alpha_{s\sigma}$$
(2.11)

 $\alpha_{s\sigma}^+$ ve $\alpha_{s\sigma}$ operatörleri kuaziparçacık üretme ve yok etme operatörleridir. Eğer (2.12) bağıntısı sağlanırsa, tüm reel u_s ve v_s reel fonksiyonları için (2.11) ifadesindeki operatörler fermiyonları temsil eder.

$$\eta_s = u_s^2 + v_s^2 - 1 = 0 \tag{2.12}$$

Süperakışkan nükleer modelin temel eşitlikleri birçok yolla elde edilebilinir, burada varyasyon prensibi kullanılmıştır. Çiftlenme korelasyonları ortalama alanın simetri özelliklerine veya açık bir biçimine bağlı değildir. Öncelikle temel denklemler genel biçimde elde edilir. Bu denklemler küresel veya deforme çekirdekler için özel bir formun elde edilebilinmesi için düzenlenir. Süperakışkan modelde Hamiltoniyen aşağıdaki şekilde yazılmaktadır;

$$H_0 = H_{ortalama} + H_{cifilenim} \tag{2.13}$$

Bu ifadedeki $H_{ort.}$ parçacıkların ortalama bir potansiyel alan içerisindeki bağımsız hareketlerini, $H_{cif.}$ parçacıkların çiftlenim etkileşmelerini ifade etmektedir, $H_{cif.}$ termi aşağıdaki gibi gösterilebilir.

$$H_{\text{gifflenim}} = -\sum_{qq'} G(q+, q-; q'-, q'+) a_{q+}^{+} a_{q-}^{+} a_{q-}^{-} a_{q'+}$$
(2.14)

Süperakışkan nötron-proton korelasyonları, orta ve ağır çekirdeklerde oluşmamaktadır. Nötron ve protonlar için, ayrı ayrı çözümler elde edilir. Bu sebeple, Süperakışkan modelde Hamiltoniyen nötron ve proton sistemleri için yazılabilir.

$$H_0 = H_0(n) + H_0(p) \tag{2.15}$$

Hamiltoniyenlerin açık şekli nötron ve proton sistemleri için aşağıdakı şekilde yazılır.

$$H_{0}(n) = \sum_{s\sigma} \{E_{0}(s) - \lambda_{n}\}a_{s\sigma}^{+}a_{s\sigma} - G_{N}\sum_{ss'}a_{s+}^{+}a_{s-}^{+}a_{s'-}a_{s'+}$$

$$H_{0}(p) = \sum_{t\sigma} \{E_{0}(t) - \lambda_{p}\}a_{t\sigma}^{+}a_{t\sigma} - G_{Z}\sum_{tt'}a_{t+}^{+}a_{t-}^{+}a_{t'-}a_{t'+}$$
(2.16)

Bu ifadelerdeki $E_0(s)$ ve $E_0(t)$ nükleonların ortalama alan potansiyelindeki tek parçacık enerjileridir. λ_n ve λ_z Lagrange çarpanlarıdır ve kimyasal potansiyel olarak isimlendirilir.

(2.10)-(2.12) ifadeleri göz önünde bulundurulursa (2.16) ifadesindeki hamiltoniyenin beklenen değeri aşağıdakı şekilde yazılır;

$$\langle \psi_0 | H_o(n) | \psi_0 \rangle = 2 \sum_s \{ E(s) - \lambda_n \} v_s^2 - G_N \left(\sum_s u_s v_s \right)^2$$
 (2.17)

$$\left\langle \psi_{0} \mid H_{o}(p) \mid \psi_{0} \right\rangle = 2 \sum_{t} \left\{ E(t) - \lambda_{p} \right\} v_{t}^{2} - G_{Z} \left(\sum_{s} u_{t} v_{t} \right)^{2}$$
(2.18)

Bu ifadeler çözülerek, aşağıdaki temel eşitlikler elde edilir.

$$v_s^2 = \frac{1}{2} \left\{ 1 - \frac{E(s) - \lambda_n}{\varepsilon(s)} \right\} \quad u_s^2 = \frac{1}{2} \left\{ 1 + \frac{E(s) - \lambda_n}{\varepsilon(s)} \right\}$$
(2.19)

$$v_t^2 = \frac{1}{2} \left\{ 1 - \frac{E(t) - \lambda_p}{\varepsilon(t)} \right\} \quad u_t^2 = \frac{1}{2} \left\{ 1 + \frac{E(t) - \lambda_p}{\varepsilon(t)} \right\}$$
(2.20)

$$\varepsilon_s = \sqrt{\left(E_s - \lambda_n\right)^2 + {\Delta_n}^2} \quad \varepsilon_t = \sqrt{\left(E_t - \lambda_p\right)^2 + {\Delta_p}^2} \tag{2.21}$$

Burada kullanılan \mathcal{E} nükleonların tek kuaziparçacık enerjisi olarak isimlendirilir. Δ gap parametresidir (Literatürde C_n olarak da gösterilmektedir). Nükleonlar arası çiftlenim gücünün ölçüsünü ifade eder. (2.21) eşitliğindeki Δ_n ve Δ_p nötron ve proton sistemlerinin gap parametreleridir. Burada,

$$\Delta_n = G_N \sum u_s v_s \qquad \Delta_p = G_Z \sum u_t v_t \qquad (2.22)$$

ve

$$N = 2\sum_{s} v_{s}^{2} \qquad Z = 2\sum_{s} v_{t}^{2} \qquad (2.23)$$

şeklindedir. (2.23) ifadesinde $2v_s^2$ ve $2v_t^2$ nötron ve proton seviyelerinin parçacık yoğunluğu, $2u_s^2 = 2(1-v_s^2)$ ifadesindenki $2u_s^2$ ve $2u_t^2$ ise nötron ve proton seviyelerinin boşluk yoğunluklarını temsil etmektedir (Soloviev, 1976).

2.2.1. Kuaziparçacık rastgele faz yaklaşımı

Rastgele faz yaklaşımı (RPA) hızlı hesaplama yapılabilen ve nükleer uyarılmaların incelenmesinde kolaylık sağlayan bir yöntemdir. Amaç, bağımsız parçacık modeli kullanarak dalga fonksiyonu temelinde çekirdeğin uyarılmış seviyelerini elde etmektir. Temeli, bir parçacığın bir boşluk bırakarak boş olan yörüngeye hareketi olarak

adlandırılan parçacık-boşluk durumlarıdır. Bu izlem Tamm-Dancoff yaklaşımı (TDA) veya basit parçacık-boşluk teorisi olarak adlandırılır (Rowe, 1970). Bu yaklaşımda uyarılmış seviyelerdeki kuazi-parçacık etkileşimleri dikkate alınır fakat taban durumu etkileşimlerinin etkisi olmadığından, çiftçift çekirdeğin taban durumu kuazi-parçacık boşluğudur (vacuum). TDA'nın esas eksikliği, taban ve uyarılmış durumların asimetrik tavrıdır (Soloviev, 1976). Böylece artık etkileşimin taban seviyesinin kendisinin üzerindeki etkisini hesaba katmak gerekir. Bu durumda parçacık-boşluk halleri üst üste gelmektedir. Bu işleme rastgele faz yaklaşımı (Random Phase Approximation-RPA) denmektedir. TDA'daki eksiklik RPA yöntemi sayesinde kuazi-parçacık etkileşimlerini içeren tüm seviyelerde düzeltmeler yapılmıştır. İlk defa RPA yöntemi Bohm ve Pines (1953) tarafından elektron gazlarında plazma titreşimlerini tanımlamak için uygulanmıştır.

Kuaziparçacık RPA (Quasiparticle Random Phase Approximation-QRPA) yaklaşımı Hartree-Fock Bogoluybov çözümlerinin üzerine kurulan istikrarlı bir yöntemdir. QRPA, herhangi bir elektromanyetik (dipol, kuadropol, oktopol, vb.) uyarımdan kaynaklanan düşük kollektif titreşim durumlarından dev rezonanslara kadar pek çok sayıdaki nükleer olayları açıklamada başarılı olmuştur. Bu sayede ortalama alan yaklaşımına dayanarak neredeyse tüm nüklitlere uygulanabilen bir yöntemdir (Versteegen ve ark., 2016).

QRPA, ikinci kuantumlama metodunun etkili formülasyonlarından biri olarak bilinmektedir. İkinci kuantumlama yöntemi özuyumlu alan metodu ile karşılaştırılabilir bu karşılaştırmanın belirli avantajları vardır. Bunlardan bazıları, komütasyon ilişkileri ile ilgili normalleşme koşulu, titreşim durumlarının dalga fonksiyonlarını daha açık bir şekilde ifade etmesidir (Soloviev, 1976).

Süperakışkan çekirdekler için RPA' nı QRPA' da genelleştiririrsek Hamiltoniyen Hartree-Bogolybov ikinci kuantumlanma tasvirinde şu şekilde yazılır (Rowe, 2010).

$$H = H_{sqp} + H_{v} \tag{2.24}$$

Burada H_{sqp} ve H_v kuaziparçacık hareketin ve incelenen kolektif modun Hamiltoniyenidir. Açık şeklide,

$$H_{sqp} = \sum_{q} \varepsilon_{q}(\tau) \alpha_{q}^{+}(\tau) \alpha_{q}(\tau)$$
(2.25)

$$H_{\nu} = -\frac{1}{4} \sum_{qq'} G(q+, q-; q'-, q'+) a_{q^+}^+ a_{q^-}^+ a_{q^-}^- a_{q'^+}$$
(2.26)

yazılır. H_{sqp} 'ın ifadesindeki $\mathcal{E}_q(\tau)$ nükleonların tek-kuaziparçacık enerjisidir.

$$H\psi_i = E\psi_i \tag{2.27}$$

(2.27) Schrödinger denkleminde, uyarılma durumlarını QRPA'da ifade eden tek fononlu dalga fonksiyonu,

$$|\psi_{i}\rangle = Q_{i}^{+} |\psi_{0}\rangle \sum_{\mu,\tau} [\psi_{qq'}^{i}(\tau)A_{qq'}^{+}(\tau) - \phi_{qq'}^{i}(\tau)A_{qq'}(\tau)] |\Psi_{0}\rangle$$
(2.28)

ile verilir (Soloviev, 1976). Burada Q_i^+ fonon üretme operatörü, $|\psi_0\rangle$ çekirdeğin taban durumuna karşı gelen fonon vakumudur. $Q_i\psi_0 = 0$ 'dır. $Q_i^+(Q_i)$ fonon üretme (yok etme) operatörleri, $\psi_{qq'}^i$ ve $\varphi_{qq'}^i$ birimleme koşulunu sağlayan katsayılardır ve $A_{qq'}^+ = \{\alpha_{\tilde{q}}^+ \alpha_{q'}^+\}_{I^{\pi}K}$ ve $A_{qq'} = \{\alpha_{q'} \alpha_{\tilde{q}}\}_{I^{\pi}K}$ ile verilen operatörlerdir. (2.27) ve (2.28)'den,

$$HQ_{i}^{+} | \psi_{0} \rangle = EQ_{i}^{+} | \psi_{0} \rangle$$
(2.29)

elde edilir. $Q_i^+(Q_i)$ fonon üretme (yok etme) operatörleri,

$$Q_{i} = \frac{1}{2} \sum_{i} (X_{qq'}^{i} A_{qq'} - Y_{qq'}^{i} A_{qq'}^{+})$$

$$Q_{i}^{+} = \frac{1}{2} \sum_{i} (X_{qq'}^{i} A_{qq'}^{+} - Y_{qq'}^{i} A_{qq'})$$
(2.30)

şeklinde tanımlanır (Soloviev, 1976). Burada $A_{qq'}^+(A_{qq'})$ elektrik uyarılmalar ve geçişler için kuaziparçacık çifti üretme (yok etme) operatörü olup q ve q' tek parçacık enerji seviyelerine karşılık gelmektedir. (q,q') çiftleri belirli seçim kuralları ile ilişkili iki kuaziparçacık durumunu, i=1,2,3,...ise uyarılmış hallerin dizisini belirlemektedir. $X_{qq'}^i$ ve $Y_{qq'}^i$ iki kuaziparçacık genlikleridir. QRPA genellikle matris formunda formüle edilmektedir. Elde edilen büyükllüker,

$$\begin{pmatrix} F & E \\ E & F \end{pmatrix} \begin{pmatrix} X^i \\ Y^i \end{pmatrix} = \omega_i \begin{pmatrix} X^i \\ -Y^i \end{pmatrix}$$
(2.31)

ifadesini sağlamaktadırlar. (2.31) matris denklemlerinin çözümünden $X_{qq'}^i$ ve $Y_{qq'}^i$ kuaziparçacık genlikleri elde edilir.

$$F = \langle \psi_0 | [A, [H, A^+]] | \psi_0 \rangle$$

$$E = - \langle \psi_0 | [A, [H, A]] | \psi_0 \rangle$$
(2.32)

2.3 Dev Dipol Rezonans

Çekirdeğin elektrik dipol modları, dev dipol rezonans tarafından belirlenmektedir (Berman Fultz,1975). Şekil 2.2.'de atomik çekirdeğin foto-absorbsiyonu sonucunda çekirdeğin farklı enerji bölgelerindeki dipol uyarılmaları görülmektedir (Harakeh ve Woude, 2001).

Şekil 2.2. Nükleer dipol uyarılma spektrumu (Habs, 2013).

Nükleer dipol uyarılma spektrumunun, nötron bağlanma enerjisinin (S_n) yukarısındaki uyarılmalar dev rezonanslar olarak adlandırılmaktadır. Dev rezonanslar, çekirdeğin içindeki çoğu parçacığın kollektif hareketine karşılık gelmektedir. Gücü geçiş genliği ile tanımlanan rezonans, kuantum-mekaniksel olarak taban durumu ile kollektif durum arasındaki geçişe karşı gelmektedir. Geçiş gücünün, sistemin temel özelliklerine bağlı olduğu öngörülmektedir (Harakeh & Woude, 2001). Dev rezonans: enerji, genişlik ve güç büyüklükleri ile tanımlanmaktadır. Şekil 2.3.'de küresel ve deforme çekirdekler için dev rezonans örnekleri gösterilmiştir (Harakeh & Woude, 2001).

Şekil 2.3. Küresel (sol) ve deforme (sağ) çekirdeklerde dev rezonans (Carlos ve ark., 1974 (sol), Gurevich ve ark., 1980 (sağ))

Şekil 2.3.'de sol tarafta küresel ¹⁴²Nd çekirdeği için foton enerjisinin bir fonksiyonu olarak fotonların Lorentz rezonans dağılımına uyan fotoabsorbsiyon tesir kesitleri gösterilmiştir. Sağ tarafta deforme ¹⁷⁴Yb çekirdeği için fotonükleer tesir kesiti,

deformasyon ekseni boyunca ve deformasyon eksenine dik bir dipol titreşimine karşılık gelmektedir.

Dev rezonanslar ile ilgili tarihsel süreç içerisindeki önemli gelişmeleri şu şekilde sıralayabiliriz:

- İlk kez dev rezonans tanımlaması (1937)'de Bothe ve Günter tarafından çalışılan deneysel makalede yer almıştır.
- İlk teorik öngörü ise (1945)'de Migdal tarafından tahmin edilmiştir.
- 1947'de, Baldwin ve Klaiber tarafından deneysel olarak sürekli bremsstrahlung spektrumu kullanılarak GDR varlığı doğrulanmıştır (Woude, 1996, Ishkhanov ve Troshchiev, 2011).
- (γ,n) foto-dizentegrasyonun yanı sıra foto-fisyon reaksiyonları ile yüksek frekanslı rezonans varlığı gözlemlenmiştir (Goldhaber ve Teller, 1948).
- Güçlü deforme çekirdekler için normal olan, fisil çekirdeklerin dev dipol rezonanslarının iki maksimuma sahip olduğu ilk kez (1964)'de Bowman ve ark., gözlemlemişlerdir (Gurevich ve ark., 1976).
- Bu ilk çalışmalardan sonra GDR'nin en hafif çekirdekler dışındaki bütün çekirdeklere uygun bir özellik olduğu ve biçim ile genişliğinin nükleer kütle numarası A ile düzgün bir şekilde değiştiği belirlenmiştir (Goeke ve Speth, 1982). Çalışmalar sonucunda dev dipol rezonansların yanı sıra farklı rezonansları da olduğu görülmüştür.

Dev rezonansların birçok modu bulunmaktadır. Bu modlar makroskopik olarak kutup (L), spin (S) ve izospin (T) kuantum numaralarına bağlı olarak sınıflandırılır. Şekil 2.4.'de çeşitli dev rezonansların uyarılmasından kaynaklanan titreşim örnekleri gösterilmektedir (Poltoratska ve ark., 2014). Bu ilk üç çokkutupluluğa ($\Delta L=0, 1, 2$) göre gösterilmiştir.

Şekil 2.4. Çekirdeğin dev rezonans modları (Kaynak: https://cyclotron.tamu.edu/research/nuclear-structure)

Nötron ve protonun bu sınıflandırmada aynı fazda titreşimleri izoskaler, zıt fazda titreşimleri izovektör mod olarak açıklanmaktadır. Buna benzer olarak elektrik (skaler) ve manyetik (vektörel) modlar ise çekirdekteki spin yukarı ve spin aşağınının sırasıyla aynı fazda ve zıt fazda titreşmesidir (Harakeh, 2018).

Şekil 2.4.'de $\Delta S=0$ ve $\Delta T=0$ elektrik moddur: İzoskaler titreşimler çok kutuplu yapıya göre $\Delta L=0,2,...$ ile tanımlanır ve protonlar nötronlar ile eş fazda salınım yapar. Bu modda $\Delta L=1$ titreşimi mevcut değildir. $\Delta S=0$ ve $\Delta T=1$ elektrik moddur: İzovektör titreşimler çok kutuplu yapıya göre ΔL ile tanımlanır, proton ve nötronlar birbirlerine göre zıt fazda titreşim yapmaktadırlar. $\Delta S=1$ ve $\Delta T=0$ manyetik moddur: İzoskaler titreşimlerde spini \uparrow olan nükleonlar, spini \downarrow olan nükleonlara karşı titreşirler ve çok kutuplu yapıya göre ΔL ile tanımlanırlar. $\Delta S=1$ ve $\Delta T=1$ manyetik moddur: İzovektör modlarda spini $\downarrow(\uparrow)$ olan protonlar, spini $\uparrow(\downarrow)$ olan nötronlara karşı titreşirler.

Nükleer dinamikte kapalı kabukların uyarılması ile ilgili yapılan çalışmalarda kolektif uyarılmalara klasik örnek Dev Dipol Rezonans (Giant Dipole Resonance-GDR)

olmuştur (Mottelson, 1976). Çekirdeğin yapısını anlamak için foton içeren reaksiyonlar ciddi katkı sağlamıştır. Foto-nükleer reaksiyonlar periyodik tablodaki birçok çekirdeğe uygulanmıştır (Berman ve Flutz, 1975). Bu reaksiyonlarda tüm çekirdeklerin fotoabsorbsiyon tesir kesitlerinde, nükleon eşik enerjisinin üzerindeki enerji aralığında (8-30 MeV) geniş bir maksimum (GDR) olduğu görülmüştür (Ishkhanov ve Troshchiev, 2011). Bunun sonucunda GDR sistematiğini tasvir etmek için pek çok çalışma yapılmıştır. GDR deneysel ve teorik fotonükleer reaksiyon çalışmaları her zaman ilgi merkezinde olan konular olmuştur.

Dev dipol rezonans (GDR) ve elektrik dipol (E1) kaynağı fotonlar ile atomik çekirdek arasındaki etkileşimdir. Elektrik dipol uyarılmaları tarafından üretilen GDR'nin şekli onun en önemli özelliğidir (fotoabsorpsiyon kesitinin enerjiye bağımlılığı). Foto uyarılmaların temel bir şekli olan çekirdekleri GDR ile incelemek mümkündür (Rhine ve ark., 2015).

Kolektif modelde GDR'nin makroskopik açıdan izahı verilirse proton ve nötron kütle merkezlerinin birbirlerinden ayrılmasını söyleye biliriz. Bu ayrılma çekirdekte büyük bir dipol moment meydana getirmektedir (Greiner, 1996). Jensen tarafından ortaya atılan fikri takib ederek bu fenomeni ilk formül haline getiren Goldhaber ve Teller (1948) olmuştur bu bilim insanlarının çalışmalarını Steinwedel ve Jensen (1950) takip etmişlerdir.

Çekirdekte kolektif modların en iyi örneği dev rezonanslarda ortaya çıkmıştır. Rezonans parametrelerinin kütle-sayısı bağlılığı nükleer dev rezonansların karakteristiğidir, kararlı olmayan dinamikler ve çekirdeğin kütle özellikleri hakkında bilgi elde edebilmek için bu parametreler kullanılmıştır (Harakeh ve Woude, 2006). İlk bilinen dev rezonans izovektör dev dipol rezonans (Isovector Giant Dipole Resonance-IVGDR)'dir, buna sebep fotoabsorpsiyon deneylerinden izovektör E1 uyarımı için yüksek seçicilik kabiliyeti olmasıdır.

Fotoabsorbsiyon deneylerinden ilk gözlemlenen IVGDR mikroskobik nükleer teori açısından tanımı yapıla bilmesi için birçok temel teorik kavram geliştirilmeye

çalışılmıştır (Poltoratska ve ark., 2014; Hashimoto ve ark., 2015). Genişliği farklı sönümleme mekanizmaları ile, merkezi enerji değeri (centroid) ise nükleer kütle ile ilişkilidir (Bortignon ve Broglia, 1998; Harakeh ve Woude, 2006). IVGDR, fotoabsorbsiyon deneylerinde 15 MeV'lik bir enerjiyle bir gama ışını kullanılarak gözlemlenebilir. Gama ışını mermi olarak gönderilir ve bu ışının enerjisinden dolayı ($\hbar w_{\nu} \approx 15 MeV$) dalga boyu, nükleer yarıçaptan (R=5-7fm) daha büyüktür. Bu nedenle, sabit elektrik alanında çekirdek bir bütündür. Sonuç olarak, protonlar E yönünde, nötronlar, kütlenin merkezinin sabit kalması ve momentumu korumak amacıyla ters yönde hareketdedirler. Diğer yandan çekici nükleer kuvvet, restorasyon kuvveti olarak işlev görür ve bu kuvvet nötronların ve protonların hareketini değiştirir (Ceruti, 2016). IVGDR ile ilgili yapılan deneysel çalışmaların (Berman ve Flutz 1975; Bergere 1977; Dietrich ve Berman, 1988) ya da farklı teorik çalışmaların özelliklerinin incelendiği çalışmalar toparlanarak, IVGDR'nin daha önce de bahsedilen genel özellikleri şu şekilde sıralanabilinir: IVGDR hafif ⁴He çekirdeğinden ağır ²³⁸U'a kadar tüm cekirdeklerde görülmüştür (Masur ve Mel'nikova, 2006). Hafif cekirdeklerde IVGDR güç dağılım piki daha dar iken, ağır küresel çekirdekler için bu dağılım Lorentz dağılımı şeklindedir. Deforme çekirdeklerde IVGDR güç dağılımının iki eğrisi görülmüştür. Bu eğrilerin düşük ve yüksek değerlerde olmasına sebep nötronun protona karşı hareketinin gerçekleştiği eksenlerdir. IVGDR'nin uyarılma enerjisinin, A ile ilişkisi aşağıdakı formülle elde edilebilir.

$$E_m = 31, 2A^{-1/3} + 20, 6A^{-1/6}$$

IVGDR gücü Thomas-Reiche-Kuhn(TRK) toplam kuralı aşağıdaki gibidir.

$$\int_{E_{\min}}^{E_{\max}} \sigma_{\gamma}^{abs} dE = \frac{60NZ}{A} (1+\kappa)$$

K tüm izovektör rezonansların mezon değişim katkılarına bağlı bir faktördür. Kütle numarası 100'den büyük çekirdekleri için bu değer 0. 1 ile 0. 2 arasında bir değer alır. E_{min} nötron koparma enerjisi, E_{max} 25 MeV'dir (Harakeh ve Van der Woude, 2006). IVGDR tesir kesiti dataları kullanılarak oluşturulmuş eğrinin genişliği Lorentz fitiyle elde edilebilir. Kapalı kabuklarda genişlik yaklaşık 4MeV civarında olduğunda, kabuklar arasında bulunan deforme çekirdekler için bu değer artmaktadır. IVGDR şekli spesifik nükleer yüzey özellikleri ile ilişkilidir.

İzoskalar dev dipol rezonansı (Isoscalar Giant Dipole Resonance-ISGDR) uyarılma enerjileri, çekirdek içerisindeki nükleonun hareketinin tanımlanmasında çok önemli rol oynayan ilgi çeken modlardan biridir (Itoh ve ark., 2002). ISGDR ile ilgili durumların özeti aşağıdaki gibidir: $3\hbar w$ ISGDR gücü $24 \le A \le 208$ aralığında birçok çekirdekte yer almaktadır. A≥90 çekirdekleri için nükleer güç dağılımının merkezi (centroid) enerji değeri ≈ $120A^{-1/3}$ MeV; $A \le 90$ için gözlemlenen nükleer güç dağılımının merkezi sürekli olarak azalır (A=24'te yaklaşık $60A^{-1/3}$ MeV). A≥90 çekirdekleri için, güç yaklaşık 10 ila 15 MeV arasında geniş bir aralıkta dağılırken, E1 EWSR'nin %100'üne yakındır. Mikroskopik HF-RPA hesaplamaları, skyrme etkileşimlerini kullanarak merkezdeki enerjileri tahmin etmektedir. Bir dizi çekirdekte 1hw izoskaler dipol gücü gözlenmiştir. HF-RPA hesaplamaları da bu kadar düşük gücü öngörmektedir (Harakeh ve Woude, 2006).
BÖLÜM 3. ÇİFT-ÇİFT DEFORME ÇEKİRDEKLERDE $I^{\pi} = 1^{-}$ SEVİYELERİN ELEKTRİK DİPOL UYARILMALARI

3.1. Simetri Kırınımları, Sahte Haller ve Etkin Kuvvetler

Çekirdeğin karmaşık yapısı, nükleer kuvvetlerin karmaşık hali, sistemlerin bağımsızlığı bir sıra zorluklar nedeniyle nükleer seviyelerin simetri özelliklerini ve koruma yasalarına uygulanmasıyla karakterize edilmeleri nükleer olayların analizinde dikkat çekecek şekilde rol oynamaktadır. Simetriler ile korunma yasaları arasında kuvvetli bir şekilde ilişki vardır. Nükleer fizikte simetri yasalarının kaynağı, kısmen, uzay-zaman koordinat sisteminin dönüşümleri ile olan ilişkilerin değişmezliğidir. Karmaşık bir fiziksel sistemi anlaşılır bir şekilde anlatmamız ve davranışını daha iyi şekilde kavramamamıza doğa içinde simetriler yardımcı olmaktadır. Fizik biliminin tüm alanlarında simetrileri araştırmak, temel bir hedef haline gelmiştir. Simetri kırılması, farklı ve yeni durumların oluşmasına da neden olabilir (Ceruti 2016).

Çekirdeğin incelendiği yaklaşımın özellikleri simetri kırılmalarına neden olabilmektedir. Bu tez konusu olan çift-çift ¹⁶⁸⁻¹⁷⁸Yb deforme çekirdeği Kuaziparçacık Rastgele Faz Yaklaşımı (QRPA) kullanılarak mikroskobik olarak incelenmiştir. Tek parçacık hamiltoniyeni simetrileri QRPA temelinde bulunan Hartree-Fock-Bogolyubov (HFB) yaklaşımı nedeniyle kırılmaktadır. Ortalama alan potansiyeli ile ilişkili olan ve kendiliğinden oluşan simetri kırınımları incelenen çekirdeğin var olan titreşim seviyelerinin içerisine, titreşim hareketinin dışında kalan sıfır enerjili farklı seviyelerin (Goldstone modu) karışmasına neden olmaktadır. Bu seviyeler sahte haller olarak ifade edilir ve gerçek tireşim seviyeleri arasına karışmaktadır.

Simetri kırınımının neden olduğu sahte haller çekirdeğin teorik olarak incelenen enerji spektrumu değerleri ile ilgili sonuçların doğruluktan sapmasına neden olmaktadır.

Hesaplamalardan daha kullanılır sonuçlar elde edebilmek için kırılan simetrilerden dolayı çekirdek enerji spektrumuna karışan bu sahte hallerin ayrılması gerekmektedir. Bu yöntemi Pyatov (1972) gerçekleştirmiştir. Bu çalışmada, sahte halleri ayıra bilmek (restorasyon) için etkin kuvvetler izoskaler olarak seçildi. Sahte hallerin restorasyonu için Kuliev ve ark., (2000) tarafından gerçekleştirilen başka bir yaklaşım kullanılabilir. Kuliev ve ark., (2000) tarafından gerçekleştirilen bu yaklaşımda, ortalama alanda olan izovektör ve Coulomb potansiyelleri göz ardı edilerek etkin kuvvetleri yalnızca izoskaler alan Pyatov (1972)'un yaklaşımı geliştirilerek izovektör terim katkısı yapmıştır. Bu çalışmada, izoskaler ve izovektör restore edici kuvvetlerin ikikuaziparçacık eşik enerjisinin altındaki düşük enerjilerde I^{π}=1⁻ seviyelerinin yeni bir dalını ürettiği gösterilmiştir. Kuliev ve ark., (2000) yaklaşımı hem elektrik hem de manyetik dipol uyarılmalarının incelendiği çalışmalarda uygulanmış, başarılı sonuçlar elde edilmiştir (Kuliev ve ark., 2002; Guliyev ve ark., 2006, 2009a, 2009b, Ertuğal ve ark., 2009).

3.2. Çift-Çift Deforme Çekirdekler İçin QRPA Metodu

Bu tez çalışmasında çift-çift ¹⁶⁸⁻¹⁷⁸Yb deforme çekirdeğinin QRPA yaklaşımı kullanılarak 1[°] seviyelerinin tek fononlu elektrik dipol özellikleri, nötron bağlanma enerjisinin yukarısında bulunan enerji bölgesindeki özellikleri incelenmiştir. QRPA modeli kullanılan bu çalışmadakı hesaplamalarda simetri kırınımlarının neden olduğu sahte hallerin yalıtılması Kuliev ve ark., (2000) tarafından gerçekleştirilmiş yaklaşımla gerçekleştirilmiştir. Elektrik dipol rezonansın öteleme ve Galileo değişmezliğine restore edici kuvvetlerin eklenmesinin etkisi vardır bu etkiyi belirlemek için QRPA yaklaşımı dört başlık altında incelenmiştir. Hiçbir restorasyonun olmadığı yaklaşım (Öteleme ve Galileo değişmez olmayan QRPA model (NTGI QRPA)), yalnızca öteleme değişmezliğin restore edildiği yaklaşım (Öteleme değişmez QRPA model (TI QRPA)), yalnızca Galileo değişmezliğin restore edildiği yaklaşım (Öteleme ve Galileo değişmez olmayan QRPA model (GI QRPA)), hem öteleme hem de Galileo değişmezliğin restore edildiği yaklaşım (Öteleme ve Galileo değişmez QRPA model (TGI QRPA))

Hamiltoniyenler her yaklaşım için analitik olarak hesaplanmış ve özdeğer ve özfonksiyonlarını belirlemek için QRPA'nın bilinen yöntemleriyle $[H, Q_i^+] = \omega_i Q_i^+$ hareket denklemi çözülmüş ve 1[°] seviyelerinin enerjisi olan ω_i kökleri ve dalga fonksiyonunun $g_{qq'} = \psi_{qq'} + \phi_{qq'}$ ve $w_{qq'} = \psi_{qq'} - \phi_{qq'}$ genlikleri bulunmuştur.

3.2.1. Öteleme ve Galileo değişmez olmayan QRPA model (NTGI QRPA)

Öteleme ve Galileo değişmez olmayan QRPA model hamiltoniyeni spini ve paritesi $I^{\pi}=1^{-}$ olan uyarılmalar için şu şekildedir (Pyatov ve Salamov, 1977);

$$H = H_{sqp} + W_{dip} \tag{3.1}$$

Buradakı ilk terim H_{sqp} tek-kuaziparçacık hareketinin Hamiltoniyeninin temel formudur (ikinci kuantumlanma metodu yaklaşımı kullanılarak) (Pyatov ve Salamaov, 1977). Tek-Kuaziparçacık Hamiltoniyeni açık şekilde

$$H_{sqp} = \sum_{\gamma} \varepsilon_{\gamma} \alpha_{\gamma}^{+} \alpha_{\gamma}$$
(3.2)

yazılır. Burada α^+ ve α operatörleri kuaziparçacık üretme ve yok etme operatörlerini ifade etmektedir. \mathcal{E}_{γ} nükleonların tek-kuaziparçacık enerjisidir. Üretme ve yok etme opertörlerinin B operatörü ifadesinde gösterimi aşağıda gösterilmiştir (Soloviev, 1976)

$$B(q,q') = \sum_{\sigma} \alpha_{q\sigma}^{+} \alpha_{q'\sigma}$$
(3.3)

Burada $\sigma = \pm 1$ zaman dönüşümü işlemi ile igili durumları göstermektedir. B operatörü kuazi parçacık sayısına karşılık gelmektedir, genel ifadesi aşağıda gösterildiği gibidir.

$$B_{qq}(\tau) = \sum_{q\tau} \alpha_q^+(\tau) \alpha_q(\tau) + \alpha_{\tilde{q}}^+(\tau) \alpha_{\tilde{q}}(\tau)$$
(3.4)

Burada, q hem proton hem nötron seviyelerini ifade eden kuantum numarasıdır. Böylece, H_{sqp} tek-kuaziparçacık hareketinin Hamiltoniyeninin genel formu aşağıdakı şekilde ifade edilir(Soloviev, 1976).

$$H_{sqp} = \sum_{q\tau} \varepsilon_q(\tau) \Big\{ \alpha_q^+(\tau) \alpha_q(\tau) + \alpha_{\tilde{q}}^+(\tau) \alpha_{\tilde{q}}(\tau) \Big\}$$
(3.5)

(3.1) ifadesindeki W_{dip} terimi nötron ve protonların izovektör dipol titreşimlerini ifade etmektedir ve aşağıdaki şekilde yazılır (Pyatov ve Salamov, 1977).

$$W_{dip} = \frac{3}{2\pi} \chi_1 \left(\frac{NZ}{A}\right)^2 \left(\vec{R}_N - \vec{R}_Z\right)^2$$
(3.6)

Burada, χ_1 izovektör dipol-dipol çiftlenim sabiti, R_N ve R_Z proton ve nötron sistemlerinin kütle merkezinin koordinatını temsil etmektedir. R'nin genel ifadesi aşağıdaki şekildedir.

$$R_{\mu} = \sum_{qq'} r_{qq'}^{\mu} \left\{ a_{q}^{+} a_{q'}^{+} + a_{q}^{+} a_{q'}^{-} \right\}$$
(3.9)

(3.9) formülündeki μ indisi deforme çekirdekler için $\mu=0$ durumunda K=0 uyarılmalarını, $\mu=\pm 1$ ise K=1 uyarılmalarını üretmektedir. (3.9)'da *a* parçacık operatöründen α quasi parçacık operatörüne geçiş yaparsak ve aşağıdaki kuaziparçacık operatörlerini kullanırsak

$$A^{+}_{qq'} = \alpha^{+}_{q} \alpha^{+}_{q'}$$

$$A_{q'q} = \alpha^{+}_{q} \alpha^{-}_{q} = -\alpha^{-}_{q} \alpha^{-}_{q}$$
(3.10)

Yarıçap ifadesi (3.11) şekline düşer.

$$R_{\mu} = \sum_{qq'} r_{qq'}^{\mu} \ u_{qq'} \left(A^{+}_{\ qq'} + A_{qq'} \right)$$
(3.11)

(3.11) ifadesinde parantez içindeki ifadeyi fonon operatörleri kullanarak düzenlersek (Soloviev, 1976)

$$Q_{i} = \frac{1}{2} \sum_{q,q'} \left\{ \psi_{qq'}^{i} A(q,q') - \phi_{qq'}^{i} A^{+}(q,q') \right\}$$
(3.12)

$$Q_{i}^{+} = \frac{1}{2} \sum_{q,q'} \left\{ \psi_{qq'}^{i} A^{+}(q,q') - \varphi_{qq'}^{i} A(q,q') \right\}$$
(3.13)

(3.12) ve (3.13) ifadeleri elde edilir. Bu ifadelerin yardımıyla yapılan işlemlerden sonra,

$$A(q,q') = \sum_{i} \left\{ \psi^{i}_{qq'} Q_{i} + \varphi^{i}_{qq'} Q_{i}^{+} \right\}$$

$$A^{+}(q,q') = \sum_{i} \left\{ \psi^{i}_{qq'} Q_{i}^{+} + \varphi^{i}_{qq'} Q_{i} \right\}$$
(3.14)

bulunur. (3.14) ifadelerini taraf tarafa toplarsak ve $g_{qq'} = \psi^i_{qq'} + \varphi^i_{qq'}$ olarak alınırsa,

$$A(q,q') + A^{+}(q,q') = \sum_{i} \sqrt{2} g_{qq'}(Q_{i} + Q_{i}^{+})$$
(3.15)

olur. (3.15) ifadesini (3.11)'de yerine yazarsak yarıçap ifadesinin fonon operatörleri cinsinden genel ifadesini elde etmiş oluruz.

$$R_{\mu} = \sum_{qq'} r_{qq'}^{\mu} u_{qq'} \sum_{i} \sqrt{2} g_{qq'} \left(Q_{i} + Q_{i}^{+} \right)$$
(3.16)

Nötron ve proton arasındaki etkileşim dikkate alınarak $\left(\vec{R}_N - \vec{R}_Z\right)^2$ hesaplandığında

$$W_{dip} = 2\kappa_1 \sum_{q_1q_1, q_2q_2} r_{q_1q_1} u_{q_1q_1} g_{q_1q_1} r_{q_2q_2} u_{q_2q_2} g_{q_2q_2} \sum_{ij} \left(Q_i + Q_i^+ \right) \left(Q_j + Q_j^+ \right)$$
(3.17)

olur. Burada $W_{q_1q_1} = r_{q_1q_1} u_{q_1q_1} g_{q_1q_1}$ ve $W_{q_2q_2} = r_{q_2q_2} u_{q_2q_2} g_{q_2q_2}$ ifadelerini (3.17)'de yazarsak

$$W_{dip} = 2\kappa_1 \sum_{q_1 q_1, q_2 q_2, \dots} W_{q_1 q_1, \dots} W_{q_2 q_2, \dots} \sum_{ij} \left(Q_i + Q_i^+ \right) \left(Q_j + Q_j^+ \right)$$
(3.18)

elde edilir. $B_{qq'}(\tau) = (\psi_{qq'}^2 + \varphi_{qq'}^2)Q_i^+Q_i$ olduğundan, tek parçacık hamiltoniyeni genel haliyle,

$$H_{sqp} = \sum_{qq'\tau} \varepsilon_{qq'}(\tau) B_{qq'}(\tau) = \sum_{qq'} \varepsilon_{qq'}(\psi_{qq'}^2 + \varphi_{qq'}^2) Q_i^+ Q_i$$
(3.19)

bulunur. İfadelerdeki notasyon karışıklığı engellenerek en genel haliyle NTGI model için hamiltoniyen ifadesi,

$$H = \sum_{qq'} \varepsilon_{qq'} \left(\psi_{qq'}^2 + \varphi_{qq'}^2 \right) Q_i^+ Q_i + 2\kappa_1 \sum_{q_1 q_1; q_2 q_2} W_{q_1 q_1} W_{q_2 q_2} \sum_{jj'} \left(Q_j + Q_j^+ \right) \left(Q_{j'} + Q_{j'}^+ \right)$$
(3.20)

dir. (2.27)'de belirtilen hareket denklemini tek fononlu durumlar için kullanalım:

$$[H, Q^+] = [H_{sqp}, Q^+] + [W_{dip}, Q^+] = \omega_i Q^+$$
(3.21)

Burada ω_i 1⁻ durumların enerjileridir. Bulduklarımızı (3.20) ifadesinde yerine yazarak enerji özdeğerlerini hesaplarsak. $g_{qq'} = \psi_{qq'} + \varphi_{qq'}$, $w_{qq'} = \psi_{qq'} - \varphi_{qq'}$ ve $W_{qq'} = r_{qq'}u_{qq'}g_{qq'}$ ifadeleri kullanılarak; ψ ve φ cinsinden yeniden yazılırsa hamiltoniyenin özfonksiyonlarını hesaplamak için dalga fonksiyonunun birimleme koşulunu sağlayan,

$$\sum_{ss'} g_{ss'} w_{ss'} + \sum_{vv'} g_{vv'} w_{vv'} = 1$$
(3.22)

ifadesindeki $g_{qq'}$ ve $W_{qq'}$ genlikleri

$$g_{qq'} = -\tau_z \frac{1}{N_\tau} \frac{4\kappa_1 r_{qq} u_{qq'} \varepsilon_{qq'}}{\varepsilon_{qq'}^2 - \omega_i^2} \tilde{W}$$
(3.23)

$$w_{qq'} = -\tau_z \frac{1}{N_\tau} \frac{4\kappa_1 r_{qq'} u_{qq'} \omega_i}{\varepsilon_{qq'}^2 - \omega_i^2} \tilde{W}$$
(3.24)

elde edilir. Burada nötron sistemi için τ_z =1, proton sistemi için ise τ_z =-1'dir, ayrıca $\tilde{W} = W_n - W_p$ şeklindedir. Seküler denklem yazılıp denklemler katsayılar matrisi haline getirilerek çözüm yapılırsa

$$D(\omega_i) = 1 + 2\kappa_1 \left(\frac{F_n}{N^2} + \frac{F_p}{Z^2}\right) = 0$$
(3.25)

denklemi elde edilir. Burada

$$F_{\tau} = \sum_{qq'}^{\tau} \frac{2\varepsilon_{qq'} r_{qq'}^2 u_{qq'}^2}{\varepsilon_{qq'}^2 - \omega_i^2}$$
(3.26)

şeklindedir. Uyarılma enerjileri seküler denklemin çözümü yapılarak elde edilebilinir. Bununla beraber dalga fonksiyonun katsayıları da elde edildiğinden taban durumundan 1⁻ seviyelerine elektrik dipol geçişlerinin hesaplanması için kullanılacak olan elektrik geçiş operatörü,

$$M(0^+ \to 1^- K) = \left\langle \psi_0 \middle| \left[Q_i^+, M(E1) \right] \middle| \psi_0 \right\rangle$$
(3.27)

şeklinde yazılır. Bu ifadedeki M(E1) elektrik dipol geçiş operatörüdür açık şekilde,

$$M(E1) = -\frac{1}{2} \sum_{\tau=n,p} e_{eff}^{\tau} \sum_{i=1}^{A} \tau_{z}^{i} r_{\mu}^{i}$$
(3.28)

yazılır. Burada e_{eff}^{τ} nötron ve protonların efektif elektrik yükleri, $|\psi_0\rangle$ ise fonon vakumudur.

