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ABSTRACT Today, the use of Ethernet-based protocols in industrial control systems (ICS) communications
has led to the emergence of attacks based on information technology (IT) on supervisory control and
data acquisition systems. In addition, the familiarity of Ethernet and TCP/IP protocols and the diversity
and success of attacks on them raises security risks and cyber threats for ICS. This issue is compounded
by the absence of encryption, authorization, and authentication mechanisms due to the development of
industrial communications protocols only for performance purposes. Recent zero-day attacks, such as Triton,
Stuxnet, Havex, Dragonfly, and Blackenergy, as well as the Ukraine cyber-attack, are possible because of
the vulnerabilities of the systems; these attacksare carried by the protocols used in communication between
PLC and I/O units or HMI and engineering stations. It is evident that there is a need for robust solutions that
detect and prevent protocol-based cyber threats. In this paper, machine learning methods are evaluated for
anomaly detection, particularly for EtherCAT-based ICS. To the best of the author’s knowledge, there has
been no research focusing onmachine learning algorithms for anomaly detection of EtherCAT. Before testing
anomaly detection, an EtherCAT-based water level control system testbed was developed. Then, a total
of 16 events were generated in four categories and applied on the testbed. The dataset created was used for
anomaly detection. The results showed that the k-nearest neighbors (k-NN) and support vector machine with
genetic algorithm (SVMGA) models perform best among the 18 techniques applied. In addition to detecting
anomalies, the methods are able to flag the attack types better than other techniques and are applicable in
EtherCAT networks. Also, the dataset and events can be used for further studies since it is difficult to obtain
data for ICS due to its critical infrastructure and continuous real-time operation.

INDEX TERMS Anomaly detection, EtherCAT security, ICS security, machine learning for EtherCAT.

I. INTRODUCTION
To ensure sustainability and maintain security, critical infras-
tructure networks need to be operated and monitored con-
tinuously. The critical infrastructure assets that provide this
structure are called industrial control systems (ICS), and
control of ICS is provided by supervisory control and data
acquisition (SCADA) systems. Since the components of ICS
applications have different requirements according to the
location in which they are used in automation, ICS need to
follow a defined hierarchical model. Previously, an automa-
tion hierarchy or computer-integrated manufacturing refer-
ence model was used.

The associate editor coordinating the review of this manuscript and
approving it for publication was Ana Lucila Sandoval Orozco.

Later, this became a modern structure known as the Pur-
due model, where the computer-integrated manufacturing
reference model levels were divided into zones and security
parameters were added [1], [2]. The Purdue model set out to
transform ICS, which were previously isolated networks, into
more robust structures, with protection against the potential
cyber threats that ICS face due to the recent integration of
operational technologies (OT) and information technologies
(IT). NIST recommends that security in the Purduemodel can
be enhanced by adding monitoring systems such as intrusion
detection/prevention systems (IDS/IPS), security information
and eventmanagement (SIEM) software, and log aggregators,
and by placing firewalls at all levels as a zone access point
for inter-regional communication and external access to the
zone [3].
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TABLE 1. Important cyber-events from past to present [4]–[9].

Table 1 presents some critical events and their results on
critical infrastructure systems in chronological order. Accord-
ing to a study in 2016, most of the attacks exploited vul-
nerabilities in level 2 (historian, engineering station, human
machine interface..), level 1 components of cell/field zones
(RTU, PLC), and the demilitarized zone (DMZ), in that
order [10]. Accordingly, vulnerabilities are most commonly
observed in devices where supervised control is provided,
and then on level 1 devices such as PLC, RTU, and DCS, and
then on the manufacturing zone. In addition, vulnerabilities
on network devices are observed to be quite high, which
leaves a door open to possible attacks using communications
infrastructure protocols [10].

