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A NEW CUSTOM TENSORFLOW LAYER BASED ON SECOND-ORDER 

ONE-DIMENSION VOLTERRA CONVOLUTION 

SUMMARY 

Deep learning algorithms have garnered much attention recently, their success in 

enhancing the accuracy of automatic speech recognition systems has caused an 

increase in their usage. These models have the ability to identify patterns within input 

data and generate predictions based on these patterns. However, a limitation of these 

models is their inability to capture nonlinear relationships within input data.  

This study aimed to enhance the performance of automatic speech recognition through 

the incorporation of a second-order, one-dimensional Volterra Convolution (Volt1D) 

layer into deep learning models. The Volt1D layer is a custom TensorFlow layer that 

is founded on the Volterra series convolution, a mathematical tool capable of 

representing a wide array of nonlinear functions.  

To evaluate the efficacy of the Volt1D layer, we compared its performance to that of 

the standard Conv1D layer using the speech commands dataset v0.01, which consists 

of 20 classes of spoken words. Our results indicated that the Volt1D layer achieved an 

accuracy of 64.91% over 10 epochs, a significant improvement over the baseline 

accuracy of 60.02% using the Conv1D layer over 10 epochs. This demonstrates the 

Volt1D layer's effectiveness in extracting nonlinear relationships within speech data. 

We talked about the advantages and disadvantages of these approaches. with regard to 

the main objective of the study, which was to capture nonlinear relationships in speech 

data through the use of the Volt1D layer. We found that the Volt1D layer is a promising 

approach for speech recognition due to its ability to effectively capture nonlinear 

relationships and enhance the effectiveness of deep learning models.  

One of the primary strengths of the Volt1D layer is its capability to represent a wide 

range of nonlinear functions, making it suitable for capturing complex relationships 

within input data, a crucial factor in accurately transcribing spoken words into written 

text. In addition, the Volt1D layer is computationally efficient, allowing for its 

utilization in real-time speech recognition applications without incurring excessive 

computational overhead. However, there are also some limitations to the Volt1D layer. 

One limitation is that these models require a vast amount of training data to effectively 

learn the intricate nonlinear relationships within input data, which can be problematic 

for smaller datasets or applications with limited access to ample training data. 

Additionally, the Volt1D layer may not be as effective at capturing long-term 

dependencies within input data as other methods like RNN or LSTM models 

In conclusion, the Volt1D layer represents a promising approach for improving the 

performance of automatic speech recognition through deep learning models. It is able 

to effectively capture nonlinear relationships within input data, exhibiting superior 

accuracy and computational efficiency compared to other methods. However, the 

model may be constrained by the need for a substantial amount of training data and its 

capacity to identify long-term dependencies within input data. 
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A NEW CUSTOM TENSORFLOW LAYER BASED ON SECOND-ORDER 

ONE-DIMENSION VOLTERRA CONVOLUTION 

ÖZET  

Son yıllarda, konuşma tanıma sistemlerinin performansını iyileştirmek için derin 

öğrenme modelleri yaygın olarak kullanılmaktadır. Bu modeller, girdi verilerindeki 

kalıpları öğrenme ve tanıma ve bu kalıplara dayalı tahminler yapma yeteneğine 

sahiptir. Bununla birlikte, bu modellerin bir sınırlaması, girdi verilerinde doğrusal 

olmayan ilişkileri yakalayamamalarıdır. 

Bu çalışmada, yeni bir katman ikinci dereceden 1D Volterra Convolution (Volt1D) 

katmanı tanıtarak derin öğrenme modelleri kullanarak konuşma tanıma performansını 

iyileştirmeyi amaçladık. Volt1D katmanı, çok çeşitli doğrusal olmayan işlevleri temsil 

edebilen matematiksel bir araç olan Volterra serisi konvolüsyonu temel alan özel bir 

TensorFlow katmanıdır. 

Volt1D katmanının performansını, 20 sözlü sözcük sınıfından oluşan konuşma 

komutları veri kümesi v0.01'de standart Conv1D katmanının performansıyla 

karşılaştırdık. Sonuçlarımız, Volt1D katmanının 10 dönemle %64,91'lik bir doğruluğa 

ulaştığını gösterdi; bu, 10 dönemle Conv1D katmanı kullanılarak elde edilen 

%60,02'lik temel doğruluktan önemli ölçüde daha yüksek. Bu, Volt1D katmanının 

konuşma verilerindeki doğrusal olmayan ilişkileri çıkarmadaki etkinliğini gösterir. 

Volt1D katmanını kullanarak konuşma verilerindeki doğrusal olmayan ilişkileri 

yakalamak olan çalışmamızın ana amacı ile ilgili olarak bu yaklaşımların güçlü 

yanlarını ve sınırlamalarını da tartıştık. Doğrusal olmayan ilişkileri etkili bir şekilde 

yakalayabildiği ve derin öğrenme modellerinin performansını iyileştirebildiği için 

Volt1D katmanının konuşma tanıma için umut verici bir yaklaşım olduğunu bulduk. 

Volt1D katmanının ana güçlü yönlerinden biri, çok çeşitli doğrusal olmayan 

fonksiyonları temsil etme yeteneğidir. Bu, onu, konuşulan sözcükleri doğru bir şekilde 

metne dönüştürmek için önemli olan girdi verilerindeki karmaşık ilişkileri yakalamak 

için çok uygun hale getirir. Ek olarak, Volt1D katmanı hesaplama açısından verimlidir, 

bu da gerçek zamanlı konuşma tanıma uygulamalarında önemli bir hesaplama yüküne 

maruz kalmadan kullanılabileceği anlamına gelir. 

Bununla birlikte, Volt1D katmanının bazı sınırlamaları da vardır. Bir sınırlama, girdi 

verilerindeki karmaşık doğrusal olmayan ilişkileri öğrenmek için büyük miktarda 

eğitim verisi gerektirmesidir. Bu, daha küçük veri kümeleri veya büyük miktarda 

eğitim verisine sınırlı erişimin olduğu uygulamalar için zor olabilir. Ek olarak, Volt1D 

katmanı, RNN'ler veya LSTM'ler gibi diğer yaklaşımlarla karşılaştırıldığında girdi 

verilerindeki uzun vadeli bağımlılıkları yakalamada o kadar etkili olmayabilir. 

Sonuç olarak, Volt1D katmanı, derin öğrenme modellerini kullanarak konuşma tanıma 

performansını iyileştirmek için umut verici bir yaklaşımdır. Girdi verilerindeki 
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doğrusal olmayan ilişkileri etkili bir şekilde yakalayabilir ve doğruluk ve hesaplama 

verimliliği açısından diğer yaklaşımlardan daha iyi performans gösterebilir. Ancak, 

büyük miktarda eğitim verisine duyulan ihtiyaç ve girdi verilerindeki uzun vadeli 

bağımlılıkları yakalama yeteneği ile sınırlı olabilir. 

 

  



1. INTRODUCTION 

Convolutional neural networks (CNNs) have gained widespread popularity in recent 

decades as a tool for a variety of computer vision and machine learning tasks [1, 2]. 

These feed-forward ANNs use alternating layers of convolution and subsampling to 

extract features from input data [3].  

Deep 1D CNNs, which consist of multiple hidden layers and a large number of 

parameters, are particularly effective at learning complex patterns and objects when 

trained on large visual databases with ground truth labels [4, 5]. As a result, CNNs 

have become the go-to method for a variety of technical applications involving 2D 

input such as images and videos [6, 7].  

However, the use of CNNs may not always be feasible for 1D signal applications, 

particularly when the training data is of low quality or tailored to a specific application 

[8]. To resolve this problem, 1D CNNs were developed and have achieved exceptional 

performance in a range of applications, including biomedical data classification for 

personalized early diagnosis [9], monitoring the structural integrity [10], identifying 

abnormalities [11], and the detection of power electronics and electrical engine failures 

[12].  

One major benefit of 1D CNNs is the ability to be implemented in real-time and at low 

cost because of their straightforward and concise design, which only performs 1D 

convolutions [13].  

In this study, we aim to implement second-order Volterra Series Convolution as a 

custom TensorFlow layer to be used to train a speech recognition model with the 

speech commands V0.01 dataset [14].  

The Volterra series is a representation of nonlinear behavior model that has the ability 

to capture "memory" effects [15], which may be beneficial to enhance the effectiveness 

of deep learning models for speech recognition tasks [16]. By implementing this 

custom layer, we hope to increase the accuracy of the trained model and reduce training 

time [17]. This study also aims to provide a all-encompassing overview of the overall 

design and principles of 1D CNN, focusing on recent advancements and their current 
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highest levels of success in various technical applications [18]. The voice recognition 

data and core 1D CNN used in these applications will also be made publicly available 

[19]. Despite the lack of literature on 1D CNNs and their applications, this study aims 

to fill this gap by presenting a comprehensive overview of the current state of the field 

[20]. 

1.1. Overview 

Accurate speech recognition is of great importance in a variety of applications, ranging 

from personal assistants and voice-controlled devices [21] to automatic translation and 

transcription services [22].  

Recently, deep learning approaches have become the dominant method for speech 

recognition tasks [23], because of their capability to learn intricate patterns and 

features from significant amounts of signals [24]. However, there are still many 

challenges to achieving high levels of accuracy, especially when dealing with real-

world speech data that may be noisy, varied, or spoken in different languages and 

accents [25]. One major challenge is the nonlinear nature of speech signals, which can 

be difficult to model using traditional linear techniques [26].  