3.2.2. Öteleme değişmez QRPA model (TI QRPA)

(3.1) ile ifade edilen öteleme ve Galileo değişmez olmayan QRPA model hamiltoniyenine h_0 terimi eklenerek 1⁻ uyarılmalarının Öteleme değişmezliğini restore etmek mümkündür.

$$H = H_{sqp} + W_{dip} + h_0 \tag{3.29}$$

Burada, ortalama alan potansiyeli ile kırılan öteleme değişmezliğin restorasyonu için kullanılan h_0 terimi izoskaler etkin kuvvet terimidir (Pyatov ve Salamov, 1977);

$$h_0 = -\frac{1}{2\gamma} \sum_{\mu} \left[H_{sqp}, P_{\mu} \right]^+ \left[H_{sqp}, P_{\mu} \right]$$
(3.30)

Bu ifadedeki ortalama alan potansiyeli parametreleri ile belirlenen ve çiftlenim parametresi olarak bilinen γ aşağıdaki şekide ifade edilir.

$$\gamma_{\mu} = <0|[P_{\mu}^{+}, [H_{sqp}, P_{\mu}]]|0>$$
(3.31)

Burada P_{μ} kütle merkezi hareketinin çizgisel momentumudur ve zamana bağlı olduğundan farklı simetri kuralları geçerlidir. Bu simetri kurallarını kullanarak ve kuaziparçacık tasvirinde P_{μ} şu şekilde bulunur:

$$P_{\mu} = \sum_{qq'} v_{qq'} B_{qq'} + p_{qq'} L_{qq'} (A_{qq'}^{+} - A_{q'q})$$
(3.32)

$$H_{sqp} = \sum_{qq'\tau} \varepsilon_{qq'}(\tau) B_{qq'}(\tau) \text{ olduğundan,}$$

$$\left[H_{sqp}, P_{\mu}\right] = \sum_{qq'} \varepsilon_{qq'} P_{qq'} L_{qq'} \left(A_{qq'}^{+} + A_{qq'}\right)$$
(3.33)

$$\left[H_{sqp}, P_{\mu}\right]^{+} = \sum_{qq'} \varepsilon_{qq'} p_{qq'} L_{qq'} \left(A_{qq'} + A_{qq'}^{+}\right)$$
(3.34)

elde edilir. Buradan çiftlenim parametresi;

$$\gamma_{\mu} = <0|[P_{\mu}^{+}, [H_{sqp}, P_{\mu}]]|0> = \left[p_{qq'}L_{qq'}(A_{qq'}^{+} - A_{q'q}), \varepsilon_{qq'}p_{qq'}L_{qq'}(A_{qq'}^{+} + A_{qq'})\right] = 2\sum_{qq'}\varepsilon_{qq'}p_{qq'}^{2}L_{qq'}^{2}$$
(3.35)

olur. Böylece h_0 ;

$$h_{0} = -\frac{1}{2\gamma} \sum_{q_{1}q_{1}^{\prime}} \varepsilon_{q_{1}q_{1}^{\prime}} p_{q_{1}q_{1}^{\prime}} L_{q_{1}q_{1}^{\prime}} \left(A_{q_{1}q_{1}^{\prime}} + A_{q_{1}q_{1}^{\prime}}^{+} \right) \sum_{q_{2}q_{2}^{\prime}} \varepsilon_{q_{2}q_{2}^{\prime}} p_{q_{2}q_{2}^{\prime}} L_{q_{2}q_{2}^{\prime}} \left(A_{q_{2}q_{2}^{\prime}}^{+} + A_{q_{2}q_{2}^{\prime}}^{+} \right)$$
(3.36)

(3.14) eşitlikleri kullanılarak (3.36)'dakı $(A_{q_1q_1} + A_{q_1q_1}^+)$ ve $(A_{q_2q_2} + A_{q_2q_2})$ ifadelerini fonon operatörleri cinsinden yazarsak,

$$h_{0} = -\frac{1}{\gamma} \sum_{q_{1}q_{1}'} \varepsilon_{q_{1}q_{1}} p_{q_{1}q_{1}} L_{q_{1}q_{1}} g_{q_{1}q_{1}} \sum_{q_{2}q_{2}'} \varepsilon_{q_{2}q_{2}'} p_{q_{2}q_{2}'} L_{q_{2}q_{2}'} g_{q_{2}q_{2}'} \sum_{k} \sum_{l} \left(Q_{k} + Q_{k}^{+} \right) \left(Q_{l} + Q_{l}^{+} \right)$$
(3.37)

elde edilir. Burada,

$$G_{\tau} = \sum_{qq'}^{\tau} \varepsilon_{qq'} p_{qq'} L_{qq'} g_{qq'}$$
(3.38)

yerine yazılırsa ifade aşağıdaki şekle düşer.

$$h_{0} = -\frac{1}{\gamma} GG' \sum_{k} \sum_{l} \left(Q_{k} + Q_{k}^{+} \right) \left(Q_{l} + Q_{l}^{+} \right)$$
(3.39)

Böylece TI için (3.29)'de verilen Hamiltoniyenin açık halini elde etmek için (3.39) ve daha önce verilen W_{dip} ve H_{sqp} için verilen (3.18), (3.19) ifadeleri yerine yazılırsa

$$H = \sum_{qq'} \mathcal{E}_{qq'} \left(\psi_{qq'}^2 + \varphi_{qq'}^2 \right) Q_i^+ Q_i + 2\kappa_1 \sum_{q_1q_1q_2q_2} W_{q_1q_1} W_{q_2q_2} \sum_{jj'} \left(Q_j + Q_j^+ \right) \left(Q_{j'} + Q_{j'}^+ \right) - \frac{1}{\gamma} GG' \sum_k \sum_l \left(Q_k + Q_k^+ \right) \left(Q_l + Q_l^+ \right)$$
(3.40)

elde edilir. Hamiltoniyen (3.41) hareket denkleminde yerine yazılarak

$$\begin{bmatrix} H, Q^+ \end{bmatrix} = \begin{bmatrix} H_{sqp} , Q^+ \end{bmatrix} + \begin{bmatrix} W_{dip}, Q^+ \end{bmatrix} + \begin{bmatrix} h_0 , Q^+ \end{bmatrix} = \omega_i Q^+$$
(3.41)

gereken işlemleri yaptıktan sonra sistem denklemleri elde edilir.

$$g_{qq'} = \frac{2}{\gamma} \frac{\varepsilon_{qq'}^2 p_{qq'} L_{qq'}}{\varepsilon_{qq'}^2 - \omega_i^2} G - \tau_z 4\kappa_1 \frac{1}{N_\tau} \frac{\varepsilon_{qq'} (r_\mu)_{qq'} u_{qq'}}{\varepsilon_{qq'}^2 - \omega_i^2} W$$
(3.42)

$$w_{qq'} = \frac{2}{\gamma} \frac{\varepsilon_{qq'}^2 p_{qq'} L_{qq'}}{\varepsilon_{qq'}^2 - \omega_i^2} \omega_i G - \tau_z 4\kappa_1 \omega_i \frac{1}{N_\tau} \frac{\varepsilon_{qq'} (r_\mu)_{qq'} u_{qq'}}{\varepsilon_{qq'}^2 - \omega_i^2} W$$
(3.43)

Burada $\widetilde{W} = W_n - W_p$ ve $\widetilde{W} = \frac{1}{N_\tau} \sum_{qq'} r_{qq'} u_{qq'} g_{qq'}^{\tau}$ şeklindedir. (3.42) ve (3.43)

ifadeleriyle katsayılar matrisi bulunabilir. TI QRPA model için seküler denklem determinant sıfıra eşitlenerek elde edilir. Elde edilen seküler denklemden bu model için 1⁻ uyarılmalarının geçiş özellikleri için sayısal sonuçlar elde edilir.

Elektrik dipol uyarılmalarının öteleme değişmez olmayan modele göre genel ifadeleri Bölüm 3.2.1' de bulunur. Denklem (3.27)'da ifade edilen matris elemanları ve (3.42)'deki dalga fonksiyonun $g_{qq'}$ katsayısı (3.27) ifadesinde yerine yazılırsa, indirgenmiş B(E1) geçiş ihtimali,

$$M(0^+ \to 1^- K) = -\frac{1}{\sqrt{\omega_i Y}} \left\{ \frac{e_{eff}^p}{\sqrt{2}} \left(M_p + \kappa_1 \overline{L}_i \frac{F_p}{Z} \right) + \frac{e_{eff}^n}{\sqrt{2}} \left(M_n - \kappa_1 \overline{L}_i \frac{F_n}{N} \right) \right\}$$
(3.44)

şeklinde ifade edilir. Öteleme dönüşümlerinin, ortalama alan potansiyellerinden dolayı değişmez olmamasından dolayı toplam momentum korunmamaktaydı (Eşitlik 3.44).

$$[H_{sqp}, P_{\mu}] \neq 0 \tag{3.45}$$

Çekirdeğin 1⁻ uyarılma titreşimlerine, çekirdeğin kütle merkezinin titreşimlerinin de katılmasıyla sahte halleri oluşur. Sahte halleri restore etmek için hamiltoniyene h₀ ayrılabilir izoskaler etkin kuvvet (Eşitlik 3.37) eklendiğinde;

$$\begin{bmatrix} H, P_{\mu} \end{bmatrix} = \begin{bmatrix} H_{sqp} + h_0, P_{\mu} \end{bmatrix} + \kappa_1 \begin{bmatrix} \left(\vec{R}_N - \vec{R}_Z \right)^2, P_{\mu} \end{bmatrix} = 0$$
(3.46)

komutasyon şartı sağlanır. Momentum operatörüyle komutasyonunun sıfır olması, (3.29) eşitliği ile verilen Hamiltoniyenin öteleme değişmezliğinin restore edildiğini göstermiştir.

3.2.3. Galileo değişmez QRPA model (GI QRPA)

Herhangi bir dış alanın sistem üzerine etkisi olmazsa, Hamiltoniyen koordinat sisteminin ötelenmesi, uzay, zaman, koordinat sisteminde eksenlerin dönmesi ve sistemin monoton hareketi (Galilean veya Lorentz değişmezlik bakımından) sabitdir. Galileo değişmezlik, etkileşimlerin ve hareket denklemlerinin özelliklerinden biridir (Bohr ve Mottelson, 1998) ve çizgisel momentumu sıfır olmayan (P=P₁-P₂) sistemlerin özelliklerini belirler. Galileo değişmezlikte göreli hızlar parçacıklar arasındaki tüm etkileşmelerde etkisini göstermektedir. Kuazi parçacık ortalama alanının hız

bağımlılığı çok kutuplu kuvvetlerin ortaya çıkmasını uyarmaktadır ve bu kuvvetlerin QRPA'da, çok kutuplu eşleşme kuvvetleri ile ürettikleri etkiler aynıdır. Bu nedenle, Galileo değişmezliğinin kırılması, olağan artık etkileşimlerine atfedilmeyen düşük sahte çok kutuplu uyarımların yapısı üzerinde kesin bir etkiye sahiptir (Civitarese, Faessler ve Licciardo, 1992). Bu nedenle çiftlenim etkileşmesinin kırılan Galileo değişmezliğinin restorasyonu önem arz etmektedir.

Bu bölümde yalnızca Galileo dönüşümlerine göre değişmezlik göz önüne alınacaktır. Bölüm 3.2.1'de verilen (3.1) Hamiltoniyen denklemine Galileo dönüşümlerine göre değişmezliği sağlayan restore edici h_{Δ} restorasyon teriminin eklenmesi gerekmektedir. Böylece hareket Hamilyoniyeni H_{sqp} tek parçacık hamiltoniyeninden, W_{dip} dipol-dipol etkileşme teriminden ve h_{Δ} restorasyon teriminden oluşmaktadır (Kuliev, Selam ve Küçükbursa, 2001);

$$H = H_{sqp} + W_{dip} + h_{\Delta} \tag{3.47}$$

Çiftlenim etkileşmesinin kırılan Galileo değişmezliğini restore etmek için kullanılan h_{Δ} terimi (Gabrakov, Pyatov ve Salamov, 1977),

$$h_{\Delta} = -\frac{1}{2\beta} \sum_{\mu} \left[U_{\text{gift}}, R_{\mu} \right]^{+} \left[U_{\text{gift}}, R_{\mu} \right]$$
(3.48)

ile verilektedir. Bu ifadede, Uçift çiftlenim potansiyeli

$$U_{\text{gift}} = -\frac{\Delta}{2}(\Gamma^+ + \Gamma) \tag{3.49}$$

şeklindedir (Kuliev ve ark., 2010). Burada Δ enerji boşluğu, Γ^+ ve Γ parçacık üretme ve yok etme operatörleri cinsinden yazılırsa, $\Gamma = \sum_{\nu} a_{\tilde{\nu}} a_{\nu}$ ve $\Gamma^+ = \sum_{\nu} a_{\tilde{\nu}}^+ a_{\nu}^+$ 'dır. R_{μ} (3.16) ifadesinde verilen çekirdeğin kütle merkezinin koordinatıdır. Çiftlenim potansiyelinden belirlenen çiftlenim parametresi $\beta = <0 | R_{\mu}^{+}, [U_{cift}, R_{\mu}] | 0 >$ şeklinde ifade edilir (Pyatov ve Salamov, 1977). *a* parçacık operatörü cinsinden yazılan Γ^{+} ve Γ operatörlerini kuaziparçacık tasvirinde yazalım (Soloviev, 1976):

$$a_{s}^{+} = u_{s}\alpha_{\tilde{s}}^{+} + v_{s}\alpha_{s}$$

$$a_{\tilde{s}}^{+} = u_{s}\alpha_{s}^{+} - v_{s}\alpha_{\tilde{s}}$$

$$a_{s} = u_{s}\alpha_{\tilde{s}} + v_{s}\alpha_{s}^{+}$$

$$a_{s'} = u_{s'}\alpha_{\tilde{s}'} + v_{s'}\alpha_{s'}^{+}$$

$$a_{\tilde{s}'} = u_{s'}\alpha_{s'} - v_{s'}\alpha_{\tilde{s}'}^{+}$$

$$a_{\tilde{s}'}^{+} = u_{s'}\alpha_{s'}^{+} - v_{s'}\alpha_{\tilde{s}'}^{-}$$
(3.50)

ifadeleri yerine yazılıp qq' notasyonu ile genel bir ifade yazılırsa, (3.53) eşitlikleri elde edilir.

$$\Gamma^{+} = u_{q}u_{q'}\alpha_{q}^{+}\alpha_{\tilde{q}'}^{+} - v_{q}v_{q'}\alpha_{\tilde{q}}\alpha_{q'}$$

$$\Gamma = u_{q}u_{q'}\alpha_{q}\alpha_{\tilde{q}'} - v_{q}v_{q'}\alpha_{\tilde{q}}^{+}\alpha_{q'}^{+}$$
(3.51)

Bu ifadeleri (3.52)'da yerine yazarsak, (3.53) ifadesini elde etmiş oluruz.

$$\left[U_{\text{gift}}, R_{\mu}\right] = -\frac{\Delta}{2} \left\{ \left[\Gamma, R_{\mu}\right] + \left[\Gamma^{+}, R_{\mu}\right] \right\}$$
(3.52)

$$\left[U_{\text{gift}}, R_{\mu}\right] = -\Delta \sum_{qq'} \left\{u_{q}u_{q'} + v_{q}v_{q'}\right\} r_{qq'} \left(A^{+}_{qq'} - A_{q'q}\right) = -\Delta \sum_{qq'} M_{qq'} r_{qq'} \left(A^{+}_{qq'} - A_{qq'}\right)$$
(3.53)

Burada $M_{qq'} = u_q u_{q'} + v_q v_{q'}$ dir. (3.14)'den $A_{qq'}^+ - A_{qq'}$ yazılarak fonon operatörleri cinsinden (3.53) eşitliğinde yerine yazılırsa,

$$h_{\Delta} = -\frac{1}{\beta} \sum_{\mu} \sum_{q_3 q_3'} \Delta_{q_3 q_3'} M_{q_3 q_3'} W_{q_3 q_3'} r_{q_3 q_3'} \Delta_{q_4 q_4'} M_{q_4 q_4'} W_{q_4 q_4'} r_{q_4 q_4'} \left(Q_k - Q_k^+\right) \left(Q_l^+ - Q_l^-\right)$$
(3.54)

olur. (3.47) ifadesindeki Hamiltoniyenin açık hali (3.18) ve (3.19) ile (3.54) eşitlikleri yerine yazılarak

$$H = \sum_{qq'} \varepsilon_{qq'} \left(\psi_{qq'}^{2} + \varphi_{qq'}^{2} \right) Q_{i}^{+} Q_{i} + 2\kappa_{1} \sum_{q_{1}q_{1},q_{2}q_{2}} W_{q_{1}q_{1}} W_{q_{2}q_{2}} \sum_{jj'} \left(Q_{j} + Q_{j}^{+} \right) \left(Q_{j'} + Q_{j'}^{+} \right) - \frac{1}{\beta} \sum_{\mu} \sum_{q_{3}q_{3}} \sum_{q_{4}q_{4}} \Delta_{q_{3}q_{3}} M_{q_{3}q_{3}} W_{q_{3}q_{3}} r_{q_{3}q_{3}} \Delta_{q_{4}q_{4}} M_{q_{4}q_{4}} W_{q_{4}q_{4}} r_{q_{4}q_{4}} \left(Q_{k} - Q_{k}^{+} \right) \left(Q_{l}^{+} - Q_{l} \right)$$

$$(3.55)$$

elde edilebilir. Nötron ve proton sistemleri için ayrı yazılarak aşağıdaki sadeleştirmeler yapılırsa,

$$D = D_n + D_p \qquad D_{\tau} = \Delta_{\tau} \sum_{qq'} M_{qq'} r_{qq'} w_{qq'}^{\tau}$$
(3.56)

$$\widetilde{W} = W_n - W_p \qquad \qquad \widetilde{W} = \frac{1}{N_\tau} \sum_{qq'} r_{qq'} u_{qq'} g_{qq'}^{\tau}$$
(3.57)

Hamiltoniyen ifadesi

$$H = \sum_{qq'} \varepsilon_{qq'} \left(\psi_{qq'}^2 + \varphi_{qq'}^2 \right) Q_i^+ Q_i + 2\kappa_1 \sum_{jj'} \tilde{W} \tilde{W}' \left(Q_j + Q_{j'}^+ \right) \left(Q_{j'} + Q_{j'}^+ \right) - \frac{1}{\beta} \sum_{\mu} \sum_{k,l} DD' \left(Q_k^+ - Q_k \right) \left(Q_l - Q_l^+ \right)$$
(3.58)

şeklinde bulunur. Hareket denkleminde

$$\begin{bmatrix} H, Q^+ \end{bmatrix} = \begin{bmatrix} H_{sqp} , Q^+ \end{bmatrix} + \begin{bmatrix} W_{dip}, Q^+ \end{bmatrix} + \begin{bmatrix} h_{\Delta} , Q^+ \end{bmatrix} = \omega_i Q^+$$
(3.59)

(3.59) eşitliği yerine yazılırsa, varyasyon işlemleri yapıldıktan sonra

$$g_{qq'} = \frac{2\Delta_{\tau}}{\beta} \frac{r_{qq'}M_{qq'}}{\varepsilon_{qq'}^2 - \omega_i^2} \omega_i D - \tau_z 4\kappa_1 \frac{1}{N_{\tau}} \frac{\varepsilon_{qq'}r_{qq'}u_{qq'}}{\varepsilon_{qq'}^2 - \omega_i^2} W$$
(3.60)

$$w_{qq'} = \frac{2\Delta_{\tau}}{\beta} \frac{\varepsilon_{qq'} r_{qq'} M_{qq'}}{\varepsilon_{qq'}^2 - \omega_i^2} D - \tau_z 4\kappa_1 \omega_i \frac{1}{N_{\tau}} \frac{r_{qq'} u_{qq'}}{\varepsilon_{qq'}^2 - \omega_i^2} W$$
(3.61)

sistem denklemleri elde edilir. (3.60) ve (3.61) ifadelerini (3.56) ve (3.57)'de yerine yazarak katsayılar matrisi bulunur. Determinant sıfıra eşitlenerek GI QRPA model için seküler denklem elde edilir.

$$D(w_n) = \begin{vmatrix} -w_i^2 M_{\tau} & 2\kappa_1 w_i^2 \tilde{F} \\ w_i^2 \tilde{F} & -(1+2\kappa_1 F) \end{vmatrix} = 0$$
(3.62)

Elde edilen seküler denklemden bu modelin 1⁻ uyarılmalarının geçiş özellikleri için sayısal sonuçlar elde edilir. Başlangıçta, çiftlenim etkileşmesi nedeniyle kırılmış olan Galileo değişmezlik komutasyon şartını sağlamamaktaydı.

$$[U_{cift}, \vec{R}_{\mu}] \neq 0 \tag{3.63}$$

Restora edici h_{Δ} ayrılabilir etkin kuvvetin eklenmesiyle

$$\left[U_{\text{giff}} + h_{\Delta}, R_{\mu}\right] = 0 \tag{3.64}$$

komutasyon şartının sağlanması, Galileo değişmezliğin restore edildiğini göstermiştir.

3.2.4. Öteleme ve Galileo değişmez QRPA model (TGI QRPA)

1⁻ seviyelerinin tek parçacık ortalama alan potansiyelinde çiftlenim etkileşmesi yapan sistemde Öteleme ve Galileo değişmez QRPA model Hamiltonyeni

$$H = H_{sqp} + h_0 + h_{\Delta} + W_{dip} \tag{3.65}$$

şeklindedir. Burada H_{sqp} tek parçacık hamiltoniyeni, h_0 ve h_{Δ} restore edici etkin kuvvetler ve W_{dip} dipol-dipol etkileşmesini ifade eder. Burada daha önceki bölümlerde bulunan (3.18), (3.19), (3.39) ve (3.54) eşitlikleri yerine yazılırsa Hamiltoniyenin açık şekli:

$$H = \sum_{qq'} \varepsilon_{qq'} \left(\psi_{qq'}^2 + \varphi_{qq'}^2 \right) Q_i^+ Q_i + 2\kappa_1 \sum_{jj'} \tilde{W} \tilde{W}' \left(Q_j + Q_j^+ \right) \left(Q_{j'} + Q_{j'}^+ \right) - \frac{1}{\gamma} GG' \sum_k \sum_l \left(Q_k + Q_k^+ \right) \left(Q_l + Q_l^+ \right) - \frac{1}{\beta} \sum_{\mu} \sum_{m,n} DD' \left(Q_m^+ - Q_m \right) \left(Q_n - Q_n^+ \right)$$
(3.66)

şeklinde olur. İfade hareket denkleminde yerine yazılırsa enerji özdeğerlerini bulunur.

$$\begin{bmatrix} H, Q^+ \end{bmatrix} = \begin{bmatrix} H_{sqp} , Q^+ \end{bmatrix} + \begin{bmatrix} h_{\Delta} , Q^+ \end{bmatrix} + \begin{bmatrix} h_0 , Q^+ \end{bmatrix} + \begin{bmatrix} W_{dip}, Q^+ \end{bmatrix} = \omega_i Q^+$$
(3.67)

gerekli ara işlemler yapıldıktan sonra $g_{qq'}$, $W_{qq'}$, $\psi_{qq'}$, $\varphi_{qq'}$ genlikleri için

$$g_{qq'} = \frac{2}{\gamma} \frac{\varepsilon_{qq'}^2 p_{qq'} L_{qq'}}{\varepsilon_{qq'}^2 - \omega_i^2} G + \omega_i \frac{2\Delta_{\tau}}{\beta} \frac{r_{qq'} M_{qq'}}{\varepsilon_{qq'}^2 - \omega_i^2} D - \tau_z 4\kappa_1 \frac{1}{N_{\tau}} \frac{\varepsilon_{qq'} (r_{\mu})_{qq'} u_{qq'}}{\varepsilon_{qq'}^2 - \omega_i^2} W$$
(3.68)

$$w_{qq'} = \frac{2\omega_i}{\gamma} \frac{\varepsilon_{qq'} p_{qq'} L_{qq'}}{\varepsilon_{qq'}^2 - \omega_i^2} G + \frac{2\Delta_\tau}{\beta} \frac{\varepsilon_{qq'} r_{qq'} M_{qq'}}{\varepsilon_{qq'}^2 - \omega_i^2} D - \tau_z 4\kappa_1 \omega_i \frac{1}{N_\tau} \frac{r_{qq'} u_{qq'}}{\varepsilon_{qq'}^2 - \omega_i^2} W$$
(3.69)

denklemleri elde edilir. Buradan seküler denklemi elde etmek için nötron ve proton sistemleri için bağımsız sistem denklemleri elde edilir.

$$\tilde{W} = W_n - W_p \qquad \qquad \tilde{W}_{\tau} = \frac{1}{N_{\tau}} \sum_{qq'} r_{qq'} u_{qq'} g_{qq'}^{\tau}$$
(3.70)

$$G=G_{n}+G_{p} \qquad G_{\tau} = \sum_{qq'} \varepsilon_{qq'} p_{qq'} L_{qq'} g_{qq'}^{\tau} \qquad (3.71)$$

$$D = D_{n} + D_{p} \qquad D_{\tau} = \Delta_{\tau} \sum_{qq'} r_{qq'} M_{qq'} w_{qq'}^{\tau} \qquad (3.72)$$

(3.68) ve (3.69) ifadelerini (3.70), (3.71) ve (3.72) eşitliklerinde yerine yazalım. Burada, aşağıdaki kısaltmalar yapıldığında.

$$P_{\tau} = 2\sum_{qq'} \frac{\varepsilon_{qq'}^{3} p_{qq'}^{2} L_{qq'}^{2}}{\varepsilon_{qq'}^{2} - \omega_{i}^{2}} \qquad M_{\tau} = 2\sum_{qq'} \frac{\varepsilon_{qq'}^{2} p_{qq'} L_{qq'} r_{qq'} u_{qq'}}{\varepsilon_{qq'}^{2} - \omega_{i}^{2}}$$

$$Y_{\tau} = 2\sum_{qq'} \frac{(\tau)}{\varepsilon_{qq'}^{2} - \omega_{i}^{2}} \qquad \gamma = 2\sum_{qq'} \varepsilon_{qq'} p_{qq'}^{2} L_{qq'}^{2} \qquad (3.73)$$

$$F_{\tau} = 2\sum_{qq'} \frac{\varepsilon_{qq'}(r_{\mu})_{qq'}^{2} u_{qq'}^{2}}{\varepsilon_{qq'}^{2} - \omega_{i}^{2}} \qquad S_{\Lambda} = 2\Delta \sum_{qq'} \frac{(\tau)}{\varepsilon_{qq'}^{2} - \omega_{i}^{2}} \varepsilon_{qq'}^{2} - \omega_{i}^{2}$$

Buna göre nötron (n) ve proton (p) için işlemler yapılarak,

$$\frac{1}{\gamma} M_{\tau} G + \frac{1}{\beta} \omega_{i} \tilde{Y} D - 2\kappa_{1} F_{\tau} W = 0$$

$$\frac{1}{\gamma} P_{\tau} G + \frac{1}{\beta} \omega_{i} S_{\Delta} D - 2\kappa_{1} \tilde{M} W = 0$$

$$\frac{1}{\gamma} \omega_{i} S_{\Delta} G + D_{\Delta} D + 2\kappa_{1} \tilde{Y} W = 0$$
(3.74)

sistem denklemleri elde edilir. $\gamma - P = -\omega_i^2 M_\tau$; $D_{\Delta} = (1 - \frac{R_{\Delta}}{\beta})$; $\tilde{M} = \omega_I^2 \tilde{F}$; $\tilde{Y}_{\Delta np} = \frac{\Delta n}{N} Y_n - \frac{\Delta p}{P} Y_p$; $R_{\Delta} = R_n \Delta_n^2 + R_p \Delta_p^2$; $F = \frac{Z^2}{A^2} F_n + \frac{N^2}{A^2} F_p$; $F_{np} = \frac{F_n}{N} + \frac{F_p}{Z}$; $F_{n^2 p^2} = \frac{F_n}{N^2} + \frac{F_p}{Z^2}$ kısaltmaları ile (3.74) denklemleri düzenlenebilir. Bu denklemlerden elde edilen katsayılar matrisi, çözümlerin sıfırdan farklı çözümü olması için, determinant sıfıra eşit olmalıdır;

$$D(\omega_n) = -\omega^2 \begin{vmatrix} M(\omega_i) & -S_{\Delta} & 2 \kappa_1 \omega_i \tilde{F}_{np} \\ S_{\Delta} & \beta - R_{\Delta} & 2 \kappa_1 \tilde{Y}_{\Delta np} \\ -\omega_i \tilde{F}_{np} & \omega_i \tilde{Y}_{\Delta np} & -(1+2 \kappa_1 F_{n^2 p^2}) \end{vmatrix} = 0$$
(3.75)

Böylece TGI QRPA modelin seküler denklemi elde edilmiş olur.

Öteleme ve Galileo değişmez modelde indirgenmiş geçiş ihtimali için (3.27) ifadesini göz önüne bulundurarak, bu ifadede (3.68) ifadesindeki $g_{qq'}$ genlik katsayısı yerine yazılırsa (3.76) ifade elde edilir.

$$M(0^{+} \rightarrow 1^{-} K) = -\frac{1}{\sqrt{\omega_{i}Y}} \left\{ \frac{e_{eff}^{p}}{\sqrt{2}} \left(\frac{M_{p}}{2} + \frac{1}{2} \omega_{i} \frac{\overline{L_{i}}}{\beta} \Delta_{p} K_{p} + \frac{1}{2} \kappa_{1} \overline{L_{i}} \frac{F_{p}}{Z} \right) + \frac{e_{eff}^{n}}{\sqrt{2}} \left(\frac{M_{n}}{2} + \frac{1}{2} \omega_{i} \frac{\overline{L_{i}}}{\beta} \Delta_{n} K_{n} - \frac{1}{2} \kappa_{1} \overline{L_{i}} \frac{F_{n}}{N} \right) \right\} = 0$$

$$(3.76)$$

Burada $\overline{L_i} = \gamma \frac{D}{G}$ ve $\overline{L_i} = \gamma \frac{W}{G}$ şeklindedir. TGI-QRPA model için B(E1) değeri bulunurken, (3.77) eşitliğinde, elde edilen (3.76) matris elemanı yerine yazılmıştır. Elde edilen ifadeler sayesinde 1⁻ uyarılmaların geçiş özellikleri için sonuçlar elde edilmiştir. Bu sonuçlara bulgular bölümünde ulaşılabilir.

3.3. Deforme Çekirdeklerde Elektrik Dipol Uyarılmaları

İndirgenmiş geçiş ihtimali elektrik dipol geçişlerinin en karakteristik büyüklüklerinden biri olarak bilinir. 1⁻ uyarılmalar için bu büyüklük B(E1) olarak ifade edilir ve aşağıda gösterildiği gibidir.

$$B(E1, I_i K_i \to I_f K_f) = \sum_{\mu} \langle I_i 1 K_i \mu | I_f K_f \rangle^2 | M(0^+ \to 1^- K) |^2$$
(3.77)

Bu ifadede $\langle I_i 1 K_i \mu | I_f K_f \rangle$ -Clebsh-Gordon katsayıları, $M(0^+ \rightarrow 1^- K)$ uyarılma matris elemanıdır (Bohr ve Mottelson 1997). (2.22) denkleminde $(|\psi_i\rangle = Q_i^+ |\psi_0\rangle = \sum_{\mu,\tau} [\psi_{qq'}^i(\tau) A_{qq'}^+(\tau) - \phi_{qq'}^i(\tau) A_{qq'}(\tau)] |\Psi_0\rangle$ verilen QRPA metodunda 1[°] seviyelerinin tek fononlu dalga fonksiyonları ifadesi kulanılarak, 1[°] seviyeleri için tek fononlu taban durumundan uyarılma matris elemanı, aşağıdakı şekilde yazılır:

$$M(0^{+} \to 1^{-} \mathrm{K}) = \langle \Psi_{0} | Q_{n}^{+} M(E1, \mu) | \Psi_{0} \rangle$$
(3.78)

Burada M(E1) elektrik dipol operatörüdür ve

$$M(E1,\mu) = e_p \sqrt{\frac{4\pi}{3}} \sum_{i=1}^{Z} (rY_{1\mu})_i$$
(3.79)

ile gösterilir. e_p protonun elektrik yüküdür. Efektif yükler kullanılarak elektrik dipol geçiş operatörleri, deney ve teorik sonuçlar karşılaştırılarak elde edilebilir (Bohr ve Mottelson, 1997).

$$M(E1,\mu) = -\frac{1}{2} \sum_{\tau=n,p} e_{eff}^{\tau} \sum_{i=1}^{A} \tau_{z}^{i} r_{\mu}^{i}$$
(3.80)

Dipol uyarılma matris elemanı, Bogolyubov dönüşümleri altında farklı tanımlanabilir, buna sebep incelenen çekirdeklerin süperakışkanlık özelliğine sahip olmasıdır.

$$M(E1) = \sum_{qq'} r_{qq'} (u_q u_{q'} - v_q v_{q'}) B_{qq'} + \sum_{qq'} r_{qq'} (u_q v_{q'} + u_{q'} v_q) (A_{qq'}^+ + A_{q'q})$$
(3.81)

Burada ilk terim kuazibozon özelliğine, ikinci terim ise kuaziparçacık özelliğine sahiptir. Burada denklemi düzenlersek komutasyon özellikleri nötron ve proton için ayrı yazılırsa, elektrik dipol geçiş matris elemanı aşağıdaki şekilde olur:

$$M(0^{+} \to 1^{-}K) = -\frac{e_{eff}^{p}}{2} \sum_{ss'} r_{ss'} u_{ss'} g_{ss'} - \frac{e_{eff}^{n}}{2} \sum_{vv'} r_{vv'} u_{vv'} g_{vv'}$$
(3.82)

Bu büyüklüklerde kullanılan gerekli terimler, QRPA metodunu farklı yaklaşımlar altında restore edilmesiyle sağlanmıştır.

BÖLÜM 4. ÇİFT-ÇİFT DEFORME ÇEKİRDEKLERDE ELEKTRİK DEV DİPOL REZONANS UYARILMA SEVİYELERİNİN ÖZELLİKLERİ

Bu bölümde çift-çift deforme çekirdeklerin nükleer özelliklerinden olan fotoabsorbsiyon tesir kesiti, toplam kuralları, integre edilmiş tesir kesitleri, radyasyon kalınlığı, deforme çekirdeklerde enerji seviyeleri ve tek parçacık asimptotik nilsson kuantum numaraları ve dev rezonans genişliği konuları ile ilgili bilgiler yer almaktadır.

4.1. Dipol Fotoabsorbsiyon Tesir Kesiti

Atom çekirdeğinin özelliklerinin anlaşılması için fotonlar ile yapılan deney (fotonükleer etkleşmeler) sonuçlarının önemli katkıları vardır. Bu katkılar, çekirdeğin fotonlar ile elektromanyetik etkileşiminin kuantum elektrodinamiği (QED) çerçevesinde iyi açıklamasını sağlar ve fotonlar ile yapılan deneylerin, atom çekirdeğinin yapısının neden olduğu reaksiyonların belirli özelliklerini anlaşılır şekilde ortaya koymaktadır (Iskhanov ve Kapitanov, 2015).

Ayrıca E1 rezonans bölgesinde fotonlar ile yapılan deneylerin detaylı incelenmesi, çekirdeğin temel özellikleri ile ilgili önemli bilgiler sağlamaktadır. Özellikle ilgi çekici konulardan biri dev dipol E1 rezonans özelliklerinin (GDR) kütle numarasına göre değişim göstermesidir. Bunun için pek çok ağır çekirdek için fotoabsorbsiyon tesir kesiti çalışmaları yapılmıştır (Gurevich ve ark., 1974, 1976a, 1978, 1980, 1981; Carlos ve ark., 1974). Amaç GDR parametreleri ile A kütle sayısı arasında değişimin nasıl olacağını gözlemlemektir (Kuznetsov ve ark., 2017).

Şekil 2.3.'te küresel ¹⁴²Nd ve deforme ¹⁷⁴Yb çekirdeği için yapılmış deneysel çalışmalardan elde edilmiş olan tesir kesitlerinin enerjinin bir fonksiyonu olarak

gösterimi verilmektedir. Zayıf bir P dış alanında uyarılmış bir çekirdeğin dipol fotoabsorpsiyon tesir kesiti $\sigma_{E1}(E)$ ifadesi aşağıdaki gibi yazılabilmektedir (Ring ve Shuck, 2004).

$$\sigma_{E1}(E) = \frac{4\pi^2 e^2}{\hbar c} (E_f - E_0) \sum \left| \left\langle \Psi_f \left| M \right| \Psi_0 \right\rangle \right|^2 \delta \left(E_f - E_0 \right)$$
(4.1)

Burada M indirgenmiş geçiş matris elemanıdır ve bölüm 3'de verilmiştir. $\delta(E_f - E_0)$ ağırlık fonksiyonunu ifade etmektedir. Ağırlık fonksiyonu olarak Kuliev ve Salamov (1984) çalışmasında verilen fonksiyon kullanılmıştır. Bu fonksiyon, $\delta(E_f - E_0) =$ $\delta(\eta_i - \eta)$ notasyonu ile aşağıdaki şekilde yazılmaktadır.

$$\delta(\eta_i - \eta) = \frac{1}{4\pi} \frac{\Delta^3}{\left[\left(\eta_i - \eta\right)^2 + \left(\Delta/2\right)^2\right]^2}$$
(4.2)

Eşitlik (4.2)' de, Δ hesaplama sonuçlarının sunum şeklini belirler ve ortalama enerji aralığını ifade eder (Malov ve ark., 1985). Δ paremetresi uyarılmış çekirdeğin spektrumunu düzgün bir şekilde elde edilmesinde kolaylık sağlamaktadır ve her uyarılma için ek bir yapay genişlik anlamına gelmektedir. ($\eta_i - \eta$) uyarılmış ve taban seviyeleri arasındaki enerji farkıdır.

Eşitlik (4.1) geçiş matris elemanı, indirgenmiş geçiş olasılığı $\{B(E1; 0^+ \rightarrow 1^-)\}$ ifadesinde şu şekilde yer almaktadır (Ring ve Shuck, 2004):

$$B(E1,\eta) = \frac{1}{2I_i + 1} \left| \left\langle \Psi_f \left| \hat{D} \right| \Psi_0 \right\rangle \right|^2$$
(4.3)

Güç fonksiyonunun $(b(\lambda, \eta))$ genel ifadesi;

$$b(E1,\eta) = \sum_{i} \delta(\eta_{i} - \eta) B(E1,\eta)$$
(4.4)

şeklinde verilmektedir (Malov ve Soloviev, 1976; Bohr ve Mottelson, 1997; Hinohara ve ark., 2013). E1 uyarılmaları için güç fonksiyonu aşağıdaki gibi yazılabilir (Soloviev ve ark., 1980; Malov ve ark., 1985).

$$S_{E1}(E) = b(E1,\eta) = \frac{1}{4\pi} \sum_{i} \frac{\Delta^{3}}{\left[\left(\eta_{i} - \eta \right)^{2} + \left(\Delta/2 \right)^{2} \right]^{2}} B(E1;0^{+} \to 1^{-})$$
(4.5)

O zaman fotoabsorbsiyon tesir kesitinin güç fonksiyonuna bağlı olarak aşağıdaki şekle düşer (Khuong ve ark., 1979; Ponomarev ve ark., 1994; Litvinova ve ark., 2008).

$$\sigma_{E1}(E) = \frac{16\pi^3 e^2}{9\hbar c} ES_{E1}(E)$$
(4.6)

Burada $\sigma_{E1}(E)$ fotoabsorbsiyon tesir kesiti, E enerji, $S_{E1}(E)$ güç fonksiyonudur. Sabit değerleri yerine yazarsak ($\hbar c = 197, 3Mev.fm$, $e^2 = 1.44MeV.fm$) en sade hali

$$\sigma_{E1}(E) = 0,402ES_{E1}(E)$$
(4.7)

şekline düşer (Ponomarev ve ark., 1994; Bohr ve Mottelson, 1997; Oishi ve ark., 2016). (4.7) ifadesi, bir model kullanılarak yapılan teorik çalışmalardan elde edilen değerlerin, deneysel çalışmalar ile karşılaştırılmasında kullanılan bir eşitliktir.

Dipol fotoabsorbsiyon tesir kesiti, enerji grafiğinde GDR pikinin şekli çekirdeğin küresel ya da deforme olmasına göre değişim göstermektedir (Rezwani ve ark., 1970). Grafik küresel çekirdeklerde Lorentz eğrisinden (Goldhaber ve Teller, 1948; Steinwedel ve Jensen, 1950), deforme çekirdeklerde ise üst üste yerleştirilmiş iki Lorentz eğrisinden oluşmaktadır (Okamoto, 1956; Danos, 1958).

Deforme çekirdekler için yapılan deneysel çalışmalarda dipol fotoabsorbsiyon tesir kesiti ile enerjiye göre değişim grafiğinde birden fazla pikli yapı oluştuğu görülmüştür. Deforme çekirdekler için Okamato (1958) ve Danos (1958) tarafından yapılan teorik çalışmalarda E1 dev rezonansının iki ayrı pike yarıldığı gösterilmiştir. Deforme çekirdeklerde iki çeşit dipol titreşimi bulunmaktadır. Bunlardan biri simetri eksenine paralel, diğeri simetri eksenine dik yöndedir (Ring ve Shuck, 2004). Bu titreşimler K kuantum sayısı ile K=0 ve iki katlı K=1 değerleriyle gösterilmektedirler (Iudice, 2000; Bortignon, 2003).

Şekil 4.1. Deforme çekirdeklerin K=0 ve K=1 salınım modları (Ring, 2008).

Deforme çekirdekler için deneysel verilerden elde edilen sistematik bilgi ile teorik çalışma sonuçları iki hörgüçlü yapının deforme çekirdekler için karakteristik bir özellik olduğunu göstermiştir. Bu hörgüçlerden yüksek enerjili olanı düşük enerjili olanın yaklaşık iki katı şiddete sahiptir (Iudice, 2000).

$$\frac{B(E1,0^+ \to K^{\pi} = 1^-)}{B(E1,0^+ \to K^{\pi} = 0^-)} = 2\frac{w_{\rm II}}{w} \simeq 2(1-\delta) \simeq 1.5$$
(4.8)

(4.8)'dan görüldüğü gibi deforme çekirdeklerde K=1 ve K=0 modlarında oluşan toplam indirgenmiş geçiş olasılığı oranları yaklaşık olarak 1. 5 civarındadır (Iudice, 2000).

