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ABSTRACT Computer vision and deep learning approaches have an important role in industrial inspection
systems. Computer vision technology is essential for fast, defect-free control of products in the production
line. The importance of the computer vision concept is recognized when the problems of the classical
methods are taken into consideration. Metallic defect detection is a challenging problem as metal surfaces
are easily affected by environmental factors such as lighting and light reflection. Since traditional detection
algorithms are inefficient in complex problems, we propose a novel method to detect and classify metal
surface defects, such as cracks, scratches, inclusion, etc. The type and location of defects were detected by
the Faster Regional Convolutional Neural Network (Faster R-CNN), combined with the Shape From Shading
(SFS) method, which can extract surface characteristics. The Northeastern University (NEU) surface defect
database was used for defective samples. The proposed algorithm has also been tested on an unlabeled dataset
(KolektorSDD2/KSDD2) to show labeling performance. The results on both labeled and unlabeled datasets
have demonstrated state-of-the-art performance in automatic defect detection, classification, and labeling.
The proposed method has satisfactory results for the detection of defects on the metal surface, and the mean
average precision is 0.83. The average precision of crazing, pitted surface, patches, scratches, inclusion, and
rolled-in scale are 0.98, 0.81, 0,90, 0.79, 0.88, and 0.62, respectively.

INDEX TERMS Deep learning, metal surface, shape from shading, faster r-cnn.

I. INTRODUCTION
Nowadays, the need for automatic defect detection systems
has been increasing in the production phase. Identifying the
defects of products and determining their location is a nec-
essary quality control process. It is also crucial to quickly
identify the defect type and defective area in terms of quality
control performance.

In many industrial applications, defects commonly occur
on textile, metallic, and glass surfaces. Since metal sur-
faces are easily affected by environmental factors such as
lighting and reflection of light, metallic defect detection is
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a complex problem. Metal surfaces may have various defects
such as crazing, patches, inclusion, scratches, pitted surface,
and rolled-in scale. In real-time metallic defect detection
systems, fastness and high accuracy positively affect the pro-
duction phase.

Today, human inspectors are still used to detect defects as
a traditional method in the manufacturing process. Computer
vision techniques are frequently used in production systems
for quality control to increase production speed, reduce error
rates and prevent human errors such as fatigue and distraction.
Morever, the labeling process carried out before the training
is still done manually. Defect regions must be individually
labeled when classifying with Faster R-CNN before the train-
ing process. Automating this process is vital in industrial
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FIGURE 1. The Framework of the proposed methodology.

control systems, as it is very time-consuming to label the
dataset one by one. This study aims to automate the label-
ing process and save time by synthesizing and using SFS
and Deep Learning methods. In order to achieve successful
performance in object recognition and classification appli-
cations with Faster R-CNN, a large number of labeled
data is needed in the training process. For example, the
NEU and KolektorSDD2 datasets used in this study contain
1800 and 3335 images, respectively.While manually labeling
the images takes a long time, automating it with SFS yielded
considerably better outcomes in a lot less period.

A. CONTRIBUTION
In this study, a novel method is aimed at detecting vari-
ous defect types that may occur on the surfaces of metal
components. Furthermore, automatic labeling of defective
areas of images taken from the NEU and KSDD2 datasets,
identified by Shape From Shading (SFS) methods which can
infer surface characteristics. Thus, manually labeling large
datasets can be performed automatically, avoiding the time-
consuming workload.

Moreover, it was intended to avoid human errors such
as fatigue and absenteeism during labeling the positions of
defects.More precise labeling of the defect locations was pro-
vided. Images processed with SFS were classified by Faster
R-CNN, which has been popular recently and has yielded
successful results.

The article is organized as follows: Section 1 explains the
motivation and contribution of our study, Section 2 mentions
the related works, Section 3 describes the basic methodology,
and Section 4 explains the experiments and summarizes the
results. Finally, the conclusion and future works are discussed
in Section 5.