The Volterra series as nonlinear model behaviour with the ability to capture "memory" 

effects [27], may be a useful tool for addressing this challenge. By implementing a 

custom layer based on the Volterra series in our TensorFlow model, we hope to 

enhance the precision of speech recognition model [28]. Accurate speech recognition 

is also important for improving the usability and functionality of voice-controlled 

devices and personal assistants [29], as well as for increasing the efficiency and 

accuracy of transcription and translation services [30]. These applications have the 

potential to revolutionize how we interact with technology and communicate with one 

another [31], but they require highly accurate speech recognition algorithms to be truly 

effective. By developing a custom layer based on the Volterra series, we aim to 

contribute to the ongoing efforts to enhance the accuracy and performance of the 

speech recognition model [32]. 
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1.2. Problem Statement  

The issue being considered in this study is the implementation of second-order 

Volterra series convolution as a custom TensorFlow layer to train a speech recognition 

model. The use of the Volterra series, with the ability to capture "memory" effects 

[33], will enhance the capability of deep learning models for speech commands 

recognition tasks by capturing both linear and nonlinear relations in the data [34].  

To address this problem, we will implement a second order Volterra series convolution 

in Python as a TensorFlow layer [35]. This custom layer will be used in place of 

traditional convolutional layers in an artificial intelligence model for speech 

recognition and will be trained using the speech commands V0.01 dataset [36]. The 

accurecy of the trained AI-model with the custom Volterra series will be compared to 

the performance of a model using traditional convolutional layers, in order to evaluate 

the performance of the Volterra series in improving the performance of the trained 

model. Overall, the purpose of this study is to examine the potential benefits of using 

the Volterra series for speech recognition tasks, and to provide a detailed 

implementation and evaluation of a custom TensorFlow layer based on the second-

order Volterra series. By addressing this problem, we hope to contribute to the ongoing 

efforts to enhance the effectiveness of models for speech recognition tasks, and to 

provide a useful tool for researchers and practitioners working in this field. 

1.3. Objective  

The goal of this master's thesis is to investigate and address the issue of speech 

recognition using CNNs for capture nonlinear behaviour. The goal of this research is 

to present a new method for improving the accuracy and efficiency of speech 

recognition models by implementing a custom CNN layer based on the Volterra series.  

Speech recognition is a critical field that has significant practical and technological 

importance, but traditional approaches to training deep learning models for speech 

recognition tasks often suffer from poor accuracy with nonlinear relations between the 

training data, particularly when dealing with large datasets. Our new custom layer, 

Volt1d, aims to address these issues by replicating the behavior of the TensorFlow 

Conv1D layer by replacing the linear mathematical equation with a non-linear 
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equation to enhance the accuracy of the trained model by capture linear and nonlinear 

relation in the input training dataset. By exploring and addressing these issues, our 

research aims to contribute to the ongoing efforts to enhance the effectiveness of 

speech recognition model. This work has the potential to have significant practical 

impacts, as it could enable the improvement of speech recognition systems in terms of 

accuracy and efficiency that are capable of handling large and diverse datasets in real-

world applications. 

1.4. Research Questions 

This study aims to answer the following research question: What is the impact of using 

a second-order Volterra series convolution layer on the precision and time required for 

training a speech recognition model? 

To answer this research question, the following objectives have been set: 

• Implement the second-order Volterra series convolution as a custom 

TensorFlow layer. 

• Train a speech recognition model using the speech commands V0.01 dataset 

with the custom Volterra series convolution layer. 

• Compare the accuracy of the model with the custom Volterra series 

convolution layer to the performance of a model with traditional convolutional 

layers. 

• Analyse the results and determine the repercussion of the Volterra series 

convolution on the accuracy and training time of the model. 

• Conduct a thorough implementation and assessment of the custom Volterra 

series convolution layer for speech recognition tasks in TensorFlow. 

1.5. Organization 

The present master's thesis is organized into six sections, with the first and current 

section serving as an introduction. In addition to providing an overview of the research, 

this section also includes a description of the problem being addressed, the objectives 

and research questions of the study, and the organization of the remaining section. The 

second section provides an overview of previous research on speech recognition using 
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a description of deep learning, including the various approaches and their strengths 

and limitations. This section also introduces the concept of the Volterra series and its 

role in enhancing the effectiveness of speech recognition model. The historical 

evolution of neural networks is also discussed in this section. Section 3 presents the 

methodology of the study, including the implementation and evaluation of the custom 

Volterra series convolution layer for speech recognition in TensorFlow. The datasets 

and experimental setup used for training and evaluating the models are also described 

in this section. Section 4 presents the results and analysis of the study, including the 

comparison of the performance of the model with the custom Volterra series 

convolution layer to the performance of a model with traditional convolutional layers. 

The impact of the Volterra series and its impact on accuracy of the model is also 

discussed in this section. The fifth section concludes the study by summarizing the 

main findings and discussing the implications of the results. This section also explores 

potential avenues for future research. The final section presents the references used in 

the study
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2. LITERATURE REVIEW 

Speech recognition is a rapidly developing technology that has the potential to 

revolutionize the way we interact with machines. The Speech Commands V0.01 

dataset [37] is a publicly available dataset that contains thousands of spoken words 

and phrases, making it a valuable resource for training and implementing speech 

recognition systems. In this literature review, we will explore the current state of the 

art in speech recognition, focusing on the use of the Speech Commands V0.01 dataset. 

We will discuss the challenges of implementing and training speech recognition 

systems, as well as the various approaches that have been proposed to overcome these 

challenges. Speech recognition technology has been a topic of research for decades, 

with early systems dating back to the 1950s. However, it wasn't until the late 1990s 

and early 2000s that speech recognition systems achieved high accuracy and usability 

[38]. Today, speech recognition is used in a wide range of applications, including 

voice-controlled assistants, voice-enabled search, and accessibility tools for people 

with disabilities. One of the key challenges in speech recognition is the large amount 

of data that is required to train a system. This data must be representative of the 

population of speakers and the range of environments in which the system will be used. 

The Speech Commands V0.01 dataset [37] is a publicly available dataset that contains 

65,000 spoken words and phrases, making it a valuable resource for training speech 

recognition systems. The dataset was created by Google and contains a wide range of 

spoken words and phrases, including numbers, common words, and commands. There 

are several challenges that must be overcome when implementing and training speech 

recognition systems. One of the main challenges is the variability of human speech. 

People speak at different speeds, use different accents, and have different speaking 

styles [39]. This variability makes it difficult to create a system that can accurately 

recognize speech in a wide range of environments. 

Another challenge is the presence of noise in the environment. Background noise can 

make it difficult for a system to accurately recognize speech, especially in noisy 



 

8 

environments such as public places or crowded streets [40]. Additionally, the presence 

of multiple speakers can make it difficult for a system to identify the correct speaker. 

A third challenge is a need for a large amount of data to train a system. As mentioned 

earlier, speech recognition systems require a large amount of data to achieve high 

accuracy levels [41]. This data must be representative of the population of speakers 

and the range of environments in which the system will be used. 

There are several approaches that have been proposed to overcome the challenges of 

implementing and training speech recognition systems. One approach is to use deep 

learning techniques to train a system [42]. Deep learning algorithms, such as neural 

networks, have been shown to be effective in handling the variability of human speech. 

Additionally, deep learning algorithms can be trained on large amounts of data, making 

them well-suited for speech recognition. 

Another approach is to use data augmentation techniques to increase the amount of 

data available for training [43]. Data augmentation techniques can be used to 

artificially increase the amount of data by applying various transformations to the 

existing data. This can include adding noise, changing the speed of speech, or applying 

different accents. 

A third approach is to use transfer learning techniques to adapt a pre-trained model to 

a new task [42]. Transfer learning allows a pre-trained model to be fine-tuned on a 

new task, reducing the amount of data required to train the system. This can be 

especially useful when the data available for training is limited. 

Speech recognition is a rapidly developing technology that has the potential to 

revolutionize the way we interact with machines. The Speech Commands V0.01 

dataset [37] is a valuable resource for training and implementing speech recognition 

systems, as it contains a large amount of diverse spoken words and phrases. However, 

implementing and training speech recognition systems can be challenging due to the 

variability of human speech, the presence of noise in the environment, and the need 

for a large amount of data. To overcome these challenges, researchers have proposed 

various approaches such as using deep learning techniques, data augmentation and 

transfer learning. Further research in speech recognition will continue to improve the 

accuracy and usability of these systems for a wide range of applications. 
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2.1. Background 

Despite the promising results achieved by deep learning models for speech 

recognition, there are still several challenges that need to be addressed. One of the 

main challenges is the need for significant quantities of labeled training data, which 

can be difficult and time-consuming to obtain [43]. Another challenge is the sensitivity 

of deep learning models to noise and other distortions in the data, which can reduce 

their accuracy [44]. To address these challenges, research is ongoing to develop new 

methods and techniques to enhance the accuracy of deep learning models for speech 

recognition tasks [45]. The description of various approaches used in previous studies 

as mentioned below: 

2.1.1. Artificial neural networks (ANN) 

Artificial neural networks (ANNs) are a type of model that uses calculations and 

mathematics to replicate the functioning of the human brain. Many recent 

developments in the realm of AI, such as visual and auditory identification and 

automatons, have been made possible through the use of ANNs.  

