SAU Fen Edebiyat Dergisi (2011-1) Y.P.APAKOV
AMS. 35G15

THE MIXED BOUNDARY VALUE PROBLEM FOR A

THIRD ORDER EQUATION WITH MULTIPLE
CHARACTERISTICS

Yu.P.Apakov
Namangan Engineering-Pedagogical Institute
8, Ziyokor str., Namangan 160103, Uzbekistan
E-mail: apakov.1956@mail.ru

ABSTRACT

In the paper, the boundary wvalue problem is considered for equation
Uxxx—Uyy =0 in the domain DZ{(X; y); O<x<a;0< y<b}.
Uniqueness of the stated problem is proved by the method of energy integral. The
solution is constructed by the Fourier method. Eigenvalues and eigenfunctions
are found for a problem of Sturm-Louville’s type.

Key words: mixed boundary value problem, multiple characteristics, method of
energy integral.

OZET
Bu makalede, D= {(X; y) ;0<x<a;0<y< b} bolgesinde
U —U,, = Oesitligi icin sinir deger problemi incelenmistir. Ortaya konulan

problemin tekligi enerji integrali metoduyla ispatlanmistir. Bu coziim Fourier
metoduyla kurulmustur. Ozdegerler ve 6zfonksiyonlar Sturn-Louville tipli bir
problem icin bulunmugtur.

Anahtar Kelimeler: karigik sinir deer problemi, coklu karakteristikler, enerji
integralinin metodu.

1. Introduction

Consider the equation

Uxxx—Uyy =0 1)
in the domain D={(x; y); 0<x<a; 0<y<b}.
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First works devoted to the equation (1) were papers of Italian
mathematics H. Block [6] and E. Del Vecchio [12,13]. Then their results

were generalized in the paper by L. Cattabriga [7] where he constructed

fundamental solutions and developed the theory of potentials. Later,
various boundary value problems were studied in [1]-[2] using
fundamental solutions constructed in [7].

Some local boundary value problems for the equation (1) were
constructed in [3]-[5] where solutions were constructed using the Fourier
method.

2. Statement of the problem

We study the following boundary value problem for the equation (1) in
the domain D.

Problem A . To find a regular solution U (X, y) € Cf; (D)an; (B)Of

the equation (1) in the domain D satisfying the boundary conditions
aU (x,0) + x,0)=0,
( ) ﬂUY( ) O<x<a,

J(x,b) +8U,(x,b)=0,
U (0Y) =a(y), U(ay) =o(y), Un.(ay) =a(y), 0<y<b )
whereat, 3, ¥, 8 are constants such that o + > #0, y* +6° #0 and
functions @, e ct [0, b], ]=13 ¢, ¢ c? [0, b], o (0) =@ (b),i =123

Note that Problem A, was considered at @ =y =1, f=6=0

2)

3] at f=0=1L a=y=0 in [4], and an analogous problem was

considered in [5].
3. Uniqueness of the solution

Theorem 1. If ¢f<0, 6 =20, then the homogeneous problem

Aa has not more than one solution.
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Proof. Suppose the opposite, ie. let y (x,y) and U,(x,y) be

solutions of Problem A, . Then U(x,y)=U,(xy)-U,(xy) is the

solution of the homogeneous problem.

Consider the identity
ﬁ(uuxx —lujj—ﬁ(uuy)wj =0.
OX 2 oy

Integrating it in D and taking into account homogeneous boundary

conditions, we obtain

1 b a a

EJ;UXZ(O, y)dy—J;U (x,b)Uy(x,b)dx+£U (X,O)Uy(x,O)dx+ng(x, y)dxdy =0-
Requiring @ #0, ¥ #0 in (2), we have

—_[U Oydy——jU xb dx—— jU xO dx+”U xydxdy 0.

Taking into account conditions of theorem, we obtain
Uy(X, y)=0 , e U(X, y)= f(X). Uy(X,O)ZO therefore
U(X,O)ZO ,  hence, f(X)EO or U(x,y)=0 . If a0,
0#0, f#0, y#0, then we also have U (X, y) =

4. Existence of the solution

Consider the following subsidiary problem: to find a non-zero solution of

the equation (1) satisfying conditions (2) which is represented in the form

U(xy)=X(x)Y(y). (4)
Substituting (4) in (1) and separating the variables, we obtain
Y"+AY =0, (5)

X"+ AX =0. (6)
We have from (5) and (2) the problem of Sturm-Louville’s type:

Y"+AY =0,

Y (0)+Y'(0), )

7 (b)+6Y'(h).
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It is known [10] that eigenvalues of the parameter A, for the

problem (7) exist only at 4 >0, the corresponding general solution has

the form
Y(y)=C, cos\/Ay+C,sin/ay
where C,, C, are arbitrary constants.

Satisfying the conditions of the problem (7), we obtain the transcendental

equation for determination of A :

v = ay+ Aop .
ctgJAy 770 —ad) 8)

Putting & =Jb, we have

P +P¢
RS

where P =ayb®, P, =98, P, =b(7ﬁ—a5).

