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ABSTRACT

We consider a curve & = (S) parameterized by the arc length S in

Galilean and Pseudo-Galilean spaces and denote by {T, N, B} the Frenet
frame of « = (S). We say that is a slant helix if there exists a fixed

direction U of G, and G such that the functions <N,U> . and
3

<N U > o1 are constant. In this work we give characterizations of slant
3

helices in terms of the curvature and torsion of « .

GALILEAN VE PSEUDO-GALILEAN UZAYLARINDA
SLANT HELISIN KARAKTERIZASYONU

OZET

Bu calismada, 3- boyutlu Galilean ve Pseudo Galilean uzaylarinda yay

parametreli ve {T’ N, B} Frenet catisiyla verilen bir egrinin, asli
normali ile sabit bir dogrultu arasindaki aginin sabit olmasin saglayan
slant helis olma durumunu, egrinin egrilik ve torsiyonu yardimiyla
karakterize ettik.
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1.INTRODUCTION

This definition is motivated by what happens in Euclidean space E: In
this setting, we recall that a helix is a curve where the tangent lines make
a constant angle with a fixed direction. Helices are characterized by the

T
fact that the ratio — is constant along the curve [4,7]. Izumiya and
K

Takeuchi have introduced the concept of Slant helix in Euclidean space
by saying that the principal normal lines make a constant angle with a
fixed direction [6].They characterize a slant helix if and only if the
function

K2 T
3 ; (1.1)
(K‘2 +7° )2
is constant. See also [2,6,8].Recently, helices in Galilean space G3 have

been studied depending on the causal character of the curve & : see for
example [1,3].

Thus, our definition of slant helix are the Galilean and Pseudo-Galilean
versions of the Euclidean one. Our main results in this work is the
following characterization of Slant helices in the spirit of the one given in
equation (1.1). We will assume throughout this work that the curvature
and torsion functions do not equal zero.

2.GALILEAN SPACE G,

The Galilean space is a three dimensional complex projective space, P;,

in which the absolute figure {W, f, |l, I 2} consists of a real plane W (the

absolute plane), a real line f < W (the absolute line) and two complex

conjugate points, 1,1, € f (the absolute points).

We shall take, as a real model of the space G, a real projective space P;,

with the absolute {W, f } consisting of a real plane W G, and a real
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line f < W, on which an elliptic involution & has been defined. Let &
be in homogeneous coordinates
W...X, =0, f.X, =0
£:(0:0:%,:%,)—>(0:0:%,:-x,)
In the nonhomogeneous coordinates, the similarity group Hgy has the
form
X =a; +a,X
Y =a,, +a,,X+a,,C080 +a,;Sin (2.1)
Z =8y, +a;,X—a,,8in 6 +a,,cosd
where @;; and 0 are real numbers.For 8,, = 8,, =1,we have have the
subgroup By , the group of Galilean motions:
X =a,, +a,X
y=b+cx+ycosd+zsin g
Z=d+ex—ysin@+zcosd
In G, there are four classes of lines:
a) (proper) nonisotropic lines-they do not meet the absolute line f .

b) (proper) isotropic lines-lines that do not belong to the plane W but
meet the absolute line f .

¢) unproper nonisotropic lines-all lines of W but f .

d) the absolute line f .

Planes X = constant are Euclidean and so is the plane W. Other planes

are isotropic. In what follows, the coefficients &;; and a,; a will play a
special role. In particular, for @;; =a,, =1, (2.1) defines the group

B < Hj of isometries of the Galilean space G, .