4.2. Toplam Kuralları

Dev rezonansların spektrumlarını analiz ederken, geçiş operatörleri ve hamiltoniyen veya bunların güçleri arasındaki matematiksel ilişkilerden elde edilen toplam

kurallardan yararlanmak oldukça elverişlidir. Toplam kurallar çekirdeklerdeki elektromanyetik geçişlerin analizi için oldukca önemlidir. İlk olarak GDR'nin γ ışınlarının elektrik dipol absorbsiyonuna bağlılığı Levinger ve Bethe tarafından verilen toplam kurallarının hesaplanması ile kesin olarak kanıtlanmıştır (Baranger ve Vogt, 1968). Bu toplam kuralları, belirli bir çokkutuplu geçişin başlangıç durumundan uyarılmış seviyenin diğer tüm nükleer seviyelerine geçişlerinin toplam gücünü vermektedir.

Toplam kuralları GDR tesir kesiti hesaplamaları yapılırken kolektif uyarılmaların teorisinde önemli katkılar sağlamaktadır. Toplam kuralları mikroskopik yaklaşımlarda kullanılır, bunun nedeni farklı yaklaşım ve modellerle elde edilen genel özellikleri kontrol edebilmesidir (Ring ve Shuck, 2004). Toplam kuralları, verilen bir uyarılmış seviyenin kolektiflik derecesinin niceliğinin hesaplanmasında önemli kolaylık sağlamaktadır. Genel olarak iki toplam kuralı vardır: enerji ağırlıklı toplam kuralı (Non Energy Weighed Sum Rule-EWSR).

EWSR matematiksel olarak şu şekilde ifade edilebilmektedir:

$$S(F)_{EWSR} = \sum_{n} w_{n} |\langle n|F|0 \rangle|^{2} = \frac{1}{2} \langle 0|F^{+}[H,F]|0 \rangle$$
(4.9)

Bu ifadede, H mikroskobik Hamiltoniyen, F geçiş matris operatörü, $\langle n |$ çok cisimli bir sistemin uyarılmış dalga fonksiyonu, $|0\rangle$ ise taban durumu dalga fonksiyonudur. Nötron geçişleri için efektif yük -eZ/A, proton geçişleri için efektif yük ise eN/A dır. E₀ ve E_n taban ve uyarılmış seviyelerin enerjileridir. Böylece EWSR;

$$\sum_{n} (E_n - E_0) B(E1, 0 \to n) = \frac{\hbar^2}{8\pi m} 9 \left(Z e_{peff}^2 + N e_{neff}^2 \right)$$
(4.10)

Efektif yükler yerine yazılırsa, EWSR

$$\sum_{n} (E_n - E_0) B(E1, 0 \to n) = \frac{\hbar^2}{8\pi m} 9 \left[Z \left(\frac{N}{A} \right)^2 e^2 + N \left(\frac{Z}{A} \right)^2 e^2 \right] = \frac{9\hbar^2}{8\pi m} \frac{NZ}{A} e^2$$
(4.11)

olur (Harakeh, 2006). $\hbar = 197.3 \, MeV. fm/c$; m=939,51 MeV/c² sabitlerini yerine yazarsak elektrik dipol EWSR.

$$\sum_{n} (E_n - E_0) B(E1, 0 \to n) = 14.8 \frac{NZ}{A} e^2 f m^2 MeV$$
(4.12)

(4.11) ifadesinde yük alışverişi ve hıza bağlı etkileşimler ihmal edilmiştir. Ancak elektrik dipol geçişlerinde nükleon-nükleon etkileşiminde yük değişimi söz konusu olduğunda bu ifadeye bir katkı gelmektedir (Bohr ve Mottelson, 1998). Denklem (4.11) elektrik dipol geçişlerinde, modelden bağımsız olarak, modellerin çok parçacık sistemlerinde kullanılırlığının test edilmesini sağlayan toplam kuralıdır. Çalışmamızda incelenen ¹⁶⁸⁻¹⁷⁸Yb çekirdeği için EWSR yüzdelik değerlerinin enerjiye göre değişim grafikleri, bulgular bölümünde yer almaktadır.

NEWSR toplam kuralı matematiksel olarak;

$$S(F)_{NEWSR} = |\langle n|F|0\rangle|^2 = \langle 0|F^+F|0\rangle$$
(4.13)

ile ifade edilir. Dalga fonksiyonunun antisimetrisi ½ ile 1 arasında değerler alan bir z düzeltme faktörü üzerinden hesaba katılırsa,

$$S(F)_{NEWSR} = (2\lambda + 1)\frac{Ze^2}{4\pi} \langle r^{2\lambda} \rangle Z$$
(4.14)

olur. NEWSR toplam kuralı $\Delta T=0$ ve $\Delta T=1$ uyarılmalarını kapsamaktadır. (4.14) ifadesi dalga fonksiyonuna, seçilen uzaya ve geçiş operatörünün karakteristiğine bağlıdır (Suhonen, 2007). NEWSR bu özelliklerinden dolayı model bağımlıdır. Modelden bağımsız olması ve güvenilir sonuçlar vermesi için genellikle EWSR tercih edilmektedir (Rowe, 2010).

4.3. İntegre Edilmiş Tesir Kesitleri

Başlangıç seviyesinin taban durumunda toplam kuralları, foton enerjisinin çeşitli katları tarafından ağırlıklandırılan, fotoabsorbsiyon için integre edilmiş tesir kesitleri ile doğrudan ilişkilidir (Cannata ve Überall, 1980). Dipol absorbsiyon için toplam tesir kesiti, tüm son haller üzerinden toplam alınarak ve enerji üzerinden integre edilerek elde edilmektedir (Ring ve Shuck, 2004).

$$\sigma_n = \int E^n \sigma(E) dE \tag{4.15}$$

Bu ifade enerji ağırlıklı dipol toplamı olarak ifade edilmektedir. Dipol fotoabsorbsiyon için integre edilmiş (enerji ağırlıklı) tesir kesitleri aşağıdaki gibi yazılabilir (Pyatov ve Salamov, 1977)

$$\sigma_n = \int E^n \sigma_{\gamma}(E) dE = \frac{16\pi^3}{9\hbar c} e^2 \sum_{\gamma} \omega_{\gamma}^{n+1} B(E1, 0 \to 1)_{\gamma}$$
(4.16)

Burada dipol toplamı Thomas-Reiche-Kuhn (TRK) toplam kuralı (Thomas, 1925; Kuhn,1925; Reiche ve Thomas, 1925) ya da diğer bir deyişle "klasik dipol toplam kuralı" olarak ifade edilmektedir (Uberall, 1971; Harakeh ve Woude, 2006). TRK toplam kuralı, fotoabsorbsiyonunun geçiş gücü ile orantılı olmasıyla, nükleer uyarılmalarda çeşitli dipol seviyelerinin kollektif özelliklerini yorumlamakta yaygın bir şekilde kullanılmaktadır (Au ve ark., 1997; Raduta ve ark., 2009). (4.20) ifadesinde n=0 alınmasıyla, dev dipol rezonans için toplam klasik enerji ağırlıklı toplam kuralı (integre edilmiş tesir kesiti) elde edilir.

$$\sigma_0 = \frac{16\pi^3}{9\hbar c} e^2 \sum \omega B(E1) \text{ (MeV.barn)}$$
(4.17)

Bu eşitlik yukarıda bahsedilen TRK toplam kuralı ile ilişkilidir. Böylelikle (4.17);

$$\sigma_0 = \frac{16\pi^3}{9\hbar c} e^2 \left\{ \frac{9}{4\pi} \frac{\hbar^2}{2m} \frac{NZ}{A} \right\} = \frac{2\pi^2 e^2 \hbar}{mc} \frac{NZ}{A} \text{ MeV.barn}$$
(4.18)

sonucunu vermektedir (Uberall, 1971; Rowe, 2010). (4.17) ifadesinden diğer integre edilmiş tesir kesitleri;

$$\sigma_{-2} = \frac{16\pi^3}{9\hbar c} e^2 \sum \omega^{-1} B(E1) \text{ (MeV}^{-1}.\text{barn)}$$
(4.19)

$$\sigma_{-1} = \frac{16\pi^3}{9\hbar c} e^2 \sum B(E1) \text{ (barn)}$$
(4.20)

elde edilir (Masur ve Mel'nikova, 2006; Schröder, 2015).

İntegre edilmiş tesir kesitleri elde edilen teorik sonuçların deneysel veriler ile karşılaştırılmasını sağlayan nükleer özelliklerden biridir. Bu çalışmada incelenen çekirdekler için hesaplanan integre edilmiş tesir kesitlerinin deneysel değerlerle karşılaştırılması Bölüm 5'de verilmiştir.

4.4. Radyasyon Kalınlığı

Çekirdeklerin elektrik ya da manyetik karakterli dipol uyarılmaları Nükleer Rezonans Floresans (NRF) yöntemi kullanılarak araştırılmaktadır (Romig ve ark., 2015). NRF yönteminde en çok elektromanyetik etkileşmeler kullanılmaktadır. Böylece, çekirdeğin seviyelerinden biri elektromanyetik radyasyon ile uyarılır ve daha sonra bu seviyenin radyasyon salınımı yaparak bozunmasıyla seviyenin, herhangi bir modelden bağımsız olarak, enerjisinin, spininin ve paritesinin belirlenmesine imkan sağlamaktadır (Kneissl ve ark., 1996).

Bu yöntemle ilgili gösterilen Şekil 4.2.'de J_0 , J, ve J_f sirasıyla ilk (taban durumu), orta ve son seviyenin spinleridir. Çekirdek L_1 ya da L_1' çokkutuplu radyasyon durumları ile ilk seviyeden (taban durumu) orta seviyeye ve son seviyeye uyarılır. Spini J olan orta

seviyeden J_f olan son seviyeye geçişte L₂ ya da L₂' çokkutuplu radyasyon salınımı gerçekleşmektedir. Burada Γ_0 taban durumun, Γ_f ise son durumun dipol radyasyon kalınlıklarıdır.

Şekil 4.2. Dipol radyasyon kalınlığı ve spin (Kneissl ve ark., 1996)

Dipol kalınlığının, enerjiye bağlı diferansiyel tesir kesiti ile belirlenebilmesi ve NRF deneylerinin çoğunda sürekli foton kaynağı (Bremsstrahlung) kullanılması nedeniyle enerjiye bağlı diferansiyel tesir kesiti (I_i) saçılan fotonların spektrumundan

$$I_{s} = \frac{2J_{0} + 1}{2J + 1} \left(\pi \frac{hc}{E_{x}}\right)^{2} \frac{\Gamma_{0}\Gamma_{f}}{\Gamma} \frac{W(\Theta)}{4\pi}$$
(4.21)

formülü ile belirlenebilir. (4.21)'de W açısal dağılım, Γ toplam dipol radyasyon kalınlığını ifade etmektedir. Esnek saçılmalarda ($\Gamma_0 = \Gamma_f$) olacağından, saçılma tesir kesiti Γ_0^2 / Γ ile orantılı olacaktır.

 Γ dipol radyasyon kalınlığı deneysel olarak yarı ömürle de belirlenebilir (Kneissl ve ark., 1996) ve aralarındakı ilişki (4.22)' de gösterildiği gibidir.

$$\Gamma = \frac{\hbar}{\tau} \tag{4.22}$$

Dipol radyasyon kalınlığı \hbar Planck sabiti ve ($_{\tau}$) yarı ömür büyüklükleri kullanılarak da elde edilebilmektedir. Radyasyon kalınlığı (taban durumu $_{\Gamma_0}$ olan) dipol geçişlerin karakteristik özelliklerinden olan indirgenmiş geçiş olasılıkları ile orantılıdır.

$$\Gamma_{0} = 8\pi \sum_{\Pi L=1}^{\infty} \frac{(L+1)(E_{\gamma}/\hbar c)^{2L+1}}{L[(2L+1)!!]^{2}} \frac{2J_{0}+1}{2J+1} B(\Pi L, E_{\gamma}) \uparrow$$
(4.23)

Burada $B(\Pi L, E_{\gamma} \uparrow)$ ($\Pi = E$ (elektrik) veya M (manyetik)) indirgenmiş geçiş olasılıklarıdır. Çift çift çekirdeklerin elektrik dipol geçişleri için ölçülen geçiş kalınlığı ve indirgenmiş geçiş olasılığı,

$$B(E1) \uparrow = 2,866.10^{-3} \cdot \frac{\Gamma_0}{E_{\gamma}^3} \qquad e^2 fm^2$$
(4.24)

şeklinde verilmektedir. (4.21) ve (4.23) ifadelerindeki $\frac{2J_0+1}{2J+1} = g$ istatistiksel oranı spin faktörüdür. E_{γ} uyarılma enerjisi MeV, Γ_0 dipol radyasyon kalınlığı ise meV birimlerindedir. Teorik olarak yapılan hesaplamalar ile deneysel verilerin karşılaştırılmasını sağlamak amacıyla E1 geçişleri için, enerji ağırlıklı ($\Gamma_0(E1)$) ve enerji ağırlıksız olarak ($\Gamma_0^{red}(E1)$) elektrik dipol radyasyon kalınlığı için,

$$\Gamma_0(E1) = 0,349 \ \omega_i^3 [MeV] B(E1) [10^{-3} e^2 fm^2] meV$$
(4.25)

$$\Gamma_0^{red}(E1) = 0.349B(E1) \left[10^{-3} e^2 fm^2 \right] meV / MeV^3$$
(4.26)

eşitlikleri kullanılabilir (Soloviev ve ark., 1997; Guliyev ve ark., 2010).

4.5. Deforme Çekirdeklerde Enerji Seviyeleri ve Tek Parçacık Asimptotik Nilsson Kuantum Numaraları

Bireysel nükleonların kendine özgü hareketinin tanımı (Nilsson vd., 1969) tarafıından verilmiştir. Küresel bir çekirdek için başlayan çalışmalar (Nilsson, 1955) deforme bir alanda meydana gelen çiftlenimin hesaba katılmasıyla tek parçacık spektrumları hesaplanarak devam etmiştir (Meng, 2016). Öncelikle küresel harmonik osilatör içerisindeki tek parçacık hareketi, nükleonların kendine özgü hareketinin seviye spektrumu hesaplanmıştır. Deforme nükleer alan içerisindeki parçacık hareketi 1² çiftlenimi ve spin-orbit ayrımı ile silindirik simetrili bir harmonik osilatör potansiyelinden meydana gelen tek parçacık hamiltoniyeni tarafından yönetilmektedir. Çekirdeğin tek parçacık seviyelerinin sınıflandırılması ortalama potansiyelin simetrisine bağlıdır. Bu seviyelerin sınıflandırılması bazı özelliklere bağlıdır. Bu seviyelerin göre değişim gösterebilmektedir. Tek parçacık seviyelerinin çekirdeğin şekline göre bağlı bulunduğu özelliklerin bazılarının karşılaştırılması aşağıdaki gibi sıralanabilir.

- Küresel çekirdekler: Enerji, Parite, Toplam açısal momentum j ve onun izdüşümü Ω,
- Eksenel simetrik elipsoidal çekirdek: Enerji, Parite, Tüm açısal momentumun nükleer simetri eksenindeki izdüşümü K.

Görüldüğü gibi eksenel simetrik deforme çekirdeklerde tek parçacık seviyelerinin sınıflandırılması enerji, parite ve toplam açısal momentumun nükleer simetri eksenindeki K izdüşümü ile karakterize edilir. Eksenel simetrik deforme çekirdeklerde j geçerli bir kuantum sayısı olmadığından K kuantum sayısının da önemi kalmamaktadır (Soloviev, 1976).

Şekil 4.3. Deforme çekirdekler için asimptotik kuantum numaraları (Matta, 2017)

Yukarıda ifade edildiği gibi eksenel simetrik potansiyeldeki bir parçacığın hareketi Nilsson tarafından tanımlanmıştır. Buna göre potansiyel, anizotropik harmonik osilatör şekline sahiptir ve spin-orbit çiftlenimi ile birlikte potansiyelin üst kısmını düzleştirip kare kuyuya yaklaştırmayla orantılı olan l² katsayısını içermektedir. Bu durumda Hamiltoniyen ve gerekli işlemler yapıldıktan sonra elde edilen enerji özdeğerleri ve özfonksiyonları şu şekildedir.

$$H_{av} = H_0^{av} + C_N ls + D_N l^2$$
(4.27)

Buradaki ilk terim olan H_0^{av}

$$H_0^{av} = -\frac{1}{2m}\Delta' + \frac{m}{2}(w_{x'}^2 x'^2 + w_{y'}^2 y'^2 + w_{z'}^2 z'^2)$$
(4.28)

ile verilmektedir. (4.28) eşitliğinde x', y', z' body fixed koordinat sisteminde parçacık koordinatlarıdır. Toplam hamiltoniyenin (H_{av}) enerji özdeğerleri;

$$E(Nn_{z}\Lambda\Sigma) = (N + \frac{2}{3})w_{0}(\delta) + \kappa \overset{o}{w_{0}} r(Nn_{z}\Lambda\Sigma)$$
(4.29)

dir ve burada $r(Nn_z\Lambda\Sigma)$ özdeğerdir boyutsuz matrisin köşegenleştirilmesiyle elde edilmiştir. Tek parçacık özfonksiyonu ise;

$$\varphi_{K}(Nn_{z}\Lambda\Sigma) = \sum_{l\Lambda} a_{l\Lambda} \left| Nl\Lambda\Sigma \right\rangle$$
(4.30)

eşitliği ile verilmektedir. Tek parçacık dalga fonksiyonları, yukarıda görüldüğü üzere kompakt formdaki asimptotik Nilsson kuantum sayılarıyla etiketlenmiştir (Meng, 2016).

$$\left[Nn_{z}\Lambda\Sigma\right] \tag{4.31}$$

Burada N baş kuantum sayısı, n_z simetri ekseni boyunca osilatör kuantum sayısı, Λ ve Σ sırasıyla parçacığın orbital açısal momentum ve spininin simetri ekseni üzerindeki izdüşümleridir (Morse vd., 1972). Şekil 4.3.'de bazı kuantum sayılarının gösterimi bulunmaktadır. K ve π kuantum numaraları tek parçacık seviyelerini tümüyle temsil etmemektedir bu eksikliği gidermek için asimptotik kuantum numaraları kullanılmaktadır. 1 ve j kuantum numaraları küçük deformasyona sahip şekillerle ilgilidir. $\delta = 0$ durumundaki dejenerasyonlar deformasyon etkisi ile bozulmaktadır; küçük δ)0 için daha büyük K değerleri olan haller daha büyük enerjilere sahiptir. Orta deformasyonlarda küresel kuantum numaraları l ve j anlamını yitirmektedir; K durumu, farklı l-değerlerine sahip küresel durumların bir süperpozisyonudur. Deformasyon büyük olduğunda ve hamiltonianın l.s ve l² kısımları pertürbasyon olarak ele alındığında durum daha da basitleştirilmektedir. Bozulmamış potansiyel daha sonra anizotropik harmonik osilatördür ve tek parçacık halleri N, nz (z' ekseni boyunca osilatör kuantum sayısı) ve Λ kuantum sayıları tarafından karakterize edilmektedir. Buna göre, her tek parçacık seviyesi karakterizasyonu $K^{\pi}[Nn_{\lambda}\Lambda]$ kuantum numaraları seti ile olur. Belirli bir N-kabuğu ve δ)0 için, en düşük K = 1/2

durumu n_z = N'ye sahiptir, sonraki K = 1/2 durumları n_z= N-1'dir. Bu kural, anizotropik osilatörün enerji seviyelerinin ifadesinden doğrudan gelmektedir. Bir seviyenin n_z değeri bulunduğunda, $\Lambda = K \pm 1/2$ değerini belirlemek kolaydır. Λ , N-nz tek ise tek, çift ise çifttir. Dolayısıyla K, N, nz kuantum sayıları Λ ve Σ sayılarını tamamen belirlemektedir. N-kabuğunun en düşük K = K₁ durumu nz = N-K₁+1/2 dir. $K^{\pi}[Nn_{z}\Lambda]$ notasyonu oldukça elverişsidir. Sonuç olarak,

$$K = \Lambda + \frac{1}{2} \text{ için } Nn_z \Lambda \uparrow \text{ ya da } Nn_z \Lambda +$$
(4.32)

$$K = \Lambda - \frac{1}{2} \text{ için } Nn_z \Lambda \downarrow \text{ ya da } Nn_z \Lambda -$$
(4.33)

gösterimleri sıklıkla kullanılmaktadır (Morse vd., 1972; Soloviev, 1976; Meng, 2016). Tek parçacık seviyeleri nötron ve proton için Şekil 4.4. ve 4.5.'de verilmiştir. Her seviye K kuantum numarası, π parite ve $[Nn_z\Lambda]$ asimptotik kuantum numaraları ile karakterize edilmektedir. Yuvarlak içerisindeki numaralar, nötron ya da protonların seviye uzayındaki boşlukları göstermektedir. Enerji $\overset{o}{w_0} = 41/A^{1/3}$ MeV birimlerindedir.

Şekil 4.4. 44<Z<88 için Nilsson tek proton seviyeleri (Soloviev, 1976)

Tek parçacık seviyeleri arasındaki elektrik ve manyetik indirgenmiş geçiş olasılıkları da yukarıda verilen dalga fonksiyonu kullanılarak Nilsson (1955) tarafından hesaplanmıştır. Buna göre matris elemanının body-fixed koordinat ekseni koordinatlarıyla yazılmasıyla iki tek parçacık seviyesi ($I_i K_i^{\pi_i} [N_i n_{zi} \Lambda_i]$) ve ($I_f K_f^{\pi_i} [N_f n_{zf} \Lambda_f]$) arasındaki indirgenmiş geçiş olasılıkları iki tek parçacık enerji seviyesinin asimptotik kuantum numaraları yardımıyla Şekil 4.4. ve Şekil 4.5. ile bulunabilir.

Şekil 4.5. 58<N<136 için Nilsson tek nötron seviyeleri (Soloviev, 1976)

 $I^{\pi}K$ kuantum sayılarına göre seçim kuralları, deforme olmuş çekirdeklerdeki tek parçacık elektromanyetik geçişleri tam olarak karakterize etmemektedir. Mottelson ve Nilsson (1959) tarafından verilen asimptotik kuantum sayıları için seçim kuralları Tablo 4.1.'deki gibidir.

Geçiş	ΔΚ	ΔΝ	Δn_z	ΔΛ
E1	1	±1	0	0
	0	±1	±1	0

Tablo 4.1. Deforme çekirdeklerde E1 geçişinde asimptotik kuantum numaraları için seçim kuralları
Asimptotik kuantum sayıları kesin değildir; bu nedenle, ilgili seçim kuralları sadece yaklaşık olarak geçerlidir. Asimptotik seçim kurallarına göre izin verilen geçişler için elektrik ve manyetik indirgenmiş geçiş olasılık değerleri uygun değerler vermektedir. Bu çalışmada indirgenmiş geçiş olasılıkları iki tek parçacık enerji seviyesinin asimptotik kuantum numaraları yardımıyla bulunmuş, seviyelerin asimptotik kuantum numaraları verilmiştir. Bu seviylerin nn ya da pp katkısı olduğu belirtilmiştir. Bu işlemlerin bulguları Bölüm 3'de yer almaktadır.

4.6. Dev Rezonans Genişliği

Dev rezonans üç parametre ile tanımlanabilir; enerji (E), genişlik (width Γ) ve güç (S). Bunlar içerisindeki genişlik, teorik karmaşık tanımlamaların anlaşılmasında öneme sahiptir. Dev rezonans genişliği, bir açıdan en kolay, diğer yandan da açıklamak için dev rezonansın en zorlu özelliğidir. Dev rezonans genişliğinin çekirdek kabuk yapısını takip ettiği bilinmektedir (Şekil 4.6). Buna göre, kapalı kabuklu çekirdekler için küçük bir değere sahipken (yaklaşık 4-5 MeV), kapalı kabuklar ile vibrasyonel deforme (soft) arasında bulunan çekirdekler için daha büyüktür, istatistiksel deforme olmuş çekirdekler için ise ikiye bölünmüştür (Chomaz, 1997). Kolektif teoriler açısından, iki akışkan arasındaki sürtünme benzeri bir sönümleyici terimden başka genişlik için temel bir açıklama yoktur (Berman ve Fultz, 1975). Her ne kadar Danos ve Greiner (1965b) genişliğin enerjiyle ilişkili ifadesini belirtmiş olsalar da yaptıkları genelleştirme çok da başarılı olmamıştır.

Şekil 4.6. Kütle numarası A'nın fonksiyonu olarak IVGDR'nin genişliği (Carlos vd., 1974)

GDR genişliğinin geniş sınırlar içinde değiştiği açıktır: 4-5 MeV'den onlarca MeV'e kadar. Bir tesir kesitin maksimum değerinin yarısını aştığı enerji aralığı, Γ olarak belirtilen GDR genişliği olarak kabul edilmektedir. GDR genişliği önemli özelliklerinden biridir. Deneysel veriler, GDR'nin fiziği ve onun uyarılma ve bozunma özellikleri hakkında değerli bilgiler sağlamaktadır. GDR genişliğinin periyodik tablonun farklı alanlarına ait çekirdekler için nasıl oluşturulduğunu bilmeden, GDR'nin nasıl oluşturulduğunu ve rahatladığını açıkça anlaşılmamaktadır.

Şekil 4.7. A≥40 çekirdekler için GR genişliğinin kütle numarasına (Üst) ve deformasyon parametresi büyüklüğünün kütle numarasına karşı (alt) deneysel sonuç sistematiği (Kapitonov, 2015).

Dev rezonanslar, nötron koparma eşiğinin üzerindeki enerjilerde uyarıldığı için, bunların toplam genişliği, olası deformasyonun etkilerinden ayrı olarak, deneylerden de gözlenebileceği üzere, üç farklı katkıya sahiptir: kaçış genişliği Γ_{inh} , Landau sönüm Γ^{\uparrow} ve yayılma genişliği Γ^{\downarrow} 'ün toplamıdır.

$$\Gamma_{toplam} = \Gamma_{inh} + \Gamma^{\uparrow} + \Gamma^{\downarrow} \tag{4.34}$$

Doğal (inherent) genişlik Γ_{inh} , başlangıç kollektif 1p-1h kuvvet fonksiyonunun uyarma enerjisindeki yayılmadan kaynaklanmaktadır. Γ^{\uparrow} kaçış genişliği kabuk yapısı etkilerine bağlı olarak p-h gücünün parçalanmasından kaynaklanır ve ayrıca esas olarak hafif çekirdeklerde görülür. Γ^{\downarrow} yayılma genişliği lp-lh başlangıç seviyesinin nükleer bileşik hallerine bağlanmasından oluşur ve sonuç olarak düşük enerji parçacıklarının emisyonuna yol açar. Artan kütle sayısı ile bozunma esas olarak daha karmaşık durumlarla karıştırılarak ilerler, bu nedenle, ağır çekirdekler için, toplam genişlik yayılma genişliği tarafından domine edilmektedir (Chomaz, 1997).

BÖLÜM 5. BULGULAR

Bu bölümde, deforme çift-çift ¹⁶⁸⁻¹⁷⁸Yb izotoplarının elektrik dipol uyarılmalarının özelliklerinin incelenmesinde yapılan sayısal hesaplamaların sonuçları verilmektedir. İncelenen izotopların deforme olmalarından dolayı ilk olarak deformasyon parametreleri belirlenmiştir. Literatürde kullanılan değerleri ile oluşan sayı aralığından değerler alınmıştır (Nükleer data merkezi (<u>https://www.nndc.bnl.gov/chart/</u>); W. Kleinig ve ark., (2018), Raman ve ark. (2001); Möller ve ark. (1995); Oishi ve ark. (2016)). Belirlenen β_2 deformasyon parametresinden, çekirdek ortalama alan deformasyon parametresi aşağıdaki eşitlikten

$$\delta_2 = 0.945\beta_2 \left[1 - 2.56A^{-2/3} \right] + 0.34\beta_2^2$$
(5.1)

elde edilmiştir. Burada A kütle numarasını göstermektedir. ¹⁶⁸⁻¹⁷⁸Yb izotoplarının elektrik dev dipol rezonans özelliklerinin incelenmesinde kullanılan β_2 ve δ_2 deformasyon parametreleri Tablo 5.1.'de verilmiştir.

Deformasyon Parametresi	¹⁶⁸ 70 70	$^{170}_{70}Yb$	$^{172}_{70}Yb$	$^{174}_{70}Yb$	¹⁷⁶ ₇₀ Yb	¹⁷⁸ ₇₀ Yb
β_2	0.352	0.350	0.348	0.334	0.327	0.299
δ_2	0.308	0.306	0.304	0.292	0.286	0.262

Tablo 5.1. Çift-çift $^{\rm 168-178}{\rm Yb}$ izotoplarının β_2 , $\,\mathcal{S}_2\,$ deformasyon parametreleri

Yapılan hesaplamalarda deforme Woods-Saxon potansiyeli kullanılarak tek parçacık enerjileri bulunmuştur (Cerkaski et al. 1977, Dudek et al. 1984). Nötron-nötron ve proton-proton çiftlenim etkileşme sabitlerine uygun gelen çiftlenim korelasyonu Δ ve λ parametreleri Soloviev (1976) tarafından elde edilmiş olan (2.21-2.23) eşitlikleri kullanılarak her bir izotop için ayrı-ayrı hesaplanmıştır. ¹⁶⁸⁻¹⁷⁸Yb izotoplarının Δ ve λ parametreleri Tablo 5.2.'de verilmiştir.

Çekirdek	Δ_n (MeV)	λ_n (MeV)	Δ _p (MeV)	λ_p (MeV)
¹⁶⁸ 70 70	1.16	-8.125	1.10	-5.474
$^{170}_{70}Yb$	1.10	-7.661	1.17	-6.051
¹⁷² ₇₀ Yb	1.19	-7.198	1.04	-6.570
$^{174}_{70}Yb$	1.16	-6.739	1.05	-7.110
¹⁷⁶ ₇₀ Yb	1.16	-6.302	0.97	-7.626
$^{178}_{70}Yb$	0.82	-5.828	1.17	-8.261

Tablo 5.2. Çift-çift ¹⁶⁸⁻¹⁷⁸Yb izotoplarının süperakışkan model çiftlenim korelasyonu parametreleri

İncelenen elektrik dipol uyarılmalarının kendine özgü etkileşme sabiti (güç sabiti) bulunmaktadır. Her bir izotop için, elektrik izovektör dipol-dipol uyarılmaları için güç parametresi olarak $\chi = 300 - 600A^{-5/3} fm^{-2} MeV$ aralığında değerler kullanılmıştır (Pyatov ve Salamov 1977). Elektrik dev dipol rezonanslarının enerjilerini ve geçişlerin özelliklerini açıklamakta başarılı olan bu değerler, incelenen çekirdeklerin izovektör simetri potansiyeli ile ilişkilidir. Bu parametre Bohr ve Mottelson (1969) analizleri ile uyum içinde sonuçlar vermektedir.

Yukarıda bahsedilen deformasyon, süper akışkan ve güç parametreleri kullanılarak tamamı iyi deforme olan çift-çift ¹⁶⁸⁻¹⁷⁸Yb izotop zinciri için elektrik dipol uyarılmalarının incelenmesinde QRPA model kullanılmıştır. Nötron bağlanma enerjisinin yukarısındaki enerji bölgesinde $I^{\pi} = 1^{-}$ seviyelerinin tek fononlu elektrik dipol özelliklerinin QRPA modeli kullanılarak yapılan hesaplamalarında simetri kırınımlarının neden olduğu sahte hallerin yalıtılması Kuliev ve ark., (2000) yaklaşımı ile gerçekleştirilmiştir. Bu şekilde, dev dipol rezonans özelliklerini incelediğimiz teori öteleme ve Galileo değişmez QRPA yaklaşımı olarak belirlenmiştir. Bununla birlikte, kullandığımız teorideki restore edici kuvvetlerin eklenmesinin elektrik dev dipol

rezonansa etkisini belirlemek amacıyla QRPA yaklaşımı hesaplamaları dört başlık altında gerçekleştirilmiştir. Buna göre;

- Hiçbir restorasyonun olmadığı yaklaşım (Öteleme ve Galileo değişmez olmayan QRPA model, NTGI QRPA),
- Yalnızca öteleme değişmezliğin restore edildiği yaklaşım (Öteleme değişmez QRPA model, TI QRPA),
- Yalnızca Galileo değişmezliğin restore edildiği yaklaşım (Galileo değişmez
 QRPA model, GI QRPA) ve
- Hem öteleme hem de Galileo değişmezliğin restore edildiği yaklaşım (Öteleme ve Galileo değişmez QRPA model, TGI QRPA)

için yapılan hesaplamalarla analitik ifadeler çözülmüştür. Bölüm 3'de açıklanan teorik yakaşımlarla bu bölümdeki ve Böüm 4'deki büyüklükler için yapılan işlemler Fortran programlama dilinde yazılmış, hesaplama sonuçları elde edilmiştir.

Restorasyonun etkisinin araştırıldığı dört yaklaşım için tablolarda yer alan ortalama enerji değerleri eşitlik (5.2) ile verilen, GDR bölgesindeki E1 geçiş matris elemanlarının enerji ağırlıklı ve enerji ağırlıksız toplam kurallarından elde edilmiştir.

$$\overline{\omega} = \frac{\sum_{i} \omega_i B(E1)}{\sum_{i} B(E1)}$$
(5.2)

Yb'un 168-178 aralığındaki çift kütle numaralı izotop zinciri çekirdeklerinin 8-20 MeV enerji aralığında hiçbir restorasyonun gerçekleşmediği durumda QRPA yaklaşımıyla toplam indirgenmiş geçiş ihtimali, enerji ağırlıklı toplamları ve ortalama enerji değerleri I^{π}K=1⁻¹ ve I^{π}K=1⁻⁰ dipol uyarılmaları için bulunmuş, Tablo 5.3.'de verilmiştir.

		Öteleme +G	alileo Değişmez Ol	mayan Model
А	Κ	$\sum B(E1)$	$\sum B(E1)\omega$	$\overline{\omega}$
		$(e^2 fm^2)$	(e ² fm ² MeV)	(MeV)
168	0	14.345	165.884	11.563
108	1	22.620	334.210	14.774
170	0	13.953	168.280	12.060
170	1	22.531	344.885	15.307
172	0	13.828	164.228	11.876
1/2	1	20.983	335.291	15.979
174	0	13.846	163.305	11.794
	1	21.376	338.659	15.842
176	0	13.756	160.104	11.638
170	1	21.846	333.589	15.270
170	0	13.981	163.519	11.695
1/8	1	20.956	335.083	15.989

Tablo 5.3. Çift-çift ¹⁶⁸⁻¹⁷⁸Yb izotop zinciri çekirdeklerinin, 8-20 MeV enerji bölgesinde Öteleme+Galileo değişmez olmayan modele göre K=0 ve K=1 durumları için hesaplanan $\sum B(E1)$, $\sum B(E1)\omega$, $\overline{\omega}$ değerlerinin karşılaştırılması

Tablo 5.3.'den K=1 dalı için bulunan toplam indirgenmiş geçiş olasılığı ($\Sigma B(E1)$), toplam enerji ağırlıklı indirgenmiş geçiş olasılığı ($\Sigma B(E1)\omega$) ve ortalama enerji (ϖ) değerlerinin K=0 dalı için olanlardan daha büyük olduğu görülmektedir. Toplam indirgenmiş geçiş olasılığı ($\Sigma B(E1)$) değerlerinin K=0 dalı için 13 MeV civarında, K=1 dalı için 21 MeV civarında değerler aldığı, ortalama enerji (ϖ) değerlerinin K=0 dalı için 11 MeV civarında, K=1 dalı için 15 MeV civarında olduğu bulunmuştur. Bu sonuç, GDR bölgesinde K=1 dalının K=0 dalından daha baskın özellikte olduğunu göstermektedir. Deformasyon parametresi en büyük olan 168 kütle numaralı Yb izotopunun K=0 dalının $\Sigma B(E1)$ değeri diğer izotoplarınkinden daha büyük çıkmıştır.

Çift-çift ¹⁶⁸⁻¹⁷⁸Yb izotop zinciri çekirdeklerinin, 8-20 MeV enerji bölgesinde yalnızca Galileo değişmezliğin restore edildiği, Galileo değişmez QRPA modele göre K=0 ve

K=1 durumları için hesaplanan $\sum B(E1)$, $\sum B(E1)\omega$, $\overline{\omega}$ değerlerinin karşılaştırılması Tablo 5.4.'de verilmiştir.

		Galileo Değişmez Model					
А	Κ	$\sum B(E1)$	$\sum B(E1)\omega$	$\overline{\omega}$			
		$(e^2 fm^2)$	(e ² fm ² MeV)	(MeV)			
1(0	0	14.449	166.561	11.527			
168	1	22.554	332.584	14.745			
170	0	13.950	167.345	11.996			
170	1	22.354	339.647	15.193			
170	0	13.741	162.574	11.831			
172	1	20.874	332.252	15.916			
1.5.4	0	13.816	162.894	11.789			
1/4	1	21.123	333.298	15.778			
176	0	13.782	160.323	11.632			
170	1	21.834	332.602	15.232			
170	0	13.773	157.409	11.428			
178	1	20.534	320.917	15.628			

Tablo 5.4. Çift-çift ¹⁶⁸⁻¹⁷⁸Yb izotop zinciri çekirdeklerinin, 8-20 MeV enerji bölgesinde Galileo değişmez modele göre K=0 ve K=1 durumları için hesaplanan $\sum B(E1)$, $\sum B(E1)\omega$, $\overline{\omega}$ değerlerinin karşılaştırılması

Tablo 5.4.'ten yalnızca Galileo değişmezliğin restore edildiği GI QRPA hesaplamaları sonucunda, K=1 dalı için bulunan toplam indirgenmiş geçiş olasılığı, toplam enerji ağırlıklı indirgenmiş geçiş olasılığı ve ortalama enerji değerlerinin K=0 dalı için olanlardan daha büyük olduğu görülmektedir. Toplam indirgenmiş geçiş olasılığı $(\Sigma B(E1))$ değerlerinin K=0 dalı için 13 MeV civarında, K=1 dalı için 21 MeV civarında değerler aldığı, ortalama enerji (ϖ) değerlerinin K=0 dalı için 11 MeV civarında, K=1 dalı için 14 MeV civarında olduğu bulunmuştur. GDR bölgesinde K=1 dalı K=0 dalından daha baskın özellik göstermiştir. Bununla birlikte deformasyon katsayısı büyük olan 168 kütle numaralı Yb izotopunun K=0 dalının $\Sigma B(E1)$ değeri diğer izotoplarınkinden daha büyüktür.

Çift-çift ¹⁶⁸⁻¹⁷⁸Yb izotop zinciri çekirdeklerinin, 8-20 MeV enerji bölgesinde yalnızca öteleme değişmezliğin restore edildiği, Öteleme değişmez QRPA modele göre K=0 ve K=1 durumları için hesaplanan $\sum B(E1)$, $\sum B(E1)\omega$, $\overline{\omega}$ değerlerinin karşılaştırılması Tablo 5.5.'de verilmiştir.

		Ötele	eme Değişmez Mo	del	
А	Κ	$\sum B(E1)$	$\sum B(E1)$ $\sum B(E1)\omega$		
		$(e^2 fm^2)$	(e ² fm ² MeV)	(MeV)	
168	0	14.396	165.830	11.518	
100	1	22.484	318.910	14.183	
170	0	14.151	169.364	11.968	
170	1	22.017	317.312	14.411	
172	0	14.010	165.294	11.797	
172	1	21.081	314.070	14.898	
174	0	13.897	163.366	11.755	
174	1	21.125	308.810	14.617	
176	0	13.939	16.1674	11.598	
170	1	21.482	303.238	14.115	
178	0	14.227	164.312	11.548	
178	1	20.942	292.333	13.958	

Tablo 5.5. Çift-çift ¹⁶⁸⁻¹⁷⁸Yb izotop zinciri çekirdeklerinin, 8-20 MeV enerji bölgesinde Öteleme değişmez modele göre K=0 ve K=1 durumları için hesaplanan $\sum B(E1)$, $\sum B(E1)\omega$, $\overline{\omega}$ değerlerinin karşılaştırılması

Tablo 5.5.'den TI QRPA yaklaşımı kullanılarak elde edilen sonuçlardan, K=1 dalı için bulunan toplam indirgenmiş geçiş olasılığı ($\Sigma B(E1)$), toplam enerji ağırlıklı indirgenmiş geçiş olasılığı ($\Sigma B(E1)$) ve ortalama enerji(ϖ) değerlerinin K=0 dalı için

olanlardan daha büyük olduğu görülmektedir. Toplam indirgenmiş geçiş olasılığı $(\Sigma B(E1))$ değerlerinin K=0 dalı için 13 MeV civarında, K=1 dalı için 21 MeV civarında değerler aldığı, ortalama enerji (ϖ) değerlerinin K=0 dalı için 11 MeV civarında, K=1 dalı için 13 MeV civarında olduğu bulunmuştur. 8-20 MeV enerji aralığında K=1 dalı K=0 dalından daha baskın özellik göstermektedir. Diğer yaklaşımlardan elde edilen sonuçlarda görüldüğü gibi, deformasyon parametresi büyük olan 168 kütle numaralı Yb izotopunun K=0 dalının $\Sigma B(E1)$ değeri diğer izotoplarınkinden daha büyüktür.

Çift-çift ¹⁶⁸⁻¹⁷⁸Yb izotop zinciri çekirdeklerinin, 8-20 MeV enerji bölgesinde hem öteleme hem de Galileo değişmezliğin restore edildiği, Öteleme ve Galileo değişmez QRPA modele göre K=0 ve K=1 durumları için hesaplanan $\sum_{B(E1)} \sum_{B(E1)\omega, \overline{\omega}}$ değerlerinin karşılaştırılması Tablo 5.6.'da verilmiştir.

Tablo 5.6. Çift-çift ¹⁶⁸⁻¹⁷⁸Yb izotop zinciri çekirdeklerinin, 8-20 MeV enerji bölgesinde Öteleme+Galileo değişmez modele göre K=0 ve K=1 durumları için hesaplanan $\sum B(E1)$, $\sum B(E1)\omega$, $\overline{\omega}$ değerlerinin karşılaştırılması

		Öteleme -	Oteleme +Galileo Değişmez Model					
А	Κ	$\sum B(E1)$	$\sum B(E1)$ $\sum B(E1)\omega$					
		$(e^2 fm^2)$	(e ² fm ² MeV)	(MeV)				
160	0	14.593	167.735	11.493				
108	1	22.732	322.932	14.205				
170	0	14.053	168.256	11.973				
170	1	22.351	322.702	14.437				
172	0	13.991	165.286	11.813				
1/2	1	21.256	316.365	14.883				
174	0	13.915	163.614	11.757				
1/4	1	21.449	313.717	14.625				
176	0	13.886	161.132	11.603				
1/6	1	21.880	307.291	14.043				
178	0	13.862	157.967	11.394				
1/8	1	20.592	291.385	14.149				

Tablo 5.6.'daki hem öteleme hem de Galileo değişmezliğin restore edildiği TGI QRPA yaklaşımı kullanılarak elde edilen sonuçlardan, K=1 dalı için bulunan toplam indirgenmiş geçiş olasılığı ($\Sigma B(E1)$), toplam enerji ağırlıklı indirgenmiş geçiş olasılığı ($\Sigma B(E1)$) ve ortalama enerji (ϖ) değerlerinin K=0 dalı için olanlardan daha büyük olduğu görülmektedir. Toplam indirgenmiş geçiş olasılığı ($\Sigma B(E1)$) değerlerinin K=0 dalı için 13 MeV civarında, K=1 dalı için 21 MeV civarında değerler aldığı, ortalama enerji (ϖ) değerlerinin K=0 dalı için 11 MeV civarında, K=1 dalı için 14 MeV civarında olduğu bulunmuştur. Buradan, 8-20 MeV enerji aralığında K=1 dalının K=0 dalından daha baskın özellik gösterdiği görülmektedir. Bununla birlikte deformasyon katsayısı büyük olan ¹⁶⁸Yb izotopunun K=0 dalının $\Sigma B(E1)$ değeri diğer izotoplarınkinden daha büyük olduğu görülmektedir. Deformasyon arttıkça K=0'ın katkısında artış gözlenmektedir.

