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ENHANCING MOBILE APPLICATION AGE RATINGS USING NATURAL 

LANGUAGE PROCESSING TECHNIQUES 

SUMMARY 

As the huge number of mobile applications in stores increases, it gets difficult to verify 

all the information about each application. Especially Age Rating. For instance, Play 

Store and App Store have an algorithm to determine the age rating of an application, 

the algorithm is applied after the developer is asked questions about the application 

such as if the application includes any violence scenes and if It is frequent or not or 

containing offensive language or crude humor and many other questions, also rules of 

each country are put into account with the developer's answers while giving the 

appropriate rating.  The challenge here is that a developer may answer any of the 

questions wrongly and this would affect the process of the rating of the application 

negatively, either by making it accessible by users who must not use it because of age 

restriction or limiting users from reaching the application while the application is 

suitable for them.  

In this thesis, a novel method is presented to classify mobile apps by analyzing their 

app store descriptions. The study utilizes a dataset obtained from the Apple App Store, 

consisting of over 365,000 app descriptions. The research aims to accurately classify 

and age-rate apps, enabling users to find apps suitable for their age group and 

preferences, and helping developers identify direct competitors and market trends. 

The approach consists of three major steps: data pre-processing, vectorization (using 

word embeddings and Bag-of-Words), and classification. Text pre-processing 

techniques such as lowercasing, tokenization, removal of non-ASCII characters, 

numbers, URLs, and stop-word removal are applied. Two vectorization methods are 

used: Bag-of-Words with a maximum of 1000 most-frequent words and word 

embeddings (GloVe, Word2Vec, fastText). The generated word embeddings represent 

the entire app description using simple unweighted averaging. Classification is 

performed using various algorithms such as Support Vector Machines, Multi-layer 

Perceptron, Random Forests, Nearest Neighbor, AdaBoost, Decision Trees and 

Logistic Regression. The performance of these classifiers is evaluated using accuracy, 

recall, precision, and F-measure. 

The study compares word embeddings with topic modeling (LDA) and demonstrates 

that word embeddings outperform LDA in app classification tasks. The limitations of 

LDA with short text inputs are highlighted, emphasizing the advantage of word 

embeddings in capturing semantic meaning and achieving better classification 

performance. Furthermore, the study compares word embeddings with the bag-of-

words approach (VSM) and shows that VSM outperform word embeddings in 
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capturing the semantic relationships and similarities between words in app 

descriptions. 

Among the word embedding models (GloVe, Word2Vec, fastText), GloVe performed 

the best, potentially due to its more comprehensive vocabulary. The inclusion of 

character n-grams in fastText did not significantly contribute to classification 

accuracy. Overall, the proposed approach has practical implications for users and 

developers, enabling better app discovery and market insights. Future directions 

include conducting more extensive analysis with expert-generated categorizations and 

developing a working prototype to bring the research closer to real-world application. 

In summary, the thesis presents an effective approach for app classification based on 

app store descriptions, utilizing word embeddings, and achieving accurate age rating 

predictions. 
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DOĞAL DİL İŞLEME TEKNİKLERİ KULLANILARAK MOBİL 

UYGULAMA YAŞ DERECELENDİRMELERİNİN İYİLEŞTİRİLMESİ 

ÖZET 

Mobil uygulama mağazalarındaki uygulama sayısının hızla artmasıyla, her bir 

uygulama hakkındaki tüm bilgileri doğrulamak zorlaşmaktadır. Özellikle Yaş 

Derecelendirmesi konusunda bu durum daha da zorlaşmaktadır. Örneğin, Play Store 

ve App Store'un bir uygulamanın yaş derecelendirmesini belirlemek için bir 

algoritması vardır. Geliştiricilere uygulama hakkında sorular sorulur, örneğin 

uygulama şiddet içeriyor mu, sıklığı nedir, hakaret içeren dil veya açık saçık espri 

içeriyor mu gibi sorular sorulur. Ayrıca her ülkenin kuralları da geliştiricinin verdiği 

cevaplarla birlikte uygun derecelendirmeyi belirlemede dikkate alınır. Buradaki 

zorluk, bir geliştiricinin soruların herhangi birini yanlış cevaplaması durumunda, bu 

uygulamanın derecelendirme sürecini olumsuz etkileyebilmesi veya uygulamayı 

kullanmaması gereken yaş grubundaki kullanıcıların erişimini sınırlamasıdır. Mobil 

uygulamalara yaş derecelendirmesi atamak için gösterilen çabalara rağmen, mevcut 

yaklaşımlar çeşitli sınırlamalardan muzdariptir. Bu sınırlamalar, önerilen NLP tabanlı 

yaklaşım gibi daha etkili ve güvenilir bir çözüme olan ihtiyacı vurgulamaktadır. 

Mevcut çözümlerin temel sınırlamalarından bazıları şunlardır: Öznellik ve Tutarsızlık: 

Mevcut yaş derecelendirmesi atama süreci, manuel değerlendirmeye ve geliştiricilerin 

öznel yargılarına dayanmaktadır. Farklı geliştiriciler kriterleri farklı 

yorumlayabileceğinden, bu öznellik yaş derecelendirmesi atamalarında tutarsızlıklara 

yol açabilir. Bu tutarsızlık, mobil uygulamalar için yaş derecelendirmelerinin güvenini 

ve güvenilirliğini baltalamaktadır. Zaman Alıcı ve Zahmetli: Yaş derecelendirmelerini 

atamak için kullanılan anket tabanlı yaklaşım, geliştiriciler için zaman alıcı ve külfetli 

olabilir. Uygulamanın içeriğiyle ilgili birden çok soruyu yanıtlama süreci, büyük çaba 

gerektirir ve geliştiricilerin doğru bilgi vermesini engelleyebilir. Bu, yanlış veya eksik 

yaş derecelendirmesi atamalarına neden olabilir. Sürekli İzleme Eksikliği: Bir 

uygulamaya bir kez yaş sınırı atandığında, içeriği genellikle sınırlı veya sürekli olarak 

izlenmez. Bu, ilk yaş derecelendirmesi atamasından sonra uygulamada yapılan 

herhangi bir değişikliğin veya güncellemenin, uygulamanın farklı yaş grupları için 

uygunluğu üzerindeki etkisinin yeterince değerlendirilmeyebileceği anlamına gelir. 