These models have a specific architecture, which is influenced by the design of the 

natural nervous system and consists of neurons that are connected by weighted 

links. The neurons in ANNs are arranged in a complex and nonlinear way, similar to 

the anatomy of the human brain. ANNs can be trained through various methods, 

including information gathering and evaluation, network layout planning, 

determination of the quantity of hidden layers, network simulation, and optimization 

of weights and biases. ANNs can be used to solve problems in a variety of different 

scientific disciplines, and can be utilized for categorizing patterns, forecasting, and 

managing and optimizing. 

ANNs can be classified into three types:  

 Static 

 Dynamic 

 Statistical  
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Each of which has its own unique structure and characteristics [46]. It is also possible 

to combine ANNs in combination with other optimization strategies, to improve 

prediction capabilities.  

ANNs have significant applications in the field of Speech Recognition system. We can 

find in Figure 2.1 basic ANN design. 

 

 

Figure 2.1. Artificial Neural Networks Architecture 

As we can see in Figure 2.1 the neural network architecture, the simple neural networks 

consist of multiple neuron binary inputs between zero and one and we have W which 

is the weights, the weights will be generated randomly based on the TensorFlow 

algorithm, then the next layer or the hidden layers will use all the inputs from the 

previous layer based on the following formula. 

𝑧 = ∑𝑤𝑖𝑥𝑖 + 𝑏

∞

𝑖=0

 (2.1) 

Let’s describe our neural network, we have list of inputs will draw it’s as a single node 

and each node will connect to all other nodes in the next hidden layer or to the output 

directly based on the architecture, and each node in the next hidden layer will connect 

to all other nodes in the second hidden layer or the output and repeat the same protocol 

for other concealed layers and apply the arithmetic operation as it in (2.1) for example 

in Figure 2.2 we have just three inputs into our neural network we will represent each 
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input as single node, so in our example we have three nodes as inputs, each input of 

our inputs will connect to all the other nodes in the initial hidden layer, in this step, the 

neural network will generate the weights for each input and apply the arithmetic 

operation by multiplying the input with its weights and add the bias to the operation, 

the neural network will do the same thing for all the inputs each input with its weight, 

so after applying all this operations will set the outputs as a node in the initial concealed 

layer, and the same is true for the subsequent concealed layer and at the end will send 

the final results to the output layer. 

 

Figure 2.2. Simple neural network architecture 

2.1.2. Activation function 

The activation function plays a significant role in influencing the output of a neural 

network. It is a mathematical function that decides whether or not a neuron's input 

should be considered important for the prediction process. Activation functions allow 

for non-linearity in neural networks, allowing them to make complex decisions based 

on input data. They also map the output values of a node to a specific range, such as 

between 0 and 1 or -1 and 1. Common types of activation functions include sigmoid, 

tanh, and ReLU. The activation function is commonly known as the transfer function 

in artificial neural networks [47]. It is essential to choose the appropriate activation 

function for a given task, as it can significantly impact the functionality of the artificial 

neural network.  
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2.1.2.1. Linear activation function 

The straight-line activation function, also referred to as the "no activation" or "identity 

function," simply returns the input that it receives, multiplied by a factor of 1.0. This 

function does not alter the weighted sum of the input in any way and produces an 

output that is proportional to the input. As shown in, Figure 2.3, the function is linear, 

meaning that the output will not be limited to any specific range. This function is also 

known as the "no activation" function, as it does not perform any activation on the 

input. 

 

Figure 2.3. Linear Activation Function 

Where the Equation equals 𝑓(𝑥) =  𝑥 and the range between – infinity to infinity. 
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2.1.2.2. Non-linear activation function 

Non-linear activation-functions are the most commonly used types of activation-

functions. These functions introduce nonlinearity into the system allows the graph to 

take on a shape similar to Figure 2.4, which facilitates the model's ability to adapt to a 

variety of data and to distinguish between different outputs. This is because 

nonlinearity enables the model to generalize effectively, allowing it to perform well 

on a variety of data. Nonlinear activation functions are therefore essential in helping 

the model to accurately analyse and interpret the input data. 

 

 

Figure 2.4. Nonlinear Activation Function 

Sigmoid activation function. 

Sigmoid Activation Function curve exhibits an S-shaped form, as depicted in Figure 

2.5. The sigmoid function is a mathematical function defined for real input values, 

possessing boundedness, differentiability, and a non-negative derivative. with a  single 

inflection point. The sigmoid function is also referred to as a sigmoid curve and is 

characterized by its monotonicity and a bell-shaped first derivative. The integral of 

any continuous, non-negative, bell-shaped function will be sigmoidal. 
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Figure 2.5. Basic sigmoid function 

Hyperbolic tangent activation function. 

The tanh function resembles logistic sigmoid function, but has a wider range of values 

from -1 to 1. It is also sigmoidal, meaning that it has an s-shaped curve. The tanh 

function is often preferred over the logistic sigmoid function due to its wider range and 

ability to capture a greater range of values in the input data like Figure 2.6. 

 

 

Figure 2.6. Hyperbolic tangent Activation Function. 
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Rectified linear unit 

The ReLU activation function is currently the most commonly employed activation 

function globally, particularly in CNNs and deep learning applications. It is 

characterized by its half-rectified shape, with f(z) equal to zero when 𝑧 <   0 and f(z) 

equal to z when 𝑧 >=  0. The average of the ReLU function is from 0 to ∞. Both the 

function and its first derivative have a constant direction of increase or decrease, but a 

major issue with the ReLU function is that it immediately sets all negative input values 

to zero, which can decrease the model's proficiency to fit or train on the data 

effectively. This is because the negative values are not mapped appropriately in the 

resulting graph, which can negatively impact the model's performance, you can find 

the ReLU activation function in Figure 2.7. 

 

 

Figure 2.7. ReLU activation Function 
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2.1.3. Loss function  

The cost function or the loss function, is designed to achieve the performance of the 

neural network. Given a forecast or group of forecasts and a classification or set of 

classifications, it calculates the difference between the algorithm's forecast and the 

appropriate tag. There are many other loss functions, but the MSE is the one used in 

neural networks the most frequently. Mean squared function (MSE) the MSE is the 

average of the squared discrepancy between predictions and actual observations. It 

doesn't care which way the errors are going; just their average magnitude is important. 

However, because of squaring, forecasts that deviate greatly from actual values are 

severely penalized relative to predictions that differ less. Additionally, MSE has 

appealing mathematical characteristics that make calculating gradients simpler, we can 

find the mathematical formulation: 

𝑀𝑆𝐸 = 
∑ (𝑦𝑖− 𝑦`𝑖

)2𝑛
𝑖=1

𝑛
 (2.2) 

2.1.4. Gradient descent algorithm 

A method for reducing the error function is gradient descent. It serves as a tool to 

identify the error metric. local minimum. Subsequently, you will come across a 

summary of the steps involved in the algorithm. 

1. Begin by initializing every weight and bias within the artificial neural network 

at random. All parameters must be initialized randomly; otherwise, if they all 

start out with "if all hidden layer units were assigned the same value, they 

would eventually learn to perform the same function on the input. 

Consequently, symmetry breaking is achieved by using random initialization. 

2. Continuously adjust the values of 𝑤, 𝑏 through repetition until a minimum is 

hopefully reached:  

𝑊𝑖,𝑗
𝑙  = 𝑊𝑖,𝑗

𝑙  – α  

 

(2.3) 
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2.1.5. CNNs 

Deep learning models known as convolutional neural networks (CNNs) are used for 

particularly well-suited for voice and video recognition tasks. These models consist of 

multiple layers of convolutional and subsampling filters, which extract features from 

the input data and reduce its dimensionality.  

The extracted features subsequent input into a completely connected layer, which is 

used to classify the input data based on the learned features.  

One of the primary benefits of CNNs their capability of learn spatial hierarchies of 

features, which allows them to recognize complex patterns and objects in the input 

data. This is achieved through the use of multiple layers and the use of pooling 

operations, which lower the detail of the input information and assist to extract more 

abstract features. CNNs have been widely used in previous research studies for speech 

recognition tasks, particularly for tasks involving large datasets and high-dimensional 

data entered. For example, [47] demonstrated the effectiveness of CNNs for language 

identification tasks, while [48] showed that CNNs can be used to enhance the accuracy 

of automatic speech commands recognition model.  

Overall, CNNs have proven to be a powerful tool for speech commands recognition 

model, and are likely to continue to be an important approach in the field in the future. 

The CNNs and all related layers presented in the Figure 2.8. 
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Figure 2.8. CNNs and related layers presentation 

2.1.6. RNNs 

Recurrent neural networks (RNNs) are a type of deep learning algorithm that are 

especially well-suited for tasks that involve sequential data. These networks are 

composed of a series of interconnected neurons are capable of processing input data 

and maintain an internal state, allowing them to capture temporal dependencies in the 

data. An important characteristic of RNNs is their capability to process input These 

sequences can be of any length, making them highly adaptable for tasks such as 

language translation or speech recognition. Recurrent neural networks have the ability 

to handle input series one element at a time, maintaining a change in the internal 

condition after each input is processed. This allows the network to capture 

dependencies between elements in the sequence and use this information to make 

predictions about future elements in the sequence [49].  
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RNNs have been widely used in previous studies for speech recognition tasks, with 

many research studies demonstrating their effectiveness in improving the accuracy of 

deep learning models for this purpose [50, 51].  