QRPA modelinde deforme alanda kırılan simetrilerin restore edilmesi için, efektif olarak ayrılabilen etkin kuvvetlerin eklenmesiyle, elde edilen dört yaklaşımın etkisini K=0 ve K=1 dalları için karşılaştırmak amacıyla, yukarıda toplam olarak değerleri verilen indirgenmiş geçiş olasılığı değerlerinin enerji ile değişimine bakılmıştır. Elde edilen bulgular, her bir izotop için ayrı ayrı şekillerle gösterilmiştir. Aşağıda deforme çift-çift ¹⁶⁸⁻¹⁷⁸Yb izotopları için çizilen şekiller yer almaktadır (Şekil 5.1.-5.6.). Şekillerle NTGI, GI, TI ve TGI QRPA modellerinden elde edilen sonuçlar karşılaştırılmıştır.

Şekil 5.1. Çift-çift ¹⁶⁸Yb çekirdeğinin TGI-QRPA, TI-QRPA, GI-QRPA, NTGI-QRPA modellerinde B(E1) değerlerinin karşılaştırılması

Şekil 5.1.'den 8-20Mev enerji aralığındaki dev dipol rezonans bölgesinde K=0 ve K=1 dallarında her dört yaklaşımda da en az bir büyük seviye gözlenmektedir. TGI QRPA'da dev rezonansa büyük katkı sağlayan seviye, K=1 dalından gelen 16,301 MeV enerjili ve B(E1)=2,4867 $e^2 fm^2$ indirgenmiş geçiş olasılıklı seviyedir. Bu seviye, öteleme ve Galileo değişmez olmayan, Goldstone dalının yalıtılmadığı durum olan NTGI'de 16,651 MeV enerjisine ve B(E1)=2,6745 $e^2 fm^2$ indirgenmiş geçiş olasılığı değerine sahiptir. Galileo değişmez (GI) modelde bu seviye 16,6467 MeV enerjisinde ve B(E1)=3,393 $e^2 fm^2$ iken, öteleme değişmez modelde (TI) enerji 16,334 MeV ve B(E1)=2,3352 $e^2 fm^2$ dir. Öteleme ve Galileo değişmezliğin restorasyonu ile enerji dağılımının değiştiği, aynı zamanda dev rezonansa en büyük katkıyı sağlayan seviyenin B(E1) değerinin %7 oranında azaldığı bulunmuştur. Goldstone dalının hem öteleme hem de Galileo değişmezlik restorasyonu ile B(E1) gücü azalmış ve sahte haller yalıtılmıştır. Bununla birlikte, yalnızca Galileo değişmezliğin restorasyonu dev rezonansın enerji ve gücünde önemli bir değişiklik meydana getirmemiş, seviyelerin üst üste gelerek şiddetini arttırmış, yalnızca öteleme değişmezliğin restorasyonu B(E1) gücünün azalmasına neden olmuştur. Buradan sahte hallerin yalıtılmasının, spektrumun değişmesine etkilerinden dolayı, önemli olduğu görülmektedir. K=0 dalından gelen seviyelerde önemli bir değişiklik görülmemektedir. ¹⁷⁰Yb izotopu için NTGI, GI, TI ve TGI QRPA modellerinden elde edilen sonuçlar Şekil 5.2.'de verilmiştir.

Şekil 5.2. Çift-çift ¹⁷⁰Yb çekirdeğinin TGI-QRPA, TI-QRPA, GI-QRPA, NTGI-QRPA modellerinde B(E1) değerlerinin karşılaştırılması

¹⁷⁰Yb izotopu için çizilen Şekil 5.2.'den 8-20 MeV enerji aralığındaki K=0 ve K=1 dallarında her dört yaklaşımda da en az bir büyük seviye gözlenmektedir. TGI QRPA'da dev rezonansa büyük katkı sağlayan seviye, K=1 dalından gelen 16,241 MeV enerjili ve B(E1)= 2,40 $e^2 fm^2$ indirgenmiş geçiş olasılıklı seviyedir. Bu seviye, öteleme ve Galileo değişmez olmayan, Goldstone dalının yalıtılmadığı durum olan NTGI'de 17,018 MeV enerjisine ve B(E1)= 4,36 $e^2 fm^2$ indirgenmiş geçiş olasılığı değerine sahiptir. Galileo değişmez (GI) modelde bu seviye 17,015 MeV enerjisinde ve B(E1)= 4,58 $e^2 fm^2$ iken, öteleme değişmez modelde (TI) enerji 15,376 MeV ve B(E1)= 1,77 $e^2 fm^2$ dir. NTGI QRPA ve GI QRPA spektrumlarında K=1 dalından gelen seviyelerin birleşik ve güçlerinin daha fazla, TI QRPA ve TGI QRPA spektrumlarında K=1 dalından gelen seviyelerin yarılarak parçalandığı ve şiddetlerinin azaldığı görülmektedir. K=0 dalından gelen seviyelerde önemli bir değişiklik görülmemektedir. TGI QRPA yaklaşımıyla kırılan simetrilerin restorasyonunun ¹⁷⁰Yb izotopunun spektrumunda diğer yaklaşımlara göre farklılık gösterdiği görülmektedir. Bu durum enerji spektrumunun daha güvenilir elde edilmesi için restorasyonun gerekli olduğunu göstermektedir. Hem öteleme hem de Galileo değişmezliğin restore edildiği TGI QRPA yaklaşımında spektruma karışan sahte hallerin oluşturduğu spektrumu belirlemek için örtüşen integraller hesaplanmıştır (Kuliev ve ark., 2010). Örtüşen integrallerin karelerinin toplama göre yüzdelik değerlerinin enerji spektrumundaki dağılımı¹⁷⁰Yb çekirdeği için Sekil 5.3.'de verilmiştir.

Şekil 5.3. ¹⁷⁰Yb çekirdeğinin öteleme ve Galileo değişmez modelde hesaplanan 1⁻1 ve 1⁻0 uyarılmalarına karışan sahte hallerin dağılımı

Şekil 5.3.'den sahte durumların birçok seviyeye yayıldığı, K=1 dalı için katkılarının büyük oranda 8 MeV ile 16 MeV aralığında, K=0 dalı için ise 6 MeV civarında yüksek bir seviye bulunup katkının 5-15 MeV aralığında yer aldığı bulunmuştur. PDR (5-8 MeV) ve GDR (8-20 MeV) enerji bölgesinde sahte hallerin yoğun bir şekilde bulunması, bu bölgelerde yapılacak çalışmalarda doğru bir enerji spektrumunun elde edilebilmesi için restorasyonlar ile sahte hallerin yalıtılmasının kaçınılmaz olduğunu göstermektedir (Kuliev ve ark., 2010). ¹⁷²Yb izotopu için NTGI, GI, TI ve TGI QRPA yaklaşımlarından elde edilen sonuçlar Şekil 5.4.'de verilmiştir.

Şekil 5.4. Çift-çift ¹⁷²Yb çekirdeğinin TGI-QRPA, TI-QRPA, GI-QRPA, NTGI-QRPA modellerinde B(E1) değerlerinin karşılaştırılması

Şekil 5.4.'den çift-çift ¹⁷²Yb izotopu için 8-20 MeV enerji aralığındaki GDR bölgesinde K=0 ve K=1 dallarında her dört yaklaşımda da en az bir büyük seviye gözlenmektedir. TGI QRPA'da dev rezonansa büyük katkı sağlayan seviye, K=1 dalından gelen 16,159 MeV enerjili ve B(E1)= 2,83 e²fm² indirgenmiş geçiş olasılıklı seviyedir. Bu seviye, öteleme ve Galileo değişmez olmayan, Goldstone dalının yalıtılmadığı durum olan NTGI'de 17,613 MeV enerjisine ve B(E1)= 4,44 e²fm² indirgenmiş geçiş olasılığı değerine sahiptir. Galileo değişmez (GI) modelde bu seviye 17,612 MeV enerjisinde ve B(E1)= 4,61 e²fm² iken, öteleme değişmez modelde (TI) enerji 15,620 MeV ve B(E1)= 2,20 e²fm² dir. NTGI ve GI QRPA spektrumlarında K=1 dalından gelen seviyelerin birleşik ve güçlerinin daha fazla, TI ve TGI QRPA spektrumlarında K=1 dalından gelen seviyelerin yarılarak parçalandığı ve şiddetlerinin azaldığı görülmektedir. K=0 dalından gelen seviyelerde önemli bir değişiklik görülmemektedir. ¹⁷⁴Yb izotopu için NTGI, GI, TI ve TGI QRPA yaklaşımlarından elde edilen sonuçlar Şekil 5.5.'de verilmiştir.

Şekil 5.5. Çift-çift ¹⁷⁴Yb çekirdeğinin TGI-QRPA, TI-QRPA, GI-QRPA, NTGI-QRPA modellerinde B(E1) değerlerinin karşılaştırılması

Şekilden çift-çift ¹⁷⁴Yb izotopu için dev dipol rezonans bölgesinde K=0 ve K=1 dallarında her dört yaklaşımda da en az bir büyük seviye gözlenmektedir. TGI QRPA'da dev rezonansa büyük katkı sağlayan seviye, K=1 dalından gelen 16,110 MeV enerjili ve B(E1)= 3,71 e²fm² indirgenmiş geçiş olasılıklı seviyedir. Bu seviye, öteleme ve Galileo değişmez olmayan, Goldstone dalının yalıtılmadığı durum olan NTGI'de 17,303 MeV enerjisine ve B(E1)= 4,16 e²fm² indirgenmiş geçiş olasılığı değerine sahiptir. Galileo değişmez (GI) modelde bu seviye 17,618 MeV enerjisinde ve B(E1)= 2,00 e²fm² iken, öteleme değişmez modelde (TI) enerji 16,012 MeV ve B(E1)= 1,46 e²fm² dir. Yapılan hesaplamaların sonucunda NTGI QRPA spektrumlarında K=1 dalından gelen seviyelerin birleşik ve güçlerinin daha fazla, GI ve TI QRPA spektrumlarında K=1 dalından gelen seviyelerin yarılarak parçalandığı ve şiddetlerinin azaldığı görülmektedir. TGI QRPA sonuçlarına göre, kırınımlı modele göre, seviyelerin şiddetinin azaldığı ve kaydığı görülmektedir. K=0 dalından gelen seviyelerde önemli bir değişiklik görülmemektedir. ¹⁷⁶Yb izotopu için NTGI, GI, TI ve TGI QRPA yaklaşımlarından elde edilen sonuçlar Şekil 5.6.'da verilmiştir.

Şekil 5.6. Çift-çift ¹⁷⁶Yb çekirdeğinin TGI-QRPA, TI-QRPA, GI-QRPA, NTGI-QRPA modellerinde B(E1) değerlerinin karşılaştırılması

Çift-çift ¹⁷⁶Yb izotopu için verilen Şekil 5.6.'dan 8-20 MeV enerji aralığında K=0 ve K=1 dallarında her dört yaklaşımda da en az bir büyük seviye gözlenmektedir. TGI QRPA'da dev rezonansa büyük katkı sağlayan seviye, K=1 dalından gelen 16,013 MeV enerjili ve B(E1)= 2,17 e²fm² indirgenmiş geçiş olasılıklı seviyedir. Bu seviye, öteleme ve Galileo değişmez olmayan, Goldstone dalının yalıtılmadığı durum olan NTGI'de 17,111 MeV enerjisine ve B(E1)= 4,25 e²fm² indirgenmiş geçiş olasılığı değerine sahiptir. Galileo değişmez (GI) modelde bu seviye 16,940 MeV enerjisinde ve B(E1)= 5,35 e²fm² iken, öteleme değişmez modelde (TI) enerji 15,372 MeV ve B(E1)= 2,03 e²fm² dir. NTGI ve GI QRPA spektrumlarında K=1 dalından gelen seviyelerin birleşik ve güçlerinin fazla, TI ve TGI QRPA spektrumlarında K=1 dalından gelen seviyelerin TI ve TGI QRPA spektrumunda sola kaydığı görülmektedir. K=0 dalından gelen seviyelerde önemli bir değişiklik görülmemektedir. Restorasyon K=1 dalının spektrumunda belirgin bir fark oluşturmuş seviye sayısını artırarak yayılmasına neden olmaktadır. ¹⁷⁸Yb izotopu için NTGI, GI, TI ve TGI QRPA yaklaşımlarından elde edilen sonuçlar Şekil 5.7.'de verilmiştir.

Şekil 5.7. Çift-çift ¹⁷⁸Yb çekirdeğinin TGI-QRPA, TI-QRPA, GI-QRPA, NTGI-QRPA modellerinde B(E1) değerlerinin karşılaştırılması

Çift-çift ¹⁷⁸Yb izotopu için, Şekil 5.7.'dan, 8-20 MeV enerji aralığında K=0 ve K=1 dallarında her dört yaklaşımda da en az bir büyük seviye gözlenmektedir. TGI QRPA'da dev rezonansa büyük katkı sağlayan seviye, K=1 dalından gelen 15,427 MeV enerjili ve $B(E1)=2,12 e^{2} fm^{2}$ indirgenmiş geçiş olasılıklı seviyedir. Bu seviye, öteleme ve Galileo değişmez olmayan, Goldstone dalının yalıtılmadığı durum olan NTGI'de 17,396 MeV enerjisine ve $B(E1)=5,87 e^{2} fm^{2}$ indirgenmiş geçiş olasılığı değerine sahiptir. Galileo değişmez (GI) modelde bu seviye 17,159 MeV enerjisinde ve $B(E1)=3,17 e^{2} fm^{2}$ iken, öteleme değişmez modelde (TI) enerji 15,417 MeV ve $B(E1)=2.92 e^{2} fm^{2}$ dir. NTGI QRPA spektrumunda K=1 dalından gelen seviyelerin birleşik ve güçlerinin fazla, GI, TI ve TGI QRPA spektrumlarında K=1 dalından gelen seviyelerin TI ve TGI QRPA spektrumunda sola kaydığı görülmektedir. K=0 dalından gelen

seviyelerde önemli bir değişiklik görülmemektedir. Restorasyon K=1 dalının spektrumunda belirgin bir fark oluşturmuş seviye sayısını artırarak yayılmasına neden olmuştur.

Çift-çift ¹⁶⁸⁻¹⁷⁸Yb izotopları için verilen şekillerden (Şekil 5.1.-5.7.) ve tablolardan (Tablo 5.3-5.6.) elektrik dev dipol uyarılmalarının K=1 dalındaki değerlerinin K=0 dalından fazla olduğu görülmektedir. Bu durum, TGI QRPA modelinden elde edilen toplam indirgenmiş geçiş olasılığı değerlerinin kütle numarasına göre değişim grafiği (Şekil 5.8.) ile aşağıda ayrıca verilmiştir.

Şekil 5.8. Çift-çift ¹⁶⁸⁻¹⁷⁸Yb izotop zinciri çekirdeklerinin K=0 ve K=1 dallarında TGI-QRPA modelinden elde edilmiş toplam indirgenmiş geçiş olasılığı değerlerinin karşılaştırılması.

Şekil 5.8.'den çift-çift ¹⁶⁸⁻¹⁷⁸Yb izotop zincirinin GDR enerji bölgesinde K=1 dalının K=0 dalına göre daha baskın olduğu görülmektedir. K=0 dalında, deformasyon parametresinin büyük olduğu ¹⁶⁸Yb izotopundan, deformasyon parametresinin en az

olduğu ¹⁷⁸Yb izotopuna doğru gidildikçe çok az da olsa indirgenmiş geçiş olasılığı değerinde azalma gözlenmektedir. Deformasyon azaldıkça K=0 dalının değerinde de azalma meydana gelmektedir. Bu değişim K=1 dalında gözlenmemektedir.

Deforme çekirdekler için K=0 ve K=1 dallarının toplam B(E1) değerleri arasındaki oran eşitlik (4.8) ile bulunabilir (Iudice, 2000). Burada δ , deformasyon parametresidir. Buna göre, ¹⁶⁸⁻¹⁷⁸Yb izotopları için K=0 ve K=1 dallarının toplam indirgenmiş geçiş olasılıklarının oranı hem teorik olarak hem de 4.8 eşitliği kullanılarak elde edilmiştir. Teori (t) ve formül.(f) kullanılarak bulunan sonuçların karşılaştırılması Şekil 5.9.'da verilmiştir.

Şekil 5.9. Çift-çift ¹⁶⁸⁻¹⁷⁸Yb izotoplarının K=0 ve K=1 dallarındaki teorik (Yb-t) ve formülle (Yb-f) bulunan toplam B(E1) değeri oranlarının karşılaştırılması.

Çift-çift ¹⁶⁸⁻¹⁷⁸Yb izotop zincirinin TGI QRPA ile yapılan hesaplamalarından elde edilmiş olan toplam indirgenmiş geçiş olasılıklarının oranının yaklaşık 1.5 civarında değiştiği görülmektedir. ¹⁶⁸⁻¹⁷⁸Yb izotoplarının deformasyon parametreleri arasında önemli bir farklılık olmamasından dolayı, formülle yapılan hesaplamalar sonucunda

yakın değerler bulunmuştur. Şekil 5.9.'dan teorik ve formülle bulunan değerlerin yakın sonuçlar verdiği görülmüştür.

Şekil 5.10. Deforme çift-çift ¹⁶⁸⁻¹⁷⁸Yb izotoplarının K=0 ve K=1 dallarının ortalama enerji değerlerinin A ile değişiminin karşılaştırılması

QRPA yaklaşımında restorasyonun etkisinin araştırıldığı dört model (TGI, GI, TI, NTGI) için tablolarda yer alan, GDR bölgesindeki E1 geçiş matris elemanlarının enerji ağırlıklı ve enerji ağırlıksız toplam kurallarından elde edilen ve eşitlik (4.9) ile verilen, ortalama enerji değerlerinin kütle numarasıyla nasıl değiştiği incelenmiştir. Ortalama enerjinin K=0 dalı için tüm izotoplarda hiçbir restorasyonun yapılmadığı kırınımlı modelde (NTGI), Galileo değişmez modelde (GI), öteleme değişmez model ve öteleme + Galileo değişmez modelde çok benzer sonuçlar verdiği görülmektedir. Restorasyon, 8-20 MeV enerji bölgesinde, K=0 dalında, ortalama enerji değerinde önemli bir etki meydana getirmemiştir. Bununla birlikte K=1 dalı için durum farklı çıkmıştır. NTGI ile GI QRPA modelleri ve TI ile TGI QRPA modellerinin sonuçları

birbirine paralellik göstermektedirler. NTGI ile GI QRPA modellerinden elde edilen ortalama enerji değerleri, öteleme ve öteleme+Galileo değişmezliğin restore edildiği modellerden daha büyüktür. Buradan K=1 dalının ortalama enerji büyüklüğünün elde edilmesinde restorasyonun göz önünde bulundurulması gereken belirleyici faktörlerden biri olduğu görülmektedir. TGI QRPA modeli ile K=0 ve K=1 dallarının ortalama enerji değerinin nötron-proton oranıyla değişimini Şekil 5.11'de verilmiştir.

Şekil 5.11. Deforme ¹⁶⁸⁻¹⁷⁸Ybizotoplarının K=0 ve K=1 dallarının ortalama enerji değerlerinin N/Z oranı ile değişiminin karşılaştırılması

Şekil 5.11.'de TGI QRPA modeli ile K=0 ve K=1 dallarının ortalama enerji değerinin çekirdeğin bozulan simetrisinin bir göstergesi olan nötron-proton oranının değişimine göre değerleri verilmiştir. K=1 dalının K=0 dalına göre 3 MeV daha baskın olduğu görülmektedir. Buna göre, daha önce de benzer sonuca ulaşıldığı gibi K=1 dalının değerleri K=0 dalından daha büyüktür. N/Z oranının değişimi ortalama enerji değerinin değişiminde anlamlı bir farklılık oluşturmamaktadır. K=1 dalı değerlerinde deformasyon azaldıkça ortalama enerji değerinde bir artış gözlemleniyor olsa da sistematik olarak böyle bir değişimden bahsedilememektedir. Böylelikle N/Z oranının değişiminin çekirdeğin ortalama

enerji değerinde dolayısı ile çekirdeğin spektrumunda önemli bir değişikliğe neden olmadığı görülmüştür.

Çift-çift ¹⁶⁸⁻¹⁷⁸Yb izotoplarının TGI QRPA ile K=0 ve K=1 dalları için elde edilen B(E1) değerlerinin enerji diyagramında gösterimi Şekil 5.12.'de verilmiştir.

Şekil 5.12. Çift-çift ¹⁶⁸⁻¹⁷⁸Yb izotoplarının TGI-QRPA modelinden elde edilen K=0 ve K=1 dallarının B(E1) değerlerinin karşılaştırılması

Şekilden tüm izotopların spektrumunda, iki pikli yapı görülmektedir. Bu piklerden ilki K=0 dalından gelen ve 10-12 MeV aralığında bulunan bir maksimumdur. Diğeri K=1 dalından gelen ve 15-17 MeV aralığında bulunan maksimumdur. K=1 dalı için

bulunan indirgenmiş geçiş olasılığı B(E1) pik değerlerinin K=0 dalı için olanlardan daha büyük olduğu görülmektedir. Elde edilen bulgular TGI QRPA ile deforme çekirdekler için karakteristik olan iki pikli yapıya uygun sonuçların elde edildiğini göstermiştir.

Dev dipol rezonans bölgesindeki uyarılmalarda, TGI QRPA'da yer alan izoskaler ve izovektör etkin kuvvetlerin uyarılma spektrumundaki dağılıma katkısının ne şekilde olduğunu belirlenmiştir. TGI QRPA yaklaşımından elde edilen seküler denklemdeki dipol-dipol etkileşimlerin saf izovektör kuvvetleri kaldırılmış (χ =0) ve izoskaler dalın enerjileri elde edilmiştir. Hamiltoniyende bulunan saf izovektör katkı kaldırılarak izoskaler dalının enerjileri bulunmuştur. Çift-çift ¹⁶⁸⁻¹⁷⁸Yb izotopları için hesaplanan saf izoskaler ve izovektör katkıların oluşturduğu spektrumlar Şekil 5.13.'de verilmiştir.

Şekil 5.13. Çift-çift ¹⁶⁸⁻¹⁷⁸Yb izotop zinciri çekirdeklerinin TGI QRPA modelde izovektör ve izoskaler katkılarının enerjiye bağlı dağılımı

Şekil 5.13.'den, TGI QRPA yaklaşımında kullanılan hamiltoniyende bulunan saf izoskaler kuvvetlerin enerji spektrumunda 8-10 MeV enerji bölgesinde yoğunlaşan değerler verdiği, izovektör kuvvetlerden ise 8-20 MeV enerji aralığında yayılan bir spektrum elde edildiği görülmektedir. Yalnızca izoskaler kuvvetler olduğunda; 8-10 MeV aralığında, izovektör mod eklendiğinde; 8-20 MeV aralığında baskın olduğu bulunmuştur. Burada, izovektör dipol kuvvetleriyle restore edici izoskaler etkin kuvvetlerin arasında kuvvetli bir yıkıcı girişimin olduğunu göstermektedir. Şekilden ayrıca izovektör kuvvetlerin izoskaler kuvvetler üzerinde yıkıcı bir girişime sahip oldukları görülmektedir. TGI QRPA ile ¹⁶⁸⁻¹⁷⁸Yb izotoplarının K=0 ve K=1 dallarının elektrik dipol enerji ağırlıklı toplam kurallarına katkıları incelenmiştir. Bunun için, $I^{\pi}K = 1^{-1}$ ve $I^{\pi}K = 1^{-0}$ geçişlerindeki her seviye için hesaplanan enerji ağırlıklı toplamların (EWSR), toplam EWSR'ye oranının yüzdelik değerleri hesaplanmıştır. Elde edilen sonuçlar Şekil 5.14.'te verilmiştir.

Şekil 5.14. Çift-çift ¹⁶⁸⁻¹⁷⁸Yb izotop zinciri çekirdeklerinin K=0 ve K=1 dalları için elektrik dipol enerji ağırlıklı toplamlarının yüzdelik dağılımı

Elektrik dipol uyarılmalarında 0-20 MeV arasında hesaplanan enerji ağırlıklı toplamlara en büyük katkı dev dipol rezonans bölgesinde olmaktadır. Şekilden görüldüğü gibi dev rezonans bölgesinde, I^{π}K=1⁻⁰ seviyelerinin toplam kuralına asıl katkısı (%90) 10-14 MeV enerji aralığına kadar sağlanmışken, I^{π}K=1⁻¹ seviyelerinin katkısı 14-17 MeV aralığında sağlanmıştır (%80-90). Buradan, dev dipol rezonans bölgesi enerji spektrumunda Δ K=0 seviyelerinin 10-14 MeV, Δ K=1 seviyelerinin 14-17 MeV aralığında iki maksimum gösterdikleri sonucu çıkmaktadır.

¹⁶⁸⁻¹⁷⁸Yb izotop zinciri çekirdeklerinin TGI QRPA model kullanılarak, dev dipol rezonans için deneysel veriler ile karşılaştırılabilir en temel büyüklük olan toplam

fotoabsorbsiyon tesir kesitlerinin K=0 ve K=1 dalları için ayrı ayrı hesaplanmasıyla elde edilen sonuçların karşılaştırılması Şekil 5.15.'de verilmiştir.

Şekil 5.15. Çift-çift ¹⁶⁸⁻¹⁷⁸Yb izotop zinciri çekirdeklerinin toplam fotoabsorbsiyon tesir kesitlerinin TGI ile elde edilen teorik değerleri ile deneysel verilerin (Deney^a:Goryachev ve Zalesnyy, 1976; Deney^b:Gurevich ve ark., 1981) karşılaştırılması

Fotoabsorbsiyon tesir kesiti hesaplamalarında ağırlık fonksiyonu olarak Kuliev-Salamov fonksiyonu kullanılmıştır. Bu ifadede bulunan ortalama enerji aralığı parametresi (Δ) olarak 1.0 ile 2.0 MeV arasındaki değerler kullanılmıştır. Yb izotopları iyi deforme olduklarından toplam fotoabsorbsiyon tesir kesitlerinin enerjiye bağlı olarak çizildiği grafikte iki pikli (hörgüçlü) yapının olduğu bilinmektedir. İyi deforme Yb izotoplarında hem K=0 hem de K=1 dallarından katkı gelmektedir. Toplam fotoabsrbsiyon tesir kesiti grafiğine en büyük katkı iyi deforme Yb izotopları için K=1 dalından gelmektedir. 170-176 aralığındaki çift-çift izotoplar için deneysel veri bulunmaktadır. Bu çekirdekler için K=0 ve K=1 dallarının oluşturduğu değerlerin toplamı, deneysel sonuç ile örtüşmektedir. Deneysel sonucu bulunmayan 168 ve 178 kütle numaralı Yb çekirdekleri için bulunan teorik değerle, bu çekirdeğin yaklaşık olarak tesir kesitinin hangi değerde olabileceği ile ilgili olarak deneysel çalışmalara öngörüde bulunulabilmesi mümkündür. Çift-çift Yb izotoplarının teorik olarak bulunan tesir kesiti değerlerinin deneysel değerler ile uyum içerisinde çıkması, teorik olarak kullandığımız model ile elde ettiğimiz sonuçların doğruluğunun bir göstergesidir.

Bu çalışmada araştırılan nükleer özelliklerden bir diğeri radyasyon kalınlığıdır. İndirgenmiş geçiş olasılığı ve enerji ile ilişkili bir büyüklük olan radyasyon kalınlığı ile enerjiye bağlı olmayan indirgenmiş radyasyon kalınlığı değerleri tüm izotoplar için araştırılmıştır. Yb çekirdeği izotoplarının TGI QRPA model ile K=0 ve K=1 dallarının Γ_0 radyasyon kalınlığı ve Γ_{red} indirgenmiş radyasyon kalınlığı değerlerinin enerji spektrumundaki dağılımı Şekil 5.16. ve Şekil 5.19.'da verilmiştir. Bununla birlikte Yb çekirdeği izotopları için K=0 ve K=1 dallarının toplam Γ_0 radyasyon kalınlığı ve toplam Γ_{red} indirgenmiş radyasyon kalınlığı değerleri Şekil 5.17. ve Şekil 5.18.'de verilmiştir.

Şekil 5.16. Çift-çift ¹⁶⁸⁻¹⁷⁸Yb izotop zinciri çekirdeklerinin TGI QRPA modelde K=0 ve K=1 dalları için indirgenmiş radyasyon kalınlığı Γ_0 değerlerinin enerji spektrumundaki dağılımı

Şekilden indirgenmiş indirgenmiş radyasyon kalınlığı değerlerinin enerji spektrumundaki dağılımında hem K=0 hem de K=1 dalında değerlerin olduğu görülmektedir. Yukarıdaki indirgenmiş radyasyon kalınlığı spektrumun B(E1) dağılımına benzer olduğu, K=0 dalından gelen katkının 10-12 MeV enerji aralığında, K=1 dalından gelen katkının 16 MeV civarında büyük bir pik verdiği görülmektedir. Radyasyon kalınlığı değerleri enerji ve B(E1) değerleri ile ilişkili olduğu için K=1 dalı için elde edilen değerlerin K=0 dalı için elde edilenlerden daha büyük çıkması beklenen bir sonuçtur.

Şekil 5.17. Çift-çift ¹⁶⁸⁻¹⁷⁸Yb izotop zinciri çekirdeklerinin TGI QRPA modelde K=0 ve K=1 dalları için toplam indirgenmiş radyasyon kalınlığı Γ_0 değerlerinin karşılaştırılması

Yb çekirdeği izotoplarının 8-20 MeV enerji aralığında TGI QRPA model ile K=0 ve K=1 dalları için hesaplanan toplam Γ_{red} indirgenmiş radyasyon kalınlığı değerlerinin karşılaştırılmasının verildiği Şekil 5.17.'den K=1 dalındaki değerlerin K=0 dalından gelen değerlerden daha büyük çıktığı bulunmuştur. Aynı karşılaştırma toplam radyasyon kalınlığı için de yapılmıştır (Şekil 5.18.).

Şekil 5.18. Çift-çift ¹⁶⁸⁻¹⁷⁸Yb izotop zinciri çekirdeklerinin TGI QRPA modelde K=0 ve K=1 dalları için toplam radyasyon kalınlığı Γ_0 değerlerinin karşılaştırılması

Şekil 5.18.'den K=1 dalının toplam radyasyon kalınlığı değerlerinin K=0 dalı için elde edilen değerlerden daha fazla olduğu görülmüştür. Radyasyon kalınlığının enerji spektrumundaki dağılımı da indirgenmiş radyasyon kalınlığı için ulaşılan sonuc benzerlik göstermiştir (Şekil 5.19.).

Şekil 5.19. Çift-çift ¹⁶⁸⁻¹⁷⁸Yb izotop zinciri çekirdeklerinin TGI QRPA modelde K=0 ve K=1 dalları için enerjiye bağlı indirgenmiş radyasyon kalınlığı Γ_0 değerlerinin enerji spektrumundaki dağılımı

Dipol fotoabsorbsiyon tesir kesitlerinin, tüm son haller üzerinden toplamlarının alınıp, enerji üzerinden integre edilmesiyle elde edilen, enerji ağırlıklı toplam değerleri yani integre edilmiş tesir kesitleri GDR'nin araştırılan bir diğer nükleer özellikleridir. ¹⁶⁸⁻¹⁷⁸Yb izotopları için K=0 ve K=1 dallarının TGI QRPA ile hesaplanan integre edilmiş tesir kesitleri Tablo 5.7.'de verilmiştir.

Calcirdal: A		σ_0 (MeV.b)			σ_{-1} (mb)			σ_{-2} (MeV ⁻¹ mb)		
ÇCKIIUCK	Л	K=0	K=1	Toplam	K=0	K=1	Toplam	K=0	K=1	Toplam
	168	0.68	1.30	1.98	59	92	151	5	7	12
	170	0.68	1.30	1.98	57	91	148	5	6	11
V/L	172	0.67	1.28	1.95	57	86	143	5	6	11
YD	174	0.68	1.27	1.95	58	87	145	5	6	11
	176	0.67	1.26	1.93	57	90	147	5	7	12
	178	0.65	1.19	1.84	57	84	141	5	6	11

Tablo 5.7. ¹⁶⁸⁻¹⁷⁸Yb izotoplarının K=0 ve K=1 dallarının integre edilmiş tesir kesitleri

¹⁷⁴Yb izotoplarının K=0 ve K=1 dallarına ait integre edilmiş tesir kesitlerinin deneysel veriler ile karşılşatırıması Şekil 5.20.-22.'de verilmiştir. Deneyde toplam olarak verilen değerlere karşılık bu çalışmada K=0 ve K=1 dalları için değerler ayrı ayrı verilmiş, ardından toplam toplam değer ile deneysel değer karşılaştırılmıştır.

Şekil 5.20. ¹⁷⁴Yb izotopu için K=0 ve K=1 dallarının TGI QRPA ile hesaplanan σ_0 integre edilmiş tesir kesitleri sonuçlarının deneysel verilerle karşılaştırılması (Gurevich ve ark., 1981)

Şekil 5.21. ¹⁷⁴Yb izotopu için K=0 ve K=1 dallarının TGI QRPA ile hesaplanan σ_{-1} integre edilmiş tesir kesitleri sonuçlarının deneysel verilerle karşılaştırılması (Gurevich ve ark., 1981)

Şekil 5.22. ¹⁷⁴Yb izotopu için K=0 ve K=1 dallarının TGI QRPA ile hesaplanan σ_{-2} integre edilmiş tesir kesitleri sonuçlarının deneysel verilerle karşılaştırılması (Gurevich ve ark., 1981)

Şekil 5.20.-22.'den, integre edilmiş $\boldsymbol{\sigma}_{0}$, $\boldsymbol{\sigma}_{-1}$ ve $\boldsymbol{\sigma}_{-2}$ tesir kesitlerinin K=1 dalına ait değerinin K=0 dalından büyük olduğu ve teorik sonuçların deneysel verilere yakın değerler aldığı görülmüştür.

Parçacık seviyeleri arasındaki elektrik indirgenmiş geçiş olasılıkları Nilsson (1955) tarafından hesaplanmıştır. Buna göre tek parçacık seviyesi $(I_i K_i^{\pi_i} [N_i n_{zi} \Lambda_i])$ ve ($I_f K_f^{\pi_i} \left[N_f n_f \Lambda_f \right]$) arasındaki indirgenmiş geçiş olasılıkları iki tek parçacık enerji seviyesinin asimptotik kuantum numaraları yardımıyla bulunabilmektedir. Buradan görüldüğü üzere her tek parçacık seviyesi karakterizasyonu $[Nn_z\Lambda]\Sigma$ kuantum numaraları seti ile olmaktadır. Çift-çift ¹⁶⁸⁻¹⁷⁸Yb izotop zincirinin E1 uyarılmalarının K=0 ve K=1 dallarına ait en büyük katkıyı yapan seviyelerin enerjileri, indirgenmiş geçiş olasılıkları, tek parçacık asimptotik Nilsson kuantum sayıları $[Nn_z\Lambda]\Sigma$ ve kuaziparçacık genlikleri (ψ) Tablo 5.8.'de verilmiştir. Buna göre tablodan, burada çok fazla yer kaplamaması için yalnızca en büyük genlikteki değerlerinin verildiği, K=0 ve K=1 dallarında en büyük B(E1) değerini veren seviyelerin çok sayıda iki kuaziparçacık (nn-pp) seviyesine sahip olduğu görülmektedir.

Е B(E1) Genlik ψ Çekirdek Seviye nn-pp Seviye Yapısı (MeV) $(e^2 fm^2)$ nn 550↑-640↑ -0.3252 nn 550↑-660↑ -0.2327 pp 310↑-411↓ -0.6328 K=011.32 1.752 pp 550↑-651↑ Yb 168 -0.2169 pp 411↑-512↑ 0.3693 nn 501↑-422↑ -0.2259 K=116.30 2.486 pp 312↑-422↓ 0.2315 pp 532↓-633↓ 0.8207 nn 550^-640↑ -0.2192 nn 550↑-660↑ 0.4330 nn 541↑-651↑ -0.2515 11.38 K=01.748 pp 310↑-411↓ -0.2796 pp 550↑-651↑ -0.2043 Yb 170 0.5421 pp 411↑-512↑ -0.3753 nn 431↑-532↓ nn 400↑-301↑ 0.2131 K=116.24 2.404 pp 532↓-633↓ -0.2209 pp 613↓-514↓ 0.2749 nn 550↑-660↑ -0.2235 nn 541↑-651↑ 0.3667 pp 310↑-411↓ -0.2992 K=011.22 1.919 pp 411↑-512↑ 0.6240 pp 301↑-402↓ Yb 172 0.2236 nn 301↑-400↑ 0.3027 nn 301↓-402↓ 0.2879 16.15 2.834 K=1nn 532↓-633↓ 0.2402 <u>pp 52</u>3↑-613↓ 0.6797 nn 550^-6601 0.2433 nn 550↑-631↓ 0.4795 nn 532↑-642↑ 0.2091 K=011.31 2.077 0.4062 pp 550↑-651↑ Yb 174 pp 530↑-660↓ 0.3563 pp 411↑-512↑ -0.2786 -0.2732 nn 532↓-633↓ K=116.11 3.719 pp 532↓-633↓ -0.2809 pp 523↑-613↓ -0.7764 nn 532↑-642↑ 0.3839 pp 413↓-503↓ 0.2763 K=0 2.020 11.43 pp 550↑-651↑ -0.4448 pp 530⁺-660[†] Yb 176 -0.4664 nn 532↓-633↓ 0.2025 K=116.01 2.174 pp 532↓-633↓ -0.2413 pp 523↑-613↑ -0.5981 pp 303↓-413↓ 0.7897 K=010.49 1.771 pp 413↑-514↓ -0.2611 Yb 178 nn 532↓-633↓ -0.2586 K=115.42 2.120 pp 541↓-642↓ -0.6122 pp 411↑-312↑ -0.5302

Tablo 5.8. Çift-çift ¹⁶⁸⁻¹⁷⁸Yb çekirdeklerinin 1⁻0 ve 1⁻1 uyarılmalarının, TGI QRPA ile hesaplanan en büyük B(E1) değerlerinin elektrik dipol karakteristiklerinin (enerji, B(E1), Nilsson kuantum sayıları ve genlik ([$Nn_z\Lambda\Sigma$], ψ_{ssr}^i) değeri) karşılaştırılması. Burada, fonon dalga fonksiyonuna katkısı %2'den daha büyük olan iki kuaziparçacık seviyelerinin yapıları (ψ)±0,2) verilmiştir.

Çift-çift ¹⁶⁸⁻¹⁷⁸Yb izotop zincirinden ¹⁶⁸Yb çekirdeğinin 1⁻0 ve 1⁻1 uyarılmalarının, TGI QRPA ile hesaplanan 8-20 MeV enerji aralığında oluşan iki kuaziparçacık seviyelerinin sayısı Tablo 5.9.'da verilmiştir.

Tablo 5.9. ¹⁶⁸Yb çekirdeğinin 8-20 MeV aralığı enerji spektrumunda iki kuaziparçacık (nötron-nötron ya da proton-proton çiftlenimleri-nn-pp) seviye sayıları

Çekirdek	K	nn seviye sayısı	pp seviye sayısı	Toplam
168 V h	0	201	296	497
¹⁰⁰ Y b	1	1250	1444	2694

Tablo 5.9.'dan 8-20 MeV enerji aralığında ¹⁶⁸Yb çekirdeğinin çok sayıda iki kuaziparçacık seviyesine sahip olduğu görülmektedir. Bu durum deforme ¹⁶⁸Yb çekirdeğinin 8-20 MeV enerji aralığında kollektif bir yapıya sahip olduğunu göstermektedir. 1⁻⁰ uyarılma spektrumunda topam 497, 1⁻¹ uyarılmalarında ise toplam 2694 seviyenin bulunması K=1 dalının K=0 dalımdan daha baskın olduğunu kanıtlayan bir diğer bulgu olmuştur. Bu izotopun K=0 ve K=1 dalları için 8-20 MeV enerji aralığında iki kuazi parçacık seviyelerinin dağılımı Şekil 5.23. ve 5.24.'de verilmiştir.

Şekil 5.23. ¹⁶⁸Yb izotopu için TGI QRPA model ile K=0 dalında hesaplanan iki kuaziparçacık seviyelerinin katkısının 0-20 MeV enerji aralığındaki dağılımı

Şekil 5.24. ¹⁶⁸Yb izotopu için TGI QRPA model ile K=1 dalında hesaplanan iki kuaziparçacık seviyelerinin katkısının 0-20 MeV enerji aralıklığındaki dağılımı

Şekil 5.23. ve 5.24.'den enerji seviyelerinin çok sayıda iki kuaziparçacık konfigürasyonuna sahip olmaları, bu bölgenin güçlü kolektif yapıda olduğunu göstermektedir.

Çift-çift ¹⁶⁸⁻¹⁷⁸Yb izotoplarının $I^{\pi}K = 1^{-1}$ ve $I^{\pi}K = 1^{-0}$ geçişleri için 8-20 MeV enerji aralığında TGI QRPA modeliyle elde edilen enerji seviyelerinin deneysel olarak elde edilen seviyeler ile karşılaştırılması Şekil 5.25.'de verilmiştir.

Şekil 5.25. ¹⁶⁸⁻¹⁷⁸Yb izotoplarının $I^{\pi}K = 1^{-1}$ ve $I^{\pi}K = 1^{-0}$ geçişleri için TGI QRPA ile hesaplanan enerji seviyelerinin deneysel verilerle karşılaştırılması (Gurevich ve ark., 1981)

Şekil 5.25.'den K=0 ve K=1 ayırımı yapılmadan toplam olarak verilen deneysel verilere göre teorik sonuçlardan hem K=0 ve K=1 ayırımı yapılabilmiş, hem de çok daha fazla sayıda enerji seviyeleri bulunarak daha duyarlı sonuçlar elde edilmiştir.

