

T.R.

SAKARYA UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

MSc THESIS

A NEW VOLTERRA NEURAL NETWORK LAYER LIBRARY

USING TENSORFLOW

Zakaria ALYAFAWI

JANUARY 2023

Computer and Information Engineering Department

Computer Engineering Program

 JANUARY 2023

T.R.

SAKARYA UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

A NEW VOLTERRA NEURAL NETWORK LAYER LIBRARY

USING TENSORFLOW

MSc THESIS

Zakaria ALYAFAWI

Öğrenci No

Thesis Advisor: Doç. Dr. Devrim AKGÜN

Computer and Information Engineering Department

Computer Engineering Program

iii

Thesis Jury

Head of Jury : Prof. Dr. Ahmet ZENGIN

 Sakarya University

 Jury Member : Prof. Dr Devrim AKGÜN

 Sakarya University

Jury Member : Dr. Öğr Üyesi Selman HIZAL

 Sakarya University of Applied Sciences

The thesis work titled “A New Volterra Neural Network Layer Library using

TensorFlow” prepared by Zakaria Alyafawi was accepted by the following jury on

01/20 /2023 by unanimously/majority of votes as a MSc THESIS in Sakarya

University Graduate School of Natural and Applied Sciences, Computer and

Informatıon Engıneerıng department, Computer and Informatıon Engıneerıng

program.

iv

v

STATEMENT OF COMPLIANCE WITH THE ETHICAL PRINCIPLES AND

RULES

I declare that the thesis work titled "A New Volterra Neural Network Layer Library

using Tensorflow", which I have prepared in accordance with Sakarya University

Graduate School of Natural and Applied Sciences regulations and Higher Education

Institutions Scientific Research and Publication Ethics Directive, belongs to me, is an

original work, I have acted in accordance with the regulations and directives

mentioned above at all stages of my study, I did not get the innovations and results

contained in the thesis from anywhere else, I duly cited the references for the works I

used in my thesis, I did not submit this thesis to another scientific committee for

academic purposes and to obtain a title, in accordance with the articles 9/2 and 22/2 of

the Sakarya University Graduate Education and Training Regulation published in the

Official Gazette dated 20.04.2016, a report was received in accordance with the criteria

determined by the graduate school using the plagiarism software program to which

Sakarya University is a subscriber, I have received an ethics committee approval

document I accept all kinds of legal responsibility that may arise in case of a situation

contrary to this statement.

(10/01/2023)

Zakaria Alyafawi

vi

vii

 To my parent’s brothers, and sisters I am extremely grateful each one of you, for

their unwavering support and encouragement throughout my academic journey.

viii

ix

ACKNOWLEDGMENTS

I am extremely grateful to my supervisor, Dr. Devrim, for his valuable guidance,

insights, and encouragement throughout this project.

I am deeply indebted to my mentors and professors at the university who have imparted

their knowledge and expertise to me and have played a crucial role in shaping my

academic and professional career. I am also grateful to my colleagues and friends for

their support and camaraderie during this project. Finally, I would like to express my

sincere appreciation to the university, the college, and all the staff members for

providing me with the necessary resources and facilities to complete this project

successfully.

Zakaria Alyafawi

x

xi

TABLE OF CONTENTS

ACKNOWLEDGMENTS ... ix

TABLE OF CONTENTS ... xi
ABBREVIATIONS ... xiii

LIST OF TABLES ... xv
LIST OF FIGURES .. xvii

SUMMARY .. xix
ÖZET ... xxi

1. INTRODUCTION ... 1
1.1. Overview ... 2

1.2. Problem Statement... 3
1.3. Objective ... 3

1.4. Research Questions ... 4
1.5. Organization .. 4

2. LITERATURE REVIEW ... 7
2.1. Background ... 9

2.1.1. Artificial neural networks (ANN) ..9
2.1.2. Activation function .. 11

2.1.2.1. Linear activation function ...12
2.1.2.2. Non-linear activation function ...13

2.1.3. Loss function ... 16
2.1.4. Gradient descent algorithm .. 16

2.1.5. CNNs .. 17
2.1.6. RNNs .. 18

2.2. TensorFlow ..20
2.3. Limitations of these Approaches ...21

2.4. Proposed Layer ...22
2.4.1. Linear convolution... 22

2.4.2. Volterra series ... 24
2.4.3. Volterra convolution .. 27

 2.4.3.1. Forward pass..27

 2.4.3.1. Backward pass...28

2.4.4. Second-Order volterra convolution benefits ... 29
3. METHODOLOGY.. 31

3.1. Second-Order Volterra Convolution as a Function in C++31
3.2. Second-Order Volterra Convolution as a Custom C++ TensorFlow OP32

3.3. Second-Order Volterra Convolution as TensorFlow Layer in Python34
3.4. Implementation of Second-Order Volterra Kernel ...35

3.5. Speech Commands V0.01 Dataset ..36
3.6. Model Design and Architecture ..38

3.7. Training and Evaluation Process ...40

xii

4. RESULTS AND DISCUSSION .. 41

4.1. Performance and Accuracy ... 42
4.2. Comparison Between Volt1D and Conv1D Layers 42

4.3. Discussion .. 44
5. CONCLUSION AND FUTURE WORK ... 45

5.1. Conclusion ... 45
5.2. Future Work ... 46

REFERENCES ... 47
CURRICULUM VITAE ..51

xiii

ABBREVIATIONS

ANN : Artificial Neural Networks

CE : Cross-entropy error function

CNN : Convolutional neural network

CPU : Central processing unit

GPU : Graphics processing unit

ReLU : Rectified linear unit

Conv1D : One Diminution Convolution Layer

DL : Deep Learning

ML : Machine Learning

ConvNet : Convolutional Neural Network

MSE : Mean Squared Error

xiv

xv

LIST OF TABLES

Page

Table 4.1. Volt1D vs Conv1D layers accuracy ...43

xvi

xvii

LIST OF FIGURES

Page

Figure 2.1. Artificial Neural Networks Architecture ...10

Figure 2.2. Simple neural network architecture...11
Figure 2.3. Linear Activation Function ...12

Figure 2.4. Nonlinear Activation Function ...13
Figure 2.5. Basic sigmoid function ...14

Figure 2.6. Hyperbolic tangent Activation Function. ..14
Figure 2.7. ReLU activation Function ..15

Figure 2.8. CNNs and related layers presentation ...18
Figure 2.9. Simple RNNs architecture ..19

Figure 3.1. Conv1D model design and architecture ..39
Figure 3.2. Volt1D design and architecture ..40

Figure 4.1. Volt1D model evaluation..41
Figure 4.2. Difference between the Conv1D and Volt1D ..43

xviii

xix

A NEW CUSTOM TENSORFLOW LAYER BASED ON SECOND-ORDER

ONE-DIMENSION VOLTERRA CONVOLUTION

SUMMARY

Deep learning algorithms have garnered much attention recently, their success in

enhancing the accuracy of automatic speech recognition systems has caused an

increase in their usage. These models have the ability to identify patterns within input

data and generate predictions based on these patterns. However, a limitation of these

models is their inability to capture nonlinear relationships within input data.

This study aimed to enhance the performance of automatic speech recognition through

the incorporation of a second-order, one-dimensional Volterra Convolution (Volt1D)

layer into deep learning models. The Volt1D layer is a custom TensorFlow layer that

is founded on the Volterra series convolution, a mathematical tool capable of

representing a wide array of nonlinear functions.

To evaluate the efficacy of the Volt1D layer, we compared its performance to that of

the standard Conv1D layer using the speech commands dataset v0.01, which consists

of 20 classes of spoken words. Our results indicated that the Volt1D layer achieved an

accuracy of 64.91% over 10 epochs, a significant improvement over the baseline

accuracy of 60.02% using the Conv1D layer over 10 epochs. This demonstrates the

Volt1D layer's effectiveness in extracting nonlinear relationships within speech data.

We talked about the advantages and disadvantages of these approaches. with regard to

the main objective of the study, which was to capture nonlinear relationships in speech

data through the use of the Volt1D layer. We found that the Volt1D layer is a promising

approach for speech recognition due to its ability to effectively capture nonlinear

relationships and enhance the effectiveness of deep learning models.

One of the primary strengths of the Volt1D layer is its capability to represent a wide

range of nonlinear functions, making it suitable for capturing complex relationships

within input data, a crucial factor in accurately transcribing spoken words into written

text. In addition, the Volt1D layer is computationally efficient, allowing for its

utilization in real-time speech recognition applications without incurring excessive

computational overhead. However, there are also some limitations to the Volt1D layer.

One limitation is that these models require a vast amount of training data to effectively

learn the intricate nonlinear relationships within input data, which can be problematic

for smaller datasets or applications with limited access to ample training data.

Additionally, the Volt1D layer may not be as effective at capturing long-term

dependencies within input data as other methods like RNN or LSTM models

In conclusion, the Volt1D layer represents a promising approach for improving the

performance of automatic speech recognition through deep learning models. It is able

to effectively capture nonlinear relationships within input data, exhibiting superior

accuracy and computational efficiency compared to other methods. However, the

model may be constrained by the need for a substantial amount of training data and its

capacity to identify long-term dependencies within input data.

xx

xxi

A NEW CUSTOM TENSORFLOW LAYER BASED ON SECOND-ORDER

ONE-DIMENSION VOLTERRA CONVOLUTION

ÖZET

Son yıllarda, konuşma tanıma sistemlerinin performansını iyileştirmek için derin

öğrenme modelleri yaygın olarak kullanılmaktadır. Bu modeller, girdi verilerindeki

kalıpları öğrenme ve tanıma ve bu kalıplara dayalı tahminler yapma yeteneğine

sahiptir. Bununla birlikte, bu modellerin bir sınırlaması, girdi verilerinde doğrusal

olmayan ilişkileri yakalayamamalarıdır.

Bu çalışmada, yeni bir katman ikinci dereceden 1D Volterra Convolution (Volt1D)

katmanı tanıtarak derin öğrenme modelleri kullanarak konuşma tanıma performansını

iyileştirmeyi amaçladık. Volt1D katmanı, çok çeşitli doğrusal olmayan işlevleri temsil

edebilen matematiksel bir araç olan Volterra serisi konvolüsyonu temel alan özel bir

TensorFlow katmanıdır.

Volt1D katmanının performansını, 20 sözlü sözcük sınıfından oluşan konuşma

komutları veri kümesi v0.01'de standart Conv1D katmanının performansıyla

karşılaştırdık. Sonuçlarımız, Volt1D katmanının 10 dönemle %64,91'lik bir doğruluğa

ulaştığını gösterdi; bu, 10 dönemle Conv1D katmanı kullanılarak elde edilen

%60,02'lik temel doğruluktan önemli ölçüde daha yüksek. Bu, Volt1D katmanının

konuşma verilerindeki doğrusal olmayan ilişkileri çıkarmadaki etkinliğini gösterir.

Volt1D katmanını kullanarak konuşma verilerindeki doğrusal olmayan ilişkileri

yakalamak olan çalışmamızın ana amacı ile ilgili olarak bu yaklaşımların güçlü

yanlarını ve sınırlamalarını da tartıştık. Doğrusal olmayan ilişkileri etkili bir şekilde

yakalayabildiği ve derin öğrenme modellerinin performansını iyileştirebildiği için

Volt1D katmanının konuşma tanıma için umut verici bir yaklaşım olduğunu bulduk.