The EtherCAT protocol, which is widely used in ICS
applications, supports all of the management, cell, field and
sensor/actuator levels in computer-integrated manufacturing
and meets all communication needs of level 0 to 5 in the
Purdue reference model. Due to its wide product range and
fast communication features, EtherCAT is used in many sec-
tors, especially in Europe; these sectors include energy, and
machine and building automation. The fact that the protocol
is Ethernet-based has enabled EtherCAT-based ICS to open
up to the outside world with the integration with TCP/IP
and many services such as web, FTP and mail which are
offered in IT. However, this integration has also made the
systems vulnerable to attacks over Ethernet. Furthermore,
this protocol does not include authentication, encryption and
authorization features like many other ICS protocols; the
data is transmitted in plain text and no security mecha-
nism exists at field level. Therefore, the EtherCAT proto-
col is exposed to IT-based, OT-based, and intrinsic attacks.

Thus, it requires a solution to protect against potential cyber
threats.

In this study, an EtherCAT-basedwater level control system
testbed was developed, and then the dataset was obtained
by generating events. The success and performance of the
machine learning methods on EtherCAT-based systems in
determining the presence and type of anomalies were eval-
uated. The main contributions are to develop an EtherCAT-
based testbed environment and dataset including attack
vectors, and to show the significant effect of the process-
based attacks. Since interventions in the ongoing process in
ICS are not desirable, most of the anomaly detection studies
in the literature apply well-known ICS datasets. In addition,
this study evaluates various machine learning methods that
are not applied to detect EtherCAT-based network anomalies.
There are few ICS studies in the literature based on the Ether-
CAT protocol. This study contributes to EtherCAT-based ICS
environments from a security perspective.

II. RELATED WORK
Before anomalies on the network can be detected, behav-
iors that are considered normal need to be defined [11].
Accordingly, the normal state of the network is represented
by a communications model of the relationships between
the fundamental variables, including all system dynamics.
An event or object with a certain degree of variation from the
formal model is an anomaly. In the literature, anomalies are
classified in many ways. Ahmed et al. categorized anomalies
as point, contextual and collective [12]. When a particular
instance of the flow deviates from the normal event, it is
considered to be a point anomaly. A contextual anomaly
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occurs when an instance behaves anomalously in a particular
context. If an event is not an anomaly by itself, but a col-
lection of similar events behaves anomalously, it is defined
as a collective anomaly. In addition, Barford and Plonka
defined anomalies in three groups: anomalies that are caused
by hardware/configuration changes or interruptions in the
network; anomalies that occur and disappear over time, such
as increased access to a website; and anomalies which derive
from manipulation of the network [13]. Similarly, Sestito
et al. stated that anomalies can be caused by four factors:
attacks, network operations, flash crowds, and measurement
errors [14].

In ICS, anomalies can be examined in two main groups:
protocol-based and system-based. Protocol-based attacks
usually occur through the exploitation of the specifications
of the protocol, such as segmentation errors, replay attacks,
stack overflows, and fragmentation attacks [15]. System-
based attacks can be seen as: database injection attacks
[16]; attacks on the PLC RAM where running programs and
registers are stored [17]; cryptographic attacks on network
devices; and memory overflow or privilege escalation attacks
on SCADA software.

In order to detect anomalies on the network, classification,
clustering, modeling, statistical, or rule-based techniques
are used. Traditional rule-based systems fail with zero-day
attacks because too many rules need to be written, and attacks
without a signature cannot be detected.Modelingmethods are
not suitable for intrusion detection of ICS, since a complex
model needs to be established. Implementing specification-
based solutions is difficult because documents and manuals
are inadequate or incomplete on complex ICS [18].

A large number of classification-based methods have been
reported in the literature for anomaly detection [18]. The key
to ICS anomaly classification is to propose a fast, scalable,
and robust solution. For classification, it is in practice difficult
to obtain data from the live systems of critical infrastructure.
Also, these datasets include attack data, but the data is not
well-defined and attacks cannot easily be identified. Thus,
the dataset needs to be created in a laboratory environment.
In this context, Junejo and Goh developed a water treat-
ment system test environment and generated ten process-
based attacks for dataset creation [18]–[24]. Also, Grosso
and Sparks proposed a methodology to produce test input for
intrusion detection [19], [20].Maglaras andYoo developed an
attack detection model, but attack vectors were not generated;
thus, performance metrics such as FNR (false negative rate)
and accuracy could not be evaluated [21], [22]. Antonioli
et al. developed honeypots, simulated ICS components, and
conducted gamified security competitions in order to create
datasets [23]. Ghaeini and Tippenhauer developed SCADA-
specific and general network attacks to test the HAMIDS IDS
proposal [24].

