Abstract:
In this study, we obtain the real representations of elliptic biquaternion matrices. Afterwards, with the aid of these representations, we develop a general method to solve the linear matrix equations over the elliptic biquaternion algebra. Also we apply this method to the well known matrix equations X - AXB = C and AX - X B = C over the elliptic biquaternion algebra. Then, we give some illustrative numerical examples to show how the aforementioned method and its results work. Furthermore, we provide numerical algorithms for all the problems considered in this paper. Elliptic biquaternions are generalized form of complex quaternions and so real quaternions. This relation is valid for their matrices, as well. Thus, the obtained results extend, generalize and complement some known results from the literature.
Description:
Bu yayın 06.11.1981 tarihli ve 17506 sayılı Resmî Gazete’de yayımlanan 2547 sayılı Yükseköğretim Kanunu’nun 4/c, 12/c, 42/c ve 42/d maddelerine dayalı 12/12/2019 tarih, 543 sayılı ve 05 numaralı Üniversite Senato Kararı ile hazırlanan Sakarya Üniversitesi Açık Bilim ve Açık Akademik Arşiv Yönergesi gereğince açık akademik arşiv sistemine açık erişim olarak yüklenmiştir.