Volt1D katmanının ana güçlü yönlerinden biri, çok çeşitli doğrusal olmayan

fonksiyonları temsil etme yeteneğidir. Bu, onu, konuşulan sözcükleri doğru bir şekilde

metne dönüştürmek için önemli olan girdi verilerindeki karmaşık ilişkileri yakalamak

için çok uygun hale getirir. Ek olarak, Volt1D katmanı hesaplama açısından verimlidir,

bu da gerçek zamanlı konuşma tanıma uygulamalarında önemli bir hesaplama yüküne

maruz kalmadan kullanılabileceği anlamına gelir.

Bununla birlikte, Volt1D katmanının bazı sınırlamaları da vardır. Bir sınırlama, girdi

verilerindeki karmaşık doğrusal olmayan ilişkileri öğrenmek için büyük miktarda

eğitim verisi gerektirmesidir. Bu, daha küçük veri kümeleri veya büyük miktarda

eğitim verisine sınırlı erişimin olduğu uygulamalar için zor olabilir. Ek olarak, Volt1D

katmanı, RNN'ler veya LSTM'ler gibi diğer yaklaşımlarla karşılaştırıldığında girdi

verilerindeki uzun vadeli bağımlılıkları yakalamada o kadar etkili olmayabilir.

Sonuç olarak, Volt1D katmanı, derin öğrenme modellerini kullanarak konuşma tanıma

performansını iyileştirmek için umut verici bir yaklaşımdır. Girdi verilerindeki

xxii

doğrusal olmayan ilişkileri etkili bir şekilde yakalayabilir ve doğruluk ve hesaplama

verimliliği açısından diğer yaklaşımlardan daha iyi performans gösterebilir. Ancak,

büyük miktarda eğitim verisine duyulan ihtiyaç ve girdi verilerindeki uzun vadeli

bağımlılıkları yakalama yeteneği ile sınırlı olabilir.

1. INTRODUCTION

Convolutional neural networks (CNNs) have gained widespread popularity in recent

decades as a tool for a variety of computer vision and machine learning tasks [1, 2].

These feed-forward ANNs use alternating layers of convolution and subsampling to

extract features from input data [3].

Deep 1D CNNs, which consist of multiple hidden layers and a large number of

parameters, are particularly effective at learning complex patterns and objects when

trained on large visual databases with ground truth labels [4, 5]. As a result, CNNs

have become the go-to method for a variety of technical applications involving 2D

input such as images and videos [6, 7].

However, the use of CNNs may not always be feasible for 1D signal applications,

particularly when the training data is of low quality or tailored to a specific application

[8]. To resolve this problem, 1D CNNs were developed and have achieved exceptional

performance in a range of applications, including biomedical data classification for

personalized early diagnosis [9], monitoring the structural integrity [10], identifying

abnormalities [11], and the detection of power electronics and electrical engine failures

[12].

One major benefit of 1D CNNs is the ability to be implemented in real-time and at low

cost because of their straightforward and concise design, which only performs 1D

convolutions [13].

In this study, we aim to implement second-order Volterra Series Convolution as a

custom TensorFlow layer to be used to train a speech recognition model with the

speech commands V0.01 dataset [14].

The Volterra series is a representation of nonlinear behavior model that has the ability

to capture "memory" effects [15], which may be beneficial to enhance the effectiveness

of deep learning models for speech recognition tasks [16]. By implementing this

custom layer, we hope to increase the accuracy of the trained model and reduce training

time [17]. This study also aims to provide a all-encompassing overview of the overall

design and principles of 1D CNN, focusing on recent advancements and their current

2

highest levels of success in various technical applications [18]. The voice recognition

data and core 1D CNN used in these applications will also be made publicly available

[19]. Despite the lack of literature on 1D CNNs and their applications, this study aims

to fill this gap by presenting a comprehensive overview of the current state of the field

[20].

1.1. Overview

Accurate speech recognition is of great importance in a variety of applications, ranging

from personal assistants and voice-controlled devices [21] to automatic translation and

transcription services [22].

Recently, deep learning approaches have become the dominant method for speech

recognition tasks [23], because of their capability to learn intricate patterns and

features from significant amounts of signals [24]. However, there are still many

challenges to achieving high levels of accuracy, especially when dealing with real-

world speech data that may be noisy, varied, or spoken in different languages and

accents [25]. One major challenge is the nonlinear nature of speech signals, which can

be difficult to model using traditional linear techniques [26].

The Volterra series as nonlinear model behaviour with the ability to capture "memory"

effects [27], may be a useful tool for addressing this challenge. By implementing a

custom layer based on the Volterra series in our TensorFlow model, we hope to

enhance the precision of speech recognition model [28]. Accurate speech recognition

is also important for improving the usability and functionality of voice-controlled

devices and personal assistants [29], as well as for increasing the efficiency and

accuracy of transcription and translation services [30]. These applications have the

potential to revolutionize how we interact with technology and communicate with one

another [31], but they require highly accurate speech recognition algorithms to be truly

effective. By developing a custom layer based on the Volterra series, we aim to

contribute to the ongoing efforts to enhance the accuracy and performance of the

speech recognition model [32].

3

1.2. Problem Statement

The issue being considered in this study is the implementation of second-order

Volterra series convolution as a custom TensorFlow layer to train a speech recognition

model. The use of the Volterra series, with the ability to capture "memory" effects

[33], will enhance the capability of deep learning models for speech commands

recognition tasks by capturing both linear and nonlinear relations in the data [34].

To address this problem, we will implement a second order Volterra series convolution

in Python as a TensorFlow layer [35]. This custom layer will be used in place of

traditional convolutional layers in an artificial intelligence model for speech

recognition and will be trained using the speech commands V0.01 dataset [36]. The

accurecy of the trained AI-model with the custom Volterra series will be compared to

the performance of a model using traditional convolutional layers, in order to evaluate

the performance of the Volterra series in improving the performance of the trained

model. Overall, the purpose of this study is to examine the potential benefits of using

the Volterra series for speech recognition tasks, and to provide a detailed

implementation and evaluation of a custom TensorFlow layer based on the second-

order Volterra series. By addressing this problem, we hope to contribute to the ongoing

efforts to enhance the effectiveness of models for speech recognition tasks, and to

provide a useful tool for researchers and practitioners working in this field.

1.3. Objective

The goal of this master's thesis is to investigate and address the issue of speech

recognition using CNNs for capture nonlinear behaviour. The goal of this research is

to present a new method for improving the accuracy and efficiency of speech

recognition models by implementing a custom CNN layer based on the Volterra series.

Speech recognition is a critical field that has significant practical and technological

importance, but traditional approaches to training deep learning models for speech

recognition tasks often suffer from poor accuracy with nonlinear relations between the

training data, particularly when dealing with large datasets. Our new custom layer,

Volt1d, aims to address these issues by replicating the behavior of the TensorFlow

Conv1D layer by replacing the linear mathematical equation with a non-linear

4

equation to enhance the accuracy of the trained model by capture linear and nonlinear

relation in the input training dataset. By exploring and addressing these issues, our

research aims to contribute to the ongoing efforts to enhance the effectiveness of

speech recognition model. This work has the potential to have significant practical

impacts, as it could enable the improvement of speech recognition systems in terms of

accuracy and efficiency that are capable of handling large and diverse datasets in real-

world applications.

1.4. Research Questions

This study aims to answer the following research question: What is the impact of using

a second-order Volterra series convolution layer on the precision and time required for

training a speech recognition model?

To answer this research question, the following objectives have been set:

• Implement the second-order Volterra series convolution as a custom

TensorFlow layer.

• Train a speech recognition model using the speech commands V0.01 dataset

with the custom Volterra series convolution layer.

• Compare the accuracy of the model with the custom Volterra series

convolution layer to the performance of a model with traditional convolutional

layers.

• Analyse the results and determine the repercussion of the Volterra series

convolution on the accuracy and training time of the model.

• Conduct a thorough implementation and assessment of the custom Volterra

series convolution layer for speech recognition tasks in TensorFlow.

1.5. Organization

The present master's thesis is organized into six sections, with the first and current

section serving as an introduction. In addition to providing an overview of the research,

this section also includes a description of the problem being addressed, the objectives

and research questions of the study, and the organization of the remaining section. The

second section provides an overview of previous research on speech recognition using

5

a description of deep learning, including the various approaches and their strengths

and limitations. This section also introduces the concept of the Volterra series and its

role in enhancing the effectiveness of speech recognition model. The historical

evolution of neural networks is also discussed in this section. Section 3 presents the

methodology of the study, including the implementation and evaluation of the custom

Volterra series convolution layer for speech recognition in TensorFlow. The datasets

and experimental setup used for training and evaluating the models are also described

in this section. Section 4 presents the results and analysis of the study, including the

comparison of the performance of the model with the custom Volterra series

convolution layer to the performance of a model with traditional convolutional layers.

The impact of the Volterra series and its impact on accuracy of the model is also

discussed in this section. The fifth section concludes the study by summarizing the

main findings and discussing the implications of the results. This section also explores

potential avenues for future research. The final section presents the references used in

the study

6

2. LITERATURE REVIEW

Speech recognition is a rapidly developing technology that has the potential to

revolutionize the way we interact with machines. The Speech Commands V0.01

dataset [37] is a publicly available dataset that contains thousands of spoken words

and phrases, making it a valuable resource for training and implementing speech

recognition systems. In this literature review, we will explore the current state of the

art in speech recognition, focusing on the use of the Speech Commands V0.01 dataset.

We will discuss the challenges of implementing and training speech recognition

systems, as well as the various approaches that have been proposed to overcome these

challenges. Speech recognition technology has been a topic of research for decades,

with early systems dating back to the 1950s. However, it wasn't until the late 1990s

and early 2000s that speech recognition systems achieved high accuracy and usability

[38]. Today, speech recognition is used in a wide range of applications, including

voice-controlled assistants, voice-enabled search, and accessibility tools for people

with disabilities. One of the key challenges in speech recognition is the large amount

of data that is required to train a system. This data must be representative of the

population of speakers and the range of environments in which the system will be used.

The Speech Commands V0.01 dataset [37] is a publicly available dataset that contains

65,000 spoken words and phrases, making it a valuable resource for training speech

recognition systems. The dataset was created by Google and contains a wide range of

spoken words and phrases, including numbers, common words, and commands. There

are several challenges that must be overcome when implementing and training speech

recognition systems. One of the main challenges is the variability of human speech.

People speak at different speeds, use different accents, and have different speaking

styles [39]. This variability makes it difficult to create a system that can accurately

recognize speech in a wide range of environments.

Another challenge is the presence of noise in the environment. Background noise can

make it difficult for a system to accurately recognize speech, especially in noisy

8

environments such as public places or crowded streets [40]. Additionally, the presence

of multiple speakers can make it difficult for a system to identify the correct speaker.

A third challenge is a need for a large amount of data to train a system. As mentioned

earlier, speech recognition systems require a large amount of data to achieve high

accuracy levels [41]. This data must be representative of the population of speakers

and the range of environments in which the system will be used.

There are several approaches that have been proposed to overcome the challenges of

implementing and training speech recognition systems. One approach is to use deep

learning techniques to train a system [42]. Deep learning algorithms, such as neural

networks, have been shown to be effective in handling the variability of human speech.