Rewrite this equation as the system

ctge =

n=_ctgé
,7=F1+_Pzé:1(ﬂ+p2§} ©
RS RL¢S

Then points of intersection of two curves give the eigenvalue

n

1
A =F§2. The first curve is the graph of 77 =Ctg& at £>0, and the

second one is a hyperbola.

We conclude that the system (9) has infinite set of roots and these

roots are real and different, ie. A4 —A #0if m#n and A, >4, as

N>m. Thus, {ln} form an increasing sequence.
These roots are 0<¢& <% and & =& +(n-1)7, n=12,3,....

Then eigenvalues have the form 4 = b_lz [ &+(n-1) ”]z .

Corresponding eigenfunctions have the form
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Yn(y):(ozsin\/Zy—,B\/Zcos\/Zy)A1 (10)

where A1 are constants.

Let’s prove that the system of functions {Yn (y)} (10) of the problem (7)

is orthogonal in the segment [0, b] .

The orthogonality of the system (10) is proven as the work in

[11].
At N=m, without any loss of generality supposing A =1, we
obtain
b b
\2 (y)||2 = _|'Yn2 (y)dy :j(asin \/Zy—ﬁ\/Zcos\/Zy)z dy
0 0
1.5, 20 BA —a . af
—2(a b+ 424 b aﬁ)+—4\/Z sin2,/2,b+ : cos 2,/2,b.

The general solution of the equation (6) has the form
—k X lknx .
X, (x)=C,e "™ +e?" (C,,cosv,x+C,, sinv,x) (13)
. _\3 : .
where k=34 ,v, = 7kn, C., (| =1 2,3) are arbitrary constants.

Then the function

U, (xy) =X, (x)Y,(y)

satisfies the equation and conditions (2).
By virtue of linearity and homogeneity of the equation (1), the
sum of particular
Solutions
U(x,y) =D X, (X)Y,(y) (14)
n=1

will be also the solution of (1).
The function U (X, y), represented by the series (14), satisfies

conditions (2) since all the members of the series satisfy them.

Satisfying the boundary conditions (3), we obtain
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Uxx (O'y):(pl(y):

Ux(a,y)=¢2(y)=gx;(a)yn(y), (15)
)

UXX(a’ y):% (y):

Series (15) are represented the expansion of an arbitrary function

(Di(y), 1=1,2,3 eigenvalues of the problem (7). Members

X"(O), X! (a), X;’(a) are coefficients of this expansion. If functions

n
o, (y) are integrable in the segment [O,b], then the expansion (15)

behaves with respect to convergence like an usual Fourier

trigonometrical series [11].

For determining coefficients of (15), multiply it on Y, (y) and
integrate at limits [O,b], then taking into account orthogonality of the
system of functions Y, (y) , we obtain

1 ° 1 °

X1 (0)=—=[ o (n)Yn (n)dn, X},(a) =— [0, (n)Y, (n)dn,
[¥al o ¥l o
1 °
X (@)= [ 95 (1) ¥y (1) d1.
[¥al o
For convenience, introduce the notations
1% .
B = - (17)Y, dn, 1=123. 16
o IIYHIIZQ(D'(U) L(1)dn (16)

Then we obtain the system of algebraic equations for determinating

coefficients C,, (i =12, 3):
N

knzcln _%kr?CZn +7k§C3n = Bln
17)

n

KC et 4k e Ve ke si Tlc. =B
—K, me + ne CoSs vna+§ on T ne Sin vna+§ an = Dy

1 1
- Skna T Skea . VA
kZe*?C, —k’e2 COS(Vna_EjCZn —kZe? sm(vna—EJQn =B,

n*
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Calculations shows that

T
A:ﬁkfek"a[%—e 2 sin(v a—gj}to

Solving the system (17), substituting values of C,, in (14), we obtain the

solution of Problem A in the form

Z[ X)+ By, Dy, (X)+ By, Dy (X) ] Y, (¥ (18)
where
3 Ly am
Dln(x)=‘/§Akf{;ekn(a_x‘+e 2'ni@ X)COS(Vna—VnX)},

4| Ll ra-2x) —Kn af—x 3k,
D2n(x)=kA”|—e2 " Jsinvna e ‘ ‘sm(vna+sj+e2 sm(vn(a—x)—%j ;

D3, (x):f‘_e%kn[am cOs(Vna+Zj—ekn[a%X} {sm(vnaﬁ- 3]+e2k sm(vn (a—x)—g)ﬂ_

Let's prove the uniform convergence of the series (18) with
respect to both variables.

Let(XO, Yo ) be an arbitrary point of the domain D . Then

0 0

U (%Yo ) zsm 0 (% )Ya (Vo) + > BouDan (%6 )Ya (%) + " ByuDap (%)Y, () (19)

n=1 n=1

what follows

SCROE ICRACATEHESTES SCRACH LRCH IS o RACH[EHEN Ay
Denoting

‘9i(Xo’VO)ZiBinDin(XO)Yn(VO)'

we have "

[ (% ¥o)| < Z\an Yo)||D (%)],  i=1,2,3

Estimate |B, Y, (Y, )|:

.Y, ()| <[, (35 )Bul =, o)\wjmm(n)dn-

But
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Y yo)‘:‘asin\/ZyO —ﬂﬁcosﬁyo‘s|a|+|ﬂ|\/z.

