
SAKARYA UNIVERSITY JOURNAL OF COMPUTER AND INFORMATION SCIENCES
VOL. 3, NO. 1, APRIL 2020

DOI: 10.35377/saucis.03.01.705777

MBBench: A WCET Benchmark Suite

Metin KUZHAN1, Veysel Harun ŞAHİN2
1Corresponding Author; Sakarya University, Institute of Natural Sciences, Department of Computer and

Information Sciences; metin.kuzhan@ogr.sakarya.edu.tr; ORCID: 0000-0001-6420-8327
2 Sakarya University, Faculty of Computer and Information Sciences, Department of Software Engineering;

vsahin@sakarya.edu.tr; ORCID: 0000-0002-3381-1702

Received 18 March 2020; Accepted 22 April 2020; Published online 30 April 2020

Abstract

One of the important features of any real-time software is the worst-case execution time (WCET). To get an
understanding of the timing behavior of real-time systems and to prove that the real-time software meets its
deadlines, WCET analysis is performed. Today, researchers actively develop new WCET analysis methods and
tools. Therefore, they need benchmark programs to evaluate and compare their work. To meet this need, in this
study we present a new benchmark suite, called MBBench. MBBench includes a collection of C programs for
Linux operating system and RTEMS real-time operating system. Its main aim is to help the evaluation and
comparison of measurement-based WCET analysis methods/tools. MBBench has been published as open source.
It can be obtained freely over the Internet.

Keywords: Real-Time Systems, Benchmark, WCET analysis, Software Engineering

MBBench: WCET Kıyaslama Kümesi

Öz

Herhangi bir gerçek zamanlı yazılımın en önemli özelliklerinden birisi, en kötü durum yürütme süresidir (WCET).
Gerçek zamanlı sistemlerin zamanlama davranışını anlamak ve gerçek zamanlı yazılımın son teslim tarihlerini
karşıladığını kanıtlamak için WCET analizi yapılır. Günümüzde araştırmacılar aktif olarak yeni WCET analiz
yöntemleri ve araçları geliştirmektedir. Dolayısıyla, çalışmalarını değerlendirmek ve karşılaştırmak için kıyaslama
programlarına ihtiyaç duymaktadırlar. Bu çalışmada, bu ihtiyacı karşılamaya yardımcı olmak amacıyla MBBench
isminde yeni bir kıyaslama kümesi sunuyoruz. MBBench, Linux işletim sistemi ve RTEMS gerçek zamanlı işletim
sistemi için C programları koleksiyonu içermektedir. Kıyaslama kümesinin temel amacı, ölçüm tabanlı WCET
analizi yöntemlerinin/araçlarının değerlendirilmesine ve karşılaştırılmasına yardımcı olmaktır. MBBench, açık
kaynak kodlu olarak yayınlanmıştır ve İnternet üzerinden ücretsiz olarak edinilebilir.

Anahtar Kelimeler: Gerçek Zamanlı Sistemler, Kıyaslama, WCET analizi, Yazılım Mühendisliği

1. Introduction

Today, real-time systems [1], [2] are widely used in many different areas from aviation to automotive
industry, from home appliances to health equipment. Large amount engineering and scientific study are
being held on real-time systems. One of the essential parts of any real-time system is real-time software.
Real-time software’s correctness depends both on producing the correct output(s) and meeting its
deadlines. Because of this, a crucial property of any real-time software is the execution time. Before
deploying any real-time system, the developers should prove that the real-time software meets its
deadlines. For this purpose, the worst-case execution time (WCET) of the real-time software is
calculated. The process of this calculation is called WCET analysis or timing analysis.

WCET analysis of real-time software is a hot topic in real-time research. Many approaches are proposed,
and new tools are developed actively. Detailed information and comparison of different timing analysis
approaches can be found in [3]–[7].

https://orcid.org/0000-0001-6420-8327
https://orcid.org/0000-0002-3381-1702

Sakarya University Journal of Computer and Information Sciences

Kuzhan et. al

41

One type of WCET analysis approaches is measurement-based approach. In this approach, firstly the
real-time software is run several times with different inputs on actual hardware or on architecture
simulator. During this phase, the execution time of each run is collected. Then this information is
processed by using various methods to inference about the WCET of the software. Readers can get more
information about measurement-based approach from [8], [9]. Researchers who develop these
approaches, need to evaluate their methods. They also need to compare the performance of their methods
against others’. During this evaluation and comparison, they need common programs. In other words,
they need benchmark programs.