II. RELATED WORKS
Various image processing methods have recently been used
for surface defect detection. The autocorrelation method [2],
the gray-level co-occurrence matrix [3], the morphological
methods [4] and the histogram feature statistics [5] which
are used to describe texture properties; Fourier, Gabor and
wavelet feature method [6], [7] which finds the textural struc-
ture of the image; the fractal body model [8], backscattering
model [9] and random field model [10] used to define texture
patterns by modeling other features with specific models
are image processing methods used for surface defect detec-
tion. These traditional methods cannot detect texture defects
involving complex textures or any new defect type. Various
machine learning techniques such as Bayesian network clas-
sifiers [11], Principal Component Analysis (PCA) [12],
Support Vector Machines (SVM) [13], Random forest [14],
and Self-Organizing Maps (SOM) [15] were also used to
detect and classify surface defects.

Traditional image processing methods require multiple
thresholds that target various imperfections in algorithms
that are often very sensitive to background colors lighting
conditions, and light reflection. Furthermore, these thresholds
need to be adjusted again when a new problem occurs. For
this reason, CNN-based algorithms are preferred, and more
successful results are obtained thanks to the developments in
artificial intelligence. In the last few years, CNN has been
widely used for defect detection, which can directly learn
some robust features from the labeled images of surface
defects and achieve a high recognition rate. Lin et al. [16]
proposed a multi-scale cascade CNN called MobileNet-v2-
dense to detect defects. Yi et al. [17] proposed a defect
detection system for steel strip surfaces based on CNN.
Saliency map and image segmentation were used to detect the
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FIGURE 2. NEU-CLS [1].

defective area. Kim et al. [18] used Siamese Neural Network
using CNN structure, which can detect defects with a small
number of images. Zhou et al. [19] conducted a study on
the classification of surface defects on hot-rolled steel sheets
using CNN. The system’s robustness was tested by adding
Gaussian noise to the images with different SNR values.
Soukup and Huber-Mork [20] performed a CNN classifica-
tion using photometric stereo images for steel rail surface
defect detection. The gaps in the dark areas on the rail sur-
face were made visible by different colored light sources.
Amin and Akhter [21] used two deep learning methods,
including U-NET and Deep Residual U-NET, to detect
defects on steel surfaces and divided the images into five
different classes. Lv et al. [22] created a new dataset called
GC10-DET containing ten defect types for metallic surface
defect detection. They also proposed a defect detection sys-
tem based on the Single Shot MultiBox Detector. They com-
pared the proposed method with classical machine learning
methods and deep learning methods using the NEU-DET
and GC10-DET datasets. Li et al. [23] conducted a study of
real-time steel strip surface defect detection using the YOLO
network. They developed the YOLO network and made it all
convolutional. The network they developed includes 27 con-
volution layers. Fu et al. [24] studied steel strip surface defect
detection using transfer learning. They used the previously
trainedVGG16 to extract features and CNN for classification.
They also performed accuracy analysis by adding Gaussian

noise at different SNR levels to the images. Lee et al. [25]
proposed an approach to detect steel defects using a CNN
with class activation maps (CAMs). They expanded the CNN
defect detection model to support a real-time visual process
instead of a simple classification task.

In this study, automatic labeling of defective areas of
images taken from the NEU and KSDD2 datasets identified
by SFS and classified by Faster R-CNN, which has been
popular in recent years and has given very successful results.

III. METHODOLOGY
A. SHAPE FROM SHADING
3D reconstruction, which aims to generate depth information
and corresponding surface shapes using the various clues
given in the images, is an exciting subject in computer vision.
One of the most important clues that provide accurate infor-
mation about 3D shapes is the spatial pattern of light reflected
from surfaces, known as shading [26], [27], [28].

Shape from shading (SFS) tries to figure out how the inten-
sity variations observed on the surfaces of objects provide
information about the local surface by using shading as a clue.
SFS methods are classified differently in the literature based
on the solution search methods [29], [30].

SFS methods are used in many applications, including
creating surface topographies, biometric studies, the recon-
struction of medical images, surface inspection, and defect
detection [31]. When appropriate lighting conditions are
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FIGURE 3. SFS Detection and Labeling on KolektorSDD2.

