

T.R.

SAKARYA UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

PhD THESIS

DYNAMIC HEURISTIC APPROACH TO ENHANCE THE

PERFORMANCE OF FEW-SHOT META-LEARNING

Ömer MİRHAN

Computer and Information Systems Engineering Department

FEBRUARY 2024

PhD THESIS

Ömer MİRHAN

DYNAMIC HEURISTIC APPROACH TO ENHANCE THE

PERFORMANCE OF FEW-SHOT META-LEARNING

Computer and Information Systems Engineering Department

Thesis Advisor: Prof. Dr. Numan ÇELEBİ

T.R.

SAKARYA UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

FEBRUARY 2024

iii

The thesis work titled “Dynamic Heuristic Approach to Enhance the Performance

of Few-Shot Meta-Learning” prepared by Ömer MİRHAN was accepted by the

following jury on …./…. /……. by unanimously/majority of votes as a PhD

THESIS in Sakarya University Graduate School of Natural and Applied Sciences,

Computer and Information Systems Engineering Department.

Thesis Jury

Jury Member : Doç. Dr. Zafer ALBAYRAK

 Sakarya University of Applied Sciences

Jury Member : Dr. Öğr. Üyesi Ertuğrul BAYRAKTAR

 Yıldız Technical University

Jury Member : Dr. Öğr. Üyesi Tuğrul TAŞCI

 Sakarya University

Jury Member : Prof. Dr. Numan ÇELEBİ (Advisor)

 Sakarya University

Head of Jury : Prof. Dr. Devrim AKGÜN

 Sakarya University

iv

v

STATEMENT OF COMPLIANCE WITH THE ETHICAL PRINCIPLES AND

RULES

I declare that the thesis work titled "Dynamic Heuristic Approach To Enhance The

Performance Of Few-Shot Meta-Learning", which I have prepared in accordance with

Sakarya University Graduate School of Natural and Applied Sciences regulations and

Higher Education Institutions Scientific Research and Publication Ethics Directive,

belongs to me, is an original work, I have acted in accordance with the regulations and

directives mentioned above at all stages of my study, I did not get the innovations and

results contained in the thesis from anywhere else, I duly cited the references for the

works I used in my thesis, I did not submit this thesis to another scientific committee

for academic purposes and to obtain a title, in accordance with the articles 9/2 and 22/2

of the Sakarya University Graduate Education and Training Regulation published in

the Official Gazette dated 20.04.2016, a report was received in accordance with the

criteria determined by the graduate school using the plagiarism software program to

which Sakarya University is a subscriber, I have received an ethics committee approval

document, I accept all kinds of legal responsibility that may arise in case of a situation

contrary to this statement.

(……/……/20…..)

Ömer MİRHAN

vi

vii

 Dedicated to my kids, please never stop learning

viii

ix

ACKNOWLEDGMENTS

Firstly, I would thank Allah for giving me the health and the capacity to successfully

complete this long journey, Alhamdulillah.

I express my deepest gratitude to my supervisor, Prof. Dr. Numan ÇELEBI. Your

unlimited support and guidance have been truly essential during this research. Without

your expertise, wisdom, and patience, this research would not have been possible.

I would also like to thank the monitoring committee, Dr. Ertuğrul BAYRAKTAR and

Dr. Tuğrul TAŞCI, for their valuable feedback, which helped shaping this work.

I am deeply thankful to my parents, Hala and Hisham, for their endless love and

support. The trust you place in me has been my constant motivation in all my life.

To my beloved siblings, Huda, Nada, Anas and Asmaa. Thank you for always being

there, cheering me on, this was always a source of strength.

A special appreciation and gratitude goes to my wife, Zeynep, and our kids, Shahd

Aynur, Hisham Ahmet and Leyla Nur. Your patience, understanding, and unlimited

support have been the cornerstone of my pursuit of knowledge. Your love has

sustained me through late nights and tough days, encouraging me to overcome

frustrations and difficulties throughout completing this hard journey.

Finally, I would like to extend my wishes for the quick recovery and stability of my

home country Syria. Additionally, I express my deep appreciation to Türkiye including

everyone helped me establishing a new life here to resume my academic and

professional endeavors.

Thank you to everyone who played a role in my academic and professional life.

Ömer MİRHAN

x

xi

TABLE OF CONTENTS

Sayfa

ACKNOWLEDGMENTS .. ix

TABLE OF CONTENTS .. xi

ABBREVIATIONS ... xiii

LIST OF TABLES .. xv

LIST OF FIGURES ... xvii

SUMMARY.. xix

ÖZET .. xxi

1. INTRODUCTION .. 1

1.1. Overview ... 1

1.2. Problem Statement .. 4

1.3. Objectives of the Research .. 4

1.4. Thesis Organization .. 5

2. BACKGROUND AND LITERATURE REVIEW .. 7

2.1. Deep Learning: A Brief Summary .. 7

2.1.1. Categories of deep learning approaches ... 7

2.1.2. Neural networks structure .. 9

2.1.3. Connections and weights ... 10

2.1.4. Activation function... 11

2.1.5. Loss function .. 12

2.1.6. Network training .. 13

2.1.7. Optimization function .. 13

2.1.8. Challenges of training algorithms .. 15

2.2. Meta Learning ... 17

2.2.1. Meta-learning: task-distribution view .. 18

2.2.2. Meta learning approaches .. 19

2.2.3. Meta learning challenges .. 26

2.3. Heuristic Algorithms ... 26

2.3.1. Characteristics of heuristics algorithms ... 27

2.3.2. Evolutionary algorithms ... 27

2.2.3. Physical law‑based algorithms ... 30

2.3.4. Miscellaneous algorithms .. 30

2.4. Heuristic Algorithms and Deep Learning ... 30

2.5. Current Landscape and Gaps in the Literature .. 32

3. DYNAMIC POPULATION OPTIMIZATION ... 35

3.1. Introduction ... 35

3.2. General Classification Perspective .. 37

3.3. Meta Learning Perspective .. 45

3.3.1. DPO – MAML adaptation .. 47

3.3.2. DPO – Reptile adaptation... 48

3.3.3. DPO – Meta-SGD adaptation... 50

4. EXPERIMENTAL ANALYSIS ... 53

xii

4.1. Experimental Analysis on Classification Datasets .. 53

4.2. Experimental Analysis – Meta Learning ... 62

4.2.1. Datasets description .. 63

4.2.2. Experimental details ... 66

4.3. Discussion ... 71

5. CONCLUSION ... 75

REFERENCES ... 77

CURRICULUM VITAE .. 85

xiii

ABBREVIATIONS

ADAM : Adaptive Moment Estimation

AI : Artificial Intelligence

ANN : Artificial Neural Network

BP : Backpropagation

CNN : Convolutional Neural Network

DL : Deep Learning

DPO : Dynamic Population Optimization

GA : Genetic Algorithm

GD : Gradient Descent

MAML : Model Agnostic Meta Learning

ML : Machine Learning

MSE : Mean Square Error

PSO : Particle Swarm Optimization

SA : Simulated Annealing

SGD : Stochastic Gradient Descent

SI : Swarm Intelligence

xiv

xv

LIST OF TABLES

Page

Table 3.1. Meta-learning algorithms comparison.. 47
Table 4.1. List of classification datasets .. 55

Table 4.2. Accuracy per dataset / Epoch / Heuristic Ratio. 56
Table 4.3. Accuracy per dataset / Population Size / Heuristic Ratio 59
Table 4.4. Impact of dynamic population .. 62

Table 4.5. Specification of Omniglot dataset. ... 64
Table 4.6. Specification of MiniImageNet dataset. ... 65
Table 4.7. Obtained accuracy for MAML at different iterations 66
Table 4.8. Obtained accuracy for Reptile at different iterations 68

Table 4.9. Obtained accuracy for Meta-SGD at different iterations 69

xvi

xvii

LIST OF FIGURES

Page

Figure 1.1. Deep learning family. ... 2

Figure 2.1. Traditional machine learning vs. deep learning .. 7

Figure 2.2. Classification of learning models. .. 8

Figure 2.3. Feedforward neural network structure .. 10

Figure 2.4. Common activation functions. .. 12

Figure 2.5. Global vs. local minima .. 15

Figure 2.6. Over-fitting and under-fitting issues ... 16

Figure 2.7. Classic gradient update vs. MAML update .. 17

Figure 2.8. The evolution of covered metric-based meta-learning strategies 20

Figure 2.9. The history of model-based meta-learning techniques 22

Figure 2.10. MAML diagram. ... 23

Figure 2.11. The covered optimization-based meta-learning techniques 24

Figure 2.12. Classification of heuristic algorithms based on the source of inspiration

with including popular algorithms under each class. 28

Figure 3.1. Research Framework. ... 35

Figure 3.2. Dynamic population strategy. ... 41

Figure 3.3. Dynamic population optimization – DPO. ... 42

Figure 3.4. Procedure of DPO. .. 45

Figure 3.5. MAML + DPO. ... 48

Figure 3.6. Reptile + DPO. .. 49

Figure 3.7. Meta-SGD + DPO. .. 51

Figure 4.1. Summary of Cifar100 model. ... 57

Figure 4.2. Accuracy per dataset according to heuristic ratio. 57

Figure 4.3. Accuracy per dataset according to population size. 60

Figure 4.4. Omniglot dataset sample characters. .. 64

Figure 4.5. MiniImageNet dataset sample classes. ... 65

Figure 4.6. Accuracy comparison for MAML. ... 67

Figure 4.7. Accuracy comparison for Reptile. .. 69

Figure 4.8. Accuracy comparison for Meta-SGD. .. 70

xviii

xix

DYNAMİC HEURİSTİC APPROACH TO ENHANCE THE PERFORMANCE

OF FEW-SHOT META-LEARNİNG

SUMMARY

Meta-learning has recently become an interesting topic for researchers, particularly in

supervised learning problems with a lack of training data. Meta-learning has shown

effectiveness in generalization and adapting to solve new tasks with only a few data

points. To train a deep learning model in general or meta-learning specifically, an

optimization function should be used to update parameters during each training cycle

according to the calculated loss. The popular meta-learning models have used one of

the traditional gradient-based optimizers. However, challenges introduced by meta-

learning, such as performance considerations during the meta-training and the need for

faster adaptation, might not be handled efficiently by those optimizers.

In this research, we propose a custom optimizer to train meta-learning models. Our

proposal is a new optimizer based on combining a metaheuristic algorithm with

traditional gradient-based techniques. The heuristic algorithm starts searching for the

optimized values for the model’s weights using some random initial candidate

solutions. Then iteratively, according to the performance of each individual, dynamic

population strategy will be applied to population members by either reproducing or

eliminating members from the population. The learning process will then continue

using classic gradient optimization starting with the optimal solution found via the

heuristic algorithm.

The custom optimizer we have developed was first tested and tuned on five

classification benchmark datasets and showed higher accuracy and faster convergence.

Then the same approach -with slight enhancements- was applied in order to solve the

meta-learning problem. Our experimental analysis shows that our optimizer could

enhance the performance of training meta-learning models and enable the efficient

finding of optimal parameters due to the dynamic characteristics of our proposed

strategy.

xx

xxi

AZ ÖRNEKLE META-ÖĞRENME'NİN PERFORMANSINI ARTIRMAK

İÇİN DİNAMİK HEURİSTİK BIR YAKLAŞIM

ÖZET

Meta-öğrenme, öğrenmeyi öğrenme olarak da bilinen, derin öğrenme altında göreceli

olarak yeni bir alt alan, özellikle sınırlı eğitim verileri ile karşılaşılan denetimli

öğrenme senaryolarının zorluklarına çözüm olarak araştırmacılar arasında önemli bir

ilgi kazanmıştır. Meta-öğrenmenin merkezi odak noktası, bir modelin genelleme

kapasitesini artırmak ve görülmemiş görevlere uyum sağlamak üzerinedir. Bu, derin

öğrenme modelinin, yinelemeli optimizasyon döngüleri geçirerek ve modele ait

parametreleri buna göre güncelleyerek sezgisel bir eğitim platformu aracılığıyla elde

edilir. Meta-öğrenme alanında, eğitim süreci, her meta-eğitim döngüsü sırasında elde

edilen hesaplanmış kayıplara dayanarak modelin parametrelerini ince ayarlamayı

içerir. Klasik yaklaşım, klasik gradyan tabanlı optimize edicileri kullanırken, bu

yöntemleri meta-öğrenme problemleri tarafından tanıtılan ayırt edici zorluklara

uyarlamak bazı verimsizliklere neden olur.

Bir anahtar zorluk, meta-eğitim sırasında, modelin sınırlı veri noktalarıyla çeşitli

görevlerden öğrenme gerekliliğidir. Meta-öğrenmenin karmaşıklığı, genellikle mevcut

veriden bilgi çıkarma ve görevler arasında öğrenme için yeni stratejileri keşfetme

arasında doğru bir denge gerektirir. Bu denge, özellikle meta-öğrenme senaryolarının

sınırlı veri karakteristiği ile karşılaşıldığında, mevcut veriden bilgi çıkarmak ve

görevler arasında öğrenme için yeni stratejileri keşfetmek arasında doğru bir denge

gerektirir. Özellikle kritik hale gelir. Ayrıca, görülmemiş görevlere hızlı uyum

sağlama ihtiyacı, optimizasyon sürecini daha da karmaşık hale getirir. Klasik gradyan

tabanlı optimize ediciler, özellikle sınırlı görev özgü veri ile karşılaşıldığında, model

parametrelerini hızlı bir şekilde yeni bir görevin benzersiz özelliklerine uyum

sağlamakta zorlanabilir. Bu, modelin hızlı bir şekilde adapte olması ve orijinal eğitim

setinin bir parçası olmayan görevlerde iyi performans göstermesi beklenen

uygulamalarda kritik bir düşünce noktasıdır.

Meta-öğrenme alanındaki araştırmacılar, bu zorlukları ele almak için alternatif

optimizasyon stratejilerini aktif bir şekilde keşfetmektedirler. Model güncellemeleri,

düzenleme ve optimizasyon fonksiyonlarına yenilikçi yaklaşımlar önererek, meta-

öğrenme modellerinin verimliliğini ve etkinliğini artırmayı hedeflemektedirler. Bu

ilerlemeler, sınırlı etiketli veri örnekleri ile elde edilebileceklerin sınırlarını zorlamak

için kritiktir, bu da meta-öğrenmeyi klasik denetimli öğrenmenin gerçek dünya

uygulamalarındaki kısıtlamaları aşma konusunda umut vadeden bir yol haline

getirebilir.

Sezgisel algoritmalar, kesin bir çözüm elde etmek zor veya hesaplama maliyeti yüksek

olduğunda karmaşık problemler için yaklaşık çözümler bulmak için kullanılan

problem çözme yaklaşımlarıdır. Sezgisel algoritmalar, büyük çözüm alanlarında

çözümleri bulmak için kuralcıklar, deneyim veya sezgiyi kullanır. Yapay Sinir

Ağları'nı (YSA) eğitirken, sezgisel algoritmalar, gradyan tabanlı tekniklere alternatif

xxii

olarak değerli birer seçenek olarak hizmet eder. Her parametre ayarlaması için

gradyanları hesaplamaya dayanan klasik yöntemlerin aksine, genetik algoritmalar,

sürü zekâsı veya simüle edilmiş tavlama gibi sezgisel algoritmalar, çözüm alanlarını

daha geniş bir şekilde keşfeder. Bu keşif, YSA'lerin yerel minimumlardan kaçınmasına

yardımcı olur ve çeşitli ve potansiyel olarak üstün model konfigürasyonlarını keşfetme

yeteneklerini artırır. Sezgisel algoritmalar, özellikle gradyan tabanlı yöntemlerin

mücadele ettiği karmaşık optimizasyon alanlarında YSA'leri eğitmek için çok yönlü

ve hesaplama açısından verimli bir yol sunar.

Bu çalışmada, meta-öğrenme modellerinin eğitimini artırmak amacıyla tasarlanmış

yeni bir özel optimize ediciyi tanıtıyoruz. Optimize edicimiz, bir dinamik popülasyon

tabanlı sezgisel algoritmayı klasik gradyan tabanlı tekniklerle sorunsuz bir şekilde

entegre ederek, meta-öğrenme problemlerinin ortaya çıkardığı zorluklara dinamik ve

verimli bir yaklaşım sunar. Metaheuristik algoritma, optimal model parametre

değerlerini aramaya başlamak için arama alanında rastgele dağıtılan başlangıç aday

çözümler üreterek başlar. Ardından, dinamik bir popülasyon stratejisi uygulanır ve bu,

bireysel performansa dayalı olarak popülasyon üyelerinin üretilmesini veya

elenmesini içerir.

Dinamik popülasyon stratejisi, her eğitim döngüsünün sonunda popülasyon üyelerinin

performansını değerlendirmeyi içerir. İyi performans gösterenler çoğaltılır ve umut

veren alanları keşfetmelerini simgelerken, en az performans gösteren bireyler elenir.

Bu sürekli çoğaltma ve elenme süreci, umut veren bölgelerde aramayı yoğunlaştırmayı

ve daha az verimli alanlarda daha fazla keşif yapmamayı amaçlar. Heuristik keşif

aşamasının ardından, öğrenme süreci, metaheuristik algoritma tarafından belirlenen en

iyi çözümü kullanarak klasik gradyan optimizasyonuna sorunsuz bir şekilde geçer. İki

aşama arasındaki eğitim döngülerinin dağılımı, kritik bir giriş parametresi olan

Heuristik Oranı tarafından kontrol edilir, bu da heuristik keşif aşamasına ayrılan

döngülerin yüzdesini belirtir.