In addition to WCET analysis methods, there are also WCET analysis tools. Main objective of these
tools is to ease WCET analysis procedure. There are currently several tools available, both commercial
and open source. For example Chronos [10], Otawa [11] and Heptane [12], [13], are open source WCET
tools. RapiTime [14] developed by Rapita Systems and aiT [15] developed by AbsInt are two
commercial tools. WCET tool developers also need benchmark programs to evaluate and compare their
software with others’.

The main motivation of this study is the need for benchmark programs for the evaluation of WCET
analysis methods and tools. For this purpose, in this paper we introduce the first version of a new
benchmark suite, named MBBench (MBBench 1.0). There are also different benchmark suites available
today for WCET community. We give detailed information about benchmarks in the next section. Each
benchmark addresses different aspects of WCET analysis. The principle aim of MBBench is to cover
the need for benchmark programs to evaluate measurement-based WCET analysis methods/tools. The
contributions of this study to the WCET community are listed below:

• This paper introduces MBBench benchmark suite which aims to help the evaluation and
comparison of measurement-based WCET analysis methods/tools.

• MBBench supports multiple platforms. It includes programs for Linux operating system [16]
and RTEMS real-time operating system [17] operating systems.

• MBBench includes multi-path programs.

• MBBench is published as open source. It is freely available over the Internet. Readers can access
the benchmark suite through the Sakarya University, Faculty of Computer and Information
Sciences, Department of Software Engineering, Real-Time Systems Research Laboratory
homepage [18].

Although MBBench specifically targets measurement-based WCET methods/tools, it can also be used
for the evaluation and comparison of other types of WCET methods/tools, real-time platforms and
computer systems.

The rest of the paper is organized as follows. Second section describes benchmarking and several
benchmark suites. Third section gives a detailed explanation of MBBench. In the fourth section, we tell
about our experiences and discuss the MBBench. The sixth section concludes the paper with the
information about future work.

2. Benchmark

Currently benchmark programs are used widely in computer science and engineering for several
different purposes like evaluating central processing unit (CPU) performance, measuring power
characteristics, timing analysis, testing network resources. In addition, they help the evaluation of
various computer systems, e.g. personal computers (PC), servers, virtualization platforms, real-time and
embedded systems, internet of things (IoT), mobile systems. Besides these they are also used to validate
and compare newly created methods/tools by researchers. Benchmarks are of vital importance for both
commercial organizations and research community. Therefore, many benchmark suites for several
different purposes are present both commercial and open source. In this section we explain some of the
benchmark suites.

Sakarya University Journal of Computer and Information Sciences

Kuzhan et. al

42

One of the well-known benchmark suites are developed by Standard Performance Evaluation
Corporation (SPEC) [19]. SPEC develops many kinds of benchmarks for different computing
environments and for evaluating different characteristics. For example, while SPEC CPU 2017 is used
to evaluate CPU performance of systems, SPEC SFS 2014 is used to evaluate the performance of file
servers.

Embedded Microprocessor Benchmark Consortium (EEMBC) [20] develop different types of
benchmarks specially for mobile and embedded systems. Some of them are IoTMark for IoT devices,
ADASMark for advanced driver-assistance systems (ADAS), and DENBench for digital entertainment
products.

Apart from these, there are individual benchmark suites developed by different scientific communities
for specific needs. For example, PARSEC benchmark suite [21] includes several applications to help
the study of chip-multiprocessors (CMPs). BigDataBench-S [22] is an open source benchmark suite that
focuses the evaluation of big data systems. The DaCapo benchmark suite [23] has been developed to
evaluate the Java platforms. It is open source and includes client-side Java programs. CDx [24] is
another benchmark suite specifically targets real-time specification for Java (RTSJ) [25].

