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1. INTRODUCTION 

Deep learning models generally use artificial neural networks as classifiers, 

consisting of fully connected layers consisting of a varying number of layers 

depending on the problem type. Classifier inputs, which must be determined 

manually in machine learning, are automatically obtained from the data through 

some feature extractor layers in deep learning networks. In other words, during 

training, these layers are trained to select features that will increase success. 

Convolutional neural networks (CNN) are among the most commonly preferred 

networks in deep learning models. CNN is an artificial neural network designed 

to process data that may be encountered in practice, such as signals, sequences, 

images, or volumetric data (LeCun et al., 2015). CNN models have proven 

effective in many applications, such as image classification, object detection, and 

image recognition. 

The most crucial feature of CNN architectures is the use of layers that apply 

convolution operations with trainable coefficients called kernels on the input 

data. Convolution involves shifting the kernel over the input data and performing 

multiplication and addition operations with weights on the input data to create a 

feature map. Thus, it helps capture local and global relationships by learning 

important features in the input data. 

CNN consist of convolutional and fully connected layers to form a deep 

learning model for classification and regression (Goodfellow et al. 2016). 

Convolutional layers in deep learning models provide an excellent feature 

extraction method for reducing the input data while keeping essential features. 

TensorFlow provides various convolutional layers, such as Conv1D for one-

dimensional convolution and Conv2D for two-dimensional convolution. These 

layers proved useful in major applications such as computer vision, audio 

processing, and sequence processing. 
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Figure 1. An example convolutional neural network structure 

 

Figure 1 shows a typical CNN structure that can be used for image 

classification. The structure of the network includes convolution layers, 

activation functions, pooling layers, and a fully connected layer. In practice, 

defining and training such a model for a purpose can be accomplished with 

various deep learning application programming interfaces (APIs). Keras API is 

one of the widely used tools for this purpose (Chollet 2021). 

 

2. Keras API 

Keras is a machine learning Application Programming Interface (API) written 

in Python that runs on the TensorFlow platform (Chollet 2015). It provides 

efficient tools for training, analyzing, and testing deep learning models more 

practically. Layers such as the convolution, pooling, and fully connected layers, 

which are necessary to realize a typical CNN model, can be easily defined with 

Keras either using the sequential form or functional form. In addition, it also 

provides many deep learning tools, such as activation functions, loss functions, 

optimization algorithms, and performance metrics.  

Keras includes various layers like Conv2D, which is one of the popular layers 

for processing two-dimensional tensors like images or two-dimensional features. 

The Conv1D layer processes one-dimensional tensors like word embeddings, 

signals, or sequences. For example, the one-dimensional features from a network 

intrusion dataset can be processed using models with Conv1D layers. Also, these 

features can be converted to two-dimensional representation and can be classified 

with models using Conv2D layers (Çavuşoğlu et al. 2023). Both functions have 
some important common parameters as described below: 
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 filters: The filters parameter defines the number of filters in the layer. 

For example, 32 filters are used simultaneously in the first layer to 

extract features from the image. 

 kernel_size: Each filter's kernel sizes are defined as 3x3 with the 

kernel_size parameter.  

 activation: After the convolution process, the extracted features are 

applied to the activation function for additional nonlinear processing 

to improve the output. For example, the rectifying linear unit (relu) 

function rounds the negative values to zero; the sigmoid function 

limits the output between 0 and 1. 

 padding: When applying convolution, the number of rows and 

columns decreases depending on the kernel size when the default 

parameter padding='valid' is used. Selecting padding='same' keeps 

the output shape the same as the input shape by adding some rows and 

columns of zeros, depending on the kernel size.  

 input_shape / shape: The number of inputs of each layer is 

determined by the number of outputs of the previous one. Only in the 

first layer, the input size needs to be specified according to the 

dataset's properties. For example, the input_shape= (128, 128, 3) 

shows that the input image is 128x128 and has three channels. In the 

functional form, a separate input layer with shape parameters is used 

to take the input. 

 

3. Working principles of Conv2D layers 

Keras implements two-dimensional convolutional layers using the Conv2D 

function. As shown by Figure 2, Conv2D can simply be included in a model using 

keras.layers. The example model just contains one filter with 3x3 kernel size and 

no activation function to illustrate the behavior of the Conv2D layer. The network 

input is set to a single channel input with 8x8 dimensions for the example input 

with randomly generated numbers. The Model class takes the inputs and outputs 

from the network to form the Keras model. The model.summary() prints some 

model information such as layer types, output shape, and the number of 

parameters in the network.  
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Figure 2. A single Conv2D layer for testing 

 

Figure 3. Summary and initial weights of the model 
 

Figure 3 shows the output of model.summary() and the initial values of the 

weights. There are a total of 10 trainable parameters: 9 of them belong to the 3x3 

kernel and one for bias. The initial values of the trainable parameters are assigned 

randomly before training starts. We can get the current values of the trainable 

parameters using get_weights() function of the model. The output shape of the 

layer is decreased from 8x8 to 6x6 since we set padding=‘valid’.  
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Figure 4. Applying a single convolution to an input image of 8x8 

 
Network parameters can be assigned manually using the set_weights() 

function of the model. This is useful for loading pre-trained weights in transfer 

learning applications where weights are transferred from another network 

(Krishna et al. 2019). In this simple experiment given by Figure 4, after weights 

are loaded manually using predefined kernel values, the randomly generated 

input is applied to the model using the predict() function. The outputs from the 

predict() function, the randomly generated input, and an example operation on 

the selected window are displayed in Figure 5. The reduction in the output 

dimensions can be compensated by setting padding=‘same’. This parameter pads 

input with zeros based on the kernel size, as illustrated by Figure 6, where the 

output shape equals the input shape. Therefore, the padded lines are the 

eliminated lines, and therefore, the padding=‘same’ parameter maintains the 

input shape at the output. 
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Figure 5. Illustration of convolution on random input features 

 

 

 

 

Figure 6. Illustration of convolution with zero padding on random input features 

 
4. A network using Conv2D layers 

The example operations above illustrate the basic working principles of a 

single convolution operation for a given feature map. Conv2D enables multiple 

kernels simultaneously so that each kernel can extract another useful feature for 

the deep learning model. Figure 7 illustrates a simple convolutional layer with 

just three filter units. Because input includes just a single channel, three kernels 
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are defined for processing the input. In the case of a color image or multiple-

channel data, the number of kernels is multiplied by the number of channels. 