BÖLÜM 6. TARTIŞMA VE ÖNERİLER

Bu tez çalışmasında, ¹⁶⁸⁻¹⁷⁸Yb izotop zinciri çekirdeğinin 8-20 MeV enerji aralığında oluşan dev dipol rezonans bölgesindeki özellikleri mikroskobik TGI QRPA modeli kullanılarak araştırılmıştır. QRPA yöntemi çerçevesinde simetri kırınımlarına sebep olan ortalama alan ve çiftlenim potansiyellerinin olduğu bir durumda öteleme ve Galileo değşmezliğini restore edici etkin kuvvetlerin ayrılabilir şekilde özuyumlu olarak seçilmesini sağlayan serbest parametresiz bir teori geliştirilmiştir. Geliştirilen model ile elde edilen sonuçlar:

- Hiçbir restorasyonun olmadığı yaklaşım (Öteleme ve Galileo değişmez olmayan QRPA model, NTGI QRPA),
- Yalnızca öteleme değişmezliğin restore edildiği yaklaşım (Öteleme değişmez QRPA model, TI QRPA),
- Yalnızca Galileo değişmezliğin restore edildiği yaklaşım (Galileo değişmez QRPA model, GI QRPA)

model sonuçlarıyla ve deney verileriyle karşılaştırılmıştır. Yapılan karşılaştırmalar öteleme ve dönme değişmez hamiltoniyen kullanılarak geliştirilen modelin çift-çift ¹⁶⁸⁻ ¹⁷⁸Yb çekirdeklerinin elektrik dipol uyarılmaları hakkında güvenilir sonuçlar verdiğini göstermiştir. 8-20 MeV aralığında enerji spektrumuna karışan sıfır enerjili sahte haller spektrumunda bulunan seviyelerin fazlalığı, QRPA modelde öteleme ve Galileo değişmezliğin restore edilmesinin (TGI QRPA) gerekli olduğunu göstermektedir.

Kullanılan teori, incelenen İterbiyum çekirdeği için 11-12 MeV ve 15-16 MeV enerji aralığında iki tane 1⁻ seviyesinin olduğunu göstermektedir. İncelenen İterbiyum çekirdeğinde yüksek enerjili dipol uyarılmalarının çoğunlukla $\Delta K=1$ karakterli olduğu

tespit edilmiştir. Deneysel olarak bilinen iyi deforme çekirdeklerdeki iki hörgüçlü yapı incelenen İterbiyum çekirdeği için de elde edilmiştir.

Hesaplamalar restore edici kuvvetlerin hamiltoniyene eklenmesiyle sıfır enerjili Goldstone dalının analitik olarak yalıtılmasının dev dipol rezonansların parçalanmasını arttırdığını göstermiştir. Kırınımlı hamiltoniyen kullanılan modelin toplam dipol indirgenmiş geçiş olasılığı güçleri restorasyonlu model sonuçlarından fazla olduğu bulunmuştur. Restorasyon hem B(E1) gücünü hem de dağılımını değiştirmiştir. Etkin h_0 ve h_{Δ} restorasyon kuvvetleri E1 geçişlerinin enerji ağırlıklı toplam kuralının kuaziparçacık modelin öngördüğü ve deformasyonun sorumlu olduğu teriminin katkısını hem K=0 hem de K=1 dalı için azalttığı görülmüştür. Bu durum dipol titreşimlerinin incelenmesinde güvenilir sonuçlar elde etmek için Öteleme değişmez hamiltoniyenlerin, Galileo değişmez ortalama alan potansiyellerinin kullanılmasının ve Goldstone dalının yalıtılmasının ne kadar önemli olduğunu göstermiştir. Hesaplamalar, Galileo değişmez çiftlenim etkileşimlerinin, dev rezonansın maksimum enerjisini veya integre edilmiş tesir kesitlerini fark edilir şekilde etkilemediğini göstermiştir (Gabrakov ve ark., 1977).

0-20 MeV enerji aralığında K=0 ve K=1 dalları için enerji ağırlıklı toplam kuralları araştırılmış ve bu kolların katkılarının yoğunluğunun dev dipol rezonans bölgesinde fazla olduğu görülmüştür. Kullanılan hamiltoniyendeki saf izoskaler ve izovektör kuvvet katkıları karşılaştırılmıştır. İzovektör katkılı kuvvetlerin izoskaler kuvvetler üzerinde yıkıcı girişim oluşturması ve 8-20 MeV aralığında yayılan bir spektrum vermesi, bu bölgenin izovektör dipol-dipol etkileşmesi özelliğinin baskınlığını kanıtlar nitelikte bir sonuç oluşturmuştur.

K=1 ve K=0 dallarının toplam B(E1) değerlerinin oranlarının İterbiyum çekirdeğinde yaklaşık 1,5 değeri civarında olduğu görülmüştür. Düşük enerji seviyelerinde 10-20 10⁻³e²fm² olduğu bilinen indirgenmiş geçiş olasılığının, GDR enerji bölgesinde İterbiyum çekirdeği için K=0 dalında 13-15 e²fm², K=1 dalında 20-23 e²fm² değerlerinde olduğu bulunmuştur. Çift-çift Yb izotoplarının teorik olarak bulunan tesir kesiti değerlerinin deneysel değerler ile uyum içerisinde çıkması, teorik olarak

kullandığımız model ile elde ettiğimiz sonuçların doğruluğunun bir göstergesidir. Enerji ağırlıklı ve enerji ağırlıksız toplam radyasyon kalınlıkları değerleri 8-20 MeV aralığındaki yaklaşık değerleri verilmiştir. Enerji seviyelerinin asimptotik kuantum sayıları, genlikleri ve iki kuaziparçacık seviye sayılarının hesaplanması ile GDR için bilinen 8-20 MeV enerji aralığındaki uyarılmaların güçlü kollektifliği gösterilmiştir.

Bu çalışmada dev dipol rezonans uyarılmalarının deneysel çalışmalarda gözlemlenen seviyelerinin yorumlanması için teorik inceleme yapılmıştır. Teorik çalışma öngörülerinin deneysel çalışmalara ışık tutacağı düşünülmektedir.

GDR enerji bölgesinde yapılan çalışmadan elde edilen bulgulardan;

- Deforme çekirdekleri açıklamada çok başarılı bir yaklaşım olan QRPA'nın, öteleme ve Galileo değişmezliğinin restorasyonunun gerekli olduğunu,
- Restore edilmiş modelimizle elde edilen sonuçların deneysel verileri açıklamakta başarılı olduğu,
- Henüz deneysel verileri bulunmayan nükleer özelliklere ait bulduğumuz sonuçların yapılacak deneysel çalışmalara uygun öngörüler oluşturulacağı, sonucuna varılmıştır.

Bu tez çalışmasının temelini oluşturan çalışmalar, TFD 34. Uluslararası Fizik Kongresi, 2018'de iki sözlü sunumla sunulmuştur.

KAYNAKLAR

- Au, J. W., Burton, G. R., Brion, C. E. 1997. Quantitative Spectroscopic Studies of The Valence-Shell Electronic Excitation of Freons (CFCl3, CF2Cl2, CF3Cl, and CF4) in The VUV and Soft X-Ray Regions, Chem. Phys. 221: 151.
- Baldwin, G. C., Klaiber, G. S. 1947. Photo-fission in heavy elements. Phys.Rev. 71: 3-10.
- Baranger, M., Vogt, E., 1968. Advances in Nuclear Physics. ISBN 978-1-4684-8345-1, ISBN 978-1-4684-8343-7 (eBook).
- Bergere, R. 1977. Photonuclear Reactions I. Lect. Notes Phys., vol.61, page1-222.
- Berman, B. L., Fultz, S. C. 1975. Measurements of The Giant Dipole Resonance with Monoenergetic Photons. Rev. Mod. Phys. 47: 713.
- Bohm, D., Pines, D. 1953. A Collective Description of Electron Interactions: III. Coulomb Interactions in a Degenerate Electron Gas. Phys. Rev. 92, 609.
- Bohr, A., Mottelson, B., Nuclear structure, Vol. 1, Benjamin, New Tork and Amsterda, 1969.
- Bohr, A., Mottelson, B. R. 1997. Single-Particle Motion V-I, World Scientific, 1-246.
- Bohr, A., Mottelson, B. R. 1998. Nuclear Deformations V-II, World Scientific, 1-386.
- Bortignon, P. F., Barranco F., Broglia R. A., Cow, G., Gori, G., Vigezzid, E. 2003. Collective aspects of pairing interaction in nuclei. Nuclear Physics A722 379-382.
- Bortignon, P. F., Bracco, A., Broglia, R. A. 1998. Giant Resonance Nuclear Structure at Finite Temperature, Harwood Academic, 1-290.
- Bothe, W., Günter, W. 1937. Atommumwandlungen durchy gamma-strahlen. Z. Phys. 106: 236.
- Cannata, F., Uberall, H. 1980. Giant Resonance Phenomena in Intermediate-Energy Nuclear Reactions, Springer-Verlag, 1-120.
- Carlos, P., Bergere, R., Beil, H., Lepretre, A., Veyssiere, A., 1974. A Semi-Phenomenological Description of The Giant Dipole Resonance Width. Nucl. Phys. A219: 61.
- Cerkaski, M., Dudek, J., Szymanski, Z., Andersson, C.G., Leander, G., Aberg, S., Nilsson, S.G., Ragnarsson, I., Search for the yrast traps in neutron deficient rare earth nuclei, Phys.Lett.B 1977; 70:9-13.

- Chomaz, P. 1997. Collectives excitations in nuclei. Ecole thematique. Ecole Joliot Curie "Structure nucleaire: un nouvel horizon" Maubuisson, (France), du 8-13 septembre 1997:16eme session <cel-00652714>.
- Civitarese, O., Faessler, A., Licciardo, M. C. 1992. Symmetry breaking of the Galilean invariance in superfluid nuclei and its connection with quadrupole pairing interactions. Nucl. Phys. A542: 221.
- Danos, M. 1958. On The Long-Range Correletation Model of The Photonuclear Effect. Nucl. Phys. A5: 23.
- Danos, M., Greiner, W. 1965. Shell-model treatment of nuclear reactions. Phys. Rev. 138: B93.
- Dietrich, S. S, Berman, B. L. 1988. Atlas of the photoneutron cross section obtained with monoenergetic photons. Atom. Data and Nucl. Data Tab. 38: 199.
- Dudek, J., Nazarewicz, W., Faessler, A., Theoretical analysis of the single-particle states in the secondary minima of fissioning nuclei, Nucl. Phys. A1984; 412:61-91.
- Ertuğral, F; Guliyev, E; Kuliev, A; Yildirim, Z. 2009. Fine structure of the dipole excitations of the even-even ¹⁶⁰Gd nucleus in the spectroscopic region. Central European Journal Of Physics, Vol.7, 731-737.
- Faessler, A., Sheline, R. K. 1966. Eigenfunctions for a spherical and a deformed Saxon-Woods Potantial. Phys. Rev. 148: 1003.
- Gabrakov, S. I., Pyatov, N. I., Salamov, D. I. 1977. Effects of breaking the translational and Galilean Invariences of Nuclear Model Hamiltonians. International Atomic Energy Agency and United Nation Educational Scientific and Cultural Organization.
- Goeke, K., Speth, J. 1982. Theory of giant resonance. Ann. Rev. Nucl. Part. Sci. 32: 65.
- Goldhaber, M., Teller, E. 1948. On nuclear dipole vibration. Phys. Rev. 74, 1046-1049.
- Goryachev, A.M., Zalesnyy, G.N. 1976. Photoneutron cross sections for Yb-174 in the region of giant resonance.Jour: voprosy Teoreticheskoy I yadernoy Fiziki, Vol. 1976, Issue. 5, p. 42.
- Greiner, W., Maruhn, J. A. 1996. Nuclear Models. Springer, 1-399.
- Guliev, E., Kuliev, A. A., Güner, M. 2010. Electric dipole strength distribution below the E1 giant resonance in N = 82 nuclei. Cent. Eur. J. Phys., 8(6), 961-969.
- Guliyev, E., Ertuğral, F., Kuliev, A. A. 2006. Low lying magnetic dipole strength distribution in the γ-soft even-even ¹³⁰⁻¹³⁶Ba. Eur. Phys. J. A, 27, 313–320.
- Guliyev, E., Kuliev, A. A., Ertuğral, F. 2009. Low-lying dipole excitations in the deformed even-even isotopes ¹⁵⁴⁻¹⁶⁰Gd. Acta Physica Polonica B, Vol.40, 653-656.
- Guliyev, E.; Kuliev, A. A.; Ertuğral, F. 2009. Low-lying magnetic and electric dipole strength distribution in the ¹⁷⁶Hf nucleus. European Physical Journal A Vol.39, 323-333.

- Gurevich, G. M., Lazareva, L. E., Mazur, V. M., Merkulov, S. Yu, Solodukhov, G. V. 1981. Total nuclear photoabsorption cross sections in the region 150<A<190. Nucl. Phys. A351: 257.
- Gurevich, G. M, Lazareva, L. E, Mazur, V. M., Solodukhov, G. V. 1974. Total cross section for the absorption of gamma quanta by Th²³², U²³⁵, U²³⁸, and Pu²³⁹ in the region of dipole giant resonance. Zh. E. T. F. Pis. Red. 20: 741.
- Gurevich, G. M, Lazareva, L. E., Mazur, V. M., Merkulov, S. Y., Solodukhov, G. V, Tyutin, V. A. 1978. Width of E1 giant resonance of deformed nucle in the 150 <A<186 region. Pis'ma Zh. Eksp. Teor. Fiz. 28: 168.
- Gurevich, G. M. 1976b. Width of giant resonance in the absorption for the cross section of gamma rays by nuclei in the region 150<A<200. Pis'ma Zh. Eksp. Teor. Fiz. 23: 411.
- Gurevich, G. M., Lazareva, L. E., Mazur, V. M., Merkulov, S. Y., Solodukhov, G. V. 1980. Total photoabsorption cross section for high-Z elements in the energy range 7-20 MeV. Nucl. Phys. A338: 97.
- Gurevich, G. M., Lazareva, L. E., Mazur, V. M., Solodukhov, G. V., Tulupov, B.A. 1976a. Giant resonance in the total photoabsorbtion crosss sectin of Z ~ 90 nuclei. Nucl. Phys. A273: 326.
- Habs, D. 2013. γ Optics and Nuclear Photonics. İçinde: Encyclopedia of Nuclear Physics and Its Applications. 1. Baskı, Wiley-VCH, 271-298.
- Harakeh, M. N. 2018. The Euroschool on Exotic Nuclei V5 İçinde: Giant Resonance: Fundamental Modes and Probes of Nuclear Properties. Springer, 31-64.
- Harakeh, M. N., van der Woude A. 2001. Giant Resonances, Oxford University Press, 1-656.
- Harakeh, M. N., van der Woude, A. 2006. Giant Resonances Fundamental High-Frequency Modes of Nuclear Excitation. Oxford science publication, New York, USA.
- Hashimoto, T., Krumbholz, A. M, Reinhard, P.-G., Tamii, A., von Neumann-Cosel, P., Adachi, T., Aoi, N. 2015. Dipole polarizability of ¹²⁰Sn and nuclear energy density functionals. Phys. Rev. C92: 031305(R).
- Haxel, O., Jensen, J. H. D., Suess, H. E. 1949. On the magic numbers in nuclear structure. Phys. Rev. 75: 1766.
- Hinohara, N., Kortelainen, M., Nazarewicz, W. 2013. Low-energy collective modes of deformed superfluid nuclei within the finite-amplitute method. Phys. Rev. C87: 064309.
- Ishkhanov, B. S., Kapitonov, I. M. 2015 The Configurational Splitting of Giant Dipole Resonance. Moscow University Physics Bulletin, 2015, Vol. 70, No. 2, pp. 75– 88.
- Ishkhanov, B. S., Troshchiev, Y. S. 2011. Giant dipole resonance in heavy deformed nuclei. Moscow Univ. Phys. Bull. 66: 325.

- Itoh, M., Sakaguchi, H., Uchida, M., Ishikawa, T., Kawabata, T., Murakami, T., Takeda, H., Taki, T., Terashimaa, S., Tsukahara, N., Yasudaa, Y., Yosoi, M., Garg, U., Hedden, M., Kharrajab, B., Koss, M., Nayak, B.K., Zhub, S., Fujimurac, H., Fujiwara, M., Harac, K., Yoshida, H. P., Akimune, H., Harakeh M. N., Volkerts, M. 2002. Compressional mode giant resonances in deformed nuclei. Phys. Lett. B549: 58.
- Iudice, N. L. 2000. Collective Excitations in Deformed Nuclei, Rıvısta Del Nuovo Cimento Vol. 23, N. 9.
- Kapitonov, I. M. 2015. Width of the giant dipole resonance in medium and heavy nuclei. Bulletin of the russian Academy of Sciences, Physics 79: 526-531.
- Khuong, C. Z., Soloviev, V. G., Voronov, V. V. 1979. Description of the substructure in the radiative strength function of 117Sn and 119Sn. J. Phys. G: Nucl. Phys. 5: L79.
- W. Kleinig, V.O. Nesterenko, J. Kvasil, P.-G. Reinhard and P. Vesely. Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna, Moscow region, 141980, Russia Technische Universit" at Dresden, Inst. für Analysis, D-01062, Dresden, Germany. Institute of Particle and Nuclear Physics, Charles University, CZ-18000, Praha 8, Czech Republic and Institut für Theoretische Physik II, Universitöt Erlangen, D-91058, Erlangen, Germany (Dated: November 1, 2018)
- Kuhn, W. 1925. On the total strength of the absorption lines emanating from a state. Z. für Physik 33: 408.
- Kuliev, A. A., Akkaya, R., Ilhan, M., Guliyev, E., Salamov, C., Selvi, S. 2000. Rotational-invariant model of the states with $K\pi$ =1+and their contribution to the scissors mode. Int. J. Mod. Phys. E, 9(3):249-261.
- Kuliev, A. A., Guliyev, E., Ertuğral, F., Özkan, S. 2010. The lw-energy dipole structure of 232Th, 236U and 238U actinide nuclei. Eur. Phys. J A 43: 313-321.
- Kuliev, A. A., Guliyev, E., Gerçeklioğlu, M. 2002. The Dependence of The Scissors Mode on The Deformation in The 140-150Ce Isotopes, J. Phys G. Nucl. Particle Physics 28, 407.
- Kuliev, A. A., Pyatov, N. I. 1968. Effect of the spin-quadrupole force on the rate of decay to collective states of even deformed nuclei. Nuclear Phys. A 1006 (3): 689-696.
- Kuliev, A. A., Selam, C., Küçükbursa, A. 2001. The effect of the Galileo invariance pairing on the 1- state in spherical nuclei. Math. and Comp. App. 6: 103-111.
- Kuznetsov, V., Merkulov, S., Solodukhov, G., Sorokin, Yu., Turinge, A. 2017. Total and nuclear photoabrorption cross sections of ⁵²Cr. In the energy range of 8-70 MeV. Institute for Nuclear Research, 117312 Moscow, Russia, Kyungpook National University, 702-701, Daegu, Republic of Korea, RRC "Kurchatov Institute", Moscow, Russia.
- Kneissl, U., Pitz, H.H., Zilges, A., Investigation of nuclear structure by resonance fluorescence scattering. Prog. Part. Nucl. Phys. 37:349-433, 1996.

- Litvinova, E., Ring, P., Tselyaev, V. 2008. Relativistic quasiparticle time blocking approximation: dipole response of open-shell nuclei. Phys. Rev. C78: 014312.
- Malov, L. A., Meliev, F. M., Soloviev, V. G. 1985. Description of radiative strength functions in deformed nuclei. Z. Phys. A. Atom and Nuclei 320: 521.
- Malov, L. A., Soloviev, V. G. 1976. Fragmentation of single-particle states and neutron strength functions in deformed nuclei. Nucl. Phys. A270: 87.
- Masur, V. M., Mel'nikova, L. M. 2006. Giant dipole resonance in absorption and emission of gamma rays by medium and heavy nuclei. Phys. Par. Nucl. 37: 923.
- Matta, J. T., Exotic Nuclear Excitations: The Transverse Wobbling Mode in 135 Pr, Springer Theses, Springer International Publishing AG 2017, DOI 10.1007/978-3-319-53240-0_2
- Mayer, M. G. 1950. Nuclear configurations in the spin-orbit coupling model I. Phys. Rev. 78: 16.
- Meng, J. 2016. Relativistic Density Functional for Nuclear Structure, World Scientific, 1-714.
- Migdal, A. B. 1945. Zh. Eksp. Teor. Fiz. 15 81.
- Morse, P. M, Feld, B. T., Feshbach, H. 1972. Nuclear, Particle and Many Body Physics, Academic Press, 1-707.
- Mottelson, B. R. 1976. Elementary Modes of Excitation in The Nucleus. Science, 193, 4250, 287-294. DOI: 10.1126/science.193.4250.287.
- Möller, P., Nix, J. R., Myers, W. D., Swiatecki, W. J. 1995. Nuclear ground-state masses and deformations. Atom. Data and Nucl. Data Tables 59: 185.
- Nilsson, S. G. 1955. Binding states of individual nucleons in strongly deformed nuclei. Dan. Mat. Fys. Medd. 29: 1.
- Nilsson, S. G., Tsang, C. F., Sobiczewski, A., Szymanski, Z., Wycech, S., Gustafson C., Lamm I. L., Möller P., Nilsson, B. 1969. On the nuclear structure and stability of heavy and superheavy elements. Nucl. Phys. A131: 1.
- Nükleer Potansiyeller, A6_SphShell_and_Deformed.pdf, Arizona Üniversitesi atlas projesi web ders sunumları, (<u>http://atlas.physics.arizona.edu/~shupe/Indep_Studies_2015/Notes_Goethe_Univ/A6_SphShell_and_Deformed.pdf</u>), Son güncelleme tarihi: 26 Ocak 2014.
- Oishi, T., Kortelainen, M., Hinohara, N. 2016. Finite amplitude method applied to the giant dipole resonance in heavy rare-earth nuclei. Phys. Rev. C 93: 034329.
- Okamoto, K., Relation between the Quadrupole Moments and the Widths of the giant resonance of Photonuclear reaction. Progress of Theoretical Physics, Volume 15, Issue 1, 1 Yanuary 1956, Pages 75-77.
- Okamoto, K. 1958. Relation between the quadrupole moments and the widths of the giant resonance of photonuclear reaction. Prog. Theo. Phys. 15: 75.
- Paar, N., Vretenar, D., Khan, E., Colo, G. 2007. Exotic modes of excitation in atomic nuclei far from stability. Rep. Prog. Phys. 70: 691-793.

- Poltoratska, I., Fearick, R. W., Krumbholz, A. M., Litvinova, E., Matsubara, H., von Neumann-Cosel, P., Ponomarev, V. Yu., Richter, A., Tamii, A. 2014. Fine structure of the isovector dipole resonance in 208Pb: Characteristic scales and levels densities. Phys. Rev. C 89: 054322.
- Pyatov, N. and Chernei, M., Yad. Fiz. 16 (1972) 931.
- Ponemarev, V. Yu., Vigezzi, E., Bortignon., P. F., Brogliia, R., A. Multiple excitation of giant dipole rezonances in relativistic heavyion collisions. 1168,-Published 21 february 1994. Phys. Rev. Lett. 72.
- Pyatov, N. I., Salamov, D. I. 1977. Conservation laws and collective excitations in nuclei. Nukleonika 22: 127.
- Raduta, A. A., Budaca, R., Raduta, A. H. 2009. Collective dipole excitations in sodium clusters. Phys. Rev. A79: 023202.
- Raman, S., Nestor, C. W., Tikkanen, P. 2001. Transition probability from the ground to the first excited 2+ state of even-even nuclides. Atom. Data and Nucl. Data Tables 78: 1.
- Reiche, F., Thomas, W. 1925. Über die Zahl der Dispersionselektronen, die einem stationären Zustand zugeordnet sind. Z. für Physik 34: 510.
- Rezwani, V., Gneuss, G., Arenhövel, H. 1970. Dynamic collective model of the giant resonance. Phys. Rev. Lett. 25: 1667.
- Rhine Kumar, A. K., Arumugam, P., Dinh Dang, N, 2015. Effects of thermal shape fluctuations and pairing fluctuations on the giant dipole resonance in warm nuclei. Physical Review C 91, 044305.
- Ring P., Shuck P., 2004. The Nuclear Many Body Problem, 1980 by Springer Verlag New York Inc. Printed in the United Statet of America. ISBN:0-387-09820-8 Springer Verlag New York 1-718.
- Ring P., 2008. Covariant density functional theory of the Dynamics of nuclei far from stability. Summer school 4 on Nuclear Collective Nuclear Collective Dynamics. İstanbul (<u>https://slideplayer.com/slide/8169629</u>).
- Romig, C., Savran, D., Beller, J., Birkhan, J., Endres, A., Fritzsche, M., Glorius, J., Isaak, J., Pietralla, N., Scheck, M., Schnorrenberger, L., Sonnabend, K., Zweidinger, M. 2015. Direct determination of ground-state transition widths of low-lying dipole states in ¹⁴⁰Ce with the self-absorption technique, Phys. Lett. B 744 369-374.
- Rowe, D. J. 1970. How do deformed nuclei rotate? Nucl. Phys. A152, 273.
- Rowe, D. J. 2010. Nuclear collective Motion Models and Theory, World Scientific Publishing, 1-373.
- Scheck, M., I., Mishev, S., Ponomarev, V. Y., Ponomarev, R., Chapman, P., Gaffney, L. G., Gregor, E. T., Pietralla, N., Spagnoletti, P., Savran, D., Simpson, G. S. 2016. Investigating the Pygmy Dipole Resonance Using β Decay. Phys. Rev. Lett. 116: 132501.
- Schröder, H. P. 2015. The energy-weighted sum rule and the nuclear radius. Eur. Phys. J. 51: 109.

Soloviev, V. G. 1976. Theory of Complex Nuclei, Pergamon Press, 1-468.

- Soloviev, V. G., Stoyanov, C., Vdovin, A. I. 1980. The description of fragmentation of one-quasiparticle states in spherical nuclei. Nucl. Phys. A342: 261.
- Soloviev, V. G et. al. / Nuclear Physics A 613 (1997) 45-68.
- Steinwedel, H., Jensen, H. J. D., Jensen, P. 1950. Nuclear dipole vibrations. Phys. Rev. 79: 1019.
- Suhonen, J. 2007. From Nucleons to Nucleus Concept of Microscopic Nuclear Theory, Springer, 1-655.
- Thomas, W. 1925. Über die zahl der dispersionselektronen, die einem stationären zustande zugeordnet sind. Naturwissenchaften 13:627.
- Uberall, H. 1971. Electron Scattering From Complex Nuclei Part B. Academic Press, 1-869.
- Van der Woude, A. 1996. Past, present and future of giant resonance or nearly 60 years of giant resonance research. Nucl. Phys. A 599: 393.
- Varlamov, A. V., Varlamov, V. V., Rudenko, D. S., Stepanov, M. E. 1999. Atlas of Giant Dipole Resonances Parameters and Graphs of Photonuclear Reaction Cross Section. IAEE, 1-328.
- Versteegen, M., Denis-Petit, D., Meot, V., Bonnet, T., Comet, M., Gobet, F., Hannachi, F., Tarisien, M., Morel, P., Martini, M., Peru, S. 2016. Low-energy modification of the γ strength function of the odd-even nucleus ¹¹⁵In. Phys. Rev. C 94: 044325.
- Youngblood, D. H., Moss, J. M., Rozsa, C. M., Bronson, J. D., Bacher, A. D., and Brown, D. R. Giant resonances observed in the scattering of 96- and 115-MeV alpha particles. Published 1 March 1976. Phys. Rev. C 13, 994.

EKLER

E	B(E1)	nn-pp	0 11 1/	E	B(E1)	nn-pp	
(MeV)	$(e^2 fm^2)$	Seviye Yapısı	Genlik ψ	(MeV)	$(e^2 fm^2)$	Seviye Yapısı	Genlik ψ
8.03	17.556	pp 301-640	-0.9907	_		nn 550-660	-0.8006
8.19	7.315	nn 640-501	0.9932	_		nn 550-631	-0.1591
		nn 521-631	-0.1232			nn 422-523	-0.1667
		nn 532-642	-0.2232	11.62	120 802	pp 550-651	0.1113
		nn 512-633	0.1062	11.02	129.002	pp 530-651	0.1072
	pp 301-640 0.1053			pp 431-521	-0.3622		
		pp 550-640 -0.2177			pp 411-512	-0.1221	
8 20	202 214	pp 550-660	0.1614			pp 303-642	0.2005
8.20	pp 301-411 0.4017 <u>11.65 9.922</u>	9.922	nn 550-660	-0.137			
		pp 541-651	0.1893			pp 431-521	-0.1593
		pp 532-642	-0.1585	11.69	100 100	pp 303-642	-0.9749
		pp 523-633	0.1453	11.08	100.100	nn 550-660	-0.3625
		pp 413-514	0.6220			pp 431-521	0.9111
		pp 514-624	-0.3838	11 72	0.157	nn 422-523	0.2355
		nn 521-631	-0.1402	11./5	0.137	nn 413-503	-0.9698
		nn 532-642	-0.3152			nn 550-660	0.1497
		nn 512-633	0.103	11.74	2.409	nn 550-631	-0.9696
8 25	66 25	pp 550-640	-0.1036			nn 422-523	0.1615
0.23	00.23	pp 550-660	0.1044	11.97	0.065	nn 422-512	-0.9981
		pp 301-411	0.3556			nn 550-640	0.1348
		pp 413-514	-0.7634	12.12	710 217	pp 550-660	0.1088
		pp 514-624	-0.3043	12.12	/40.34/	pp 530-651	-0.9216
8 76	2.060	nn 400-761	-0.9882			pp 422-512	-0.1934
8.20	2.000	nn 532-642	-0.1007	12 20	60 680	pp 530-651	0.175
		nn 550-660	-0.2143	12.20	09.080	pp 422-512	-0.9729
		nn 530-651	-0.1146			nn 550-640	0.116
		nn 521-631	0.2073	12 22	555 076	nn 514-404	-0.1527
		nn 400-761	-0.119	12.33	555.970	pp 550-660	0.1163
		nn 532-651	-0.1388			pp 532-651	0.9394
		nn 532-642	0.7869			nn 550-660	0.1416
8.34	354.64	nn 523-633	0.1264			nn 550-651	0.1063
		pp 550-640	-0.1547			nn 541-651	-0.8651
		pp 301-411	0.1862	12.42	39.364	nn 532-633	-0.1083
		pp 541-651	0.1376			pp 550-660	0.2574
		pp 532-642	-0.1159			pp 440-532	-0.1915
		pp 413-514	-0.1419			pp 413-503	0.1946
		pp 514-624	-0.1812	12.51	22 700	nn 541-651	-0.1748
0.45	0.161	pp 301-411	-0.1462	12.31	22.709	pp 413-503	-0.977
8.45	0.161	pp 541-402	0.9857	12.57	0.020	pp 301-431	0.9994
8.46	0.011	nn 402-503	0.9992	12.60	5.787	pp 411-752	-0.9966
		pp 301-411	-0.7477	12 42	12 265	nn 514-404	-0.1664
8.50	63.41	pp 541-402	-0.1194	12.62	12.303	pp 640-512	-0.9763
		pp 514-624	-0.6253			nn 514-404	0.9194
8.51	0.005	nn 400-501	0.9995	10.72	2 101	pp 550-660	0.2179
8.55	0.321	nn 505-624	0.9992	- 12.73	3.191	pp 640-512	-0.1588

Tablo E.1. ¹⁶⁸Yb çekirdeğinin K=0 dalında TGI QRPA ile hesaplanan B(E1) değerlerinin elektrik dipol karakteristiklerinin (enerji, B(E1), Nilsson kuantum sayıları ve genlik ($[Nn_z\Lambda\Sigma]$, $\psi_{ss'}^i$) değerleri.

			Tabl	o E.1 Dev	amı		
Е	B(E1)	nn-pp	Genlik 1//	Е	B(E1)	nn-pp	Genlik 1//
(MeV)	$(e^2 fm^2)$	Seviye Yapısı	φ	(MeV)	$(e^2 fm^2)$	Seviye Yapısı	Ochink φ
		nn 550-660	0.2259			pp 532-651	0.1226
		nn 550-651	-0.3559			pp 431-532	-0.1762
		nn 530-651	0.1374			nn 550-651	0.2945
		nn 521-631	-0.1092			nn 541-651	0.3059
		nn 532-651	0.1612			nn 532-633	-0.1128
8.74	108.84	nn 532-642	0.392	12.80	418.171	nn 550-660	0.6622
		nn 532-642	0.2817			pp 530 660	-0.1095
		nn 523-633	-0.1174			pp 332-031	0.5454
		nn 523-633	-0.3516			np 550-651	0.3404
		nn $642,743$	-0.5510			nn 541 651	0.3200
		nn 522 642	0.1265	12.84	297 059	nn 514 404	0.1754
		nn 550 640	-0.1203	12.04	387.938	111 314-404	-0.2449
		pp 550-040	-0.2382			pp 330-000	0.3498
		pp 550-400	-0.2219			pp 451-552	-0.8039
		pp 550-660	0.33			550-651	0.8451
		pp 431-532	0.2474	12.91	95.308	pp 550-660	-0.4669
		pp 420-521	-0.3927			pp 440-532	-0.2005
8.82	809.36	pp 301-411	-0.2008			pp 431-532	0.1017
		pp 541-651	0.2149			nn 550-651	-0.2/51
		pp 422-523	0.1343			nn 541-651	0.1991
		pp 411-512	0.1597	13 11	581 801	nn 532-633	-0.3213
		pp 532-642	-0.1839	13.11	501.001	pp 550-660	-0.166
		pp 523-642	-0.2388			pp 440-532	-0.7784
		pp 523-633	0.1531			pp 505-615	-0.2546
		pp 514-624	0.4721	_		nn 532-633	-0.1844
0 02	52 501	pp 420-521	-0.1063	13.24	266.716	pp 440-532	-0.1792
0.05	52.501	pp 523-642	0.9696			pp 505-615	0.9498
0.00	44 125	pp 550-400	0.9711	13.35 13.38	1.307	pp 514-633	-0.9993
0.00	44.155	pp 420-521	-0.1307			nn 532-633	-0.3862
0.00	0.059	nn 402-752	0.9864		4 4 4 77	pp 440-532	0.3168
8.89	0.958	nn 642-743	-0.1522		4.447	pp 541-651	-0.1038
		nn 550-651	-0.2828	-		pp 303-404	0.8501
		nn 532-642	0.3674	13.40	0.010	nn 501-631	0.9991
8.91	38.089	nn 402-752	-0.1573			nn 532-633	-0.7652
		nn 523-633	-0.3281			pp 440-532	0.3001
		nn 642-743	-0.7792	13.45	330.539	pp 541-651	-0.1665
8.96	0.520	pp 550-420	-0.9974	-		pp 303-404	-0.499
8.96	0.267	nn 651-503	-0.9949			nn 420-512	0.9822
8.99	0.154	nn 411-512	0 9945	- 13.56	5.555	nn 532-633	0.1052
0.77	0.121	nn 420-521	-0 3553			nn 541-651	-0.387
9.02	0.239	pp 120 521	-0.9344	1371	26 479	pp 532-642	0.1001
		nn 532-642	0.6326	- 15.71	20.477	pp 552 642	-0.9044
9.03	0.312	nn 523-633	0.7656			nn 420-512	-0 1182
		nn 550-651	0.7675	-		nn 541-642	-0.1308
		nn 532 642	0.7075			$nn \sqrt{11} \sqrt{752}$	0.1300
0.07	27 805	nn 532-042	0.405	13.75	368.314	1111 411 - 732	0.4227
9.07	57.895	IIII 323-033	-0.2984			IIII 332-033	0.2148
		pp 550-660	0.1143			pp 541-651	-0.7617
		pp 420-521	0.2523			pp 651-752	0.3626
		nn 550-651	-0.3196	10 77	05 540	nn 411-/52	-0.9048
		pp 550-640	-0.1014	13.//	85.740	pp 541-651	-0.3632
0.00	100 17 1	pp 550-660	0.3065			pp 651-752	0.1581
9.08	198.474	pp 431-532	0.1748	13.83	193.636	nn 541-642	-0.1202
		pp 420-521	0.7699			pp 532-642	-0.9737
		pp 411-512	-0.2862			nn 541-642	-0.9759
		pp 514-624	0.1445	13.91	54.324	pp 541-651	0.1623
9.11	5.681	pp 521-402	-0.993			pp 532-642	0.1016
		nn 541-651	0.1082	13.93	5.090	nn 431-521	0.9978
9.20	13.597	nn 532-642	-0.1192	14.04	0.206	nn 752-633	0.9997
		nn 523-633	-0.1286	14.07	37.695	pp 550-631	-0.9922

	Tablo E.1 Devamı							
Е	B(E1)	nn-pp	Ganlik 1//	Е	B(E1)	nn-pp	Ganlik 1//	
(MeV)	$(e^2 fm^2)$	Seviye Yapısı	φ	(MeV)	$(e^2 fm^2)$	Seviye Yapısı	Ochink φ	
		pp 550-660	-0.1407	14.25	6.968	pp 404-505	-0.9985	
9.36	0.109	nn 512-642	0.9973	14.25	1.303	pp 420-761	0.9993	
		nn 402-503	-0.9249	14.29	1.257	nn 301-400	0.9953	
9.52	0.201	pp 550-660	-0.1988	14.40	0.356	nn 411-503	-0.9978	
2102	0.201	pp 220 000	0 2959	1	0.000	nn 310-420	-0.2145	
		nn 402-503	0.3661	14.41	71 572	pp 310 420	0.1057	
		nn 512-633	-0.1479	17.71	/1.5/2	pp 440-541	0.9526	
9.53	27.141	nn 550 660	0.5276	14.47	0.007	pp 321-051	0.0087	
		pp 330-000	-0.5370	14.47	0.007	nn 210 420	-0.3387	
		pp 451-552	0.1200	-		pp 310-420	-0.2237	
		1111 411 - 512	-0.1028	14.50	38.400	pp 310-400	-0./1/0	
		1111 341-031 nn 512 622	0.238			pp 420-312	0.3938	
		nn 512-055	-0.1125			pp 521-651	-0.1810	
9.80	350.063	pp 301-400	0.5115	14.52	0.044	pp 310-400	0.6533	
		pp 550-660	-0.2859			pp 420-512	0.7549	
		pp 431-532	-0.3706			pp 310-420	0.8681	
		pp 422-523	0.4454		=	pp 310-400	-0.1824	
		pp 303-402	-0.3735	14.55	167.616	pp 440-541	-0.3	
		nn 550651	0.1031			pp 420-512	0.2241	
		nn 530-631	0.1227			pp 521-651	0.2178	
		nn 411-512	0.8694	14.63	0 222	pp 310-420	-0.3437	
9.84	102.631	nn 541-651	-0.1659	14.05).222	pp 440-541	-0.9373	
		nn 413-514	0.135			pp 321-411	0.7856	
		pp 301-400	0.2524	14.75	161.901	pp 431-523	-0.4207	
		pp 303-402	-0.2205			pp 532-633	0.3937	
0.95	0.074	pp 301-400	0.5636			pp 321-411	-0.6128	
9.85	0.074	pp 303-402	0.8238	14.79	78.317	pp 431-523	-0.6039	
		nn 411-512	0.257	-		pp 532-633	0.4796	
		nn 541-651	0.2052	14.84	0.770	nn 532-413	0.9996	
		pp 301-400	-0.5726			pp 431-523	0.6532	
9.88	81.270	pp 550-660	-0.1086	14.87 15.04	6.263	pp 532-633	0.7547	
		pp 431-532	-0.171			nn 550-411	-0.6254	
		pp 422-523	0.6122		5.248	nn 301-402	0.7787	
		pp 303-402	0 3445	1513	1 291	nn 413-514	-0.9995	
		nn 510-631	0.1799	15.15	7 044	nn 541-642	0.9951	
		nn 5/1-651	0.3756	15.20	12 303	pp 530_631	_0.9957	
		nn 301 420	0.5750	15.50	1 06/	pp 330-031	0.0082	
9.92	0.297	pp 501-420	0.7559	15.50	1.904	nn 550 621	-0.9982	
		pp 330-000	0.1676	15.54	17.325	nn 422 514	0.1337	
		pp 422-323	-0.1070			nn 550 621	0.9794	
		pp 505-415	0.3990	15.57	8.163	100-051	0.9611	
		nn 510-631	-0.2304	15.50	0.000	nn 422-514	-0.1681	
		nn 411-512	-0.1251	15.58	0.089	nn 541-411	-0.9989	
0.04	1 000	nn 541-651	-0.4458	15.62	0.007	nn 431-532	0.1663	
9.94	1.888	pp 301-420	0.6542			pp 404-734	0.9846	
		pp 550-660	-0.1466			nn 431-532	0.9522	
		pp 422-523	0.1894	15.63	6 4 3 4	pp 521-642	0.1713	
		pp 303-413	-0.4444	-	01101	pp 642-743	-0.1	
0 00	2 805	nn 523-404	0.9829			pp 404-734	-0.1702	
	2.005	pp 303-413	0.1514	15.72	7.538	pp 312-402	-0.9876	
		nn 530-631	0.2173	15.75	0.893	nn 420-501	0.9957	
		nn 510-631	-0.2093			nn 431-532	-0.2158	
		nn 411-512	-0.2993			nn 431-523	0.3453	
		nn 541-651	-0.2966	15.83	94.450	pp 312-422	-0.1243	
9.99	215.729	nn 413-514	0.3773			pp 521-642	0.5965	
		nn 523-404	-0.1368			pp 642-743	-0.6602	
		pp 550-660	0.1163			nn 431-523	0.8181	
		pp 422-523	0.3588	15.87	19.384	pp 312-402	0.3781	
		pp 303-413	0.5983			pp 642-743	0.4169	