As for the WCET analysis there are also several benchmark suites and applications are available. One
of the well-known WCET benchmark suite is the Mälardalen benchmark suite [26], [27]. It includes
several programs which have various programming constructs and properties. The programs in
Mälardalen benchmark suite are mostly single path and small programs mainly aimed at flow analysis.
They were written in C programming language.

PapaBench [28] is an open source benchmark application based on Paparazzi. Paparazzi is an unmanned
aerial vehicle (UAV) control application. PapaBench is also developed for the comparison of WCET
analysis methods/tools.

TACLeBench [29] is a benchmark collection which can be used in WCET research. As its name implies
it is a collection of several open source benchmark applications and suites like sequential benchmarks,
parallel benchmarks, real-life applications. The programs in TACLeBench are self-contained. The
inputs of the programs are embedded in the source code.

PBench [18], [30] is another open source benchmark suite. The objective of PBench is to provide parallel
benchmark programs for WCET analysis in the context of multi-core platforms. It includes both
sequential and parallel versions of each program to better help the comparison. It is developed in C
programming language.

3. MBBench

In this section we give a detailed explanation of the first version of MBBench benchmark suite
(MBBench 1.0). MBBench is an open source benchmark suite, designed and developed to help
measurement-based WCET analysis research. However, it can also be used for the comparison of the
other type WCET analysis approaches, real-time platforms and computer systems.

3.1 Method

In this section we explain the method which we followed during the MBBench study. Because it is a
software development project, we have four main phases: design, development, test, and publish.

In the design phase of the MBBench, we considered three design criteria which are listed below.

• programming language

• operating system

• algorithms

For the first criterion we decided to use C programming language, as it is widely preferred in the
development of real-time systems. All of the programs in MBBench is written in this language.

Sakarya University Journal of Computer and Information Sciences

Kuzhan et. al

43

For the second criterion we decided to support two different kinds of operating systems: Linux operating
system and RTEMS real-time operating system. This choice has two motives. The first one is the wide
usage of these two operating systems in both industry and academia. The second one is about RTEMS.
To the best of authors’ knowledge there are not many benchmarks available that target RTEMS. To
support both operating systems, we developed two versions of each program. We tried to write the
different versions of the same program as similar as possible for better comparison of different
platforms.

For the third criterion (algorithms), we first identified the requirements for the benchmark. The
requirements are listed below.

• Our main focus is measurement-based WCET analysis. Therefore, we need programs that take
inputs and operate on those inputs.

• Each program should include various program constructs (loops, decisions etc.).

• Each program should include several program properties (single-threaded, external routine
usage etc.).

• Programs should carry out operations on different data types (floating point, integer etc.) and
data structures (array).

• At least one program should include bit level operations.

Then depending on the requirements, we determined the features which we want to support. Afterward,
we gave an acronym to each feature for simplicity. The features are shown in Table 1.

Table 1 Features
Name Acronym Description

Single-threaded ST The program is single-threaded.
Multi-threaded MT The program is multi-threaded.

External routine ER The program uses external routine.
Single path SP The program always runs the same execution path in each run.
Multi path MP The program may follow different execution paths in each run.

Dynamic Memory DM The program makes dynamic memory allocation.
Loop L The program includes loops.

Nested loop NL The program includes nested loops.
Recursion R Recursive function calls are present.
Decision D Decision structures (if…else etc.) are used.
Array A The program operates on arrays.

Bit Level Operation BLO Bit level operations are present.
Floating Point Operation FPO Floating point operations are present.

Integer Operation IO Integer operations are present.
Input Vector IVEC The program takes a vector as input.
Input Value IVAL The program takes a single value as input.
Input File IF The program takes a file as input.

Later, taking into account those features we selected algorithms that will be implemented. The
algorithms were selected from well-known computer science problems. We selected algorithms in a
way that the implementation of each of them will require to use different sets of features. By doing this,
we aimed to create a benchmark suite that successfully represents all types of program structures and
properties.