Sonuç olarak, bir zamanlar belirli bir yaş grubu için uygun görülen bir uygulama, 

içerik güncellemeleri nedeniyle artık uygun olmayabilir. Kültürel Farklılıkların Sınırlı 

Olarak Dikkate Alınması: Mevcut yaş derecelendirme sistemleri genellikle kültürel 

farklılıkların ve hassasiyetlerin kapsamlı bir şekilde değerlendirilmesinden yoksundur. 

Farklı ülkeler ve bölgeler, farklı yaş grupları için neyin uygun olduğu konusunda farklı 

normlara ve değerlere sahip olabilir. Mevcut sistemlerin herkese uyan tek yaklaşımı, 

bu kültürel nüansları doğru bir şekilde yansıtmayabilir, bu da tutarsızlıklara ve uygun 

olmayan içeriğe potansiyel erişime yol açabilir. Bağlamsal Bilgileri Yakalayamama: 
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Mevcut yaş derecelendirmesi atama yöntemleri, öncelikle geliştiriciler tarafından 

belirli sorulara verilen yanıtlar şeklinde sağlanan açık bilgilere dayanmaktadır. Ancak, 

genellikle uygulamanın içeriğinin bağlamsal bilgilerini ve inceliklerini 

yakalayamazlar. Bu, uygulama içeriğinin bazı yönleri gözden kaçabileceği veya 

yeterince dikkate alınmayabileceği için, yetersiz veya yanlış yaş derecelendirme 

atamalarına neden olabilir. Sınırlı Ölçeklenebilirlik: Mobil uygulamaların sayısı hızla 

artmaya devam ettikçe, mevcut manuel değerlendirme yaklaşımının ölçeklendirilmesi 

giderek daha zor hale geliyor. Çok sayıda başvuru, kapsamlı bir şekilde incelemeyi ve 

her birine doğru yaş derecelendirmesi atamayı zorlaştırıyor. Bu ölçeklenebilirlik 

sorunu, yaş derecelendirme atamalarının gecikmesine veya uygulamaların farklı yaş 

grupları için uygunluğunun değerlendirilmesinde gözden kaçmasına neden olabilir. 

Bu tez, mobil uygulamaları app store açıklamalarına dayalı olarak sınıflandırmak için 

yenilikçi bir yaklaşım önermektedir. Çalışma, Apple App Store'dan elde edilen 

365.000'den fazla uygulama açıklamasını içeren bir veri kümesinden 

yararlanmaktadır. Araştırma, uygulamaları doğru bir şekilde sınıflandırmayı ve yaş 

derecelendirmesi yapmayı amaçlamaktadır, böylece kullanıcılar yaş grubu ve 

tercihlerine uygun uygulamaları bulabilir ve geliştiriciler doğrudan rakipleri ve pazar 

trendlerini belirleyebilir. 

Yaklaşım, veri ön işleme, vektörleştirme (kelime gömme “Word Embeddings” ve 

Bag-of-Words kullanarak) ve sınıflandırma olmak üzere üç ana adımdan oluşmaktadır. 

Küçük harfe dönüştürme, belirteçlere ayırma, ASCII olmayan karakterlerin, sayıların, 

URL'lerin ve etkisiz kelimelerinin kaldırılması gibi metin ön işleme teknikleri 

uygulanır. İki vektörleştirme yöntemi kullanılır: en çok kullanılan 1000 kelimeye 

dayalı Bag-of-Words ve kelime gömme modelleri (GloVe, Word2Vec, fastText). 

Oluşturulan kelime gömmeleri, basit ağırlıksız ortalama kullanılarak tüm uygulama 

açıklamasını temsil eder. Sınıflandırma, Support Vector Machines, Naive Bayes, 

Multi-layer Perceptron, Random Forests, Nearest Neighbor, AdaBoost, Decision 

Trees ve Logistic Regression gibi çeşitli algoritmalar kullanılarak gerçekleştirilir. 

Sınıflandırıcıların performansı, hassasiyet, hatırlama, F-ölçütü ve doğruluk 

kullanılarak değerlendirilir. 

Çalışma, kelime gömmelerini konu modellemesi (LDA) ile karşılaştırır ve kelime 

gömmelerinin uygulama sınıflandırma görevlerinde LDA'ya göre daha iyi performans 

gösterdiğini gösterir. LDA'nın kısa metin girdileriyle sınırlamaları vurgulanır ve 

kelime gömmelerinin anlamsal anlamı yakalama ve daha iyi sınıflandırma performansı 

elde etmedeki avantajı vurgulanır. Ayrıca, kelime gömmelerini Bag-of-Words 

yaklaşımı (VSM) ile karşılaştırır ve VSM uygulama açıklamalarındaki kelime 

ilişkilerini ve benzerlikleri yakalamada kelime gömmelerininden daha iyi performans 

gösterdiğini gösterir. 

Kelime gömme modelleri (GloVe, Word2Vec, fastText) arasında GloVe'nin en iyi 

performansı gösterdiği belirlenmiştir, bu durum muhtemelen daha kapsamlı bir kelime 

hazinesine sahip olmasından kaynaklanmaktadır. fastText'te karakter n-gramlarının 

dahil edilmesi, sınıflandırma doğruluğuna önemli ölçüde katkı sağlamamıştır.Genel 

olarak, önerilen yaklaşım, kullanıcılara ve geliştiricilere daha iyi uygulama keşfi ve 

pazar içgörüleri sağlayarak pratik sonuçlar sunmaktadır. Gelecek yönelimler arasında 

uzmanların oluşturduğu kategorizasyonlarla daha kapsamlı analizler yapma 
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vearaştırmayı gerçek dünya uygulamasına yaklaştırmak için bir çalışma prototipi 

geliştirme yer almaktadır. Özet olarak, bu tez, uygulama mağazası açıklamalarına 

dayalı olarak uygulama sınıflandırması için etkili bir yaklaşım sunar, kelime 

gömmelerini kullanır ve doğru yaş derecelendirme tahminleri elde eder.





1. INTRODUCTION 

The advent of mobile devices and widespread internet connectivity has revolutionized 

the way children engage with technology. Nowadays, it is increasingly common for 

children to own or have access to mobile devices equipped with internet connections, 

opening up a world of possibilities and information at their fingertips. Furthermore, 

the continuous growth of mobile application marketplaces, housing an ever-expanding 

array of apps, presents both opportunities and challenges for young users. 

The statistics surrounding children's internet usage underscore the importance of 

addressing the issue of age-appropriate content in mobile app marketplaces. In just a 

few years, internet usage among children aged 6-15 has witnessed a remarkable surge, 

rising from 50.8% in 2013 to a staggering 82.7% in 2021 [36] . This exponential 

growth in online activity among young users demands careful attention to safeguard 

them from potential dangers and ensure their digital experiences are both educational 

and secure. 

