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Abstract: This study proposes a new algorithm for air target radar imaging by taking the geometrical and processing
advantages of array antenna systems. The backscattered signal is processed with a new technique to benefit the facilities of
angular scanning. In order to virtually increase the number of the radar elements of the array system, a powerful optimal
estimator is employed, namely Kalman filter.

1 Introduction
As an imaging idea, the usage of radio waves is one of the most
sophisticated signal processing challenges. Radars are being used
for detection and tracking since the Second World War. By dint of
radar techniques advancement, the reach of higher bandwidths
enabled the radars to have an ability of imaging.

Radar imaging techniques consider the radar image as a
mapping of the scatterer densities of the target. This property
makes the use of density distribution functions useful. Like an
illuminated object with visible light, the consideration of the
distribution function and the denser reflectors parts give more
powerful backscatter and display higher peaks on radar image.

In this paper, the previous approaches and the proposed method
are explained with details. The schematic representations,
formulations, and simulation are achieved. The obtained results
and conclusion are given [1–3].

The rest of the paper is organised as following. In Section 2, an
overview of radar imaging approaches is given. The Kalman
estimation and use of Kalman in array imaging are explained in
Sections 3 and 4, respectively. Section 5 is focused on the
implementation and results part. Finally, the conclusion is given in
Section 6.

2 Radar imaging approaches
Radar imaging techniques are well studied and matured topics in
the radar literature such as [3–10]. The method that is considered in
this chapter represents an active sensor array imaging with
variables R and β, where R is range and the β = cos(θ) (i.e. cosine
of the scanning angle θ). The defined function G(R, β) [11]
represents the intensity of the signal echoed from the point at R
range and β as a function of the scanning angle θ. Imaging scenario
can be seen in Fig. 1. 

For a p(t) signal, modulated sent signal is

sm(t) = p(t)sc(t) (1)

Thus, the echoed signal from a G(R, β) point of target scene
becomes;

sr(x, t) = sm(t − βx/c − 2R/c)g(β, R) (2)

If the backscatter considered for entire imaging plane,

Sr(x, t) = ∫
−1

1

∫
0

R1 p(t − βx/c − 2R/c)

× e− jωc(βx/c + 2R/c)ejωctg(β, R)dRdβ
(3)

by considering entire array, backscatter collection becomes [11–
14];

sr(x, t) = ∑
k = − ∞

∞

Ake
j(ωc + kω0)t ×

∫
−1

1

∫
0

R1

e− j(ωc + kω0)(βx/c + 2R/c)
g(β, R)dRdβ

(4)

In the next step of the algorithm, the sent signal is extracted from
the backscatters by making demodulation with sd(t), to obtain
information of target.

sd(t) = e− j(ωc + kω0)t /Ak (5)

Sk(x) = ∫
−∞

∞

∫
−∞

∞e− j(ωc + kω0)βx/ce− j(ωc + kω0)2R/c

× g(β, R)dRdβ
(6)

By taking ak as

αk = (ωc + kω0)
1
c

(7)

then, the equation becomes;

Sk(x) = ∫
−∞

∞

∫
−∞

∞

g(β, R)e− j(xβ + 2R)αkdRdβ (8)

For the mapping of G(R, β) target density function, the PSD-
autocorrelation function relation that is provided by ambiguity
function is used [13]. Therefore, the result becomes;

S(ω) = ∫
−∞

∞

A(t, ω)e j(ω/2)tdt (9)

G(R, β) = ∫
−∞

∞

sm t −
τR

2
sn t +

τR

2
ejβtdt (10)

for τ = r /2c.
where A(t, ω) is the notation of ambiguity function that includes

other operations and properties of this algorithm [11–13].
An alternative reconstruction method is represented in [14], that

is successful at obtaining the density functions G(R, β), by
employing the modified Radon transform–Fourier slice theorem
that detailed below, in (11) (Fig. 2).
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Sk(x, 1) = ∫
−∞

∞

∫
−∞

∞

g(R, β)e− j(xβ + 2R)αkdβdR

= ∫
−∞

∞

g(R, β)e− j2RdR∫
−∞

∞

e− jxβdβ

= ∫
−∞

∞

g(β)e− jxβdβ

= G(x)

(11)

3 Kalman estimation
Kalman filter is a recursive mathematical method that quickly
computes the optimal estimation from a set of stochastic
measurements. The ability of estimation of the current, previous or
next state of the system even under high noise level, makes this
filter useful and powerful for various application fields. Kalman
filter continuously finds out the change of state variables with
measurements, while it minimises the mean square error [15, 16]
(Fig. 3). 

