
Academic Research and Reviews in Engineering Sciences

659

CHAPTER 37

	
	

WORKING	PRINCIPLES		
OF	CONVOLUTIONAL		

NEURAL	NETWORKS	IN	KERAS	

	

	
	
	

Devrim AKGUN1

1Sakarya University, Computer and Information Sciences Faculty, Software Engineering
Department, ORCID: 0000-0002-0770-599X

ubu20
Textbox
Akgun, Devrim, Working Principles Of Convolutional Neural Networks in Keras, Academic Research and Reviews in Engineering Sciences, Platanus Publishing, pp:659-674,2023

Devrim AKGUN

660

1. INTRODUCTION

Deep learning models generally use artificial neural networks as classifiers,

consisting of fully connected layers consisting of a varying number of layers

depending on the problem type. Classifier inputs, which must be determined

manually in machine learning, are automatically obtained from the data through

some feature extractor layers in deep learning networks. In other words, during

training, these layers are trained to select features that will increase success.

Convolutional neural networks (CNN) are among the most commonly preferred

networks in deep learning models. CNN is an artificial neural network designed

to process data that may be encountered in practice, such as signals, sequences,

images, or volumetric data (LeCun et al., 2015). CNN models have proven

effective in many applications, such as image classification, object detection, and

image recognition.

The most crucial feature of CNN architectures is the use of layers that apply

convolution operations with trainable coefficients called kernels on the input

data. Convolution involves shifting the kernel over the input data and performing

multiplication and addition operations with weights on the input data to create a

feature map. Thus, it helps capture local and global relationships by learning

important features in the input data.

CNN consist of convolutional and fully connected layers to form a deep

learning model for classification and regression (Goodfellow et al. 2016).

Convolutional layers in deep learning models provide an excellent feature

extraction method for reducing the input data while keeping essential features.

TensorFlow provides various convolutional layers, such as Conv1D for one-

dimensional convolution and Conv2D for two-dimensional convolution. These

layers proved useful in major applications such as computer vision, audio

processing, and sequence processing.

Academic Research and Reviews in Engineering Sciences

661

Figure 1. An example convolutional neural network structure

Figure 1 shows a typical CNN structure that can be used for image

classification. The structure of the network includes convolution layers,

activation functions, pooling layers, and a fully connected layer. In practice,

defining and training such a model for a purpose can be accomplished with

various deep learning application programming interfaces (APIs). Keras API is

one of the widely used tools for this purpose (Chollet 2021).

2. Keras API

Keras is a machine learning Application Programming Interface (API) written

in Python that runs on the TensorFlow platform (Chollet 2015). It provides

efficient tools for training, analyzing, and testing deep learning models more

practically. Layers such as the convolution, pooling, and fully connected layers,

which are necessary to realize a typical CNN model, can be easily defined with

Keras either using the sequential form or functional form. In addition, it also

provides many deep learning tools, such as activation functions, loss functions,

optimization algorithms, and performance metrics.

Keras includes various layers like Conv2D, which is one of the popular layers

for processing two-dimensional tensors like images or two-dimensional features.

The Conv1D layer processes one-dimensional tensors like word embeddings,

signals, or sequences. For example, the one-dimensional features from a network

intrusion dataset can be processed using models with Conv1D layers. Also, these

features can be converted to two-dimensional representation and can be classified

with models using Conv2D layers (Çavuşoğlu et al. 2023). Both functions have
some important common parameters as described below:

Devrim AKGUN

662

 filters: The filters parameter defines the number of filters in the layer.

For example, 32 filters are used simultaneously in the first layer to

extract features from the image.

 kernel_size: Each filter's kernel sizes are defined as 3x3 with the

kernel_size parameter.

 activation: After the convolution process, the extracted features are

applied to the activation function for additional nonlinear processing

to improve the output. For example, the rectifying linear unit (relu)

function rounds the negative values to zero; the sigmoid function

limits the output between 0 and 1.

 padding: When applying convolution, the number of rows and

columns decreases depending on the kernel size when the default

parameter padding='valid' is used. Selecting padding='same' keeps

the output shape the same as the input shape by adding some rows and

columns of zeros, depending on the kernel size.

 input_shape / shape: The number of inputs of each layer is

determined by the number of outputs of the previous one. Only in the

first layer, the input size needs to be specified according to the

dataset's properties. For example, the input_shape= (128, 128, 3)

shows that the input image is 128x128 and has three channels. In the

functional form, a separate input layer with shape parameters is used

to take the input.