Among the various activities carried out by children using the internet, two have 

emerged as prominent trends. Online classes have rapidly gained popularity, with 

86.2% of children regularly participating in virtual learning sessions. This shift 

towards remote education, particularly during the global pandemic, highlights the 

pivotal role that technology plays in facilitating educational opportunities for young 

learners. Additionally, a significant number of children, accounting for 83.6%, turn to 

the internet for homework assistance and independent learning. The accessibility of 

online resources allows them to explore various subjects and expand their knowledge 

beyond the confines of traditional classroom settings. 

Another prevalent activity among children is gaming, with 66.1% of young users 

engaging in playing or downloading games. Gaming has become a major form of 

entertainment and engagement for children, providing them with immersive 

experiences and opportunities for skill development. However, it also necessitates 

ensuring that the games they access align with their developmental stages and do not 

expose them to inappropriate content. 



2 

      

   

To address these challenges and protect children from accessing unsuitable apps, age 

ratings have been introduced. Mobile app marketplaces typically assign age ratings 

based on a questionnaire completed by developers during the app upload process. This 

questionnaire probes the app's content, including aspects such as violence, mature 

themes, and frequency of specific content. However, the current approach to assigning 

age ratings can be time-consuming and subjective, leading to potential inconsistencies 

and inaccuracies. 

In light of these considerations, this paper aims to propose a novel method for 

generating age ratings for applications by employing Natural Language Processing 

(NLP) algorithms. The core idea is to leverage the textual information provided in the 

description section of each application's page to automate and enhance the accuracy of 

age rating assignments. By utilizing NLP techniques, the proposed algorithm seeks to 

streamline the process for developers while ensuring that apps are accurately 

categorized according to their suitability for different age groups. 

The subsequent sections of this paper will delve deeper into the existing literature, 

elucidate the classification algorithm developed in this research, present the findings 

and effectiveness of the proposed method, and conclude with key insights and 

recommendations for future work. Ultimately, the goal is to create a more efficient and 

reliable system for assigning age ratings to mobile applications, fostering a safer and 

more inclusive digital environment for children. 



2. RELATED WORK AND MOTIVATION 

2.1. Related Work 

Al-Subaihin et al. [1]  performed an empirical assessment of text-based app 

classification strategies, including topic modeling Latent Dirichlet Allocation (LDA)  

[3] and keyword feature extraction methods [10] . The study made use of a dataset of 

12,664 mobile app descriptions taken from Google Play Store. The results showed that 

LDA-based approaches performed most efficiently in terms of numerical grouping 

quality. 

Gorla et al. [13] introduced CHABADA, an approach for detecting anomalies between 

the stated and implemented behavior of Android apps. The authors used LDA to 

identify topics from mobile app descriptions. The retrieved subjects were passed into 

a K-means algorithm, which formed different app categories. Sensitive APIs 

controlled by user permissions were found inside each group. SVMs were used to 

identify outliers in API consumption. These anomalies were regarded as potentially 

harmful activity. CHABADA was tested on a database of over 22,500 Android apps. 

The prototype detected various irregularities and identified 56% of unique malware. 

Ebrahimi et al [9] proposed an automated method for organizing mobile applications 

into more detailed categories of functionally connected application domains. To build 

quantitative semantic representations of app descriptions, the authors used word 

embeddings. These representations are then grouped to provide more coherent app 

categories. The study employs a dataset of 600 apps gathered from the Apple App 

Store. The results reveal that when app descriptions are vectorized using GloVe, a 

count-based model of word embeddings [24] , the classification algorithms perform 

best. The results are then validated by 12 individual participants using a dataset of 

Sharing Economy apps. The results show that GloVe combined with Support Vector 

Machines can produce app classifications that closely resemble human-generated 

classifications. 
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Sanz et al. [27] developed a machine learning technique for app classification in the 

Android app store. The goal was to manage the Android market and detect fraudulent 

applications. The proposed method made use of features retrieved from app source 

code, requested permissions, and meta-data like as ratings, size, and advertised 

permissions. The dataset of 820 apps collected from 7 different Google Play categories 

was then classified using multiple classification techniques. The results showed that 

Bayesian networks outscored other methods, with an AUC of 93%. 

In their study, Lulu and Kuflik [18] classified apps based on their capabilities using 

unsupervised machine learning. App features were collected from their app store 

descriptions and then supplemented with material from professional forums. TF.IDF 

weighted vectors of words were then used to represent app features. WordNet was 

used to resolve synonymy relationships. The authors then created hierarchies of 

functionally-related apps using hierarchical clustering. The efficiency of the proposed 

method was proved using a dataset of 120 Google Play apps. 

Phan et al. [25]  advocated using hidden themes to improve the categorization 

representation of short and sparse text. To avoid noise, the hidden themes are learned 

from an external data set using seed selection. 

Sahami et al. [26] presented an innovative similarity measuring method for small text 

samples that can also be demonstrated using a kernel function. This strategy, in 

particular, makes use of a Web search engine to augment original textual information, 

which can then be used for short and sparse text classification. 

Furthermore, Yih et al. [34]  modified the measuring method by incorporating an 

additional learning mechanism to increase measurement efficiency. Broder et al. [5]  

advocated extracting data from the top related search outcomes of a keyword from a 

Web search engine, and Shen et al. [29]  investigated query classification using a Web 

directory. Cao et al. [6]  proposed using Web information to improve query 

classification by augmenting both the contextual and local aspects of web inquiries. 

Martin et al. [20] studied the effect of sampling bias on the results of app store mining 

with the focus on user reviews. In the context of mobile apps, k-means clustering was 
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used in conjunction with topic modeling for detecting the abnormal behavior of apps 

[13] . 

Maarek et al. [19] , who built reusable libraries by automatically extracting concepts 

from natural language code-related artifacts. Dumitru et al. [15] [8]  crawled 

softpedia.com product raw descriptions more recently to identify feature descriptors, 

which they represented using a TF-IDF vector. They employed incremental diffusive 

clustering, which they later extended to construct feature models [7] . 

Kawaguchi et al. [17] used LSA to explore open source software sources for common 

phrases in the source code, and Tian et al. [31]  used LDA to cluster software from 

SourceForge, with the existing classification serving as the basis for truth. 

