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ABSTRACT  
 

We consider a curve )(s   parameterized by the arc length s  in 

Galilean and Pseudo-Galilean spaces and denote by  BNT ,,  the Frenet 

frame of  )(s  . We say that is a slant helix if there exists a fixed 

direction U  of 3G  and 
1

3G  such that the functions 
3

,
G

UN  and 

1
3

,
G

UN are constant. In this work we give characterizations of slant 

helices in terms of the curvature and torsion of   . 
 

 

GALİLEAN VE  PSEUDO-GALİLEAN UZAYLARINDA 

SLANT HELİSİN KARAKTERİZASYONU 

 

ÖZET 

 

Bu çalışmada, 3- boyutlu Galilean ve Pseudo Galilean uzaylarında  yay 

parametreli ve  
 BNT ,,

 Frenet çatısıyla  verilen bir eğrinin, asli 
normali ile  sabit bir doğrultu arasındaki  açının sabit olmasını sağlayan 
slant helis olma durumunu, eğrinin eğrilik ve torsiyonu  yardımıyla 
karakterize ettik.  
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1.INTRODUCTION 

 

This definition is motivated by what happens in Euclidean space 
3E . In 

this setting, we recall that a helix is a curve where the tangent lines make 

a constant angle with a fixed direction. Helices are characterized by the 

fact that the ratio 



 is constant along the curve [4,7]. Izumiya and 

Takeuchi have introduced the concept of Slant helix in Euclidean space 

by saying that the principal normal lines make a constant angle with a 

fixed direction [6].They characterize a slant helix if and only if the 

function 

 

                 

 





















2

3
22

2

                                                                      (1.1) 

is constant. See also [2,6,8].Recently, helices in Galilean space 3G  have 

been studied depending on the causal character of the curve   : see for 

example [1,3].  

 

Thus, our definition of slant helix are the Galilean and Pseudo-Galilean 

versions of the Euclidean one. Our main results in this work is the 

following characterization of Slant helices in the spirit of the one given in 

equation (1.1). We will assume throughout this work that the curvature 

and torsion functions do not equal zero. 

 

2.GALILEAN SPACE 3G  

 

The Galilean space is a three dimensional complex projective space, 3P , 

in which the absolute figure  21 ,,, IIfw  consists of a real plane w  (the 

absolute plane), a real line wf   (the absolute line) and two complex 

conjugate points, fII 21 ,  (the absolute points). 

 

We shall take, as a real model of the space 3G , a real projective space 3P , 

with the absolute  fw,  consisting of a real plane 3Gw   and a real 
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line wf  , on which an elliptic involution   has been defined. Let   

be in homogeneous coordinates 

   .::0:0::0:0:

0...,0...

2332

00

xxxx

xfxw






 

In the nonhomogeneous coordinates, the similarity group 8H  has the 

form 

            





cossin

sincos

23233231

23232221

1211

aaxaaz

aaxaay

xaax







                                      (2.1) 

where 
ija  and   are real numbers.For 12311  aa ,we have have the 

subgroup 6B  , the group of Galilean motions: 





cossin

sincos

1211

zyexdz

zycxby

xaax







 

In 3G , there are four classes of lines: 

a) (proper) nonisotropic lines-they do not meet the absolute line f . 

b) (proper) isotropic lines-lines that do not belong to the plane w  but 

meet the absolute line f . 

c) unproper nonisotropic lines-all lines of w  but f . 

d) the absolute line f . 

 

Planes tconsx tan  are Euclidean and so is the plane w . Other planes 

are isotropic. In what follows, the coefficients 11a  and 23a  a will play a 

special role. In particular, for 12311  aa , (2.1) defines the group 

86 HB   of isometries of the Galilean space 3G . 

 

The scalar  product in Galilean space 3G  is defined by 

 










00,

00,
,

113322

1111

3 yandxifyxyx

yorxifyx
YX

G
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where  321 ,, xxxX   and  321 ,, yyyY  . 