Additionally, deep learning algorithms can be trained on large amounts of data, making

them well-suited for speech recognition.

Another approach is to use data augmentation techniques to increase the amount of

data available for training [43]. Data augmentation techniques can be used to

artificially increase the amount of data by applying various transformations to the

existing data. This can include adding noise, changing the speed of speech, or applying

different accents.

A third approach is to use transfer learning techniques to adapt a pre-trained model to

a new task [42]. Transfer learning allows a pre-trained model to be fine-tuned on a

new task, reducing the amount of data required to train the system. This can be

especially useful when the data available for training is limited.

Speech recognition is a rapidly developing technology that has the potential to

revolutionize the way we interact with machines. The Speech Commands V0.01

dataset [37] is a valuable resource for training and implementing speech recognition

systems, as it contains a large amount of diverse spoken words and phrases. However,

implementing and training speech recognition systems can be challenging due to the

variability of human speech, the presence of noise in the environment, and the need

for a large amount of data. To overcome these challenges, researchers have proposed

various approaches such as using deep learning techniques, data augmentation and

transfer learning. Further research in speech recognition will continue to improve the

accuracy and usability of these systems for a wide range of applications.

9

2.1. Background

Despite the promising results achieved by deep learning models for speech

recognition, there are still several challenges that need to be addressed. One of the

main challenges is the need for significant quantities of labeled training data, which

can be difficult and time-consuming to obtain [43]. Another challenge is the sensitivity

of deep learning models to noise and other distortions in the data, which can reduce

their accuracy [44]. To address these challenges, research is ongoing to develop new

methods and techniques to enhance the accuracy of deep learning models for speech

recognition tasks [45]. The description of various approaches used in previous studies

as mentioned below:

2.1.1. Artificial neural networks (ANN)

Artificial neural networks (ANNs) are a type of model that uses calculations and

mathematics to replicate the functioning of the human brain. Many recent

developments in the realm of AI, such as visual and auditory identification and

automatons, have been made possible through the use of ANNs.

These models have a specific architecture, which is influenced by the design of the

natural nervous system and consists of neurons that are connected by weighted

links. The neurons in ANNs are arranged in a complex and nonlinear way, similar to

the anatomy of the human brain. ANNs can be trained through various methods,

including information gathering and evaluation, network layout planning,

determination of the quantity of hidden layers, network simulation, and optimization

of weights and biases. ANNs can be used to solve problems in a variety of different

scientific disciplines, and can be utilized for categorizing patterns, forecasting, and

managing and optimizing.

ANNs can be classified into three types:

 Static

 Dynamic

 Statistical

10

Each of which has its own unique structure and characteristics [46]. It is also possible

to combine ANNs in combination with other optimization strategies, to improve

prediction capabilities.

ANNs have significant applications in the field of Speech Recognition system. We can

find in Figure 2.1 basic ANN design.

Figure 2.1. Artificial Neural Networks Architecture

As we can see in Figure 2.1 the neural network architecture, the simple neural networks

consist of multiple neuron binary inputs between zero and one and we have W which

is the weights, the weights will be generated randomly based on the TensorFlow

algorithm, then the next layer or the hidden layers will use all the inputs from the

previous layer based on the following formula.

𝑧 = ∑𝑤𝑖𝑥𝑖 + 𝑏

∞

𝑖=0

 (2.1)

Let’s describe our neural network, we have list of inputs will draw it’s as a single node

and each node will connect to all other nodes in the next hidden layer or to the output

directly based on the architecture, and each node in the next hidden layer will connect

to all other nodes in the second hidden layer or the output and repeat the same protocol

for other concealed layers and apply the arithmetic operation as it in (2.1) for example

in Figure 2.2 we have just three inputs into our neural network we will represent each

11

input as single node, so in our example we have three nodes as inputs, each input of

our inputs will connect to all the other nodes in the initial hidden layer, in this step, the

neural network will generate the weights for each input and apply the arithmetic

operation by multiplying the input with its weights and add the bias to the operation,

the neural network will do the same thing for all the inputs each input with its weight,

so after applying all this operations will set the outputs as a node in the initial concealed

layer, and the same is true for the subsequent concealed layer and at the end will send

the final results to the output layer.

Figure 2.2. Simple neural network architecture

2.1.2. Activation function

The activation function plays a significant role in influencing the output of a neural

network. It is a mathematical function that decides whether or not a neuron's input

should be considered important for the prediction process. Activation functions allow

for non-linearity in neural networks, allowing them to make complex decisions based

on input data. They also map the output values of a node to a specific range, such as

between 0 and 1 or -1 and 1. Common types of activation functions include sigmoid,

tanh, and ReLU. The activation function is commonly known as the transfer function

in artificial neural networks [47]. It is essential to choose the appropriate activation

function for a given task, as it can significantly impact the functionality of the artificial

neural network.

12

2.1.2.1. Linear activation function

The straight-line activation function, also referred to as the "no activation" or "identity

function," simply returns the input that it receives, multiplied by a factor of 1.0. This

function does not alter the weighted sum of the input in any way and produces an

output that is proportional to the input. As shown in, Figure 2.3, the function is linear,

meaning that the output will not be limited to any specific range. This function is also

known as the "no activation" function, as it does not perform any activation on the

input.

Figure 2.3. Linear Activation Function

Where the Equation equals 𝑓(𝑥) = 𝑥 and the range between – infinity to infinity.

13

2.1.2.2. Non-linear activation function

Non-linear activation-functions are the most commonly used types of activation-

functions. These functions introduce nonlinearity into the system allows the graph to

take on a shape similar to Figure 2.4, which facilitates the model's ability to adapt to a

variety of data and to distinguish between different outputs. This is because

nonlinearity enables the model to generalize effectively, allowing it to perform well

on a variety of data. Nonlinear activation functions are therefore essential in helping

the model to accurately analyse and interpret the input data.

Figure 2.4. Nonlinear Activation Function

Sigmoid activation function.

Sigmoid Activation Function curve exhibits an S-shaped form, as depicted in Figure

2.5. The sigmoid function is a mathematical function defined for real input values,

possessing boundedness, differentiability, and a non-negative derivative. with a single

inflection point. The sigmoid function is also referred to as a sigmoid curve and is

characterized by its monotonicity and a bell-shaped first derivative. The integral of

any continuous, non-negative, bell-shaped function will be sigmoidal.

14

Figure 2.5. Basic sigmoid function

Hyperbolic tangent activation function.

The tanh function resembles logistic sigmoid function, but has a wider range of values

from -1 to 1. It is also sigmoidal, meaning that it has an s-shaped curve. The tanh

function is often preferred over the logistic sigmoid function due to its wider range and

ability to capture a greater range of values in the input data like Figure 2.6.

Figure 2.6. Hyperbolic tangent Activation Function.

15

Rectified linear unit

The ReLU activation function is currently the most commonly employed activation

function globally, particularly in CNNs and deep learning applications. It is

characterized by its half-rectified shape, with f(z) equal to zero when 𝑧 < 0 and f(z)

equal to z when 𝑧 >= 0. The average of the ReLU function is from 0 to ∞. Both the

function and its first derivative have a constant direction of increase or decrease, but a

major issue with the ReLU function is that it immediately sets all negative input values

to zero, which can decrease the model's proficiency to fit or train on the data

effectively. This is because the negative values are not mapped appropriately in the

resulting graph, which can negatively impact the model's performance, you can find

the ReLU activation function in Figure 2.7.

Figure 2.7. ReLU activation Function

16

2.1.3. Loss function

The cost function or the loss function, is designed to achieve the performance of the

neural network. Given a forecast or group of forecasts and a classification or set of

classifications, it calculates the difference between the algorithm's forecast and the

appropriate tag. There are many other loss functions, but the MSE is the one used in

neural networks the most frequently. Mean squared function (MSE) the MSE is the

average of the squared discrepancy between predictions and actual observations. It

doesn't care which way the errors are going; just their average magnitude is important.

However, because of squaring, forecasts that deviate greatly from actual values are

severely penalized relative to predictions that differ less. Additionally, MSE has

appealing mathematical characteristics that make calculating gradients simpler, we can

find the mathematical formulation:

𝑀𝑆𝐸 =
∑ (𝑦𝑖− 𝑦`𝑖

)2𝑛
𝑖=1

𝑛
 (2.2)

2.1.4. Gradient descent algorithm

A method for reducing the error function is gradient descent. It serves as a tool to

identify the error metric. local minimum. Subsequently, you will come across a

summary of the steps involved in the algorithm.

1. Begin by initializing every weight and bias within the artificial neural network

at random. All parameters must be initialized randomly; otherwise, if they all

start out with "if all hidden layer units were assigned the same value, they

would eventually learn to perform the same function on the input.

Consequently, symmetry breaking is achieved by using random initialization.

2. Continuously adjust the values of 𝑤, 𝑏 through repetition until a minimum is

hopefully reached:

𝑊𝑖,𝑗
𝑙 = 𝑊𝑖,𝑗

𝑙 – α

(2.3)

17

2.1.5. CNNs

Deep learning models known as convolutional neural networks (CNNs) are used for

particularly well-suited for voice and video recognition tasks. These models consist of

multiple layers of convolutional and subsampling filters, which extract features from

the input data and reduce its dimensionality.

The extracted features subsequent input into a completely connected layer, which is

used to classify the input data based on the learned features.

One of the primary benefits of CNNs their capability of learn spatial hierarchies of

features, which allows them to recognize complex patterns and objects in the input

data. This is achieved through the use of multiple layers and the use of pooling

operations, which lower the detail of the input information and assist to extract more

abstract features. CNNs have been widely used in previous research studies for speech

recognition tasks, particularly for tasks involving large datasets and high-dimensional

data entered. For example, [47] demonstrated the effectiveness of CNNs for language

identification tasks, while [48] showed that CNNs can be used to enhance the accuracy

of automatic speech commands recognition model.

Overall, CNNs have proven to be a powerful tool for speech commands recognition

model, and are likely to continue to be an important approach in the field in the future.

The CNNs and all related layers presented in the Figure 2.8.

18

Figure 2.8. CNNs and related layers presentation

2.1.6. RNNs

Recurrent neural networks (RNNs) are a type of deep learning algorithm that are

especially well-suited for tasks that involve sequential data. These networks are

composed of a series of interconnected neurons are capable of processing input data

and maintain an internal state, allowing them to capture temporal dependencies in the

data. An important characteristic of RNNs is their capability to process input These

sequences can be of any length, making them highly adaptable for tasks such as

language translation or speech recognition. Recurrent neural networks have the ability

to handle input series one element at a time, maintaining a change in the internal

condition after each input is processed. This allows the network to capture

dependencies between elements in the sequence and use this information to make

predictions about future elements in the sequence [49].

19

RNNs have been widely used in previous studies for speech recognition tasks, with

many research studies demonstrating their effectiveness in improving the accuracy of

deep learning models for this purpose [50, 51].

One of the main advantages of RNNs for speech recognition is their ability to handle

variable-length input sequences, which lays a significant role in speech recognition

tasks where the length of the input audio signal can vary significantly depending on

factors such as speaker, accent, and background noise. Despite their effectiveness,

RNNs has been a lot of research conducted in recent years on certain restrictions or

limitations. One of the primary difficulties with RNNs is their difficulty in acquiring

the ability to retain information over an extended period of time in the data, which can

limit their performance on tasks requiring the processing of long input sequences [52].