Wang et al. [33]  use collaborative tags and application descriptions to categorize 

software only based on the program profile page obtained in the repository. They use 

TF-IDF to extract essential classifying terms from the program profile page, which 

includes both the software description and tags. They then employ SVM to classify 

systems into a hierarchical category tree manually customized from the one provided 

by SourceForge. 

Seneviratne et al. [28]  use app meta data to detect malware and malicious apps early 

in their development. Vakulenko and Muller [32]  also sought to categorize apps only 

based on their product descriptions in order to improve the app store's existing 

categorization using LDA. They employ LDA to extract features for machine learning-

based categorization, then compare their results to the real classification as training 

and truth set. 

Gorla et al. [13]  developed a method for clustering applications based on their reported 

behavior, which outperformed existing app store classification (when used as a 

harmful app detector). This important work by Gorla et al. supplied us with motivation 

and preliminary evidence that an efficient app clustering technique based on the 

developers' textual app descriptions would be achievable. 

Related to this is the work of Guzman and Maalej [14] , who addressed the issue of 

extracting characteristics from app evaluations, and the work of Martin et al. [21]  who 

employed NLP on new release text to determine the type of release and its effect. 
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In order to cover the Arabic applications categorization in the Google Play app store, 

Fuad et al. [11]  created a long-lasting classification system employing the Latent 

Dirichlet Allocation (LDA) approach of topic modeling. Their study demonstrates that 

textual app descriptions may effectively propose categories for categorizing Arabic 

mobile applications when utilizing automated classification techniques like topic 

modeling. 

Kalaivani et al. [16]  used Latent Dirichlet Allocation (LDA), a topic modeling 

approach to extract themes that correspond to a probability distribution across words. 

Two distinct sets of parameters were used for K-means document clustering, and the 

assessment outcomes of both clusters were studied. Additionally, used deep learning 

and machine learning classification methods. Their system was efficient in 

categorizing misclassified apps. 

In their research, Singla et al. [30] provided an app classification system that generates 

a more precise categorization for a specific app in accordance with a given taxonomy 

using object detection and identification in photos connected with applications, as well 

as text-based metadata of the apps. They showed that the study can improve the 

classification accuracy of a text based app classifier. 

Qiu et al. [23] aimed at a multiple classification problem. As a data set, they used an 

extensive list of app descriptions. then examined the data using a number of different 

machine learning algorithms, like CountVectorizer, TfIdfVectorizer. After some 

parameter optimizations, they got an accuracy of 60%. 

Gallego et al. [12]  Presented a new NLP-based feature extraction pipeline 

“TransFeatEx”, which combines the use of a RoBERTa-based model with the 

application of consolidated syntactic and semantic techniques. The pipeline is 

designed as a customizable, standalone service to be used either as a playground, 

experimentation tool or as a software component. 

2.2. Motivation 

The rapid growth of mobile application marketplaces and the increasing prevalence of 

children using mobile devices raise significant concerns regarding age-appropriate 
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content. Ensuring that children are protected from accessing unsuitable apps becomes 

crucial to safeguard their well-being and provide a secure digital environment. Age 

ratings have been introduced as a means to address this issue, but the current manual 

assessment process is time-consuming, subjective, and prone to inconsistencies. 

The motivation behind this research stems from the need to enhance the accuracy and 

efficiency of age rating assignments for mobile applications. By leveraging 

advancements in Natural Language Processing (NLP) algorithms, we aim to automate 

the age rating process and provide a more reliable and standardized approach. The use 

of NLP techniques allows us to analyze the textual information available in the 

description section of app pages and extract valuable insights to determine the 

appropriate age rating. 

By developing a robust NLP-based classification algorithm, we can streamline the age 

rating assignment process for developers, saving them time and effort. Moreover, the 

automated nature of the proposed method ensures a more objective evaluation of the 

app's content, reducing the potential for human errors and inconsistencies. 

This study also contributes to the larger objective of making the internet a safer and 

more inclusive place for children. By accurately categorizing mobile applications 

according to their suitability for different age groups, we can protect children from 

accessing content that may be inappropriate or harmful to their development. 

Additionally, providing a reliable age rating system allows parents and guardians to 

make informed decisions about the apps their children can access, fostering 

responsible digital engagement. 

The potential impact of this research extends beyond the realm of age rating for mobile 

applications. The development and application of NLP algorithms in this context can 

serve as a foundation for future advancements in automated content evaluation and 

moderation. This research can pave the way for more efficient and effective systems 

for filtering and categorizing digital content, ensuring that users, especially children, 

are protected from harmful or unsuitable materials. 

In conclusion, the motivation behind this research lies in the urgent need to improve 

the age rating assignment process for mobile applications. By harnessing the power of 
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NLP algorithms, we aim to automate and enhance the accuracy of age rating 

predictions, contributing to a safer and more inclusive digital environment for children. 

2.3. Limitations of Existing Solutions 

Despite the efforts made to assign age ratings to mobile applications, the current 

approaches suffer from several limitations. These limitations highlight the need for a 

more effective and reliable solution, such as the proposed NLP-based approach. Some 

of the key limitations of existing solutions are: 

Subjectivity and Inconsistency: The current process of assigning age ratings relies on 

manual assessment and subjective judgments by developers. This subjectivity can lead 

to inconsistencies in age rating assignments, as different developers may interpret the 

criteria differently. This inconsistency undermines the trust and reliability of age 

ratings for mobile applications. 

Time-consuming and Burdensome: The questionnaire-based approach used to assign 

age ratings can be time-consuming and burdensome for developers. The process of 

answering multiple questions about the content of the application requires 

considerable effort and may deter developers from providing accurate information. 

This can result in incorrect or incomplete age rating assignments. 

Lack of Continuous Monitoring: Once an application is assigned an age rating, there 

is often limited or no continuous monitoring of its content. This means that any 

changes or updates made to the application after the initial age rating assignment may 

not be adequately assessed for their impact on the appropriateness of the app for 

different age groups. As a result, an application that was once deemed suitable for a 

particular age group may no longer be appropriate due to content updates. 

Limited Consideration of Cultural Differences: The current age rating systems often 

lack comprehensive consideration of cultural differences and sensitivities. Different 

countries and regions may have varying norms and values regarding what is considered 

appropriate for different age groups. The one-size-fits-all approach of the current 

systems may not accurately reflect these cultural nuances, leading to inconsistencies 

and potential access to unsuitable content. 
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Inability to Capture Contextual Information: The current methods of assigning age 

ratings primarily rely on explicit information provided by developers in the form of 

responses to specific questions. However, they often fail to capture the contextual 

information and subtleties of the application's content. This can result in inadequate or 

inaccurate age rating assignments, as certain aspects of the application's content may 

be overlooked or not adequately considered. 