Figure 8 illustrates connections for color input where 3-three channels for red, 

green, and blue images. In this case, the number of convolutions is increased from 

3 to 9. The number of outputs for the next layer is three, either for single or 

multiple-channel cases. The following layer takes the outputs as inputs, and 

therefore, the number of inputs is determined automatically. This means there are 

three inputs for the following layer, as shown in Figure 9, where the connections 

are illustrated for an interval layer. It is like a fully connected layer with three 

inputs and three outputs, but each connection represents a convolution operation. 

For this example, there are a total of 9 convolutions. 

Figure 7. Convolutional input layer for a single channel image 
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Figure 8. Convolutional input layer for a 3-channel image 

 

Figure 9: A convolutional interval layer example 
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Figure 10. A simple convolutional neural network to illustrate connections 

 

Figure 10 represents a simple, complete model with fully connected layers. A 

dense layer defines the fully connected layers with a specified number of units. 

Figure 11 represents the full Keras definition of the whole model. 

 

Figure 11. Keras model definition of the model given by Figure 10 
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Figure 12. Summary of the example model 

Figure 12 displays the summary of the full model, which was produced with 

model.summary(). There are a total of 901 trainable parameters in the whole 

model, and they vary according to the type of layer. For example, the number of 

parameters (nparams) for a convolutional layer is equal to the multiplication of 

the number of inputs (ninputs) and the number of units (units) and the square of 

the kernel_size. The number of biases is equal to the number of units as given by 

Eq. (1). 

nparams=ninputs*units*kernel_size*kernel_size+units   (1) 

 For the first Convolutional layer: 

nparams=1*3*3*3+3=30 

 For the second Convolutional layer: 

nparams=3*3*3*3+3=84 

The size of the flattened vector is equal to the number of convolutions and 

their dimensions. For this example, there are three convolutions for the second 

layer, each containing 8x8 features. Therefore, the size of the flatten is 

8*8*3=192. This means the fully connected layer has 192 inputs, and because 

there are four units for the first dense layer, the number of trainable parameters 

together with biases per unit is 192*4+4=772. For the second fully connected 

layer, the number of inputs equals the number of outputs from the previous layer. 

Therefore, there are a total of 4*3+3=15 trainable parameters together with the 

number of biases. 
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Figure 13. A typical convolutional neural network for multiclass classification 

 
Figure 13 illustrates a larger model than our simple example for multiclass 

classification of input images. This model takes 3-channel images with 32x32 

dimensions and classifies them into ten classes, as indicated by the number of 

units in the last layer. This layer also includes the MaxPool2D pooling layers for 

dimension reduction. By default, the pooling size is 2x2, and if a pooling 

operation follows the output, the output shapes are reduced by half the size, as 

illustrated in the summary of the model given in Figure 14. For example, the input 

size for the first MaxPool2D is 32x32, as indicated by the output shape of the first 

Conv2D layer. Therefore, the output shape of the MaxPool2D leads to a 16x16 

shape. Therefore, it reduces the shape of the features while keeping the important 

ones. The output for the last MaxPool2D layer reduces to 4x4, making it suitable 

for the fully connected layer. 
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Figure 14. Summary of the model cnn_model() 

 
5. Working principles of Conv1D layers 

One-dimensional convolutions work like two-dimensional convolutions, 

except they process one-dimensional features, as described in Figure 15. Conv1D 

shares parameters set similar to the Conv2D layer, such as kernel_size, padding, 

and strides. Figure 16 shows an example model with a single convolutional layer 

where the weights are set with specific numbers to check the working principles. 

Figure 16 shows the example kernel values, input features, and the computed 

output for the single kernel experiment. The numerical values are straightforward 

to verify the results. Figure 18 also repeats the results for random weights and 

two Conv1D units. In this case, there are two kernels and, therefore, two output 

feature arrays for the next layer.  
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Figure 15. Illustration of Conv1D for kernel_size=3 

 

 
Figure 16.  Conv1D layer example 

 

 
Figure 17.  Example processing results using Conv1D 
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Similarly, the number of inputs for the Conv1D layer can be increased to 

process multiple features. Figure 17 shows example results where the Conv1D 

layer has two units with random weights. Note that there is a reduction in the 

shape as a result of convolution, and this can be fixed by setting the padding= 

‘same’ as in the Conv2D layer. 

 

 
Figure 17.  Results for two Conv1D units with random weights 

 
6. Conclusions 

Building CNN-based models with Keras API has become quite practical. 

After the desired layers are selected and the model is created, the model becomes 

ready for training and testing to solve a problem. This work investigated the 

properties of convolutional layers in Keras using detailed examples of the 

structure and behavior of Conv1D and Conv2D layers. The relationship between 

the number of units and the number of trainable parameters of the CNN models 

has been explained with comparative examples. The basic building blocks like 

Conv1D, Conv2D, and several other layers provide a practical way to build 

sophisticated problems for various engineering and scientific solutions.  
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