The scalar product in Galilean space G, is defined by

(X.Y), =

3

XY, , if x,#0 or y, #0
X, ¥, + Xy, , if x,=0 and y, =0
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where X = (x, XZ,X3) and Y = (Y, Y,, y3).
A curve a1 € R— G, of the class C' (I‘ > 3) in the Galilean space
G, is given defined by

a(x) = (s, y(s), 2(s)) (22)

where S is a Galilean invariant and the arc length on ¢ .The curvature
x(S) and the torsion 7(S) are defined by

p p det(a’(s), a"(s),a"(s)

=AY OF + O . (5) = LlL O ) 03)
K ()

The orthonormal frame in the sense of Galilean space G is defined by

T= a'(S) =(Ly'(s).2'(s))

N =ﬁ a’(s )_T(O’ y'(s),2"(s)) (2.4)

B=0s )(0 ~2"(5),y"(s))

The vectors T,N and B in (2.4) are called the vectors of the tangent,

principal normal and the binormal line of ¢, respectively.They satisfy
the following Frenet equations [1]

T =N
N'=1B (2.5)
B'=—2N.

3.PSEUDO-GALILEAN SPACE G;

The geometry of the pseudo-Galilean space is similar (but not the same)
to the Galilean space.The pseudo-Galilean space G;j is a three-

dimensional projective space in which the absolute consists of a real

plane W (the absolute plane), a real line f < W (the absolute line) and a
hyperbolic involution on f . Projective transformations which presere

the absolute form of a group Hy; and are in nonhomogeneous

coordinates can be written in the form
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X =a+bx
y =C+dx+rycosh+rzsinh 8 (3.1)
Z=e+ fx+rysinh@+rzcoshd
where a,b,c,d,e, f,r and 6 are real numbers. Particularly, for
b=r=1, the group (3.1) becomes the group By — H; of isometries
(proper motions) of the pseudo-Galilean space Gsl . The motion group
leaves invariant the absolute figure and defines the other invariants of
this geometry.It has the following form
X=a+X
y = c+dx+ycosh+zsinh 8 (3.2)
Z=e+ fx+ysinh §+zcoshé.
According to the motion group in the pseudo-Galilean space, there are
nonisotropic vectors X (X, Y, Z) (for which holds X # 0) and four types
of isotropic vectors: spacelike (X =0, y2 —7%> 0), timelike
(X =0,y°-2°< 0) and two types of lightlike vectors (X =0,y= iZ)
The scalar product of two vectors A = (a,,a,, a3) and B =(b,,b,, b3)

in G} is defined by

<AB> B a,b, , if a,#0 or b #0 ia
/e |ab,—ab, , if a,=0 and b, =0, 3

A curve oft) =(X(t),y(t),2(t)) is admissible if it has no inflection

points, no isotropic tangents or tangents or normals whose projections on
the absolute plane would be light-like vectors.For an admissible curve

a1 € R— G; the curvature (t) and the torsion 7(t) are defined by

Jy'®) - (2’0
(X))

K(t) = ot = Y"(t)Z"’(t)s—Y’"(t)Z”(t)_ (3.4)
X' & (t)
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expressed in components.Hence, for an admissible curve

a1 € R— G} parameterized by the arc length S with differential

form ds = dXx, given by

a(t) = (x, y(s), z(s)), (3.5)

the formulas (3.4) have the following form

y"(s)z"(s) - y"(s)Z'(s)

k() = |y ©F -@ O] ()= 09
The associated trihedron is given by
T= a'(s) =L y'(s),2'(s))
N :T a’(s) = ()(0 y'(s),2"(s)) (3.7)
B= ()(0 22"(5),2y"(s))

where & = F1, chosen by criterion det(T, N, B) =1, that means

' ©F -@©F| =y ©F -©r)

The curve @ given by (3.6) is timelike (resp. spacelike) if N(S) is a
spacelike(resp. timelike) vector. The principal normal vector or simply
normal is spacelike if & =1 and timelike if & = —1.For derivatives of the
tangent (vector) T , the normal N and the binormal B respectively, the
following Serret-Frenet formulas hold

T' =N
N' =B (3.8)
B’ =2N.

From (3.8), we derive an important relation [8],

a"(S) = k'(S)N(S) + x(s)z(s)B(S). (3.9)
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4.SLANT HELICES IN G,

Definition 4.1. A curve ¢ is called a slant helix if there exists a constant

vector field U in G, such that the function <N (s),U > .. s constant.