A curve 3: GRI   of the class 
rC   3r  in the Galilean space 

3G  is given defined by 

                                 )(),(,)( szsysx                                                   (2.2) 

where s  is a Galilean invariant and the arc length on  .The curvature 

)(s  and the torsion )(s  are defined by 

   
 

)(

)(),(),(det
)(,)()()(

2

22

s

sss
sszsys







   (2.3) 

The orthonormal frame in the sense of Galilean space G₃ is defined by 

  

 

 

 .)(),(,0
)(

1

)(),(,0
)(

1
)(

)(

1

)(),(,1)(

sysz
s

B

szsy
s

s
s

N

szsysT
















                                       (2.4) 

The vectors NT ,  and B  in (2.4) are called the vectors of the tangent, 

principal normal and the binormal line of  , respectively.They satisfy 

the following Frenet equations [1] 

                                

.NB

BN

NT













                                                             (2.5) 

 

3.PSEUDO-GALILEAN SPACE 
1

3G  

 

The geometry of the pseudo-Galilean space is similar (but not the same) 

to the Galilean space.The pseudo-Galilean space 
1

3G  is a three-

dimensional projective space in which the absolute consists of a real 

plane w  (the absolute plane), a real line wf   (the absolute line) and a 

hyperbolic involution on f . Projective transformations which presere 

the absolute form of a group 8H  and are in nonhomogeneous 

coordinates can be written in the form 
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



coshsinh

sinhcosh

zryrfxez

zryrdxcy

bxax







                                            (3.1) 

where rfedcba ,,,,,,  and   are real numbers. Particularly, for 

1 rb , the group (3.1) becomes the group 86 HB    of isometries 

(proper motions) of the pseudo-Galilean space 1

3G . The motion group 

leaves invariant the absolute figure and defines the other invariants of 

this geometry.It has the following form 

        

.coshsinh

sinhcosh





zyfxez

zydxcy

xax







                                            (3.2) 

According to the motion group in the pseudo-Galilean space, there are 

nonisotropic vectors  zyxX ,,  (for which holds 0x ) and four types 

of isotropic vectors: spacelike  0,0 22  zyx , timelike 

 0,0 22  zyx  and two types of lightlike vectors  zyx  ,0

.The scalar product of two vectors  321 ,, aaaA   and  321 ,, bbbB 

in 
1

3G  is defined by 

                         










.00,

00,
,

113322

1111
1
3 bandaifbaba

boraifba
BA

G
           (3.3) 

 

A curve  )(),(),()( tztytxt   is admissible if it has no inflection 

points, no isotropic tangents or tangents or normals whose projections on 

the absolute plane would be light-like vectors.For an admissible curve 
1

3: GRI   the curvature )(t  and the torsion )(t  are defined by 

                       

   

 
.

)()(

)()()()(
)(,

)(

)()(
)(

252

22

ttx

tztytzty
t

tx

tzty
t












      (3.4) 
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expressed in components.Hence, for an admissible curve 
1

3: GRI   parameterized by the arc length s  with differential 

form dxds  , given by 

 

                )(),(,)( szsyxt  ,                                                                (3.5) 

  

the formulas (3.4) have the following form 

 

    .
)(

)()()()(
)(,)()()(

2

22

s

szsyszsy
sszsys





   (3.6) 

 

The associated trihedron is given by 
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 
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1

)(),(,1)(

sysz
s
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szsy
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s
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N

szsysT

















                                       (3.7) 

where 1 , chosen by criterion   1,,det BNT , that means 

 

        .)()()()(
2222

szsyszsy    

 

The curve   given by (3.6) is timelike (resp. spacelike) if )(sN  is a 

spacelike(resp. timelike) vector. The principal normal vector or simply 

normal is spacelike if 1  and timelike if 1 .For derivatives of the 

tangent (vector) T , the normal N  and the binormal B ,respectively, the 

following Serret-Frenet formulas hold 

                                            

.NB

BN

NT













                                                             (3.8) 

From (3.8), we derive an important relation [8], 

 

              ).()()()()()( sBsssNss                                            (3.9) 
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4.SLANT HELICES IN 3G  

 

Definition 4.1. A curve   is called a slant helix if there exists a constant 

vector field U  in 3G  such that the function 
3

),(
G

UsN  is constant. 

Theorem 4.1. Let   be a curve parameterized by the arc length s  in 3G

.Then   is a slant helix if and only if either one the next two functions 

                                       




















3

2

                                                             (4.1) 

 

is constant everywhere   does not vanish. 