Özel optimize edicimizin performansını değerlendirmek amacıyla geniş kapsamlı test

ve ayarlamalar gerçekleştirdik ve çeşitli ölçüm veri setlerinde bunları gerçekleştirdik.

Bu veri setleri, Iris, MNIST, CIFAR-10, CIFAR-100 ve Fashion gibi klasik

sınıflandırma görevlerini içermekte olup, görüntü ve desen tanıma alanında çeşitli

karmaşıklıkları temsil etmektedir.

Klasik veri setlerinde elde edilen umut verici sonuçlar tarafından teşvik edilen,

yaklaşımımızı meta-öğrenmenin zorluklarına çözüm üretecek şekilde genişlettik. Özel

optimize ediciyi, Omniglot ve MiniImageNet gibi iki iyi kurulmuş meta-öğrenme veri

setine uyguladık. Bu veri setleri, her sınıfta sınırlı örnek içermeleriyle karakterize

edilir ve bu da onları bir modelin minimal veri ile yeni görevlere adapte olma

yeteneğini değerlendirmek için özellikle uygun kılar.

Deneylerimiz, özel optimize edicinin üç önemli meta-öğrenme çerçevesine

uygulanmasını içerdi: MAML, Reptile ve Meta-SGD. Bu çerçeveler, bir modelin

meta-öğrenme senaryolarındaki genelleme ve uyum yeteneklerini değerlendirmek için

yaygın bir şekilde kullanılmaktadır.

Hem MAML hem de Meta-SGD'nin elde edilen doğruluğu, Omniglot ve

MiniImageNet veri kümelerinde %2-2,5 oranında iyileşme gördü. Ancak Reptile, hem

veri kümelerinde hem de aynı sayıda dönemde %1'lik bir doğruluk artışı gösterdi. Hem

MAML hem de Meta-SGD, ilgili meta eğitim aşamaları sırasında iki adımlı bir

optimizasyon sürecini içerir. MAML ve Meta-SGD tarafından kullanılan iki aşamalı

optimizasyon sürecinin aksine Reptile, daha hızlı yakınsamayı vurgulayan daha basit

xxiii

bir yaklaşımı benimser. Eğitim sırasında Reptile, bir iç döngü içindeki belirli bir görev

üzerinde yalnızca birkaç kademeli adım gerçekleştirir.

Genel olarak, deneylerimizden elde ettiğimiz sonuçlar, özel optimize edicimizin

sadece meta-öğrenme modellerinin eğitim performansını artırmakla kalmadığını, aynı

zamanda verimli parametre keşfini kolaylaştırdığını gösterdi. Önerdiğimiz stratejinin

dinamik özellikleri, daha yüksek doğruluk, daha hızlı yakınsama ve görünmeyen

görevlere hızlı uyum sağlama yeteneğine katkıda bulunarak, yenilikçi yaklaşımımızın

meta-öğrenme optimizasyon alanındaki potansiyelini sergilemektedir.

xxiv

1. INTRODUCTION

This thesis investigates how using heuristic algorithms can make few-shot meta

learning work better. Through this study, we aim to make meaningful contributions to

the field of meta learning optimization process.

1.1. Overview

Artificial Intelligence (AI) is a broad field dedicated to creating intelligent agents

capable of replicating human-like cognitive functions. Under the umbrella of AI,

Machine Learning (ML) focuses on developing algorithms that enable systems to learn

from data, categorized into supervised, unsupervised, and reinforcement learning.

Neural Networks (NNs), or Artificial Neural Networks (ANNs), the backbone of

machine learning, simulating the complexity of the human brain. Built from layers,

neurons, weights, and biases, these elements collaborate to process information,

recognize patterns, and make predictions [1]. The network is organized into layers,

including the input layer, hidden layers, and output layer. Neurons, the basic

computational units, exist in each layer, with those in the input layer representing raw

data features. This information will then processed by hidden layers this through

connections, while the output layer generates the last prediction or classification [2].

Deep Learning (DL), a subset of machine learning, Figure 1.1, employs deep neural

networks with multiple hidden layers. This depth allows automatic learning of

hierarchical features from data, resulting in more sophisticated representations. The

advancement of deep learning is evident in many areas such as image recognition

(utilizing Convolutional Neural Networks), Natural Language Processing (leveraging

Recurrent Neural Networks and Transformers), healthcare (for medical image analysis

and diagnosis), and autonomous vehicles (interpreting environments for safe

navigation) [3]. One fundamental aspect of training neural networks is optimization,

often achieved through Gradient Descent. This iterative algorithm minimizes the error

or loss function by adjusting the weight vector that reduces the error [4]. Stochastic

Gradient Descent (SGD) is a usually utilized variant, randomly selecting subsets of

training data for efficiency.

2

The learning rate is a critical hyperparameter in Gradient Descent, influencing the size

of steps taken during optimization. Selecting an appropriate learning rate is crucial for

convergence and stability during training. While standard gradient-based optimizers

like SGD are common, modern optimizers like Adam, RMSprop, and Adagrad are

developed to address specific challenges in training deep neural networks.

Figure 1.1. Deep learning family.

Innovations in optimization also explore the combination of traditional gradient-based

techniques with metaheuristic algorithms. Metaheuristics, such as genetic algorithms

or simulated annealing, introduce randomness and global search strategies, enhancing

the exploration of the parameter space [5].

Traditional machine learning techniques usually solve problems by undergoing

intensive training cycles to learn from scratch. However, this often requires a massive

amount of training data, which might not always be available or may come at a high

cost. Human brains have the ability to use accumulated knowledge to quickly learn

3

new things. For example, let's assume that a child has never seen a zebra before. By

showing the child a few pictures of a zebra, they will be able to recognize zebras easily.

In this case, we cannot assume that the child learned from scratch and performed the

recognition process by looking at just a few examples. Instead, they used their

previously accumulated knowledge and their ability to recognize animals they were

familiar with, such as dogs or cats, to quickly identify a new kind of animal by only

seeing few samples. This is exactly how meta-learning works: we first train the model

on various tasks to create a generic model. Then, to solve new tasks, only a few data

points are needed to fine-tune the model’s parameters [6].

Meta-learning, also known as learning to learn, is a powerful framework within the

field of deep learning that focuses on enabling models to learn how to learn from

limited data [6]. Unlike traditional machine learning approaches that rely on large

datasets for training, meta-learning aims to create models that can adapt and generalize

to unseen tasks with the need for only few data points. At its core, meta-learning

involves training a model on a variety of tasks in such a way that it becomes adept at

quickly adapting to new, unseen tasks [7]. This is achieved by exposing the model to

a diverse set of tasks during its training phase. Each task consists of a small dataset,

and the model learns not only the specifics of each task but also a more general set of

parameters or initial conditions that facilitate rapid adaptation [8].

Heuristic algorithms are smart problem-solving methods that focus on being practical

and efficient rather than aiming for the best possible solution. Unlike exact algorithms

that guarantee the best solution, heuristics aim to find a good enough solution within

a reasonable amount of time, making them particularly useful for solving complicated

problems where finding an best solution is computationally infeasible [9]. Swarm

Intelligence, including algorithms like Particle Swarm Optimization PSO [10], mimics

the collective behavior of groups of entities to find solutions. In Particle Swarm

Optimization, a population of particles iteratively adjusts its position in a search space

based on its own experience and that of its neighbors [10]. In population-based

heuristic algorithms, the population size remains constant throughout the optimization

process. Each member of the population, often represented as a solution candidate or

individual, is granted equal importance and opportunity to influence the search for the

optimal solution, regardless of an individual's past performance or fitness score, it

continues to participate in the search process [11]. In simpler terms, objects that excel

4

and are near a good solution will receive equal opportunities as those exploring areas

distant from a good solution. In contrast, the heuristic algorithm we have developed is

based on a dynamic members where the performance of each individual will be

evaluated at the end of each training cycle, then new members might join the next

cycles or individuals with unsatisfactory performance will be dismissed from the

population.

1.2. Problem Statement

Although the advancements in meta-learning and its proven efficacy in few-shot

scenarios, a critical bottleneck remains—the optimization process. Standard gradient-

based optimizers, which have shown success in conventional machine learning

settings, may underperform in addressing the unique challenges raised by meta-

learning.

The core problem lies in the necessity for meta-learning models to rapidly adapt to

new tasks with limited data. Traditional optimizers, designed for smooth and

continuous optimization landscapes, may struggle in the dynamic environment

characteristic of meta-learning. Moreover, the importance of task-specific adaptation

often demands a more focusing approach to parameter updates.

This research identifies the limitations of existing optimizers in the meta-learning

context and aims to address them through the development of a heuristic based

optimizer.

1.3. Objectives of the Research

This research aims to address the identified challenges within the platform of meta-

learning optimization. The overall goal is to develop a custom optimizer that optimally

balances the exploration of novel solutions and the exploitation of known information,

specifically tailored to the few-shot nature of meta-learning. The objectives can be

outlined as follows:

1. Custom Optimizer Development: Design and implement a novel custom

optimizer that integrates metaheuristic algorithms with traditional gradient-

based optimization techniques. Also, empirically ensure the optimizer's

adaptability to the nature of meta-learning tasks, focusing on efficient

parameter updates and fast convergence.

5

2. Efficiency Enhancement for Benchmark Datasets: Firstly, the performance of

the developed custom optimizer on standard classification benchmark datasets

will be evaluated by comparing the accuracy and convergence speed of the

custom optimizer against traditional gradient-based optimizers, demonstrating

its efficacy in conventional machine learning scenarios.

3. Meta-Learning Model Optimization: Apply the custom optimizer to few-shot

meta-learning scenarios, where adaptation to new tasks with limited data is

crucial. Then assess the performance of meta-learning models trained with the

custom optimizer in terms of accuracy, convergence speed.

4. Empirical Validation and Analysis: Perform a comprehensive empirical

examination of the experimental outcomes, addressing both the strengths and

limitations of our approach. Additionally, compare our approach with four

state-of-the-art meta-learning models through statistical analysis and

visualizations, ensuring its effectiveness in enhancing meta-learning

performance.

1.4. Thesis Organization

We have organized this thesis as follows:

− Chapter 2: Background and Literature Review: This chapter provides a

comprehensive overview of the foundational aspects relevant to the study. It

begins by delving into the fundamentals of deep learning, establishing a

theoretical background for subsequent discussions. Following this, the chapter

shifts its focus to meta-learning, offering an in-depth exploration of its

theoretical foundations, applications, and the challenges it faces. The

discussion then extends to heuristic algorithms, where a detailed examination

of principles and methodologies behind heuristic approaches is presented.

− Chapter 3: Proposed Model: This pivotal chapter introduces the novel hybrid

optimizer designed for meta-learning. The chapter outlines the conceptual

framework, detailing how the metaheuristic algorithm is combined with

traditional gradient-based techniques. It also elaborates on the optimization

process and the rationale behind the design choices made in building the

proposed model.

6

− Chapter 4: Empirical Analysis: Present the empirical analysis of the custom

optimizer. Initial testing on classification benchmark datasets is discussed,

highlighting the achieved higher accuracy and faster convergence. The

application of the proposed model to solve the meta-learning problem is

thoroughly examined through experimental analysis.

− Chapter 5: Conclusion and Outlook: The final chapter provides a

comprehensive conclusion of the research findings, summarizes key

contributions, and discusses implications. Additionally, the chapter outlines

potential avenues for future research, highlighting areas where further

exploration and refinement of the proposed approach could be undertaken.

2. BACKGROUND AND LITERATURE REVIEW

This chapter navigates the foundational landscapes of deep learning, meta-learning,

and heuristic algorithms, providing the essential background to contextualize our novel

approach to enhancing meta-learning performance. The evolution of these domains

sets the stage for understanding the difficulties and challenges that our proposed

approach aims to address.

2.1. Deep Learning: A Brief Summary

The field of deep learning, illustrated in Figure 2.1 [1], characterized by its neural

network architectures and sophisticated training methodologies, forms the cornerstone

of modern machine learning applications. This section offers a brief synthesis,

emphasizing advanced concepts that directly influence the development and

performance of deep-learning models. By identifying key components and recent

trends and advances, we establish a baseline understanding for the subsequent

exploration of deep learning.

Figure 2.1. Traditional machine learning vs. deep learning.

2.1.1. Categories of deep learning approaches

Deep learning methodologies can be classified into three primary categories:

supervised learning, unsupervised learning, and reinforcement learning, Figure 2.2.

8

Supervised Learning: In this category of deep learning, the model undergoes training

using a labeled dataset, in which every input is matched with a corresponding output

or target. The objective is to grasp a relationship between inputs and outputs, enabling

the algorithm to predict outcomes for fresh data that the model did not see during the

training process [12], [13]. Classification and regression problems are common in

supervised learning. For example, checking whether an message is spam or not

(classification) or forecasting of the price of a house based on its features (regression).

The algorithm undergoes training using a labeled dataset, during that the model fine-

tunes weights to minimize the distance between its predictions and the actual data [14].

Unsupervised Learning: Handling unlabeled data, unsupervised learning involves

the algorithm in the exploration of patterns, relationships, or structures within the data

without explicit instructions on what to do with data [15]. Unsupervised learning

involves two key tasks: clustering and dimensionality reduction. Clustering is about

grouping similar data points together, while dimensionality reduction aims to preserve

important data while decreasing the total number of attributes. These techniques play

vital roles in data analysis and pattern recognition. Clustering helps in identifying

natural groupings within data, while dimensionality reduction simplifies complex

datasets for easier analysis. Both are essential tools in uncovering insights and patterns

hidden within large datasets [12]. The algorithm explores the input data to identify

inherent structures or patterns, with no exact target labels to guide the learning [16].

Figure 2.2. Classification of deep learning models.

9

Reinforcement Learning: Reinforcement learning involves an agent that will develop

its decision-making skills through iterative interactions with its environment [1]. The

agent's learning process involves obtained feedback, either a kind of rewards for

favorable actions or penalties for unfavorable ones. Its primary aim is to develop a

policy that increase the total reward accumulated over time as much as possible. This

process is fundamental in reinforcement learning, where the agent learns through trial

and error to achieve its objectives efficiently. [17]. Playing games, robotics control,

and autonomous systems are common applications of reinforcement learning [12]. The

agent learns by trial and error, adjusting its actions to reach the maximum possible

awards. The agent learns through exploration and exploitation, receiving feedback

from the environment in the form of rewards or penalties. The learning process

involves finding a balance between exploring new actions and exploiting known

actions that lead to positive outcomes [18].

2.1.2. Neural networks structure

Neural networks can be considered as the cornerstone in the field of artificial

intelligence (AI) and machine learning. These computational models draw inspiration

from the functioning of biological neural networks within the human brain [2].

A typical neural network consists of layers of interconnected nodes, also known as

artificial neurons. These layers usually include the input layer, hidden layer(s), and

output layer, forming the three primary types of layers in a neural network. [19].

The input layer's role is to receive the initial data into the neural network. Each node

within the input layer is connected to an attribute or input variable. The quantity of

nodes in the input layer is determined by the number of dimensions of the input data.

Between the input and output layers, the network might include also one or multiple

hidden layers. The nodes in the middle layers operate the input data by utilizing

weighted connections and activation functions. The term "hidden" comes from the fact

that the outputs of these nodes are not explicitly seen in the training samples. The

output layer generates the final outcomes of the neural network's computation. The

quantity of nodes within the output layer varies depending on the nature of the problem

at hand [20].

10

Figure 2.3. Feedforward neural network structure.

The structure of a neural network can vary based on the specific task and architecture

chosen. However, here are the common neural network architectures:

− Feedforward Neural Networks (FNN): Information flows in one direction,

from input to output, with no feedback loops, Figure 2.3 is a sample structure

[20].

− Recurrent Neural Networks (RNN): Accommodates sequential data by

incorporating feedback loops, allowing information persistence [20].

− Convolutional Neural Networks (CNN): Specialized for image processing,

utilizing convolutional layers for feature extraction [13, 21].

2.1.3. Connections and weights

Every connection between nodes in adjacent layers is accompanied by a weight,

signifying the connection's strength. These weights are fine-tuned during the training

phase to enhance the network's performance [20]. The weighted total of input data,

coupled with a bias, undergoes evaluation through an activation function to ascertain

the output of each node. Normally, each node within a layer is associated with a bias

term—a constant that's incorporated into the weighted sum before applying the

11

activation function. The inclusion of bias enables the network to adapt and modulate

its output [2].

For a multi-layer neural network with L layers (which includes the input and output

layers) and 𝑁𝑙 neurons in each layer 𝑙, the output equation for a neuron in layer 𝑙 can

be expressed as follows [20]:

𝑦𝑖
(𝑙) = 𝑓 (∑ 𝑊𝑖,𝑗

(𝑙)

𝑁(𝑙−1)

𝑗=1

⋅ 𝑦𝑗
(𝑙−1)

+ 𝑏𝑖
(𝑙)) (2.1)

Where 𝑦𝑖
(𝑙)

 is the result of the 𝑖 − 𝑡ℎ node in layer 𝑙, f is the applied activation function

to the weighted sum. 𝑁(𝑙−1) is the number of neurons in the previous layer (𝑙 − 1).

𝑊𝑖,𝑗
(𝑙)

 is the value associated with the connection between the 𝑗 − 𝑡ℎ node in layer 𝑙 -1

and 𝑖 − 𝑡ℎ node in layer 𝑙. 𝑏𝑖
(𝑙)

 is the bias value for the 𝑖 − 𝑡ℎ node in layer 𝑙.

2.1.4. Activation function

An activation function injects non-linearity into the network, empowering it to grasp

complex patterns. Typical activation functions comprise::

− Sigmoid: S-shaped function, often used in the output layer for binary

classification, illustrated in Figure 2.4.