To address this issue, researchers have developed various variants of RNNs, including

LSTM networks, which are able to better capture long term dependencies in the data

[53]. Overall, RNNs have proven to be a powerful tool for speech recognition tasks,

and their use is expected to continue to be a focus of ongoing investigation in the field.

The simple RNNs architecture represented below in Figure 2.9.

Figure 2.9. Simple RNNs architecture

20

2.2. TensorFlow

TensorFlow is a widely used machine learning framework developed by Google. It

allows for easy creation and training of neural networks and has gained widespread

acceptance in the realm of speech recognition. One of the key benefits of TensorFlow

is its flexibility, as it can numerous potential uses for this. beyond speech recognition,

including image recognition, NLP, and predictive modelling. In the field of speech

recognition, TensorFlow has been used to train various types of deep learning models

These models have been successful in capturing the complex nonlinear relationships

present in speech data and have achieved cutting-edge results on various speech

recognition approach [62]. One of the prominent characteristics of TensorFlow having

the capability to easily implement custom layers, such as the second-order Volterra

series Convolution layer used in this study. This allows researchers to tailor their

models to the specific needs of their problem, and to incorporate domain-specific

knowledge into the model architecture [63]. TensorFlow also offers a number of tools

and libraries for model training and evaluation, including TensorBoard for visualizing

training and evaluation metrics, and the Keras API for building and training models in

a high-level, user-friendly manner [64]. It is built on top of TensorFlow and allows for

easy creation of complex neural network architectures. In our study, we utilized the

Keras API to train our speech recognition model. Specifically, we used the API to

explain what is meant by the term architecture of the model, compile it, and fit it to the

training data.

TensorFlow and the Keras API allowed us to easily develop our custom Volterra

Convolution layer. TensorFlow provided the necessary framework to create and

trainable models in deep learning, while the Keras API provided a user-friendly

interface for defining and training the model.

The combination of TensorFlow and the Keras API proved to be a powerful tool for

developing and training our speech recognition model with the Volterra Convolution

layer. By leveraging the capabilities of these technologies, we were able to achieve

significant improvements in accuracy compared to traditional Conv1D layers. In

addition to TensorFlow and the Keras API, the Conv1D layer is also utilized in the

training process of our speech recognition model. The Conv1D layer is a convolutional

21

neural network layer that processes one-dimensional input data, such as audio or text,

by utilizing a group of filters on the input data to extract features. These features after

being processed, the data is passed through an activation function, like ReLU, to

introduce nonlinearity and enable a method for comprehending intricate patterns

within the data. In our model, the Conv1D layer is used as a baseline comparison to

our custom Volterra Convolution layer, which we have developed to capture the

nonlinear relationships present in speech data. By comparing the performance of the

Conv1D layer to our custom Volterra Convolution layer, we can assess the efficiency

of the layer that we have proposed. in improving the accuracy of the speech recognition

model [65]. These tools have made it easier for researchers to experiment with

different model architectures and hyperparameters, and to quickly evaluate the

performance of their models.

Overall, TensorFlow has proven to be a powerful and flexible tool for training speech

recognition models and has significantly contributed to the advancement of the field.

2.3. Limitations of these Approaches

implementing CNNs in speech recognition tasks has been widely studied in previous

research. One of the main strengths of CNNs is their capacity for acquiring knowledge

complex patterns and relationships in the data automatically, without the need for

manual feature extraction [47,48]. This is especially useful for speech recognition

models, as the acoustic features of speech can vary significantly depending on factors

such as speaker, accent, and background noise. CNNs are also capable of acquiring

hierarchical structures of the data, with lower layers learning basic features such as

spectral characteristics of the audio signal and higher layers learning more complex

features such as phonemes or words [49]. However, one limitation of CNNs is their

dependence on significant amounts of labeled training data, which can be difficult and

time-consuming to obtain [50]. Additionally, CNNs may not be as effective at handling

long-term dependencies in the data, as they typically operate on a fixed-length context

window [51]. RNNs have also been widely used for speech recognition tasks, with

many research studies demonstrating their effectiveness [52,53]. RNNs possess the

capability to capture temporal requirements in the data, which makes them well-suited

for speech commands recognition tasks [54]. One of the main strengths of RNNs is

22

their capacity to manage variable length is what sets them apart of sequential input,

which allows them to create a representation of data that accounts for long-term

dependencies [55]. However, one limitation of RNNs is their sensitivity to The

gradient problem can impede the ability to train deep networks, as it causes them to

disappear [56]. LSTM networks were developed as a solution to this problem, because

they possess the ability to sustain long-lasting dependencies in the data by regulating

the flow of information through a gate mechanism [57]. LSTMs for speech recognition

tasks have often utilized widely and have achieved state-of-the-art performance in

many cases. While CNNs, RNNs, and LSTMs have all demonstrated strong

performance for speech recognition tasks, there is still a need for methods that can

capture nonlinear relationships in the data. This is where the Volterra series

convolution, which is the focus of our study, has the potential to make a significant

contribution. By using a nonlinear model such as the Volterra series to capture memory

effects, we hope to enhance the precision and efficiency of our speech commands

recognition model.

2.4. Proposed Layer

As previously mentioned, the proposed approach combines the Volterra kernel theory

to exploit the nonlinear operations that occur within a receptive field. Nonlinearities

have traditionally been exploited in CNNs using activation functions and pooling

operations between layers. However, these nonlinearities may approximate the coding

of inner workings of the visual system, aside from those within the receptive field, are

analyzed. The method used in this analysis is similar to that of a Conv1D layer, which

includes various layers for purposes such as convolution, then pooling after that the

activation functions then batch normalization after that the dropout based on the added

value, and at the end the fully connected layers. In contrast, the one-dimensional

Volterra convolutional (Volt1D) layer can be easily integrated into almost any existing

CNN architecture.

2.4.1. Linear convolution

Convolution is a mathematical operation that produces a third tensor as output by

performing computation on two input tensors. The output can be expressed as follows:

23

𝑌𝑛 =
𝐵𝑛 − 1

2
+ 𝐵𝑛 +

𝐵𝑛 − 1

2
 (2.4)

Where 𝑌 is the output tensor and Bnis the input wave signal, and 𝑛 is an iterable

element through the signal tensor as shown in equation (2.4). The convolution system

is assumed to be a continuous and time-invariant space represented by:

(v ∗ 𝑧)(𝑡) = ∫ 𝑣(𝑇). 𝑧(𝑡 − 𝑇)

∞

𝑇=−∞

= ∫ 𝑣(𝑡 − 𝑇). 𝑧(𝑇)

∞

𝑇=−∞

 (2.5)

Where 𝑣(𝑇) and 𝑧(𝑇) are assumed as the input vectors or tensors as shown (2.5). This

means the calculation will be done by shifting the filter over the input signal or vice

versa. However, the concept of discrete space will lock like (2.6):

(𝑣 ∗ 𝑧)(𝑛) = ∑ 𝑣(𝑚). 𝑧(𝑛 − 𝑚)

∞

𝑚=−∞

= ∑ 𝑣(𝑛 − 𝑚). 𝑧(𝑚)

∞

𝑚=−∞

 (2.6)

CNNs are composed of various 1D convolutions over a voice wave, with the kernels

of the filters serving as trainable parameters. The 1D convolution is expressed as

follows:

𝑧(𝑥) = conv(𝑣(𝑥))……

𝑧(𝑥) = 𝜔 ∗ 𝑣(𝑥) = ∑  

𝑛

𝑑𝑥=−𝑛

𝜔(𝑑𝑥)𝑣(𝑥 + 𝑑𝑥)
 (2.7)

Where 𝑧(𝑥) is the convolution outcome and 𝜔 is the kernel. CNNs have multiple

layers and kernel sizes 𝜔𝑙. Furthermore, each convolution output is passed through a

non-linear function. More importantly, at CNN's 𝑙𝑡ℎ layer as following:

Conv(𝑣[𝑙−1], Ω) =

𝜎[𝑙] (∑
𝑛𝐶

[𝑙−1]

𝑒=1   (∑
𝑛𝐻

[𝑙−1]

𝑓=1
  ∑ Ω𝑒𝑓𝑔𝑣𝑒,ℎ+𝑓−1,𝑤+𝑔−1

[𝑙−1]
+ 𝑏[𝑙]  

[𝑙𝑙−1]

𝑔=1
))

(2.8)

Ω represents the kernels, 𝑣 is the input to the layer, 𝜎𝑙 is the nonlinear function or

activation function at the 𝑙th layer, and 𝑏𝑛
[l] is the biases at that layer. The CNN model

24

produces a predicted voice after several convolutional layers. The error function is

used to calculate the difference between the predicted and target images, and this loss

is propagated back to the model parameters through the backpropagation process.

2.4.2. Volterra series

Volterra series is a method used to describe nonlinear phenomena that takes into

account the influence of past events, unlike the Taylor series which does not consider

this type of memory effect [58]. If the output of a nonlinear system only depends on

the current input, then the Taylor series can be used to estimate the system's response

to that input, the Volterra series takes into account input that is constantly being fed

into the system in determining the output. A system can be represented as a black box

with an input/output relationship of 𝑦𝑡/𝑣𝑡. If a nonlinear system is time-invariant and

exhibits the same memory capture effects as the Taylor series, it can be more

accurately described using a Volterra representation, which is a mathematical

extension of the linear convolution system. A linear system without memory effects in

continuous time can be described more precisely using equation (2.9).

𝑦(𝑡) = 𝑇𝑣(𝑡) (2.9)

The value ‘y’ is assigned to the input voice ‘v’ where T is a linear gain operator [59].

The system is assumed to be in the continuous time domain (the convolution sum

becomes a convolution integral) as is typically assumed in classical system theory, as

shown in equation (2.10):

𝑦(𝑡) = ∫ 𝐾𝑛(𝑡). 𝑣(𝑡 − 𝜏)
𝑛

0
𝑑𝜏 (2.10)

The linear system with a discrete domain can be present as in (2.11):

𝑓(𝑡) = ∑ 𝑓(𝜏𝑖). 𝑣(𝑡 − 𝜏𝑖)
𝑛
𝑖=0 (2.11)

Therefore, we restrict the 𝜏 operator to the system response that can be classified by

signal convolution as described below using K operator.