Limited Scalability: As the number of mobile applications continues to grow rapidly, 

the current manual assessment approach becomes increasingly challenging to scale. 

The sheer volume of applications makes it difficult to thoroughly review and assign 

accurate age ratings to each one. This scalability issue can result in delayed age rating 

assignments or oversights in assessing the suitability of applications for different age 

groups. 

Addressing these limitations requires a more automated, objective, and scalable 

approach, which the proposed NLP-based solution aims to provide. By leveraging 

NLP algorithms to analyze the textual information in the description section of app 

pages, we can overcome these limitations and enhance the accuracy, efficiency, and 

reliability of age rating assignments for mobile applications. 
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3. METHODS 

3.1. Bag Of Words 

The bag-of-words model is a way of representing text data when modelling text with 

machine learning algorithms. 

The "Bag of Words" (BoW) model is a simple and commonly used technique in natural 

language processing (NLP) that represents text documents as a collection of words, 

disregarding grammar and word order. In this model, the frequency or presence of 

words in a document is used to create a numerical representation. The BoW model 

operates on the principle that the order of words in a document may not be as important 

as the occurrence of words themselves. It treats a document as a "bag" or a set of 

words, hence the name "Bag of Words." This approach provides a straightforward and 

efficient representation of text data. The process of creating a BoW representation 

involves a few steps. First, a vocabulary is created by collecting unique words from 

the entire corpus or set of documents. Each word in the vocabulary becomes a feature 

or dimension in the vector space representation. Then, for each document, a vector is 

created, where each dimension corresponds to a word in the vocabulary, and the value 

represents the frequency or presence of that word in the document. Typically, the BoW 

representation uses a count-based approach, where the vector values indicate the 

frequency of words. However, binary or presence-based representations can also be 

used, where the value is either 0 or 1, indicating whether a word is present or absent 

in the document. 

The BoW model is a simple yet effective representation for various text-based tasks, 

such as text classification, sentiment analysis, and information retrieval. It allows for 

efficient computation and can handle large amounts of text data. However, it has 

limitations, such as the loss of word order and context, disregarding important 

semantic relationships between words. 
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3.1.1. Vector Space Model (VSM) 

The Vector Space Model (VSM) is a widely used mathematical framework for 

representing and analyzing text documents in information retrieval and natural 

language processing. It treats documents as vectors in a high-dimensional space, where 

each dimension corresponds to a unique term or word. The core idea behind the VSM 

is to capture the semantic relationships between documents and queries by measuring 

the similarity or distance between their corresponding vectors. The assumption is that 

documents with similar content will have vectors that are close to each other in this 

vector space. The VSM representation begins with creating a vocabulary by collecting 

unique terms from the entire corpus or set of documents. Each term becomes a 

dimension in the vector space. Then, for each document, a vector is constructed, where 

each dimension represents a term in the vocabulary, and the value represents the 

importance or weight of that term in the document. There are several common 

techniques to determine the weights of terms in the vectors. One of the simplest 

approaches is the term frequency-inverse document frequency (TF-IDF) weighting, 

which assigns higher weights to terms that appear frequently in a document but 

infrequently across the corpus. This helps to emphasize important and discriminative 

terms. Once the vectors are constructed, various similarity measures can be used to 

compare documents or queries in the vector space. The most commonly used measure 

is cosine similarity, which calculates the cosine of the angle between two vectors. A 

higher cosine similarity indicates greater similarity between the documents or queries. 

The VSM has been successfully applied in various text-based tasks, including 

document retrieval, text classification, clustering, and recommendation systems. It 

provides a flexible and efficient framework for organizing and comparing text 

documents based on their content. However, the VSM also has its limitations. It treats 

terms as independent and disregards the context and word order within documents. 

Additionally, the VSM can be sensitive to noise, such as stop words or irrelevant terms 

that may affect the similarity calculations. 
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3.2. Word Embedings 

Word embeddings are a powerful technique in natural language processing (NLP) that 

represent words as dense vector representations in a continuous space. Unlike 

traditional sparse representations, such as one-hot encoding, word embeddings capture 

semantic and syntactic relationships between words, enabling machines to better 

understand and process language. The key idea behind word embeddings is to learn 

word representations based on the contextual information from a large corpus of text 

data. The embeddings are typically generated using neural network models, such as 

Word2Vec, GloVe, or FastText. These models aim to map words to vector 

representations in a way that preserves semantic relationships and captures linguistic 

regularities. Word embeddings possess several desirable properties. One of them is the 

ability to capture semantic similarity. Words with similar meanings or in related 

contexts tend to have similar vector representations in the embedding space. For 

example, the vectors of "king" and "queen" are expected to be close together, 

indicating their semantic similarity. Word embeddings also exhibit interesting linear 

relationships. By performing vector arithmetic operations in the embedding space, we 

can explore analogical relationships. For instance, by subtracting the vector of "man" 

from "woman" and adding it to the vector of "king," we obtain a vector close to the 

vector representation of "queen." This ability to capture analogies showcases the 

semantic understanding encoded within word embeddings. These dense vector 

representations have found applications in various NLP tasks. They enhance the 

performance of tasks such as sentiment analysis, named entity recognition, machine 

translation, text classification, and document clustering. Embeddings provide valuable 

contextual information and improve the generalization ability of models. Pretrained 

word embeddings are widely available and offer a convenient way to leverage the 

semantic knowledge captured from extensive text corpora. They can be utilized out of 

the box or fine-tuned on specific downstream tasks, depending on the availability of 

training data and the nature of the problem at hand. 

In recent years, contextualized word embeddings have gained popularity. Models like 

BERT, GPT, and ELMO generate embeddings that consider the surrounding context 
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of a word, resulting in richer and more nuanced representations. These embeddings 

excel in capturing word sense disambiguation and context-dependent semantics. 

