ON THE GENERALIZED B-SCROLLS WITH P th DEGREE IN n-DIMENSIONAL MINKOWSKI SPACES AND STRICTION (CENTRAL) SPACES

Şeyda KILIÇOĞLU
Başkent Üniversitesi Eğitim Fakültesi, ANKARA
E-mail:seyda@baskent.edu.tr

Abstract

In this paper, generalized b-scrolls with $p^{\text {th }}$ degree are introduced in the n dimensional Minkowski space R_{1}^{n}. Asymptotic bundle and tangential bundle are defined. In the case of space-like or time-like Frenet vectors, the equation of central space is computed.

Keywords: B-scroll, time-like, ruled surfaces, central spaces.

n-BOYUTLU MİNKOWSKİ UZAYINDA P. DERECEDEN GENELLEŞTİRLMIŞ B-SCROLLAR VE STRİKSİYON(MERKEZ) UZAYLAR

ÖZET

Bu çalışmada, n-boyutlu Minkowski uzayında, p.mertebeden b-scrollar tanımlandı. Asimptotik ve teğetsel demetler yardımı ile Frenet vektörlerinin space-like veya timelike olması durumlarında oluşan merkez uzayın denklemi ifade edildi. Anahtar Kelimeler: B-scroll, time-like, regle yüzeyler, merkez uzaylar

1. INTRODUCTION

First of all b-scrolls were introduced in the 3-dimensional Minkowski space $R_{1}^{3},[1]$ and [2]. For an integer q with $0<\mathrm{q}<\mathrm{n}$, changing the first plus signs above to minus gives a metric tensor

$$
\left\langle v_{p}, w_{p}\right\rangle=-\sum_{i=1}^{q} v^{i} w^{i}+\sum_{j=q+1}^{n} v^{j} w^{j}
$$

of index q . The resulting semi-Euclidean space R_{q}^{n} reduces to R^{n} if $\mathrm{q}=0$. For $\mathrm{n}>2, R_{1}^{n}$ is called Minkowski n-space ,[3] . In the n-dimensional Minkowski space R_{1}^{n}, lorentz metric is

$$
\left\langle v_{p}, w_{p}\right\rangle=-v^{1} w^{1}+\sum_{j=2}^{n} v^{j} w^{j}
$$

In the n -dimensional semi-euclidean space R_{q}^{n}, if the Frenet vectors of curve $\eta(I)$ with arc length t are $V_{1}, V_{2}, \ldots, V_{r}$, the Frenet formulas can be given by the following equations

$$
\begin{aligned}
\dot{V}_{1} & =k_{1} V_{2} \\
& \vdots \\
\dot{V}_{j} & =-\varepsilon_{j-2} \varepsilon_{j-1} k_{j-1} V_{j-1}+k_{j} V_{j+1} \\
& \vdots \\
\dot{V}_{r} & =-\varepsilon_{r-2} \varepsilon_{r-1} k_{r-1} V_{r-1} .
\end{aligned}
$$

Here $\varepsilon_{i-1}=\left\langle V_{i}, V_{i}\right\rangle$ and $i \geq r$ for $k_{i} \neq 0$, [4] and [5].
In the n - dimensional Minkowski space, since the index q is 1 , only one of the $\varepsilon_{i-1}=\left\langle V_{i}, V_{i}\right\rangle, 1<i<r$, will take the value -1 . Here, since $\eta(I)$ is time-like curve, then V_{1} is a time-like vector. Hence, only $\varepsilon_{0}=-1$. As $V_{2}, V_{3}, \ldots, V_{r}$ are space-like, then $\varepsilon_{1}=\varepsilon_{2}=\varepsilon_{3}=\ldots=\varepsilon_{r-1}=+1$.

If V_{1} is a time-like vector, then the Frenet formulas can be given by the following matrix form ,

$$
\left[\begin{array}{l}
\dot{\mathrm{V}}_{1} \\
\dot{\mathrm{~V}}_{2} \\
\dot{\mathrm{~V}}_{3} \\
\dot{\mathrm{~V}}_{4} \\
\vdots \\
\dot{\mathrm{~V}}_{\mathrm{r}-2} \\
\dot{\mathrm{~V}}_{\mathrm{r}-1} \\
\dot{\mathrm{~V}}_{\mathrm{r}}
\end{array}\right]=\left[\begin{array}{lllllll}
0 & \mathrm{k}_{2} & 0 & 0 & \cdots & & \\
\mathrm{k}_{1} & 0 & \mathrm{k}_{2} & 0 & \ddots & & \\
0 & -\mathrm{k}_{2} & 0 & \mathrm{k}_{3} & \ddots & & \\
0 & 0 & -\mathrm{k}_{3} & 0 & \ddots & & \\
\vdots & \ddots & \ddots & \ddots & \ddots & & \\
\\
& & & & & 0 & \mathrm{k}_{\mathrm{r}-2} \\
& & & & & -\mathrm{k}_{\mathrm{r}-2} & 0 \\
0 & \cdots & & & & 0 & -\mathrm{k}_{\mathrm{r}-1} \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
\mathrm{k}_{\mathrm{r}-1} \\
\mathrm{~V}_{1} \\
\mathrm{~V}_{2} \\
\mathrm{~V}_{3} \\
\mathrm{~V}_{4} \\
\vdots \\
\mathrm{~V}_{\mathrm{r}-2} \\
\mathrm{~V}_{\mathrm{r}-1} \\
\mathrm{~V}_{\mathrm{r}}
\end{array}\right]
$$