3. Working principles of Conv2D layers

Keras implements two-dimensional convolutional layers using the Conv2D

function. As shown by Figure 2, Conv2D can simply be included in a model using

keras.layers. The example model just contains one filter with 3x3 kernel size and

no activation function to illustrate the behavior of the Conv2D layer. The network

input is set to a single channel input with 8x8 dimensions for the example input

with randomly generated numbers. The Model class takes the inputs and outputs

from the network to form the Keras model. The model.summary() prints some

model information such as layer types, output shape, and the number of

parameters in the network.

Academic Research and Reviews in Engineering Sciences

663

Figure 2. A single Conv2D layer for testing

Figure 3. Summary and initial weights of the model

Figure 3 shows the output of model.summary() and the initial values of the

weights. There are a total of 10 trainable parameters: 9 of them belong to the 3x3

kernel and one for bias. The initial values of the trainable parameters are assigned

randomly before training starts. We can get the current values of the trainable

parameters using get_weights() function of the model. The output shape of the

layer is decreased from 8x8 to 6x6 since we set padding=‘valid’.

Devrim AKGUN

664

Figure 4. Applying a single convolution to an input image of 8x8

Network parameters can be assigned manually using the set_weights()

function of the model. This is useful for loading pre-trained weights in transfer

learning applications where weights are transferred from another network

(Krishna et al. 2019). In this simple experiment given by Figure 4, after weights

are loaded manually using predefined kernel values, the randomly generated

input is applied to the model using the predict() function. The outputs from the

predict() function, the randomly generated input, and an example operation on

the selected window are displayed in Figure 5. The reduction in the output

dimensions can be compensated by setting padding=‘same’. This parameter pads

input with zeros based on the kernel size, as illustrated by Figure 6, where the

output shape equals the input shape. Therefore, the padded lines are the

eliminated lines, and therefore, the padding=‘same’ parameter maintains the

input shape at the output.

Academic Research and Reviews in Engineering Sciences

665

Figure 5. Illustration of convolution on random input features

Figure 6. Illustration of convolution with zero padding on random input features

4. A network using Conv2D layers

The example operations above illustrate the basic working principles of a

single convolution operation for a given feature map. Conv2D enables multiple

kernels simultaneously so that each kernel can extract another useful feature for

the deep learning model. Figure 7 illustrates a simple convolutional layer with

just three filter units. Because input includes just a single channel, three kernels

Devrim AKGUN

666

are defined for processing the input. In the case of a color image or multiple-

channel data, the number of kernels is multiplied by the number of channels.

Figure 8 illustrates connections for color input where 3-three channels for red,

green, and blue images. In this case, the number of convolutions is increased from

3 to 9. The number of outputs for the next layer is three, either for single or

multiple-channel cases. The following layer takes the outputs as inputs, and

therefore, the number of inputs is determined automatically. This means there are

three inputs for the following layer, as shown in Figure 9, where the connections

are illustrated for an interval layer. It is like a fully connected layer with three

inputs and three outputs, but each connection represents a convolution operation.

For this example, there are a total of 9 convolutions.

Figure 7. Convolutional input layer for a single channel image

Academic Research and Reviews in Engineering Sciences

667

Figure 8. Convolutional input layer for a 3-channel image

Figure 9: A convolutional interval layer example

Devrim AKGUN

668

Figure 10. A simple convolutional neural network to illustrate connections

Figure 10 represents a simple, complete model with fully connected layers. A

dense layer defines the fully connected layers with a specified number of units.

Figure 11 represents the full Keras definition of the whole model.