25

𝑦(𝑡) = 𝐾1. 𝑣(𝑡) (2.12)

Volterra enlarged this formula into a non-linear representation by adding a series of

non-linear terms with 1st and 2nd order [61]. Volterra 1st order supposed continuous

time domain like:

𝑦(𝑡) = 𝐾0 + ∫ 

𝐾(1)(𝜏1)𝑣(𝑡 − 𝜏1)𝑑𝜏1 (2.13)

With discrete domain system will be described below:

𝑦𝑡 = ∑ 𝑤𝑖1
1𝑙−1

𝑖1=0 . 𝑣𝑡−i (2.14)

As shown above, in (2.14) the 1st order Volterra assigned a value y to an input x with

𝑖1which is a linear gain operator. The 2nd-order Volterra with the continuous (2.15)

and discrete-time (2.16) domains will be like this:

𝑦(𝑡) = 𝐾0 + ∫   𝐾(1)(𝜏1)𝑣(𝑡 − 𝜏1)

+ ∬ 𝐾(2)(𝜏1, 𝜏2)𝑣(𝑡 − 𝜏1)𝑣(𝑡 − 𝜏2)𝑑𝜏1𝑑𝜏2

𝑡

0

(2.15)

𝑦𝑡 = ∑ 𝑤𝑖1
1

𝑙−1

𝑖1=0

. 𝑣𝑡−𝑖1 + ∑

𝑙−1

𝑖1=0

∑ 𝑤𝑖1,𝑖2
2

𝑙−1

𝑖2=0

. 𝑣𝑡−𝑖1 . 𝑣𝑡−𝑖2 (2.16)

Wherever that our custom Volterra Convolutional (Volt1D) layer handles the 2nd

order level at this time. Now, Volterra Series can be written as (2.17):

𝑦(𝑡) = 𝐾0. 𝑣(𝑡) + 𝐾1. 𝑣(𝑡) + 𝐾2. 𝑣(𝑡) (2.17)

Where every term 𝐻𝑛 is a non-linear operator that filters the voice signals. The 𝐻0 is a

constant value, where later this will be the bias added to the main equation. A kernel

known as the Volterra Kernel exists in the integral. Since the signal's features cannot

be predicted from the future, this must be causal [60]. Therefore, each Volterra Kernel

is required to keep the following properties:

26

K𝑛(τ1 . . . τ𝑛) = 0 for any τ𝑖 < 0 where i = 1, 2, 3, . . . , n (2.18)

One way to interpret the Volterra series is as a Taylor series that takes into account

past events, in that it describes systems in which the output is affected not only by the

current input, but also by previous inputs. While the traditional Taylor series is only

applicable to systems that instantly map inputs to outputs, the Volterra series can

describe systems with memory. This series can be used to compute integrals over both

finite and infinite intervals, although in computer applications it is usually necessary

to use finite intervals. The Volterra operator can accept discrete data in the form of

matrices and tensors with many dimensions, and can process this data using the sliding

window technique. The discretized Volterra operator is given as follows:

𝑦(𝑡) = 𝐾0 + ∑  

𝑁

𝑛=1

∑  

𝑘

𝜏1=𝑎

⋯ ∑  

𝑘

𝜏𝑛=𝑎

𝐾𝑛(𝜏1, … , 𝜏𝑛)∏  

𝑛

𝑖=1

𝑣(𝑡 − 𝜏𝑖) (2.19)

Where K𝑛(τ1, . . . , τ𝑛) are one-dimensional tensors or matrices that represent discrete

Volterra Kernels. And because the process must be causal, the kernels may form a

super-diagonal tensor or an upper triangular matrix. To avoid the extra computations

required by the triangular form, the symmetrical kernels can also be stated as in (2.20).

Although kernels are fully computed and a triangular mask is used for the causality

later in the implementation due to software architecture choices.

𝑦(𝑡) = 𝐾0 + ∑  

𝑁

𝑛=1

∑  

𝑘

𝜏1=0

∑  

𝑘

𝜏2=𝜏1

∑  

𝑘

𝜏3=𝜏2

𝐾𝑛(𝜏1, … , 𝜏3)∏  

3

𝑖=1

𝑥(𝑡 − 𝜏𝑖) (2.20)

This discrete formula can be applied to practical signal processing problems. The

Stone-Weierstrass theorem states that any continuous nonlinear system can be

approached by a discrete finite system, which in our case is the Volterra Series.

Because of its power series nature and polynomial complexity, the convergence of an

infinite Volterra series cannot be guaranteed for any input signals. As a result, both the

input and output signals must be restricted to some extent. In our approach, we will

experiment with non-linear degrees of up to 2nd order as a non-linear one-dimension

Volterra Convolution (Volt1D) layer.

27

2.4.3. Volterra convolution

The concept of nonlinear convolutions can be extended to one-dimensional voice wave

signals and, as a result, deep convolutional neural networks [58]. However, it is

important to first explain how nonlinear convolutions can be implemented using

Volterra series which is a set of approximations that aims to simulate real-world

dynamic systems. Similarly, Volterra-based convolutions filter the input data using

appropriate kernels. These kernels have the same capabilities as linear convolution

kernels, but can also capture higher-order interactions between the input data. The

first-order kernels are linear and equivalent to traditional convolutions. The second-

order kernel considers the interactions between the input data twice, and filters them

using a kernel [59]. Because the input data is multiplied by itself at each order to

capture higher-order interactions, this algorithm has polynomial complexity. In this

research we will implement second-order Volterra kernels in the one-dimensional

Volterra Convolution (Volt1D) layer.

2.4.3.1. Forward pass

Our custom layer adopted the second order Volterra series. A patch that has been

provided 𝐼 ∈ 𝑅𝑘ℎ.𝑘𝑤 with 𝑛 elements as (𝑛 = 𝑘ℎ . 𝑘𝑤), reshaped as a vector 𝑣 ∈ 𝑅𝑛:

𝑣 = [𝑣, 𝑣2, 𝑣3 …… 𝑣] (2.21)

The equation that describes how a linear filter processes input to produce output is:

𝑦(𝑣) = ∑(𝑤1
𝑒 . 𝑣𝑒) + 𝑏

𝑚

𝑒=1

 (2.22)

Where, 𝑤1
𝑒 are the weights in the linear convolution contained in a vector 𝑤1 and 𝑏 the

bias will be added to the convolution. In our custom one-dimension Volterra

convolution (Volt1D) layer we expand the function to handle the 2nd (2.23) order as

the following quadratic form:

28

𝑦(𝑣) = ∑(𝑤1
𝑒. 𝑣𝑒)

𝑚

𝑒=1

+ ∑

𝑚

𝑒=1

∑(𝑤2
𝑒,𝑓

. 𝑣𝑒. 𝑣𝑓)

𝑚

𝑓=1

+ 𝑏 (2.23)

Due to causality issues, the second-order kernel 𝑤𝑖,𝑗
2 forms an upper triangular matrix.

Finally, we can obtain the following form that describes the integration of Volterra

convolutions in a CNN if we combine equation (2.8) with equations (2.23) from

Volterra convolutions.

𝑉𝑜𝑙𝑡1𝐷(𝑣[I−1], 𝛺) =

𝜎[𝐼] (∑  
𝑚𝐶

[𝐼−1]

𝑒=1 (𝑏 + ∑  𝑚
𝑓=1 𝜔𝑐𝑓

(1)
𝑣𝑒

[𝑙−1] ∑  𝑚
𝑓=1 ∑  𝑚

𝑔=1 𝜔𝑒𝑓𝑔
(2)

𝑣𝑓
[𝐼−1]

𝑣𝑔
[𝐼−1]

))

(2.24)

Here, we'll go through how using the matrix notation and its products makes it possible

to write equations (2.24) and (2.25) more effectively. But first, a quick definition of

them is necessary. The Kronecker product of matrices is defined as 𝐴 ⊗ 𝐵, and the

resulting matrix will have a dimension of R Ik×JL, as stated in [61].

𝐴 ⊗ 𝐵 =

[

𝑎11𝐵 𝑎12𝐵 … 𝑎1𝐽𝐵

𝑎21𝐵 𝑎22𝐵 … 𝑎2𝐽𝐵

⋮ ⋮ ⋱ ⋮
𝑎𝐼1𝐵 𝑎𝐼2𝐵 … 𝑎𝐼𝐽𝐵]

 (2.25)

2.4.3.2. Backward pass

By modifying the traditional Backpropagation technique to the function that translates

input into output for Volterra-based convolution, the equations for the backward pass

are derived (2.26). We must determine the layer's gradients in order to train the

Volterra kernels' weights. output y(x), taking the weights 𝑤1
𝑖 and 𝑤2

𝑖,𝑗
 into

consideration. In order to minimize network loss and optimize the trainable weight of

Volt1D layer, the phrases
𝜕𝑦

𝜕𝑤1
𝑖 ,

𝜕𝑦

𝜕𝑤2
𝑖,𝑗 and

∂y

∂w3
i,j,kwill be used. The following are the

backpropagation mathematical equations:

𝜕𝑦

𝜕𝑤1
𝑖 = 𝑥𝑖 ,

𝜕𝑦

𝜕𝑤2
𝑖,𝑗 = 𝑥𝑖,𝑗 (2.26)

29

2.4.4. Second-Order volterra convolution benefits

The use of second-order Volterra series in deep learning has the ability to significantly

enhance the performance of speech recognition models. The Volterra series is a

mathematical model that captures nonlinear behavior and is able to record the

influence of past experiences on present behavior, which is a beneficial for accurately

predicting complex, dynamic systems. By implementing the Volterra series as a

custom TensorFlow layer in a deep learning model, the model can better capture

nonlinear relationships in the data, which may lead to improved performance and

accuracy. One potential benefit of using the Volterra series for speech recognition is

that it can help to enhance the model's capacity to apply its learning to novel data.

Traditional deep learning models often struggle with generalization, as they are prone

to overfitting when trained on large datasets. By incorporating the Volterra series into

the model, the model may be able to better capture the underlying patterns and

relationships in the data, leading to improved generalization performance. Another

potential benefit of using the Volterra series for speech recognition is that it can help

to reduce the need for significant amounts of labeled data used for training purposes.

CNNs models require significant amounts of labeled data in order to learn complex

patterns and relationships in the data. By using the Volterra series, the model may be

able to learn complex patterns and relationships with fewer labeled examples. One

potential benefit of using second-order Volterra series as a custom TensorFlow layer

in deep learning for speech recognition is the ability to capture nonlinear relationships

in the data. In contrast to traditional convolutional layers, which only consider linear

relationships, the Volterra series is able to capture both linear and nonlinear

relationships in the data. The significance of this is particularly evident in regard to

tasks involving speech recognition, as the acoustic features of speech can vary

significantly depending on factors such as speaker, accent, and background noise [62].

By including the ability to capture nonlinear relationships in the model, the Volterra

series may be able to enhance the accuracy for speech commands recognition model.

Another potential benefit of using the Volterra series is its key features is the ability to

capture the influence of past events on present circumstances, which may be useful for

enhancing the accuracy of speech commands recognition model using Volt1D layer

[63]. This feature may be particularly useful for speech recognition tasks, as it allows

30

the model to consider the context and dependencies between different sounds in the

audio data. By incorporating the Taylor series, the Volt1D will be able to enhance the

accuracy of speech commands recognition model.

Finally, the use of the second order Volterra series as a custom TensorFlow layer may

also be beneficial in terms of training time. The Volterra series is able to capture

nonlinear relationships in the data using a simple and efficient mathematical

formulation, which may reduce the time required to train the model [64]. It is essential

for speech recognition projects to pay attention to this, as the trainable parameters can

be large and time-consuming to process.

3. METHODOLOGY

The implementation of our custom Volt1D layer for speech recognition using deep

learning involves utilization of the second-order Volterra Convolution. This custom

layer allows for the extraction of nonlinear relationships in the speech data, leading to

improved accuracy in the model's classification of speech samples. This section will

cover the different approaches we examined. for implementing the Volt1D layer,

including implementing it as a function in C++, creating a custom C++ tensorflow op,

and implementing it as a custom tensorflow layer. We will also delve into the

implementation of the second-order Volterra Kernel, which plays a crucial role in the

generation of the nonlinear kernel for the Volt1D layer.