After the planning phase we wrote programs in C programming language. Each program implements
one algorithm and thus solves one kind of problem. Also, each program has two versions for each
operating system.

The Linux versions of the programs in MBBench and the supported features are shown in Table 2. In
the table, rows indicate features, and columns indicate programs. A plus sign (+) in a cell means that the
program in that column provides the corresponding feature. A minus sign (-) means the feature is not

Sakarya University Journal of Computer and Information Sciences

Kuzhan et. al

44

supported. As seen in Table 2, we currently don’t support all the features we determined. In future
versions of the MBBench, we plan to cover more features by adding new programs

Table 2 MBBench 1.0 Programs (Linux version) feature matrix
Programs

Features

bo
ot

h

bu
ck

et
_s

or
t

ce
sa

r

co
un

tin
g_

so
rt

gc
d

hu
ff

m
an

kn
ap

sa
ck

m
er

ge
_s

or
t

m
ill

er
_r

ab
in

po
lla

rd
_r

ho

qu
ic

k_
so

rt

ra
bi

n_
ka

rp

ra
di

x_
so

rt

rs
a

st
an

da
rd

_d
ev

ia
tio

n

ST + + + + + + + + + + - + + + +
MT - - - - - - - - - - + - - - -
ER + + + + + + + + + + + + + + +
SP - - - - - - - - - - - - - - -
MP + + + + + + + + + + + + + + +
DM - - - - + - - - - - + - + - -

L + + + + - + + + + + + + + + +
NL - + - + + + + - - - - + + - +
R - - - - - - - + + + + + + + +
D + + + + + + + + + - + + + + +
A + + + + - + + + - - + + + - +

BLO + - - - - - - - - - - - - - -
FPO - - - - - + - - - - - - - + -
IO + + + + + + + + + + + + + + +

IVEC + + + + + + + + - - + + + + -
IVAL - - - - - - - - + + - - - - -

IF - - - - - - - - - - - - - - +

The RTEMS versions of the programs in MBBench, and the supported features are shown in Table 3.
In the table, rows indicate features, and columns indicate programs. A plus sign (+) in a cell means that
the program in that column provides the corresponding feature. A minus sign (-) means the feature is
not supported. As seen in Table 3, we currently don’t support all the features we determined. In future
versions of the MBBench, we plan to cover more features by adding new programs

Table 3 MBBench 1.0 Programs (RTEMS version) feature matrix
Programs

Features

bo
ot

h

bu
ck

et
_s

or
t

ce
sa

r

co
un

tin
g_

so
rt

gc
d

hu
ff

m
an

kn
ap

sa
ck

m
er

ge
_s

or
t

m
ill

er
_r

ab
in

po
lla

rd
_r

ho

qu
ic

k_
so

rt

ra
bi

n_
ka

rp

ra
di

x_
so

rt

rs
a

st
an

da
rd

_d
ev

ia
tio

n

ST + + + + + + + + + + + + + + +
MT - - - - - - - - - - - - - - -
ER + + + + + + + + + + + + + + +
SP + + + + + + + + + + + + + + +
MP - - - - - - - - - - - - - - -
DM - - - - + - - - - - + - + - -

L + + + + - + + + + + + + + + +
NL - + - + + + + - - - - + + - +
R - - - - - - - + + + + + + + +
D + + + + + + + + + - + + + + +
A + + + + - + + + - - + + + - +

BLO + - - - - - - - - - - - - - -
FPO - - - - - + - - - - - - - + -

Sakarya University Journal of Computer and Information Sciences

Kuzhan et. al

45

Table 3 MBBench 1.0 Programs (RTEMS version) feature matrix (cont.)
IO + + + + + + + + + + + + + + +

IVEC - - - - - - - - - - - - - - -
IVAL - - - - - - - - - - - - - - -

IF - - - - - - - - - - - - - - -

The compilation of Linux versions of the programs was performed by using GNU Compiler Collection
(GCC) 7.2.0. Both the compilation and test runs were executed on XUbuntu 17.10 linux distribution.