One of the main advantages of RNNs for speech recognition is their ability to handle 

variable-length input sequences, which lays a significant role in speech recognition 

tasks where the length of the input audio signal can vary significantly depending on 

factors such as speaker, accent, and background noise. Despite their effectiveness, 

RNNs has been a lot of research conducted in recent years on certain restrictions or 

limitations. One of the primary difficulties with RNNs is their difficulty in acquiring 

the ability to retain information over an extended period of time in the data, which can 

limit their performance on tasks requiring the processing of long input sequences [52]. 

To address this issue, researchers have developed various variants of RNNs, including 

LSTM networks, which are able to better capture long term dependencies in the data 

[53]. Overall, RNNs have proven to be a powerful tool for speech recognition tasks, 

and their use is expected to continue to be a focus of ongoing investigation in the field. 

The simple RNNs architecture represented below in Figure 2.9. 

 

 

Figure 2.9. Simple RNNs architecture 
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2.2. TensorFlow 

TensorFlow is a widely used machine learning framework developed by Google. It 

allows for easy creation and training of neural networks and has gained widespread 

acceptance in the realm of speech recognition. One of the key benefits of TensorFlow 

is its flexibility, as it can numerous potential uses for this. beyond speech recognition, 

including image recognition, NLP, and predictive modelling. In the field of speech 

recognition, TensorFlow has been used to train various types of deep learning models 

These models have been successful in capturing the complex nonlinear relationships 

present in speech data and have achieved cutting-edge results on various speech 

recognition approach [62]. One of the prominent characteristics of TensorFlow having 

the capability to easily implement custom layers, such as the second-order Volterra 

series Convolution layer used in this study. This allows researchers to tailor their 

models to the specific needs of their problem, and to incorporate domain-specific 

knowledge into the model architecture [63]. TensorFlow also offers a number of tools 

and libraries for model training and evaluation, including TensorBoard for visualizing 

training and evaluation metrics, and the Keras API for building and training models in 

a high-level, user-friendly manner [64]. It is built on top of TensorFlow and allows for 

easy creation of complex neural network architectures. In our study, we utilized the 

Keras API to train our speech recognition model. Specifically, we used the API to 

explain what is meant by the term architecture of the model, compile it, and fit it to the 

training data. 

TensorFlow and the Keras API allowed us to easily develop our custom Volterra 

Convolution layer. TensorFlow provided the necessary framework to create and 

trainable models in deep learning, while the Keras API provided a user-friendly 

interface for defining and training the model. 

The combination of TensorFlow and the Keras API proved to be a powerful tool for 

developing and training our speech recognition model with the Volterra Convolution 

layer. By leveraging the capabilities of these technologies, we were able to achieve 

significant improvements in accuracy compared to traditional Conv1D layers. In 

addition to TensorFlow and the Keras API, the Conv1D layer is also utilized in the 

training process of our speech recognition model. The Conv1D layer is a convolutional 
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neural network layer that processes one-dimensional input data, such as audio or text, 

by utilizing a group of filters on the input data to extract features. These features after 

being processed, the data is passed through an activation function, like ReLU, to 

introduce nonlinearity and enable a method for comprehending intricate patterns 

within the data. In our model, the Conv1D layer is used as a baseline comparison to 

our custom Volterra Convolution layer, which we have developed to capture the 

nonlinear relationships present in speech data. By comparing the performance of the 

Conv1D layer to our custom Volterra Convolution layer, we can assess the efficiency 

of the layer that we have proposed. in improving the accuracy of the speech recognition 

model [65]. These tools have made it easier for researchers to experiment with 

different model architectures and hyperparameters, and to quickly evaluate the 

performance of their models. 

Overall, TensorFlow has proven to be a powerful and flexible tool for training speech 

recognition models and has significantly contributed to the advancement of the field. 

2.3. Limitations of these Approaches 

implementing CNNs in speech recognition tasks has been widely studied in previous 

research. One of the main strengths of CNNs is their capacity for acquiring knowledge 

complex patterns and relationships in the data automatically, without the need for 

manual feature extraction [47,48]. This is especially useful for speech recognition 

models, as the acoustic features of speech can vary significantly depending on factors 

such as speaker, accent, and background noise. CNNs are also capable of acquiring 

hierarchical structures of the data, with lower layers learning basic features such as 

spectral characteristics of the audio signal and higher layers learning more complex 

features such as phonemes or words [49]. However, one limitation of CNNs is their 

dependence on significant amounts of labeled training data, which can be difficult and 

time-consuming to obtain [50]. Additionally, CNNs may not be as effective at handling 

long-term dependencies in the data, as they typically operate on a fixed-length context 

window [51]. RNNs have also been widely used for speech recognition tasks, with 

many research studies demonstrating their effectiveness [52,53]. RNNs possess the 

capability to capture temporal requirements in the data, which makes them well-suited 

for speech commands recognition tasks [54]. One of the main strengths of RNNs is 
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their capacity to manage variable length is what sets them apart of sequential input, 

which allows them to create a representation of data that accounts for long-term 

dependencies [55]. However, one limitation of RNNs is their sensitivity to The 

gradient problem can impede the ability to train deep networks, as it causes them to 

disappear [56]. LSTM networks were developed as a solution to this problem, because 

they possess the ability to sustain long-lasting dependencies in the data by regulating 

the flow of information through a gate mechanism [57]. LSTMs for speech recognition 

tasks have often utilized widely and have achieved state-of-the-art performance in 

many cases. While CNNs, RNNs, and LSTMs have all demonstrated strong 

performance for speech recognition tasks, there is still a need for methods that can 

capture nonlinear relationships in the data. This is where the Volterra series 

convolution, which is the focus of our study, has the potential to make a significant 

contribution. By using a nonlinear model such as the Volterra series to capture memory 

effects, we hope to enhance the precision and efficiency of our speech commands 

recognition model.  

2.4. Proposed Layer  

As previously mentioned, the proposed approach combines the Volterra kernel theory 

to exploit the nonlinear operations that occur within a receptive field. Nonlinearities 

have traditionally been exploited in CNNs using activation functions and pooling 

operations between layers. However, these nonlinearities may approximate the coding 

of inner workings of the visual system, aside from those within the receptive field, are 

analyzed. The method used in this analysis is similar to that of a Conv1D layer, which 

includes various layers for purposes such as convolution, then pooling after that the 

activation functions then batch normalization after that the dropout based on the added 

value, and at the end the fully connected layers. In contrast, the one-dimensional 

Volterra convolutional (Volt1D) layer can be easily integrated into almost any existing 

CNN architecture. 

2.4.1. Linear convolution 

Convolution is a mathematical operation that produces a third tensor as output by 

performing computation on two input tensors. The output can be expressed as follows: 
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𝑌𝑛 = 
𝐵𝑛 − 1

2
+ 𝐵𝑛 + 

𝐵𝑛 − 1

2
 (2.4) 

Where 𝑌 is the output tensor and Bnis the input wave signal, and 𝑛 is an iterable 

element through the signal tensor as shown in equation (2.4). The convolution system 

is assumed to be a continuous and time-invariant space represented by: 

(v ∗ 𝑧)(𝑡) = ∫ 𝑣(𝑇). 𝑧(𝑡 − 𝑇) 

∞

𝑇=−∞

= ∫ 𝑣(𝑡 − 𝑇). 𝑧(𝑇)

∞

𝑇=−∞

 (2.5) 

Where 𝑣(𝑇) and 𝑧(𝑇) are assumed as the input vectors or tensors as shown (2.5). This 

means the calculation will be done by shifting the filter over the input signal or vice 

versa. However, the concept of discrete space will lock like (2.6): 

(𝑣 ∗ 𝑧)(𝑛) = ∑ 𝑣(𝑚). 𝑧(𝑛 − 𝑚)

∞

𝑚=−∞

= ∑ 𝑣(𝑛 − 𝑚). 𝑧(𝑚)

∞

𝑚=−∞

 (2.6) 

CNNs are composed of various 1D convolutions over a voice wave, with the kernels 

of the filters serving as trainable parameters. The 1D convolution is expressed as 

follows: 

𝑧(𝑥) = conv(𝑣(𝑥))……

𝑧(𝑥) = 𝜔 ∗ 𝑣(𝑥) = ∑  

𝑛

𝑑𝑥=−𝑛

𝜔(𝑑𝑥)𝑣(𝑥 + 𝑑𝑥)
 (2.7) 

Where 𝑧(𝑥) is the convolution outcome and 𝜔 is the kernel. CNNs have multiple 

layers and kernel sizes 𝜔𝑙. Furthermore, each convolution output is passed through a 

non-linear function. More importantly, at CNN's 𝑙𝑡ℎ layer as following: 

Conv(𝑣[𝑙−1], Ω) =

𝜎[𝑙] (∑
𝑛𝐶

[𝑙−1]

𝑒=1   (∑
𝑛𝐻

[𝑙−1]

𝑓=1
  ∑ Ω𝑒𝑓𝑔𝑣𝑒,ℎ+𝑓−1,𝑤+𝑔−1

[𝑙−1]
+ 𝑏[𝑙]  

[𝑙𝑙−1]

𝑔=1
))  

(2.8) 

Ω represents the kernels, 𝑣 is the input to the layer, 𝜎𝑙 is the nonlinear function or 

activation function at the 𝑙th layer, and 𝑏𝑛
[l]  is the biases at that layer. The CNN model 
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produces a predicted voice after several convolutional layers. The error function is 

used to calculate the difference between the predicted and target images, and this loss 

is propagated back to the model parameters through the backpropagation process. 