σ(𝑥) =
1

1 + 𝑒−𝑥
 (2.2)

− Hyperbolic Tangent (tanh): Similar to the sigmoid but ranging from -1 to 1.

tanh(𝑥) =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
 (2.3)

12

Figure 2.4. Common activation functions.

− Rectified Linear Unit (ReLU): Commonly used in hidden layers, allowing only

positive values. Figure 2.4.

ReLU(𝑥) = max(0, 𝑥) (2.4)

2.1.5. Loss function

The loss function measures the discrepancy between the predicted output and the

actual one. Throughout training, the objective is to diminish this loss as much as

possible [2].

− Mean Squared Error (MSE): Usually utilized for regression problems,

quantifying the disparity between generated and actual values. The MSE is

calculated using the this formual [23]:

𝑀𝑆𝐸 =
1

𝑛
∑(𝑦𝑖 − 𝑦�̂�)

2

𝑛

𝑖=1

 (2.5)

Where n is the number of sample data, 𝑦𝑖 is the real (observed) value for the i-th sample

point, 𝑦𝑖 is the calculated value for the i-th sample point.

− Cross-Entropy Loss: Prevalent in classification tasks, calculating the

divergence between calculated and true probability distributions [24].

𝐻(𝑦, �̂�) = −
1

𝑛
∑∑𝑦𝑖𝑗

𝐾

𝑗=1

log(𝑦𝑖�̂�)

𝑛

𝑖=1

 (2.6)

13

Where K is the total of output classes in multi-class classification.

2.1.6. Network training

Training involves adjusting the values of nodes according to the difference between

the calculated output and the actual output. Backpropagation is the algorithm used to

propagate this error backward through the network, updating the weights and biases

[2].

2.1.7. Optimization function

Optimizing an Artificial Neural Network involves adjusting the model's parameters to

minimize a certain cost or loss function. The optimization function holds significant

importance in training and fine-tuning the model to achieve optimal performance. It

serves as a guide for turning the model's weights in the course of the learning process,

helping the network converge to a solution that minimizes the distance between

calculated and desired outputs. Here are some details about optimizing ANNs,

including popular optimization algorithms and alternative approaches [25]:

− Gradient Descent (GD): The basic optimization algorithm that adjusts model

parameters in the direction opposite to the gradient of the cost function. The

concept of gradient descent dates back to the early days of optimization and is

a fundamental building block for many optimization algorithms [26].

θ𝑖+1 = θ𝑖 − α∇𝐽(θ𝑖) (2.7)

Where 𝜃𝑖+1 is the updated parameter values. 𝜃𝑖 is the current parameter values. α is

the learning rate, determining the size of the step taken in each iteration. α∇𝐽(θ𝑖) is

the derivation of the loss function 𝐽 with respect to the parameters 𝜃𝑖.

− Stochastic Gradient Descent (SGD): Optimizes parameters using the

gradient computed from a single training example, leading to faster updates.

SGD is commonly employed in training large-scale neural networks and has

been a key optimization method in machine learning [27].

θ𝑗+1 = θ𝑗 − α∇𝐽𝑖(θ𝑗) (2.8)

14

Where the derivation of the cost function is computed for one training sample 𝑖. In

practice, SGD is often used with mini-batches, which are small groups of training

examples. This can further improve the efficiency of the algorithm.

− Mini-Batch Gradient Descent: An intermediate approach between Gradient

Descent (GD) and Stochastic Gradient Descent (SGD) entails updating

parameters based on a small batch of training examples. Mini-batch gradient

descent is a standard optimization approach in deep learning due to its

efficiency in utilizing both parallelism and stochasticity [27, 3].

θ𝑖+1 = θ𝑖 − α ⋅
1

𝑚
∑∇θ

𝑚

𝑗=1

𝐽(θ; 𝑥(𝑖𝑗), 𝑦(𝑖𝑗)) (2.9)

Where 𝑚 is the batch size and ∇θ𝐽(θ; 𝑥(𝑖𝑗), 𝑦(𝑖𝑗)) is the gradient of the cost function

computed on the mini-batch (𝑥(𝑖𝑗), 𝑦(𝑖𝑗)).

− Momentum: Momentum was introduced to address the issue of high variance

in Stochastic Gradient Descent (SGD) and to smooth the convergence process.

It speeds up convergence in the pertinent direction while dampening

fluctuations in irrelevant directions [28].

− RMSprop: An adaptive learning rate method that normalizes the gradient

using a moving average of squared gradients. Introduced by Hinton in lecture

notes, RMSprop is designed to address the sensitivity of learning rates in

different dimensions [29].

− Adam (Adaptive Moment Estimation): An adaptive learning rate

optimization algorithm that integrates concepts from both momentum and

RMSprop. Introduced by Kingma and Ba in 2014, Adam has become a popular

optimization choice due to its robustness and efficiency across various tasks

[30].

− Adagrad: Modifies the learning rates of each parameter independently by

considering historical gradient details. Proposed by Duchi et al. in 2011,

Adagrad is suitable for sparse data and has been influential in optimization

research [31].

15

− Nadam: An extension of Adam that incorporates Nesterov momentum.

Nadam, introduced by Dozat in 2016, combines the strengths of Adam and

Nesterov accelerated gradient, offering improved convergence properties [32].

The Adam optimizer showcases exceptional adaptability across a wide range of tasks,

owing to its dynamic learning rates and momentum. This flexibility enables efficient

navigation through various loss function landscapes. A standout feature of Adam is its

effective management of sparse gradients, particularly beneficial in situations with

high-dimensional and sparse data. The integration of momentum and adaptive learning

rates in Adam plays a pivotal role in achieving rapid convergence, enabling neural

networks to swiftly attain satisfactory solutions and outperform traditional

optimization methods. Numerous studies, consistently demonstrate Adam's superiority

over other adaptive learning rate mechanisms.

2.1.8. Challenges of training algorithms

Several issues arise during the training of neural networks. Here, we will outline the

key challenges:

Local Minima: Gradient-based optimization methods may get stuck in local minima,

demonstrated in Figure 2.5. preventing them from finding the global minimum of the

loss function, resulting in suboptimal solutions and slower convergence in complex,

non-convex landscapes.

Figure 2.5. Global vs. local minima.

16

As descripted in [33], local minima is mathematically outlined as the following:

− Assume 𝑐𝑓: S  → 𝑅≥0, with S  ⊂  𝑅𝑛 is compact and nonempty [41].

− A solution 𝑤∗ ∈ 𝑆 is named global optima when 𝑐𝑓(𝑤
∗)  ≤  𝑐𝑓(𝑤) at any w ∈

𝑆 exists.

− A solution 𝑤∗ ∈ 𝑆 is named local optima if there exists ε > 0, and ε-

neighborhood 𝐵ε(𝑤
∗, ε) near 𝑤∗ where exists 𝑐𝑓(𝑤

∗)  ≤  𝑐𝑓(𝑤)  for any w ∈

𝑆 ∩ 𝐵ε(𝑤
∗, ε).

Vanishing and Exploding Gradients: Gradients can be extremely tiny (vanishing) or

too big (exploding) within the backpropagation, affecting the training stability. Result

can be difficulty in learning long-term dependencies (vanishing gradients) or unstable

training (exploding gradients) [1, 34].

Overfitting: Models may memorize the training samples instead of being able to

generalize to new data, unseen samples. This might reduce the performance on new

data, limiting the model's capability for generalization. Figure 2.6 [1, 35, 36].

Figure 2.6. Over-fitting and under-fitting issues.

Computational Complexity: Deep neural networks with numerous parameters can

be computationally expensive to train. Increasing training time, resource requirements,

and potential limitations on deployment in resource-constrained environments. [1]

Limited Transferability: Models trained on one task may not generalize well to

related tasks. Requiring extensive retraining for new tasks, limiting the transferability

of learned features [1, 37].

17

2.2. Meta Learning

Meta-learning, often regarded as learning to learn, was initially introduced by [38] and

then has garnered substantial attention in recent years for its capacity to address

challenges posed by limited training data. This section delves into the meta-learning

landscape, delineating its types, applications, and notable models. A concise review

lays the groundwork for understanding the complications of meta-learning, setting the

scene for the exploration of our novel dynamic heuristic approach.

Meta-learning includes training a network to learn how to learn, enabling it to adapt

quickly to unseen tasks with few data points, Figure 2.7. [40] It employs a two-step

process: in the first step, the model learns from a diverse set of tasks to acquire general

knowledge or "meta-knowledge." In the second step, this meta-knowledge is used to

rapidly adapt to new tasks.[6] The model typically leverages a meta-learning

algorithm, such as MAML (Model-Agnostic Meta-Learning) [39], to update its

parameters in a way that facilitates quick adaptation. Meta-learning is beneficial in

scenarios where limited data is available for new tasks, as it enables models to

generalize effectively and perform well with fewer examples [7].

Figure 2.7. Classic gradient update vs. MAML update.

Meta-learning, transfer learning and multitask learning are unique methodologies

crafted to facilitate learning across a spectrum of tasks. [37]. Multitask learning seeks

to enhance generalization against a group of tasks by simultaneously learning them.

Transfer learning involves refining a pre-trained model for a unseen task using limited

18

data. In contrast, meta-learning involves extracting valuable insights from prior tasks

and utilizing them to efficiently learn new tasks [7, 41].

Meta-learning strives to overcome the constraints of conventional transfer learning by

embracing a more advanced strategy that explicitly prioritizes transferability. Unlike

traditional transfer learning, which entails pre-training a model on source tasks and

fine-tuning it for a new task, meta-learning involves training a network to adeptly learn

or adapt to new tasks with minimal examples [7, 42]. During meta-training, the focus

is on acquiring the ability to learn various tasks, while at meta-test time, the emphasis

is on efficiently mastering a new task.

2.2.1. Meta-learning: task-distribution view

In meta-learning, we often have a meta-training phase where the model learns a good

initialization from a set of tasks. The model can then quickly adapt to new tasks during

the meta-testing phase [7]. Here's a generic representation:

Meta-Training Objective: The meta-training objective aims to find model parameters

that generalize well across different tasks. Given a set of tasks 𝒯, the target is to reduce

the total loss across all tasks [8]:

min
θ

∑ 𝐿𝑇(θ)

𝑇∈𝒯

 (2.10)

Where 𝐿𝑇(θ) is the loss on a task 𝑇 calculated for the model parameters θ. This

objective guides a model to learn a set of parameters which perform good on a several

number of tasks.

Gradient Descent Updates (First Order): During meta-training, the model

parameters are updated using gradient descent. The first-order meta-training update is

expressed as [7]:

θ′ = θ − α∇θ ∑ 𝐿𝑇(θ)

𝑇∈𝑇

 (2.11)

Here, α represents the meta-training learning rate, while the gradient term represents

the sum of gradients of the losses on all tasks calculated against the model parameters.

19

Meta-Testing Objective: In the meta-testing phase, the model parameters 𝜃′ are

adapted to a new task. The target is to reduce the loss on the new task 𝐿new with respect

to the adapted parameters [7]:

θ′′ = θ′ − β∇θ𝐿new(θ′) (2.12)

Where 𝛽 is the meta-testing learning rate. This equation captures the idea of quick

adaptation to a new task using a few additional gradient steps.

Higher-Order Gradients: In certain meta-learning algorithms, higher-order gradients

are computed to facilitate faster adaptation. For instance, in MAML framework, the

second-order update is given by [39]:

θ′′ = θ − β∇θ (∑ 𝐿𝑇(θ − α∇θ𝐿𝑇(θ))

𝑇∈𝑇

) (2.13)

This involves calculating the derivative of the meta-objective with regard to the model

parameters and is particularly useful where the network needs to adapt fast with

minimal data.

2.2.2. Meta learning approaches

In meta-learning, various learning strategies can be organized into three types: metric-

based, model-based, and optimization-based techniques, These categories represent

distinct strategies for enabling models to learn how to learn efficiently across diverse

tasks [7].

Metric-based meta-learning:

Also known as distance-based or similarity-based meta-learning, aims to is to enable

a model to quickly adapt to new tasks by learning a metric or loss function that

calculates the similarity or dissimilarity between examples [42]. In metric-based meta-

learning, the idea is often to embed examples into a metric space in such a way that

examples from the same task are close to each other, and examples from different tasks

are far apart. This learned metric is then used during the adaptation phase to quickly

identify relationships between examples in a new task.

Siamese networks, a groundbreaking contribution by Koch et al. in 2015 [43],

represent the base of this category of meta-learning strategies within few-shot learning

20

domains. This pioneering approach involves estimating classes by matching inputs of

both support and query sets. The significance of Siamese networks lies in their

introduction of the fundamental idea that subsequently evolved in various directions

summarized in Figure 2.8 [7].

Graph neural networks (GNNs), as advanced by Hamilton et al. in 2017 [44] and

Garcia and Bruna in 2017 [45], expanded upon the Siamese network concept. GNNs

introduced a parametric information flow between support and query inputs, offering

a more flexible framework for metric-based meta-learning techniques.

Matching networks, a direct offshoot inspired by Siamese networks, were introduced

by Vinyals et al. in 2016 [46]. While retaining the core idea of comparing inputs for

predictions, matching networks departed by training directly in the few-shot setting.

Notably, they employed cosine similarity as a metric, omitting the auxiliary binary

classification task utilized by Siamese networks.

Figure 2.8. The evolution of covered metric-based meta-learning strategies.

Prototypical networks, proposed by Snell et al. in 2017 [47], further refined the

methodology of input matching. Rather than matching each query set data point into

individual support set examples, prototypical networks introduced the innovative

concept of comparing with a class prototype. This strategic adjustment reduced the

number of necessary input comparisons.

Relation networks, as detailed by Sung et al. in 2018 [48], marked a notable evolution

by replacing fixed, predefined similarity metrics. Instead, Relation networks

substituted these metrics with a neural network, allowing to the learning of domain-

specific similarity functions. This adaptation enhanced the adaptability and

performance of the model.

21

Attentive Recurrent Comparators (ARCs), a distinctive approach introduced by Shyam

et al. in 2017 [49], took a biologically plausible perspective. ARCs focused on several

interleaved glimpses at different sections of the inputs during the comparison process,

departing from the conventional practice of comparing entire inputs. This nuanced

approach in ARCs offered a detailed and sophisticated assessment during the meta-

learning process.

The main benefits of employing metric-based techniques include the simplicity of the

underlying concept in similarity-based predictions and the potential for fast test-time

execution in small tasks, as the network does not require task-specific tuning.

Nevertheless, as tasks at meta-test time deviate further from those used during meta-

training, metric-learning techniques struggle to assimilate new task information into

the network weights. Consequently, this limitation sometimes results in performance

drop.

Model-based meta-learning:

Model-based meta-learning is a technique within the broader field of meta-learning

that involves learning a model's internal representations or dynamics during meta-

training in order to facilitate rapid adaptation to new tasks during meta-testing [7].

In model-based meta-learning, the focus is on learning how to update a model's

parameters quickly for a new task. Instead of directly learning the parameters that

make the model effective for adaptation, the algorithm learns a model that can predict

how the parameters should be updated based on a few examples from a new task.

Memory-augmented neural networks (MANN), introduced by Santoro et al. in 2016

[50], represent a significant advancement in the field of deep model-based meta-

learning techniques. This pioneering approach involves sequentially feeding the entire

support set into the model, leveraging its internal state to make predictions for the

query set inputs. Several research extended MANN summarized in Figure 2.9:

The model-based paradigm, characterized by the sequential entry of inputs, found

resonance in recurrent meta-learners (RMLs), a concept explored by Duan et al. [51]

in 2016 and Wang et al. [52] in the same year, particularly in the context of

reinforcement learning. RMLs share a similar strategy of processing inputs in a

sequential manner.

22

Figure 2.9. The history of model-based meta-learning techniques[7].

Meta networks, proposed by Munkhdalai and Yu in 2017 [53], marked another

evolution in model-based meta-learning. In contrast to memory-augmented neural

networks, meta networks employed a big black-box technique but innovatively

generated task-specific values for each encountered task, showcasing the adaptability

of model-based techniques.

SNAIL (Mishra et al. 2018) [54] emerged as a distinctive effort to augment memory

capacity and refine the ability to pinpoint memories, addressing inherent limitations in

recurrent neural networks. This improvement was achieved through the incorporation

of attention mechanisms coupled with special temporal layers, representing a

noteworthy refinement in the model-based meta-learning approach.

Furthermore, the neural statistician and conditional neural processes introduced two

innovative techniques aiming to learn meta-features of datasets in an end-to-end

fashion. The neural statistician, relying on the distance between meta-features, made

class predictions, while the conditional neural process conditioned classifiers on these

features, showcasing the versatility within the model-based meta-learning landscape

[7].

While model-based approaches offer advantages such as flexibility in internal system

dynamics and broader applicability, it is important to note their comparative

performance. Garcia and Bruna (2017) [45] demonstrated that metric-based

techniques, specifically in supervised settings, often outperform model-based

approaches, as exemplified by graph neural networks. Additionally, challenges such

as suboptimal performance with larger datasets, as highlighted by Hospedales et al. in

23

2020 [6], and a reduced ability to generalize to several variant tasks compared to

optimization-based techniques, will be discussed in the subsequent section.

Optimization-based meta-learning:

Optimization-based meta-learning is a category of meta-learning algorithms that

focuses on training a model to adapt fast to unseen tasks through optimization

procedures. The key idea is to learn a set of model parameters that can be efficiently

fine-tuned for a unseen tasks with a limited amount of data points [7]. The

optimization-based meta-learning approach is versatile and can be applied to various

types of models and tasks. It provides a framework for learning an initialization that

guarantees a quick adaptation to new and unseen tasks, making it particularly useful

in scenarios where data for new tasks is limited [39].