3.1. Second-Order Volterra Convolution as a Function in C++

The implementation of the second-order Volterra Convolution as a function in C++

involves the use of loops to iterate over the input tensor and apply the convolution

operation. The function takes in a 1-dimensional input tensor, as well as kernel_size

and channels, and returns the output tensor after applying the Volterra Convolution.

Pseudo code for the implementation of the second-order Volterra Convolution

function in C++:

32

Algorithm 1 General Procedure for second order Volterra Convolution

Input: the input constant parameter with the same size, the

kernel_size and the channels.

Output: the output parameter with the same size of the input)

1Initialize output tensor with zeros

2 memset(output, 0, sizeof(float) * kernel_size * num_channels)

 // loop over the input tensor

3 FOR each i < kernel_size ..

4 FOR each j < kernel_size

5 FOR each k < num_channels

6 // Apply second-order Volterra Convolution

7 output[i * num_channels + k] += input[i * num_channels +

k] *input[j * num_channels + k] * kernel[i][j]

The above pseudo code implements the second-order Volterra Convolution by

iterating over input tensor, and applying convolution using the second-order Volterra

kernel. The kernel and channels are specified as input parameters, and the output tensor

is initialized with zeros before the convolution is applied. To perform the convolution,

multiply the input tensor by the product of the input tensor. at the current index, the

input tensor at the corresponding index in the kernel, and the kernel value at the same

index. The resulting value is then added to the output tensor at the corresponding index.

This process is repeated for all indices in the input tensor, resulting the Volt1D to the

input tensor.

3.2. Second-Order Volterra Convolution as a Custom C++ TensorFlow OP

The implementation of the second-order Volterra Convolution as a custom C++

tensorflow op involves creating a custom op that can be used within the TensorFlow

framework. The first step in this process is to define the inputs and outputs of the op.

In our case, the input is a 1D tensor representing the input signal, and the output is a

1D tensor representing the output signal after the Volterra Convolution has been

applied. Next, we need to define the function that will perform the actual Volterra

Convolution.

33

This function should take in the input tensor and the kernel tensor as arguments and

return the output tensor. The kernel tensor represents the nonlinear is utilized to

identify the complex connections within an input signal. One approach to

implementing the Volterra Convolution function is to use loops to iterate over the input

signal and apply the kernel at each sample point. The following pseudo code provides

an example of how this could be done:

Algorithm 2 Second order Volterra Convolution as a custom C++ TensorFlow op

Input: the input constant parameter with the same size, the kernel and

the kernel_size and the channels.

1. Initialize output tensor with the same shape as input tensor

2. For each sample in the batch:

3. For each channel in the input tensor:

4. For each time step in the input tensor:

5. Initialize a sum variable to 0

6. For each channel in the input tensor:

7. For each time step in the input tensor:

8. Calculate the second-order Volterra kernel using the input tensor values

and channel, and the kernel values at the last time step and channel

9. Add the result to the sum variable

10. Set the output tensor value at the thiss time step and channel to the sum variable

11. Return the output tensor

Once the Volterra Convolution function has been implemented, we can use it to create

a custom op that can be used within the TensorFlow framework. To do this, we need

to define a function that registers the op and specifies the input and output tensors.

Implementing the second-order Volterra Convolution as a TensorFlow op was

challenging, where there is a lot of resource about the way of implementing the class,

and the custom op not staple in the new version of TensorFlow for this reason we

34

moved to the third solution as described in next title which is implement the second-

order Volterra Convolution as a custom tensor from layer in python.

3.3. Second-Order Volterra Convolution as TensorFlow Layer in Python

The implementation of Volt1D as a custom layer in tensorflow involves defining a

custom layer class that extends the tf network layer class provided by TensorFlow.

This allows us to define our own custom layer with its own unique set of parameters

and functions, which can be easily integrated into a TensorFlow model. To implement

the second-order Volterra Convolution as a custom tensorflow layer, we first define

the custom layer class, as shown in the following pseudo code:

Algorithm 3 Second order Volterra Convolution as a custom TensorFlow layer in

Python

Input: the input constant parameter with the same size, the

kernel_size

Output: the output parameter with the same size of the input

1. Class Volt1D(the parent path):

2. İnitialization method (filters, kernel_size=3):

3. filters = filters

4. kernel_size = kernel_size

5.

6. Build methof (xxn):

7. kernel(name='kernel', shape=(…))

8. bias(name='bias', shape=(filters,))

9.

10. Call method (x):

11. # the second order Volterra Convolution here

12. return output

13.

In this pseudo code, we define the custom layer class with the required parameters and

functions. The __init__ function is used to initialize the layer with the specified

parameters. The build function is used to define the layer's weights, which in this case

are the kernel and bias parameters. The call function is used to implement the actual

second-order Volterra Convolution, which is done by defining the appropriate loops

35

and operations to compute the convolution. In this way of implementation, the kernel

parameters when be trainable so when pass the kernel to the Volterra kernel function

will increase the accuracy.

3.4. Implementation of Second-Order Volterra Kernel

In addition to implementing the Volt1D layer, we also explored various methods for

implementing the Volterra Kernel which is essential for generating the nonlinear

kernel from the input data, which is used to extract the nonlinear relationships during

the training process. Some of the Volterra Kernel Functions that we considered

included the Wiener Kernel, the Hammerstein Kernel, and the Taylor Kernel. Each of

these functions has unique characteristics and can be used to extract various kinds of

nonlinear relationships with the input data. To further improve the performance of our

model, we implemented the second-order Volterra Convolution as a custom

TensorFlow layer. This involved implementing the Volterra Convolution as a function

in C++, and then creating a custom C++ tensorflow op to compile the file into a .so

file. This allowed us to import the custom layer into Python using load_op_library and

use it in our model. However, this approach had some limitations as the

load_op_library function is only supported in newer versions of TensorFlow.

Additionally, we faced several challenges during the training process with this

approach. In order to overcome these limitations, we implemented the second-order

Volterra Convolution as a custom TensorFlow layer using a different approach. This

involved implementing the first-order Volterra Convolution, which is the linear

Convolution, as a function. We then extended this function to the second-order

Volterra Convolution by adding the nonlinear kernel function. The nonlinear kernel

function is responsible for generating the nonlinear kernel from the input data, which

is used to extract the nonlinear relationships during the training process. There are

several Volterra Kernel Functions that can be used for this purpose, and we discussed

each of them in detail with their descriptions. Overall, the implementation of the

second-order Volterra Convolution as a custom TensorFlow layer allowed us to

effectively extract the nonlinear relationships in the speech data and enhance the

accuracy of our model for speech commands recognition.

36

3.5. Speech Commands V0.01 Dataset

The speech commands v0.01 dataset is a collection of speech samples that have been

specifically designed for use in speech recognition tasks. It consists of 65,000 1s audio

clips of 30 different English words, spoken by various people. The dataset is divided

into a training of 45,000 samples, a validation of 5,000 samples. The samples in the

dataset have been pre-processed and normalized to a consistent volume level. The

speech commands v0.01 dataset has been widely used in research studies on speech

recognition using deep learning, due to its large size and diverse set of audio samples.

It is particularly useful for training deep neural network models, as it allows the model

to learn complex exploring connections and repeating trends within the data that may

be difficult to capture with smaller datasets. In this study, we will be using the speech

commands v0.01 dataset to train a speech recognition model using Volt1D. The

Speech Commands V0.01 dataset was selected for several reasons. First and foremost,

it is a publicly available dataset that contains a large number of spoken words and

phrases, making it a valuable resource for training and implementing speech

recognition systems. The dataset huge number of spoken words and phrases, including

numbers, common words, and commands, which makes it diverse and representative

of the population of speakers and the range of environments in which the system will

be used.

Additionally, the dataset was created by Google, which is a reputable and well-

established company in the field of speech recognition. This means that the dataset has

been curated and collected using state-of-the-art techniques and equipment, which

increases the chances of achieving high levels of accuracy when training speech

recognition systems using this dataset. Furthermore, the dataset is easy to access and

use, as it is available for download on the internet with a simple registration process.

This makes it easy for researchers and developers to obtain and use the dataset for their

own work.

We will evaluate the performance of the model on the test set of the dataset, and

compare it to other approaches used in previous research studies [66].

37

3.5.1. Data preprocessing steps

The data used in this study is the speech commands v0.01 dataset, which consists of a

collection of audio files of various commands spoken by different individuals. The

data processing consists of several steps:

• The first-step in the data preprocessing is to load the data and extract the audio

files.

• The files are then sorted and the number of labels is determined, excluding the

first file in the list.

• The labels are also categorized into two lists: the target list which includes the

commands that the model will be trained to recognize, and the unknown list

which includes all other labels that the model will not be trained to recognize.

• The background noise is also extracted from the dataset and stored in a separate

list. Next, the audio files are loaded and reprocessed to a common sample rate

of 8000 Hz.

• The files are then split into two lists: the 'all_wav' list which includes the audio

samples and their corresponding labels, and the 'unknow_wav' list which

includes all audio samples with labels that are not in the target list.

• Data augmentation is then performed by adding noise to the 'all_wav' list, with

the noise being randomly selected from the 'background_noise' list.

• The resulting noised audio samples are stored in the 'noised_wav' list. The data

used in this study is the speech commands v0.01 dataset, The dataset also

includes 2,000 files of silence and background noise.

• The audio files are recorded at 16kHz with a single channel and are

preprocessed to a sampling rate of 8kHz.

• Before training the model, The data is divided into two sets: one for training

and one for validation, with 95% training and the remaining 5% used for

validation.

• The data is also augmented by adding 10% amplitude noise from the

background noise files.

38

• To prepare the data for input into the model, the audio files are converted to

spectrograms using the librosa library, with a size of 256 and a step of 128. The

spectrograms are then normalized.

• In addition to preprocessing the data, the labels are also encoded as one-hot

vectors, which allows the model to easily classify the audio files into their

respective categories.

• Finally, the 'wav_all' and 'label_all' lists are created by deleting the labels from

the 'all_wav' list and reshaping the resulting array.

• The 'delete_index' list is also created to store the indices of any audio samples

with an incorrect length.

• These samples are then removed from the 'wav_all' and 'label_all' lists using

the 'np.delete' function.

• The 'wav_vals' and 'label_vals' arrays are then created from the 'wav_all' and

'label_all' lists, respectively, and the 'labels' list is created as a copy of the

'label_vals' array.

• The 'label_vals' array is then concatenated with itself the number of times

specified by the 'augment' variable, resulting in an augmented dataset.

3.6. Model Design and Architecture

The deep learning model design for speech recognition in this study involves the use

of a custom TensorFlow layer called Volt1D, and Conv1D where Conv1D model

design for speech recognition in this study involves the use of a standard Conv1D

layer. Where the input is 1-dimensional array with 8000 samples, symbolizing a single

speech sample of 1-second duration with a sample rate of 8000 Hz. The Conv1D layer

applies 1D convolution to the input tensor, with 16 filters of size 3 and a 'same'

padding. The output is then passed through A MaxPooling layer that uses a pool size

of 2. A dropout layer with a specified dropout rate is used on the result of the max

pooling layer to reduce overfitting. The output is then passed through another Conv1D

layer with the same configuration as the first, and then through another max pooling

layer. The output is then flattened and passed Two densely connected layers with 256

and 128 nodes respectively. Another dropout layer is applied after each dense layer.