			1 401	UE.I Dev	ann		
E	B(E1)	nn-pp	Genlik $oldsymbol{\mathcal{V}}$	E	B(E1)	nn-pp	Genlik $\mathcal W$
(MeV)	$(e^2 fm^2)$	Seviye Yapısı	,	(MeV)	$(e^2 fm^2)$	Seviye Yapısı	
		nn 510-631	0.9137			pp 521-642	-0.6366
		nn 541-651	-0.2706			pp 312-402	0.4602
		nn 413-514	0.2187			pp 642-743	-0.5923
		pp 303-413	-0.105	_		nn 431-523	-0.4412
		nn 510-631	-0.1229	15 90	58 436	pp 521-642	0.374
		nn 541-651	0.3799	15.70	50.450	pp 312-402	0.7956
10.06	7.869	nn 413-514	0.8432			pp 642-743	0.146
		pp 422-523	-0.1645	15.94	1.438	pp 411-503	-0.9967
		pp 303-413	-0.2985	15.97	2.537	nn 431-512	-0.9977
		nn 530-631	-0.1439	16.09	5.231	pp 312-413	-0.9966
10.12	27.288	pp 303-413	0.202	16.11	1.321	nn 431-512	-0.9986
		pp 422-523	0.9514	16.20	0.075	pp 321-640	-0.9958
		nn 530-631	0.891	16 22	47 200	pp 312-422	0.9737
		nn 541-651	0.1931	10.22	47.509	pp 521-642	0.1525
10.14	7 5 1 7	nn 413-514	-0.2144	16.33	0.077	pp 303-422	-0.9992
10.14	1.517	nn 404-505	-0.227	16.36	1.438	pp 532-633	0.9995
		pp 303-413	-0.1188	16.57	2.281	pp 303-633	0.9982
		pp 422-523	0.1962	16.67	9.784	pp 422-514	-0.9964
10.17	0.470	nn 530-631	-0.264	16.87	37.729	pp 523-633	0.9902
10.17	0.479	nn 404-505	-0.9635	16.90	1.045	pp 431-761	-0.9994
		nn 541-651	-0.1791	17.10	1.302	pp 431-512	-0.9988
		pp 550-660	-0.2173	17.17	0.997	pp 431-512	-0.9951
		pp 550-651	-0.2017	17.19	0.730	pp 420-501	0.9953
10.00	552.022	pp 431-532	-0.163	17.24	0.100	pp 310-431	-0.9998
10.32	573.932	pp 422-523	-0.2551	17.26	1.015	pp 200-532	0.9979
		pp 303-413	0.1873	17.31	3.861	pp 321-411	0.994
		pp 422-523	-0.1439		0.0000	nn 422-503	0.924
		pp 413-514	0.8063	17.37	0.0000	pp 550-631	0.3721
		nn 530-631	0.1015			nn 422-503	-0.3763
		nn 541-651	-0.1276	17.38	5.983	pp 550-631	0.9222
		pp 550-640	-0.1227	17.51	0.635	pp 330-411	-0.9993
		pp 550-660	-0.2561			nn 303-633	-0.2127
		pp 550-651	-0.4933	17.70	2.117	pp 312-642	-0.9755
		pp 530-660	0.2586			nn 303-633	-0.9768
10.52	1528.30	pp 431-532	-0.165	17.71	1.356	pp 312-642	0.2136
		pp 541-651	0.1148			nn 301-411	0.9441
		pp 422-523	-0.2065	17.80	11.483	nn 303-402	0.1722
		pp 303-413	0.1872			pp 303-413	0.2388
		pp 532-642	-0.1029	15.00	0.0004	nn 301-411	0.1751
		pp 422-523	-0.1064	17.83	0.0004	nn 303-402	-0.9844
		pp 413-514	-0.5506	15.00	20 202	nn 301-411	-0.2513
10.68	5.919	pp 521-400	0.9956	- 17.98	29.707	pp 303-413	0.963
10.70	2.622	nn 541-402	-0.9931	18.10	0.098	nn 310-640	0.999
		nn 550-640	-0.1448	18.10	0.321	pp 321-420	0.9986
10.80	13.067	pp 550-651	-0.3635	18.36	14.565	pp 523-633	-0.9861
		pp 530-660	-0.9085			nn 310-400	-0.9891
		nn 550-640	0.4862	- 18.41	0.628	pp 321-651	-0.1191
		nn 541-651	0.1857			nn 310-400	0.1275
10.90	791.771	pp 550-651	-0.5584	18.44	4.302	pp 310-660	-0.1971
10.70	, , 1, , , 1	pp 411-761	-0.5298	10.11		pp 321-651	-0.9684
		pp 301-402	0.1283			pp 310-660	-0.979
		nn 550-640	0.44	- 18.46	0.173	pp 321-651	0.2026
		nn 541-651	0.1393			nn 440-532	0.6759
10.93	395.702	pp 550-651	-0.1948	18.57	2.083	pp 402-503	-0.7276
		FF 555 051	5.17 10	18 58	7 7 10	nn 440-532	0 7246
				10.00		III 110 552	0.7240

Tablo E.1 Devamı

	rabio E. i Devalini							
Е	B(E1)	nn-pp	Genlik ψ	Е	B(E1)	nn-pp	Genlik ψ	
(MeV)	$(e^2 fm^2)$	Seviye Yapısı		(MeV)	$(e^2 fm^2)$	Seviye Yapısı		
		nn 550-640	0.4682			pp 402-503	0.6851	
		pp 310-411	-0.1105	18.72	0.029	nn 550-420	-0.9994	
11.07	61.493	pp 550-651	0.2407	18 78	1 871	nn 422-523	0.1992	
11.07		pp 530-660	-0.1386	10.70	4.074	рр 633-734	-0.9727	
		pp 411-512	0.2574	18.82	2 367	nn 422-523	-0.9762	
		pp 301-402	-0.761	10.02	2.307	рр 633-734	-0.2073	
		nn 550-640	0.3001	18.85	0.598	pp 413-505	-0.9948	
		pp 310-411	-0.1859	18.00	0.280	nn 440-512	-0.9654	
11 14	260 025	pp 550-651	0.2246	16.90	0.289	pp 330-640	0.2358	
11.14	309.935	pp 530-660	-0.1464	18.02	5 228	nn 440-512	0.2435	
		pp 411-512	0.6388	16.95	5.528	pp 330-640	0.9648	
		pp 301-402	0.5788	10.00	0.021	nn 312-402	-0.1244	
		nn 550-640	-0.1921	18.99	0.021	pp 750-651	0.9913	
		pp 310-411	0.7256	10.00	0.217	nn 312-402	0.9023	
11.24	412.113	pp 550-651	-0.1445	19.00	0.317	pp 750-651	0.427	
		pp 411-512	0.577			pp 521-631	-0.8011	
		pp 301-402	-0.1277	10.10	27.029	pp 422-503	-0.1083	
11.29	0.376	nn 761642	-0.9997	19.10	37.928	pp 512-633	-0.5365	
		nn 550-640	-0.3252	-		pp 505-624	0.1332	
		nn 550-660	-0.2327	19.11	2.122	pp 422-503	-0.993	
		pp 310-411	-0.6328			pp 521-631	0.5329	
		pp 550-660	0.1247	19.17	1.359	pp 512-633	-0.8373	
11 32	1752.00	pp 550-651	-0.2169			pp 505-624	-0.1179	
11.52	1752.90	pp 530-660	0.1556	19.19	0.026	pp 521-631	0.1791	
		pp 530-651	-0.1608			pp 505-624	0.9835	
		pp 411-512	0.3693	19.35	1.002	pp 200-521	0.9992	
		pp 301-402	-0.1312	19.76	0.9579	pp 310-651	-0.9973	
		pp 532-651	0.1219	10.04	0.0570	nn 310-651	-0.9721	
11.48	7.707	nn 550-400	-0.995	- 19.84	0.9578	nn 312-642	-0.2214	
11.52	28.910	nn 420-521	0.9903	10.05	0.040	nn 310-651	0.2225	
11.58	0.055	nn 532-402	0.9997	- 19.85	0.349	nn 312-642	-0.9744	
				19.88	14.173	nn 301-411	-0.9881	

Tablo E.1 Devamı

Tablo E.2. ¹⁶⁸Yb çekirdeğinin K=1 dalında TGI QRPA ile hesaplanan B(E1) değerlerinin elektrik dipol karakteristiklerinin (enerji, B(E1), Nilsson kuantum sayıları ve genlik ([$Nn_z \Lambda \Sigma$], ψ_{sst}^i) değerleri

E (MeV)	BE1 (e ² fm ²)	Seviye Yapısı nn- pp	Genlik ₩	E (MeV)	BE1 (e ² fm ²)	Seviye Yapısı nn- pp	Genlik ψ
8.03	0.031	pp 301-640	-0.9989			pp 402-303	-0.0740
8.05	0.031	pp 404-505	-0.0437			pp 651-532	0.8441
8.09	0.474	nn 761-402	-0.9991	_		pp 413-503	0.0414
		pp 420-521	-0.0325	_		pp 402-303	0.0660
Q 17	0.971	pp 411-512	0.0425			pp 633-523	0.0322
0.17	9.071	pp 413-514	0.6363			pp 303-404	-0.1636
		pp 404-505	0.7649			nn 541-651	-0.0320
		nn 640-501	-0.9954	_		nn 642-532	0.1024
Q 10	1 200	nn 501-402	0.0416	12 77	5 801	nn 752-633	0.0466
0.19	1.500	nn 651-752	-0.0541	12.77	5.601	pp 550-660	-0.0363
		nn 402-503	0.0375			pp 431-532	-0.1350
		nn 400-761	-0.9938	_		pp 422-303	-0.9800
8 26	0 506	nn 501-402	0.0556			nn 420-521	-0.0323
0.20	0.390	nn 651-752	-0.0789			nn 541-651	0.0485
		nn 402-503	0.0339	12.79	23.520	nn 422-523	-0.0477
<u> </u>	0.022	pp 400-541	0.9985	_		nn 642-532	-0.2788
0.50	0.055	pp 413-514	-0.0487			nn 752-633	-0.1062

E BE1 Servige Yappsa m., pp Genlik (MeV) E BE1 (MeV) Servige Yappsa m., (MeV) Genlik (pp 8.33 0.429 nn 501-402 0.6807 pp 9 550-660 0.2197 8.33 0.429 nn 651-752 0.7280 pp 640-761 -0.01541 nn 400-501 0.01493 pp 431-552 0.8640 pp 431-552 0.8640 nn 400-501 0.1293 pp 431-552 0.6037 pp 651-752 -0.0359 8.36 6.690 nn 61-752 0.6042 pp 402-503 -0.0816 nn 61-752 0.0349 pp 431-552 0.0252 no1631 pp 431-552 0.02541 nn 631-521 0.0349 pp 431-552 0.12447 pp 431-552 0.12447 nn 631-521 0.0349 pp 431-552 0.12447 pp 431-552 0.12447 nn 631-521 0.0349 pp 440-531 0.0793 pp 440-532 0.1244 nn 631-521 0.0423 pp 440-531 0.0793 pp 440-532 0.1247				Tablo E	.2 Devamı			
	E (MeV)	BE1 (e ² fm ²)	Seviye Yapısı nn- pp	Genlik ψ	E (MeV)	BE1 (e ² fm ²)	Seviye Yapısı nn- pp	Genlik ψ
8.33 0.429 nn 651-752 0.7280 pp 640-761 0.0541 nn 400-761 -0.0446 pp 640-761 -0.0451 0.0896 nn 400-761 -0.0446 pp 640-761 -0.0451 0.0896 nn 400-761 -0.0483 pp 640-761 -0.0571 -0.0571 nn 400-761 -0.0483 pp 421-532 0.06460 pp 751-651 0.0153 nn 601-521 0.0375 mn 631-522 0.0614 pp 420-533 -0.0371 nn 631-521 0.0118 pp 420-534 0.0645 nn 642-532 0.02147 nn 631-521 0.0188 pp 431-532 -0.02147 pp 431-532 -0.02147 nn 631-521 0.0184 pp 431-532 0.02147 pp 431-532 -0.02147 nn 631-521 0.0184 pp 431-532 0.02147 pp 431-532 0.02147 nn 631-521 0.0349 pp 540-600 pp 431-532 0.01247 nn 631-521 0.0348 pp 400-301 -0.0477 nn 631-521 0.0348 pp 400-301 <td></td> <td></td> <td>nn 501-402</td> <td>0.6807</td> <td></td> <td></td> <td>pp 550-660</td> <td>0.2197</td>			nn 501-402	0.6807			pp 550-660	0.2197
	8 33	0.429	nn 651-752	0.7280			pp 640-761	-0.0541
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	0.55	0.42)	nn 402-503	0.0476			pp 640-512	0.0896
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			nn 503-404	0.0446	_		pp 761-651	0.1967
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			nn 400-761	-0.0483			pp 431-532	0.8640
			nn 400-501	0.1293			pp 422-303	-0.1831
			nn 631-521	-0.2398			pp 651-752	-0.0359
	8.36	6.690	nn 501-402	-0.6037			pp 651-532	0.0615
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			nn 651-752	0.5042			pp 402-503	-0.0816
			nn 402-503	0.2350			nn 642-532	0.0541
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			nn 642-743	0.0322	12.83	1.301	pp 550-660	-0.0679
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			nn 503-404	0.4900	-		pp /61-651	0.9728
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	8.37	0.045	nn 631-521	0.1018			pp 431-532	-0.2147
			pp 420-541	-0.9941	_		nn 642-532	0.1284
			nn 631-521	0.8453			pp 310-411	0.0350
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.27	0.092	nn $501-402$	0.0349			pp 550-660	-0.8474
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.57	0.082	nn 502 404	-0.0425			pp 440-352	0.0795
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			nn 303-404	0.3203			pp 411-512	-0.0630
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			pp 420-341	0.1002	-		pp 411-312	0.0400
			nn 400-701	-0.0403			pp 400-501	-0.0477
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			nn 631-521	0.1088			pp 660-541	-0.0455
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			nn 501-402	-0.2959			pp 000-341	-0.0682
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			nn 411-512	0.0348	12.88		pp 501-402	0.0663
	8.39	7.010	nn 651-752	0.2968			pp 541-651	0.0350
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			nn 532-642	-0.0362		205.164	pp 431-532	0.2110
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			nn 402-503	0.3403			pp 131 332 pp 422-523	0.0375
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			nn 642-743	0.0382			pp 402-303	-0.0928
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			nn 503-404	-0.6783			pp 651-532	0.2045
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			nn 631-521	-0.0317			pp 642-532	0.0388
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			nn 651-752	-0.0470			pp 532-633	-0.0417
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			nn 532-642	0.8435			pp 413-514	0.0507
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			nn 402-503	0.1004			pp 413-503	0.0407
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			pp 301-400	0.0418			pp 402-303	0.1207
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			pp 431-532	-0.0481			pp 402-503	0.0413
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			pp 420-521	-0.0924			pp 633-523	0.0566
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8.44	16.253	pp 301-411	-0.0795			pp 303-404	-0.3022
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			pp 301-402	0.0358	12.96	5 877	nn 761-411	-0.9953
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			pp 541-402	0.2825	12.90	5.077	nn 642-532	-0.0701
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			pp 422-523	-0.0520			nn 550-660	0.0668
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			pp 411-512	0.1028			nn 530-631	-0.0530
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			pp 413-514	-0.0463			nn 420-521	0.0412
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			pp 413-514	-0.2962			nn 411-512	-0.0652
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			pp 404-505	0.2454	-		nn 400-501	-0.0383
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			nn 532-642	-0.4327			nn 651-541	0.1402
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			nn 402-503	-0.0880			nn 631-532	-0.0380
pp 431-332 -0.0494 13.02 905.804 nn 541-042 -0.1574 pp 420-521 -0.0945 13.02 905.804 nn 512-422 0.0427 pp 301-411 0.3050 nn 761-411 0.0937 8.45 32.762 pp 301-402 0.0320 nn 501-411 -0.1970 pp 541-402 0.6766 nn 422-523 0.0765 pp 411-512 0.1182 nn 402-503 0.0656 pp 413-514 -0.0458 nn 651-752 0.0323 pp 413-514 -0.3686 nn 651-532 -0.0443			pp 301-400	0.0400			nn 541-651	-0.2587
pp 420-321 -0.0943 nn 512-422 0.0427 pp 301-411 0.3050 nn 761-411 0.0937 8.45 32.762 pp 301-402 0.0320 nn 501-411 -0.1970 pp 541-402 0.6766 nn 422-523 0.0765 pp 411-512 0.1182 nn 402-503 0.0656 pp 413-514 -0.0458 nn 651-752 0.0323 pp 413-514 -0.3686 nn 651-532 -0.0443			pp 451-552	-0.0494	13.02	905.804	nn 541-642	-0.15/4
8.45 32.762 pp 301-402 0.0320 nn 501-411 -0.1970 pp 541-402 0.6766 nn 422-523 0.0765 pp 422-523 -0.0495 nn 411-512 -0.0431 pp 411-512 0.1182 nn 651-752 0.0323 pp 413-514 -0.3686 nn 651-532 -0.0443			pp 420-521	-0.0945			$1111 \ \Im 12-422$	0.0427
bits bits <th< td=""><td>8 15</td><td>37 767</td><td>pp 301-411</td><td>0.3030</td><td></td><td></td><td>nn 501-411</td><td>-0 1070</td></th<>	8 15	37 767	pp 301-411	0.3030			nn 501-411	-0 1070
pp 541-402 0.0705 nn 422-523 0.0705 pp 422-523 -0.0495 nn 411-512 -0.0431 pp 411-512 0.1182 nn 402-503 0.0656 pp 413-514 -0.0458 nn 651-752 0.0323 pp 413-514 -0.3686 nn 651-532 -0.0443	0.45	32.702	pp 501-402	0.0320			nn 472-522	0.1970
pp 422-525 -0.0455 nn 411-512 -0.0451 pp 411-512 0.1182 nn 402-503 0.0656 pp 413-514 -0.0458 nn 651-752 0.0323 pp 413-514 -0.3686 nn 651-532 -0.0443			pp 341-402 nn 422-523	-0.0700			m 422-323 nn 411-512	-0.0431
pp 413-514 -0.0458 nn 651-752 0.0323 pp 413-514 -0.3686 nn 651-532 -0.0443			nn 411-512	0 1182			nn 402-503	0.0451
pp 413-514 -0.3686 nn 651-532 -0.0443			pp 413-514	-0.0458			nn 651-752	0.0323
PP 12 21. 0.0000 mi 051 552 -0.0445			pp 413-514	-0.3686			nn 651-532	-0.0443
pp 514-624 -0.1002 nn 642-532 -0.5657			pp 514-624	-0.1002			nn 642-532	-0.5657

			1 d010 L.				<i>a</i>
E	BE1	Seviye Yapısı nn-	Genlık	E	BE1	Seviye Yapısı nn-	Genlık
(MeV)	$(e^2 fm^2)$	pp	ψ	(MeV)	$(e^2 fm^2)$	pp	ψ
	· /	mm 404 505	0.2572	· /	()	nn 520 622	0.4116
		pp 404-303	0.2372	_		1111 352-055 522 622	0.4110
		nn 532-642	0.1276			nn 532-633	-0.1263
		pp 420-521	-0.0432			nn 413-514	-0.0801
		pp 301-411	0.8510			nn 402-503	-0.0459
		pp 541-402	-0.4605			nn 642-743	-0.0397
8.46	6.145	nn 411-512	0.0541			nn 633-523	-0 0794
		pp 411 512	0.1529			nn 633 523	0.4259
		pp 415-514	-0.1556			104 505	0.4338
		pp 514-624	-0.0501			nn 404-505	-0.0970
		pp 404-505	0.1100	_		nn 404-505	0.0413
		nn 532-642	-0.2195			pp 550-660	-0.0710
		nn 402-503	-0.0989			pp 440-532	0.0530
		pp 301-400	0.0683			pp 651-541	0.0417
		pp 550-640	0.0394			pp 541-651	0.0396
		pp 431-532	-0.0827			pp 431-532	-0.1178
		pp 420-521	-0.1627			pp 532-633	-0.0317
		nn 400-301	0.0446			np 402-303	0.0667
		nn 400-541	-0.0331			pp 402-503	-0.0397
		pp 400 541	-0.4169			pp 402 505	-0.1673
		pp 301-411	0.0554	12.10	0.645	pp 505-404	0.0006
8.47	69.310	pp 301-402	0.0334	15.10	0.045	<u>pp 312-031</u>	0.9990
		pp 541-402	-0.4987			nn 501-411	-0.0632
		pp 521-422	0.0366	13.20	3.309	pp 440-532	-0.9855
		pp 422-523	-0.0845			pp 402-303	0.0514
		pp 411-512	0.1961			pp 303-404	-0.1373
		pp 512-413	-0.0411			nn 501-411	0.9632
		pp 413-514	-0.0769			nn 642-532	-0.0352
		pp 303-404	-0.0432	13.21	15.560	nn 532-633	0.0929
		pp 413-514	-0.4936			nn 633-523	0.2345
		pp 514-624	-0.1271			pp 440-532	-0.0529
		pp 011 021	0.3810			nn 420-532	-0.9737
		pp 404-505	0.3010	- 13.25	0.004	nn 4 20- <i>5</i> 52	0.2261
		501 402	0.7403			<u>420,522</u>	-0.2201
		nn 501-402	-0.0714	10.05	0.402	nn 420-532	0.2279
		nn 651-752	0.0833	13.25	0.483	nn 633-523	-0.0556
8.49	7.764	nn 532-642	0.1017			pp 505-615	-0.9701
0115		nn 402-503	-0.6457			nn 651-541	0.0386
		nn 642-743	0.0400			nn 541-651	-0.0619
		nn 503-404	-0.0497			nn 541-642	-0.0934
		pp 413-514	0.0375			nn 501-411	0.1242
0.55	0.001	nn 505-624	-0.9961	_		nn 642-532	-0.0859
8.55	0.001	pp 514-624	0.0828			nn 532-633	0.5548
		nn 532-642	-0.0822	- 13.33	177.617	nn 532-633	-0.0591
		nn 505-624	0.0831			nn 633-523	-0.7917
		nn 420 521	0.0551			nn 404 505	-0.7717
0.56	2.056	pp 420-521	-0.0501			pp 404-303	-0.0334
8.50	2.056	pp 411-512	0.0594			pp 505-404	-0.0715
		pp 413-514	-0.0744			pp 514-633	-0.0605
		pp 514-624	0.9784			pp 505-615	0.0394
		pp 404-505	0.0805	- 13 34	0.0001	nn 413-523	0.9961
		nn 550-651	0.1257	15.54	0.0001	pp 514-633	-0.0851
		nn 530-631	0.0486			nn 532-633	0.0473
		nn 411-512	0.0797			nn 503-633	-0.0498
		nn 400-761	-0.0497	13.35	1.101	nn 413-523	0.0921
		nn 400-501	-0.5594			nn 633-523	-0.0411
8 66	141 401	nn 640-761	0.0804			nn 514-633	0 9919
0.00	171.471	nn 640 501	0.0004	13.40	0.014	nn 501 621	0.0000
		nn 621 522	-0.0432	13.40	0.014	1111 301-031	-0.7770
		nn 631-532	0.0369	13.42	0.300	pp 402-303	0.9194
		nn 631-521	0.0685			pp 303-404	0.3924
		nn 532-642	-0.0819	13 52	11 816	nn 532-633	0.0451
		nn 501-402	-0.1825	13.32	11.010	pp 651-541	0.4826

Tablo E.2 Devamı

			Tablo E	.2 Devamı			
Е	BE1	Sevive Yapısı nn-	Genlik	Е	BE1	Sevive Yapısı nn-	Genlik
(MeV)	$(e^2 fm^2)$	DD	ψ	(MeV)	$(e^2 fm^2)$	pp	ψ
((******)	nn 411 572	,	()	(*****)	PF 541 651	, 0.0405
		111411-525	0.0498			pp 541-051	0.0495
		111411-312	0.2311			pp 031-732	0.0333
		IIII 402-732	-0.0031			pp 525-422	-0.0403
		nn 402-505	-0.1272			pp 402-303	-0.1505
		nn 051-752	0.2199			pp 033-525	0.8041
		nn 651-503	0.0521			pp 303-404	0.2946
		nn 532-642	0.1032			pp 651-541	0.8290
		nn 523-633	0.0704	13.53	1.489	pp 402-303	-0.0506
		nn 512-413	-0.0495			pp 633-523	-0.5460
		nn 413-514	0.0811			pp 303-404	0.1015
		nn 402-503	-0.5023	13.57	1.524	nn 420-512	-0.9983
		nn 642-743	0.3873			nn 532-633	-0.0517
		nn 633-514	-0.1101	13.61	0.305	pp 651-752	-0.0454
		nn 503-404	-0.1086			pp 413-303	0.9985
		nn 404-505	0.0876			nn 301-400	-0.0660
		nn 404-505	-0.0339	_		nn 301-402	-0.0385
		nn 400-501	-0.0602			nn 541-642	-0.1352
8 68	3 030	nn 402-503	-0.0576			nn 642-532	-0.0341
0.00	5.057	nn 642-743	0.0402			nn 532-633	-0.2372
		nn 633-514	0.9935	_		nn 532-633	-0.0508
8.76	1.277	nn 411-523	-0.9980	_		nn 633-523	-0.0757
0.02	0.007	nn 642-743	-0.0608	_		nn 413-514	-0.0510
8.85	0.697	pp 523-642	-0.9959			pp 440-541	0.0592
		pp 550-400	-0.9982	_		pp 640-761	-0.0422
8.88	0.259	pp 420-521	-0.0345			pp 640-512	0.0329
		pp 411-512	0.0433			pp 651-541	0.0632
		nn 550-651	0.0473	13.64	126.921	pp 541-431	-0.0364
		nn 400-501	-0.0330			pp 541-651	-0.0541
	5.253	nn 532-642	-0.0355			pp 532-642	-0.1465
		nn 411-512	0.1040			pp 431-532	-0.0905
0.00		nn 402-752	-0.9045			pp 651-752	-0.8749
8.89		nn 651-503	0.0324			pp 413-303	-0.0554
		nn 402-503	-0.0374			pp 402-303	0.0657
		nn 642-743	-0.3946			pp 402-503	-0.0706
		pp 541-422	0.0415			pp 642-743	0.0367
		pp 523-642	0.0413			pp 633-523	0.0986
		nn 550-651	0.151	_		pp 303-404	-0.1460
		nn 411-512	0.0522			pp 303 101	-0.1613
		nn 400-501	-0.0944			pp 101 505	0.0445
		nn 532-642	-0.1190			nn 301-400	0.0940
		nn 501-402	-0.0459			nn 301-640	0.0321
		nn 411-512	0.4134			nn 431-521	-0.0494
		nn 402-752	0.4125			nn 420-521	0.0310
		nn 402-503	-0.0871			nn 420-512	0.0317
		nn 651-752	0.0518			nn 411-512	-0.0387
8.91	40.165	nn $651-503$	0.1431			nn 400-301	0.0373
		nn 523 633	0.0812			nn 651 541	0.0375
		nn 512 412	0.0812			nn 201 402	0.0440
		nn $112-413$	-0.0330	13.73	790.987	nn 5/1 651	-0.0570
		nn 402 502	0.0491			nn 541 - 0.01	-0.0033
		1111 402 - 303 nn 642 742	-0.1031			$1111 \ 341 - 042$	-0.4332
		1111 042-743	-0.7207			1111 J 12-422	0.0900
		1111 404 - 303	0.0339			$1111 \ 301-411$	0.0433
		pp 541-422	0.09/0			1111 422-523	0.0496
		pp 523-642	0.0579	_		nn 402-503	0.0415
0.07	0.000	nn 550-651	0.0333			nn 642-532	-0.0749
8.96	0.980	nn 411-512	0.1664			nn 532-633	-0.3844
		nn 651-503	-0.9816			nn 532-633	-0.1200

			Tablo E	.2 Devalin			
Е	BE1	Seviye Yapısı nn-	Genlik	E	BE1	Seviye Yapısı nn-	Genlik
(MeV)	$(e^2 fm^2)$	pp	ψ	(MeV)	$(e^2 fm^2)$	pp	ψ
(()	mm 642 742	0.0506		()	nn 412 514	,
		THE 042-745	-0.0390	-		111 413-314	-0.0476
8.97	0.120	nn /43-633	-0.9928			nn 402-503	-0.0316
		pp 541-422	0.1057	_		nn 633-523	-0.1457
		nn 521-411	0.4999			nn 514-413	-0.0750
		nn 411-512	-0.1270			nn 413-514	0.0498
		nn 651-532	-0.1049			nn 404-505	-0.0554
8.98	0.704	nn 642-743	0.0675			nn 404-505	0.0380
		nn 743-633	0.1080			pp 640-312	0.0541
		pp 420-521	-0.0556			pp 651-541	0.1284
		nn 541-422	0.8344			pp 301-402	0.0362
		nn 521-411	-0.8649	-		pp 541-651	-0 5646
		nn 411 512	0.0718			pp 541-051	0.3006
0 00	0.062	nn 651 522	-0.0718			pp 031-732	0.3090
0.90	0.062	742 (22	-0.0435			pp 042-352	-0.0473
		nn /43-633	0.0387			pp 413-514	-0.0328
		pp 541-422	0.4904	-		pp 402-303	0.1109
		nn 550-651	0.1156			pp 633-523	0.0928
		nn 532-642	-0.2672			pp 303-404	-0.2497
		nn 411-512	-0.2858			nn 541-642	-0.2698
0.02	2765	nn 651-532	-0.0967			nn 512-422	0.0510
9.02	2.705	nn 523-633	0.2141			nn 411-752	0.0336
		pp 420-521	-0.6556			nn 642-532	-0.0355
		pp 541-422	-0.1190			nn 532-633	-0.1774
		nn 411-512	-0 5729			nn 532-633	-0.0657
		pp 411 512	0.1528	-		nn 633 523	0.0688
		nn 522 642	0.1328	12 75	67 100	nn 514 412	-0.0088
		IIII 552-042	-0.4132	13.75	07.190	IIII 314-413	-0.7797
		nn 411-512	-0.4540			pp 640-312	0.0846
	4.891	nn 402-503	-0.0389			pp 651-541	-0.0452
9.03		nn 651-503	-0.0388			pp 541-651	0.4916
		nn 523-633	0.6101			pp 651-752	0.0523
		nn 642-743	-0.0844			pp 402-303	-0.0381
		pp 420-521	0.3545			pp 633-523	-0.0320
		pp 411-512	0.2892			pp 303-404	0.0852
		nn 550-651	0.0986			nn 301-400	0.0432
		nn 532-642	-0.6786			nn 541-651	-0.0460
		nn 411-512	-0.1350			nn 541-642	-0.4116
	4 4 7 0	nn 651-532	-0.1210			nn 512-422	0.0771
9.03	1.658	nn 523-633	-0.6877			nn 411-752	0.0683
		nn 420-521	0.1062			nn 642-532	-0.0532
		pp = 541 422	0.1002			nn 532 633	0.0552
		$pp \ 341 - 422$	0.0682			nn 532-633	0.0077
		pp 411-512	0.0082	10.76	100.000	1111 332-033 (22, 502	-0.0977
		nn 550-651	0.0896	13.76	189.099	nn 633-523	-0.1023
		nn 532-642	0.1573			nn 514-413	0.6197
		nn 651-532	-0.9663			nn 404-505	-0.0353
9.05	0.873	nn 523-633	0.0589			pp 640-312	0.0488
7.05	0.075	nn 642-743	0.0365			pp 651-541	-0.0414
		pp 420-521	0.0977			pp 541-651	0.5494
		pp 541-422	-0.1102			pp 651-752	0.0941
		pp 411-512	0.0389			pp 402-303	-0.0340
		nn 550-651	0.7447	-		pp 303-404	0.0756
		nn 411-512	0.0425			nn 301-400	0.0373
		nn 400-501	-0.0480			nn 541-642	-0.0645
		nn $532-642$	0 4325			nn 411-501	0.0424
0.06	17 / 50	$nn / 11_{-512}$	-0 3717			pp = 11-301	0.0424
9.00	17.437	111 + 11 - 312	-0.3/1/	13.83	0.867	pp 541-451	0.0332
		IIII 402-303	-0.0812			pp 541-051	-0.03/9
		nn 651-532	0.1304			pp 532-642	0.9/42
		nn 651-503	-0.0461			pp 651-752	-0.1786
		nn 523-633	-0.2440			pp 404-505	0.0576

Tablo E.2 Devami

			Tablo E.	2 Devamı			
Е	BE1	Sevive Yapısı nn-	Genlik	Е	BE1	Sevive Yapısı nn-	Genlik
(MeV)	$(e^2 fm^2)$	DD	ψ	(MeV)	$(e^2 fm^2)$	pp	ψ
(1120 +)	(• • • • • • • •	PP nn 512 412	, 0.0280	(1120 +)	(0 1111)	PP nn 411 501	, 0.0061
		111 312-415	-0.0580	12.00	0.200	pp 411-501	0.9901
		1111 413 - 314	0.0393	15.80	0.299	pp 541-051	-0.0320
		nn 402-503	-0.0545			pp 552-642	-0.0529
		nn 642-743	-0.1137	12.00	0.024	pp 541-431	-0.9964
		nn 404-505	0.0434	13.89	0.024	pp 532-642	0.0476
		pp 420-521	0.0411			pp 651-752	0.0447
		pp 541-422	-0.0511			nn 431-521	0.9927
9 10	0.004	nn 523-413	0.9990	13.93	0.681	pp 541-642	-0.0956
	0.001	pp 521-402	0.0363			pp 651-752	0.0334
		nn 550-651	-0.0363			nn 301-400	0.0343
9.11	0.096	nn 523-413	-0.0369			nn 301-640	0.9909
		pp 521-402	0.9980	_		nn 431-521	0.0356
		pp 420-521	0.0547	13.07	4 030	nn 541-642	0.0811
9.13	0.282	pp 640-301	0.9962	13.97	4.030	nn 512-422	0.0499
		pp 411-512	-0.0625			nn 752-633	0.0337
		nn 550-651	-0.4479			pp 651-752	-0.0340
		nn 530-631	0.0741			pp 404-505	0.0364
		nn 411-512	0.1359			nn 301-400	0.0357
		nn 400-501	-0.0943			nn 301-640	-0.0769
		nn 640-761	0.0325			nn 431-521	0.0344
		nn 631-532	0.0571			nn 541-642	0.3002
		nn 532-642	0.1733		75.975	nn 512-422	0.9382
		nn 501-402	-0.0521	13.99		nn 532-633	-0.0600
		nn 411-512	-0.3286			nn 532-633	-0.0495
		nn 402-752	0.0417			pp 541-651	0.0432
		nn 402-503	-0.3005			pp 642-532	-0.0347
		nn 651-752	0.0609			pp 303-404	-0.0461
		nn 651-503	-0.0525			pp 404-505	-0.0416
		nn 523-633	-0.1208			nn 301-400	-0.0888
		nn 512-413	-0.1922			nn 301-640	0.0504
		nn 413-514	0.1237			nn 541-642	-0.0336
9 20	20 1 1 4	nn 402-503	-0 1078		2.846	nn 512-422	0.0429
7.20	20.111	nn 642-743	-0 1747	14.03		nn 752-633	-0.9755
		nn 404-505	0 1343	11.05		nn 413-514	-0.0329
		nn 301-400	0.1043			nn 532-642	0.0323
		pp 301 400	-0.1665			pp 552 642	0.0734
		pp 431 532 pp 420-521	0.3545			pp 001 702	-0 1354
		pp 420-321	0.0566			pp +0+-505	0.0411
		pp 040-301	0.0522			nn 642-532	-0.0506
		pp = 301 - 402	0.0642	14.07	12 503	pp 042-332	0.0000
		pp 501-402	0.0042	14.07	12.375	pp + 02 - 7 + 3 pp 303 404	0.0348
		pp 321-422	0.0090			pp 303-404	-0.0348
		pp 422-525	-0.1241			pp 404-505	-0.0758
		pp 411-512	-0.3931			$1111 \ 541 - 042$	0.2413
		pp 512-415	-0.1041			nn 522 622	-0.1023
		pp 415-514	-0.0947			nn 522-055	-0.0838
		pp 303-404	-0.0490			nn 552-655	-0.0835
		pp 413-514	-0.0004			IIII / J2-033	0.03/8
		pp 404-505	0.0735	-		IIII 033-323	-0.0408
		nn 550-651	0.3256	14.07	451 765	pp 550-631	-0.6643
		nn 530-631	-0.0476	14.07	451./65	pp 440-541	0.0611
		nn 411-512	-0.0929			pp 411-501	0.0384
0.01	007 00 /	nn 400-501	0.0889			pp 651-541	0.0725
9.21	287.004	nn 640-761	-0.0368			pp 651-521	0.0558
		nn 631-532	-0.0371			pp 301-402	0.0394
		nn 532-642	-0.1326			pp 541-651	0.1631
		nn 501-402	0.0521			pp 541-642	-0.0390
		nn 411-512	0.2772			pp 532-642	0.0813

			Tablo E	.2 Devamı			
Е	BE1	Seviye Yapısı nn-	Genlik	Е	BE1	Seviye Yapısı nn-	Genlik
(MeV)	$(e^2 fm^2)$	pp	ψ	(MeV)	$(e^2 fm^2)$	рр	Ψ
		nn 402-752	-0.0349			pp 521-431	0.0453
		nn 402-503	0.2324			pp 431-532	-0.0386
		nn 651-532	0.0395			pp 651-752	0.1361
		nn 651-752	-0.0632			pp 642-532	-0.3108
		nn 651-503	0.0441			pp 532-633	0.0775
		nn 523-633	0.1034			pp 413-514	-0.0362
		nn 512-413	0.1713			pp 402-303	0.0871
		nn 512-633	-0.0877			pp 402-503	-0.0395
		nn 413-514	-0.0825			pp 402-743	-0.1164
		nn 402-503	0.1011			pp 633-523	0.0615
		nn 642-743	0.1695			pp 633-523	-0.0423
		nn 404-505	-0.0854			pp 303-404	-0.2029
		pp 301-400	0.1152			pp 404-505	-0.4233
		pp 431-532	-0.2016			nn 541-642	0.2171
		pp 420-521	0.4280			nn 512-422	-0.1426
		pp 411-512	-0.0344			nn 532-633	-0.0764
		pp 640-301	-0.0629			nn 532-633	-0.0771
		pp 400-301	0.0446			nn /52-633	0.0433
		pp 301-402	0.0532			nn 033-525	-0.0373
		pp 541-422	0.0391			pp 550-651	0.7470
		pp 521-422	0.0790			pp 440-541	0.0542
		pp 422-323	-0.1312			pp 411-301	0.0550
		pp 411-312	-0.3100			pp 651-541	0.0041
		pp 512-413	-0.1327			pp 051-521	0.0300
		pp 422-525	0.0009			pp 501-402	0.0332
		pp 413-514	-0.0949			pp 541-631	-0.0347
		pp 413-514	0.1207	14.08	368.315	pp 541-642	0.0708
		nn 750-651	-0.8513	_		pp 532-042	0.0405
9.26	1.621	nn 512-633	-0.5206			pp 321-431	-0.0340
		nn 750-651	0.5246	-		pp 151 552	0.1190
		nn 402-503	-0.0359			pp 642-532	-0.2832
9.26	3.820	nn 512-633	-0.8456			pp 042-552	0.0690
		nn 411-512	0.0347			pp 332-033	-0.0324
		nn 550-651	-0.0769	-		pp 113 311 pp 402-303	0.0771
		nn 530-631	0.0343			pp 102 503	-0.0349
		nn 411-512	0.0695			pp 402-743	-0.0634
		nn 400-501	-0.0342			pp 633-523	0.0544
		nn 532-642	0.0368			pp 633-523	-0.0377
		nn 512-642	0.0859			pp 303-404	-0.1796
9.35	23.919	nn 411-512	-0.0777			pp 404-505	-0.3813
		nn 402-503	-0.2316			nn 301-400	0.0339
		nn 512-413	0.9498	14.11	0.6031	nn 752-413	0.9968
		nn 413-514	0.0584			pp 404-505	0.0545
		nn 402-503	-0.0399			nn 301-400	0.0888
		nn 642-743	-0.0493			nn 541-642	0.0468
		nn 404-505	0.0621			nn 752-633	-0.0361
0.04	0.072	nn 512-642	-0.9960	14.12	19.063	pp 550-651	-0.1272
9.36	0.063	nn 512-413	0.0810			pp 642-532	-0.0776
		pp 301-400	0.0587			pp 642-503	0.9767
		pp 431-532	-0.2009			pp 404-505	0.0652
		pp 420-521	0.0479			nn 301-400	0.5227
0.47	5 020	pp 521-422	0.0597			nn 301-640	-0.0736
9.47	5.832	pp 422-523	-0.0618	14.12	410 (00	nn 431-532	-0.0534
		pp 411-512	-0.0571	14.13	412.698	nn 431-521	0.0603
		pp 512-413	0.9685			nn 420-521	0.0364
		pp 413-514	-0.0377			nn 400-301	0.0792

	DE1	Carriero Venera an	Genlik	2 Devami	DE1	Carrier Vancer an	Genlik
E (MeV)	$(e^2 fm^2)$	Seviye Yapisi nn-	W	E (MeV)	$(e^2 fm^2)$	Seviye Yapisi nn-	W
9.56	0.0001		7 0 0000	(1010 ())	(0 111)	 	<i>r</i> 0.1238
7.50	0.0001	nn 431-532	0.1120	_		nn 541-651	-0.0317
9.59	0.0069	pp 431-552 pp 301-651	0.9936			nn 541-642	0 2254
		nn 402-532	-0.1311	_		nn 512-422	-0.1185
		nn 301-400	0.1283			nn 422-523	0.0509
		pp 301 100	0 7060			nn 642-532	-0.0329
		pp 420-521	0.0472			nn 532-633	-0.0967
		pp 301-651	-0.0904			nn 532-633	-0.1145
9.62	8.186	pp 521-422	0.6505			nn 752-413	-0.0606
		pp 422-523	-0.1195			nn 752-633	-0.1853
		pp 411-512	-0.0559			nn 413-514	-0.0327
		pp 512-413	0.0800			nn 633-523	-0.0482
		pp 413-514	-0.0597			nn 413-514	0.1252
		nn 550-651	-0.0890			nn 404-505	-0.0358
		nn 530-631	0.1321			nn 404-505	0.0455
		nn 411-512	0.3812			pp 550-651	-0.0323
		nn 400-501	-0.0634			pp 440-541	-0.0897
		nn 631-532	0.1078			pp 400-761	-0.0357
		nn 532-642	0.0467			pp 651-541	0.0444
		nn 501-402	-0.0391			pp 651-521	-0.1509
		nn 411-512	-0.1091			pp 541-651	0.0920
9.65	141.176	nn 402-503	0.8021			pp 532-642	-0.0623
2.05	111.170	nn 651-752	0.0466			pp 521-431	0.0351
		nn 523-633	-0.0348			pp 521-651	-0.0421
		nn 512-413	0.0932			pp 431-532	0.0381
		nn 413-514	0.2445			pp 651-752	-0.1277
		nn 402-503	-0.0744			pp 642-532	-0.3518
		nn 642-743	-0.0823			pp 532-633	0.0516
		nn 404-505	0.2359			pp 402-303	0.0462
		pp 431-532	-0.0339			pp 642-503	-0.1/45
		pp 422-525	-0.0496	_		pp 642-743	-0.0373
		pp 301-400	0.2747			pp 303-404	-0.1076
		pp 431-532	0.5275			pp 404-505	0.5177
		pp 420-521	0.0733			nn $501-400$	0.1515
		pp 400-501	0.0440			$111 \ 541 - 642$	0.0843
		pp 301-031	-0.0332			nn 532 633	-0.0370
		pp 501-402	-0.7298	14.19	37.6317	nn 532-633	-0.0414
9.67	29.034	pp 321-422	-0.7250			nn 651-521	0.9627
		pp 422-525	-0.2352			pp 051-521	0.1369
		pp 512-413	0.1026			pp 042 552	0.1095
		pp 512 113	0.0704			nn 301-400	0.3597
		pp 122 525	-0.1068			nn 400-301	0.0348
		pp 413-514	-0.0456			nn 651-541	0.0326
		pp 404-505	0.0482			nn 301-402	0.0581
		nn 761-651	0.0773	-		nn 541-651	-0.0459
		pp 301-400	-0.8423			nn 541-642	0.2895
		pp 431-532	0.0864			nn 512-422	-0.1267
0.00	0.020	pp 521-422	-0.0481	14.00	401.074	nn 402-503	0.0326
9.88	9.928	pp 422-523	-0.4869	14.20	491.374	nn 642-532	-0.0489
		pp 411-512	-0.0385			nn 532-633	-0.1438
		pp 422-523	0.1321			nn 532-633	-0.2307
		pp 413-514	-0.0787			nn 512-422	0.0446
		nn 411-512	0.0450	-		nn 503-413	0.0341
0.01	0.0507	nn 640-541	0.0374			nn 413-514	-0.0376
9.91	0.0307	nn 541-651	-0.0967			nn 633-523	-0.0721
		nn 761-651	-0.9154			nn 413-514	0.0396