Figure 11. Keras model definition of the model given by Figure 10

Academic Research and Reviews in Engineering Sciences

669

Figure 12. Summary of the example model

Figure 12 displays the summary of the full model, which was produced with

model.summary(). There are a total of 901 trainable parameters in the whole

model, and they vary according to the type of layer. For example, the number of

parameters (nparams) for a convolutional layer is equal to the multiplication of

the number of inputs (ninputs) and the number of units (units) and the square of

the kernel_size. The number of biases is equal to the number of units as given by

Eq. (1).

nparams=ninputs*units*kernel_size*kernel_size+units (1)

 For the first Convolutional layer:

nparams=1*3*3*3+3=30

 For the second Convolutional layer:

nparams=3*3*3*3+3=84

The size of the flattened vector is equal to the number of convolutions and

their dimensions. For this example, there are three convolutions for the second

layer, each containing 8x8 features. Therefore, the size of the flatten is

8*8*3=192. This means the fully connected layer has 192 inputs, and because

there are four units for the first dense layer, the number of trainable parameters

together with biases per unit is 192*4+4=772. For the second fully connected

layer, the number of inputs equals the number of outputs from the previous layer.

Therefore, there are a total of 4*3+3=15 trainable parameters together with the

number of biases.

Devrim AKGUN

670

Figure 13. A typical convolutional neural network for multiclass classification

Figure 13 illustrates a larger model than our simple example for multiclass

classification of input images. This model takes 3-channel images with 32x32

dimensions and classifies them into ten classes, as indicated by the number of

units in the last layer. This layer also includes the MaxPool2D pooling layers for

dimension reduction. By default, the pooling size is 2x2, and if a pooling

operation follows the output, the output shapes are reduced by half the size, as

illustrated in the summary of the model given in Figure 14. For example, the input

size for the first MaxPool2D is 32x32, as indicated by the output shape of the first

Conv2D layer. Therefore, the output shape of the MaxPool2D leads to a 16x16

shape. Therefore, it reduces the shape of the features while keeping the important

ones. The output for the last MaxPool2D layer reduces to 4x4, making it suitable

for the fully connected layer.

Academic Research and Reviews in Engineering Sciences

671

Figure 14. Summary of the model cnn_model()

5. Working principles of Conv1D layers

One-dimensional convolutions work like two-dimensional convolutions,

except they process one-dimensional features, as described in Figure 15. Conv1D

shares parameters set similar to the Conv2D layer, such as kernel_size, padding,

and strides. Figure 16 shows an example model with a single convolutional layer

where the weights are set with specific numbers to check the working principles.

Figure 16 shows the example kernel values, input features, and the computed

output for the single kernel experiment. The numerical values are straightforward

to verify the results. Figure 18 also repeats the results for random weights and

two Conv1D units. In this case, there are two kernels and, therefore, two output

feature arrays for the next layer.

Devrim AKGUN

672

Figure 15. Illustration of Conv1D for kernel_size=3

Figure 16. Conv1D layer example

Figure 17. Example processing results using Conv1D

Academic Research and Reviews in Engineering Sciences

673

Similarly, the number of inputs for the Conv1D layer can be increased to

process multiple features. Figure 17 shows example results where the Conv1D

layer has two units with random weights. Note that there is a reduction in the

shape as a result of convolution, and this can be fixed by setting the padding=

‘same’ as in the Conv2D layer.

Figure 17. Results for two Conv1D units with random weights

6. Conclusions

Building CNN-based models with Keras API has become quite practical.

After the desired layers are selected and the model is created, the model becomes

ready for training and testing to solve a problem. This work investigated the

properties of convolutional layers in Keras using detailed examples of the

structure and behavior of Conv1D and Conv2D layers. The relationship between

the number of units and the number of trainable parameters of the CNN models

has been explained with comparative examples. The basic building blocks like

Conv1D, Conv2D, and several other layers provide a practical way to build

sophisticated problems for various engineering and scientific solutions.

Devrim AKGUN

674

REFERENCES

Chollet, F. (2015). keras. Retrieved December 15, (2023 https://keras.io)

Chollet, F. (2021). Deep Learning with Python, Second Edition. Simon and Schuster.

Çavuşoğlu, Ü., Akgun, D., and Hizal, S. (2023). A Novel Cyber Security Model Using
Deep Transfer Learning. Arabian Journal for Science and Engineering, 1-10.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep learning. MIT press.

Krishna, S. T., & Kalluri, H. K. (2019). Deep learning and transfer learning

approaches for image classification. International Journal of Recent

Technology and Engineering (IJRTE), 7(5S4), 427-432.

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature, 521(7553),

436-444.