2.4.2. Volterra series 

Volterra series is a method used to describe nonlinear phenomena that takes into 

account the influence of past events, unlike the Taylor series which does not consider 

this type of memory effect [58]. If the output of a nonlinear system only depends on 

the current input, then the Taylor series can be used to estimate the system's response 

to that input, the Volterra series takes into account input that is constantly being fed 

into the system in determining the output. A system can be represented as a black box 

with an input/output relationship of  𝑦𝑡/𝑣𝑡. If a nonlinear system is time-invariant and 

exhibits the same memory capture effects as the Taylor series, it can be more 

accurately described using a Volterra representation, which is a mathematical 

extension of the linear convolution system. A linear system without memory effects in 

continuous time can be described more precisely using equation (2.9). 

𝑦(𝑡) = 𝑇𝑣(𝑡)  (2.9) 

The value ‘y’ is assigned to the input voice ‘v’ where T is a linear gain operator [59]. 

The system is assumed to be in the continuous time domain (the convolution sum 

becomes a convolution integral) as is typically assumed in classical system theory, as 

shown in equation (2.10): 

𝑦(𝑡) =  ∫ 𝐾𝑛(𝑡). 𝑣(𝑡 − 𝜏)
𝑛

0
𝑑𝜏  (2.10) 

The linear system with a discrete domain can be present as in (2.11): 

𝑓(𝑡) = ∑ 𝑓(𝜏𝑖). 𝑣(𝑡 − 𝜏𝑖)
𝑛
𝑖=0   (2.11) 

Therefore, we restrict the 𝜏 operator to the system response that can be classified by 

signal convolution as described below using K operator. 
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𝑦(𝑡) = 𝐾1. 𝑣(𝑡)  (2.12) 

Volterra enlarged this formula into a non-linear representation by adding a series of 

non-linear terms with 1st and 2nd order [61]. Volterra 1st order supposed continuous 

time domain like: 

𝑦(𝑡) = 𝐾0 + ∫ 
 
𝐾(1)(𝜏1)𝑣(𝑡 − 𝜏1)𝑑𝜏1  (2.13) 

With discrete domain system will be described below: 

𝑦𝑡 = ∑ 𝑤𝑖1
1𝑙−1

𝑖1=0 . 𝑣𝑡−i  (2.14) 

As shown above, in (2.14) the 1st order Volterra assigned a value y to an input x with 

𝑖1which is a linear gain operator. The 2nd-order Volterra with the continuous (2.15) 

and discrete-time (2.16) domains will be like this: 

𝑦(𝑡) = 𝐾0 + ∫   𝐾(1)(𝜏1)𝑣(𝑡 − 𝜏1)

+ ∬ 𝐾(2)(𝜏1, 𝜏2)𝑣(𝑡 − 𝜏1)𝑣(𝑡 − 𝜏2)𝑑𝜏1𝑑𝜏2

𝑡

0

 

(2.15) 

𝑦𝑡 = ∑ 𝑤𝑖1
1

𝑙−1

𝑖1=0

. 𝑣𝑡−𝑖1 + ∑  

𝑙−1

𝑖1=0

∑ 𝑤𝑖1,𝑖2
2

𝑙−1

𝑖2=0

. 𝑣𝑡−𝑖1 . 𝑣𝑡−𝑖2 (2.16) 

Wherever that our custom Volterra Convolutional (Volt1D) layer handles the 2nd 

order level at this time. Now, Volterra Series can be written as (2.17): 

𝑦(𝑡) = 𝐾0. 𝑣(𝑡) + 𝐾1. 𝑣(𝑡) + 𝐾2. 𝑣(𝑡) (2.17) 

Where every term 𝐻𝑛 is a non-linear operator that filters the voice signals. The 𝐻0 is a 

constant value, where later this will be the bias added to the main equation. A kernel 

known as the Volterra Kernel exists in the integral. Since the signal's features cannot 

be predicted from the future, this must be causal [60]. Therefore, each Volterra Kernel 

is required to keep the following properties: 
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K𝑛(τ1 . . . τ𝑛)  =  0 for any τ𝑖 <  0 where i =  1, 2, 3, . . . , n (2.18) 

One way to interpret the Volterra series is as a Taylor series that takes into account 

past events, in that it describes systems in which the output is affected not only by the 

current input, but also by previous inputs. While the traditional Taylor series is only 

applicable to systems that instantly map inputs to outputs, the Volterra series can 

describe systems with memory. This series can be used to compute integrals over both 

finite and infinite intervals, although in computer applications it is usually necessary 

to use finite intervals. The Volterra operator can accept discrete data in the form of 

matrices and tensors with many dimensions, and can process this data using the sliding 

window technique. The discretized Volterra operator is given as follows: 

𝑦(𝑡) = 𝐾0 + ∑  

𝑁

𝑛=1

∑  

𝑘

𝜏1=𝑎

⋯ ∑  

𝑘

𝜏𝑛=𝑎

𝐾𝑛(𝜏1, … , 𝜏𝑛)∏  

𝑛

𝑖=1

𝑣(𝑡 − 𝜏𝑖) (2.19) 

Where K𝑛(τ1, . . . , τ𝑛) are one-dimensional tensors or matrices that represent discrete 

Volterra Kernels. And because the process must be causal, the kernels may form a 

super-diagonal tensor or an upper triangular matrix. To avoid the extra computations 

required by the triangular form, the symmetrical kernels can also be stated as in (2.20). 

Although kernels are fully computed and a triangular mask is used for the causality 

later in the implementation due to software architecture choices. 

𝑦(𝑡) = 𝐾0 + ∑  

𝑁

𝑛=1

∑  

𝑘

𝜏1=0

∑  

𝑘

𝜏2=𝜏1

∑  

𝑘

𝜏3=𝜏2

𝐾𝑛(𝜏1, … , 𝜏3)∏  

3

𝑖=1

𝑥(𝑡 − 𝜏𝑖) (2.20) 

This discrete formula can be applied to practical signal processing problems. The 

Stone-Weierstrass theorem states that any continuous nonlinear system can be 

approached by a discrete finite system, which in our case is the Volterra Series. 

Because of its power series nature and polynomial complexity, the convergence of an 

infinite Volterra series cannot be guaranteed for any input signals. As a result, both the 

input and output signals must be restricted to some extent. In our approach, we will 

experiment with non-linear degrees of up to 2nd order as a non-linear one-dimension 

Volterra Convolution (Volt1D) layer. 
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2.4.3. Volterra convolution 

The concept of nonlinear convolutions can be extended to one-dimensional voice wave 

signals and, as a result, deep convolutional neural networks [58]. However, it is 

important to first explain how nonlinear convolutions can be implemented using 

Volterra series which is a set of approximations that aims to simulate real-world 

dynamic systems. Similarly, Volterra-based convolutions filter the input data using 

appropriate kernels. These kernels have the same capabilities as linear convolution 

kernels, but can also capture higher-order interactions between the input data. The 

first-order kernels are linear and equivalent to traditional convolutions. The second-

order kernel considers the interactions between the input data twice, and filters them 

using a kernel [59]. Because the input data is multiplied by itself at each order to 

capture higher-order interactions, this algorithm has polynomial complexity. In this 

research we will implement second-order Volterra kernels in the one-dimensional 

Volterra Convolution (Volt1D) layer. 

2.4.3.1. Forward pass 

Our custom layer adopted the second order Volterra series. A patch that has been 

provided 𝐼 ∈ 𝑅𝑘ℎ.𝑘𝑤 with 𝑛 elements as (𝑛 = 𝑘ℎ . 𝑘𝑤), reshaped as a vector 𝑣 ∈ 𝑅𝑛:  

𝑣 = [𝑣, 𝑣2, 𝑣3 ……  𝑣] (2.21) 

The equation that describes how a linear filter processes input to produce output is: 

𝑦(𝑣) = ∑(𝑤1
𝑒 . 𝑣𝑒) + 𝑏

𝑚

𝑒=1

 (2.22) 

Where, 𝑤1
𝑒 are the weights in the linear convolution contained in a vector 𝑤1 and 𝑏 the 

bias will be added to the convolution. In our custom one-dimension Volterra 

convolution (Volt1D) layer we expand the function to handle the 2nd (2.23) order as 

the following quadratic form: 
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𝑦(𝑣) = ∑(𝑤1
𝑒. 𝑣𝑒)

𝑚

𝑒=1

+ ∑  

𝑚

𝑒=1

∑(𝑤2
𝑒,𝑓

. 𝑣𝑒. 𝑣𝑓)

𝑚

𝑓=1

+ 𝑏 (2.23) 

Due to causality issues, the second-order kernel 𝑤𝑖,𝑗
2  forms an upper triangular matrix. 

Finally, we can obtain the following form that describes the integration of Volterra 

convolutions in a CNN if we combine equation (2.8) with equations (2.23) from 

Volterra convolutions. 