RTEMS versions of the programs were compiled with the cross-compilation tools bundled with RTEMS
5.0.0. Test runs were executed on SPARC emulator.

3.2 Details of Programs in MBBench 1.0

The programs in MBBench 1.0 is listed in Table 4. In the second column of the table we give the name
of the algorithm which the corresponding program implements. Each program implements one
algorithm that is well known in computer science. Interested readers can get more information about
algorithms from [31]. Booth’s algorithm can be found in [32]. In the third column of the table brief
descriptions of the algorithms and programs can be found.

Table 4 MBBench 1.0 Programs
Program Name Algorithm Description

booth Booth's algorithm Multiplies two single-digit positive numbers.
bucket_sort Bucket sort algorithm Sorts integers.

cesar Cesar algorithm Encrypts a string.
counting_sort Counting sort algorithm Sorts integers.

gcd Greatest common divisor Finds the greatest common divisor of two positive
numbers.

huffman Huffman code algorithm Compresses a string.
knapsack 0-1 knapsack problem Finds the maximum value that can be fitted in a backpack.

merge_sort Merge sort algorithm Sorts integers.
miller_rabin Miller-Rabin primality test Finds whether a number is prime or not.
pollard_rho Pollard rho algorithm Finds the multipliers of a number.
quick_sort Quick sort algorithm Sorts integers.
rabin_karp Rabin-Karp algorithm String matching algorithm.
radix_sort Radix sort algorithm Sorts integers.

rsa RSA Cryptosystem Encryption and decryption of a string.
standard_deviation Standard deviation Calculates the standard deviation.

3.3 Benchmark Directory Organization

In the repository, each benchmark program is stored in its own directory. The directory name is the
name of the program. Inside each program’s directory there two separate directories: linux and rtems.
As their name implies, linux directory includes the Linux version, and rtems directory includes the
RTEMS version.

In each version’s directory we provide the source code of the program with a “c” extension; a README
file which gives information about the program; a Makefile which helps the compilation of the program;
call graph and scope hierarchy graph of the program. A sample call graph of the Linux version of the
huffman program is shown in Figrue 1. In Figure 2, a sample scope hierarchy graph of the same program
is shown.

Sakarya University Journal of Computer and Information Sciences

Kuzhan et. al

46

Figure 1 Call graph of huffman program (Linux version)

Figure 2 Scope hierarchy graph of huffman program (Linux version)

4. Results and Discussion

In this work we have developed a benchmark suite and released its first version MBBench 1.0. It has
been published as open source. It is freely available over the Internet [18]. Research community can
freely obtain the benchmark and use it to their needs freely.

In this section firstly, we discuss the MBBench and other benchmarks. Then we share our experiences
and explain the problems we faced during the development.

4.1 Discussion of Benchmarks

The main motivation of this study is to help the evaluation and comparison of WCET analysis
methods/tools. There are several benchmark suites available to help WCET community. Each suite
covers different aspects of WCET analysis.

Mälardalen benchmarks are mainly focused on flow analysis and they have weak support for
measurement-based WCET analysis [27]. Main aim of MBBench is to help the evaluation and
comparison of measurement-based WCET analysis methods/tools. Especially the Linux version of
MBBench has strong support for measurement-based WCET analysis.

TACLeBench benchmarks include self-contained programs [29]. The inputs are embedded into the
source code of programs. On the other hand, Linux version of MBBench supports inputs from the
environment. 12 programs take input vector from command line, 2 programs take single input value
from command line and 1 program uses input file. RTEMS version MBBench does not support to take
input from command line and files. The inputs are hardcoded in these programs. The researcher needs
to change hardcoded inputs of RTEMS versions, for strong support of measurement-based WCET
analysis.

As the programs of MBBench Linux version get input from the environment, they can take different
paths during different runs. In other words, these programs are multipath programs.

Sakarya University Journal of Computer and Information Sciences

Kuzhan et. al

47

MBBench targets different operating systems: Linux and RTEMS. For this support, we developed two
versions of each program; one for Linux and one for RTEMS. We also tried to make different versions
as similar as possible.