By integrating TCP/IP-based protocols into critical sys-
tems, vulnerabilities in traditional IT networks have been
moved to ICS, and this leads to an increase in zero-day
attacks [25]. This situation has led researchers to focus more

on anomaly-based studies [26], [27]. The anomaly detection
studies in IT have a high false-positive (FP) ratio due to the
highly variable traffic in the network. However, the cyclic
communication of ICS reduces this ratio. Sommer and Pax-
son stated that machine-learning methods, which are success-
ful in classification, could be used in the detection of attack
type rather than intrusion detection, and could also be applied
in small and medium networks [28]. It is possible to prevent
attacks such as code injection and denial of service (DoS)
if the valid commands and the frequency of the commands
are known [29]. Gao et al. performed DoS, man-in-the-
middle (MITM), and replay attacks on a water level control
system developed in the laboratory [30]. Another proposal
introduced by Ghaeini et al. is state-aware anomaly detection
based on CUSUM computation. The proposal was evaluated
on a water SWAT (secure water treatment testbed) [31]. Then,
the authors applied anomaly detection based on an artificial
neural network (ANN) using a back-propagation algorithm,
which takes water level, response frequency and water tank
pump on/off state as input. Similarly, Linda et al. generated
synthetic attacks using Nmap, Nessus, and Metasploit tools
on a control system developed in the laboratory environment
and detected the attacks by applying artificial intelligence
[32]. These detections were carried out by using the attributes
of IP address, interarrival time, number of protocols used,
flag code, and total data length; the amount of these data
stored was limited to the window size. However, the study
was an overview, and semantically insufficient. Ibrahim per-
formed intrusion detection using a supervised ANN model
with distributed time-delay neural networks [33]. The study
was compared with the detection rates of other ANN-based
studies. In another example, Yang et al. performed anomaly
detection using autoassociative kernel regression (AAKR)
and a statistical probability ratio test (SPRT) in a test envi-
ronment [34].

It can be seen from the literature that machine learning
techniques have not been previously applied to EtherCAT
protocol-based ICS for anomaly detection. There are only
two studies focusing on anomaly detection of EtherCAT;
however, the proposals are rules-based solutions [35], [36].
Furthermore, the EtherCAT protocol also has weaknesses due
to the fact that it is Ethernet-based and does not have encryp-
tion authentication and authorization mechanisms. With this
motivation, in this study, a dataset was created with attack
vectors generated on an EtherCAT-based water level control
system. Anomaly and attack type detections were evaluated
applying various classification techniques.

III. ANALYSIS OF MACHINE LEARNING METHODS IN
ETHERCAT-BASED ANOMALY DETECTION
The study comprised: creation of the testbed environment;
development of the PLC program for a continuous process
on the system; creation of a dataset based on the events
generated; determination and reduction of the attributes; and
finally, analysis of the machine learningmethods for anomaly
detection in EtherCAT networks. The goal of the testbed
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TABLE 2. Testbed components.

FIGURE 1. Testbed control devices.

FIGURE 2. TwinCAT diagram.

is to emulate real-world ICS as closely as possible without
replicating an entire plant. The anomaly detection part of
the study also helps to make those systems more resilient to
various security threats.

A. TESTBED
A water level control automation system was created for
testing purposes. The first six components in the test envi-
ronment shown in Table 2 are Siemens devices, and the rest
is Beckhoff equipment. The communication was carried out
via PROFIBUS and EtherCAT protocols. In order to con-
vert the PROFIBUS system into EtherCAT communication,
components 8-11 were added to the system. Fig. 1, which
includes field and factory levels and two different commu-
nication protocols, and Fig. 2, which shows actuator/sensor
level components, complement each other in demonstrating

FIGURE 3. Water level control automation components.

the OT and IT relationship. Although the PLC program of
the testbed runs on EtherCAT, the I/O units that perform the
job are PROFIBUS-based. Fig. 1 shows the hardware with
which the EtherCAT and PROFIBUS protocols communi-
cate. The EL6731 module was used to convert the packets
from the EtherCAT protocol to the PROFIBUS protocol, and
vice versa. The ET2000 device was used to monitor incom-
ing/outgoing communication packets over a single uplink
channel.