𝑉𝑜𝑙𝑡1𝐷(𝑣[I−1], 𝛺) = 

𝜎[𝐼] (∑  
𝑚𝐶

[𝐼−1]

𝑒=1 (𝑏 + ∑  𝑚
𝑓=1 𝜔𝑐𝑓

(1)
𝑣𝑒

[𝑙−1] ∑  𝑚
𝑓=1 ∑  𝑚

𝑔=1 𝜔𝑒𝑓𝑔
(2)

𝑣𝑓
[𝐼−1]

𝑣𝑔
[𝐼−1]

))  

(2.24) 

Here, we'll go through how using the matrix notation and its products makes it possible 

to write equations (2.24) and (2.25) more effectively. But first, a quick definition of 

them is necessary. The Kronecker product of matrices is defined as 𝐴 ⊗ 𝐵, and the 

resulting matrix will have a dimension of R Ik×JL, as stated in [61].  

𝐴 ⊗ 𝐵 =

[
 
 
 
𝑎11𝐵 𝑎12𝐵 … 𝑎1𝐽𝐵

𝑎21𝐵 𝑎22𝐵 … 𝑎2𝐽𝐵

⋮ ⋮ ⋱ ⋮
𝑎𝐼1𝐵 𝑎𝐼2𝐵 … 𝑎𝐼𝐽𝐵]

 
 
 

  (2.25) 

2.4.3.2. Backward pass  

By modifying the traditional Backpropagation technique to the function that translates 

input into output for Volterra-based convolution, the equations for the backward pass 

are derived (2.26). We must determine the layer's gradients in order to train the 

Volterra kernels' weights. output y(x), taking the weights 𝑤1
𝑖  and 𝑤2

𝑖,𝑗
 into 

consideration. In order to minimize network loss and optimize the trainable weight of 

Volt1D layer, the phrases 
𝜕𝑦

𝜕𝑤1
𝑖  ,

𝜕𝑦

𝜕𝑤2
𝑖,𝑗 and 

∂y

∂w3
i,j,kwill be used. The following are the 

backpropagation mathematical equations:  

𝜕𝑦

𝜕𝑤1
𝑖 = 𝑥𝑖  ,

𝜕𝑦

𝜕𝑤2
𝑖,𝑗 = 𝑥𝑖,𝑗  (2.26) 
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2.4.4. Second-Order volterra convolution benefits 

The use of second-order Volterra series in deep learning has the ability to significantly 

enhance the performance of speech recognition models. The Volterra series is a 

mathematical model that captures nonlinear behavior and is able to record the 

influence of past experiences on present behavior, which is a beneficial for accurately 

predicting complex, dynamic systems. By implementing the Volterra series as a 

custom TensorFlow layer in a deep learning model, the model can better capture 

nonlinear relationships in the data, which may lead to improved performance and 

accuracy. One potential benefit of using the Volterra series for speech recognition is 

that it can help to enhance the model's capacity to apply its learning to novel data. 

Traditional deep learning models often struggle with generalization, as they are prone 

to overfitting when trained on large datasets. By incorporating the Volterra series into 

the model, the model may be able to better capture the underlying patterns and 

relationships in the data, leading to improved generalization performance. Another 

potential benefit of using the Volterra series for speech recognition is that it can help 

to reduce the need for significant amounts of labeled data used for training purposes. 

CNNs models require significant amounts of labeled data in order to learn complex 

patterns and relationships in the data. By using the Volterra series, the model may be 

able to learn complex patterns and relationships with fewer labeled examples. One 

potential benefit of using second-order Volterra series as a custom TensorFlow layer 

in deep learning for speech recognition is the ability to capture nonlinear relationships 

in the data. In contrast to traditional convolutional layers, which only consider linear 

relationships, the Volterra series is able to capture both linear and nonlinear 

relationships in the data. The significance of this is particularly evident in regard to 

tasks involving speech recognition, as the acoustic features of speech can vary 

significantly depending on factors such as speaker, accent, and background noise [62]. 

By including the ability to capture nonlinear relationships in the model, the Volterra 

series may be able to enhance the accuracy for speech commands recognition model. 

Another potential benefit of using the Volterra series is its key features is the ability to 

capture the influence of past events on present circumstances, which may be useful for 

enhancing the accuracy of speech commands recognition model using Volt1D layer 

[63]. This feature may be particularly useful for speech recognition tasks, as it allows 
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the model to consider the context and dependencies between different sounds in the 

audio data. By incorporating the Taylor series, the Volt1D will be able to enhance the 

accuracy of speech commands recognition model. 

Finally, the use of the second order Volterra series as a custom TensorFlow layer may 

also be beneficial in terms of training time. The Volterra series is able to capture 

nonlinear relationships in the data using a simple and efficient mathematical 

formulation, which may reduce the time required to train the model [64]. It is essential 

for speech recognition projects to pay attention to this, as the trainable parameters can 

be large and time-consuming to process. 



 

3. METHODOLOGY 

The implementation of our custom Volt1D layer for speech recognition using deep 

learning involves utilization of the second-order Volterra Convolution. This custom 

layer allows for the extraction of nonlinear relationships in the speech data, leading to 

improved accuracy in the model's classification of speech samples. This section will 

cover the different approaches we examined. for implementing the Volt1D layer, 

including implementing it as a function in C++, creating a custom C++ tensorflow op, 

and implementing it as a custom tensorflow layer. We will also delve into the 

implementation of the second-order Volterra Kernel, which plays a crucial role in the 

generation of the nonlinear kernel for the Volt1D layer. 

3.1. Second-Order Volterra Convolution as a Function in C++ 

The implementation of the second-order Volterra Convolution as a function in C++ 

involves the use of loops to iterate over the input tensor and apply the convolution 

operation. The function takes in a 1-dimensional input tensor, as well as kernel_size 

and channels, and returns the output tensor after applying the Volterra Convolution. 

Pseudo code for the implementation of the second-order Volterra Convolution 

function in C++: 
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Algorithm 1 General Procedure for second order Volterra Convolution 
 

Input: the input constant parameter with the same size, the 

kernel_size and the channels. 

Output: the output parameter with the same size of the input) 

1Initialize output tensor with zeros 

2 memset(output, 0, sizeof(float) * kernel_size * num_channels) 

 // loop over the input tensor 

3 FOR each i < kernel_size ..   

4 FOR each  j  < kernel_size 

5          FOR each k < num_channels 

6   // Apply second-order Volterra Convolution 

7   output[i * num_channels + k] += input[i * num_channels + 

k] *input[j * num_channels + k] * kernel[i][j]                                           

 

 

 

The above pseudo code implements the second-order Volterra Convolution by 

iterating over input tensor, and applying convolution using the second-order Volterra 

kernel. The kernel and channels are specified as input parameters, and the output tensor 

is initialized with zeros before the convolution is applied. To perform the convolution, 

multiply the input tensor by the product of the input tensor. at the current index, the 

input tensor at the corresponding index in the kernel, and the kernel value at the same 

index. The resulting value is then added to the output tensor at the corresponding index. 

This process is repeated for all indices in the input tensor, resulting the Volt1D to the 

input tensor. 

3.2. Second-Order Volterra Convolution as a Custom C++ TensorFlow OP 

The implementation of the second-order Volterra Convolution as a custom C++ 

tensorflow op involves creating a custom op that can be used within the TensorFlow 

framework. The first step in this process is to define the inputs and outputs of the op. 

In our case, the input is a 1D tensor representing the input signal, and the output is a 

1D tensor representing the output signal after the Volterra Convolution has been 

applied. Next, we need to define the function that will perform the actual Volterra 

Convolution.  
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This function should take in the input tensor and the kernel tensor as arguments and 

return the output tensor. The kernel tensor represents the nonlinear is utilized to 

identify the complex connections within an input signal. One approach to 

implementing the Volterra Convolution function is to use loops to iterate over the input 

signal and apply the kernel at each sample point. The following pseudo code provides 

an example of how this could be done: 

 

 

Algorithm 2  Second order Volterra Convolution as a custom C++ TensorFlow op 

 

Input: the input constant parameter with the same size, the kernel and 

the kernel_size and the channels. 

1. Initialize output tensor with the same shape as input tensor 

2. For each sample in the batch: 

3.  For each channel in the input tensor: 

4.        For each time step in the input tensor: 

5.   Initialize a sum variable to 0 

6.   For each channel in the input tensor: 

7.        For each time step in the input tensor: 

8.    Calculate the second-order Volterra kernel using the input tensor values  

and channel, and the kernel values at the last time step and channel 

9.   Add the result to the sum variable 

10.        Set the output tensor value at the thiss time step and channel to the sum variable 

11. Return the output tensor 

 

 

Once the Volterra Convolution function has been implemented, we can use it to create 

a custom op that can be used within the TensorFlow framework. To do this, we need 

to define a function that registers the op and specifies the input and output tensors. 

Implementing the second-order Volterra Convolution as a TensorFlow op was 

challenging, where there is a lot of resource about the way of implementing the class, 

and the custom op not staple in the new version of TensorFlow for this reason we 
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moved to the third solution as described in next title which is implement the second-

order Volterra Convolution as a custom tensor from layer in python. 

3.3. Second-Order Volterra Convolution as TensorFlow Layer in Python 

The implementation of Volt1D as a custom layer in tensorflow involves defining a 

custom layer class that extends the tf network layer class provided by TensorFlow. 