PBench focuses on parallel benchmarks for WCET analysis [30]. It helps the evaluation of WCET
analysis methods/tools from multithreaded viewpoint. MBBench currently does not include parallel
programs. Both benchmarks support RTEMS operating system.

PapaBench [28] is based on an unmanned aerial vehicle (UAV) control application. From this viewpoint
it resembles an industrial real-time application. MBBench does not include real-time industrial
applications.

4.2 Experinces

4.2.1 Input Problem

Because of our main focus is measurement-based WCET analysis methods/tools, we concentrated on
the problems which need inputs during algorithm selection. We made those selections based on three
kinds of inputs: single input value (IVAL), input vector (IVEC), and input file (IF).

We have successfully implemented all of the algorithms in Linux versions of programs. 11 programs
use vectors, 2 programs use single values, and 1 program uses file as input.

However as stated above, RTEMS is a real-time embedded operating system. It is not designed to run
programs from command line, and to get inputs from command line environment. Therefore, we did not
use external command line inputs in the RTEMS versions of the programs. Instead, we hard coded the
needed inputs inside the program by hand. If researchers plan to use different inputs for RTEMS
programs they need to change inputs by hand and compile the programs before every run.

Also, as a result of this, Linux versions of the programs are multipath programs, and RTEMS versions
of the programs are single path programs. Linux versions of the programs can follow different paths
depending on the inputs. On the other hand, RTEMS versions of the programs always follow the same
path because inputs are hard coded. To change this behavior, researchers may follow the
abovementioned procedures.

4.2.2 Random Number Generation Problem

In booth, bucket_sort, counting_sort, gcd, merge_sort, radix_sort, and rsa programs we generate random
values in Linux versions successfully. But during our tests, we could not generate random values in
RTEMS versions of the programs. In each run of the programs the generated random values were the
same.

This is because of the emulator usage during the tests of RTEMS programs. Random value generation
is based on time information. In each run of the emulator, time information starts from a fixed value.
Also, the program code does not change between runs, and hence the random value generating
instructions persist at the same location of the program. Therefore, whenever a random value is
generated it is based on the exact same time information. As a result of this, the same value is generated
by the program in each run instead of different values.

Because of this, we decided to remove random number generation property in RTEMS versions of the
programs. We hard coded the values by hand. Because of this, if researchers plan to use different values
for RTEMS programs they need to change these hard-coded values by hand and compile the programs
before every run. Alternatively, if they work on a system which can get current time information or
some other kind of randomization source, they may consider adding randomize function in RTEMS
versions as well.

Sakarya University Journal of Computer and Information Sciences

Kuzhan et. al

48

5. Conclusions and Future Work

In this study we developed a benchmark suite to help researchers who work on measurement-based
WCET analysis. Although we focused on measurement-based approach, we believe that our benchmark
suite can also be used for other WCET analysis methods/tools. They also can be used for general
computer system benchmarking.

Because real-time and embedded systems become prevalent, we believe that scientific and engineering
studies will increase in this field. As a result of this, more and different kind of benchmarks will be
needed. Benchmark development will continue to be an important field in computer science.

Currently MBBench does not cover all the features we determined. In the future, we plan to add more
benchmark programs to better represent our feature matrix.

From operating system perspective, supporting more real-time operating systems can be a good addition
to MBBench. There are several open source real-time operating systems. For example, Zephyr [33] from
the Linux Foundation can be a good candidate.

From a programming perspective, supporting different programming languages like Ada, Java and some
functional programming languages may be very valuable.

Acknowledgments

The authors would like to acknowledge that this work is supported by the Real-Time Systems Research
Laboratory at Sakarya University, Faculty of Computer and Information Sciences, Department of
Software Engineering. The MBBench benchmark suite can be obtained from the Real-Time Systems
Research Laboratory homepage freely [18].

References

[1] G. C. Buttazzo, Hard Real-Time Computing Systems, 3rd ed., vol. 24. Boston, MA: Springer US,
2011.

[2] H. Kopetz, Real-Time Systems, 2nd ed. Boston, MA: Springer US, 2011.