PLC programming and all configurations were made by
the operator computer with TwinCAT installed (Fig. 1).
The CX5010 PLC sent commands to the I/O units of
the PROFIBUS system (Fig. 1, Fig. 3) with the help of
the EL6731 module. The pump motor was connected to the
Micromaster 440 drive. Other I/O units were connected to
sensors.

The actuator/sensor-level components controlled by the
Micromaster 440 drive and other I/O units are shown in Fig. 2.
To control the water level, two tanks (TK-1001/TK-1002),
two level sensors (LT001/LT002), two temperature sen-
sors (TT001/TT002), two electric (VL002/VL004) and two
solenoid VL001/VL003) valves, one water heater (E-1001),
and one pump (P-1001) were used.

B. WATER LEVEL CONTROL AUTOMATION
To control the water level between the tanks, a PLC program
was developed and downloaded to the CX5010. Accordingly,
when the system was first energized, the water level of each
tank was measured by collecting the sensor values. The
automation moves to the starting position to flow water from
the tank with the larger amount of water to the other. At first,
appropriate valves are opened (solenoid and electric valves),
then the pump state is changed from ready to operation (start
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TABLE 3. Events.

command: 0x00207F0C). The pump, which is operated at
2,000 rpm,works until thewater level of the tank is at 5%. The
pump then goes to the ready state (P-1001 stop: 0x00007E04)
and the valves (VL002-VL003 or VL001-VL004) are closed.
The system stands by for about 15 seconds and then starts
to move in the opposite direction to the previous operation.
Thus, a cycle is completed and a continuous process is created
for testing purposes. Scaling is carried out for water-level
information gathered from sensors, and the data obtained was
converted to the range 0-100 (LO_LIM, HI_LIM) using the
following formula:

OUT = [((FLOAT(IN)− K1)/(K2− K1)) ∗ (HI_LIM

−LO_LIM)]+ LO_LIM

The sensors send input values in a unipolar format. There-
fore, the input values obtained ranged from 0 to 27648 such
that K1 = 0.0 and K2 = +27648.0. In addition, the data
obtained from the PROFIBUS environment, excluding driver
data, was converted into a little-endian format, which is used
by TwinCAT PLC.

C. EVENT GENERATION
Using the testbed, a dataset was created from the system
which was later used for intrusion detection. To generate the
dataset, 16 events were created, including 15 different attacks
and normal system behavior (Table 3). In Table 3, attacks are
formed into four different groups:

-G1: Events that occur in the network due to hardware,
configuration changes or interruptions.

-G2: Anomalies that have arisen over time due to agglom-
eration, such as a sudden increase in access to a software-
based system or website but calm down over time.

-G3: Anomalies caused by measurement errors.
-G4: Abuse of network.
These groups of attacks may affect four different struc-

tures: the system, tank level, and incoming and outgoing
flows. To obtain normal network traffic, the system was run
for one hour and the event is represented as A0. For state
machine manipulation, OP status was changed respectively
to INIT, PREOP, SAFEOP, and to OP status again. For a link
failure event, connection to I/O units was interrupted, and

then connection was reactivated. In addition, for A14, a PLC
program which runs the motor connected to the drive was
developed, and the system behavior was captured during the
program download to the PLC. To monitor the system, the
ET2000 probe device was placed between the EL6731 mod-
ule and the PLC.

There are 14 different types of attack and unexpected event.
Small events such as ‘‘link failure’’ could have a greater
meaning when combined with other events. For instance,
advanced persistent threat (APT) attacks are targeted attacks:
they start with the discovery of the topology and try to copy
themselves to the nodes in the network, which have a con-
nection to the engineering station. Then, the complex part of
the attack starts. Thus, even APT attacks begin with simple
steps for activation. APT detection solutions try to detect
both simple and complex events within the same solution.
Our goal is to detect as many events as we can (attacks and
other possible events occurring in the use case) and present
a holistic view of the detected attacks to the user to assist in
further influencing the outcome.

