dc.date.accessioned |
2021-06-04T08:06:07Z |
|
dc.date.available |
2021-06-04T08:06:07Z |
|
dc.date.issued |
2021 |
|
dc.identifier.issn |
2214-7853 |
|
dc.identifier.uri |
https://hdl.handle.net/20.500.12619/95635 |
|
dc.description |
Bu yayının lisans anlaşması koşulları tam metin açık erişimine izin vermemektedir. |
|
dc.description.abstract |
Due to their versatility and local optima avoidance ability, meta-heuristic optimization techniques have been applied to various nonlinear engineering problems over the last decay. This paper presents a modified Ant Colony Optimization (ACO) Algorithm based controller for Maximum Power Point Tracking (MPPT) of a stand-alone photovoltaic (PV) system. ACO algorithm is modified to track the maximum power point with rapid pace and accuracy. MATLAB (R)/SIMULINK (R) environment is used for modelling of modified ACO based MPPT controller. Simulation results demonstrate the effectiveness of modified ACO based MPPT controller for MPPT tracking in standalone PV system performance. (C) 2020 Elsevier Ltd. All rights reserved. |
|
dc.language |
English |
|
dc.language |
İngilizce |
|
dc.language.iso |
eng |
|
dc.publisher |
ELSEVIER |
|
dc.rights |
info:eu-repo/semantics/closedAccess |
|
dc.title |
A novel modified ant colony optimization based maximum power point tracking controller for photovoltaic systems |
|
dc.type |
Proceedings Paper |
|
dc.identifier.volume |
38 |
|
dc.identifier.startpage |
89 |
|
dc.identifier.endpage |
93 |
|
dc.relation.journal |
MATERIALS TODAY-PROCEEDINGS |
|
dc.identifier.wos |
WOS:000621177500018 |
|
dc.identifier.doi |
10.1016/j.matpr.2020.06.020 |
|
dc.contributor.author |
Phanden, Rakesh Kumar |
|
dc.contributor.author |
Sharma, Lalit |
|
dc.contributor.author |
Chhabra, Jatinder |
|
dc.contributor.author |
Demir, Halil Ibrahim |
|
dc.relation.publicationcategory |
Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı |
|