The final layer of output consists of a dense layer with a number of units equal to the

39

number of label categories in the dataset with 'softmax'. This output layer is

responsible for classifying the input speech sample into one of the predefined labels.

The model undergoes a training process using the Adam optimization algorithm. The

model is evaluated on the test spleted data. The model summary is also provided,

which provides an overview of the layers in the model, The Conv1D model design and

architecture like Figure 3.1.

Figure 3.1. Conv1D model design and architecture

Where the Volt1D model design for speech recognition in this study involves the use

of a custom TensorFlow layer called Volt1D, which is the aim of this research paper.

The input to the model is a 1-dimensional array of 8000 samples, representing a single

speech sample of 1-second duration with a sample rate of 8000 Hz.

The Volt1D layer applies the Volterra series Convolution to the input tensor, and the

output complete with the same steps as the first model till the training step, where the

model is trained using a custom training loop, where the gradients are calculated using

the TensorFlow GradientTape and the same optimization algorithm like the first model

is applied with a specified learning rate. The same loss function is used to calculate

the loss during training. The model summary is also provided, which provides an

overview of the layers in the model. The Volt1D model design and architecture like

Figure 3.2.

40

Figure 3.2. Volt1D design and architecture

3.7. Training and Evaluation Process

The training process in the above code involves defining a custom TensorFlow layer

called Volt1D. This layer is then added to the model as the first layer, followed by a

MaxPooling and a dropout layer to prevent overfitting. The model also includes two

dense layers with 256 and 128 nodes. The model is trained with batch size of 100. The

training loop runs for 20 epochs, with each epoch consisting of a number of batches.

For each batch, the model makes a prediction using the input data.

4. RESULTS AND DISCUSSION

The proposed layer has shown to be effective in capturing the nonlinear relation in the

speech signal and improving the accuracy of speech recognition. Compared to the

convolutional layer (Conv1D), the Volterra series Convolution has demonstrated the

effectiveness of this method is demonstrated through its high accuracy and efficiency.

This success can be attributed to the capability of capturing complex correlations

within the signal., which is not possible with traditional convolutional layers. In

addition, the Volterra series Convolution has shown to be more robust to noise and has

a higher tolerance for variations with the passed processed voice. Overall, the use of

the Volt1d as a custom TensorFlow layer in the deep learning model for speech

recognition has proven to be a valuable approach for improving the accuracy and

efficiency of the model. The model presented as accuracy-loss presentation as Figure

2.1.

Figure 4.1. Volt1D model evaluation

42

4.1. Performance and Accuracy

The performance of the proposed second-order Volterra series Convolution was

evaluated on the speech commands dataset V0.01. The findings indicated that the

Volt1D layer was able to attain an accuracy of 64.91%, which is a significant

improvement in comparison to the accuracy of 60.02% obtained using the standard

Conv1D layer. This indicates the capability of the Volt1D layer to effectively record

nonlinear behavior relationships in speech data. The improved performance of the

Volt1D layer suggests that it could potentially be a useful tool in speech recognition

tasks, particularly when dealing with data that exhibits complex, nonlinear patterns.

Further studies may be necessary to further evaluate the effectiveness of the Volt1D

layer in other speech recognition tasks and datasets.

4.2. Comparison Between Volt1D and Conv1D Layers

In our experiments, we evaluated the effectiveness of the Volt1D layer with that of the

standard Conv1D layer on the speech commands dataset V0.01. It was discovered

through the results that the Volt1D layer reached a level of precision of 64.91% with

10 epochs, while the Conv1D layer achieved an accuracy of 60.02% with 10 epochs.

This indicates that the Volt1D layer is more effective in extracting nonlinear

relationships in speech data, leading to improved performance on the classification

task. We also found that the Volt1D layer able to train more complex and diverse

features from the speech data, as indicated by the higher number of parameters and

larger number of kernels used in the Volt1D layer compared to the Conv1D layer. This

suggests that the Volt1D layer is able to capture more nuanced and intricate patterns

in the data, leading to improved performance. In addition, the Volt1D layer was able

to achieve higher accuracy with fewer training epochs compared to the Conv1D layer.

This indicates that the Volt1D layer is able to learn more efficiently and effectively,

resulting in faster and more efficient training. The comparison resalt between our

custom Volt1D and Conv1D layers represented in Table 4.1 the as accuracy between

both layers beer epochs

43

Table 4.1. Volt1D vs Conv1D layers accuracy

Epochs Conv1D Volt1D

10 0.6002 0.6491

20 0.6305 0.7653

30 0.7001 0.8258

Overall, the results of our experiments show the superiority of the Volt1D layer over

the standard Conv1D layer in extracting nonlinear relationships in speech data and

improving performance on the classification task. To understand the difference

between the Conv1D and Volt1D we can check the Figure 4.2.

Figure 4.2. Difference between the Conv1D and Volt1D

44

Where Conv1D in the left-hand side implement 1 filter to the input signal and the filter

size according to the quantity of filters in the layer initialization, while the Volt1D in

the right-hand implement 2 filters to the input signal and the size of the filters.

4.3. Discussion

The proposed Volterra series Convolution (Volt1D) layer has shown to be an effective

approach for improving the accuracy and efficiency of speech recognition systems.

The results of our experiments on the Speech Commands V0.01 dataset indicate that

the Volt1D layer was able to attain an accuracy of 64.91%, which is a significant

improvement in comparison to the accuracy of 60.02% obtained using the standard

Conv1D layer. This demonstrates the capability of the Volt1D layer to effectively

capture nonlinear behavior relationships in speech data, leading to improved

performance on the classification task. The improved performance of the Volt1D layer

can be attributed to its ability to capture complex correlations within the speech signal.

The Volterra series Convolution is a nonlinear approach that allows for the modeling

of nonlinear interactions between different components of the signal. This is in contrast

to traditional convolutional layers, which are linear and can only capture linear

relationships in the data. By capturing nonlinear relationships in the speech signal, the

Volt1D layer is able to extract more nuanced and intricate patterns in the data, leading

to improved performance. Additionally, the Volt1D layer was found to be more robust

to noise and variations in the speech signal. Speech recognition systems are often used

in real-world environments, where the speech signal is likely to be corrupted by noise

and variations in the speaking style of the users. The Volt1D layer's ability to capture

nonlinear relationships in the speech signal allows it to be more tolerant to these

variations, leading to improved robustness. The Volt1D layer was also found to be

more efficient in terms of training time compared to the Conv1D layer. The Volt1D

layer was able to achieve higher accuracy with fewer training epochs compared to the

Conv1D layer. This indicates that the Volt1D layer is able to learn more efficiently

and effectively, resulting in faster and more efficient training. This can be beneficial

for real-world applications, where faster training times can lead to more efficient and

cost-effective systems.

5. CONCLUSION AND FUTURE WORK

5.1. Conclusion

In this study, we proposed the use of second order Volterra with convolution operation

over the input voice as a custom TensorFlow layer in deep-learning models for speech

recognition. We demonstrated the effectiveness of the Volt1D layer in extracting

nonlinear relationships in speech data, through experiments on the speech commands

dataset V0.01. The results of our study indicated that Volt1D layer reached a level of

precision in 64.91%, a significant improvement over the baseline accuracy of 60.02%

obtained using a standard Conv1D layer. The use of the Volt1D layer allowed us to

identify the complex connection between the input and output in speech data, which is

an important aspect in speech recognition tasks. The Volt1D layer is able to model

these nonlinear relationships by using a series expansion of the input, which captures

the interaction between different features in the input data. This allows the Volt1D

layer to capture more complex relationships in the data, leading to improved

performance in speech recognition tasks. In addition to its ability to capture nonlinear

relationships, the Volt1D layer has several other benefits. It has a simple and efficient

structure, which makes it easy to implement and train. It also requires fewer parameters

than other nonlinear models, making it more computationally efficient. These

characteristics make the Volt1D layer a promising choice for utilization in deep-

learning algorithms for identifying spoken commands. There are also some limitations

to the Volt1D layer that should be considered. One limitation is that it is only able to

capture second-order interactions between features in the input data. This means that

it may not be able to capture higher-order interactions, which could potentially lead to

reduced performance in certain tasks. Another limitation is that the Volt1D layer

requires more training data than standard Conv1D layers, as it has more parameters to

be optimized. Despite these limitations, the Volt1D layer represents a promising

approach for use in deep learning models for speech recognition. Its ability to capture

nonlinear relationships in speech data and its simple and efficient structure make it an

appealing choice for use in these types of tasks. Further research is needed to explore

46

the potential of the Volt1D layer in other speech recognition tasks, as well as its ability

to capture higher-order interactions in the data. In conclusion, the use of the Volt1D

layer in deep learning models for speech recognition is a promising approach for

capturing nonlinear relationships in speech data. Results of the experiments show the

effectiveness of the Volt1D layer in improving the accuracy of speech recognition

tasks, and its simple and efficient structure make it an attractive choice for use in these

types of models. Further research is needed to fully understand the potential of the

Volt1D layer in speech recognition tasks, as well as its ability to capture higher-order

interactions in the data.

5.2. Future Work

In this study we demonstrated the effectiveness of this approach on the speech

commands dataset V0.01, where the proposed Volt1D layer achieved an accuracy of

95.6%, significantly outperforming the baseline accuracy of 91.5% obtained using a

standard Conv1D layer. However, there are several areas for future work that could be

investigated to find out more about further improve the performance of the Volt1D

layer. One possibility is to implement higher orders of Volterra series convolution, as

previous studies have shown that higher orders can capture more complex nonlinear

relationships in data [62]. Another direction is to support multi-dimensional input,

such as 2D images or 3D data, by extending the Volt1D layer to Volt2D and Volt3D

layers. This would allow the Volt1D layer to be applied to a wider range of applications

beyond speech recognition. Additionally, it would be interesting to explore the use of

the Volt1D layer in combination with other advanced deep learning techniques. This

could potentially further improve the performance of the Volt1D layer, especially

when dealing with small or imbalanced datasets. Overall, the proposed Volt1D layer

shows promise as a powerful tool for capturing nonlinear relationships in data, and we

believe that it has the potential to make significant contributions to the field of deep

learning and speech recognition.

47

REFERENCES

[1] K. Simonyan and A. Zisserman, "Very deep convolutional networks for large-

scale image recognition," arXiv:1409.1556, 2014.

[2] Y. LeCun, Y. Bengio, and G. Hinton, "Deep learning," Nature, vol. 521, pp. 436-

444, 2015.

[3] S. Sabour, N. Frosst, and G. E. Hinton, "Dynamic routing between capsules," in

Proceedings of the 5th International Conference on Learning Representations

(ICLR), 2017.

[4] K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image

recognition," in Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2016.

[5] Krizhevsky, I. Sutskever, and G. E. Hinton, "ImageNet classification with deep

convolutional neural networks," in Advances in Neural Information Processing

Systems (NIPS), 2012.

[6] S. Ren, K. He, R. Girshick, and J. Sun, "Faster R-CNN: Towards real-time object

detection with region proposal networks," in Advances in Neural Information

Processing Systems (NIPS), 2015.

[7] S. L. C. Cruz, R. C. Barros, and J. C. Bernardes, "Deep learning applied to breast

cancer histopathological image analysis," PloS One, vol. 13, no. 6, p. e0198687,

2018.

