Açık Akademik Arşiv Sistemi

On uniformly 1-absorbing primary ideals

Show simple item record

dc.contributor.authors Naji, Osama A.; Gunduz, Abuzer; Ozen, Mehmet; Tekir, Unsal
dc.date.accessioned 2024-02-23T11:13:50Z
dc.date.available 2024-02-23T11:13:50Z
dc.date.issued 2023
dc.identifier.issn 0033-3883
dc.identifier.uri http://dx.doi.org/10.5486/PMD.2023.9266
dc.identifier.uri https://hdl.handle.net/20.500.12619/101880
dc.description Bu yayının lisans anlaşması koşulları tam metin açık erişimine izin vermemektedir.
dc.description.abstract In this article, we introduce the concept of uniformly 1-absorbing primary ideal which is a generalization of uniformly primary ideal. Let R be a commutative ring with a unity and P be a proper ideal of R. P is said to be a uniformly 1-absorbing primary ideal if there exists N is an element of N such that whenever xyz is an element of P for some nonunits x, y, z is an element of R, we have either xy is an element of P or z(N) is an element of P. The smallest aforementioned N is an element of N is called the order of P and denoted by ord(R)(P) = N. In addition to giving many properties of uniformly 1-absorbing primary ideals, we investigate the relationship between uniformly 1-absorbing primary ideals and other classical ideals such as uniformly primary ideals and 1-absorbing primary ideals.
dc.language.iso English
dc.relation.isversionof 10.5486/PMD.2023.9266
dc.title On uniformly 1-absorbing primary ideals
dc.type Article
dc.identifier.volume 102
dc.identifier.startpage 81
dc.identifier.endpage 93
dc.relation.journal PUBL MATH DEBRECEN
dc.identifier.issue 1-2
dc.identifier.doi 10.5486/PMD.2023.9266
dc.identifier.eissn 2064-2849
dc.contributor.author Naji, OA
dc.contributor.author Gündüz, A
dc.contributor.author Özen, M
dc.contributor.author Tekir, Ü
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record