Tablo E 2 De

F	BF1	Sevive Vanisi nn-	Genlik	<u>F</u>	BF1	Sevive Vanisi nn-	Genlik
(MeV)	$(e^2 fm^2)$	pp	ψ	(MeV)	$(e^2 fm^2)$	pp	ψ
		nn 413-514	-0.0392			nn 404-505	-0.0446
		nn 633-514	-0.0382			pp 651-521	-0.2023
		nn 523-404	0.0735			pp 642-532	0.7476
		nn 404-505	0.1032			pp 404-505	-0.2331
		pp 301-420	-0.1865			nn 301-400	-0.0733
		pp 301-400	-0.0601			nn 541-642	0.0316
		pp 422-523	-0.1441	14.34	15.602	nn 532-633	-0.0478
		pp 303-413	-0.0626			pp 761-402	0.9917
		pp 422-523	-0.2329			pp 404-505	0.0755
		nn 411-512	-0.0494			nn 301-400	-0.6860
9.93	0.118	nn 761-651	0.2106			nn 411-512	-0.0404
		pp 301-420	-0.9751	_		nn 400-301	0.0478
		nn 530-631	0.1524			nn 651-541	0.0394
		nn 411-512	-0.8347			nn 301-402	0.0835
		nn 631-532	0.1476			nn 301-651	-0.0516
		nn 761-651	-0.0694			nn 541-651	-0.0548
0.04	25 142	nn 411-512	-0.0400			nn 541-642	0.2466
9.94	35.142	nn $402-503$	0.1213			nn 512-422	-0.0934
		1111 413-314	0.3939			111 422-323	0.0550
		nn 404-743	-0.0330			nn 402-503	0.0828
		nn 404-505	-0.0361			nn 642-532	-0.0573
		nn 301-420	0.0392			nn 532-633	-0.1547
		nn 550-640	-0.0374	-		nn 532-633	-0 3933
		nn 510-631	-0.1043	14.35	1095.353	nn 512-422	0.0739
		nn 420-521	0.0360			nn 503-413	0.0592
		nn 640-541	0.0580			nn 413-514	-0.0487
		nn 651-501	0.0353			nn 402-503	-0.0332
		nn 541-651	-0.1872			nn 633-523	-0.0803
		nn 761-651	0.2852			nn 413-514	0.0533
		nn 422-523	0.0362			nn 404-505	-0.0577
		nn 413-514	-0.0435			pp 440-541	0.0663
		nn 642-743	0.0319			pp 541-651	0.0363
		nn 633-514	-0.2210			pp 521-431	0.0325
		nn 523-404	0.5999			pp 521-651	0.0611
9.98	5.002	nn 404-505	0.0340			pp 761-402	-0.1241
		nn 404-505	0.1585			pp 651-752	0.0440
		pp 310-411	0.0319			pp 642-532	0.1050
		pp 301-420	0.0930			pp 303-404	-0.0713
		pp 501-400	0.0318			np 301-400	-0.0452
		pp 550-051	0.0401	14 40	14 275	nn 411-503	-0.9961
		pp 411-512 pp 422-523	-0.2737	14.40	14.275	nn 532-633	-0.0422
		pp 303-413	-0.1977			nn 301-400	-0.0812
		pp 422-523	-0.5257			nn 301-651	-0.0317
		pp 413-514	0.0378			pp 440-541	-0.0319
		pp 402-514	-0.0439	14.43	6.428	pp 400-512	-0.0442
		pp 402-503	0.0371			pp 521-651	-0.9911
		nn 510-631	-0.0805	-		pp 404-505	-0.0485
		nn 541-651	-0.0793	14.45	0.559	pp 400-512	-0.9977
		nn 761-651	0.0802	14.45	0.558	pp 521-651	0.0499
		nn 633-514	-0.6574			nn 301-651	0.9960
9.99	1.203	nn 523-404	-0.6716	14.47	9.819	nn 532-633	-0.0487
		nn 404-505	0.0618			pp 404-505	0.0384
		pp 301-400	0.0338			nn 541-642	0.0618
		pp 422-523	-0.1314	14.51	11.332	nn 532-633	-0.0426
		pp 303-413	-0.1099			nn 532-633	-0.2421

Tablo E.2 Deva

			Tablo E.	2 Devami			
E	BE1	Seviye Yapısı nn-	Genlik	E	BE1	Seviye Yapısı nn-	Genlik
(MeV)	$(e^2 fm^2)$	рр	ψ	(MeV)	$(e^2 fm^2)$	pp	ψ
		pp 422-523	-0.2368			nn 512-422	0.0399
		nn 510-631	-0.1842	_		nn 503-413	0.0381
		nn 640-541	0.0336			pp 310-400	0.2042
		nn 541-651	-0.1218			pp 420-512	-0.3442
		nn 761-651	0.1085			pp 651-541	-0.0471
		nn 413-514	-0.0479			pp 541-651	-0.0800
		nn 633-514	0.7163			pp 541-642	0.0910
		nn 523-404	-0.4190			pp 521-431	-0.7678
10.00	3.021	nn 404-505	0.0922			pp 501-411	-0.1536
		nn 301-420	0.0361			nn 431-523	0.0499
		pp 301-400	0.0589			pp 642-532	-0.1683
		pp 301 100	-0 2128			pp 6 12 552	-0.2310
		pp 303-413	-0.1917			pp 532-633	0.0593
		pp 303-413	-0.3729			pp 332-033	-0.0573
		pp 422 525	0.0431			pp 402 505	-0.0356
		pp 413-314	0.0431	-		pp 033-523	0.1010
		nn 541 651	0.9729			pp 033-525	0.1019
		$1111 \ 341 - 0.51$	-0.0442			pp 303-404	0.1340
10.01	0 527	III 055-514	0.0551	·		pp 404-303	-0.0749
10.01	0.557	nn 525-404	-0.0004			nn 552-655	-0.0339
		pp 422-525	-0.0887	14.50	0 202	pp 510-400	-0.9748
		pp 303-413	-0.0987	14.52	0.303	pp 420-512	-0.1565
		pp 422-523	-0.1454	-		pp 521-431	-0.1420
		nn 541-651	-0.0701			pp 532-633	-0.0334
		nn 523-404	-0.0375			nn 532-633	-0.0663
		nn 404-505	0.0411			pp 310-400	-0.0880
10.04	1.972	pp 301-400	0.0458			pp 420-512	0.9236
		pp 422-523	-0.1223	14.53	1.395	pp 521-431	-0.3454
		pp 303-413	0.9461	11.55	1.575	pp 501-411	-0.0490
		pp 422-523	-0.2666			pp 642-532	-0.0450
		pp 413-514	0.0419	_		pp 532-633	-0.0671
		nn 530-631	0.1508			pp 303-404	0.0374
		nn 411-512	-0.0604			nn 301-400	-0.1049
		nn 631-532	0.7267			nn 400-301	0.0509
10.09	1.131	nn 413-514	-0.6209			nn 301-402	0.0914
		nn 404-505	0.2284			nn 532-633	-0.0373
		pp 422-523	0.0490			nn 523-422	-0.0767
		pp 422-523	0.0407	_		nn 413-514	0.0908
		nn 530-631	0.3695	14 50	1.002	pp 310-420	-0.7225
		nn 411-512	-0.0792	14.39	1.092	pp 440-541	-0.5892
		nn 631-532	-0.6242			pp 521-651	0.0484
10.12	6.354	nn 541-651	0.1481			pp 512-402	-0.2302
		nn 402-503	0.0356			pp 651-752	-0.0389
		nn 413-514	-0.4410			pp 651-523	0.0369
		nn 404-505	0.4974			pp 752-642	0.0708
		nn 530-631	0.0692	-		pp 404-505	-0.1307
		nn 640-541	0.0355			nn 301-400	-0.0639
		nn 631-532	-0.0692			nn 400-301	0.0331
		nn 541-651	-0.7928			nn 301-402	0.0600
		nn 761-651	0.0358			nn 532-633	-0.0339
		nn 501-651	0.0326			nn 413-514	0.0588
10.12	29.878	nn 404-505	0.1202			pp 310-420	0.6604
		nn 404-505	0.0943	14.60	0.008	pp 440-541	-0.5306
		pp 301-400	-0.1954			pp 521-431	0.0330
		pp 431-532	0.0922			pp 512-402	-0.4940
		pp 420-521	0.0455			pp 501-411	-0.0603
		pp 411-512	-0.0325			pp 752-642	0.0576
		pp 400-301	0.0760			pp 404-505	-0.0870
		PF 700 301	0.0700			PP 707 505	0.0070

			Tablo E	.2 Devamı			
E (MeV)	BE1 (e ² fm ²)	Seviye Yapısı nn- pp	Genlik ψ	E (MeV)	BE1 (e ² fm ²)	Seviye Yapısı nn- pp	Genlik ψ
		pp 301-402	0.0845			nn 301-402	0.0320
		pp 521-422	-0.0501			nn 532-633	-0.0749
		pp 422-523	0.4027			pp 310-420	0.1691
		pp 411-512	-0.0505			pp 440-541	-0.4457
		pp 512-413	0.0332			pp 521-431	0.1398
		pp 422-523	0.0352			pp 512-402	0.7985
		pp 413-514	-0.2999	14.61	3.980	pp 501-411	-0.2817
		pp 303-404	-0.0359			pp 642-532	-0.0376
		pp 404-505	0.0377	_		pp 532-633	-0.0900
		nn 530-631	-0.8366			pp 752-642	0.0438
		nn 631-532	-0.0336			pp 633-523	0.0400
		nn 541-651	0.0967			pp 303-404	0.0388
		nn 413-514	-0.0392			pp 404-505	-0.0718
10.16	0.779	nn 404-505	0.5170			nn 301-400	0.0486
		pp 301-400	-0.0388			nn 301-402	-0.0424
		pp 422-523	0.0750			nn 532-633	-0.1639
		pp 422-523	-0.0672			nn 413-514	-0.0518
		pp 413-514	-0.0800	_		pp 310-420	-0.0880
		nn 530-631	0.1148			pp 440-541	0.2326
		nn 541-651	0.4875			pp 420-512	0.0393
		nn 501-651	0.1518			pp 651-541	-0.0330
		nn 413-514	0.0516			pp 541-651	-0.0541
		nn 404-505	-0.1372	14.61	40.176	pp 541-642	0.0779
		nn 404-505	0.0841			pp 521-431	0.3599
		pp 310-411	-0.0386			pp 512-402	-0.2498
		pp 301-400	-0.2152			pp 501-411	-0.7736
		pp 550-651	-0.0326			pp 431-523	0.0529
		pp 451-552	0.1115			pp 042-552	-0.0963
		pp 420-321	0.0308			pp 552-655	-0.2550
10.16	62.274	pp 411-761	-0.0387			pp 352-655	0.0430
		pp 411-312	-0.0304			pp 402-505	-0.0404
		pp 400-301	0.0997			pp 055-525	0.0940
		pp 501-402	-0.0589			pp 303-404	-0.1166
		pp 521-422	0.4118	14.66	0.021	pp = 752-642	-0.9928
		pp 422-523	-0.0656			np 301-402	-0.0326
		pp 411-512 pp 512-413	0.0409			nn 532-633	-0.0320
		pp 512-415	-0.4521			nn 503-633	0.1408
		pp 422 525	-0.4566			nn 413-514	-0.0375
		pp 303-404	-0.0446			nn 440-541	-0.0364
		pp 303 101	-0.0418			pp 541-651	-0.0383
		pp 404-505	0.0491			pp 541-642	0.0641
		nn 541-651	0.0395	14.67	33,189	pp 521-431	0.1380
		nn 501-651	-0.9871	1 1107	001107	pp 501-411	0.2436
		pp 301-400	-0.0356			pp 431-523	0.0525
10.17	1.809	pp 422-523	0.0673			pp 642-532	-0.0637
		pp 422-523	-0.0958			pp 532-633	-0.2252
		pp 413-514	-0.0814			pp 532-633	0.0351
		nn 541-651	0.0453	_		pp 633-523	0.0849
10.20	0.042	pp 422-523	0.0632			pp 303-404	0.0697
		pp 402-514	-0.9961	-		nn 301-400	0.0514
		nn 550-640	-0.0469	_		nn 400-301	-0.0337
		nn 530-631	0.0451			nn 301-402	-0.0632
10.10	0.070	nn 420-521	0.0420	14.68	174.719	nn 532-633	-0.2750
10.42	3.273	nn 640-541	0.1836			nn 503-413	0.0547
		nn 631-512	-0.7916			nn 503-633	-0.4320
		nn 541-651	0.0895			nn 413-514	-0.0723

			Tablo E.	2 Devamı			
Е	BE1	Sevive Yapısı nn-	Genlik	Е	BE1	Sevive Yapısı nn-	Genlik
(MeV)	$(e^2 fm^2)$	DD	ψ	(MeV)	$(e^2 fm^2)$	DD	ψ
(1.10)	(0 111)	PP nn 422 522	, 0.0420	(11201)	(•)	PP nn 221 /11	, 0.0504
		1111 422 - 525	0.0420			pp 321-411	-0.0394
		1111 413 - 514	0.0085			pp 420-312	0.0508
		nn 404-505	0.0785			pp 051-541	-0.0314
		nn 550 651	0.3099			pp 501-402	-0.0390
		pp 530-651	0.0396			pp 541-651	-0.0820
		pp 330-660	0.0525			pp 541-642	0.1592
		pp 422-323	0.1098			pp 521-451	0.2808
		pp 413-314	0.0575	_		pp 701-422	-0.0040
		nn 550-640	-0.0589			pp 512-422	-0.0468
		nn 550-651	0.0580			pp 501-411	0.4/40
		nn 420-521	0.0327			pp 451-525	0.1105
		nn 411-512	0.0400			pp 642-552	-0.1300
		nn 640-541	0.2410			pp 552-655	-0.4976
		nn 031-332	0.0301			pp 552-655	0.0757
		nn 031-512	0.0108			pp 415-514	0.0557
		nn 541-651	0.1082			pp 402-303	-0.0641
		nn 422-523	0.0527			pp 633-523	-0.0393
		nn 402-503	-0.0364			pp 633-523	0.18/3
		nn 413-514	0.0873			pp 303-404	0.1512
10.43	6.050	nn 642-743	0.0337			pp 404-505	-0.0715
		nn 404-505	0.1014	14.74	0.088	pp 440-541	-0.0705
		nn 404-505	0.6693			pp 651-523	-0.9951
		pp 310-411	0.0340	14.74	0.115	nn 532-633	-0.1415
		pp 550-651	0.0746			nn 503-413	-0.9896
		pp 530-660	0.0408	14.77	1.326	pp 321-411	0.9966
		pp 411-512	0.0341		11020	pp 532-633	-0.0570
		pp 660-532	0.0327	14.81		nn 301-402	0.0383
		pp 422-523	0.2032			nn 532-413	-0.0375
		pp 413-514	0.0690		0.7669	nn 532-633	0.2099
		pp 402-514	0.0360			nn 512-422	0.9730
		pp 402-503	0.0377			pp 532-633	-0.0483
10.56	1.071	nn 640-541	0.9427			nn 301-400	-0.0362
10.50	1.071	nn 404-505	-0.3316	_		nn 400-301	0.0542
		nn 404-505	0.0344			nn 640-301	0.0524
		pp 310-411	-0.1321			nn 301-402	0.1313
		pp 301-400	-0.1331			nn 532-413	-0.9598
		pp 550-651	-0.2776			nn 532-633	0.0719
		pp 530-660	-0.0579	14.84	0.036	nn 512-422	-0.0750
		pp 431-532	0.0984			nn 413-514	0.1070
		pp 420-521	0.0634			pp 440-541	0.0889
		pp 411-312	0.0330			pp 431-523	0.0516
		pp 411-761	-0.1849			pp 651-523	-0.0355
		pp 411-512	-0.1708			pp 532-633	-0.0997
		pp 400-301	0.3497			pp 404-505	-0.0516
10.62	102 140	pp 660-532	-0.0475			nn 532-413	-0.0380
10.02	192.149	pp 301-402	0.3094	1/1 86	1 608	pp 761-422	-0.0454
		pp 521-422	-0.0480	14.00	1.090	pp 431-523	-0.9810
		pp 422-523	0.2006			pp 532-633	-0.1795
		pp 411-512	-0.0778	14 97	0 2242	pp 761-422	0.9926
		pp 651-303	0.0465	14.0/	0.2242	pp 532-633	-0.1180
		pp 402-303	0.0465			nn 301-400	-0.0707
		pp 512-413	0.0395			nn 431-532	-0.0548
		pp 422-523	-0.1453			nn 400-301	0.1324
		pp 413-514	0.6931	14.89	21.797	nn 640-301	0.7624
		pp 402-503	-0.0367			nn 301-402	0.3716
		pp 303-404	-0.0746			nn 532-413	0.2081
		pp 413-514	-0.0601			nn 532-633	0.2108
		* *					

Tablo E.2 Devamı							
Е	BE1	Seviye Yapısı nn-	Genlik	Е	BE1	Seviye Yapısı nn-	Genlik
(MeV)	$(e^2 fm^2)$	pp	ψ	(MeV)	$(e^2 fm^2)$	pp	ψ
		pp 404-505	0.0652			nn 512-422	-0.0925
10.72	0.482	pp 651-303	-0.9986	-		nn 413-514	0.2649
		nn 550-640	-0.0369	_		pp 530-631	-0.0573
		nn 640-541	-0.0443			pp 440-541	0.1251
		nn 404-505	-0.0325			pp 631-532	-0.0419
		nn 404-505	-0.1120			pp 651-752	-0.0330
		pp 550-651	0.3851			pp 651-523	-0.0422
10.80	0.0087	pp 530-660	0.3617			pp 312-413	0.0346
		pp 411-761	-0.0318			pp 532-633	-0.2087
		pp 400-301	0.1776			pp 642-743	-0.0459
		pp 660-532	0.8031			pp 404-505	-0.0788
		pp 301-402	0.1133			nn 301-400	-0.0791
		pp 413-514	0.0716	_		nn 431-532	-0.0648
		nn 404-505	-0.0728			nn 400-301	0.1630
		pp 550-651	0.5699			nn 640-301	-0.6428
		pp 530-660	0.5217			nn 301-402	0.4955
10.81	0.615	pp 411-761	-0.0466			nn 402-303	-0.0325
10.01	0.012	pp 400-301	0.1656			nn 532-413	0.1633
		pp 660-532	-0.5887			nn 532-633	0.2292
		pp 301-402	0.1017			nn 512-422	-0.0902
		pp 413-514	0.0646	14.91	45.408	nn 413-514	0.3315
		pp 550-651	0.6229			pp 530-631	-0.0640
		pp 530-660	-0.7634			pp 440-541	0.1262
10.82	1.765	pp 411-761	-0.0547			pp 631-532	-0.0469
		pp 400-301	0.1223			pp 651-752	-0.0350
		pp 301-402	0.0729			pp 651-523	-0.0407
10.00	0.0022	pp 413-514	0.0487	_		pp 312-413	0.0376
10.88	0.0032	nn 400-541	-0.9993	_		pp 532-633	-0.2369
		nn 550-640	-0.0374			pp 642-743	-0.0511
		nn 404-505	-0.0503			pp 404-505	-0.0810
10.02	0 7000	pp 550-651	-0.0501			nn 631-541	0.1995
10.92	0.7203	pp 530-660	-0.0387			nn 301-402	0.1110
		pp 411-761	0.9229			nn 532-633	-0.0490
		pp 400-301	0.3607			nn 413-514 nn 520 621	0.0679
		pp 301-402	0.0037	_		pp 550-651	-0.0409
		pp 310-411	-0.1193			pp 440-541	0.0522
		pp 501-400	-0.0330	14.07	61 2056	pp 051-552	-0.0340
		pp 330-031	0.0979	14.97	01.2050	pp 341-042	0.0900
		pp 420-301	0.0478			pp 701-422	0.0412
11.00	36 208	pp 411-701	-0.1900			pp 312-422	-0.0418
11.00	50.278	pp 411-312 pp 400-301	-0.7261			pp 431-525	0.4279
		pp 400-301	0.5658			pp 532-633	0.8480
		pp 301-402 pp 422-523	0.0483			pp 000-020 pp 303-404	0.0463
		pp 422 525	0.0971			pp 303 404	-0.0533
		pp 413 514	-0.0517			nn 431-532	0.0396
		nn 512-411	0.0375	-		nn 400-301	-0 1731
		nn 31-541	0.0373			nn 301-402	0.6540
		pp 420-301	-0.9780			nn 413-514	-0.7211
11.02	0.282	pp 420 301	-0.0417			nn 530-631	0.0478
		pp 400 501	0.0525	15.09	5 704	pp 550 051	-0.0381
		pp 624-505	0.1639	10.07	2.707	pp 631-532	0.0354
		nn 512-411	0.0673	-		pp 541-642	0.0458
		pp 431-541	0.0322			pp 511 042 pp 512-422	-0.0408
11.02	0.394	pp 420-301	0.1760			pp 532-633	0.0512
11.02	0.071	pp 400-301	-0.0325			pp 633-523	-0.0456
		pp 301-402	0.0452	15.13	280.156	nn 400-301	0.0351

Tablo E.2 Devamı								
Е	BE1	Seviye Yapısı nn-	Genlik	Е	BE1	Seviye Yapısı nn-	Genlik	
(MeV)	$(e^2 fm^2)$	pp	ψ	(MeV)	$(e^2 fm^2)$	pp	ψ	
		pp 624-505	0.9787	_		nn 301-402	-0.0585	
		nn 660-541	0.1052			nn 532-633	0.1164	
11.03	7.592	nn 512-411	0.9881			nn 413-514	-0.1445	
		pp 624-505	-0.0788	_		pp 530-631	0.1045	
		nn 550-640	0.0779			pp 440-541	-0.0479	
		nn 550-660	-0.0483			pp 440-521	-0.0392	
		nn 530-631	-0.0563			pp 631-532	0.0780	
		nn 420-521	-0.0437			pp 541-642	-0.2873	
		nn 411-512	-0.0581			pp 521-431	-0.0321	
		nn 660-541	0.9576			pp 512-422	0.8398	
		nn 631-532	-0.0388			pp 431-523	0.0379	
11.06	94 660	nn 512-411	-0.1240			pp 411-312	0.0442	
11.00	74.000	nn 422-523	-0.0483			pp 642-532	0.0377	
		nn 402-503	0.0498			pp 312-413	-0.0420	
		nn 651-532	0.0580			pp 532-633	-0.2248	
		nn 413-514	-0.0799			pp 532-633	-0.0474	
		nn 633-523	0.0323			pp 642-743	0.0444	
		nn 404-505	-0.1042			pp 633-523	0.2517	
		nn 404-505	0.0669			pp 303-404	-0.0664	
		pp 301-402	0.0663			pp 404-505	0.0615	
		nn 550-640	-0.0359			nn 550-631	0.0348	
11.08	17 988	nn 660-541	0.2841			nn 400-301	0.2483	
11.00	17.900	pp 301-402	-0.0527			nn 301-402	-0.1351	
		pp 512-642	0.9554	_		nn 541-642	0.0444	
		nn 550-640	-0.7701			nn 532-633	-0.0427	
		nn 420-521	0.1091			nn 532-633	0.2095	
		nn 640-541	-0.0453			nn 512-422	-0.0468	
		nn 660-541	0.0476			nn 503-413	-0.0467	
		nn /61-642	0.0747			nn 413-514	-0.2009	
		nn $422-525$	0.0830			pp 530-631	0.1/3/	
		nn 310 411	-0.1317			pp 440-541	-0.0030	
		pp 510-411	-0.0891			pp 440-521	-0.0090	
11 12	0 222	pp 530-651	-0.0391			pp 031-332	0.1307	
11.12	0.222	pp 330-000 pp 420-301	0.0397			pp 501-402	0.0340	
		pp 420 301	-0.0887			pp 541-642	-0 5352	
		pp 411-512	0.4410	15.17	756.745	pp 521-431	-0.0407	
		pp 660-532	-0.0340			pp 512-422	-0.5219	
		pp 301-402	0.2718			pp 431-523	0.0446	
		pp 512-642	-0.0602			pp 411-312	0.0660	
		pp 422-523	0.0561			pp 651-752	0.0328	
		pp 402-503	0.0526			pp 642-532	0.0496	
		pp 624-505	-0.0515	_		pp 312-413	-0.0605	
		nn 550-640	0.5684			pp 532-633	-0.2596	
		nn 660-541	-0.1304			pp 532-633	-0.0634	
		nn 651-532	0.0430			pp 413-514	-0.0337	
		nn 413-514	-0.0421			pp 402-303	0.0382	
		nn 404-505	-0.0545			pp 642-303	0.0651	
11.16	61.997	pp 310-411	0.1758			pp 642-743	0.0661	
		pp 550-651	-0.0374			pp 633-523	0.2600	
		pp 411-761	-0.0503			pp 303-404	-0.0908	
		pp 411-512	0.6439			pp 404-505	0.0829	
		pp 400-301	0.0904			nn 400-301	0.8/12	
		pp 301-402	0.4251	15.00	0.000	nn 301-402	-0.1092	
		pp 413-514	-0.0404	15.20	8.022	nn 033-743	-0.06/8	
11.24	26.146	1111 330-040 nn 660 541	0.0780			1111 413-314 pp 530 621	-0.3017	
		111 000-541	-0.0300			pp 330-031	-0.0947	

			Tablo E.	2 Devamı			
Е	BE1	Seviye Yapısı nn-	Genlik	Е	BE1	Seviye Yapısı nn-	Genlik
(MeV)	$(e^2 fm^2)$	pp	ψ	(MeV)	$(e^2 fm^2)$	pp	ψ
		nn 761-642	0.0627			pp 440-521	0.0347
		nn 651-532	0.0334			pp 631-532	-0.0717
		pp 310-411	0.8713			pp 541-642	0.2854
		pp 550-651	-0.0359			pp 512-422	0.0877
		pp 411-761	-0.0396			pp 411-312	-0.0320
		pp 411-512	-0.4396			pp 532-633	0.0830
		pp 400-301	0.0525			pp 642-303	-0.0562
		pp 301-402	0.1431	_		pp 642-743	-0.0341
		nn 550-640	-0.0833			pp 633-523	-0.0810
		nn 420-521	-0.0601			pp 404-505	-0.0345
		nn 761-642	-0.9877	15 22	3 000	pp 541-642	-0.0799
11.28	6.392	nn 422-523	-0.0405	13.22	5.777	pp 642-303	-0.9954
		nn 404-505	0.0336	15.26	6 489	nn 413-743	0.9964
		pp 310-411	0.0698	15.20	0.407	pp 541-642	0.0623
		pp 301-402	0.0464	_		nn 532-633	0.0395
		nn 550-400	-0.0319			pp 530-631	0.0745
		nn 550-640	-0.1727	15 29	22 169	pp 440-521	-0.9633
		nn 550-660	-0.2378	15.27	22.10)	pp 640-501	0.0942
		nn 550-651	-0.0439			pp 631-532	0.0594
		nn 530-631	-0.1082			pp 541-642	0.2204
		nn 420-521	-0.4291			nn 550-631	0.0821
		nn 411-512	-0.1191			nn 400-301	-0.0415
		nn 400-501	-0.0533			nn 541-642	0.0595
		nn 640-761	0.0317			nn 651-303	0.1090
		nn 660-541	-0.1714			nn 532-633	-0.0575
		nn 651-541	-0.0884			nn 532-633	0.2421
		nn 631-532	-0.0759			nn 512-422	-0.0510
		nn 541-651	0.0880			nn 503-413	-0.0321
		nn 541-642	-0.0460			nn 422-514	-0.0468
		nn 521-422	-0.0557			nn 413-743	-0.0733
		nn 761-642	0.0926			nn 633-523	-0.0326
		nn 501-402	-0.0363			nn 503-413	-0.1608
		nn 422-523	-0.2739			nn 413-514	0.0750
11 36	678 700	nn 422-512	0.0411	15 30	764 878	nn 404-505	-0.0357
11.50	078.790	nn 411-512	-0.0656	15.50	/04.070	pp 530-631	0.5136
		nn 402-503	0.1088			pp 440-541	-0.0658
		nn 651-752	0.0447			pp 440-521	0.2011
		nn 651-532	0.5977			pp 640-501	-0.2018
		nn 651-503	-0.1486			pp 631-532	0.4166
		nn 642-532	0.0630			pp 541-642	0.5281
		nn 532-633	0.0713			pp 411-312	0.0856
		nn 532-633	-0.0541			pp 651-752	0.0366
		nn 413-514	-0.1588			pp 312-413	-0.0727
		nn 413-503	-0.0784			pp 532-633	-0.0642
		nn 402-503	-0.0631			pp 642-743	0.1046
		nn 642-743	-0.0609			pp 633-523	0.0624
		nn 633-523	0.1223			pp 303-404	-0.0444
		nn 633-523	0.0484			pp 404-505	0.0764
		nn 404-505	-0.1990			nn 503-413	-0.0478
		nn 404-505	0.1397	15.37	9.812	pp 530-631	0.5822
		pp 310-411	-0.0844			pp 631-532	-0.8100
		pp 411-512	-0.0573			nn 550-631	0.0736
		pp 301-402	0.0440	_		nn 431-532	-0.0617
		nn 550-400	0.1729	15 40	222 100	nn 400-301	-0.1085
11 47	Q 151	nn 550-640	0.0918	13.40	233.480	nn 301-402	-0.0770
11.4/	0.431	nn 420-521	0.6740			nn 541-642	0.0319
		nn 521-422	0.0348			nn 532-633	0.1165

			Tablo E	.2 Devami			~
Е	BE1	Seviye Yapısı nn-	Genlik	E	BE1	Seviye Yapısı nn-	Genlik
(MeV)	$(e^2 fm^2)$	pp	ψ	(MeV)	$(e^2 fm^2)$	pp	ψ
		nn 761-642	-0.0551			nn 422-514	-0.0471
		nn 422-523	0.1625			nn 503-413	-0.8933
		nn 651-532	0.6577			nn 413-514	-0.0801
		nn 404-505	-0.0689			pp 530-631	-0.3279
		pp 310-411	-0.0482			pp 631-532	-0.1691
		pp 301-402	-0.0604			pp 541-642	0.0545
		pp 532-422	0.1381			nn 503-413	0.0431
		pp 402-503	0.0457	15.47	16.889	pp 530-631	-0.0456
		nn 550-400	0.9826	_		pp 503-633	-0.9954
11.49	1.554	nn 420-521	-0.1498			nn 301-400	-0.0353
		nn 651-532	-0.0974			nn 550-631	0.3228
		nn 550-660	-0.5744	-		nn 431-532	-0.1879
		nn 530-631	-0.0694			nn 431-512	0.0375
		nn 420-521	0.4841			nn 420-761	0.0646
		nn 411-512	-0.0785			nn 411-512	-0.0395
		nn 411-501	0.0340			nn 400-301	-0.1695
		nn 400-501	-0.0365			nn 301-402	-0.1419
		nn 660-541	-0.0732			nn 541-651	-0.0387
		nn 651-541	-0.0887			nn 541-642	0.0768
		nn 631-532	-0.0489			nn 521-431	0.0327
		nn 541-651	0.0836			nn 431-523	0.0320
		nn 541-642	-0.0393			nn 402-303	-0.0773
		nn 521-422	-0.0415			nn 402-503	0.0428
		nn 422-523	-0.3585			nn 642-532	-0.0375
		nn 422-512	0.0477			nn 532-633	-0.0771
		nn 411-512	-0.0427			nn 532-633	0.2592
11.58	433.429	nn 402-503	0.0722			nn 512-422	-0.0565
		nn 651-532	-0.3720			nn 503-413	-0.0349
		nn 642-532	0.0576			nn 422-514	-0.2549
		nn 532-633	0.0621			nn 413-514	-0.0469
		nn 532-633	-0.0453			nn 402-503	-0.0353
		nn 413-514	-0.1012			nn 633-523	-0.0442
		nn 413-503	-0.1524	1 5 40	21.52.200	nn 503-413	0.3918
		nn 402-503	-0.0438	15.48	2153.390	nn 413-514	-0.1296
		nn 642-743	-0.0376			nn 404-505	-0.0552
		nn 633-523	0.1511			pp 530-631	-0.3882
		nn 633-523	0.0425			pp 440-541	-0.0433
		nn 404-505	-0.1280			pp 440-521	0.0449
		nn 404-505	0.0494			pp 400-301	0.0323
		pp 310-411	-0.0748			pp 631-532	-0.2570
		pp 411-512	-0.0638			pp 312-402	-0.0364
		pp 402-503	0.0497			pp 301-402	0.0431
11.65	0.014	pp 431-521	0.0431	-		pp 541-651	0.0383
11.65	0.314	pp 303-642	0.9986			pp 541-642	0.2648
		nn 420-521	-0.0343	-		pp 512-422	-0.0439
11.66	0.127	nn 422-523	0.0773			pp 422-523	-0.0353
		pp 402-512	-0.9954			pp 411-312	0.1932
		nn 550-660	-0.1090	-		pp 642-532	0.0418
		nn 420-521	-0.0371			pp 312-413	-0.0925
		nn 422-523	0.0834			pp 312-402	-0.0318
		pp 310-411	0.0509			pp 532-633	-0.1307
11 67	12 260	pp 431-521	0.9751			pp 532-633	-0.0782
11.67	12.209	pp 411-512	0.0517			pp 512-422	-0.0622
		pp 400-301	-0.0475			pp 413-514	-0.0431
		pp 301-402	-0.0803			pp 402-303	0.0381
		pp 761-411	-0.0502			pp 642-743	0.1237
		pp 402-303	0.0409			pp 633-523	0.0974

Tablo E 2 D

			Tablo E	.2 Devami			~
E	BE1	Seviye Yapısı nn-	Genlik	E	BE1	Seviye Yapısı nn-	Genlik
(MeV)	$(e^2 fm^2)$	рр	ψ	(MeV)	$(e^2 fm^2)$	рр	ψ
		pp 303-642	-0.0482			pp 303-404	-0.0909
		pp 413-514	0.0358			pp 503-633	0.0955
		pp 303-404	-0.0367			pp 413-514	0.0349
		nn 422-523	-0.0320	_		nn 404-505	0.0683
11 69	0 869	nn 431-521	-0.0529			nn 404-734	0.0447
11.09	0.007	pp 761-411	-0.9972			pp 101 791	-0.0395
		nn 550-660	0.2097			nn 550-631	0.1992
		nn 422-523	0.1469			nn 431-532	-0.0583
11.72	9.115	nn 413-503	-0.9631			nn 532-633	0.0470
		nn 633-523	0.0365			nn 422-514	0.0470
		nn 550-660	0.0303	_		nn 503-413	0.0378
		$nn 411_{-}761$	0.0867			nn 530-631	-0.0700
		nn 422-523	0.0615			pp 350-051	0.0504
11.81	23.800	nn 413 503	0.0015	15.55	126.485	pp 400-512	0.0304
		nn 622 522	0.0404			pp 051-552	-0.0480
		nn 402 502	0.0718			pp 341-042	0.0730
		pp 402-303	0.0330	_		pp 411-512	0.1029
		nn 530-000	0.5201			pp 512-415	-0.0327
		111 350-051	-0.0399			pp 352-655	-0.0414
		nn 420-521	0.0388			pp 552-655	-0.0340
		nn 411-512	-0.0708			pp 642-743	0.0435
		nn 411-761	-0.1557	15.57	0.4520	nn 550-631	0.1145
		nn 411-501	0.0705			pp 400-312	-0.9926
		nn 400-501	-0.0379	15.50	0.0055	nn 550-631	0.0466
		nn 660-541	-0.0461	15.58	0.3357	nn 431-532	0.0653
		nn 651-541	-0.1264			nn 541-411	0.9955
		nn 631-532	-0.0426			nn 550-631	-0.8693
		nn 541-651	0.1035			nn 431-532	-0.0825
		nn 541-642	-0.0371			nn 532-633	0.0529
		nn 521-422	-0.0599			nn 422-514	0.0856
		nn 422-523	0.2565			nn 503-413	0.0337
		nn 422-512	0.1390			pp 530-631	-0.1086
		nn 411-512	-0.0413			pp 400-312	-0.1002
		nn 402-503	0.0674			pp 631-532	-0.0751
		nn 651-532	-0.1107			pp 312-402	-0.0509
		nn 642-532	0.0647			pp 541-642	0.1299
		nn 532-633	0.0620	15.59	292.373	pp 411-312	0.3330
11.85	1079.34	nn 532-633	-0.0397			pp 312-413	-0.0691
		nn 413-514	-0.0876			pp 312-402	-0.0338
		nn 413-503	0.1674			pp 532-633	-0.0782
		nn 402-503	-0.0461			pp 532-633	-0.0760
		nn 642-743	-0.0354			pp 512-422	-0.0804
		nn 633-523	0.5074			pp 642-743	0.0941
		nn 633-523	0.0436			pp 633-523	0.0559
		nn 404-505	-0.1106			pp 303-404	-0.0526
		pp 310-411	-0.1897			pp 404-505	0.0354
		pp 301-400	0.0598			pp 404-734	0.1056
		pp 550-660	-0.0473			nn 550-631	-0.1320
		pp 550-651	-0.0756			nn 431-532	-0.8070
		pp 530-651	0.0376			nn 400-301	-0.0962
		pp 431-532	-0.0554			nn 301-402	-0.0866
		pp 431-521	0.0937			nn 541-411	0.0854
		pp 420-521	-0.0458	15.61	26.4989	nn 402-303	-0.0881
		pp 411-312	-0.1421			nn 422-514	0.0374
		pp 411-761	-0.0780			nn 413-514	-0.1186
		pp 411-512	-0.1879			pp 530-631	0.0986
		pp 640-761	0.1218			pp 420-312	-0.0601
		pp 640-512	-0.0488			pp 631-532	0.0682

Tablo E.2 Deva

			Tablo E	.2 Devami			
E	BE1	Seviye Yapısı nn-	Genlik	Е	BE1	Seviye Yapısı nn-	Genlik
(MeV)	$(e^2 fm^2)$	pp	ψ	(MeV)	$(e^2 fm^2)$	pp	ψ
	. ,	np 400-301	0.1308	. ,	. ,	nn 411-312	-0.4164
		pp 400 501	-0.0826			pp = 312 - 413	0.4104
		pp 000-541	-0.0820			pp 512-415	0.0075
		pp 051-552	-0.0383			pp 042-743	-0.1403
		pp 501-402	0.2044			<u>pp 404-734</u>	-0.2404
		pp 512-411	0.0455			nn 431-532	0.1459
		pp 431-532	0.0828	15.62	4.2050	pp 411-312	0.2333
		pp 422-523	-0.0819			pp 642-743	0.0391
		pp 422-512	-0.0486			pp 404-734	-0.9582
		pp 411-512	0.0586			nn 550-631	-0.1719
		pp 651-752	-0.0423			nn 431-532	0.4102
		pp 402-303	-0.1736			nn 431-512	0.0359
		pp 651-532	0.0422			nn 420-501	0.0579
		pp 422-523	0.0735			nn 400-301	-0.0395
		pp 413-514	-0.1237			nn 301-402	-0.0414
		pp 402-303	-0.0441			nn 541-642	0.0389
		pp 402-503	0.2400			nn 431-523	0.0329
		pp 303-404	0.1079			nn 402-303	-0.0677
		pp 503-404	-0.0719			nn 532-633	-0.0402
		pp 413-514	0.0583			nn 532-633	0.1144
		pp 404-505	-0.0492			nn 422-514	0.0657
		pp 404-505	-0.0615			nn 503-413	0.0537
		nn 550-660	0.0986	-		nn 530-631	-0 1054
		nn 411-501	0.0265			pp 330 031	-0.0532
		nn 651-541	-0.0727	15.68	826.967	pp 420 512	-0.0738
		nn 5/1 651	0.0500			pp 031-332	-0.0758
		nn 521 422	0.0399			pp 512-402	-0.1001
		nn 422 522	-0.0874			pp 541-042	0.1019
		1111 422-525	0.0777			pp 321-042	-0.0393
		nn 422-512	0.1380			pp 411-512	-0.7439
		nn 651-532	-0.0369			pp 312-413	-0.1169
		nn 642-532	0.0389			pp 312-402	-0.0483
		nn 532-633	0.0413			pp 532-633	-0.0730
		nn 532-633	-0.0325			pp 532-633	-0.0819
		nn 413-503	0.0467			pp 512-422	-0.1815
		nn 633-523	0.5991			pp 642-743	0.2193
		nn 743-404	-0.0362			pp 633-523	0.0521
		pp 310-411	0.1695			pp 303-404	-0.0595
		pp 301-400	-0.0674			pp 404-505	0.0470
		pp 550-660	0.0926			pp 404-734	-0.0900
11 01	161 145	pp 550-651	0.0571			nn 301-651	0.0849
11.71	101.145	pp 440-532	0.0389			nn 550-631	-0.0585
		pp 431-532	0.0584			nn 431-532	0.0412
		pp 431-521	-0.1061			nn 420-501	0.0811
		pp 420-521	0.0462	15.73	94.734	nn 532-633	0.0509
		pp 411-312	0.1873			pp 312-402	0.9741
		pp 411-761	0.0733			pp 411-312	-0.0921
		pp 411-512	0.1784			pp 312-413	-0.0383
		pp 640-761	-0.0672			pp 642-743	0.1029
		pp 400-301	-0.1673			nn 420-501	0.9455
		pp 660-541	0.1632	15.75	0.201	pp 312-402	-0.0776
		pp 651-541	0.0573			pp 512-422	0 31 18
		pp 651-532	0.0370			nn 550-631	-0.0711
		nn 301-402	-0.2645			nn 431-512	0.0330
		pp 501-402	0.0636			nn 420-501	-0.2044
		pp 541-051	0.0050	15 76	171 540	nn 402 202	-0.2744
		pp 541-042	0.0400	15.70	1/1.349	nn 522 622	-0.0450
		pp 512-411	-0.1400			IIII 332-033	0.0722
		pp 451-552	-0.0397			pp 550-631	-0.0390
		pp 422-523	0.0936			pp 521-642	-0.0331