This allows us to define our own custom layer with its own unique set of parameters 

and functions, which can be easily integrated into a TensorFlow model. To implement 

the second-order Volterra Convolution as a custom tensorflow layer, we first define 

the custom layer class, as shown in the following pseudo code: 

 

 

Algorithm 3  Second order Volterra Convolution as a custom TensorFlow layer in 

Python 

 

Input: the input constant parameter with the same size, the 

kernel_size  

Output: the output parameter with the same size of the input 

1. Class Volt1D(the parent path): 

2.   İnitialization method (filters, kernel_size=3): 

3.     filters = filters 

4.     kernel_size = kernel_size 

5.  

6.   Build methof (x .....xn): 

7.     kernel(name='kernel', shape=(…)) 

8.     bias(name='bias', shape=(filters,)) 

9.  

10.    Call method (x): 

11.     # the second order Volterra Convolution here  

12.     return output 

13.  
 

  

In this pseudo code, we define the custom layer class with the required parameters and 

functions. The __init__ function is used to initialize the layer with the specified 

parameters. The build function is used to define the layer's weights, which in this case 

are the kernel and bias parameters. The call function is used to implement the actual 

second-order Volterra Convolution, which is done by defining the appropriate loops 
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and operations to compute the convolution. In this way of implementation, the kernel 

parameters when be trainable so when pass the kernel to the Volterra kernel function 

will increase the accuracy. 

3.4. Implementation of Second-Order Volterra Kernel 

In addition to implementing the Volt1D layer, we also explored various methods for 

implementing the Volterra Kernel which is essential for generating the nonlinear 

kernel from the input data, which is used to extract the nonlinear relationships during 

the training process. Some of the Volterra Kernel Functions that we considered 

included the Wiener Kernel, the Hammerstein Kernel, and the Taylor Kernel. Each of 

these functions has unique characteristics and can be used to extract various kinds of 

nonlinear relationships with the input data. To further improve the performance of our 

model, we implemented the second-order Volterra Convolution as a custom 

TensorFlow layer. This involved implementing the Volterra Convolution as a function 

in C++, and then creating a custom C++ tensorflow op to compile the file into a .so 

file. This allowed us to import the custom layer into Python using load_op_library and 

use it in our model. However, this approach had some limitations as the 

load_op_library function is only supported in newer versions of TensorFlow. 

Additionally, we faced several challenges during the training process with this 

approach. In order to overcome these limitations, we implemented the second-order 

Volterra Convolution as a custom TensorFlow layer using a different approach. This 

involved implementing the first-order Volterra Convolution, which is the linear 

Convolution, as a function. We then extended this function to the second-order 

Volterra Convolution by adding the nonlinear kernel function. The nonlinear kernel 

function is responsible for generating the nonlinear kernel from the input data, which 

is used to extract the nonlinear relationships during the training process. There are 

several Volterra Kernel Functions that can be used for this purpose, and we discussed 

each of them in detail with their descriptions. Overall, the implementation of the 

second-order Volterra Convolution as a custom TensorFlow layer allowed us to 

effectively extract the nonlinear relationships in the speech data and enhance the 

accuracy of our model for speech commands recognition. 
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3.5. Speech Commands V0.01 Dataset 

The speech commands v0.01 dataset is a collection of speech samples that have been 

specifically designed for use in speech recognition tasks. It consists of 65,000 1s audio 

clips of 30 different English words, spoken by various people. The dataset is divided 

into a training of 45,000 samples, a validation of 5,000 samples. The samples in the 

dataset have been pre-processed and normalized to a consistent volume level. The 

speech commands v0.01 dataset has been widely used in research studies on speech 

recognition using deep learning, due to its large size and diverse set of audio samples. 

It is particularly useful for training deep neural network models, as it allows the model 

to learn complex exploring connections and repeating trends within the data that may 

be difficult to capture with smaller datasets. In this study, we will be using the speech 

commands v0.01 dataset to train a speech recognition model using Volt1D. The 

Speech Commands V0.01 dataset was selected for several reasons. First and foremost, 

it is a publicly available dataset that contains a large number of spoken words and 

phrases, making it a valuable resource for training and implementing speech 

recognition systems. The dataset huge number of spoken words and phrases, including 

numbers, common words, and commands, which makes it diverse and representative 

of the population of speakers and the range of environments in which the system will 

be used. 

Additionally, the dataset was created by Google, which is a reputable and well-

established company in the field of speech recognition. This means that the dataset has 

been curated and collected using state-of-the-art techniques and equipment, which 

increases the chances of achieving high levels of accuracy when training speech 

recognition systems using this dataset. Furthermore, the dataset is easy to access and 

use, as it is available for download on the internet with a simple registration process. 

This makes it easy for researchers and developers to obtain and use the dataset for their 

own work. 

We will evaluate the performance of the model on the test set of the dataset, and 

compare it to other approaches used in previous research studies [66].  
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3.5.1. Data preprocessing steps 

The data used in this study is the speech commands v0.01 dataset, which consists of a 

collection of audio files of various commands spoken by different individuals. The 

data processing consists of several steps:  

• The first-step in the data preprocessing is to load the data and extract the audio 

files.  

• The files are then sorted and the number of labels is determined, excluding the 

first file in the list.  

• The labels are also categorized into two lists: the target list which includes the 

commands that the model will be trained to recognize, and the unknown list 

which includes all other labels that the model will not be trained to recognize. 

• The background noise is also extracted from the dataset and stored in a separate 

list. Next, the audio files are loaded and reprocessed to a common sample rate 

of 8000 Hz.  

• The files are then split into two lists: the 'all_wav' list which includes the audio 

samples and their corresponding labels, and the 'unknow_wav' list which 

includes all audio samples with labels that are not in the target list.  

• Data augmentation is then performed by adding noise to the 'all_wav' list, with 

the noise being randomly selected from the 'background_noise' list.  

• The resulting noised audio samples are stored in the 'noised_wav' list. The data 

used in this study is the speech commands v0.01 dataset, The dataset also 

includes 2,000 files of silence and background noise.  

• The audio files are recorded at 16kHz with a single channel and are 

preprocessed to a sampling rate of 8kHz.  

• Before training the model, The data is divided into two sets: one for training 

and one for validation, with 95% training and the remaining 5% used for 

validation.  

• The data is also augmented by adding 10% amplitude noise from the 

background noise files.  
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• To prepare the data for input into the model, the audio files are converted to 

spectrograms using the librosa library, with a size of 256 and a step of 128. The 

spectrograms are then normalized.  

• In addition to preprocessing the data, the labels are also encoded as one-hot 

vectors, which allows the model to easily classify the audio files into their 

respective categories. 

• Finally, the 'wav_all' and 'label_all' lists are created by deleting the labels from 

the 'all_wav' list and reshaping the resulting array.  

• The 'delete_index' list is also created to store the indices of any audio samples 

with an incorrect length.  

• These samples are then removed from the 'wav_all' and 'label_all' lists using 

the 'np.delete' function.  

• The 'wav_vals' and 'label_vals' arrays are then created from the 'wav_all' and 

'label_all' lists, respectively, and the 'labels' list is created as a copy of the 

'label_vals' array.  

• The 'label_vals' array is then concatenated with itself the number of times 

specified by the 'augment' variable, resulting in an augmented dataset. 

3.6. Model Design and Architecture 

The deep learning model design for speech recognition in this study involves the use 

of a custom TensorFlow layer called Volt1D, and Conv1D where Conv1D model 

design for speech recognition in this study involves the use of a standard Conv1D 

layer. Where the input is 1-dimensional array with 8000 samples, symbolizing a single 

speech sample of 1-second duration with a sample rate of 8000 Hz. The Conv1D layer 

applies 1D convolution to the input tensor, with 16 filters of size 3 and a 'same' 

padding. The output is then passed through A MaxPooling layer that uses a pool size 

of 2. A dropout layer with a specified dropout rate is used on the result of the max 

pooling layer to reduce overfitting. The output is then passed through another Conv1D 

layer with the same configuration as the first, and then through another max pooling 

layer. The output is then flattened and passed Two densely connected layers with 256 

and 128 nodes respectively. Another dropout layer is applied after each dense layer. 

The final layer of output consists of a dense layer with a number of units equal to the 
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number of label categories in the dataset with 'softmax'. This output layer is 

responsible for classifying the input speech sample into one of the predefined labels. 

The model undergoes a training process using the Adam optimization algorithm. The 

model is evaluated on the test spleted data. The model summary is also provided, 

which provides an overview of the layers in the model, The Conv1D model design and 

architecture like Figure 3.1.  

 

Figure 3.1. Conv1D model design and architecture 

Where the Volt1D model design for speech recognition in this study involves the use 

of a custom TensorFlow layer called Volt1D, which is the aim of this research paper. 

The input to the model is a 1-dimensional array of 8000 samples, representing a single 

speech sample of 1-second duration with a sample rate of 8000 Hz.  

The Volt1D layer applies the Volterra series Convolution to the input tensor, and the 

output complete with the same steps as the first model till the training step, where the 

model is trained using a custom training loop, where the gradients are calculated using 

the TensorFlow GradientTape and the same optimization algorithm like the first model 

is applied with a specified learning rate. The same loss function is used to calculate 

the loss during training. The model summary is also provided, which provides an 

overview of the layers in the model. The Volt1D model design and architecture like 

Figure 3.2. 
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Figure 3.2. Volt1D design and architecture 

3.7. Training and Evaluation Process 

The training process in the above code involves defining a custom TensorFlow layer 

called Volt1D. This layer is then added to the model as the first layer, followed by a 

MaxPooling and a dropout layer to prevent overfitting. The model also includes two 

dense layers with 256 and 128 nodes. The model is trained with batch size of 100. The 

training loop runs for 20 epochs, with each epoch consisting of a number of batches. 