Theorem 4.1. Let & be a curve parameterized by the arc length S in G,

.Then ¢ is a slant helix if and only if either one the next two functions
!

2
+ K—S(EJ 4.1)
T K

is constant everywhere 7 does not vanish.
Proof. Let & be a curve in .In order to prove Theorem 4.1, we first

assume that ¢ is a slant helix. Let U be the vector field such that the

function <N (s),U > . —C is constant. There exist smooth functions @,
3

and a; such that
U =a,(s)T(s)+cN(s) +a,(s)B(s) 4.2)

As U is constant, a differentiation in (4.2) together (4.1) gives

a, =0
axk—a,r=0 (4.3)
a;+cr =0,

From the second equation in (4.3) we have
T
a =ag — | (4.4)
K

Moreover, if &, # 0,
(U,U), =a/ =constant (4.5)
3

We point out that this constraint, together the second and third equation
of (4.3) is equivalent to the very system (4.3). From (4.4) and (4.5), set

2
a’ (EJ —m2, (4.6)
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Thus , (4.6) which give

a;, ==+
on | . The third equation in (4.3) yields
LA

ds

on | . This can be written as
!

2
K_(_j 1S )
T K m

This shows a part of Theorem 4.1. Conversely, assume that the condition
(4.1) is satisfied. In order to simplify the computations, we assume that
the function in (4.1) is a constant, namely, C.We define

U=T+cN+-LB. (4.8)
K

A differentiation of (4.8) together the Frenet equations in G, gives
du

—— = 0thatis, U is a constant vector. On the other hand,

S
INOU), - C{(y"(s))z +H(2Z(©)f } e

K*(s)

and this means that & is a slant helix.

If a, =0, we obtain <U,U>G =c? +aZ =constant. Then a, =0and

from (4.3) we have C = 0. This means that U = 0 contradiction.
5. SLANT HELICES IN PSEUDO-GALILEAN SPACE G;

Definition 5.1. A admissible curve & is called a slant helix if there exists

a constant vector field U in Gjsuch that the function <N(S),U> o ls
3

constant.
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Theorem 5.1. Let & be a admissible curve parameterized by the arc
length S in Gé .Then ¢ is a slant helix if and only if either one the next

two functions
’

K 2 T
—| — |- (6.1)
T K

is constant everywhere 7 does not vanish.

Proof. Let & be a admissible curve in G; . In order to prove Theorem

5.2, we first assume that ¢ is a slant helix. Let U be the vector field such

that the function <N(S),U> o =Cé& is constant. There exist smooth
3

functions &, and @, such that

U =a,(S)T(s)+ceN(s)+a,(s)B(s) (5.2)
As U is constant, a differentiation in (5.2) together (5.1) gives
a, =0
axk+a,7=0 (5.3)

a;+cer =0.

From the second equation in (5.3) we have

a, =-a, (%] (5.4)

Moreover, if &, #0,

(u,u >G% =a’ =constant (5.5)

We point out that this constraint, together the second and third equation
of (5.3) is equivalent to the very system (5.3). From (5.4) and (5.5), set

2
a’ (zj =m?. (5.6)

K
Thus, (5.6) which give

a, =1

Mﬂ‘a
N——

on | . The third equation in (5.3) yields
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d m

—|x-—~|=-Cer

ds T

K
on | . This can be written as

(T ' ce
—|—| == (5.7)
T K m

This shows a part of Theorem 5. 2. Conversely, assume that the condition
(5.1) is satisfied. In order to simplify the computations, we assume that
the function in (5.1) is a constant, namely, C.We define

T
U=-T+ceN +—B. (5.8)

K
A differentiation of (5.8) together the Frenet equations in Gsl gives
du

q = O thatis, U is a constant vector. On the other hand,
S

INOU),, - {e(y"(s))z ()Y } e

K*(s)

and this means that & is a slant helix.

If a, =0, we obtain <U,U>Gl =c?—aZ =constant. Then a, =0 and
3

from (5.3) we have C = 0. This means that U =0 contradiction.
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