The LSTM optimizer, introduced by Andrychowicz et al. in 2016 [55], serves as the

foundational concept for optimization-based meta-learning techniques. This

pioneering approach replaces handcrafted optimization procedures, such as gradient

descent, with a trainable LSTM network. The LSTM meta-learner, as proposed by

Ravi and Larochelle in 2017 [56], extends this paradigm into the few-shot learning

setting. Beyond learning the optimization procedure, this meta-learner also acquires a

set of initial weights, enabling its versatile application across various tasks.

MAML (Finn et al. 2017) [39] simplifies the LSTM meta-learner by replacing the

trainable LSTM optimizer with handcrafted gradient descent, Figure 2.10. Widely

recognized in the deep meta-learning field, MAML has inspired numerous subsequent

works, showcasing its impact and relevance in the research community.

Figure 2.10. MAML diagram.

24

MAML has garnered significant interest in the domain of Deep Meta-Learning, Figure

2.11, likely attributed to its: (i) simplicity, requiring just two parameters, (ii) broad

implementations, and (iii) robust performance [39, 7]. However, a drawback of

MAML, as noted earlier, is its potential computational expense, both in with regard to

performance represented in memory utilization and total running time needed,

particularly when optimizing a base-learner for each task and computing higher-order

derivatives shaping the optimization paths. [7, 8]

Meta-SGD [57], an enhancement of MAML introduced by Li et al. in 2017, takes a

step further by incorporating the learning rates into the optimization process. This

refinement demonstrates an additional layer of sophistication in fine-tuning the

optimization-based meta-learning approach.

Figure 2.11. The covered optimization-based meta-learning techniques.

LLAMA (Grant et al. 2018) [58], PLATIPUS (Finn et al. 2018), and online MAML

(Finn et al. 2019) [59] extend MAML's applicability to active and online learning

settings. LLAMA and PLATIPUS introduce probabilistic interpretations of MAML,

allowing for the sampling of several solutions for a specific task and quantifying

uncertainty. These extensions contribute to a more nuanced understanding and

utilization of MAML in diverse learning scenarios [7].

25

BMAML (Yoon et al. 2018) [60] takes a distinctive approach by jointly optimizing a

discrete set of M initializations. This discrete optimization strategy represents a

departure from traditional continuous optimization, demonstrating the diversity and

creativity within optimization-based meta-learning research.

iMAML (Rajeswaran et al. 2019) [61] addresses the computational challenges

associated with the computation of second-order derivatives needed by MAML.

Through implicit differentiation, iMAML not only overcomes computational expenses

but also enables the utilization of derivation-free inner loop optimization cycle. This

innovative solution opens avenues for more efficient and versatile optimization-based

meta-learning techniques.

Reptile (Nichol et al. 2018) [62] presents an elegant first-order meta-learning

algorithm that finds a set of initial parameters without the need for computing higher-

order derivatives. This streamlined approach contributes to the efficiency and

scalability of optimization-based meta-learning.

LEO (Rusu et al. 2018) [63] seeks to enhance the performance of MAML by making

improvements in a lower-dimensional parameter domain using an encoder-decoder

architecture. This architectural innovation showcases the exploration of novel design

principles within the optimization-based meta-learning framework.

Lastly, (Bertinetto et al. 2019) [64], and Lee et al. (2019) [65] leverage traditional deep

learning techniques (ridge regression, logistic regression, SVM, respectively) as

classifiers on top of a learned feature extractor. These approaches integrate classical

methods into the meta-learning framework, demonstrating the adaptability and fusion

of traditional techniques with contemporary meta-learning concepts [7].

The main benefit of optimization-based techniques, highlighted by Finn and Levine in

2018 [58, 66], is their ability to achieve superior performance on wider task

distributions compared to model-based approaches. However, it is essential to

acknowledge the computational expenses associated with optimization-based

techniques, as emphasized by Hospedales et al. in 2020 [6], particularly in optimizing

a base-learner for each task and learning the optimization procedure.

When the target is to implement heuristic approach to optimize the meta learning

model, it will be more efficient to apply on optimizer-based meta-learning approaches

rather than the other two, due to their ability to efficiently explore solution spaces,

26

adapt to diverse tasks, and incorporate prior knowledge. Unlike metric-based

approaches, which rely heavily on similarity measures and may struggle with diverse

tasks, and model-based approaches, which require explicit modeling of the underlying

process and may lack flexibility, optimizer-based methods directly optimize the search

process, allowing for robust adaptation and effective exploration of solution spaces,

thus offering superior performance and applicability across various domains.

2.2.3. Meta learning challenges

While meta-learning has demonstrated its potential to revolutionize learning processes

across diverse domains, unlocking the ability to rapidly adapt to new tasks and acquire

generalized knowledge, it also comes with its set of challenges. Some of the key

challenges in meta-learning include:

− Time Complexity: There is often a trade-off between the performance of a

meta-learning algorithm and its time complexity. Striking the right balance is

crucial, especially in scenarios where quick adaptation is essential [6, 7]. Meta-

learning models often involve two phases: meta-training and task-specific

adaptation. The time complexity of meta-learning includes the time required to

train the meta-model and the adaptation time for new tasks [42].

− Model Complexity: The complexity of the meta-learning model itself can

impact both performance and time complexity. More complex models may

offer better performance but might require more time for training and

adaptation [41].

− Algorithmic Innovations: Researchers continually work on developing new

meta-learning algorithms that improve both performance and time complexity.

Innovations in optimization techniques, model architectures, and training

strategies contribute to advancements in this field [8].

2.3. Heuristic Algorithms

Heuristic algorithms, rooted in optimization principles, play a pivotal role in our

proposed methodology. This section provides a focused exploration of heuristic

algorithms, emphasizing their relevance in addressing the characteristics of deep

learning in general and meta-learning specifically. By examining how heuristic

algorithms bridge the gap between optimization and learning, we go through their

27

importance in our explore of enhancing the adaptability and efficiency of meta-

learning models [11].

2.3.1. Characteristics of heuristics algorithms

− Simplicity: Heuristic algorithms are designed to be straightforward and easy

to apply. They provide quick decision-making without intricate calculations or

exhaustive exploration of all possible solutions [9, 11].

− Efficiency: Heuristics prioritize speed in generating solutions. They aim to

provide reasonably good outcomes within a limited amount of time, making

them well-suited for scenarios where computational resources are constrained

[67].

− Adaptability: Heuristics often present adaptability, allowing them to be

applied across various problem domains. They rely on general problem-solving

principles, making them important techniques in diverse contexts [67, 68].

− Approximate Solutions: Rather than the possibility of finding optimal

solutions, heuristics offer approximate solutions that are often "good enough"

for the specific problem at hand. This characteristic is particularly valuable in

situations where exact solutions are computationally expensive or even

infeasible [69].

These algorithms, designed to navigate complex problem spaces efficiently, present

diverse strategies that can be systematically organized into distinct categories.

Categorizing those algorithms by source of inspiration serves to encapsulate common

principles and approaches shared by various heuristic methods, facilitating a clearer

understanding of their operational frameworks, summarized in Figure 2.12.

2.3.2. Evolutionary algorithms

Darwinian principles, specifically the concepts of natural selection and survival of the

fittest, serve as the foundation for Evolutionary Algorithms (EAs). These algorithms

initiate with a group of individuals, orchestrating simulated processes of reproduction

and mutation to generate a new offspring generation. This iterative approach ensures

the preservation of genetic traits that enhance an individual's adaptability to a given

environment, while concurrently eliminating characteristics that render it less resilient.

The theories articulated by Charles Darwin, particularly those pertaining to natural

evolution, serve as a driving force behind Genetic Algorithms (GAs) and Differential

28

Evolution (DE). Genetic Programming (GP), on the other hand, draws inspiration from

the biological evolution paradigm. EAs encompass a diverse array of methodologies,

such as Gene Expression Programming (GEP), Learning Classifier Systems (LCS),

Neuroevolution (NE), and Evolution Strategy (ES), each reflecting the assimilation of

evolutionary principles into computational frameworks [9, 11, 67, 68].

Figure 2.12. Classification of heuristic algorithms based on the source of inspiration

with including popular algorithms under each class.

Beni and Wang (1993) [71] introduced the term 'Swarm Intelligence' in 1989 within

the realm of cellular robotic systems. Since then, Swarm Intelligence (SI) has garnered

significant attention across various industries. SI entails the collective behavior of

decentralized and self-organized systems. Key attributes of swarm systems include

adaptability, characterized by learning through action, along with robust

communication and knowledge-sharing capabilities [11]. In the wild, creatures take on

tasks such as defending themselves against formidable predators or hunting for

sustenance independently, yet they exhibit a strong reliance on swarming. Even in their

search for food, they exhibit this swarming behavior. Swarm intelligence (SI) has

served as inspiration for numerous methodologies. For instance, the intelligent social

interactions observed in birds have motivated the development of algorithms like

particle swarm optimization (PSO) [10]. The process of monkeys climbing trees in

29

search of food has inspired the development of the monkey search (MS) algorithm

[72]. Moreover, grey wolf leadership hierarchy and hunting strategy motivates grey

wolf optimizer (GWO), and so on. SI examples include, but are not limited to, ant lion

optimizer (ALO) [73], bat algorithm (BA) [74], firefly algorithm (FA) [75], ant colony

optimization (ACO) [76], cuckoo search (CS) [77], artificial bee colony (ABC) [78].

Polar Bear Optimization [79].

While the implementation details vary from one algorithm to another, we can provide

a general formulation that highlights key concepts often found in swarm intelligence

algorithms as summarized in [9, 11] and [67].

Population: Let N be the number of agents in the swarm. The swarm population is

represented by:

𝑋 = {𝑋1, 𝑋2, … , 𝑋𝑁} where 𝑋𝑖 is the state of agent i, each 𝑋𝑖 typically represents a

candidate solution in the search space.

Distribution of Agents: The distribution of agents in the search space is governed by

a probability density function 𝑃(𝑋) which describes the likelihood of finding an agent

at a particular state.

Objective Function: For optimization problems, there exists an objective function 𝑓

that maps each agent's state to a real value:

𝑓(𝑋𝑖) → 𝑅 (2.14)

Local Search: Agents perform local search around their current positions to explore

the neighborhood. Let 𝐿𝑖 denote the local search space for agent i, and 𝑓local(𝑋𝑖) be the

local objective function:

𝑋𝑖(𝑡 + 1) = argmin𝑋∈𝐿𝑖
𝑓local(𝑋) (2.15)

Global Search: Agents share information to perform a global search. The global

search space is denoted as G, and 𝑓global(𝑋) is the global objective function:

𝑋𝑖(𝑡 + 1) = argmin𝑋∈𝐺𝑓global(𝑋) (2.16)

30

Update Equations: Agents update their positions based on their local search, global

search, and possibly historical information:

𝑋𝑖(𝑡 + 1) = 𝐴(𝑋𝑖(𝑡),local info, global info, historical info) (2.17)

2.2.3. Physical law‑based algorithms

Algorithms that draw inspiration from principles rooted in the physical and chemical

realms belong to this specific category. Furthermore, they can be categorized as

follows:

(i) Physics-based algorithms [11]:

This subcategory draws inspiration from key cosmic phenomena such as gravitation,

the big bang, black holes, galaxies, and fields. Concepts underlying this category stem

from phenomena like the devouring of stars by black holes and the genesis of new

beginnings, which have inspired algorithms like the Black Hole Algorithm (BH).

Harmony Search (HS) [80], on the other hand, is crafted from the improvisational

methods employed by musicians. Simulated Annealing (SA) [81] is grounded in the

metallurgical annealing process, where metal is rapidly heated and then slowly cooled,

enhancing strength and facilitating ease of manipulation.

(ii) Chemistry-based algorithms:

Metaheuristic Algorithms (MAs) inspired by the principles of chemical reactions,

including molecular reaction, Brownian motion [82] falls into this category.

2.3.4. Miscellaneous algorithms

This category encompasses algorithms rooted in a wide array of concepts including

human behaviors, game strategies, mathematical theorems, politics, artificial thoughts,

and various other topics. For instance, the movement and propagation of clouds have

inspired the development of the Atmosphere Clouds Model Optimization Algorithm

(ACMO) [83], while activities in the stock market, particularly the trading of shares,

drive the Exchange Market Algorithm (EMA) [84].

2.4. Heuristic Algorithms and Deep Learning

Neural network optimization is a multifaceted challenge involving various aspects

such as weight optimization, hyperparameter tuning, and architecture design. This

31

literature review categorizes heuristic algorithms based on specific optimization areas,

providing insights into their applications and effectiveness in addressing distinct

challenges within neural network optimization [70, 5].

More and more researchers are leaning towards crafting novel hybrid optimization

tools. These tools combine two or more metaheuristic algorithms to fine-tune the

training parameters of artificial neural networks. With the introduction of numerous

metaheuristic algorithms, the choice of an appropriate algorithm for hybridization

emerges as a crucial factor in crafting superior algorithms. The performance of

optimization tools is generally contingent on two essential components: exploitation

and exploration, synonymous with intensification and diversification [70].

The search process efficiently traverses the search domain, conducting a global search

to evade local optima but may encounter slow convergence. Conversely, the

exploitation process tends to yield very high convergence rates but risks being

confined to a local optimum. Achieving an optimal algorithm performance necessitates

striking a delicate balance between these two components. Currently, no algorithm can

assert having attained such equilibrium in the existing literature [5].

Among the developed metaheuristic algorithms, certain algorithms excel in

convergence rates, while others prove adept at avoiding local minima. For instance,

Particle Swarm Optimization (PSO) achieves faster convergence in optimizing ANN

models [85], yet for multimodal functions, both Differential Evolution (DE) and

Harmony Search (HS) exhibit superior convergence rates compared to PSO [86, 87].

Furthermore, Artificial Bee Colony (ABC) demonstrate faster convergence than

Genetic Algorithms (GA) for several benchmarks in training Feedforward Neural

Networks (FNN) for classification purposes [88].

Generalized Simulated Annealing (GSA) may suffer from a slow convergence

behavior in the final cycles but has been proven to converge much quicker than GA in

dynamic neural network identification [70]. Conversely, Simulated Annealing (SA)

exhibits slower convergence in solving machining optimization problems [89]. Tabu

Search (TS) is demonstrated to converge quicker than GA in resolving both quadratic

kind of tasks and vehicle routing problems [5].

Cuckoo Search (CS) and GSA are widely employed due to their proficiency in finding

the global optimum. CS outperforms FA and PSO in optimizing retaining wall design

32

and is efficient in achieving global optima with higher success rates than PSO and GA

for solving optimization problems [70]. Additionally, both PSO and ABC achieve

higher accuracy compared to FA in optimizing ANN models. However, FA shows a

higher tendency to be trapped in local minima compared with ABC in training FNN

for classification problems [5].

ABC's strong exploration ability results in a lower tendency to be trapped in local

optima compared to PSO, which exhibits a weaker exploration ability [88]. In stock

price prediction, both PSO and DE can avoid local minima, but DE provides better

accuracy, particularly in fluctuated time series [5]. DE also showed better performance

than GA, PSO, and SA methods in solving various problems. For multimodal

functions, both HS and DE exhibit higher performance than PSO, while HS proves

more efficient in finding optimal solutions than PSO. TS is commonly used for

hybridization with other algorithms to overcome their weakness of being trapped in

local optima [70].

2.5. Current Landscape and Gaps in the Literature

Meta-learning has emerged as a compelling area of study, particularly in addressing

challenges that come with supervised learning problems characterized by limited

training data. A substantial body of research attests to the effectiveness of meta-

learning in facilitating generalization and rapid adaptation to new tasks with minimal

data points. To train these meta-learning models, conventional practice involves the

use of gradient-based optimizers. However, the unique challenges presented by meta-

learning, such as the demand for swift adaptation and the necessity of task-specific

adjustments, suggest that standard optimizers may not be optimally suited to address

these issues due to the need of intensive training cycle in order to achieve the desired

accuracies.

Despite the promising experiments made in the field of meta-learning, a critical

examination of the existing literature reveals significant performance issues that

persist. The reported shortcomings encompass challenges related to the convergence

speed, accuracy, and adaptability of meta-learning models, particularly in scenarios

with lack of training data. These limitations underscore the need for innovative

approaches to enhance the efficiency of meta-learning.

33

A comprehensive review of the literature results a common trend in the use of

heuristics and traditional gradient-based optimizers in the training of deep learning

models. However, it is noteworthy that existing studies generally focus on general deep

learning models, and there is a conspicuous dearth of attention directed specifically at

optimizing meta-learning models. While heuristics have demonstrated efficacy in

certain contexts, their application has not been systematically explored in the realm of

meta-learning, leaving a significant gap in the literature.

This research seeks to address these gaps by proposing a novel hybrid optimizer

tailored explicitly for meta-learning models. Recognizing that standard optimizers

may not efficiently handle the unique demands of meta-learning, we introduce an

innovative approach. Our custom optimizer combines a metaheuristic algorithm with

traditional gradient-based techniques. This hybrid approach involves an initial search

for optimal model parameters using random candidate solutions, followed by iterative

adjustments based on individual performance within the population. The subsequent

learning process incorporates classic gradient optimization, to continue with the most

promising solution identified by the heuristic algorithm.

To prove the efficacy of our proposed custom optimizer, we first conducted

experiments on five classification benchmark datasets. The results demonstrated

superior accuracy and faster convergence compared to conventional approaches.

Moreover, we extended our methodology to address the meta-learning problem,

illustrating how our custom optimizer enhances the training of meta-learning models

and facilitates the efficient identification of optimal parameters. Our experimental

analysis focuses on the dynamic characteristics of our proposed strategy, emphasizing

its potential to overcome the performance issues observed in traditional meta-learning

models.