Then we have

BinYn (yO )‘ <

2
Let's prove that the expression (‘a‘“L‘ﬂ‘\/Z ) is bounded at

v.If
Nn—o0:
2
(lal+1BNE ) o +2]ap|7, + £24,
Al Al
~ a’ +2|ap| 2, + f22,
T pa-a . af
2(a b+ %20 ozﬂ)+4\/Z sin2,/2,b+ > cos 2,/2,b
o’ 2laf]

wrar
zi( h- aﬁ) ( j_ aj/_]san\/_b+ cosz\/_b

We obtain from here

(et g

S

We conclude from this that for any 4 ,

|n n 'ng ‘dﬂ

Under made suppositions concerning ¢, (y), the following
inequalities
M. .
n n
hold (see [9]). Then
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2
n3

|BmYn(y0)|£n—22N, =13 [B,Y,(Y,)|<=N

where N =maxM,, i=123.

Now estimate the functions Din(x0): Calculations show that we

obtain the following

estimations:
1|1 kg%, ~o*n(3a—%)
D S | = n 2 ,
1 —kn fa+Xo —kn[Za—XO _ kn(a_xo)

|D2n(X0)|S—_ e +e +e s

J3k, A‘

- . -
1 —kn S8t% —kn[Za—xo ~~kn (a=%, )

|D3n(xo)|$—_ e +e +e :

NEQIN
where ) —
_ Bva
A:l+e 2 sin(va—zj.

2 6
Then
1

2 © 9 1 _ —=kn (3a—

|91(xo,y0)|s§|BlnYn(yO)||Dln(x0)|an:1:FN knz Z|[%e kn¥ o 2 n Xo)}
1 kX, +e—%kn (a=%)
SCINZZ 10

One can easily be convinced that the series &% (XO, yo) converges

absolutely. In exactly the same way, absolute convergence of other series

in (19) can be proved.
This implies that the series U (XO, yo) converges absolutely. By

virtue of arbitrariness of (XO, yo), the series (18) converges absolutely in
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the domain D . And what is more, derivatives with respect to both

variables converge since for derivatives with respect to X, the equalities

D“’>(x)s£kp*3 {(—1

1
— —skn (a—x
(: Sk )F’lekn(a X),o 2N )cos[vn(a—x)—pz}}

2

1 (51
va Hnfa—2x) 2"”{6‘ ZX] _ 2\ 7
pia (1) €2 sinv,a—e sin||v.x+= [+p=
" 3 3

D (x)< K — ,

2n
e

e 2@ ( _ _ﬁj_ z

e sin|| v, (a-x) 3)7P3

- T T
sinf|v,x+= |+ p=
H 3J 3} ,

hold.
For the functions Di(np) (X), I =1,2,3, the estimations

p-3 ~ Lk (3a-
Dfnp)(X)‘<k” [3 g X, o240l X)],

412
- ) L -
—kn| =a+x —kn[Za—x 1y aex
D(P) kpl e 2 Te te 2 n ( ) ’
o
- 1 1 Z
» | —Kn|Zat+x —kn[Za—x L a—x
D) (x LS v Lo 2@
(¥)]< f| 7
are valid where 0< X<aand p=123.
Estimate derivates with respect to X:
—Z[BmD'" 2D (X)+ By, Dyt (X) ]V, (y
| s (%0)][OF: ()] + 2 IBZM Yo ][Oz (%0 )| + IBsnn Yo [P (%)
21)
Then
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19!" XO yo Z Bm Dm yo)

o © _ 3a—
|19|"'(X0,y0)|SZlBinY(yO)”Din(Xo)l Zi o 1 anO n( A=)
n-1 n1 N |A|
L k% +ef%kn(3afxo)
=C,N> 2

wlis

This series converges that’s why the series 19{”( Xo yo) converges

absolutely. By the same way one can prove absolute convergence of other

o __0U _oU
series in (21). Since o =——, the absolute convergence of the second
X

derivative with respect to Y of the series (18) can beproved analogously.
In all the expressions Di(np) (X) for p=23, the identity

D (x)+4,D, (x)=0, i=12,3

is valid.

For the function D, (X) , the identity
Di,(0) Dj(a) Dj(a)| 100
D;,(0) Dj,(2) Di(a)|=[010
D, (0) Di(a) Dy(a)] (001

holds which is verified immediately.

Thus, we have proved the following

Theorem 2. If (pi(y)ecl[o,b], =13, goz(y)eCz[O,b], and

?, (0) =@ (b) =0, j=12,3, then the solution of Problem A, exists

and is represented by the series (18).
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Substituting values of B,, from (16) in (18), we obtain the

solution of Problem Aa in the form

U(xy) :iKl(X, y,n)¢1(77)df7+il<2(x, Y,71) 9, (n)dn+TK3(X, y.n) s (n)dn
where

= 1
Ki (X’ y‘ﬂ) = HZ:;, Din WYn (U)Yn (y)

n
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