Tablo E.2 Deva

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Tablo E.2 Devami								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Е	BE1	Seviye Yapısı nn-	Genlik	Е	BE1	Seviye Yapısı nn-	Genlik	
pp 422-512 0.0987 pp 501-651 0.1111 pp 411-512 -0.0555 pp 411-312 -0.0090 pp 651-532 -0.0794 pp 512-422 0.0055 pp 532-633 -0.0420 m 550-631 -0.0420 pp 422-523 -0.0425 m 431-552 0.2306 pp 413-503 -0.0425 m 431-552 0.2306 pp 413-503 -0.0425 m 431-512 0.0464 pp 402-303 0.0861 m 301-402 -0.0760 pp 402-303 0.0480 m 301-402 -0.0776 pp 402-503 -0.1459 m 431-523 0.0171 pp 402-503 -0.0458 m 431-523 0.0639 pp 404-505 0.0546 pp 512-462 0.0333 pp 404-505 0.0546 pp 312-402 0.0639 pp 404-505 0.0546 pp 312-402 0.0361 m 422-521 -0.0439 pp 312-402 0.0362 pp 411-312 0.0361 m 431-523 -0.0438 pp 412-202 0.0576 <td< td=""><td>(MeV)</td><td>$(e^2 fm^2)$</td><td>pp</td><td>ψ</td><td>(MeV)</td><td>$(e^2 fm^2)$</td><td>рр</td><td>ψ</td></td<>	(MeV)	$(e^2 fm^2)$	pp	ψ	(MeV)	$(e^2 fm^2)$	рр	ψ	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			pp 422-512	0.0987			pp 501-651	0.1111	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			pp 411-512	-0.0555			pp 411-312	-0.0909	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			pp 402-303	0.3464			pp 312-413	-0.0597	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			pp 651-532	-0.0794			pp 512-422	0.9064	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			pp 642-532	0.0455			pp 642-743	0.1987	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			pp 532-633	-0.0584			nn 550-631	-0.0420	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			pp 532-633	0.0482			nn 431-532	0.2306	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			pp 422-523	-0.0425			nn 431-512	0.0464	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			pp 413-514	0.1429			nn 400-301	-0.0738	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			pp 413-503	-0.0480			nn 301-402	-0.0760	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			pp 402-303	0.0861			nn 521-431	0.0513	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			pp 402-503	-0.1569			nn 431-523	0.1718	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			pp 633-523	0.0458			nn 402-303	-0.6780	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			pp 633-523	0.0330	15.84	249.167	nn 532-633	0.0590	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			pp 303-404	-0.2097		,	nn 413-514	-0.0904	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			pp 503-404	0.0477			pp 541-642	0.0333	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			pp 413-514	-0.0482			pp 521-642	0.0639	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			pp 404-505	0.0358			pp 411-312	0.0342	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			pp 404-505	0.0546	_		pp 312-413	0.0666	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			nn 420-521	-0.0439			pp 312-402	-0.0609	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			nn 521-422	0.9765			pp 532-633	-0.0438	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	11.95	0.933	nn 422-523	-0.1006			pp 512-422	0.0796	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			nn 633-523	0.1503			pp 642-743	-0.6242	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			pp 640-761	0.0331			nn 431-523	0.9577	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $. <u> </u>		pp 402-503	0.0595	- 15.88	0.074	nn 402-303	0.2795	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			nn 521-422	0.0676			pp 312-402	0.0448	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	11.97	0.940	nn 422-512	0.9489			pp 642-743	-0.0462	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			nn 633-523	-0.2663			nn 431-532	-0.0362	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			pp 512-411	-0.1514	_		nn 431-523	0.0988	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			1111 422 - 512	0.1015			m 402-303	-0.4104	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			nn 411 212	0.0303			pp 512-402	-0.0372	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			pp 411-512	0.0387			pp 541-042	-0.0303	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11.97	13.340	pp 501-402	-0.0410			pp 321-042	0.0382	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			pp 512-411	0.9703	15.80	70 055	pp 411-512	0.0422	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			pp 402-503	0.0000	15.69	10.033	pp 411-303	0.0339	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			pp 402-303	-0.0439			pp 312-413	0.0781	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			pp 505-404	0.0631	-		pp 512-402	0.7993	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			nn 411 501	0.00001			pp 532-633	0.0452	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			nn 651-541	-0.1054			pp 552-055	-0.0905	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			nn 5/1-651	-0.1054			pp 512-422	-0.0903	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			nn 422-523	0.03/0			pp 042-743	0.0350	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			nn 422-523	-0.0804			pp 505-404	-0.0394	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			nn 642-512	-0.0804			nn 431-532	-0.0394	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			nn 532-633	0.0377			nn 431-512	0.1366	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12.06	28.066	nn 633-523	-0.2212			nn 521-431	0.1500	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12.00	20.000	nn 404-505	-0.0361			nn 761-422	0.0578	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			nn 404 303	0.0326			nn 431-523	-0 1523	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			pp 660-541	0.0320			nn 402-303	0.1525	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			nn 651-532	-0 0495	15 92	415 764	nn 532-633	0.0671	
pp 122 512 0.0552 pp 521-651 0.0456 pp 402-303 0.1047 pp 541-642 0.0425 pp 402-503 0.0548 pp 521-642 -0.5295 pp 303-404 -0.0429 pp 411-312 -0.0544 nn 411-501 -0.0352 pp 312-413 -0.0445 12.09 0.395 nn 642-752 -0.9930 pp 312-413 -0.1445 pp 651-532 -0.0868 pp 312-402 0.5034			pp 051-552 pp 422-512	0.0332	13.74	713.704	nn 532-653	0.0438	
pp 102 505 0.0517 pp 511 612 0.0425 pp 402-503 0.0548 pp 521-642 -0.5295 pp 303-404 -0.0429 pp 411-312 -0.0544 nn 411-501 -0.0352 pp 312-413 -0.0445 pp 651-532 -0.0868 pp 312-402 0.5034			pp 402-303	0.1047			pp 541-642	0.0425	
pp 102 505 0.05 10 pp 211 612 -0.0229 pp 303-404 -0.0429 pp 411-312 -0.0544 nn 411-501 -0.0352 pp 411-503 -0.0569 12.09 0.395 nn 642-752 -0.9930 pp 312-413 -0.1445 pp 651-532 -0.0868 pp 312-402 0.5034			pp 102 505	0.0548			pp 521-642	-0.5295	
nn 411-501 -0.0352 pp 411-512 -0.0569 12.09 0.395 nn 642-752 -0.9930 pp 312-413 -0.1445 pp 651-532 -0.0868 pp 312-402 0.5034			pp 402 505	-0.0429			pp 411-312	-0.0544	
12.09 0.395 nn 642-752 -0.9930 pp 312-413 -0.1445 pp 651-532 -0.0868 pp 312-402 0 5034			nn 411-501	-0.0352	_		pp 411-503	-0.0569	
pp 651-532 -0.0868 pp 312-402 0 5034	12.09	0 395	nn 642-752	-0.9930			nn 312-413	-0 1445	
	-2.07	0.070	pp 651-532	-0.0868			pp 312-402	0.5034	

			Tablo E	.2 Devami			
E	BE1	Seviye Yapısı nn-	Genlik	Е	BE1	Seviye Yapısı nn-	Genlik
(MeV)	$(e^2 fm^2)$	pp	ψ	(MeV)	$(e^2 fm^2)$	pp	ψ
12.10	()	nn 550-660	0.0483	· /	()	nn 532-633	-0.0369
		nn 411 501	0.1629			pp 532-633	-0.0307
	11.507	1111 411 - 301	-0.1028			pp 552-055	-0.0799
		nn 051-541	-0.1125			pp 512-422	0.0549
		nn 541-651	0.0682			pp 642-743	-0.466/
		nn 422-512	-0.0441			pp 303-404	-0.0356
		nn 642-532	0.0381	15.93	295.4696	nn 431-532	0.0641
		nn 642-752	0.1125			nn 431-512	0.1330
		nn 532-633	0.0345			nn 301-402	-0.0328
		nn 633-523	-0.1369			nn 521-431	0.0458
		pp 530-651	0.1874			nn 761-422	0.1388
		pp 640-761	0.0579			nn 431-523	-0.1018
		pp 660-541	0.0796			nn 402-303	0.2847
		pp 651-532	-0.8987			nn 532-633	0.0515
		pp 301-402	-0.0389			nn 413-514	-0.0321
		pp 301 402	0.0502			nn 521-651	-0.1166
		pp 422-312	0.1762			pp 521-051	-0.1100
		pp 402-303	0.1702			pp 541-042	0.0419
		pp 402-303	0.1025			pp 321-042	0.8209
		pp 303-404	-0.0529			pp 411-312	-0.0374
		pp 503-404	-0.0321			pp 411-503	-0.1433
12.11	7.301	nn 411-501	-0.0765			pp 312-413	-0.1032
		nn 651-541	-0.0728			pp 312-402	0.2705
		nn 541-651	0.0427			pp 532-633	-0.0359
		nn 633-523	-0.0782			pp 532-633	-0.0857
		pp 530-651	0.9352			pp 512-422	0.0527
		pp 640-761	0.0352			pp 642-743	-0.2005
		pp 660-541	0.0410			pp 303-404	-0.0331
		pp 651-532	0.2852	15.93	11.933	nn 761-422	-0.9812
		pp 422-512	0.0329			nn 402-303	0.0433
		nn 402-303	0.0914			pp 521-642	0.0731
		pp 102 2002 pp 402-503	0.0642			pp 021 012	-0.1423
		nn 550-660	0.1394			pp 112-402	0.0607
12.13	304.570	nn 530-631	-0.0512			pp 512 102	-0.0477
		nn 411 512	0.0600			np 431 512	0.0477
		111411-512	-0.0000	15.94	31.928	nn 761 400	0.0038
		111 411-301	-0.2388			III 701-422	-0.1169
		nn 660-541	-0.0368			nn 402-303	0.0751
		nn 651-541	-0.3999			pp 521-642	0.09/9
		nn 631-532	-0.0363			pp 411-503	0.9765
		nn 541-651	0.2193			pp 312-413	-0.0367
		nn 541-642	-0.0602			pp 312-402	0.0440
		nn 422-523	0.0607			pp 642-743	-0.0739
		nn 422-512	-0.1139	15.97	59.744	nn 431-512	0.9661
		nn 402-503	0.0552			pp 541-642	-0.0393
		nn 651-532	-0.0730			pp 521-642	-0.0438
		nn 642-532	0.1173			pp 411-503	-0.0321
		nn 532-633	0 1018			nn 312-413	0 1400
		nn 532-633	-0.0653			pp 312-402	-0 1032
		nn 413-514	-0.0033			pp 512-402	0.0332
		nn 412 502	-0.0750			pp 532-633	0.1071
		1111 413 - 303 nn 402 502	0.0391			pp 532-055	0.10/1
		111 402-303	-0.0348			pp 512-422	-0.0440
		nn 633-523	-0.3390			pp 642-743	0.0991
		nn 633-523	0.0725	16.08	381.700	nn 431-532	0.0880
		nn 404-505	-0.0949			nn 431-512	-0.0819
		pp 550-660	0.0417			nn 400-301	-0.0497
		pp 530-651	-0.2921			nn 301-402	-0.0553
		pp 640-761	0.1637			nn 521-431	0.6144
		pp 640-512	-0.0448			nn 501-422	0.0730
		pp 660-541	0.1447			nn 431-523	-0.0424

Tablo E.2 Deva
Tablo E.2 Devamı							
Е	BE1	Seviye Yapısı nn-	Genlik	Е	BE1	Seviye Yapısı nn-	Genlik
(MeV)	$(e^2 fm^2)$	pp	Ψ	(MeV)	$(e^2 fm^2)$	pp	ψ
		pp 651-532	0.3047			nn 431-512	0.1283
		pp 301-402	-0.0411			nn 402-303	0.1389
		pp 532-651	-0.0402			nn 532-633	0.0661
		pp 431-532	0.0734			nn 413-514	-0.0589
		pp 422-512	0.1292			pp 312-413	0.7289
		pp 402-303	0.3272			pp 532-633	-0.0582
		pp 651-532	-0.0345			pp 642-743	0.0496
		pp 402-303	0.0349			nn 521-431	-0.5021
		pp 402-503	0.3130			nn $501-422$	0.0328
		pp 505-404	-0.0840	16.11	69.677	nn 402 202	0.8207
		pp 503-404	-0.1005	_		nn $402-303$	0.0350
		111 031-341	-0.0604			pp 512-415	0.2441
12 20	0.011	pp 411-312	0.0331			pp 332-033	-0.0812
12.20	0.911	pp 000-541	0.0731			nn 301 402	-0.0323
		pp 422-312	-0.9743			nn 521-431	0.0328
		pp 402-505	-0.1072	_		nn 501-422	-0.0409
		nn 5/1-651	-0.1072			nn 431-512	0.5/89
		nn 411-312	0.0321			nn 402-303	-0.0695
12.24	3.649	pp 411-512	0.8550			nn 413-514	0.0380
		pp 000-341	-0.4919	16.12	285 420	nn 541-642	-0.0551
		pp 402-503	-0.4919	10.12	203.420	pp 341-042	-0.5013
		nn 550-640	-0.0781	-		pp 312-413	-0.0555
		nn 550-660	0.0616			pp 512-402	0.0495
		nn 420-521	0.0010			pp 532-633	0.0429
		nn 411-512	-0.0344			pp 532-655	-0.0443
		nn 411-501	-0.0501			pp 512 422	0.0364
		nn 651-541	-0 5644			pp 303-404	0.0448
		nn 541-651	0.1538			nn 521-431	-0.0521
		nn 521-422	0.0909			nn 501-422	0.9637
		nn 422-523	0.1433			nn 431-512	-0.0367
		nn 422-512	-0.0425	16.18	10.147	nn 532-633	0.0330
		nn 402-503	0.0352		10.147	pp 651-301	-0.0562
		nn 651-532	-0.0334			pp 312-413	-0.0345
	118.598	nn 642-532	0.0692			pp 532-633	0.2322
		nn 532-633	0.0534			pp 312-422	-0.0382
12.25		nn 413-514	-0.0449	16.23	3.3375	pp 642-523	-0.9959
		nn 633-523	-0.1068			pp 532-633	0.0638
		nn 633-523	0.0390			nn 501-422	-0.0681
		nn 404-505	-0.0521			nn 532-633	0.0375
		nn 404-505	0.0545	16.26	(0.017	pp 312-422	-0.9708
		pp 411-312	0.1963		08.217	pp 642-523	0.0560
		pp 640-761	-0.1882			pp 312-413	0.0573
		pp 640-512	0.0342			pp 532-633	0.1939
		pp 660-541	-0.3384			pp 642-743	-0.0366
		pp 651-532	-0.0338			nn 550-631	-0.0713
		pp 532-651	0.0499			nn 530-631	-0.0350
		pp 431-532	-0.0501			nn 431-532	0.0669
		pp 402-303	-0.2936			nn 431-512	-0.0925
		pp 402-503	-0.4931			nn 411-512	-0.0454
		pp 503-404	0.2011	16.30	2186 661	nn 400-301	-0.0562
		pp 411-312	0.4573		2486.664	nn 400-501	-0.0327
	4.972	pp 660-541	-0.0923			nn 651-541	0.0336
12.30		pp 402-303	-0.1681			nn 301-402	-0.0680
		pp 402-503	-0.0389			nn 541-651	-0.0441
		pp 503-404	-0.8649			nn 541-642	0.0771
12.30	10.357	nn 651-541	0.1039			nn 521-431	-0.1622

E BE1 Sevige Yapts nm. pp Genlik W E BE1 Sevige Yapts nm. pp Genlik W (MeV) (e ² fm ²) pp 441.312 0.7106 nn 501.422 -0.2259 pp 640.761 0.1031 nn 431.512 -0.0348 -0.0472 pp 625.2651 -0.0362 nn 41.512 -0.0348 pp 402.303 -0.2165 nn 402.303 0.0147 pp 402.303 -0.04757 nn 402.303 -0.0475 pp 303.404 -0.0356 nn 512.422 -0.0348 pp 402.503 -0.1694 nn 42.514 -0.0347 pp 402.503 -0.1694 nn 431.514 -0.0348 nn 651.541 0.0366 nn 42.743 -0.0324 nn 61.741 0.01860 nn 442.743 -0.0324 nn 501.410 0.0565 nn 502-613 0.0443 pp 91.52.20 p 932.421 0.0452 pp 912.422 0.2315 nn 502-613 -0.0452 pp 303.421 -0.0452 pp 303.421 -0.0473 pp	Tablo E.2 Devamı							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Е	BE1	Seviye Yapısı nn-	Genlik	Е	BE1	Seviye Yapısı nn-	Genlik
pp 9411-312 0.7106 m 501-422 -0.2259 pp 640-761 0.01051 m 431-512 -0.0777 pp 532-651 -0.0326 m 402-503 0.01472 pp 402-303 -0.2165 m 402-503 0.0147 pp 303-404 -0.0356 m 532-633 -0.0826 pp 303-404 -0.0356 m 532-633 -0.0826 pp 503-404 -0.01564 m 532-633 -0.0826 m 651-541 0.0366 m 512-422 -0.0348 m 651-541 0.01694 m 402-503 -0.0349 m 631-761 0.1029 m 633-523 -0.00480 m 631-761 0.029 m 633-523 -0.00480 pp 402-503 -0.3584 pm 9400-501 -0.0639 pp 503-404 0.0592 pp 312-413 0.0463 pp 503-611 -0.0592 pp 303-422 0.0537 m 411-512 -0.0452 pp 303-422 0.0315 m 532-631 -0.0452 pp 303-422 0.0321 m 532-631 0.0465	(MeV)	$(e^2 fm^2)$	pp	Ψ	(MeV)	$(e^2 fm^2)$	pp	Ψ
pp 640-761 0.1051 m 431-523 -0.0472 pp 660-541 -0.0173 m 431-523 -0.0772 pp 422-512 -0.0362 m 402-503 0.0487 pp 402-303 -0.2165 m 402-503 0.0487 pp 303-404 -0.0356 m 532-633 -0.0826 m 651-541 0.0316 m 512-22 -0.0337 m 651-541 0.0316 m 512-22 -0.0395 m 651-541 0.0316 m 512-22 -0.0395 m 651-541 0.0316 m 512-422 -0.0394 m 651-541 0.0807 m 413-514 -0.0750 pp 640-761 0.1594 m 402-503 -0.0433 m 651-541 0.0897 m 613-514 -0.0463 pp 640-761 0.0297 m 613-514 -0.0463 m 613-521 -0.0592 pp 312-422 0.2315 m 41-501 -0.0452 pp 503-413 0.0637 m 415-521 -0.0452 pp 503-413 0.0637 m 415-521 -0.0452 pp 503-413<			pp 411-312	0.7106			nn 501-422	-0.2259
pp 660-541 -0.1173 m 411-512 -0.0376 pp 422-512 -0.0362 m 411-512 -0.0376 pp 402-503 -0.2165 m 402-303 0.0487 pp 402-503 -0.2165 m 402-303 0.0487 pp 303-404 -0.0356 m 532-633 -0.0826 pp 503-404 -0.01564 m 512-422 -0.0328 m 651-541 0.0316 m 512-422 -0.0395 m 651-541 0.01564 m 422-514 0.0316 m 651-541 0.029 m 633-523 -0.0324 m 651-541 0.029 m 633-523 -0.0483 m 651-541 0.029 m 633-523 -0.0433 pp 402-503 -0.1217 m 404-505 -0.0639 pp 402-503 -0.0352 pp 312-412 0.0413 pp 503-611 0.0592 pp 312-413 0.0463 m 50-660 0.0799 pp 642-523 0.0645 m 411-512 -0.0452 pp 303-413 0.0857 m 411-521 -0.0452 pp 532			pp 640-761	0.1051			nn 431-523	-0.0472
pp 532 c61 -0.0326 m 411.512 -0.0348 pp 402.303 -0.2165 m 402.503 0.01487 pp 303-404 -0.0356 m 602.503 -0.0482 pp 303-404 -0.0356 m 602.503 -0.0482 m 651.541 0.0316 m 532.633 -0.0334 m 651.541 0.0316 m 512.422 -0.0393 pp 303-404 -0.4190 m 532.633 -0.0348 pp 402.503 -0.0718 m 413.514 -0.0540 pp 402.503 -0.1694 m 413.514 -0.0540 m 631.761 0.1029 m 633.523 -0.0443 pp 402.503 -0.2177 m 404.505 -0.0393 m 530-661 0.0297 pp 312.422 0.0316 pp 503-404 0.0592 pp 312.422 0.0317 m 411.512 -0.0546 m 503-631 -0.0452 m 50-661 0.0799 pp 642.523 0.0411 m 420-521 0.0520 pp 532.633 -0.0354 m 51-541 0.0564 pp			pp 660-541	-0.1173			nn 431-512	-0.0777
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			pp 532-651	-0.0326			nn 411-512	-0.0348
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			pp 422-512	-0.0362			nn 402-303	0.1047
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			pp 402-303	-0.2165			nn 402-503	0.0487
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			pp 402-503	0.4757			nn 642-532	-0.0422
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			pp 303-404	-0.0356			nn 532-633	-0.0826
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			pp 503-404	0.4190	_		nn 532-633	0.1884
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			nn 651-541	0.0316			nn 512-422	-0.0395
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	12.34	0.046	pp 640-761	0.1564			nn 422-514	0.0347
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			pp 532-651	-0.9718			nn 413-514	-0.0540
$12.35 0.822 pp 640.761 0.8937 \\ pp 640.761 0.8937 \\ pp 640.761 0.8937 \\ pp 640.761 0.8937 \\ pp 642.523 0.0463 \\ pp 642.523 0.0463 \\ pp 642.523 0.0463 \\ pp 642.523 0.0645 \\ pp 642.523 0.0645 \\ pp 642.523 0.0645 \\ pp 642.523 0.0645 \\ pp 612.52 0.0520 \\ mn 615.541 0.5855 \\ mn 615.532 0.0475 \\ mn 612.523 0.1041 \\ mn 612.523 0.1041 \\ mn 612.523 0.1041 \\ mn 612.523 0.1041 \\ mn 615.532 0.0475 \\ mn 612.532 0.0475 \\ mn 612.532 0.1765 \\ mn 612.532 0.0645 \\ mn 613.523 0.01765 \\ mn 612.532 0.01765 \\ mn 612.533 0.0180 \\ mn 613.523 0.0180 \\ mn 613.523 0.0180 \\ mn 613.523 0.0180 \\ mn 613.523 0.0180 \\ mn 613.523 0.0180 \\ mn 613.523 0.0130 \\ mn 612.533 0.0130 \\ mn 612.533 0.0130 \\ mn 612.533 0.0130 \\ mn 613.523 0.0137 \\ mn 612.533 0.0137 \\ mn 612.533 0.0137 \\ mn 612.533 0.0137 \\ mn 612.533 0.0137 \\ mn 612.533 0.0137 \\ mn 612.533 0.0138 \\ pp 513.524 0.0331 \\ mn 612.523 0.0131 \\ pp 610.513 0.0126 \\ mn 613.522 0.0131 \\ pp 610.513 0.0126 \\ mn 613.523 0.0131 \\ pp 610.513 0.0126 \\ mn 613.523 0.0131 \\ pp 610.51 0.00321 \\ pp 610.51 0.00321 \\ pp 610.51 0.00321 \\ pp 610.51 0.00321 \\ pp 610.51 0.00321 \\ pp 610.51 0.00321 \\ pp 610.51 0.00335 \\ pp 600.51 0.00432 \\ pp 610.51 0.00335 \\ pp 610.51 0.00335 \\ pp 610.51 0.00335 \\ pp 610.51 0.00335 \\ pp 610.51 0.00335 \\ pp $			pp 402-503	-0.1694	_		nn 402-503	-0.0394
12.35 0.822 pp 411-312 0.0636 nn 503-413 0.0463 nn 413-514 -0.0473 pp 532-651 0.2127 nn 404-505 -0.0639 pp 402-503 -0.3584 pp 402-503 -0.3584 pp 402-503 -0.3584 pp 402-503 -0.3584 pp 512-422 0.2315 nn 550-660 0.0799 pp 642-2523 0.0645 nn 411-501 -0.0452 pp 312-422 0.2315 nn 420-521 0.0520 pp 303-422 0.0537 nn 411-512 -0.0546 pp 532-453 0.8207 nn 411-512 -0.0546 pp 532-453 0.0836 nn 651-541 0.5855 nn 631-532 -0.0323 nn 541-651 0.6654 nn 541-642 -0.0605 nn 521-422 0.0494 16.68 6.004 pp 422-514 0.9999 nn 521-622 0.1045 nn 422-523 0.1041 16.81 0.732 pp 533-453 -0.0195 nn 521-422 0.0494 16.68 6.004 pp 422-514 0.9999 nn 422-523 0.1041 16.81 0.732 pp 531-541 0.9999 nn 422-523 0.1041 nn 422-523 0.1045 nn 61-532 -0.0415 nn 411-512 -0.0354 16.90 pp 533-413 0.0805 nn 532-633 0.01114 nn 532-633 0.0116 nn 413-514 -0.0662 nn 631-532 -0.0475 nn 642-533 0.1118 nn 412-523 0.0640 nn 413-514 -0.0682 nn 633-523 -0.1180 nn 633-523 -0.0367 nn 422-433 -0.0997 nn 413-514 -0.0632 nn 431-532 -0.0337 nn 404-505 -0.0827 nn 404-505 -0.0827 nn 431-532 -0.0337 nn 411-511 -0.0548 nn 431-532 -0.0337 nn 404-505 -0.0827 nn 404-505 -0.0827 nn 404-505 -0.0827 nn 404-505 -0.0827 nn 404-505 -0.0827 nn 404-505 -0.0827 nn 404-505 -0.0827 nn 404-505 -0.0827 nn 404-505 -0.0827 nn 404-505 -0.0827 nn 404-505			nn 651-541	0.0860			nn 642-743	-0.0328
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			nn 631-761	0.1029			nn 633-523	-0.0483
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	10.05	0.000	pp 411-312	0.0636			nn 503-413	0.0463
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	12.35	0.822	pp 640-761	0.8937			nn 413-514	-0.0473
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			pp 532-651	0.2127			nn 404-505	-0.0639
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			pp 402-503	-0.3584			pp 400-501	0.0411
$12.42 491.818 \qquad \begin{array}{c c c c c c c c c c c c c c c c c c c $			pp 503-404	0.0592	_		pp 312-422	0.2315
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			nn 550-660	0.0799			pp 642-523	0.0645
$12.42 491.818 \begin{array}{c c c c c c c c c c c c c c c c c c c $			nn 530-631	-0.0452			pp 312-413	0.1378
$12.42 491.818 \qquad \begin{array}{c c c c c c c c c c c c c c c c c c c $			nn 420-521	0.0520			pp 303-422	0.0537
$12.42 491.818 \begin{array}{c c c c c c c c c c c c c c c c c c c $			nn 411-512	-0.0546			pp 532-633	0.8207
$12.42 491.818 \begin{array}{c c c c c c c c c c c c c c c c c c c $			nn 411-501	-0.0452			pp 503-413	0.0836
$12.42 491.818 \begin{array}{c c c c c c c c c c c c c c c c c c c $			nn 651-541	0.5855			pp 642-743	-0.0950
$12.42 491.818 \\ 12.42 491.818 40.837 \\ 12.42 491.818 40.837 \\ 12.42 491.818 40.837 \\ 12.42 491.818 40.837 \\ 12.42 491.818 40.837 \\ 12.42 491.818 40.837 \\ 12.42 491.818 40.837 \\ 12.42 491.818 40.837 \\ 12.42 40.837 \\ 12.42 40.837 \\ 12.42 40.8$			nn $631-532$	-0.0323	16.38	2.534	pp 532-633	-0.1095
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			nn 541-051	0.0054	16.57	2.017	pp 503-413	0.9939
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			nn 541-042	-0.0605	16.57	5.017	pp 303-633	-0.9995
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		491.818	nn 422 523	0.0494	16.08	0.004	pp 422-314	0.9992
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			nn 422-525	0.1041	10.01	0.732	pp 031-341	0.9999
$12.42 491.818 \begin{array}{c c c c c c c c c c c c c c c c c c c $			1111422-312	-0.0413	16.90	8.562	pp 431-701	-0.3947
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			nn 402 503	-0.0334			pp 532-033	-0.0320
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			nn 651-532	-0.0475			pp 525-055	0.0505
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			nn 642-532	0.1765	16.90	1.108	pp 303-413	0.8046
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12.42		nn 532-633	0.1114			pp 431-701	0.5040
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			nn 532-633	-0.0600			np 400-501	-0.0353
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			nn 413-514	-0.0682	1691	10.076	pp 400 501	-0.9971
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			nn 413-503	0.0318	10.71	10.070	pp 525 655	0.0537
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			nn 402-503	-0.0367			nn 523-413	-0.9987
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			nn 642-743	-0.0330	17.03	0.126	nn 400-501	0.0484
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			nn 633-523	-0.1180			pp 100 501	-0.4045
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			nn 633-523	0.0837	17.07	41,158	pp 100 501	-0.0632
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			nn 404-505	-0.0827	17.07	41.130	pp 651-503	0.9088
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			nn 404-505	0.0421			nn 431-532	0.0337
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			pp 411-312	0.0692			nn 301-402	-0.0329
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			pp 640-761	-0.1678			nn 422-523	0.0351
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			pp 532-651	0.0318			nn 523-413	-0.0431
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			pp 431-532	0.0341			nn 413-514	-0.0379
pp 503-404 0.0439 pp 501-402 -0.1280 nn 541-651 0.0321 pp 651-503 -0.4176 pp 550-660 0.0432 pp 312-413 -0.0319 pp 660-541 -0.0463 pp 532-431 -0.9760 17.10 3.187 pp 400-501 -0.0335 pp 431-512 0.9991			pp 402-503	-0.1864	17.07	153.524	pp 400-501	-0.8855
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			pp 503-404	0.0439			pp 501-402	-0.1280
12.46 12.265 pp 550-660 0.0432 pp 312-413 -0.0319 pp 660-541 -0.0463 pp 532-431 -0.0463 pp 431-512 0.09991			nn 541-651	0.0321			pp 651-503	-0.4176
12.46 12.265 pp 411-312 -0.0835 pp 523-633 0.0379 pp 532-431 -0.9760 17.10 3.187 pp 400-501 -0.0335 pp 431-512 0.9991			pp 550-660	0.0432			pp 312-413	-0.0319
pp 660-541 -0.0463 pp 532-431 -0.9760 17.10 3.187 pp 400-501 -0.0335 pp 410-501 -0.0335	12.46	12.265	pp 411-312	-0.0835			pp 523-633	0.0379
pp 532-431 -0.9760 17.10 3.187 pp 431-512 0.9991			pp 660-541	-0.0463			pp 400-501	-0.0335
••			pp 532-431	-0.9760	17.10	3.187	pp 431-512	0.9991

Tablo E.2 Devamı							
Е	BE1	Sevive Yapısı nn-	Genlik	Е	BE1	Sevive Yapısı nn-	Genlik
(MeV)	$(e^2 fm^2)$	pp	ψ	(MeV)	$(e^2 fm^2)$	DD	V
	. ,	nn 402-303	-0.0927	()	· /	nn 431-512	-0.9977
		pp 402-505	-0.0727	17.17	5.633	pp 420-501	-0.0365
		pp 051-552	-0.0404			pp 420-501	0.0376
		pp 413-303	-0.1090	17.19	0.521	pp 431-512	0.0370
		pp 402-303	0.0442			pp 420-301	-0.9990
		pp 303-404	-0.0605	- 17.21	9.855	nn 413-505	-0.9975
		nn 651-541	0.0390			pp /43-633	-0.0354
		nn 541-651	0.1270	17.01	1 017	nn 413-505	0.0380
		nn 422-523	-0.0382	17.21	1.217	pp 501-402	-0.0425
		pp 310-411	0.0635			pp /43-633	-0.9977
		pp 301-400	-0.0431			pp 310-431	-0.9852
		pp 550-660	0.1843	17.24	2.963	pp 400-501	0.0472
		pp 440-532	0.0520			pp 501-402	-0.1613
		pp 431-532	0.0381			pp 310-431	0.1691
		pp 420-521	0.0320			pp 400-501	0.1500
		pp 411-312	-0.3198	17.25	40.100	pp 321-411	0.0368
		pp 411-761	0.0336			pp 501-402	-0.9683
		pp 411-512	0.0718			pp 743-633	0.0468
		pp 640-761	0.0887	17 22	2 601	pp 321-411	0.9985
		pp 640-512	0.0410	17.32	5.001	pp 501-402	0.0420
		pp 400-301	-0.0843	17.27	7 (90	nn 422-503	-0.9844
		pp 660-541	-0.1802	17.57	7.089	pp 550-631	0.1713
		pp 651-541	0.0663	17.20	17 442	nn 422-503	0.1722
		pp 301-402	-0.1240	17.39	17.443	pp 550-631	0.9836
10.17	224.000	pp 541-651	0.0686	17.42	0.632	pp 633-505	-0.9996
12.47	224.899	pp 541-642	0.0361			nn 422-532	-0.0405
		pp 532-431	0.2150	17.46	4.507	pp 631-521	-0.9977
		pp 422-523	0.0591			pp 501-402	0.0325
		pp 422-512	-0.0794	17.51	3.4188	pp 330-411	-0.9996
		pp 411-512	-0.0376	17.80	2.336	pp 501-422	0.9997
		pp 402-303	-0.3612	17.92	0.423	pp 301-642	-0.9999
		pp 651-532	-0.2013		020	pp 321-420	0.0629
		pp 642-532	0.0450	18.00	3.422	pp 303-413	-0.9962
		pp 042 552	-0.0533	18.02	0.588	pp 303 419	0.9998
		pp 532-633	0.0401	10.02	0.388	np 420-541	-0.0507
		pp 332-633	0.0829			nn 512-431	-0.0357
		pp + 13 - 514	0.6187			nn 422 523	0.0536
		pp 413-303	-0.0187	18.09	28.224	nn 221 420	0.0550
		pp 402-303	0.1027			pp 321-420	0.9603
		pp 402-303	0.1601			pp 402-303	0.0092
		pp 033-525	0.0517			pp 525-655	0.0317
		pp 303-404	-0.2525			pp 303-413	0.0699
		pp 503-404	-0.0457			pp 633-734	-0.0488
		pp 413-514	-0.0338			nn 512-431	-0.9982
		pp 404-505	0.0401		3.079	pp 321-420	-0.0374
		nn 541-651	0.1214			nn 422-523	-0.0406
12.53	219.902	pp 310-411	0.0561			pp 321-420	0.0430
		pp 301-400	-0.0377	18.28		pp 431-312	-0.9927
		pp 550-660	0.1925	10.20		pp 402-503	-0.0660
		pp 440-532	0.0491			pp 523-633	-0.0558
		pp 431-532	0.0337			рр 633-734	0.0387
		pp 411-312	-0.2130		10.737	nn 440532	-0.0339
		pp 411-512	0.0631			nn 541-422	-0.0508
		pp 640-761	0.0765	18.37		nn 422-523	0.0934
		pp 640-512	0.0856			pp 321-420	-0.0579
		pp 400-301	-0.0718			pp 431-312	-0.0805
		pp 660-541	-0.1249			pp 402-503	0.1830
		pp 651-541	0.0605			pp 523-633	0.9642
		pp 301-402	-0.1049			pp 633-734	-0.0909

Tablo E.2 Devamı								
Е	BE1	Sevive Yapısı nn-	Genlik	Е	BE1	Sevive Yapısı nn-	Genlik	
(MeV)	$(e^2 fm^2)$	pp	ψ	(MeV)	$(e^2 fm^2)$	pp	ψ	
((******)	pp 5/1 651	0.0618	((*****)	nn 440 522	, 0.1104	
		pp 541-051	0.0018			III 440-332	-0.1104	
		pp 552-451	0.0321			nn 541-422	-0.1939	
		pp 431-532	-0.0494			nn 422-523	0.2108	
		pp 422-523	0.0516			nn 303-404	0.0385	
		pp 422-512	-0.0569			pp 321-420	-0.0770	
		pp 411-512	-0.0338	10 17	17745	pp 431-312	-0.0656	
		pp 402-303	-0.2518	18.47	17.745	pp 400-501	0.0426	
		pp 651-532	-0.2330			pp 501-402	0.0341	
		nn 642-532	0.0400			np 402-503	0.6455	
		pp 532-633	-0.0466			pp 642-512	-0.6090	
		pp 532 633	0.0343			pp 612 512	0.2131	
		pp 332-033	0.0343			pp 523-055	-0.2151	
		412-514	0.0721			pp 055-754	-0.2104	
		pp 413-503	0.7708			nn 440-532	-0.0865	
		pp 402-303	0.0950			nn 541-422	-0.1587	
		pp 402-503	0.1486			nn 422-523	0.1512	
		pp 633-523	0.0478			pp 321-420	-0.0516	
		pp 303-404	-0.2340	18.48	7.717	pp 431-312	-0.0422	
		pp 503-404	-0.0389			pp 402-503	0.5135	
		pp 404-505	0.0363			pp 642-512	0.7924	
		nn 631-501	0.9981	-		pp 523-633	-0.1284	
12.60	0.064	nn 640-512	-0.0545			pp 525 055	-0.1567	
		pp 040-512	-0.0343			pp 033-734	-0.1307	
		541 (51	-0.0372			111 440-332 541 400	-0.0731	
		nn 541-651	-0.1110	18.56	12.595	nn 541-422	0.9627	
		nn 642-532	0.0399			nn 422-523	0.0368	
		nn 752-633	0.0489			pp 402-503	0.2557	
		pp 550-660	0.0688	18 50	1/001	nn 440-532	0.9842	
		pp 640-761	-0.0515	10.39	14.001	pp 402-503	0.1727	
12.62	1.492	pp 640-512	-0.9647			nn 550-420	-0.0825	
		pp 431-532	0.0932			nn 440-532	-0.0634	
		pp 402-303	-0.0462		5.438	nn 411-301	0.0679	
		nn 651-532	-0.1082			nn 541-422	-0.0748	
		pp 001 002 pp 413-503	0.0375			nn 422-523	-0.5013	
		pp 413-503	0.0575	18.72		nn 221 420	-0.3013	
		pp 402-303	-0.0690	_		pp 521-420	0.0579	
		pp 303-404	-0.0614			pp 200-541	-0.0334	
		nn 550-660	0.0592			pp 402-503	0.4026	
		nn 530-631	-0.0405			pp 523-633	0.0463	
		nn 411-512	-0.0494			рр 633-734	0.7427	
		nn 651-541	0.1713		0.386	nn 411-301	0.9974	
		nn 541-651	-0.5170	18.77		nn 422-523	0.0435	
		nn 541-642	-0.0789			pp 633-734	-0.0574	
		nn 501-411	-0.0503	18.80	0.115	pp 422-503	-0.9999	
		nn 422-523	0.0581		154.725	nn 422-523	-0.7865	
		nn 402-503	0.0489			nn 422-312	-0.2089	
		nn 651 522	0.0402	18.82		pp 422-512	0.0605	
		nn 642 522	-0.0378			pp 402-303	0.0095	
10.51	100 447	nn 642-552	0.6173	10.05		pp 055-754	-0.5741	
12.71	480.667	nn 532-633	0.1617	18.85	1.111	pp 413-505	0.9997	
		nn 532-633	-0.0725	19.11	0.895	pp 422-503	-0.9999	
		nn 752-633	0.0394	19.16	1.103	pp 512-633	-0.9989	
		nn 413-514	-0.0607	19.19	0.341	pp 521-631	-0.9993	
		nn 402-503	-0.0337	19.35	0.198	pp 200-521	-0.9999	
		nn 633-523	-0.0766	19.66	0.845	pp 761-651	0.9992	
		nn 633-523	0.1318	17.00		pp 400-321	-0.0621	
		nn 404-505	-0.0745	19.77	1.213	pp 761-431	0.9974	
		nn 310-640	-0.0460			$\frac{pp}{400-321}$	_0.9076	
		pp 510-040	0.0400	19.80	0.611	pp 761 421	0.0620	
		pp 550-000	0.0381			pp /01-451	-0.0030	
		pp 640-761	-0.063/	19.83	0.094	pp 431-501	0.9998	
		pp 640-512	0.1737	19.86	6.451	nn 301-411	-0.0832	

		~	Tablo E.	2 Devami		~	Carlila
Е	BE1	Seviye Yapısı nn-	Genlik	Е	BE1	Seviye Yapısı nn-	Genlik
(MeV)	$(e^2 fm^2)$	pp	ψ	(MeV)	$(e^2 fm^2)$	pp	Ψ
		pp 761-651	0.0501			nn 303-404	0.0473
		pp 431-532	0.2385			pp 420-321	-0.9879
		pp 422-303	0.0601			pp 422-303	0.0842
		pp 651-532	-0.3177			nn 301-411	0.0495
		pp 402-503	-0.0969	19.90	0.046	pp 420-321	-0.0899
		pp 303-404	-0.0333			pp 422-303	-0.9945
		nn 642-532	0.0394			nn 301-411	0.9947
		nn 642-503	-0.0332	19.92	1.813	pp 420-321	-0.0808
12 72	2.055	nn 752-633	-0.9875			pp 422-303	0.0568
12.72	2.035	pp 640-512	-0.0498	19.95	3.733	pp 321-402	-0.9961
		pp 431-532	-0.0855			pp 512-431	0.0691
		pp 651-532	-0.0872				
		nn 651-541	0.0474				
		nn 541-651	-0.1320				
		nn 642-532	0.2683				
		nn 532-633	0.0564				
		nn 752-633	-0.0510				
	0.703	nn 633-523	0.0460				
		pp 310-640	-0.0631				
12.74		pp 550-660	0.3422				
		pp 440-532	0.0375				
		pp 411-312	-0.0526				
		pp 660-541	-0.0363				
		pp 651-541	0.0410				
		pp 301-402	-0.0421				
		pp 541-651	0.0404				
		pp 431-532	-0.0533	_			

ÖZGEÇMİŞ

Sevinc ALİYEVA, 01.09.1992'de Azerbaycan'da doğdu. İlk, orta ve lise eğitimini Mingeçevir şehir, N.Gencevi adına 8 numaralı tam orta okulunda tamamladı. Lisans öğrenimine 2011 yılında Bakü Devlet Üniversitesi Fizik Fakültesi Fizik bölümünde başladı ve 2015 yılında mezun oldu. Yüksek lisans öğrenimine 2016 yılında Sakarya Üniversitesi Fizik bölümünde başladı ve halen aynı bölümde yüksek lisans öğrenimi görmektedir.