D. STATISTICAL IDENTIFIERS, ATTRIBUTE SELECTION AND
REDUCTION
A three-step process was applied to identify and reduce the
attributes in the dataset.

1) WIRESHARK POST-DISSECTOR DEVELOPMENT
The dissector written in Lua converts all events to the appro-
priate format for further processing. When this extension
was activated, commands, padding data, data lengths, and
registers used in the PCAP records were parsed and presented
in the top panel. Thus, statistical values were identified for
each packet (Table 4).

2) ATTRIBUTE DETERMINATION
The packets were exported in.csv format over Wireshark
and input to a program developed for further parsing. The
program took the packets’ attributes given in Table 4 and
evaluated the total and average values in a predefined win-
dow. Window size was taken as one second. Selecting a small
window sizemakes it difficult to capture attacks, while select-
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TABLE 4. Attributes used in the analysis.

ing a large window size will cause packets in the previous
or next cycle to be added to the present cycle. In addition,
a large window size decreases the impact of unit statistics on
frames containing attacks. The descriptions of the EtherCAT
commands in Table 4 are given in Table A5, Appendix. More
details on standard EtherCAT protocol commands can be
found in [36].

3) ATTRIBUTE SELECTION
In order to determine the effect of the attributes on the
attack vectors and normal behavior for each event, dominant
attributes were determined and unnecessary ones eliminated.
Most of the attributes are formed by EtherCAT protocol com-
mands as they are used for read/write data. For the selection,
attribute size was reduced by using regression analysis.

Descriptive statistics in the dataset for the one-second win-
dow size are given in [Table A1, Appendix]. The statistics

are mostly EtherCAT commands and some other properties
such as summation, average, group, or attack type. In the
statistics, it can be seen that APRW command (Attributes 15,
16), FPRW command (Attributes 21, 22), BRW command
(Attributes 27, 28), FRMW command (Attributes 37, 38),
LWR command data (Attributes 43, 44), APRD command
data (Attributes 45, 46), APRW command data (Attributes
49, 50), FPRW command data (Attributes 51, 52), and BRW
command data (Attributes 53, 54) contain no information.
Thus, the attributes were initially reduced to 32 by removing
relevant attributes from the dataset. After this stage, to select
the remaining attributes, a regression equation was applied
using two different approaches: single event-based, and all
events-based representative dataset. In this way, the signifi-
cance of each attribute could be evaluated from both event-
based and total dataset perspectives. In selecting an attribute,
the significance of a variable was determined by the p-
value [37]–[39].

1. Single event-based dataset: Sub-datasets were pre-
pared for each attack situation. Each dataset had only attack
or non-attack status. Accordingly, appropriate variables were
found for each attack [Table A2, Appendix]. The most signif-
icant variables based on the attacks are Sum LRW data, Sum
ARMWcommand, SumAPRD command, SumAPWR com-
mand, Avg LRW data, Sum FPRD command, and SumPack-
etLength attributes.

2. All events-based sample dataset: A sample dataset
containing all attack and normal behaviors was randomly
formed from the main dataset. Significant variables were
determined by a regression equation. In the sub-dataset,
180 data were studied with the most significant 32 attributes.
The attributes were reduced to 11 by removing insignificant
ones using regression. Then, the regression equation was
reconstructed by adding the attributes that were significant
in the first step to the reduced 11 attributes. The overlapping
and insignificant attributes were removed from the equation.
The regression resulted in a new model with 10 attributes,
which was derived from previous models and is shown
in Table 5. At the end of the regression equation, SumPad-
Byte, SumPacketLength, Sum FPWR command, Sum BRD
command, Sum LRD command, Sum LRD command data,
Sum LRW command data, Avg NOP command data, Avg
LRD command data and Avg LRW command data attributes
were found as significant in determining the attack and nor-
mal behavior events. The correlation coefficient of the equa-
tion is 0.837. This finding shows that the relationship between
the attributes and the attacks is strong. Similarly, the signifi-
cance level of the equation was found to be 1.2×10−19. This
shows that the level of significance is very close to zero, and
the equation is statistically significant.