34

3. DYNAMIC POPULATION OPTIMIZATION

In this section, we present the proposed methodology for our research, providing a

comprehensive framework for the design details of our hybrid algorithm.

3.1. Introduction

We will explain the fundamentals of our Dynamic Population Optimization (DPO)

algorithm. DPO represents a combination of metaheuristic algorithms and gradient

descent optimization, summarized in Figure 3.1, which was specifically developed for

training neural networks in the context of classification problems.

Figure 3.1. Research Framework.

In the ever-evolving landscape of machine learning, finding an efficient and adaptable

optimization strategies has become essential, especially as we deal with the complexity

of meta learning explained in the previous chapter.

36

Meta learning, characterized by its ability to enable models to learn and adapt across

various tasks, introduces a level of complexity that demands a strategic and systematic

approach.

Recognizing the challenges posed by meta learning, we propose a two-phase strategy

for the development and evaluation of an optimization function based on heuristic

principles. The significance of this approach lies in the acknowledgment of the

complexity posed by meta learning and the performance constraints of our optimizer

before navigating the complexities of meta-learning scenarios.

However, given the complexity of meta learning extends beyond the diversity of tasks.

Meta learning often involves handling limited labeled data, requiring innovative

solutions. These difficulties emphasize the need for a robust optimization framework

capable of navigating the details of meta learning scenarios.

The Rationality of Two Phases Development: Given the increased challenges

associated with meta learning, we propose a that begins with applying the optimization

of our framework on traditional classification problems. This initial phase serves as a

basic test, ensuring that the optimizer is not only effective but also adaptable across a

spectrum of benchmark classification datasets. By validating and fine-tuning the

optimization function in traditional classification scenarios, we allow smooth

transition into the complex realm of meta learning with the need only for minor tweaks.

This phased methodology aligns with a wise strategy of "mastering the basics before

tackling the complexities."

Ensuring Improved Performance: Before delving into the challenges of meta

learning, it is imperative to establish a solid foundation. The first phase allows us to

gauge the optimizer's efficacy in handling diverse classification tasks, providing

insights into its adaptability and robustness. Only once the optimizer demonstrates

consistent and stable performance across various datasets can we confidently transition

to the nuanced domain of meta learning.

In effect, this two-phased approach aligns with a principle of cautious progression,

ensuring that our optimization function is not only sophisticated but also reliable. By

doing so, we aim to contribute a solution that stands resilient against the multifaceted

challenges of meta learning, ultimately advancing the frontier of machine learning

optimization strategies.

37

3.2. General Classification Perspective

In the effort of refining the classification process within supervised learning problems,

our objective is to locate the optimum values for the network parameters (weights

vector). To accomplish this, we introduce a novel approach, a hybrid model that

integrates a heuristic derivative-free heuristic technique with traditional gradient

descent-based optimization. In the landscape of supervised learning, where the model

relies on labeled training data to make predictions, the significance of parameter

optimization is the core function of the training process. The proposed technique

enrich the reliance on gradient information, allowing our model to navigate the

parameter space with agility and adaptability. Concurrently, the incorporation of

dynamic population optimization adds a layer of intelligence, enabling the model to

dynamically adjust its parameters based on evolving patterns within the training data.

Integrating heuristic approaches with traditional gradient-based training offers a

solution to the optimization challenges in high-dimensional search domains. By

combining the global exploration capabilities of heuristics with the local search

proficiency of gradient-based methods, this hybrid approach aims to overcome the

limitations inherent in each technique. Heuristic algorithms excel in navigating

complex and expansive search spaces but may struggle to find precise solutions, while

gradient-based methods are adept at fine-tuning solutions in local regions but can be

trapped in local optima. By leveraging the strengths of both paradigms, hybrid

optimization strategies can be designed that strike a balance between exploration and

exploitation, leading to more robust and effective optimization outcomes across a wide

range of complex problems.

Gradient-based optimization techniques proceed iteratively, sequentially refining the

solution from an initial point within the search space. However, the efficacy of these

techniques hinges greatly on the selection of the starting point, as it can determine

whether the algorithm converges to a global optimum or gets stuck in a local optimum

[3, 4]. Recognizing this, a comprehensive exploration of the search domain is

conducted initially to identify a promising starting point. This exploration involves

systematically traversing the search space to evaluate various starting points, assessing

their potential to lead to optimal solutions. By doing so, the optimization process aims

to mitigate the risk of being confined to suboptimal solutions and enhance the chances

of achieving a globally optimal outcome.

38

During the initialization phase, a heuristic algorithm efficiently navigates the search

space to identify a promising starting point for the subsequent training phase. This

process involves systematically evaluating candidate points within the space,

leveraging heuristic techniques to prioritize regions likely to contain optimal solutions.

By swiftly exploring the search space in this manner, the initialization phase aims to

expedite the convergence towards a high-quality solution in the subsequent stages of

training.

Every individual in the population 𝑃 holds values of the weight vector of a neural

network:

𝑃 = 𝑝1, 𝑝2, 𝑝3,… , 𝑝𝑛 (3.1)

𝜃 = (𝑤1, 𝑤2, 𝑤3, … , 𝑤𝑚) (3.2)

Where 𝑛 and 𝑚 represent the number of individuals and the total number of parameters

–weights- that should be optimized respectively. The first stage within our algorithm

is starting by dispersing randomly the members of population 𝑃 within the search

domain, subsequently, each object will have the opportunity to explore its surrounding

area in search of an improved solution. Evaluations will be conducted based on

Equation 3.3.

𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑤𝑖) =
1

1 + 𝐶𝑖

 (3.3)

Since this fitness will represent the performance of one individual -absolute

performance-, however, to guarantee fair comparison with other members of the

population we will be calculating the normalized fitness [70]:

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑤𝑖) =
𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑤𝑖)

∑ 𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑤𝑗)
𝑛
𝑗=1

 (3.4)

The population after calculating the fitness for each member will be represented as

following matrix:

39

𝑃 =

[

𝜃1 𝑓1
𝜃2 𝑓2
𝜃3 𝑓3
⋮ ⋮

𝜃𝑛 𝑓𝑛]

 (3.5)

Where 𝑓𝑖 represents the normalized fitness value of the 𝑖𝑡ℎ individual.

Selecting a good local search function is crucial when designing a heuristic algorithm,

because it directly influences the algorithm's ability to efficiently explore the solution

space and find the desired solutions. Local search functions guide the exploration of

the solution space by focusing on promising regions. A good local search function

helps the algorithm navigate through the solution space more efficiently, reducing the

computational effort required to find solutions.

Based on that and after evaluating several local search strategies reported in [69] we

empirically noticed that the local search strategy introduced by [79] showed good

performance in optimizing the parameters of the network. Thus, in every cycle, values

of all parameters will be adjusted as mentioned in Equations 3.6 and 3.7 which was

introduced by [79] a local search method initiated from the existing solution, which

involves navigating the surrounding reagon:

𝑟 = 4𝑎 𝑐𝑜𝑠 𝜙0 𝑠𝑖𝑛 𝜙0
 (3.6)

𝑊𝑛𝑒𝑤 = 𝑊𝑎𝑐𝑡𝑢𝑎𝑙 ± [𝑟 𝑠𝑖𝑛(𝜙𝑘) + 𝑟𝑐𝑜𝑠 (𝜙𝑛)]
 (3.7)

Here 𝑎 ∈ {0, 0.3} represents a randomly determined number that governs the

diference over which an object can perceive its surroundings, while 𝜙 ∈ {0,
𝜋

2
} the

angle of moving direction. 𝑘 and 𝑛 are the angular values selected randomly for each

point withing the range ∈ {0, 2𝜋}.

In the Polar Bear Optimization (PBO) algorithm [79], local search is performed by

adjusting the coordinates of the bear's position. The algorithm uses local search

strategies to explore the solution space effectively.

− Adjusting Angle (𝜙): The angle component of the coordinates represents the

direction in which the search agent is moving. During local search, the

40

algorithm may make small adjustments to this angle, allowing the agent to

explore the nearby regions in the solution space.

− Adjusting Distance (r): The distance component of the coordinates represents

the distance from the origin. Local search may involve small variations in this

distance, enabling the individual solutions to explore other solutions that are

close to its current position.

By adjusting both the angle and distance, solutions can navigate the solution space

more finely, exploring local regions around its current position. These local search

operations aim to refining the solutions in the population and potentially converging

to a better optimum.

Following the completion of each cycle, during which every object has taken a step,

or attempted to do so, towards the target, we enact a dynamic population strategy

inspired by the methodology described in [79]. Subsequent to each cycle, a

comprehensive evaluation of the entire population occurs. According to a random

parameter generated at each cycle, a decision regarding if to remove an object from

the population or introduce a new one is made. In instances where the decision leans

towards removal, the poorest-performing solution within the population is selectively

eliminated. This approach aims to mitigate the exploration of futile regions within the

search domain, thus enhancing the efficiency of the optimization process. Otherwise,

when creating a new object, we select the best object and we clone it. We assume here

that the best object is searching in a promising area and having more objects searching

in that area will result in faster convergence. Figure 3.2 illustrates a depiction of

solutions represented by white dots within the search space, with the objective being

to locate the optimal solution represented by the dark blue point. According to our

dynamic strategy, the object situated on the most far left should be discarded, given its

considerable distance from the target. Conversely, the object positioned near the best

solution should be replicated. The rationale behind the dynamic approach stems from

grappling with a high-dimensional search space, where achieving comprehensive

coverage with objects is exceedingly challenging. Consequently, this strategy

facilitates the exploration of a broader spectrum of areas within the search space,

leveraging a smaller number of search agents. Additional elaboration on this strategy

will be thoroughly discussed in the experimental analysis chapter, providing

comprehensive insights and details.

41

Figure 3.2. Dynamic population strategy.

To prevent getting stuck in local optima, we won't duplicate the object with higher

accuacy and remove the lowest one at each cycle. But, we introduce a new variable

𝑘 ∈ {0, 1} generated randomly at the end if every loop. When the generated random

variable's value is below 0.75, then we will be reproduce a new solution; otherwise,

worst solution will be dismissed.

𝑅𝑒𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑖𝑓 0 ≤ 𝑘 ≤ 0.75 (3.8-a)

𝑅𝑒𝑚𝑜𝑣𝑒 𝑖𝑓 0.75 < 𝑘 ≤ 1 (3.8-b)

In simpler terms, the strategy of being three times more likely to duplicate than to

remove also offers members that are not performing well the opportunity to find better

solutions, as they are not immediately removed at each cycle. In essence, we can

approximate that even the poorest solution will likely have three opportunities to

improve itself before being removed.

When the initialization phase concludes, we choose the best solution, typically the one

with the maximum accuracy, to serve as the initialization point for the next training

phase, which will utilize classic backprobagation methods. The accuracy is calculated

according to Equation 3.4. However, given the very high number of dimensions of

search domain. Here we do not anticipate the heuristic algorithm to reach the optimal

values for the weight vector by itself, unlike various studies aiming to entirely

substitute gradient-based optimizers with heuristic approaches. Instead, our

proposition is that the heuristic algorithm swiftly navigates the search space, offering

42

a robust initial position for the gradient-based optimizer to proceed with the rest of the

neural network training. Additionally, we expect, supported by our upcoming

experiments, that the dynamic population strategy will enable the exploration of an

extensive search space with a restricted number of individuals.

In addition to specifying the model for optimization, the algorithm needs three key

input parameters: population size, cycle count (epochs), and heuristic ratio. The

heuristic ratio governs the allocation of training cycles among heuristic and gradient-

based techniques. Employing a larger number of objects enhances the likelihood of

discovering optimal values for the weight vector but may potentially lead to decreased

performance. After initialization, the algorithm proceeds through a specified number

of iterations for each potential solution. The number of iterations constitutes another

critical input parameter that warrants careful selection. Increasing the number of

iterations boosts the probability of converging closer to the optimal solution through

local search. However, this enhancement comes with the trade-off of prolonged

runtime for the algorithm. In every cycle, every object explores by taking steps while

considering both the positive and negative sides, represented by positive and negative

values respectively in Equation 3.7. Subsequently, both generated potential solutions

are evaluated, and will move only if a superior solution is generated.Our dynamic

population optimization approach is summarized by Algorithm-1 and Figure 3.4.

Figure 3.3. Dynamic population optimization – DPO.

43

Following the completion of a iteration when individuals of the population have the

opportunity to improve their current values of weight vector, the dynamic population

strategy comes into play. As outlined in lines 7-11 of Algorithm 1, a decision is made

based on a randomly generated variable regarding either to duplicate or eliminate an

individual from the population. If the value of the randomly generated variable is

below 0.75, reproduction is chosen; else, removal occurs. In this context, the value

0.75 indicates that the re-production possibility is almost three times than the removal

decision. While this ratio remains fixed in this study, it could optionally be set as an

input parameter. When the decision is reproduction, we select the best solution and we

create an identical one, this allows more intensive search in that area. In other words,

we suppose that the optimal solution -so far- is close to the optimal solution we are

looking for and that area is worth more agents to search for. However, when the choice

is to remove, we select the worst solution in the solution domain, and we dismiss

assuming that the solution is searching in a wrong region and to continue searching in

that area is a waste of time.

The final parameter is the Heuristic Ratio, responsible for allocating number of

iterations among the heuristic phase 𝐻 and the gradient phase approach 𝐺.

𝐻 =
ℎ𝑟𝑎𝑡𝑖𝑜

100
∗ 𝑁

 (3.9)

𝐺 = 𝑁 − 𝐻 (3.10)

In simpler terms, this parameter determines the proportion of time dedicated to

initialization. Setting this parameter to zero implies that no initialization will be

performed, and the optimization process will rely solely on gradient descent.

Conversely, setting it to 100 indicates that the entire training process will be conducted

using heuristic methods without traditional gradient descent. Intermediate values

represent a combination of both approaches, with a portion of the training time

allocated to initialization and the remaining time devoted to gradient descent.

Adjusting this parameter allows for fine-tuning the tradeoff between exploration

(through heuristic initialization) and exploitation (through gradient descent) during the

training process.

44

Gradient-based techniques iteratively update the weights of a neural network

according to the computed loss, aiming to reduce this loss over successive iterations.

By iteratively modifying the parameters in the direction that reduces the error, these

techniques gradually converge towards optimal solutions. The error represents the

disparity among the calculated value and the netowrk actual output. This difference

quantifies how well the model's predictions align with the ground truth or target values.

To compute this error, various cost functions, or loss functions, can be employed. One

commonly used cost function is the mean squared error (MSE), which calculates the

average squared difference between the predicted and actual values across all samples.

Mathematically, the MSE cost function is defined as:

𝑐 =
1

𝑛
∑∑(𝑦𝑝�̂� − 𝑦𝑝𝑘)

2
𝑚

𝑘

𝑛

𝑝

 (3.11)

Once the loss is computed, the parameners will be adjusted by calcualtuing the gradient

for all weights in the network. In this context, 𝑛 is the total number of training data

points, while 𝑚 signifies the count of output parameters. The derivation of the loss

with respect to each node in the model is calcuated to determine the direction and

magnitude of weight adjustments during the optimization process.

∆𝜃= −𝜂
𝑑𝐶

𝑑𝜃
 (3.12)

Here 𝜃 is the weight vector and 𝜂 denotes the learning rate.

45

Figure 3.4. Procedure of DPO.

3.3. Meta Learning Perspective

Optimizers reliant on gradients, like stochastic gradient descent (SGD) or adaptations

such as Adam, are designed to update the model’s parameters in a way that minimizes

46

a given loss function for a specific task. However, in the realm of meta-learning, since

the goal is to let a network learn how to learn across a wide range of tasks, standard

optimizers may not be sufficient, and custom optimizers or meta-optimization

techniques become essential.

In meta-learning, the model is trained on a distribution of tasks, and each task might

require a different optimization strategy. Standard optimizers have fixed

hyperparameters and update rules that may not adapt well to the varying requirements

of different tasks. Custom optimizers can be tailored to the specific needs of each task,

allowing for faster adaptation.

Neural networks used to train meta-learning models are usually high dimensional

networks, gradient based techniques might need a lot of gradient steps to reach the

minima or might even stuck in local minima [2]. We propose a hybrid model of meta-

heuristic algorithm consists of dynamic population heursitic approac followed by

gradient descent to be used as an optimization function while training the meta-

learning models. In this research we have applied our proposed optimization function,

Algorithm-1, using benchmark datasets Omniglot and MiniImage which can be

considered as the most popular datasets for meta-learning problems due to high

number of classes with limited number of samples for each.

Meta-learning, a paradigm where models learn to rapidly adapt to new tasks with

minimal data, has witnessed significant advancements with the emergence of recently

developed algorithms. Among these, Model-Agnostic Meta-Learning (MAML),

Reptile, and Meta-SGD have established themselves as powerful platforms across

diverse domains. MAML and Reptile excel in learning versatile initializations for

quick adaptation, Meta-SGD dynamically adjusts learning rates for fine-tuning. Their

collective contributions have moved the field of meta learning forward, demonstrating

efficacy and versatility in addressing a wide range of meta-learning challenges across

several real world problems.

47

Table 3.1. Meta-learning algorithms comparison.

