Abstract:
All-solid-state lithium-ion batteries are considered the next-generation energy storage systems. However, certain problems arise from the degradation of anode-electrolyte interface hindering their use especially when lithium is used as an anode. Herein, lithium metal anode surface is modified by an artificial 2H-MoS(2)layer to prevent the contact between highly reactive lithium and solid electrolyte without sacrificing the lithium ion transport. The stabilization of the electrode/electrolyte interface is attributed to the electrochemical stability of the 2H-MoS(2)layer. Besides, high ionic conductivity and selective sieving nature of layered MoS(2)neither prevents the electrochemical reactions nor increases the total impedance of the cell. Electrochemical stability of the electrode/electrolyte interface is shown by long-term chronoamperometry and chronovoltammetry tests. By stabilizing electrode/electrolyte interface, initial and final discharge capacities of 675.8 and 584.1 mAh g(-1), respectively, is obtained at 0.4 mA cm(-2)current density in MoS2@Li/Li7P3S11/S. After 200 cycles, discharge capacity fade is obtained as 13.58% and 27.3% for the cells assembled with MoS2@Li and bare Li anodes, respectively.