Similary, if V_{2} is a time-like vector, then

$$
\left[\begin{array}{l}
\dot{\mathrm{V}}_{1} \\
\dot{\mathrm{~V}}_{2} \\
\dot{\mathrm{~V}}_{3} \\
\dot{\mathrm{~V}}_{4} \\
\vdots \\
\dot{\mathrm{~V}}_{\mathrm{r}-2} \\
\dot{\mathrm{~V}}_{\mathrm{r}-1} \\
\dot{\mathrm{~V}}_{\mathrm{r}}
\end{array}\right]=\left[\begin{array}{lllllll}
0 & \mathrm{k}_{2} & 0 & 0 & \cdots & & \\
\mathrm{k}_{1} & 0 & \mathrm{k}_{2} & 0 & \ddots & & \\
0 & \mathrm{k}_{2} & 0 & \mathrm{k}_{3} & \ddots & & \\
0 & 0 & -\mathrm{k}_{3} & 0 & \ddots & & \\
\vdots & \ddots & \ddots & \ddots & \ddots & & \\
\\
& & & & & 0 & \mathrm{k}_{\mathrm{r}-2} \\
0 & \cdots & & & & 0 & 0 \\
0 & & & & \mathrm{k}_{\mathrm{r}-2} & 0 & \mathrm{k}_{\mathrm{r}-1} \\
0
\end{array}\right]\left[\begin{array}{l}
\mathrm{V}_{1} \\
\mathrm{~V}_{2} \\
\mathrm{~V}_{3} \\
\mathrm{~V}_{4} \\
\vdots \\
\mathrm{~V}_{\mathrm{r}-2} \\
\mathrm{~V}_{\mathrm{r}-1} \\
\mathrm{~V}_{\mathrm{r}}
\end{array}\right]
$$

is the matrix form of the Frenet formulas. Similary, for each time-like vector V_{i}, matrix form of the Frenet formulas can be obtained.

Definition 1. In the n-dimensional Minkowski space $\mathrm{R}_{1}^{n}, \eta(I)$ is a timelike curve with arc length t. If the Frenet vectors are $\boldsymbol{V}_{1}, V_{2}, \ldots, V_{r}$, then

$$
S p \mathfrak{K}_{1}, V_{2}, \ldots, V_{p} \underset{j}{j} p<r<n
$$

is the time-like oskulator space with p th degree. In this case,

$$
\varphi\left(t, u_{p+1}, u_{p+2}, \ldots, u_{r}\right)=\eta(t)+\sum_{j=p+1}^{r} u_{j} V_{j}(t)
$$

is the parametrization of generalized $b-$ scroll with $p^{t h}$ degree.The directrix
of this generalized b-scroll with $p^{\text {th }}$ degree, is the time-like curve $\eta(I)$. That is $\dot{\eta}(t)=V_{1}$ is a time-like vector. The space-like generating space of generalized b-scroll with $p^{\text {th }}$ degree has span with subvectors

$$
\vec{V}_{\mathrm{p}+1}, \mathrm{~V}_{\mathrm{p}+2}, \ldots, \mathrm{~V}_{\mathrm{r}}
$$

Since this generating space is $\mathbf{~}-p_{-}$-dimensional, it can be shown by E_{r-p}. The dimension of this special surface b-scroll is $\left(-p_{-}+1\right.$.

Figure 1: The generalized b-scrolls with $p^{\text {th }}$ degree.

Let M be this surface whose ordered basis tangent vectors at the point $\eta(t)$ are given as follows:

$$
\begin{aligned}
\varphi_{t} & =\dot{\eta}(t)+\sum_{j=p+1}^{r} u_{j} \dot{V}_{j}(t)=V_{1}+\sum_{j=p+1}^{r} u_{j} \dot{V}_{j}(t) \\
\varphi_{u_{p+1}} & =V_{p+1} \\
\varphi_{u_{p+2}} & =V_{p+2} \\
\vdots & \\
\varphi_{u_{r}} & =V_{r} .
\end{aligned}
$$

Definition 2. In the n-dimensional Minkowski space R_{1}^{n}, the asymptotic bundle, [6], of generalized b - scroll with $p^{\text {th }}$ degree, is denoted by

$$
A(t)=\operatorname{Sp} \quad \forall_{p+1}, V_{p+2}, \ldots, V_{r}, \dot{V}_{p+1}, \dot{V}_{p+2}, \ldots, \dot{V}_{r} .
$$