Proof. Let   be a curve in .In order to prove Theorem 4.1, we first 

assume that   is a slant helix. Let U  be the vector field such that the 

function cUsN
G


3

),(  is constant. There exist smooth functions 1a  

and 3a  such that 

            )()()()()( 31 sBsascNsTsaU                                             (4.2) 

As U  is constant, a differentiation in (4.2) together (4.1) gives 

  

                                        

.0

0

0

3

31

1











ca

aa

a

                                                       (4.3) 

From the second equation in (4.3) we have 

                                     .31 












aa                                                              (4.4) 

 

Moreover, if 01 a ,  

                       tconsaUU
G

tan, 2

1
3

                                                 (4.5) 

We point out that this constraint, together the second and third equation 

of (4.3) is equivalent to the very system (4.3). From (4.4) and (4.5), set 

 

                                         .2

2

2

3 ma 











                                                    (4.6) 
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Thus , (4.6) which give 















m
a3  

on I . The third equation in (4.3) yields 






c

m

ds

d




























  

on I . This can be written as 

                                      .
3

2

m

c




















                                                    (4.7) 

This shows a part of  Theorem 4.1. Conversely, assume that the condition 

(4.1) is satisfied. In order to simplify the computations, we assume that 

the function in (4.1) is a constant, namely, c .We define 

                                  .BcNTU



                                                     (4.8) 

A differentiation of (4.8) together the Frenet equations in 3G  gives 

0
ds

dU
that is, U  is a constant vector. On the other hand, 

   
c

s

szsy
cUsN

G








 


)(

)()(
),(

2

22

3 
 

 

and this means that   is a slant helix. 

If 01 a , we obtain .tan, 2

3

2

3

tconsacUU
G

 Then 03 a and 

from (4.3) we have 0c . This means that 0U  contradiction. 

 

5. SLANT HELICES IN PSEUDO-GALILEAN SPACE 
1

3G  

 

Definition 5.1. A admissible curve   is called a slant helix if there exists 

a constant vector field U  in 
1

3G such that the function 1
3

),(
G

UsN is 

constant. 
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Theorem 5.1. Let   be a admissible curve parameterized by the arc 

length s  in 1

3G .Then   is a slant helix if and only if either one the next 

two functions 

                                         .
3

2 

















                                                              (5.1) 

is constant everywhere   does not vanish. 

Proof. Let   be a admissible curve in 
1

3G . In order to prove Theorem 

5.2, we first assume that   is a slant helix. Let U  be the vector field such 

that the function cUsN
G
1

3

),(  is constant. There exist smooth 

functions 1a  and 3a such that 

          )()()()()( 31 sBsasNcsTsaU                                              (5.2) 

As U  is constant, a differentiation in (5.2) together (5.1) gives 

                                     

.0

0

0

3

31

1











ca

aa

a

                                                       (5.3) 

From the second equation in (5.3) we have 

                                 .31 












aa                                                              (5.4) 

Moreover, if 01 a , 

 

                       tconsaUU
G

tan, 2

11
3

                                                 (5.5) 

We point out that this constraint, together the second and third equation 

of (5.3) is equivalent to the very system (5.3). From (5.4) and (5.5), set 

                                         .2

2

2

3 ma 











                                                    (5.6) 

Thus, (5.6) which give 















m
a3  

on I . The third equation in (5.3) yields 
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




c

m

ds

d




























  

on I  . This can be written as 

                                     .
3

2

m

c




















                                                    (5.7) 

This shows a part of Theorem 5. 2. Conversely, assume that the condition 

(5.1) is satisfied. In order to simplify the computations, we assume that 

the function in (5.1) is a constant, namely, c .We define 

                              .BNcTU



                                                     (5.8) 

A differentiation of (5.8) together the Frenet equations in 
1

3G  gives 

0
ds

dU
that is, U is a constant vector. On the other hand, 

   





c

s

szsy
cUsN

G








 


)(

)()(
),(

2

22

1
3

 

 

and this means that   is a slant helix. 

If 01 a , we obtain .tan, 2

3

2
1
3

tconsacUU
G

 Then 03 a  and 

from (5.3) we have 0c . This means that 0U  contradiction. 
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