FIGURE 4. a) Original Dataset labeling (Manual labeling) b) More precise
labeling of defects using the SFS algorithm.

commonly used in quality control systems, SFSmethods may
function on a single image and produce successful results.

The scene’s surface can be described in terms of functions
as Z (x, y).The relationship between observed image intensity
I (x, y) and surface slopes (p = dz/dx, q = dz/dy) can be
expressed using image irradiance equivalence as follows.

I(x,y) = R(p,q) (1)

As shown below, the relationship between normal and
surface slopes can also be expressed in terms of surface
gradients.

n(n1,n2,n3) =
1√

1+ p2 + q2
[−p,−q, 1]T (2)

In this study, an algorithm that creates depth maps based
on the defect type was developed using the Frankot &
Chellappa [33] method, which is classified in minimization
approaches. The algorithm assumes that the surface Z (x, y)
can be represented as a linear combination of basis functions.
A finite set of basis functions represents a potentially nonin-
tegrable estimate of surface slopes, and the orthogonal pro-
jection onto a vector subspace spanning the set of integrable
slopes is used to enforce integrability [33]. The nonintegrable
gradient field is projected onto a set of integrable slopes using
Fourier basis functions [34].

The basis function chosen significantly impacts the solu-
tion, and the discrete Fourier basis is widely used due to its
computational efficiency [35]. In our equations, we use the
discrete Fourier basis. The final output Z can be written as

Z = F−1
{
−

j
2π
.

u
N F {p} +

v
M F {q}

( uN )
2
+ ( vM )2

}
(3)
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FIGURE 5. The Structure diagram of Faster R-CNN [32].

DFT and inverse DFT operations are represented with
F {.} and F−1{.}, respectively.

B. OBJECT DETECTION AND FASTER R-CNN
Object detection and object recognition, indispensable ele-
ments of digital image processing applications, have been
studied for many years, and various techniques and methods
have been developed. Viola-Jones was the first algorithm to
detect objects in digital images effectively. Thanks to the
developments in graphics processing units (GPU) and deep
learning, methods that can detect and identify objects with
greater accuracy have been developed in recent years. Object
detection is essential, and this stage’s success also affects
the next steps. Object detection can generally be defined as
the prominence of the object in the video images and the
separation of the object to be processed from the background.

In object detection studies, first R-CNN and then Fast
R-CNN structure emerged. The Faster R-CNN [40], the
widely used version today, first appeared in 2015. In the
R-CNN family, variations between versions are often related
to computational efficiency, reduced test time, and perfor-
mance improvement (mAP).

Object recognition networks typically consist of the
following components:

a) a region proposal algorithm for creating ‘‘bounding
boxes’’ of the positions of possible objects in the image.
Usually, the properties of these objects are obtained
using a CNN,

b) A layer of classification to predict which class this
object belongs to,

c) A regression layer is to be more precise in the coordi-
nates of the bounding box.

CPU-based region suggestion techniques are used in
both R-CNN and Fast R-CNN. The Faster R-CNN gener-
ates region recommendations using another convolutional
network, which reduces the region suggestion time from
2 seconds per image to 10 milliseconds.

As can be seen from Figure 5, the Faster R-CNN archi-
tecture consists of RPN (Region Proposal Network) as the
region suggestion algorithm and Fast R-CNN as the detector
network.

In Faster R-CNN, the first CNN is applied, and a feature
map is created. In the region suggestions section, instead of
selective region search, regions are selected by creating a
separate region suggestion network.

The Faster R-CNN model uses a ‘‘Region Proposal Net-
work’’ network while creating the recommended regions.
This algorithm makes a ‘‘sliding window’’ and hovers over
the feature map created in the convolution layer. And it
assumes an object in each zone and assigns neutral scores to
the zones. This process is done by looking at criteria such as
adjacent pixels, color, and density. Then, a new feature map
is created using the ‘‘ReLU’’ activation function. The rest are
almost identical to Fast R-CNN

C. PROPOSED METHODOLOGY
The developedmethod aims to combine the powerful capabil-
ities of SFS and Faster R-CNN methods. In addition, it aims
to automate the training stages by automatically labeling the
defect regions. Initially, depth maps obtained using the SFS
method and image processing techniques are used to detect
the defective areas on metal surface images. Using the Faster
R-CNNmethod, a defect detection model is trained for newly
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TABLE 1. NEU dataset comparison table with existing work.