When single event-based and all event-based sample
datasets are compared, Sum LRW attribute is found to be
critical. In all models, this variable has a high level of signifi-
cance (P<0.1). In addition, SumPadByte, SumPacketLength,
Sum FPWR and Sum BRD attributes are found to be signifi-
cant in both cases.
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TABLE 5. Regression equation for sample dataset and significance of attributes.

TABLE 6. Dataset distribution.

IV. ATTACK DETECTION ON THE WATER-LEVEL CONTROL
AUTOMATION
This section describes how attack detection was performed
using the attributes obtained from the regression analysis. The
results of the 15 different attacks are also presented. A total
of 5348 data (5348 seconds) was divided into two parts:
70% training and 30% test which is a commonly accepted
distribution in the literature. The training dataset consisted
of 3744 data, where 94 were attack and 3653 were normal
network traffic data. On the test side, the dataset comprised
43 attack and 1565 normal behavior data. The random sam-
plingmethodwas chosen for the separation of the training and
test datasets, but the attack data was divided into two, since
each attack should be present in both the training and test
datasets. For example, if an attack has 15 data, 11 are included
in the training dataset, and four are included in the test dataset.
Because the number of data of some attacks is very low,
the same attack exists in both datasets. The summary of the
data is shown in Table 6.

Using the dataset, 18 different techniques were applied
for anomaly detection by using the RapidMiner, Weka,
MATLAB and Excel programs for the models [Table A3,
Appendix]. Among the techniques used, the worst results
were obtainedwith the classification by polyregression (accu-
racy 0.11%, recall 0%). The results of four techniques were
salient and gave better results than others; these are ANN,
decision trees, support vector machine with genetic algorithm
(SVM GA), and k-nearest neighbor (k-NN).

A back-propagation algorithm was used in ANN, and the
training cycle was 500 iterations. The learning coefficient was
0.3 and the moment value was 0.2. The target error value
was set to 0.00001, and the entire dataset was normalized
in the range [−1 1]. ANN was applied with a single layer
using 80 neurons and a sigmoid type of activation function
was selected.

In the decision trees, the decision to branch the tree was
determined according to the gain ratio. Since the maximum
depth of the tree could be memorized if it was unlimited,
it was decided to set it low enough not to be memorized but

large enough to detect the attacks; the value was determined
to be 20. In order to prevent expansion in the tree, pruning
is also important. The pruning limit was set at 0.25 and an
optimistic model created. The lowest gain was taken as 0.1.
This value was calculated before the node was split; if the
gain was less than this value, the node branching was done by
division. After fragmentation, the minimum data size of each
leaf was taken as four. This is because attacks range from 1 to
32 data. If this value is high, the attacks cannot be determined.
If it is very low (e.g., 1), the tree branches out more.

Another technique used was SVM GA. For SVM,
the radial kernel was selected. The radial core was defined as
e(−g||x−y||2). Here g indicates the gamma value. The corrected
gamma parameter is the most important parameter in the core
performance and needs to be carefully determined depending
on the problem. On the GA side, the initial population was
randomly assigned and a maximum of 10 000 generations
produced. If there was no improvement in more than 30 gen-
erations, the algorithm stopped as there could not be any
progress. GA selection was made by the tournament method
and the fraction value was 0.75. GAmutation type was Gaus-
sian. The possibility of crossing was taken as 1.

The last technique, k-NN, is simpler than the other three
methods and is among the most basic. Two attributes take
the form of a plane and three attributes take the form of a
volume structure, while the four and above attributes have no
geometric representation. Here, as the number of attributes
increased, more accurate results were obtained. In k-NN,
the grouping was calculated by Euclidean distance using the
attributes.