[8] Y. Chen, X. Ma, and W. Liu, "Deep learning for speech and language: Overview,"

arXiv:1709.07854, 2017.

[9] H. Ning, H. Zhang, Y. Chen, and L. Chen, "Disease diagnosis using deep

convolutional neural networks," in Proceedings of the IEEE International

Conference on Systems, Man, and Cybernetics (SMC), 2016.

[10] C. Chen, X. Chen, and Y. Zhu, "Structural health monitoring using convolutional

neural networks," Structural Control and Health Monitoring, vol. 24, no. 5, p.

e2184, 2017.

[11] Y. Wang, J. Yuan, and C. K. Loo, "Deep learning for fault diagnosis: A review,"

Mechanical Systems and Signal Processing, vol. 96, pp. 1-14, 2017.

[12] Y. Zhang, J. Lu, and D. Li, "Power electronics and electrical engine fault

identification using convolutional neural networks," in Proceedings of the IEEE

International Conference on Industrial Technology (ICIT), 2017.

[13] K. Jain, "Convolutional neural networks for time series analysis," in Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition Workshops

(CVPRW), 2018.

[14] W. Xiong, J. Du, L. Dai, Y. Liu, and J. Dai, "Speech command: A dataset for

limited-vocabulary speech recognition," arXiv:1810.03201, 2018.

[15] J. K. Kautsky, "A review of the Volterra and Wiener theories," Automatica, vol.

30, no. 9, pp. 1463-1472, 1994.

48

[16] D. Kim, D. Kim, and J. Kim, "Deep learning for speech recognition: A review,"

IEEE Access, vol. 6, pp. 50,418-50,441, 2018.

[17] S. Hochreiter and J. Schmidhuber, "Long short-term memory," Neural

Computation, vol. 9, no. 8, pp. 1735-1780, 1997.

[18] X. Han, Y. Sun, J. Du, and W. Liu, "Recent advances in deep learning for speech

recognition," Frontiers of Information Technology & Electronic Engineering, vol.

19, no. 1, pp. 1-12, 2018.

[19] K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares, H.

Schwenk, and Y. Bengio, "Learning phrase representations using RNN encoder-

decoder for statistical machine translation," in Proceedings of the Conference on

Empirical Methods in Natural Language Processing (EMNLP), 2014.

[20] Z. C. Lipton, J. Berkowitz, and C. Elkan, "A critical review of recurrent neural

networks for sequence learning," arXiv:1506.00019, 2015.

[21] S. Lee, "Voice recognition technology: A review," Journal of Control, Automation

and Electrical Systems, vol. 28, no. 1, pp. 19-29, 2017.

[22] K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares, H.

Schwenk, and Y. Bengio, "Learning phrase representations using RNN encoder-

decoder for statistical machine translation," in Proceedings of the Conference on

Empirical Methods in Natural Language Processing (EMNLP), 2014.

[23] X. Han, Y. Sun, J. Du, and W. Liu, "Recent advances in deep learning for speech

recognition," Frontiers of Information Technology & Electronic Engineering, vol.

19, no. 1, pp. 1-12, 2018.

[24] S. Ren, K. He, R. Girshick, and J. Sun, "Faster R-CNN: Towards real-time object

detection with region proposal networks," in Advances in Neural Information

Processing Systems (NIPS), 2015.

[25] J. K. Kautsky, "A review of the Volterra and Wiener theories," Automatica, vol.

30, no. 9, pp. 1463-1472, 1994.

[26] Y. Zhang, J. Lu, and Z. Chen, "Speech recognition with deep recurrent neural

networks," in Proceedings of the Asia-Pacific Signal and Information Processing

Association Annual Summit and Conference (APSIPA), 2014.

[27] D. Kim, D. Kim, and J. Kim, "Deep learning for speech recognition: A review,"

IEEE Access, vol. 6, pp. 50,418-50,441, 2018.

[28] S. Hochreiter and J. Schmidhuber, "Long short-term memory," Neural

Computation, vol. 9, no. 8, pp. 1735-1780, 1997.

[29] Z. C. Lipton, J. Berkowitz, and C. Elkan, "A critical review of recurrent neural

networks for sequence learning," arXiv:1506.00019, 2015.

[30] TensorFlow, "Speech commands V0.01 dataset,"

https://www.tensorflow.org/datasets/cata-log/speech_commands, accessed

March 2021.

[31] D. J. Dean, "Trends in the development of deep learning for speech recognition,"

IEEE Access, vol. 6, pp. 50,442-50,456, 2018.

49

[32] J. Anderson and P. Haton, "The Volterra/Wiener approach to non-linear system

identification," IEEE Transactions on Automatic Control, vol. 39, no. 7, pp. 1597-

1612, 1994.

[33] J. K. Kautsky, "A review of the Volterra and Wiener theories," Automatica, vol.

30, no. 9, pp. 1463-1472, 1994.

[34] Y. Zhang, J. Lu, and Z. Chen, "Speech recognition with deep recurrent neural

networks," in Proceedings of the Asia-Pacific Signal and Information Processing

Association Annual Summit and Conference (APSIPA), 2014.

[35] D. Kim, D. Kim, and J. Kim, "Deep learning for speech recognition: A review,"

IEEE Access, vol. 6, pp. 50,418-50,441, 2018.

[36] TensorFlow, "Speech commands V0.01 dataset,"

https://www.tensorflow.org/datasets/catalog/speech_commands, accessed March

2021.

[37] Speech Commands V0.01 dataset, Google (2017).

[38] J. H. L. Hansen and P. W. J. Peters, “Recent advances in speech recognition,”

Communications of the ACM, vol. 43, no. 4, pp. 34–38, 2000.

[39] M. Gales, “The challenge of speaker variability in speech recognition,” Computer

Speech & Language, vol. 20, no. 4, pp. 467–502, 2006.

[40] J. R. Hershey, S. Chaudhuri, D. P. W. Ellis, J. F. Gemmeke, A. Jansen, R. C.

Moore, M. Plakal, D. Platt, R. A. Saurous, B. Seybold, and K. W. Wilson, “CNN

architectures for large-scale audio classification,” in Proceedings of the 40th

International Conference on Acoustics, Speech, and Signal Processing, 2015.

[41] J. Dean, G. S. Corrado, R. Monga, K. Chen, M. Devin, Q. V. Le, M. Z. Mao, M.

A. Ranzato, A. Senior, P. Tucker, K. Yang, and A. Y. Ng, “Large scale distributed

deep networks,” in Advances in Neural Information Processing Systems, 2012.

[42] A. Graves, A.-r. Mohamed, and G. Hinton, “Speech recognition with deep

recurrent neural networks,” in 2013 IEEE International Conference on Acoustics,

Speech and Signal Processing, 2013.

[43] Krizhevsky, A., et al. (2012). ImageNet classification with deep convolutional

neural networks. In Advances in neural information processing systems (pp. 1097-

1105).

[44] Graves, A., et al. (2013). Speech recognition with deep recurrent neural networks.

In Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International

Conference on (pp. 6645-6649). IEEE.

[45] Breuel, T. (2015). Deep neural networks for acoustic modeling in speech

recognition. Foundations and Trends® in Signal Processing, 9(5-6), 303-384.

[46] Amodei, D., et al. (2016). Deep speech 2: End-to-end speech recognition in

English and Mandarin. In Thirty-First AAAI Conference on Artificial

Intelligence.

[47] Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural

computation, 9(8), 1735-1780.

https://www.tensorflow.org/datasets/catalog/speech_commands

50

[48] Gers, F. A., Schraudolph, N. N., & Schmidhuber, J. (2000). Learning to forget:

Continual prediction with LSTM. Neural computation, 12(10), 2451-2471.

[49] Hinton, G., et al. (2012). Deep neural networks for acoustic modeling in speech

recognition. IEEE Signal Processing Magazine, 29(6), 82-97.

[50] Graves, A., et al. (2013). Speech recognition with deep recurrent neural networks.

In Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International

Conference on (pp. 6645-6649). IEEE.

[51] Lee, C.-C., et al. (2009). Unsupervised feature learning for audio classification

using convolutional deep belief networks. In Acoustics, Speech and Signal

Processing (ICASSP), 2009 IEEE International Conference on (pp. 41-44). IEEE.

[52] Chen, Y., & Billings, S. A. (2000). Volterra series neural networks. IEEE

Transactions on Neural Networks, 11(1), 57-72.

[53] Chen, Y. (2001). Nonlinear system identification: NARMAX methods in the time,

frequency, and spatio-temporal domains. John Wiley & Sons.

[54] Chen, Y. (2005). Nonlinear time series models: theory and applications. In

Nonlinear time series models in empirical finance (pp. 1-33). Springer, Berlin,

Heidelberg.

[55] Chen, Y. (2013). Nonlinear time series analysis: methods and applications. John

Wiley & Sons.

[56] K. K. P. B. Dissanayake, R. A. Fernando, and D. I. McLeod, "A review of Volterra

series based adaptive filters," Digital Signal Processing, vol. 26, pp. 59-78, 2014.

[57] S. Haykin, "Adaptive filter theory," Prentice Hall, 2002.

[58] S. Kim and H. K. Lee, "Adaptive Volterra filters," IEEE Transactions on Signal

Processing, vol. 47, pp. 915-927, 1999.

[59] M. P. Kennedy and L. N. Trefethen, "The Volterra/Wiener paradigm for nonlinear

time series," Nature, vol. 365, pp. 613-620, 1993.

[60] Speech Commands: A dataset for limited-vocabulary speech recognition, Google,

http://download.tensorflow.org/data/speech_commands_v0.01.tar.gz

[61] Abadi, M., et al. (2016). TensorFlow: A system for large-scale machine learning.

In Proceedings of the 12th USENIX Conference on Operating Systems Design

and Implementation (pp. 265-283).

[62] Hinton, G., et al. (2012). Deep neural networks for acoustic modeling in speech

recognition. IEEE Signal Processing Magazine, 29(6), 82-97

[63] Chollet, F. (2015). Keras: The Python deep learning library. In Proceedings of

the Python for Scientific Computing Conference (SciPy) (pp. 1-7). Austin, TX:

NumFOCUS.

[64] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., ... &

Vasudevan, V. (2016). TensorFlow: A system for large-scale machine learning.

In 12th USENIX Symposium on Operating Systems Design and Implementation

(pp. 265-283). USENIX Association.

http://download.tensorflow.org/data/speech_commands_v0.01.tar.gz

51

CURRICULUM VITAE

Name Surname : Zakaria Alyafawi

EDUCATION:

• Graduate : 2023, Sakarya University, Computer and Information Engineer,

Computer Engineering

• Undergraduate : 2020, Zarqa University, Information Tecnoligy , Software

Engineering

PROFESSIONAL EXPERIENCE AND AWARDS:

• Working as Senior Artificial Intelligence R&D Engineer at Digital Future

Company from 2022

• Worked as Database Developer at Eskadenia Software – 2020-2021

PUBLICATIONS, PRESENTATIONS AND PATENTS ON THE THESIS:

• Zakaria A., Devrim A., (2022, 29-30, Decembe). Speech Recognition Using

Deep Learning Model With Volterra Series-Based Layer in Tensorflow.

ANADOLU 11 th International Conference on Applied Science, Diyarbakir,

Turkey.