FIGURE 6. (a) Loss Value and (b) Classification Loss.

labeled data to classify and detect defective areas automati-
cally. The developed framework is presented in Fig. 1.

Training images are first presented as input to the SFS
method. Then, the depth maps (‘‘Evaluating depth maps’’ in
Fig 1.) are obtained with the help of Equation 3 using image
gradients.With different parametric thresholding on the depth
maps, the masks and measurements of the image defect
regions can be determined on a pixel basis. The set of prop-
erties for each 8-connected component in the binary image is
evaluated, and the min-max locations of all objects (defective
areas) in each mask are specified. The bounding box bound-
aries of the defective regions (xmin, xmax , ymin, ymax) and the
related width and height values are stored in structures. The
information about the image and all the defective regions are
then converted to the Pascal VOC XML annotation format.

Moreover, a comparison strategy is executed after theXML
files are generated for each image. The comparison step has
been added to examine the defects detected outside and inside
of the ground truth. The original ground truth boundary boxes
offered by the datasets and the boundary boxes produced
using SFS are compared, and the model accuracy is analyzed.
The obtained new defect labels (‘‘Auto and more precise
labeling’’ in Fig 1.) and input images are processed with

Faster R-CNN and used in the training steps. A new model
was created for detecting defects and the results were dis-
cussed in the experimental results section.

IV. EXPERIMENTS
A. DATASETS
The NEU dataset contains six different types of defects:
rolled-in scale (Rs), inclusion (In), patches (P), pitted sur-
face (Ps), crazing (Cr), and scratches (Sc). Collected defects
are on the surface of the hot-rolled steel strip. The dataset
has 1800 grayscale images and contains 300 samples in each
surface defect class. As seen in Figure 2, the NEU dataset [1]
has six different types of surface defects, with each image
having a 200 by 200 pixels resolution.

This study detected defects on the metal using SFS and
Faster R-CNN. SFS algorithm, which can infer surface char-
acteristics, was used to determine the location of defects
on metal surface images from the NEU dataset. As seen in
Figure 4, more sensitive labeling can be achieved by using
SFS. Faster R-CNNwas used to classify the images processed
with SFS, which has become popular recently years and has
produced very successful results.
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FIGURE 7. Detection and classification of defective areas.

Detecting defects on metal parts is a complex problem as
metal surfaces are easily influenced by environmental factors
such as lighting and light reflection. In our study, for the label-
ing process of 1800 images, instead of manually marking,
the defective areas were labeled using the SFS method. The
dataset consisting of labels has been given as an introduction
to the Faster R-CNNmodel. 80% of the NEU Surface dataset
was used in training, while 20%was used in testing. Themean
average precision of our study is 0.83 using 1440 data for the
training set and 360 data for the test set.

The SFS algorithm has also been tested on the Kolek-
tor Surface Defect Dataset (KolektorSDD2/KSDD2) to test
SFS’s labeling performance. KSDD2 consists of the different
types of unlabeled and unclassified defects (scratches, minor
spots, surface imperfections, etc.) that occur on the metal sur-
face. It has 356 images with defects and 2979 images without
defects. Each image size is 230 x 630 pixels. Dataset was
divided as the train set with 246 (defect) and 2085 (without
defect) images, the test set with 110 (defect) and 894 (without
defect). In this dataset, only mask images are given as ground
truth. The results are shown in Figure 3. As seen in the last
column in Figure 3, the defective areas on the input images are
effectively detected and labeled in detail. In addition, since
the degree of sensitivity can be adjusted parametrically, SFS
can obtain more sensitive results.

B. EXPERIMENTAL RESULTS
The Faster R-CNN model, an approach based on CNN archi-
tecture, was used in our study. The application was run on
a computer with Intel i7 4700HQ processor and NVIDIA R©

GeForce R© GTX 850M graphics card. Training of the NEU
dataset lasted 12 hours on 1440 labeled defective images.

