Açık Akademik Arşiv Sistemi

A closer-look at lithium strontium boro-fluoride glasses doped with CeO2 and Yb2O3 ions: Synthesis, radiation shielding properties, and prediction of density using artificial intelligence techniques

Show simple item record

dc.date.accessioned 2023-08-02T13:26:51Z
dc.date.available 2023-08-02T13:26:51Z
dc.date.issued 2023
dc.identifier.uri https://www.scopus.com/inward/record.uri?eid=2-s2.0-85145255632&doi=10.1016%2fj.optmat.2022.113338&partnerID=40&md5=ebb93e7fe078e0542fa373d769f932a9
dc.identifier.uri https://www.scopus.com/inward/record.uri?eid=2-s2.0-85145255632&doi=10.1016%2fj.optmat.2022.113338&partnerID=40&md5=ebb93e7fe078e0542fa373d769f932a9
dc.identifier.uri https://hdl.handle.net/20.500.12619/101327
dc.description Bu yayının lisans anlaşması koşulları tam metin açık erişimine izin vermemektedir.
dc.description.abstract Eight glasses with chemical compositions (50-x)B2O3–28SrF2–22Li2O-xCeO2-xYb2O3 (x = 0 (CY0), 0.025 (CY1), 0.05 (CY2), 0.075 (CY3), 0.10 (CY4), 0.20 (CY5), 0.50 (CY6), and 1 (CY7) mol%) were synthesized using the melt quenching process. Density of the prepared glass was measured experimentally by Archimedes' principle. It was varied from 2.4582 g cm-3 to 4.6587 g cm-3. The density prediction based on the chemical composition of the glass and experimental density as inputs for various machine learning algorithms has been investigated. The Polynomial regression successfully fit the glass data and best density prediction obtained at 10-degree polynomial with R2 values 0.8726. The Artificial neural network also predicted the glass data using different activation functions and best density prediction obtained for tanh activation function with R2 = 0.8740 which a best regression values compare to polynomial fit. The Random forest regression (RFR) predicted the best density prediction compare to other Artificial intelligence models and predicted values are very close the experimental values with R2 = 0.985 which is best fit for the glass data. © 2022 Elsevier B.V.
dc.language English
dc.language.iso eng
dc.relation.isversionof 10.1016/j.optmat.2022.113338
dc.subject Artificial intelligence
dc.subject Density
dc.subject Ionic packing ratio
dc.subject Rare earths glasses
dc.title A closer-look at lithium strontium boro-fluoride glasses doped with CeO2 and Yb2O3 ions: Synthesis, radiation shielding properties, and prediction of density using artificial intelligence techniques
dc.title A closer-look at lithium strontium boro-fluoride glasses doped with CeO2 and Yb2O3 ions: Synthesis, radiation shielding properties, and prediction of density using artificial intelligence techniques
dc.type Article
dc.identifier.volume 135
dc.contributor.department Sakarya Üniversitesi, Fen Fakültesi, Fizik Bölümü
dc.relation.journal Optical Materials
dc.identifier.doi 10.1016/j.optmat.2022.113338
dc.contributor.author Alrowaili Z.A.
dc.contributor.author El-Hamalawy A.A.
dc.contributor.author Ahmmad S.K.
dc.contributor.author Lasya S.V.S.B.
dc.contributor.author Al-Buriahi M.S.
dc.contributor.author Rammah Y.S.
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record