[3] F. J. Cazorla, L. Kosmidis, E. Mezzetti, C. Hernandez, J. Abella, and T. Vardanega,
“Probabilistic Worst-Case Timing Analysis: Taxonomy and Comprehensive Survey,” ACM
Computing Surveys, vol. 52, no. 1, pp. 1–35, 2019, doi: 10.1145/3301283.

[4] R. I. Davis and L. Cucu-Grosjean, “A Survey of Probabilistic Timing Analysis Techniques for
Real-Time Systems,” Leibniz Transactions on Embedded Systems (LITES), vol. 6, no. 1, pp. 3:1–
3:60, 2019, doi: 10.4230/LITES-v006-i001-a003.

[5] J. Abella, D. Hardy, I. Puaut, E. Quinones, and F. J. Cazorla, “On the comparison of
deterministic and probabilistic WCET estimation techniques,” Proceedings - Euromicro
Conference on Real-Time Systems, pp. 266–275, 2014, doi: 10.1109/ECRTS.2014.16.

[6] J. Abella et al., “WCET analysis methods: Pitfalls and challenges on their trustworthiness,” in
10th IEEE International Symposium on Industrial Embedded Systems (SIES), Siegen,Germany,
pp. 1–10, 2015, doi: 10.1109/SIES.2015.7185039.

Sakarya University Journal of Computer and Information Sciences

Kuzhan et. al

49

[7] R. Wilhelm et al., “The worst-case execution-time problem—overview of methods and survey of
tools,” Transactions on Embedded Computing Systems, vol. 7, no. 3, pp. 1–45, Apr. 2008, doi:
10.1145/1347375.1347389.

[8] L. Cucu-Grosjean et al., “Measurement-based probabilistic timing analysis for multi-path
programs,” Proceedings - Euromicro Conference on Real-Time Systems, pp. 91–101, 2012, doi:
10.1109/ECRTS.2012.31.

[9] F. J. Cazorla et al., “PROXIMA: Improving Measurement-Based Timing Analysis through
Randomisation and Probabilistic Analysis,” Proceedings - 19th Euromicro Conference on
Digital System Design, DSD 2016, pp. 276–285, 2016, doi: 10.1109/DSD.2016.22.

[10] X. Li, Y. Liang, T. Mitra, and A. Roychoudhury, “Chronos: A timing analyzer for embedded
software,” Science of Computer Programming, vol. 69, no. 1–3, pp. 56–67, 2007, doi:
10.1016/j.scico.2007.01.014.

[11] Université of Toulouse, “OTAWA - WCET is coming...,” 2020. [Online]. Available:
http://otawa.fr. [Accessed: 17-Mar-2019].

[12] D. Hardy, B. Rouxel, and I. Puaut, “The Heptane Static Worst-Case Execution Time Estimation
Tool,” in 17th International Workshop on Worst-Case Execution Time Analysis (WCET 2017),
Dagstuhl, Germany, vol. 57, pp. 8:1—-8:12, 2017, doi: 10.4230/OASIcs.WCET.2017.8.

[13] Inria, “Heptane static WCET estimation tool - PACAP,” 2020. [Online]. Available:
https://team.inria.fr/pacap/software/heptane. [Accessed: 17-Mar-2019].

[14] Rapita Systems, “Rapita Systems | On-target software verification solutions,” 2020. [Online].
Available: https://www.rapitasystems.com. [Accessed: 17-Mar-2020].

[15] AbsInt, “AbsInt: Cutting-Edge Tools for Static Analysis of Safety-Critical Software,” 2020.
[Online]. Available: https://www.absint.com. [Accessed: 17-Mar-2020].

[16] Linux Kernel Organization, “The Linux Kernel Archives,” 2020. [Online]. Available:
https://www.kernel.org. [Accessed: 17-Mar-2020].

[17] The RTEMS Project, “RTEMS Real Time Operating System (RTOS),” 2020. [Online].
Available: https://www.rtems.org. [Accessed: 17-Mar-2020].