V. RESULTS AND CONCLUSION
The estimation of whether an attack exists or not is binomial
behavior. Therefore, predictions can be shown as a binary
classification. In binary estimation, classification is catego-
rized into accuracy, precision, and recall. For binary classi-
fication, these approaches are determined using the sample
confusion matrix. There are four cases in the matrix:

- True Positives (TP): Actual attack, predicted as attack
- True Negatives (TN): Actual non-attack (normal network

traffic) and predicted as non-attack
- False Positives (FP): Actual non-attack, predicted as

attack, (also known as Type I error)
- False Negatives (FN): Actual attack, predicted as non-

attack (also known as Type II error) On this basis:
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TABLE 7. Prediction results of models.

- Accuracy = TP + TN (true estimations in both classes) /
all data

- Sensitivity = (TP) / (TP + FP)
- Recall = TP / (TP + FN)
Accordingly, the results of the four models are shown

in Table 7. It can be said that decision trees give the lowest
performance among the four techniques. The reason is that
the number of data per leaf should be at least four in the tree
structure. This rule classifies network data rows with similar
attributes. In other words, some of the four rows of data may
be attack, some may not be attack, and this resulted in lower
value in terms of accuracy and precision than others. Another
important part of the tree structure was the tree depth limit,
which was 20. This limit prevented the tree from having too
much depth, and thus prevented the fragmentation of data
and the interpretation of smaller data. However, it should be
noted that the accuracy of 98.17Compared to the other three
models, it has an accuracy of approximately 1.6and SVMGA
give better results, respectively. The results for ANN are close
to those of decision trees but more reasonable. The use of a
single hidden layer as a network model and the model setup
with 80 neurons led to lower learning accuracy compared
to SVM GA and k-NN. The fact that the training iteration
value was 500 may also have caused the process to end before
the training was completed but considering the number of
neurons, it seems that 500 iterations are suitable for training.
In the SVM GA model, the results were better than the other
two models because of the 10 000 generations. Thus, the GA
solution cluster begins to optimize over a wider range; it
optimized the solution cluster range in less time and spent
more effort while finding a lower error. The k-NN model
gave the best predictions and correctly determined all of the
attacks. The reason is that it can reach as many dimensions
as the number of attributes. In k-NN, for each sample value,
the single nearest value is examined. The sample is included
in the class of the closest value (attack or normal traffic). If the
two nearest samples were selected, they would not be able
to perform the correct grouping when the two samples were
from different classes. Therefore, the closest single sample
selection is more appropriate, thus ensuring high accuracy,
recall and precision values. Furthermore, with the large num-
ber of dimensions, the attack states could be divided into areas
of different dimensions; thus, all attacks and normal traffic
could be identified.

The prediction results showed that the attacks could be
flagged in four models with high accuracy. For ICS networks,
it is also important to determine the attack type. As a further
output of the study, the results of the attack type predictions
are shown in Table 8 and Fig. 4.

TABLE 8. Attack type prediction results of models.

FIGURE 4. Surface graphic of estimation results by attack type.

