Abstract:
The exclusive features of two-dimensional (2D) semiconductors, such as high surface-to-volume ratios, tunable electronic properties, and biocompatibility, provide promising opportunities for developing highly sensitive biosensors. However, developing practical biosensors that can promptly detect low concentrations of target analytes remains a challenging task. Here, a field-effect-transistor comprising n-type transition metal dichalcogenide tin disulfide (SnS2) is developed over the hexagonal boron nitride (h-BN) for the detection of streptavidin protein (Strep.) as a target analyte. A self-designed receptor based on the pyrene-lysine conjugated with biotin (PLCB) is utilized to maintain the sensitivity of the SnS2/h-BN FET because of the pi-pi stacking. The detection capabilities of SnS2/h-BN FET are investigated using both Raman spectroscopy and electrical characterizations. The real-time electrical measurements exhibit that the SnS2/h-BN FET is capable of detecting streptavidin at a remarkably low concentration of 0.5 pm, within 13.2 s. Additionally, the selectivity of the device is investigated by measuring its response against a Cow-like serum egg white protein (BSA), having a comparative molecular weight to that of the streptavidin. These results indicate a high sensitivity and rapid response of SnS2/h-BN biosensor against the selective proteins, which can have significant implications in several fields including point-of-care diagnostics, drug discovery, and environmental monitoring.
Description:
Bu yayın 06.11.1981 tarihli ve 17506 sayılı Resmî Gazete’de yayımlanan 2547 sayılı Yükseköğretim Kanunu’nun 4/c, 12/c, 42/c ve 42/d maddelerine dayalı 12/12/2019 tarih, 543 sayılı ve 05 numaralı Üniversite Senato Kararı ile hazırlanan Sakarya Üniversitesi Açık Bilim ve Açık Akademik Arşiv Yönergesi gereğince açık akademik arşiv sistemine açık erişim olarak yüklenmiştir.