Aspect MAML Reptile Meta-SGD

Key Idea
Learns model initialization

for fast adaptation

Finds a good

initialization for

fast adaptation

Adapts learning

rates for task-

specific fine-

tuning

Training

Procedure

Meta-optimization over a

distribution of tasks

Closest-to-

initialization

optimization

Meta-

optimization of

learning rates

across tasks

Flexibility

Model-agnostic, applicable

to various neural network

architectures

Model-agnostic,

emphasizes a

straightforward

update rule

Adapts learning

rates, providing

flexibility to

existing models

Main

Emphasis

Initialization of model

parameters for efficient task

adaptation

Iterative updates

that bring the

model closer to

task initialization

Dynamic

adaptation of

learning rates

for optimal

fine-tuning

Training

Scenario

Meta-optimization over a

distribution of diverse tasks

Closest-to-

initialization

updates for rapid

task adaptation

Optimization of

learning rate

dynamics

across a variety

of tasks

3.3.1. DPO – MAML adaptation

Model-Agnostic Meta-Learning (MAML) can be considered as a cornerstone in the

field of meta-learning, playing a pivotal role in shaping the landscape of adaptive

machine learning algorithms. At its core, MAML optimizes a model's parameters in a

way which will result in a quickly adapt to a diverse array of tasks, making it agnostic

to the specifics of the underlying neural network architecture. This model-agnostic

approach, not tied to any specific model, has sparked numerous expansions and

modifications in diverse fields, spanning from computer vision to voice recognition

and natural language processing. In essence, MAML's influence has transcended its

initial introduction, producing a flow in research efforts dedicated to refining and

extending meta-learning methodologies. The importance of MAML in meta-learning

resides in its capacity to facilitate quick adaptation to new tasks through a gradient-

based optimization process. MAML allows a model to quickly adapt to new tasks with

only a few examples. It achieves this by training the model's parameters in a way that

they are more conducive to fast adaptation during the fine-tuning phase on new tasks.

48

MAML can be used to solve regression, supervised learning and reinforcement

learning problems, however, in the below section we will only discuss the supervised

learning part and how we adopt our optimizer into MAML:

− Initialization: The model is initialized with random parameters. A meta-batch

of tasks is sampled, each consisting of a support set and a query set.

− Inner Loop (Adaptation): The model is trained on the support set of each task

for a few iterations to adapt its parameters. The calcualted error on the support

set is used to adjust the network's parameters through backpropagation.

− Outer Loop (Meta-Training): The model's parameters are updated based on

the aggregated performance on the query sets of all tasks. This involves

computing the meta-gradient, which represents the overall performance across

tasks, and updating the model's parameters to improve its generalization.

θ0𝑖
= θ − α∇θ𝐿𝑇𝑖

(𝑓θ)
 (3.13)

− Meta-Testing (Adaptation to New Tasks): During meta-testing, the model is

fine-tuned on new tasks using a few examples from the support set,

demonstrating its ability to quickly adapt to unseen tasks.

Figure 3.5. MAML + DPO.

3.3.2. DPO – Reptile adaptation

Reptile is designed to improve the model's ability to generalize across tasks by

repeatedly exposing it to different tasks and updating its parameters in a specific

manner. The training procedure can be summarized as follows:

49

− Initialization: The model starts with random parameters. In Reptile, there's no

explicit separation between support and query sets during meta-training.

− Inner Loop (Adaptation): The model is trained on a task for a fixed number

of iterations. Unlike MAML, Reptile focuses on updating the network's

weights towards the end of the inner loop, emphasizing faster adaptation.

− Outer Loop (Meta-Training): The network's weights are adjusted based on

the accumulated changes made within the adaptation phase across multiple

tasks. Reptile aims to find a set of parameters that allows the model to quickly

adapt to various tasks.

𝜙 ← 𝜙 +
𝜀

𝑛
∑(𝜙𝑒𝑖 − 𝜙)

𝑛

𝑖=1

 (3.14)

− Meta-Testing (Adaptation to New Tasks): During meta-testing, the model is

fine-tuned on new tasks using a few examples, showcasing its ability to rapidly

adapt to novel tasks based on the learned meta-knowledge.

After iterating through multiple tasks, the model is expected to have learned a more

generalized set of parameters that enable it to quickly adapt to new tasks.

Figure 3.6. Reptile + DPO.

The key idea behind Reptile is that by iteratively exposing the model to different tasks

and updating its parameters based on the observed task-specific losses, the model

becomes more capable of rapid adaptation to unseen tasks with limited number of

training samples. This meta-learning approach helps enhance the network's capacity

to generalize across a wide range of tasks.

50

3.3.3. DPO – Meta-SGD adaptation

Meta-SGD focuses on adapting the learning algorithm itself, specifically the update

rule or optimization strategy, rather than just the model parameters. The goal is to train

a meta-learner that can quickly adapt to new tasks by learning an effective update rule

during meta-training.

Here's a brief overview of the Meta-SGD algorithm:

− Initialization: The model begins with random parameters. Similar to Reptile,

Meta-SGD doesn't explicitly distinguish between support and query sets during

meta-training.

− Inner Loop (Adaptation): The model is trained on a task for a fixed number

of iterations. During this adaptation phase, the model's parameters are updated

to better fit the specific task using standard gradient descent.

− Outer Loop (Meta-Training): Meta-SGD introduces a meta-optimizer, which

is itself optimized during the outer loop. The meta-optimizer adapts the

learning rate or other parameters of the base optimizer (e.g., SGD) enhancing

the model's capacity for rapid adaptation to unseen tasks during the training

phase.

θ0 = θ − α ∘ ∇𝐿𝑇(θ)
 (3.15)

− Meta-Testing (Adaptation to New Tasks): In meta-testing, the meta-trained

optimizer is used to fine-tune the model on new tasks. The goal is to

demonstrate the effectiveness of the learned meta-optimizer in facilitating fast

adaptation across a variety of tasks.

The idea behind Meta-SGD is to learn a set of meta-parameters that guide the

optimization process, making the algorithm more adaptive and capable of efficient

learning on a wide range of tasks.

51

Figure 3.7. Meta-SGD + DPO.

By explicitly considering the learning algorithm itself as a parameterized entity, Meta-

SGD contributes to the field of meta-learning, enabling models to learn not only what

to learn but also how to learn.

52

4. EXPERIMENTAL ANALYSIS

Within this chapter, our evaluation of the Dynamic Population Optimization (DPO)

algorithm will be divided into two distinct sections. The first section will explore

experiments conducted on benchmark classification datasets, providing insights into

the algorithm's performance with traditional deep learning classification. Here, we

assess its efficiency in handling traditional classification tasks -not meta learning- and

establish a baseline for comparison.

The second section of the chapter will go into detailed exploration of the DPO

algorithm optimizing of meta learning problems. This section aims to evaluate the

algorithm's behavior and adaptability in the face of meta-learning scenarios, where the

complexity extends beyond conventional classification tasks.

4.1. Experimental Analysis on Classification Datasets

Evaluating our proposed approach, we've chosen five benchmark datasets detailed in

Table 4.1. Each dataset includes information on the total layers count in addition to

the count of model’s parameters to be adjusted. The count of those parameters holds

significant importance in terms of performance, serving as a metric for the size of the

solution space, as it signifies the size of the weight vector and eventually number of

dimensions. This parameter greatly influences the complexity and search space of the

optimization problem, thus affecting the algorithm's efficiency and effectiveness in

finding optimal solutions. Details of ANN model used for each dataset are listed in

Table 4.1., However, our algorithm, as detailed in Algorithm-1, is not confined to any

particular architecture. It's designed to be versatile and adaptable, capable of being

applied across various neural network architectures. This flexibility enables its

utilization in a diverse range of scenarios, accommodating different model

complexities and requirements. By being architecture-agnostic, our approach can

address a wide array of optimization challenges encountered in neural network

training, providing a scalable and robust solution.

54

The algorithm accepts the network that should be optimized as an input parameter

without any restriction or pre-assumption on the structure of the model such as the

number of layers nor number of trainable parameters Figure 4.1. presents an overview

of the model structure for Cifar100. All datasets are divided into two sets training and

test, with the count of data points used during testing specified in Table 4.1. The chosen

train/test rates are commonly accepted by the deep learning community in several

implementations and have been employed in a lot of studies. These ratios were deemed

logical as they achieve a balance among having a sizable dataset for training and

ensuring the test dataset remains representative. This ensures that the model is

adequately trained on diverse data while also being rigorously evaluated on unseen

samples, facilitating robust performance assessment.

To ensure fair comparison among outcomes, it's essential to address potential

influences from several random variables, such as the starting weight settings and the

production of random values during solution creation. To mitigate these effects, we've

adopted consistent practices across all experiments on the same model. Specifically,

we've utilized identical startup weights for all tests considering the same network and

maintained uniformity by using the same seed when generating random values. This

approach helps to minimize variability stemming from random factors, thereby

enhancing the reliability and validity of our comparisons.

In our experimental analysis, we conducted training processes for all models by

recording the obtained accuracy at epochs (20, 30, and 40). The Heuristic Ratio

parameter allows for adjustment between traditional gradient descent, heuristic

approaches, or a hybrid one. In our evaluation, we considered the values of 0, 20, 50,

70, and 100 for this parameter. A setting of 0 implies no heuristic initialization, relying

solely on gradient optimization, while 100 indicates exclusive use of the heuristic

approach for to optimize the model. Intermediate rates at (20, 50, and 70) denote a

hybrid model, starting the optimization by heuristic approach with subsequent gradient

descent training. For example, when running 400 epochs with a heuristic ratio of 20,

this signifies that 80 cycles are allocated to the heuristic algorithm for initialization,

with the remaining 320 cycles utilized by traditional training. We utilized the Adam

optimizer [30] to represent the backpropagation-based training, as it has demonstrated

superior performance compared to similar gradient-based optimizers [3, 30]. However,

in our subsequent analysis and discussions, we will refer to SGD as the base of

55

gradient-based optimizers, recognizing that any other gradient-based algorithm could

be used instead of Adam in our approach.

Table 4.1. List of classification datasets.

Dataset
Layers

Trainable

Parameters

Attributes

Instance

Test# Output

FASTION 7 1,163,330 784 70,000 10,000 10

IRIS 3 55 5 150 30 3

CIFAR-10 7 1,632,080 1,024 60,000 10,000 10

MNIST 7 1,256,080 784 60,000 10,000 10

CIFAR-100 8 3,042,546 1,024 60,000 10,000 100

From Table 4.2. and graphs in Figure 4.2, it's evident from our findings that our

algorithm excelled consistently among all of the models and nearly all stages of

training cycles when the heuristic rate was set to 20. However, when this rate was

increased to 50 and more, this count not yield improved results. When drawing a

comparison between the outcomes obtained from heuristic ratios of 0 and 20 indicates

that swiftly navigating the search space and subsequently proceeding with gradient-

based technique indeed produces best outcomes. This suggests that a balanced

approach, combining exploration and exploitation, is crucial for achieving superior

performance in neural network training.

Figure 4.1. Summary of Cifar100 model.

56

Because regular methods that use Stochastic Gradient Descent (SGD) initiates the

search processes from a random point, our experiments showed that spending a few

rounds to find a good starting point gives us enhanced outcomes. This highlights the

importance of taking some time in the beginning to get higher accuracy at the end.

Table 4.2. Accuracy per heuristic ratio.

 Heuristic Ratio

Epoch Dataset 0 20 50 70 100

20 FASHION 0.8583 0.8941 0.8796 0.7589 0.4045

30 FASHION 0.9144 0.9370 0.8855 0.7740 0.4237

40 FASHION 0.9255 0.9317 0.9139 0.8514 0.4745

20 IRIS 0.6187 0.6203 0.6537 0.6474 0.7213

30 IRIS 0.7378 0.7207 0.7348 0.7512 0.7691

40 IRIS 0.8237 0.8486 0.8570 0.8602 0.8680

20 CIFAR10 0.7145 0.7594 0.7479 0.6605 0.4139

30 CIFAR10 0.8073 0.8482 0.7484 0.6943 0.5186

40 CIFAR10 0.8598 0.8977 0.8847 0.8377 0.6498

20 MNIST 0.9530 0.9744 0.9673 0.8934 0.8064

30 MNIST 0.9677 0.9843 0.9797 0.9147 0.8605

40 MNIST 0.9942 0.9959 0.9953 0.9533 0.8944

20 CIFAR100 0.6181 0.6546 0.5427 0.4946 0.4536

30 CIFAR100 0.7375 0.7772 0.6980 0.6404 0.5823

40 CIFAR100 0.9243 0.9536 0.8155 0.8685 0.6282

Based on our experiments, it's evident that our algorithm effectively initializes the

training process of a neural network. Allocating approximately 20% from the total

training cycles prior to commencing gradient training leads to enhanced accuracy and

faster convergence. This conclusion underscores the efficacy of our approach in

optimizing the training process and improving overall performance.

57

Gradient-based optimizers leverage derivatives of the loss function to determine the

direction of movement, making them potent tools for local search. However, they can

encounter challenges, particularly when starting from suboptimal solutions, potentially

converging to local optima. Despite advancements in stochastic gradient descent

(SGD) algorithms that mitigate this issue [4], achieving high accuracy still often

necessitates lengthy training cycles. Moreover, employing a heuristic ratio of 100

yielded unsatisfactory outcomes across most datasets, except for Iris. This discrepancy

may stem from the complexity of the models utilized, which comprise a substantial

number of parameters to optimize. Consequently, the sheer volume of combinations

becomes insurmountable for stochastic methods to traverse effectively.

Figure 4.2. Accuracy per dataset according to heuristic ratio.

58

Figure 4.2. (Continued) Accuracy per dataset according to heuristic ratio.

59

As per [90], the time complexity of model training depends primarily on the total count

of training cycles, number of training samples, and number of trainable parameters.

Since our tests listed in Table 4.2 are conducted on the same model and dataset,

achieving identical performance by running the exact number of training iterations

using our hybrid approach would indicate greater efficiency with respect to time

complexity. This is because the count of trainable parameters and training samples can

be assumed as a fixed constant across all experiments.

Although the evaluations were conducted with a population size set to 20, however,

the parameter is crucial and should be selected judiciously as it impacts both runtime

and accuracy. The selection of population size should align with the total number of

weights in the network. While rising the size of the weight vector will eventually

expand the search space, necessitating more agents to explore effectively. Further

detailed experiments are required to validate this relationship.

Table 4.3. Obtained accuracy by population size.

 Population size

Model 10 20 40 60 80

FASHION 0.8423 0.8428 0.9312 0.9374 0.9438

IRIS 0.8155 0.8415 0.8487 0.8515 0.8537

CIFAR10 0.7560 0.8507 0.8977 0.9026 0.9070

MNIST 0.8847 0.9012 0.9656 0.9850 0.9942

CIFAR100 0.8277 0.9036 0.9530 0.9837 0.9941

In this experiment it was implemented the optimal heuristic ratio 20 from prior tests

and assessed the approach across various population sizes: 10, 20, 40, 60, and 80.

Outcomes are summarized within Table 4.3 and illustrated in Figure 4.3. The accuracy

achieved for all datasets and population size is recorded, with the heuristic rate held

constant as 20.

60

Figure 4.3. Obtained accuracy according to population size.

61

Figure 4.3. (Continued) Obtained accuracy by population size.

This approach aims to locate a better starting point within a vast search space rather

than starting from random point, despite constraints on iterations and search agents.

We assume that the improved performance compared with similar heuristic

approaches is connected to the dynamic population strategy applied at the end of each

iteration that is efficiently exploring the search domain by concentrating on promising

regions and avoiding futile ones. To validate this, we conducted another experiment.

We selected optimal input parameters based on prior experiments and ran the

62

algorithm without the dynamic population component (lines 7, 8, 9, 10 and 11 of

Algorithm-1). Outcomes, as presented in Table 4.4, indicated that removing the

dynamic behavior led to reduced accuracy, highlighting its crucial role in exploring

the expansive search domain effectively.

Table 4.4. Effects of dynamic strategy on obtained performance.

Model
Dynamic Strategy

With Without

FASHION 0.9312 0.9250

IRIS 0.8484 0.8437

CIFAR10 0.8977 0.8593

MNIST 0.9954 0.9946

CIFAR100 0.9531 0.9245

The outcomes closely resemble those in the initial field of Table 4.2, which the

heuristic rate considered as zero. Using simpler terms, our recent experiments tell us

that when dealing with complicated and big search spaces, like those found in complex

models, the dynamic population strategy does a great job of finding the best starting

points. On the other hand, for simpler models, the traditional heuristic search

approaches work well in achieving the same result.

4.2. Experimental Analysis – Meta Learning

As we transition from traditional classification tasks to the complex domain of meta

learning, the second section of this chapter explains a detailed exploration of the

Dynamic Population Optimization (DPO) algorithm's ability in addressing challenges

that extend beyond conventional classification boundaries. Meta learning,

distinguished by its ability to enable model adaptation across a spectrum of diverse

tasks, introduces a layer of complexity that demands innovative approaches.

In this section, we start through the application of the DPO algorithm to optimize meta

learning problems. Meta learning address the limitations of standard classification

scenarios, requiring algorithms to show a increased level of adaptability and flexibility.

The challenges posed by meta learning involve not only understanding individual tasks

but also efficiently leveraging acquired knowledge to excel in new and unseen tasks.

63

In the coming experiments, our goal is to show how the DPO algorithm can handle the

difficulties of meta learning, offering insights into its performance, adaptability, and

effectiveness. By evaluating its behavior under these more complicated scenarios, we

aim to contribute valuable observations that extend beyond the conventional

classification, focusing on the algorithm's potential to address the evolving landscape

of machine learning challenges.

4.2.1. Datasets description

In our performance evaluation, we have applied our optimizer on two popular datasets

within the field of meta-learning. The first dataset, Omniglot, is thoughtfully

summarized in Table 4.5, encapsulating key metrics and outcomes. The second

dataset, MiniImageNet, is thoroughly documented in Table 4.6, providing an in-depth

analysis of the algorithm's performance across various parameters. This detailed

examination ensures a complete understanding of our algorithm's adaptability and

effectiveness in handling diverse datasets.

Omniglot and MiniImagenet are highly regarded datasets in meta-learning research.