All four models correctly predicted normal network traffic.
The A1 attack was correctly identified by only the k-NN
model. The important point here is that the A1 attack has
only one data which makes it difficult for models to predict.
Although there is one data in the A2 attack as well, both the
k-NN and SVMGAmodels made accurate predictions. It can
be seen that the attribute Sum LRW (Data5) is important in
the A2 attack type [Table A2, Appendix]. In the A3 attack,
SVM GA found half of the attacks, while the remaining
attacks were grouped as normal network traffic. Again, for
the A3 attack, k-NN was able to identify all the attacks.
ANN and decision trees could not determine A4, A5, A6,
A7, A8, A9, A10, and A12 attacks correctly. The reason for
this is that the diffraction size of the classifiers is not good
enough in models other than k-NN and SVM GA. For the
A4 attack, the SVM GA model predicted half of the attacks
correctly, while the remaining 80% of attacks were classified
as A3, and 20% were classified as A1. In the A5 attack,
SVM GA determined half of the attacks correctly. However,
in some cases, it classified the same attack as A1, A4, and
A6. For A6, SVM GA determined the event as an attack
but the method could not classify the attack type correctly
(classified as A1 and A2). The situation with A7 was similar,
where 22.22% of the data was correctly grouped and the
remaining 77.78% of the data classified as normal network
traffic, A2, A5, and A6 attacks. 57.14% of the A8 attack was
classified correctly and the rest was identified as A6 or A7.
In A9 attacks, 34.38% were correct estimations, 34.3817%
were A7, 8.5% were A6, and the remaining estimations were
A4. In fact, the method found the presence of attack correctly
but could not determine the exact type. 14.29the A10 attack
was classified as A8 by SVM GA. The worst performance
on the A11 attack classification was obtained with SVMGA.
While ANN, decision trees and the k-NN model found all
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A11 attacks, SVM GA identified 14.29 of these attacks as
A10 attacks. In the A12 attack, SVM GA determined attack
type as A8, though it did flag the event as an attack. ANN
and k-NN correctly identified all attacks of A13. Decision
trees determined 7.14% of A13 attack data as normal network
traffic, whereas SVM GA classified 57.14% as A15 and
7.14% as A7 attack type. While the decision trees identified
the A14 attack as normal network traffic, ANN determined
14.28% of the attack as A12 and 28.56% as normal network
traffic. The SVM GA model grouped 14.28% of A14 attacks
as A11 and 28.56% as A12. Similarly, 8.33% and 8.33% of
A15 were classified as A11 and A13.

In general, themost accurately predicted events in intrusion
detection models are normal network traffic, A11, A15 and
A13, respectively. Then, the prediction performance is A2,
A10, A8, A4, A5, A3, A9, and A7 events, respectively.
The models showed the worst performance in A1, A6, and
A12 attacks. The main reason for poor prediction is that the
number of data to be estimated was very low in these events.

Fig. 4 shows the thermal graph presenting the rate of cor-
rect prediction of the attack type according to the techniques.
The red areas show the accuracy of the grouping estimations
and the dark blue areas show the false grouping. Accordingly,
it is clear that the k-NN and SVM GA models perform better
than ANN and decision trees. ANN and decision trees, espe-
cially in the A1 to A10 range and the A12 attacks, performed
poorly in determining the attack group.

Results show that accuracy, precision, and recall rates are
acceptable when compared to previous studies; [14] and [18]
are the most similar studies in terms of applied algorithms
and testbed environment. In [14], accuracy was found to be
between 92% and 99% for various ANNmodels, whereas the
highest accuracy was found to be 100% with k-NN in our
work. In [18], anomalies on the water management testbed
were found by applying algorithms such as Best-first tree
(BFTree), ANN and SVM. The best results were obtained by
BFTree with a detection rate of 99.72%. In our study, while k-
NN has the best accuracy of 100%, the decision trees method
was applied and 98.17% accuracy was achieved. In [18],
performance values are found to be 98.24% accuracy, 98.40%
precision, and 98.20% recall rates with ANN, whereas our
study has 98.28%, 100%, and 98.27%, respectively. SVM
performance is also similar, with98.71% accuracy, 98% pre-
cision and 98.7% recall in [18], compared with 99.81%
accuracy, 100% precision and 99.81% recall in our work.
The techniques and results used in the comparative studies
are in line with our study. As in other studies, the testbed
environment was developed with the physical and control
components of a real process. Unlike other studies, EtherCAT
was used as the communication protocol. We conclude that
anomaly detection can be performed with machine learning
techniques in EtherCAT protocol-based systems, which is one
of the critical infrastructure systems where it is difficult to
obtain datasets by their nature.

In [36], the trust node communication approach was
proposed; this relies on detecting intrusions coming from

unapproved nodes in the network. However, there might be
anomalies sourced from the trust nodes as well. This study
fills the gap in anomalies based on approved nodes and thus
the anomaly detection is considered holistically.

VI. FUTURE WORK
Future work, the most successful model among the applied
methods can be integrated into a previously developed
EtherCAT-based IDS system [36], which will determine
anomalies in real-time packets. Another possible area of
work is to improve the proposal to detect possible malicious
activities on acyclic EtherCAT traffic. The challenge in this
work is that the variability of the pattern in the acyclic ICS
factory-level communication is greater than it is in field
communication.
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