3.2.1. Word2Vec 

Word2Vec is a popular natural language processing approach that seeks to represent 

words as dense vector embeddings. Tomas Mikolov et al. [22]  first proposed it in 

2013. Word2Vec's core concept is to capture semantic and syntactic links between 

words by mapping them to continuous vector representations in a high-dimensional 

space. Word2Vec uses a neural network architecture to learn word embeddings from 

massive text datasets. It works on the Continuous Bag-of-Words (CBOW) or Skip-

gram models' principles. The CBOW model predicts a target word based on the context 

words around it, whereas the Skip-gram model predicts context words given a target 

word. These models are trained by adjusting the neural network weights to reduce the 

difference between predicted and actual word occurrences. Word2Vec's learnt word 

vectors capture significant correlations between words. They have intriguing qualities 

such as the capacity to conduct vector arithmetic operations such as analogies. For 

example, by subtracting the vector representation of "king" from the vector 

representation of "queen" and adding the resulting vector to the vector representation 

of "woman," the resulting vector is near to the vector representation of "man." 

Word2Vec has been used in a variety of natural language processing tasks, including 

word similarity, document categorization, sentiment analysis, and recommendation 

systems. It allows the model to recognize the contextual meanings of words and record 

semantic linkages in a distributed representation, improving the model's performance 

on a variety of language-related tasks. 

3.2.2. Global Vectors (GloVe) 

Pennington et al. [24] introduced Global Vectors (GloVe) in 2014 as a technique for 

producing word embeddings. GloVe, like Word2Vec, tries to represent words as 

continuous vector embeddings, capturing semantic and syntactic links. GloVe 

combines the benefits of both global matrix factorization and local context window 

approaches. It learns word embeddings by leveraging the co-occurrence statistics of 
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words in a huge corpus. GloVe's core finding is that word vectors can be learned by 

evaluating word co-occurrence probability ratios rather than just the probabilities 

itself. GloVe embeddings have several advantageous qualities. They exhibit linear 

substructures and capture semantic links between words, such as word analogies. For 

example, the vector formed by subtracting the vector representation of "man" from the 

vector representation of "woman" and adding it to the vector representation of "king" 

is like the vector representation of "queen". Overall, GloVe is a sophisticated word 

embedding technique that uses co-occurrence statistics to capture meaningful 

associations between words. Because of its capacity to acquire high-quality word 

representations, it is a popular choice in natural language processing. 

3.2.3. fastText 

Facebook's AI Research (FAIR) team created fastText, an open-source framework for 

text classification and word representation. Joulin et al. [4]  first proposed it in 2016. 

fastText extends the success of classic word embeddings such as Word2Vec with 

subword information, allowing it to handle out-of-vocabulary (OOV) words and 

morphologically rich languages more well. The main idea underlying fastText is to 

represent words as bags of character n-grams, which are subword units made up of 

continuous character sequences. FastText can capture morphological and semantic 

similarities between words even for unseen or rare words by using character-level 

information. FastText's training technique entails learning continuous vector 

representations for words using a skip-gram model version. FastText, on the other 

hand, predicts the center target word based on its character n-grams rather than nearby 

words, as Word2Vec does. FastText can now handle OOV words by using the subword 

information in the training data. fastText also allows for effective text classification. It 

trains classifiers that can assign labels to text documents using a hierarchical softmax 

or negative sampling strategy. As a result, it is well-suited to tasks like sentiment 

analysis, topic classification, and spam identification. FastText's processing efficiency 

is a key advantage. When subword information is used, the dimensionality of the word 

representations is reduced, allowing for faster training and inference when compared 

to models that only employ whole words. FastText can also handle big vocabularies 
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efficiently due to its small memory footprint. Because of its effectiveness and 

efficiency in many natural language processing applications, fastText has acquired 

favor in the scientific community and industry. It has been used successfully in a 

variety of real-world applications including as text classification, information retrieval, 

and language modeling. 

  



4. DATASET 

The empirical investigation we conducted utilized a dataset obtained from the Apple 

App Store. The dataset was collected by a group of students who scraped information 

from over 10,000,000 apps and it was obtained through Kaggle [35] . However, in 

order to ensure data quality, rows with incomplete information were filtered out, 

resulting in a remaining dataset of 365,000 entries. Upon analyzing the dataset, we 

observed that it comprised of eighteen columns. For our investigation, our primary 

focus was on the Content Rating and description columns. Consequently, we removed 

other columns to improve performance and streamline our analysis. The Content 

Rating column contained four ratings: 4+, 9+, 12+, and 17+. Additionally, we filtered 

out apps with non-English descriptions. As a result of these filtering processes, our 

final collection consisted of 283,352 app descriptions belonging to four Content 

Ratings. 
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5. ANALYSIS 

Our recommended approach (Figure 5.1) includes the following processes: data pre-

processing, vectorization, and classification. Every one of these phases is described in 

greater detail underneath. 

5.1. Pre-Processing 

Text classification problems typically use combinations of text pre-processing 

algorithms to decrease distortion and improve the classifier's prediction skills. For our 

investigation, app descriptions were initially converted to lower case. Non-ASCII 

characters, URLs and digits were removed. The NLTK stop-word list was also used to 

remove English stop-words such as the, in, and would. 

5.2. Vectorization 

In this phase, we used two methods as giver before, Bag of words and Word 

embeddings. Both methods are used to turn the list of pre-processed tokens in each 

app's description into a vector. Creating a Bag-of-Words model with a maximum of 

1000 most-frequent words (as including all the words will make the dataset sparse and 

will only add noise). As for the word embeddings, pre-trained models are used. We 

used the word embeddings produced for representing the entire description. In the 

computation of word collection embeddings, various techniques can be employed, 

such as unweighted averaging which we used in our investigation to build an 

embedding for each app description.  
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Figure 5.1. Essential steps of the recommended strategy 

 

5.3. Experimental Baselines 

We produce one extra vector for app descriptions in addition to our techniques. This 

vector will serve as the experimental baseline against which we will assess the 

performance of our approaches. The following is a description of this representation: 

Latent Dirichlet Allocation: Blei et al. [3] established Latent Dirichlet Allocation 

(LDA) as a popular generative statistical model for topic modeling in 2003. It is 

intended to find hidden themes or subjects within a collection of papers without prior 

knowledge of the issues. 

The basic assumption of LDA is that each document in the corpus is a mix of different 

themes, and each subject is a probability distribution over a set lexicon of words. The 

model infers the topic distribution in the corpus as well as the word distribution within 

each topic. 

The training process of LDA involves two main steps: topic assignment and parameter 

estimation. In the topic assignment step, LDA randomly assigns topics to words in 

each document. The assigned topics are then refined iteratively based on the statistical 

properties of the corpus. In the parameter estimation step, LDA estimates the topic 
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proportions in each document and the word distributions for each topic, using 

statistical inference techniques such as variational inference or Gibbs sampling. 