[18] Sakarya University, Faculty of Computer and Information Sciences, Department of Software
Engineering, “Real-Time Systems Research Laboratory homepage,” 2020. [Online]. Available:
http://rtsrlab.sakarya.edu.tr. [Accessed: 17-Mar-2020].

[19] Standard Performance Evaluation Corporation, “Spec - Standard Performance Evaluation
Corporation,” 2020. [Online]. Available: https://www.spec.org. [Accessed: 17-Mar-2020].

[20] EEMBC, “Embedded Microprocessor Benchmark Consortium,” 2020. [Online]. Available:
https://www.eembc.org. [Accessed: 17-Mar-2020].

Sakarya University Journal of Computer and Information Sciences

Kuzhan et. al

50

[21] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC benchmark suite,” in Proceedings of
the 17th international conference on Parallel architectures and compilation techniques - PACT
’08, New York, New York, USA, 2008, p. 72, doi: 10.1145/1454115.1454128.

[22] X. Tian et al., “BigDataBench-S: An Open-Source Scientific Big Data Benchmark Suite,”
presented at the 2017 IEEE International Parallel and Distributed Processing Symposium
Workshops (IPDPSW), Lake Buena Vista, FL, USA, 2017, pp. 1068–1077, doi:
10.1109/IPDPSW.2017.111.

[23] S. M. Blackburn et al., “The DaCapo benchmarks,” in Proceedings of the 21st annual ACM
SIGPLAN conference on Object-oriented programming systems, languages, and applications -
OOPSLA ’06, New York, New York, USA, 2006, p. 169, doi: 10.1145/1167473.1167488.

[24] T. Kalibera, P. Parizek, G. Haddad, G. T. Leavens, and J. Vitek, “Challenge benchmarks for
verification of real-time programs,” in Proceedings of the 4th ACM SIGPLAN workshop on
Programming languages meets program verification - PLPV ’10, New York, New York, USA,
2010, p. 57, doi: 10.1145/1707790.1707800.

[25] G. Bollella et al., The Real-Time Specification for Java. Addison-Wesley, 2000.

[26] J. Gustafsson, A. Betts, A. Ermedahl, and B. Lisper, “The Mälardalen WCET Benchmarks: Past,
Present and Future,” in 10th International Workshop on Worst-Case Execution Time Analysis
(WCET 2010), Dagstuhl, Germany, 2010, vol. 15, pp. 136–146, doi:
10.4230/OASIcs.WCET.2010.136.

[27] Mälardalen Real-Time Research Center, “The Mälardalen WCET Benchmarks,” 2013. [Online].
Available: http://www.mrtc.mdh.se/projects/wcet/benchmarks.html. [Accessed: 17-Mar-2020].

[28] F. Nemer, H. Cassé, P. Sainrat, J.-P. Bahsoun, and M. D. Michiel, “PapaBench: a Free Real-
Time Benchmark,” in 6th International Workshop on Worst-Case Execution Time Analysis
(WCET’06), Dagstuhl, Germany, 2006, vol. 4, doi: 10.4230/OASIcs.WCET.2006.678.

[29] H. Falk et al., “TACLeBench: A Benchmark Collection to Support Worst-Case Execution Time
Research,” in 16th International Workshop on Worst-Case Execution Time Analysis (WCET
2016), Dagstuhl, Germany, 2016, vol. 55, pp. 2:1—-2:10, doi: 10.4230/OASIcs.WCET.2016.2.

[30] S. Serttaş and V. H. Şahin, “PBench: A Parallel, Real-Time Benchmark Suite,” in Academic
Perspective Procedia, Alanya, Antalya, Turkey, 2018, vol. 1, pp. 178–186, doi:
10.33793/acperpro.01.01.37.

[31] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Algoritmalara Giriş (Üçüncü
Baskıdan Çeviri). Palme Yayıncılık, 2017.

[32] M. M. Mano, Bilgisayar Sistemleri Mimarisi (3. Basımdan Çeviri). Literatür Yayınları, 2015.

[33] Linux Foundation, “Zephyr Project homepage,” 2020. [Online]. Available:
https://www.zephyrproject.org. [Accessed: 17-Mar-2020].