Kalman filter's main purpose is to estimate the state x ∈ ℜn as
shown in (12),

x^k
− = Ax^k − 1 + Buk − 1 + wk − 1 (12)

with a measurement z ∈ ℜm,

zk = Hxk + vk (13)

where A is the state transition model, B is the control input model
and wk and vk are the representations of process and measurement
noise, respectively.

For discrete time applications, Kalman filter updates time and
measurement coherently to make prediction of actual estimate.

Time update (prediction):
Initial estimates for x^k − 1 and Pk − 1.

(i) Project the state ahead

x^k
− = Ax^k − 1 + Buk − 1 (14)

(ii) Project the error covariance ahead

Pk
− = APk − 1A

T + Q (15)

The time update equations can also be thought of as predictor
equations, while the measurement update equations can be thought
of as corrector equations [15–18].

Measurement update (correction):

(i) Compute the Kalman gain

Kk = Pk
−
H

T(HPk
−
H

T + R)−1 (16)
(ii) Update estimate with measurement zk

x^k = x^k
− + Kk(zk − Hx^ k

−) (17)
(iii) Update the covariance of error

Pk = (I − KkH)Pk
− (18)

4 Kalman-aided array imaging
For the given method in Sections 2 and 3, array processing
provides geometric and processual benefits like imaging under a
short observation time and observation angle to display more
scatterer points from diverse angles [19].

However, in this method, construction of an array with large
quantities of individual elements may cause high cost in terms of
implementation. This work suggests employing the Kalman
method to efficiently decrease the number of elements in the array

and estimate missing target density functions caused by decrement,
with high stability.

As can be seen in the scenario in Fig. 4, Kalman estimation is
applied along the β = cosθ direction for θmin < θi < θmax to build
virtual radar profiles and indirectly increases the angular properties
such as resolution. 

5 Implementation and results
Fig. 5 shows the density distribution of the scatter points that is
reconstructed by the Fourier Slice Theorem based on the method
referenced in [14]. 

Figs. 6–8 show the results of the reconstruction of target density
functions using phased array active sensors that has different
numbers of individual elements, respectively, 32 elements, 21
elements, and 16 elements increased by using Kalman estimation
to 64 elements. 

The theoretical target of the simulation system is a fighter
aircraft with multiple reflective points that clearly display the outer
edges and dense scatter points of the target such as nose and

Fig. 1  Imaging with phased array system and Target Density Functions
(TDF)

 

Fig. 2  Fourier slice theorem for g (R, β)
 

Fig. 3  Kalman filter cycle
 

Fig. 4  Obtaining data and imaging scenario
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wingtips. The total scanning angle of the system is 54 degrees with
resolution δr = 0.24 m and δx = 0.28.

6 Conclusion and future work
This paper presented a new radar imaging approach with Kalman
estimation. The proposed method decreases imaging
implementation costs. The results of simulation show that the

offered imaging technic is able to give result under different
(virtually increased) array formation. The use of Kalman
estimation demonstrates the powerfulness of this approach. The
results obtained show that the virtual increasing of the array
numbers with Kalman estimation gives more suitable results when
one increases the array elements from 32 to 64 and 21 to 64. The
results can be seen in Figs. 5–7, respectively, except in Fig. 8
where the interpolation of the Kalman estimation shows some
weakness. Multi-target imaging and refocusing with Kalman filter
can be considered in future works.
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Fig. 5  density distribution of the scatter points that is reconstructed by the
theorem in [14]

 

Fig. 6  density distribution of the scatter points that is reconstructed with
array increased from 32 to 64

 

Fig. 7  Density distribution of the scatter points that is reconstructed with
array increased from 21 to 64

 

Fig. 8  Density distribution of the scatter points that is reconstructed with
array increased from 16 to 64
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