We use Gensim, an open-source Python toolbox, for vector space modeling and topic 

modeling in our research. We utilize LDA to extract topics from our app description 

dataset. The hyperparameters of LDA, 𝛼 and 𝛽, are calibrated using commonly used 

heuristics in text analysis. Specifically, 𝛼 is determined by the corpus and 𝛽 is set to 1 

divided by the number of subjects. The sample method is iterated for 1000 iterations 

using Gibbs sampling to ensure subject stability. The number of topics (𝑘) that LDA 

will uncover is set to be equal to the number of categorization labels. 

5.4. Classification and Evaluation 

In the second stage, we use the vectorization techniques we discussed before to classify 

apps in our dataset. The following are our classification configurations: 

• Classification algorithms: We experiment with several classification methods 

to categorize our data:  

o Support Vector Machines (SVM): Support Vector Machines are 

machine learning models for classification and regression. They find a 

line or surface (hyperplane) that best separates data into classes. SVMs 

focus on maximizing the margin between classes, and they can handle 

non-linear data using the kernel trick. They're effective in high-

dimensional spaces, but their complexity and parameter tuning can be 

challenges. 

o Multi-layer Perceptron (MLP): A Multi-layer Perceptron (MLP) is a 

type of neural network with input, hidden, and output layers. Neurons 

process data through activation functions. It's used for tasks like 

classification and regression, learned through backpropagation. It's a 

key part of deep learning, capable of approximating complex functions. 

o Random Forests (RF): A Random Forest is an ensemble algorithm 

combining multiple decision trees. It reduces overfitting by using 

random subsets of data and features. It's used for classification and 

regression, providing robustness and feature importance insights. 
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o Nearest Neighbor (KNN): The k-Nearest Neighbors (KNN) algorithm 

predicts by comparing a new data point to its nearest neighbors (based 

on distance). It's used for classification or regression, has a "k" 

parameter for the number of neighbors to consider, and is sensitive to 

feature scaling. It's simple but can be computationally expensive for 

large datasets. 

o AdaBoost: AdaBoost is an ensemble algorithm that combines weak 

learners (like simple decision trees) to create a strong model. It focuses 

on correcting mistakes made by previous models and gives more 

weight to difficult instances. The final prediction is a combination of 

weak learners' votes. 

o Decision Trees (DT): Decision Trees are predictive models that use a 

tree-like structure of decisions to make predictions based on features. 

They're easy to understand, handle different data types, and are building 

blocks for more complex algorithms like Random Forests. However, 

they can overfit and might not capture intricate patterns. 

o Logistic Regression (LR): Logistic Regression is used for binary 

classification. It estimates probabilities using a logistic function and 

creates a linear decision boundary in feature space. It's interpretable and 

commonly used for understanding feature contributions to outcomes. 

Scikit-learn, a Python module that integrates a wide range of cutting-edge machine 

learning techniques for supervised and unsupervised classification issues, is used for 

our investigation. The predicted class is determined by the class that receives the most 

votes. Hyperparameter tweaking is used to guarantee that each classifier produces the 

best possible prediction given the data. Table 5.1 displays our exact set of 

hyperparameters. 

• Classification features: We use vectorization approaches, as explained in 

Section 5.2, to derive app categorization features from their descriptions. Using 

word embedding methods, the description of each app is converted into a 

feature vector. The chosen approach determines the dimensionality of the 

feature vector. The default dimensionality for Word2Vec and fastText is 300. 

On the other hand, GloVe allows for different vector sizes, with options such 



23 

as 50, 100, 200, or 300. In the case of the VSM (Vector Space Model), the 

feature vector size is determined by the number of words in the description 

(|𝑉|), where each word 𝑤𝑖 ∈ 𝑉 is represented as a dimension in the vector. 

Additionally, LDA is utilized to generate feature vectors for each app. Using 

LDA, app descriptions are converted into feature vectors of size 𝑘, which 

represent the description's probability distribution over the 𝑘 LDA topics. We 

investigate the influence of combining current meta-data elements such as the 

average rating, app size, and pricing to further improve categorization 

accuracy. The retrieved meta-data is attached to the vectorized representation 

of each app for each vectorization technique, adding new information into the 

feature vectors. 

• Training settings: We use the train, test, split method. The dataset is divided 

into two parts using this method: the training set and the test set. The function 

normally accepts as input the input features (X) and the matching target 

variables (y). The most common split ratio is 80% for training and 20% for 

testing, which is what we utilize. 

• Validation metrics: To assess the effectiveness of our classification algorithms, 

we use the standard metrics of accuracy, recall (R), precision (P) and F-

measure (F). For each classification label, these measurements are determined 

independently. 
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Table 5.1. Hyperparameter configuration for each algorithm. 

 

 

Classifier Parameter set 

Random Forest 

‘max_depth’ ∈ {10, 30, 50, 100, None} 

‘min_samples_split’ ∈ {2, 5, 10} 

‘n_estimators’ ∈ {10, 50, 100, 200} 

Naïve Bayes 
Gaussian NB: ‘var_smoothing’ ∈ {10−10, 101} 

Multinomial NB: ‘alpha’ ∈ {0, 1} 

Decision Trees 

‘max_depth’ ∈ {10, 30, 50, 100, None} 

‘criterion’ ∈ {‘qini’, ‘entropy’} 

‘min _split’ ∈ {2, 5, 10} 

KNN ‘n_neighbors’ ∈ {2, 5, 7, 10} 

Multi-layer 

Perceptron 

‘solver’ ∈ {‘adam’, ‘sgd’, ‘lbfgs’} 

‘hidden_layers_sizes’ ∈ {(100,100,100), 

(300,300,300)} 

‘max_iter’ ∈ {1000, 3600, 7000} 

SVM 

‘kernel’ ∈ {‘linear’, ‘rbf’, ‘poly’, ‘sigmoid’} 

‘C’ ∈ {0.1, 1, 10, 100} 

‘gamma’ ∈ {1/(n_features * X.var()), 1/n_features} 

Adaboost 
‘n_estimators’ ∈ {10, 50, 100, 200} 

‘learning_rate’ ∈ {0.1, 1, 10} 

Logistic Regression 

‘solver’ ∈ {‘newton-cg’, ‘sag’, ‘saga’, ‘lbfgs’} 

‘penalty ’ ∈ {‘l1’, ‘l2’} 

‘C’ ∈ {0.1, 1, 10, 100} 



6. RESULTS 

The results of classifying our dataset are shown in Table 6.1. The effectiveness of 

various classification algorithms while employing various suggested app description 

vectorization strategies. Our classification techniques scored best when app 

descriptions were vectorized utilizing VSM. This means that adopting VSM gave the 

best accurate app description form for our classification tests. MLP (adam solver) 

achieved the greatest results in categorizing the apps, with an F2 of 0.95, whereas 

Decision Trees performed comparably (F2 = 0.89). 