As a result of our training process, the loss graph was
generated. At step 112000, the overall loss decreases to 0.4,
as shown in Figure 6(a). The loss is greater than 1.2 in the
early stages of training. The loss rapidly decreases as the
training progresses, as seen in the graph. Loss graph for
Bounding Box Classifier, as shown in Figure 6(b). At step
112000 epoch, the classification loss approaches 0.1.

Figure 7 shows some image samples as an example for
the test. Labels indicate the regions identified as defects and
the type of defects (crazing, inclusion, patches, etc.). The
numbers on the labels show the probability of defect type in
the labeled area as a percentage. This study detected defective
areas on metal surfaces using Faster R-CNN with SFS.

The ratio of overlap between the predict box and the ground
truth box is represented by the intersection-over-union (IoU)
ratio. When a predicted box’s IoU reaches its maximum
value, we assign it a positive label; when it falls below 0.5,
we assign it a negative label; and the remaining regions are
disregarded.

Precision (P) measures the accuracy of the model predic-
tion, and Recall (R) measures the ability of the model detec-
tion for positives. Precision and recall values are calculated
using the following formulas.

P =
TP

TP+ FP
(4)

R =
TP

TP+ FN
(5)
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where FP, TP, and FN represent false positive, true positive,
and false negative, respectively.
AP and mAP: Mean Average Precision (mAP) is a metric

for evaluating object detection models. It is the mean of the
Average Precision (AP). Table 1 shows the comparison table
with the existing studies of the NEU dataset, and the results
of Faster R-CNN and YOLOv5 algorithms used as hybrids
with SFS are also shown. YOLO and Faster R-CNN have
certain similarities. They both use boundary regression and
use network structures based on anchor boxes. The way that
YOLO performs classification and bounding box regression
simultaneously sets it apart from Faster R-CNN. However,
YOLO does have a drawback with object detection. Since
only two anchor boxes in a grid can accurately anticipate
one class of object, YOLO has trouble detecting objects that
are small and close to one another. As seen in Table 1, the
proposed method (SFS-Faster R-CNN ) gives the best mAP
result.

According to Table 1, crazing has the highest average
accuracy, while pitted surfaces are second, with values that
can reach 0.96 and 0.93, respectively. The overall mean
average accuracy is 0.83, and the average accuracy for the
‘‘rolled-in scale’’ is the lowest at 0.71. Figure 7 shows defects
such as inclusions, patches, pitted surfaces, rolled-in scale,
and scratches that can be accurately detected and located.
In addition, applying the SFS-Faster R-CNN algorithm to the
Kolektor dataset yielded 0.83 mAP, whereas SFS-YOLO v5
yielded 0.82 mAP.

V. CONCLUSION AND FUTURE WORKS
Detectingmetallic defects is challenging asmetal surfaces are
easily affected by environmental factors such as lighting and
light reflection. In this study, a novel defect detection method
was developed and applied on metal surface images. This
recognition system performs admirably in terms of detecting
defect regions and recognizing defect categories.

SFS method was used to identify the defect regions more
clearly and strengthen the training phase, and Faster R-CNN
was used to determine the type and location of the defect. For
defective samples, the NEU Surface database was used. 80%
of the 1800 images dataset was used in training, while 20%
was used in testing. It was also tested on the KSDD2 dataset
in order to show labeling performance. As a result of the
adaptive integration of SFS and the Faster R-CNN method,
0.83%mAPwas obtained. The performance of the developed
method was compared with other methods in the literature.

The SFS method generally processes a single image with
a single illumination system. Future studies may focus on
systemswithmultiple illuminations and input images, such as
photometric stereo. Using this method, defect detection stud-
ies can be performed for different surface materials (textile,
glass, etc.). In addition, the proposed trained model can be
accessed via a web interface, enabling online defect detection
for users. The Mask R-CNN model can also be applied to
extend Faster R-CNN to label the category to which each
pixel in the image belongs.
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