They offer diverse sets of classes and tasks, crucial for evaluating the adaptability of

meta-learning algorithms [6]. With a small number of instances per class, these

datasets mirror real-world scenarios where learning from limited data is essential. The

challenges they pose in generalization make them ideal for assessing the performance

of meta-learning models [8]. Moreover, their popularity has made them standard

benchmarks in the field [7]. Popular meta learning models such as MAML, Reptile

and Meta-SGD, have been extensively tested on these datasets. By evaluating on

Omniglot and MiniImagenet, researchers can gauge the algorithms' capacity to rapidly

adapt and generalize effectively. These datasets serve as foundational tools for

advancing the understanding and development of meta-learning techniques.

Omniglot: This Omniglot dataset contains 1,623 different handwritten characters

from 30 different scripts, Figure 4.4, covering a wide range of languages and writing

systems. This diversity challenges meta-learning models to adapt quickly to new and

unfamiliar characters, making it an excellent choice for few-shot and one-shot learning

scenarios, which are common in meta-learning.

64

Table 4.5. Specification of Omniglot dataset.

Specification Value

Dataset Type Character Recognition

Total Characters 1,000

Characters per Writing System 20

Writing Systems 50

Total Examples 20,000

Image Size 105x105 pixels

Moreover, The Omniglot dataset is relatively small with only 50 examples per class,

making it a challenging benchmark for meta-learning. Meta-learning algorithms are

designed to learn from a limited amount of data, and Omniglot's small size reflects

real-world scenarios where adapting to new tasks with limited examples is important.

Figure 4.4. Omniglot dataset sample characters.

MiniImageNet: Serving as a subset representation of the widely-used ImageNet

dataset, MiniImageNet is oriented specifically for the evaluation of meta-learning

algorithms. Comprising 60,000 high-resolution color images, each measuring 84x84

pixels, Figure 4.5, the dataset spans across 100 distinct classes. These classes include

a rich variety of objects, animals, and scenes, contributing to the dataset's diversity.

65

Table 4.6. Specification of MiniImageNet dataset.

Specification Value

Dataset Type Object Recognition

Total Classes 100

Images per Class 600

Total Examples 60,000

Image Size 84x84 pixels

The dataset simulates few-shot learning scenarios by providing a limited number of

examples per class (600 images). This mirrors real-world situations where adapting to

novel tasks with only a small set of examples is crucial. Meta-learning algorithms,

designed to give insights from restricted data, are put to the test in the challenging

landscape presented by MiniImageNet.

Figure 4.5. MiniImageNet dataset sample classes.

Researchers treat MiniImageNet as a benchmark to assess the robustness, adaptability,

and generalization capabilities of meta-learning models. The varied and

comprehensive nature of the dataset's classes ensures that models trained on

66

MiniImageNet are well-equipped to handle a wide array of visual recognition tasks,

making it an invaluable resource in the field of meta-learning research.

4.2.2. Experimental details

As meta learning algorithms, we have selected three popular meta learning algorithms,

MAML [39], Reptile [62] and Meta-SGD [57] to measure the convergence of our

optimizer compared to training the same algorithms using traditional gradient based

optimizers. All three mentioned algorithms provide a powerful framework for meta-

learning without requiring complex architecture modifications or specialized network

designs. MAML, Reptile and Meta-SGD are relatively simple algorithms to implement

and conceptually intuitive.

Table 4.7. Obtained accuracy for MAML at different iterations.

Dataset Omniglot MiniImageNet

Epoch ADAM DPO ADAM DPO

10 0.1526 0.1136 0.0965 0.0765

20 0.1832 0.1668 0.1257 0.1035

50 0.3044 0.2954 0.1824 0.1737

100 0.3732 0.3865 0.2435 0.2565

200 0.5532 0.5865 0.3317 0.3565

500 0.7115 0.7421 0.4625 0.5045

1000 0.8803 0.8994 0.5621 0.5781

We begin by examining the performance of the models on the Omniglot dataset, a

widely used benchmark for few-shot classification tasks. The comparison is made

between the traditional ADAM optimizer and our proposed DPO across different

meta-learning approaches and obtained accuracy is captured at different epochs.

67

Figure 4.6. Accuracy comparison for MAML.

The training accuracy, as computed using Formula 3.4, was recorded at various

training epochs. Table 4.8 presents a summary of the recorded results, first utilizing

the traditional gradient-based optimizer (Adam), followed by running the same

algorithm with the DPO optimizer.

68

Table 4.8. Obtained accuracy for Reptile at different iterations.

Dataset Omniglot MiniImageNet

Epoch ADAM DPO ADAM DPO

10 0.1354 0.1265 0.0832 0.0658

20 0.1654 0.1458 0.1187 0.1178

50 0.3114 0.2899 0.1792 0.1698

100 0.3827 0.3987 0.2387 0.2435

200 0.5708 0.5961 0.3267 0.3468

500 0.7439 0.7632 0.4798 0.5212

1000 0.8852 0.8993 0.5705 0.5791

When examining the results presented in Figure 4.6, we can draw a clear and

significant conclusion regarding the performance of our algorithm in our experiments.

It's apparent that our algorithm is demonstrating markedly improved performance

when compared to our baseline or other existing methods. This improvement is notably

reflected in the accuracy metric, which quantifies the correctness of predictions made

by our model.

Figure 4.7. Accuracy comparison for Reptile.

69

Figure 4.7. (Continued) Accuracy comparison for Reptile.

What's particularly noteworthy is that this enhanced performance is achieved without

the need for additional training cycles. In both Figure 4.6, 4.7 and 4.8, we've

maintained an equal number of training cycles for our algorithm and the baseline. This

controlled experimental setup ensures a fair comparison between the two approaches.

Table 4.9. Obtained accuracy for Meta-SGD at different iterations.

Dataset Omniglot MiniImageNet

Epoch ADAM DPO ADAM DPO

10 0.1723 0.1468 0.0624 0.0527

20 0.1967 0.1765 0.0947 0.0911

50 0.3354 0.3054 0.1684 0.1724

100 0.3967 0.4154 0.2209 0.2255

200 0.5806 0.6032 0.2965 0.321

500 0.7536 0.7824 0.4601 0.4967

1000 0.8612 0.8844 0.5587 0.5751

70

The fact that our algorithm consistently produces higher accuracy within the same

number of training cycles highlights its efficiency and effectiveness in learning and

making predictions.

Figure 4.8. Accuracy comparison for Meta-SGD.

71

In simpler terms, our algorithm proves to be more adept at the given task, consistently

delivering superior results compared to the baseline while expending the same training

resources. This outcome underscores the value and promise of our approach in

achieving better results in a resource-efficient manner.

4.3. Discussion

After reviewing the experimental results presented in Tables 4.7 to 4.9 and Figures 4.6

to 4.8, we can conclude our observations as follows:

− For MAML, at earlier epochs (e.g., 10 and 20), DPO shows a lower accuracy

than ADAM. However, as the training progresses, DPO catches up and even

surpasses ADAM at epoch 200 and onward, where DPO achieves an accuracy

of 0.8994 compared to ADAM's 0.8803 at epoch 1000 for Omniglot and

0.5621, 0.5781 respectively for MiniImageNet.

− This suggests that while ADAM may initially lead in performance, DPO

gradually converges to higher accuracies, showcasing its potential for

improved long-term learning which resulted in approximately 2%

improvement when applied on MAML on both datasets.

− Similar trends were observed in the Meta-SGD meta-learning approach. While

ADAM starts with a higher accuracy in the initial stages, DPO consistently

improves its performance and surpasses ADAM at the final iteration. At the

concluding step, DPO achieves an accuracy of 0.8844, outperforming ADAM,

which attains 0.8612 for Omniglot and 0.5587, 0.5751 respectively for

MiniImageNet also here talking about 2% accuracy improvement by running

1000 iterations. This reversal in accuracy trends highlights the effectiveness of

DPO in adapting and learning over the course of the meta-training process.

− However, for Reptile, the improvement of performance is lower than what we

observed for MAML and Meta-SGD, when running on Omniglot we got

0.8852 for ADAM and 0.8993 for DPO, and 0.5705, 0.5791 for MiniImageNet,

both experiments showed almost 1% accuracy improvement on Reptile

compared to 2-2.5% for MAML and Meta-SGD.

To summarize, after conducting 1000 training cycles, the accuracy of both MAML and

Meta-SGD saw improvements of 2-2.5% across Omniglot and MiniImageNet datasets.

However, Reptile showed a 1% accuracy enhancement on both datasets and same

72

number of epochs. To comprehend the rationale behind these findings, it is essential

to revisit Chapter 2 and delve into the intricacies of how each algorithm operates. This

exploration will shed light on why employing the heuristic approach proved more

effective for MAML and Meta-SGD compared to Reptile.

Both MAML (Model-Agnostic Meta-Learning) and Meta-SGD incorporate a two-step

optimization process during their respective meta-training phases. This shared

characteristic involves an inner loop and an outer loop. In the inner loop, the model

undergoes task-specific adaptation with a limited dataset, allowing it to quickly adjust

its parameters to the specifics of a given task. The outer loop then updates the model's

parameters based on the aggregated experience across multiple tasks, aiming to find a

set of parameters that generalize well and facilitate rapid adaptation. This dual-step

optimization framework is a fundamental aspect of both methodologies, reflecting

their commonality in addressing the challenges of meta-learning and few-shot learning

scenarios.

However, in contrast to the two-step optimization process employed by MAML and

Meta-SGD, Reptile adopts a simpler approach that emphasizes faster convergence.

During training, Reptile performs only a few gradient steps on a given task within an

inner loop. These steps allow the model to quickly adjust its parameters to better suit

the characteristics of the specific task at hand. Importantly, instead of fine-tuning the

model extensively for each individual task, Reptile accumulates the updates obtained

from these short optimization steps across multiple tasks in the outer loop. This

strategy promotes a more generalized adaptation, as the accumulated updates influence

the model's parameters to be more broadly applicable across a range of tasks. By

prioritizing simplicity and efficiency, Reptile aims to strike a balance between

adaptation to specific tasks and achieving faster convergence during meta-training.

The superior performance of a heuristic-based optimizer on MAML and Meta-SGD

compared to Reptile could be attributed to the distinct optimization strategies

employed by each meta-learning algorithm. MAML and Meta-SGD involve a two-

step optimization process with inner and outer loops, which allows for more detailed

adjustments to model parameters. The heuristic approach, tailored to capture these

challenges, might complement the iterative adaptation process of MAML and Meta-

SGD, thereby enhancing their overall efficiency. In contrast, Reptile's simpler

approach, relying on only a few gradient steps, might be less responsive to the nuanced

73

adjustments that a heuristic optimizer provides, resulting in relatively smaller

performance gains. The effectiveness of the heuristic approach may align more closely

with the optimization needs of MAML and Meta-SGD, leading to improved

performance on these specific meta-learning algorithms.

74

5. CONCLUSION

In this study, we introduced a novel approach that combines a heuristic algorithm with

dynamic population-based feature followed by backpropagation derivative-based

algorithm to train a neural network. The hybrid model demonstrated strong initial

performance across five benchmark datasets (Iris, MNIST, CIFAR-10, CIFAR-100,

and Fashion) including a substantial number of trainable parameters. Notably, our

approach yielded favorable outcomes when the heuristic ratio was set to 20%,

emphasizing its effectiveness in initializing the training process. Moreover,

experimental analysis confirmed that the reason behind this accuracy improvement is

the dynamic nature of our heuristic algorithm. We conducted the same experiments

with the dynamic population flag is On then Off, observing that enabling the dynamic

population resulted in higher accuracy across all the used datasets.

While our application primarily targeted fixed neural network models, the encouraging

results prompt us to consider extending this approach beyond fine-tuning weight

vectors. There is potential to apply this methodology to generate complete neural

network architectures. Additionally, the parallelization of the initialization process,

facilitated by employing multiple agents, offers avenues for exploring efficient

parallelization strategies.

In a parallel effort, our research tackled meta-learning challenges by employing the

same hybrid optimizer that utilizes the heuristic algorithm -dynamic population- in

addition to backpropagation optimization. The effectiveness of this approach was

evaluated using two widely recognized datasets in the field of meta-learning: Omniglot

and MiniImageNet. As a meta-learning platform, we seamlessly integrated our

optimization function into leading meta-learning frameworks, namely MAML,

Reptile, and Meta-SGD. Remarkably, even with fewer training cycles, our approach

demonstrated superior accuracy, achieving 2-2.5% when applied to both MAML and

Meta-SGD. In contrast, we observed an enhanced accuracy of approximately 1% for

Reptile compared to relying solely on gradient-based methods.

76

It's worth noting that the variance in results is attributed to the implementation details

of each meta-learning platform used.

Nevertheless, it is crucial to highlight that our investigation was limited to the

Omniglot and MiniImageNet datasets and applied specifically to the mentioned meta-

learning algorithms. To ensure the broader applicability of our proposed algorithm,

further exploration across a diverse range of datasets and meta-learning algorithms is

necessary. This expanded examination will serve to validate the algorithm's robustness

and confirm its independence from specific datasets or neural network models.

Furthermore, extending our testing to real-world problems is imperative to assess the

algorithm's performance in practical scenarios and enhance its relevance beyond

controlled experimental conditions.

REFERENCES

[1] Alzubaidi, L., Zhang, J., Humaidi, A.J. et al. Review of deep learning:

concepts, CNN architectures, challenges, applications, future directions. J Big

Data 8, 53 (2021). https://doi.org/10.1186/s40537-021-00444-8

[2] A. Shrestha and A. Mahmood, "Review of Deep Learning Algorithms and

Architectures," in IEEE Access, vol. 7, pp. 53040-53065, 2019, doi:

10.1109/ACCESS.2019.2912200.

[3] Emmert-Streib F, Yang Z, Feng H, Tripathi S and Dehmer M (2020) An

Introductory Review of Deep Learning for Prediction Models With Big Data.

Front. Artif. Intell. 3:4. doi: 10.3389/frai.2020.00004

[4] Sarker, I.H. Deep Learning: A Comprehensive Overview on Techniques,

Taxonomy, Applications and Research Directions. SN COMPUT. SCI. 2, 420

(2021). https://doi.org/10.1007/s42979-021-00815-1

[5] Chong, H.Y., Yap, H.J., Tan, S.C. et al. Advances of metaheuristic algorithms

in training neural networks for industrial applications. Soft Comput 25, 11209–

11233 (2021). https://doi.org/10.1007/s00500-021-05886-z

[6] Hospedales, Timothy M. et al. “Meta-Learning in Neural Networks: A

Survey.” IEEE Transactions on Pattern Analysis and Machine Intelligence 44

(2020): 5149-5169.

[7] Huisman, M., van Rijn, J.N. & Plaat, A. A survey of deep meta-learning. Artif

Intell Rev 54, 4483–4541 (2021). https://doi.org/10.1007/s10462-021-10004-

4

[8] Vettoruzzo, A., Bouguelia, M. R., Vanschoren, J., Rögnvaldsson, T., &

Santosh, K. C. (2023). Advances and Challenges in Meta-Learning: A

Technical Review. arXiv preprint arXiv:2307.04722.

[9] Beheshti, Zahra & Shamsuddin, Siti Mariyam. (2013). A review of population-

based meta-heuristic algorithm. International Journal of Advances in Soft

Computing and Its Applications. 5. 1-35.

[10] Kennedy, J., & Eberhart, R. (1995, November). Particle swarm optimization.

In Proceedings of ICNN'95-international conference on neural networks (Vol.

4, pp. 1942-1948). IEEE.

[11] Rajwar, K., Deep, K. & Das, S. An exhaustive review of the metaheuristic

algorithms for search and optimization: taxonomy, applications, and open

challenges. Artif Intell Rev 56, 13187–13257 (2023).

https://doi.org/10.1007/s10462-023-10470-y.

[12] Alom, M.Z.; Taha, T.M.; Yakopcic, C.; Westberg, S.; Sidike, P.; Nasrin, M.S.;

Hasan, M.; Van Essen, B.C.; Awwal, A.A.S.; Asari, V.K. A State-of-the-Art

Survey on Deep Learning Theory and Architectures. Electronics 2019, 8, 292.

https://doi.org/10.3390/electronics8030292.

https://doi.org/10.1186/s40537-021-00444-8
https://doi.org/10.1007/s42979-021-00815-1
https://doi.org/10.1007/s00500-021-05886-z
https://doi.org/10.1007/s10462-021-10004-4
https://doi.org/10.1007/s10462-021-10004-4
https://doi.org/10.1007/s10462-023-10470-y
https://doi.org/10.3390/electronics8030292

78

[13] Yao, Guangle & Lei, Tao & Zhong, Jiandan. (2018). A Review of

Convolutional-Neural-Network-Based Action Recognition. Pattern

Recognition Letters. 118. 10.1016/j.patrec.2018.05.018.

[14] Xiao, Y., Tian, Z., Yu, J. et al. A review of object detection based on deep

learning. Multimed Tools Appl 79, 23729–23791 (2020).

https://doi.org/10.1007/s11042-020-08976-6

[15] Hastie, T., Tibshirani, R., Friedman, J. (2009). Unsupervised Learning. In: The

Elements of Statistical Learning. Springer Series in Statistics. Springer, New

York, NY. https://doi.org/10.1007/978-0-387-84858-7_14

[16] Radford, Alec & Metz, Luke & Chintala, Soumith. (2016). Unsupervised

Representation Learning with Deep Convolutional Generative Adversarial

Networks.

[17] J. Jia and W. Wang, "Review of reinforcement learning research," 2020 35th

Youth Academic Annual Conference of Chinese Association of Automation

(YAC), Zhanjiang, China, 2020, pp. 186-191, doi:

10.1109/YAC51587.2020.9337653.