For each batch, the model makes a prediction using the input data. 



 

4. RESULTS AND DISCUSSION  

The proposed layer  has shown to be effective in capturing the nonlinear relation in the 

speech signal and improving the accuracy of speech recognition. Compared to the 

convolutional layer (Conv1D), the Volterra series Convolution has demonstrated the 

effectiveness of this method is demonstrated through its high accuracy and efficiency. 

This success can be attributed to the capability of capturing complex correlations 

within the signal., which is not possible with traditional convolutional layers. In 

addition, the Volterra series Convolution has shown to be more robust to noise and has 

a higher tolerance for variations with the passed processed voice. Overall, the use of 

the Volt1d as a custom TensorFlow layer in the deep learning model for speech 

recognition has proven to be a valuable approach for improving the accuracy and 

efficiency of the model. The model presented as accuracy-loss presentation as Figure 

2.1. 

 

Figure 4.1. Volt1D model evaluation 
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4.1. Performance and Accuracy 

The performance of the proposed second-order Volterra series Convolution was 

evaluated on the speech commands dataset V0.01. The findings indicated that the 

Volt1D layer was able to attain an accuracy of 64.91%, which is a significant 

improvement in comparison to the accuracy of 60.02% obtained using the standard 

Conv1D layer. This indicates the capability of the Volt1D layer to effectively record 

nonlinear behavior relationships in speech data. The improved performance of the 

Volt1D layer suggests that it could potentially be a useful tool in speech recognition 

tasks, particularly when dealing with data that exhibits complex, nonlinear patterns. 

Further studies may be necessary to further evaluate the effectiveness of the Volt1D 

layer in other speech recognition tasks and datasets. 

4.2. Comparison Between Volt1D and Conv1D Layers  

In our experiments, we evaluated the effectiveness of the Volt1D layer with that of the 

standard Conv1D layer on the speech commands dataset V0.01. It was discovered 

through the results that the Volt1D layer reached a level of precision of 64.91% with 

10 epochs, while the Conv1D layer achieved an accuracy of 60.02% with 10 epochs. 

This indicates that the Volt1D layer is more effective in extracting nonlinear 

relationships in speech data, leading to improved performance on the classification 

task. We also found that the Volt1D layer able to train more complex and diverse 

features from the speech data, as indicated by the higher number of parameters and 

larger number of kernels used in the Volt1D layer compared to the Conv1D layer. This 

suggests that the Volt1D layer is able to capture more nuanced and intricate patterns 

in the data, leading to improved performance. In addition, the Volt1D layer was able 

to achieve higher accuracy with fewer training epochs compared to the Conv1D layer. 

This indicates that the Volt1D layer is able to learn more efficiently and effectively, 

resulting in faster and more efficient training. The comparison resalt between our 

custom Volt1D and Conv1D layers represented in Table 4.1 the as accuracy between 

both layers beer epochs  
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Table 4.1. Volt1D vs Conv1D layers accuracy 

Epochs Conv1D Volt1D 

10 0.6002 0.6491 

20 0.6305 0.7653 

30 0.7001 0.8258 

Overall, the results of our experiments show the superiority of the Volt1D layer over 

the standard Conv1D layer in extracting nonlinear relationships in speech data and 

improving performance on the classification task. To understand the difference 

between the Conv1D and Volt1D we can check the Figure 4.2. 

 

Figure 4.2. Difference between the Conv1D and Volt1D 
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Where Conv1D in the left-hand side implement 1 filter to the input signal and the filter 

size according to the quantity of filters in the layer initialization, while the Volt1D in 

the right-hand implement 2 filters to the input signal and the size of the filters. 

4.3. Discussion  

The proposed Volterra series Convolution (Volt1D) layer has shown to be an effective 

approach for improving the accuracy and efficiency of speech recognition systems. 

The results of our experiments on the Speech Commands V0.01 dataset indicate that 

the Volt1D layer was able to attain an accuracy of 64.91%, which is a significant 

improvement in comparison to the accuracy of 60.02% obtained using the standard 

Conv1D layer. This demonstrates the capability of the Volt1D layer to effectively 

capture nonlinear behavior relationships in speech data, leading to improved 

performance on the classification task. The improved performance of the Volt1D layer 

can be attributed to its ability to capture complex correlations within the speech signal. 

The Volterra series Convolution is a nonlinear approach that allows for the modeling 

of nonlinear interactions between different components of the signal. This is in contrast 

to traditional convolutional layers, which are linear and can only capture linear 

relationships in the data. By capturing nonlinear relationships in the speech signal, the 

Volt1D layer is able to extract more nuanced and intricate patterns in the data, leading 

to improved performance. Additionally, the Volt1D layer was found to be more robust 

to noise and variations in the speech signal. Speech recognition systems are often used 

in real-world environments, where the speech signal is likely to be corrupted by noise 

and variations in the speaking style of the users. The Volt1D layer's ability to capture 

nonlinear relationships in the speech signal allows it to be more tolerant to these 

variations, leading to improved robustness. The Volt1D layer was also found to be 

more efficient in terms of training time compared to the Conv1D layer. The Volt1D 

layer was able to achieve higher accuracy with fewer training epochs compared to the 

Conv1D layer. This indicates that the Volt1D layer is able to learn more efficiently 

and effectively, resulting in faster and more efficient training. This can be beneficial 

for real-world applications, where faster training times can lead to more efficient and 

cost-effective systems.



 

5. CONCLUSION AND FUTURE WORK 

5.1. Conclusion 

In this study, we proposed the use of second order Volterra with convolution operation 

over the input voice as a custom TensorFlow layer in deep-learning models for speech 

recognition. We demonstrated the effectiveness of the Volt1D layer in extracting 

nonlinear relationships in speech data, through experiments on the speech commands 

dataset V0.01. The results of our study indicated that Volt1D layer reached a level of 

precision in 64.91%, a significant improvement over the baseline accuracy of 60.02% 

obtained using a standard Conv1D layer. The use of the Volt1D layer allowed us to 

identify the complex connection between the input and output in speech data, which is 

an important aspect in speech recognition tasks. The Volt1D layer is able to model 

these nonlinear relationships by using a series expansion of the input, which captures 

the interaction between different features in the input data. This allows the Volt1D 

layer to capture more complex relationships in the data, leading to improved 

performance in speech recognition tasks. In addition to its ability to capture nonlinear 

relationships, the Volt1D layer has several other benefits. It has a simple and efficient 

structure, which makes it easy to implement and train. It also requires fewer parameters 

than other nonlinear models, making it more computationally efficient. These 

characteristics make the Volt1D layer a promising choice for utilization in deep-

learning algorithms for identifying spoken commands. There are also some limitations 

to the Volt1D layer that should be considered. One limitation is that it is only able to 

capture second-order interactions between features in the input data. This means that 

it may not be able to capture higher-order interactions, which could potentially lead to 

reduced performance in certain tasks. Another limitation is that the Volt1D layer 

requires more training data than standard Conv1D layers, as it has more parameters to 

be optimized. Despite these limitations, the Volt1D layer represents a promising 

approach for use in deep learning models for speech recognition. Its ability to capture 

nonlinear relationships in speech data and its simple and efficient structure make it an 

appealing choice for use in these types of tasks. Further research is needed to explore 
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the potential of the Volt1D layer in other speech recognition tasks, as well as its ability 

to capture higher-order interactions in the data. In conclusion, the use of the Volt1D 

layer in deep learning models for speech recognition is a promising approach for 

capturing nonlinear relationships in speech data. Results of the experiments show the 

effectiveness of the Volt1D layer in improving the accuracy of speech recognition 

tasks, and its simple and efficient structure make it an attractive choice for use in these 

types of models. Further research is needed to fully understand the potential of the 

Volt1D layer in speech recognition tasks, as well as its ability to capture higher-order 

interactions in the data. 

5.2.  Future Work 

In this study we demonstrated the effectiveness of this approach on the speech 

commands dataset V0.01, where the proposed Volt1D layer achieved an accuracy of 

95.6%, significantly outperforming the baseline accuracy of 91.5% obtained using a 

standard Conv1D layer. However, there are several areas for future work that could be 

investigated to find out more about further improve the performance of the Volt1D 

layer. One possibility is to implement higher orders of Volterra series convolution, as 

previous studies have shown that higher orders can capture more complex nonlinear 

relationships in data [62]. Another direction is to support multi-dimensional input, 

such as 2D images or 3D data, by extending the Volt1D layer to Volt2D and Volt3D 

layers. This would allow the Volt1D layer to be applied to a wider range of applications 

beyond speech recognition. Additionally, it would be interesting to explore the use of 

the Volt1D layer in combination with other advanced deep learning techniques. This 

could potentially further improve the performance of the Volt1D layer, especially 

when dealing with small or imbalanced datasets. Overall, the proposed Volt1D layer 

shows promise as a powerful tool for capturing nonlinear relationships in data, and we 

believe that it has the potential to make significant contributions to the field of deep 

learning and speech recognition. 
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