A comparison of the performance based on the different size vectors generated by 

GloVe is shown in Figure 6.1. MLP classification results using different GloVe size 

vectors.. In general, GloVe achieved its best results at vector size 300. Increasing the 

size of vectors resulted in more expressive vectors that capture all word relations. 

Our findings align with the results obtained by Berardi et al. [2] , Similar to their work, 

we preprocessed the app descriptions by, stop-word removal, tokenization and 

stemming, and then vectorized them. Additionally, we employed a mutual 

information-based feature selection method, as described in Berardi et al. [2] , to 

identify the most informative set of app features. The results from this analysis 

demonstrated that the inclusion of meta-data attributes, such as ratings, size, category, 

and price, did not contribute to enhanced classification results. This outcome was 

anticipated, as these meta-data attributes typically lack significant functionality-related 

information compared to the app descriptions. Consequently, the classifiers were not 

able to leverage the meta-data effectively for improved prediction accuracy. 
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Table 6.1. The effectiveness of various classification algorithms while employing 

various suggested app description vectorization strategies 

Approach Classifier P R F2 

VSM 

MLP 0.95 0.95 0.95 

AdaBoost 0.78 0.83 0.78 

Random Forest 0.86 0.86 0.81 

KNN 0.84 0.86 0.83 

SVM 0.84 0.84 0.76 

Decision Trees 0.89 0.9 0.89 

Logistic Regrission 0.81 0.85 0.8 

GloVe 300 

MLP 0.82 0.85 0.83 

AdaBoost 0.77 0.83 0.78 

Random Forest 0.85 0.85 0.8 

KNN 0.83 0.85 0.84 

SVM 0.69 0.83 0.76 

Decision Trees 0.76 0.74 0.75 

Logistic Regrission 0.78 0.84 0.79 

Word2Vec 

MLP 0.82 0.85 0.82 

AdaBoost 0.78 0.84 0.78 

Random Forest 0.85 0.86 0.81 

KNN 0.83 0.85 0.83 

SVM 0.82 0.84 0.78 

Decision Trees 0.77 0.76 0.76 

Logistic Regrission 0.78 0.84 0.78 

fastText 

MLP 0.82 0.85 0.83 

AdaBoost 0.77 0.83 0.78 

Random Forest 0.85 0.86 0.8 

KNN 0.83 0.85 0.82 

SVM 0.71 0.81 0.77 

Decision Trees 0.75 0.73 0.74 

Logistic Regrission 0.78 0.84 0.77 
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Figure 6.1. MLP classification results using different GloVe size vectors. 
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7. DISCUSSION 

This section discusses our primary analytical findings and provides more insight on 

some of our results in this work. 

7.1. Bag of Words vs. Topic Modeling 

In discussion, we compare the performance of our techniques to that of LDA, a popular 

method for app categorization tasks. According to our findings, bag of words models 

outperformed LDA in correctly recognizing app age ratings. The performance 

disparity can be attributable to the poor quality of the topics created by LDA for our 

dataset. The generated themes were discovered to be of low quality and did not 

correspond well with the expert-provided categories. LDA's poor performance can be 

attributed in part to the short length of app descriptions.   

Prior research has demonstrated that when working with short input documents, LDA 

does not function well. LDA is a data-intensive technique that necessitates a large 

volume of text to build meaningful topic distributions. However, because app 

descriptions are often brief, using traditional LDA to such data frequently results in 

incoherent and overlapping subjects. These findings illustrate LDA's limitations when 

dealing with brief text inputs, stressing the benefits of bag of words models in 

capturing the semantic meaning of app descriptions and attaining superior 

classification results. 

7.2. GloVe vs. Word2Vec and fastText 

GloVe defeated Word2Vec and fastText in our app categorization tests, according to 

our data. In general, context-free word embedding models such as GloVe, Word2Vec, 

and fastText produce equivalent results. Their performance, however, can vary slightly 

depending on the complexity of the text corpus on which they are trained. One possible 

explanation for GloVe's superior performance is that the language used to train the 

GloVe model was more broad than the vocabulary used to train the Word2Vec model. 
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GloVe can capture a better representation of word meanings and associations with a 

larger vocabulary, perhaps leading to increased classification accuracy.  

In the case of fastText, our findings revealed that the embeddings generated for 

unusual words utilizing character n-grams did not significantly improve classification 

accuracy. This could be because unusual words, which are represented by character n-

grams, were extremely infrequent in our sample. As a consequence, including 

character n-gram embeddings provided no significant gains for our app categorization 

tasks. Overall, our findings emphasize the necessity of taking into account the specific 

properties of the dataset as well as the training procedure when picking the best word 

embedding model for a given task.



8. CONCLUSION 

In this paper, we proposed an original method for categorizing mobile apps based on 

their app store descriptions. To construct vector representations of app descriptions, 

we used both Bag-of-Words and word embeddings models, which were subsequently 

used for app categorization and age rating prediction. To test our method, we ran trials 

with a dataset of apps drawn from various categories of the Apple App Store. Our 

study's findings have important practical consequences. Users can profit from our 

method by more successfully identifying mobile apps that match their unique interests. 

Our approach allows users to identify apps that are appropriate for their age group and 

preferences by precisely classifying and age-rating apps. Additionally, developers can 

leverage our approach to identify direct competitors within the app store and gain 

insights into market trends. For future work, we propose two main directions for 

further exploration. Firstly, conducting more extensive analysis using expert-

generated categorizations across a wider range of application domains would provide 

deeper insights into the effectiveness and generalizability of our approach. Expanding 

the dataset and incorporating diverse expert opinions will enhance the robustness of 

our classification models. Secondly, we envision developing a working prototype that 

implements our findings. This prototype would ideally be implemented as a mobile 

app with a user-friendly interface, facilitating the discovery of apps based on age 

ratings and specific interests. Building such a tool would bring our research closer to 

real-world application and provide practical benefits to mobile app users. By pursuing 

these future directions, we aim to further enhance the accuracy and usability of our 

approach, ultimately improving the app discovery experience for users and supporting 

developers in making informed decisions in the competitive app market. 
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