[18] Rui Nian, Jinfeng Liu, Biao Huang, A review On reinforcement learning:

Introduction and applications in industrial process control, Computers &

Chemical Engineering, Volume 139, 2020, 106886, ISSN 0098-1354,

https://doi.org/10.1016/j.compchemeng.2020.106886.

[19] Liu, Weibo et al. “A survey of deep neural network architectures and their

applications.” Neurocomputing 234 (2017): 11-26.

[20] Pouyanfar S, Sadiq S, Yan Y, Tian H, Tao Y, Reyes MP, Shyu ML, Chen SC,

Iyengar S. A survey on deep learning: algorithms, techniques, and applications.

ACM Comput Surv (CSUR). 2018;51(5):1–36.

[21] Dhillon, A., Verma, G.K. Convolutional neural network: a review of models,

methodologies and applications to object detection. Prog Artif Intell 9, 85–112

(2020). https://doi.org/10.1007/s13748-019-00203-0

[22] Feldmann, S., Schmiedt, M., Schlosser, J.M. et al. Recursive quality

optimization of a smart forming tool under the use of perception based hybrid

datasets for training of a Deep Neural Network. Discov Artif Intell 2, 17 (2022).

https://doi.org/10.1007/s44163-022-00034-4

[23] Ciampiconi, L., Elwood, A., Leonardi, M., Mohamed, A., & Rozza, A. (2023).

A survey and taxonomy of loss functions in machine learning. arXiv preprint

arXiv:2301.05579.

[24] Terven, J., Cordova-Esparza, D. M., Ramirez-Pedraza, A., & Chavez-Urbiola,

E. A. (2023). Loss Functions and Metrics in Deep Learning. A Review. arXiv

preprint arXiv:2307.02694.

[25] Sun, R. (2019). Optimization for deep learning: theory and algorithms. arXiv

preprint arXiv:1912.08957.

[26] Amari, S. I. (1993). Backpropagation and stochastic gradient descent method.

Neurocomputing, 5(4-5), 185-196. https://doi.org/10.1016/0925-

2312(93)90006-O

https://doi.org/10.1007/s11042-020-08976-6
https://doi.org/10.1007/978-0-387-84858-7_14
https://doi.org/10.1016/j.compchemeng.2020.106886
https://doi.org/10.1007/s13748-019-00203-0
https://doi.org/10.1007/s44163-022-00034-4
https://doi.org/10.1016/0925-2312(93)90006-O
https://doi.org/10.1016/0925-2312(93)90006-O

79

[27] Tian, Y., Zhang, Y., & Zhang, H. (2023). Recent Advances in Stochastic

Gradient Descent in Deep Learning. Mathematics, 11(3), 682.

https://doi.org/10.3390/math11030682

[28] Sutskever, I., Martens, J., Dahl, G., & Hinton, G. (2013, May). On the

importance of initialization and momentum in deep learning. In International

conference on machine learning (pp. 1139-1147). PMLR.

[29] Dauphin, Y., De Vries, H., & Bengio, Y. (2015). Equilibrated adaptive learning

rates for non-convex optimization. Advances in neural information processing

systems, 28.

[30] Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization.

arXiv preprint arXiv:1412.6980.

[31] Duchi, J., Hazan, E., & Singer, Y. (2011). Adaptive subgradient methods for

online learning and stochastic optimization. Journal of machine learning

research, 12(7).

[32] Dozat, T. (2016) Incorporating Nesterov Momentum into Adam. Proceedings

of the 4th International Conference on Learning Representations, Workshop

Track, San Juan, Puerto Rico, 2-4 May 2016, 1-4.

[33] Ojha, V. K., Abraham, A., & Snášel, V. (2017). Metaheuristic design of

feedforward neural networks: A review of two decades of research.

Engineering Applications of Artificial Intelligence, 60, 97-116.

[34] Glorot, X., & Bengio, Y. (2010, March). Understanding the difficulty of

training deep feedforward neural networks. In Proceedings of the thirteenth

international conference on artificial intelligence and statistics (pp. 249-256).

JMLR Workshop and Conference Proceedings.

[35] Srivastava, Nitish & Hinton, Geoffrey & Krizhevsky, Alex & Sutskever, Ilya

& Salakhutdinov, Ruslan. (2014). Dropout: A Simple Way to Prevent Neural

Networks from Overfitting. Journal of Machine Learning Research. 15. 1929-

1958.

[36] Dahl, G. E., Sainath, T. N., & Hinton, G. E. (2013, May). Improving deep

neural networks for LVCSR using rectified linear units and dropout. In 2013

IEEE international conference on acoustics, speech and signal processing (pp.

8609-8613). IEEE.

[37] Tan, C., Sun, F., Kong, T., Zhang, W., Yang, C., & Liu, C. (2018). A survey

on deep transfer learning. In Artificial Neural Networks and Machine

Learning–ICANN 2018: 27th International Conference on Artificial Neural

Networks, Rhodes, Greece, October 4-7, 2018, Proceedings, Part III 27 (pp.

270-279). Springer International Publishing.

[38] J. Schmidhuber, “Evolutionary Principles In Self-referential Learning,” On

learning how to learn: The meta-meta-... hook, 1987.

[39] Finn, C., Abbeel, P., & Levine, S. (2017, July). Model-agnostic meta-learning

for fast adaptation of deep networks. In International conference on machine

learning (pp. 1126-1135). PMLR.

[40] Qian, K., & Yu, Z. (2019). Domain adaptive dialog generation via meta

learning. arXiv preprint arXiv:1906.03520.

80

[41] Vanschoren, J. (2019). Meta-Learning. In: Hutter, F., Kotthoff, L.,

Vanschoren, J. (eds) Automated Machine Learning. The Springer Series on

Challenges in Machine Learning. Springer, Cham.

https://doi.org/10.1007/978-3-030-05318-5_2

[42] Ma, P., Zhang, Z., Wang, J., Zhang, W., Liu, J., Lu, Q., & Wang, Z. (2021).

Review on the application of metalearning in artificial intelligence.

Computational intelligence and neuroscience, 2021.

[43] Koch, G., Zemel, R., & Salakhutdinov, R. (2015, July). Siamese neural

networks for one-shot image recognition. In ICML deep learning workshop

(Vol. 2, No. 1).

[44] Hamilton, W., Ying, Z., & Leskovec, J. (2017). Inductive representation

learning on large graphs. Advances in neural information processing systems,

30.

[45] Garcia, V., & Bruna, J. (2017). Few-shot learning with graph neural networks.

arXiv preprint arXiv:1711.04043.

[46] Vinyals, O., Blundell, C., Lillicrap, T., & Wierstra, D. (2016). Matching

networks for one shot learning. Advances in neural information processing

systems,

[47] Snell, J., Swersky, K., & Zemel, R. (2017). Prototypical networks for few-shot

learning. Advances in neural information processing systems, 30.

[48] Sung, F., Yang, Y., Zhang, L., Xiang, T., Torr, P. H., & Hospedales, T. M.

(2018). Learning to compare: Relation network for few-shot learning. In

Proceedings of the IEEE conference on computer vision and pattern

recognition (pp. 1199-1208).

[49] Shyam, P., Gupta, S., & Dukkipati, A. (2017, July). Attentive recurrent

comparators. In International conference on machine learning (pp. 3173-3181).

PMLR.

[50] Santoro, A., Bartunov, S., Botvinick, M., Wierstra, D., & Lillicrap, T. (2016,

June). Meta-learning with memory-augmented neural networks. In

International conference on machine learning (pp. 1842-1850). PMLR.

[51] Duan, Y., Schulman, J., Chen, X., Bartlett, P. L., Sutskever, I., & Abbeel, P.

(2016). Rl $^ 2$: Fast reinforcement learning via slow reinforcement learning.

arXiv preprint arXiv:1611.02779.

[52] Wang, J. X., Kurth-Nelson, Z., Tirumala, D., Soyer, H., Leibo, J. Z., Munos,

R., ... & Botvinick, M. (2016). Learning to reinforcement learn. arXiv preprint

arXiv:1611.05763.

[53] Munkhdalai, T., & Yu, H. (2017, July). Meta networks. In International

conference on machine learning (pp. 2554-2563). PMLR.

[54] Mishra, Nikhil et al. “A Simple Neural Attentive Meta-Learner.” International

Conference on Learning Representations (2017).

[55] Andrychowicz, M., Denil, M., Gomez, S., Hoffman, M. W., Pfau, D., Schaul,

T., ... & De Freitas, N. (2016). Learning to learn by gradient descent by gradient

descent. Advances in neural information processing systems, 29.

81

[56] Ravi, S., & Larochelle, H. (2016, November). Optimization as a model for few-

shot learning. In International conference on learning representations.

[57] Li, Z., Zhou, F., Chen, F., & Li, H. (2017). Meta-sgd: Learning to learn quickly

for few-shot learning. arXiv preprint arXiv:1707.09835.

[58] Grant, E., Finn, C., Levine, S., Darrell, T., & Griffiths, T. (2018). Recasting

gradient-based meta-learning as hierarchical bayes. arXiv preprint

arXiv:1801.08930.

[59] Finn, C., Rajeswaran, A., Kakade, S., & Levine, S. (2019, May). Online meta-

learning. In International Conference on Machine Learning (pp. 1920-1930).

PMLR.

[60] Yoon, J., Kim, T., Dia, O., Kim, S., Bengio, Y., & Ahn, S. (2018). Bayesian

model-agnostic meta-learning. Advances in neural information processing

systems, 31.

[61] Rajeswaran, A., Finn, C., Kakade, S. M., & Levine, S. (2019). Meta-learning

with implicit gradients. Advances in neural information processing systems,

32.

[62] Nichol, A., & Schulman, J. (2018). Reptile: a scalable metalearning algorithm.

arXiv preprint arXiv:1803.02999, 2(3), 4.

[63] Rusu, A. A., Rao, D., Sygnowski, J., Vinyals, O., Pascanu, R., Osindero, S., &

Hadsell, R. (2018). Meta-learning with latent embedding optimization. arXiv

preprint arXiv:1807.05960.

[64] Bertinetto, L., Henriques, J. F., Torr, P. H., & Vedaldi, A. (2018). Meta-

learning with differentiable closed-form solvers. arXiv preprint

arXiv:1805.08136.

[65] Lee, K., Maji, S., Ravichandran, A., & Soatto, S. (2019). Meta-learning with

differentiable convex optimization. In Proceedings of the IEEE/CVF

conference on computer vision and pattern recognition (pp. 10657-10665).

[66] Finn, C., Xu, K., & Levine, S. (2018). Probabilistic model-agnostic meta-

learning. Advances in neural information processing systems, 31.

[67] Kaveh, M., Mesgari, M.S. Application of Meta-Heuristic Algorithms for

Training Neural Networks and Deep Learning Architectures: A

Comprehensive Review. Neural Process Lett 55, 4519–4622 (2023).

https://doi.org/10.1007/s11063-022-11055-6

[68] Devikanniga, D., Vetrivel, K., & Badrinath, N. (2019, November). Review of

meta-heuristic optimization based artificial neural networks and its

applications. In Journal of Physics: Conference Series (Vol. 1362, No. 1, p.

012074). IOP Publishing.

[69] Wong, W. K., & Ming, C. I. (2019, June). A review on metaheuristic

algorithms: recent trends, benchmarking and applications. In 2019 7th

International Conference on Smart Computing & Communications (ICSCC)

(pp. 1-5). IEEE.

[70] Tian, Z., & Fong, S. (2016). Survey of Meta-Heuristic Algorithms for Deep

Learning Training. InTech. doi: 10.5772/63785

https://doi.org/10.1007/s11063-022-11055-6

82

[71] Beni, G., & Wang, J. (1993). Swarm intelligence in cellular robotic systems.

In Robots and biological systems: towards a new bionics? (pp. 703-712).

Berlin, Heidelberg: Springer Berlin Heidelberg.

[72] Mucherino, A., & Seref, O. (2007, November). Monkey search: a novel

metaheuristic search for global optimization. In AIP conference proceedings

(Vol. 953, No. 1, pp. 162-173). American Institute of Physics.

[73] Mirjalili, S. (2015). The ant lion optimizer. Advances in engineering software,

83, 80-98.

[74] Yang, X. S., & Hossein Gandomi, A. (2012). Bat algorithm: a novel approach

for global engineering optimization. Engineering computations, 29(5), 464-

483.

[75] Yang, X. S., & He, X. (2013). Firefly algorithm: recent advances and

applications. International journal of swarm intelligence, 1(1), 36-50.

[76] Dorigo, M., Birattari, M., & Stutzle, T. (2006). Ant colony optimization. IEEE

computational intelligence magazine, 1(4), 28-39.

[77] Yang, XS., Deb, S. Cuckoo search: recent advances and applications. Neural

Comput & Applic 24, 169–174 (2014). https://doi.org/10.1007/s00521-013-

1367-1

[78] Karaboga, D., Gorkemli, B., Ozturk, C., & Karaboga, N. (2014). A

comprehensive survey: artificial bee colony (ABC) algorithm and applications.

Artificial intelligence review, 42, 21-57.

[79] Połap, D., & Woźniak, M. (2017). Polar bear optimization algorithm: Meta-

heuristic with fast population movement and dynamic birth and death

mechanism. Symmetry, 9(10), 203. DOI:10.3390/sym9100203

[80] Yang, X. S. (2009). Harmony search as a metaheuristic algorithm. Music-

inspired harmony search algorithm: theory and applications, 1-14.

[81] Rutenbar, R. A. (1989). Simulated annealing algorithms: An overview. IEEE

Circuits and Devices magazine, 5(1), 19-26.

[82] Abdechiri, M., Meybodi, M. R., & Bahrami, H. (2013). Gases Brownian

motion optimization: an algorithm for optimization (GBMO). Applied Soft

Computing, 13(5), 2932-2946.

[83] Yan, G. W., Hao, Z., & Xie, J. (2013). A novel atmosphere clouds model

optimization algorithm. Journal of Computers (Taiwan), 24(3), 26-39.

[84] Ghorbani, N., & Babaei, E. (2014). Exchange market algorithm. Applied soft

computing, 19, 177-187. https://doi.org/10.1016/j.asoc.2014.02.006

[85] Gudise, V. G., & Venayagamoorthy, G. K. (2003, April). Comparison of

particle swarm optimization and backpropagation as training algorithms for

neural networks. In Proceedings of the 2003 IEEE Swarm Intelligence

Symposium. SIS'03 (Cat. No. 03EX706) (pp. 110-117). IEEE.

[86] Ilonen, J., Kamarainen, J. K., & Lampinen, J. (2003). Differential evolution

training algorithm for feed-forward neural networks. Neural Processing

Letters, 17, 93-105.

83

[87] Kulluk, S., Ozbakir, L., & Baykasoglu, A. (2012). Training neural networks

with harmony search algorithms for classification problems. Engineering

Applications of Artificial Intelligence, 25(1), 11-19.

[88] Karaboga, D., Akay, B., & Ozturk, C. (2007). Artificial bee colony (ABC)

optimization algorithm for training feed-forward neural networks. In Modeling

Decisions for Artificial Intelligence: 4th International Conference, MDAI

2007, Kitakyushu, Japan, August 16-18, 2007. Proceedings 4 (pp. 318-329).

Springer Berlin Heidelberg.

[89] Sexton, R. S., Dorsey, R. E., & Johnson, J. D. (1999). Optimization of neural

networks: A comparative analysis of the genetic algorithm and simulated

annealing. European Journal of Operational Research, 114(3), 589-601.

[90] R. Livni, S. Shalev-Shwartz, O. Shamir, “On the Computational Efficiency of

Training Neural Networks” Advances in Neural Information Processing

Systems, vol. 1 2014.

84

CURRICULUM VITAE

Name Surname: Ömer MİRHAN

EDUCATION:

• Bachelor in Computer Engineering: 2006, Damascus University, Faculty of

Information Technology, Department of Software Engineering

• Master in Management Information Systems: 2010, Arab Academy for

Banking & Financial Sciences, Management Information Systems

• PhD in Computer and Information Engineering: 2023 (Expected), Sakarya

University, Computer and Information Engineering

PROFESSIONAL EXPERIENCE AND AWARDS:

• Twenty years of experience in the field of software development and information

systems management. Currently working as ERP Project Manager in a software

development and consultancy company

• Areas of expertise include: ERP systems implementation, business intelligence,

data warehousing, software development, system analysis, software project

management and database administration

LANGUAGES

• Arabic

• English

• Turkish

PUBLICATIONS, PRESENTATIONS AND PATENTS ON THE THESIS:

• Mirkhan, Amer & Çelebi, Numan. (2022). Binary Representation of Polar Bear

Algorithm for Feature Selection. Computer Systems Science and Engineering. 43.

767-783. 10.32604/csse.2022.023249.

86

• Mirkhan, A., Çelebi, N. (2021). Finding the Optimal Features Reduct, a Hybrid

Model of Rough Set and Polar Bear Optimization. In: INFUS 2020. Advances in

Intelligent Systems and Computing, vol 1197. Springer, Cham.

https://doi.org/10.1007/978-3-030-51156-2_186

• Mirkhan, Amer and Çelebi, Numan, “A hybrid model of heuristic algorithm and

gradient descent to optimize neural networks”, Bulletin of the Polish Academy of

Sciences Technical Sciences vol. 71, no. 6, doi=10.24425/bpasts.2023.147924,

BPASTS, 2023

• Mirkhan, A., Çelebi, N. (2023). Dynamic Heuristic Approach to Enhance the

Performance of Few-Shot Meta-Learning. In: The 16th International Conference

on the Developments in eSystems Engineering (DeSE2023)

https://doi.org/10.1007/978-3-030-51156-2_186