Since

$$
\begin{aligned}
\dot{\mathrm{V}}_{\mathrm{p}+1} & =-\mathrm{k}_{\mathrm{p}} \mathrm{~V}_{\mathrm{p}}+\mathrm{k}_{\mathrm{p}+1} \mathrm{~V}_{\mathrm{p}+2} \\
\dot{\mathrm{~V}}_{\mathrm{p}+2} & =-\mathrm{k}_{\mathrm{p}+1} \mathrm{~V}_{\mathrm{p}+1}+\mathrm{k}_{\mathrm{p}+2} \mathrm{~V}_{\mathrm{p}+3}
\end{aligned}
$$

Then only the vector \dot{V}_{p+1} is linearly independent from vectors $V_{p+1}, V_{p+2}, \ldots, V_{r}$. On the other hand, the vectors $\dot{V}_{p+2}, \ldots, \dot{V}_{r}$ are dependent on the vectors $V_{p+1}, V_{p+2}, \ldots, V_{r}$. All these vectors are space-like vectors.

$$
V_{p}, V_{p+1}, V_{p+2}, \ldots, V_{r}
$$

is an orthonormal basis of $A(t)$ and $\operatorname{dim} A(t)=r-p+1$. The asymptotic bundle $A(t)$ is space-like because, unique time-like vector V_{1} of Frenet vectors is not an element of $A(t)$.

Definition 3. In the n-dimensional Minkowski space R_{1}^{n}, denote the tangential bundle, [6], of the generalized b-scroll with $p^{t h}$ degree, by

$$
\mathrm{T}(\mathrm{t})=\mathrm{Sp} \hat{\forall}_{\mathrm{p}+1}, \mathrm{~V}_{\mathrm{p}+2}, \ldots, \mathrm{~V}_{\mathrm{r}}, \dot{\mathrm{~V}}_{\mathrm{p}+1}, \dot{\mathrm{~V}}_{\mathrm{p}+2}, \ldots, \dot{\mathrm{~V}}_{\mathrm{r}}, \dot{\mathrm{\eta}}
$$

Since

$$
\begin{aligned}
\dot{\mathrm{V}}_{\mathrm{p}+1} & =-\mathrm{k}_{\mathrm{p}} \mathrm{~V}_{\mathrm{p}}+\mathrm{k}_{\mathrm{p}+1} \mathrm{~V}_{\mathrm{p}+2} \\
\dot{\mathrm{~V}}_{\mathrm{p}+2} & =-\mathrm{k}_{\mathrm{p}+1} \mathrm{~V}_{\mathrm{p}+1}+\mathrm{k}_{\mathrm{p}+2} \mathrm{~V}_{\mathrm{p}+3} \\
\vdots &
\end{aligned}
$$

only the two vectors $\dot{\eta}=V_{1}$ and \dot{V}_{p+1} are independent from vectors $V_{p+1}, V_{p+2}, \ldots, V_{r}$. The vectors $\dot{V}_{p+2}, \ldots, \dot{V}_{r}$ are dependent on the vectors $V_{p+1}, V_{p+2}, \ldots, V_{r}$. The vectors $V_{p+1}, V_{p+2}, \ldots, V_{r}$ are space-like, but $\dot{\eta}=V_{1}$ is time-like.

$$
\mathrm{V}_{1}, \mathrm{~V}_{\mathrm{p}}, \mathrm{~V}_{\mathrm{p}+1}, \mathrm{~V}_{\mathrm{p}+2}, \ldots, \mathrm{~V}_{\mathrm{r}}
$$

is the orthonormal basis vectors of $T(t)$ and $\operatorname{dim} T(t)=r-p+2 . T(t)$ is time-like because, the time-like vector V_{1} is an element of $T(t)$.

Definition 4. In the n-dimensional Minkowski space R_{1}^{n}, since dim $A(t) \neq \operatorname{dim} T(t)$, the generalized b-scroll with $p^{t h}$ degree and with time-like directrix, has not an edge space but, there is a striction (central) space, [6]. The dimension of this striction (central) space is $\mathbf{\$}-p_{\text {, }}$. Vectors V_{p+i}, for $1<i$, are space-like thus we can calculate the striction space as in the Euclidean space. That is, the position vectors of the striction space are the solutions of the differantial equation system, which has the following matrix form:

$$
\left[\begin{array}{c}
\dot{\mathrm{u}}_{\mathrm{p}+1} \tag{1}\\
\dot{\mathrm{u}}_{\mathrm{p}+2} \\
\dot{\mathrm{u}}_{\mathrm{p}+3} \\
\vdots \\
\dot{\mathrm{u}}_{\mathrm{r}-2} \\
\dot{\mathrm{u}}_{\mathrm{r}-1} \\
\dot{\mathrm{u}}_{\mathrm{r}}
\end{array}\right]=\left[\begin{array}{ccccccc}
0 & \mathrm{k}_{\mathrm{p}+1} & 0 & \cdots & & & 0 \\
-\mathrm{k}_{\mathrm{p}+1} & 0 & \mathrm{k}_{\mathrm{p}+2} & \ddots & & & \vdots \\
0 & -\mathrm{k}_{\mathrm{p}+2} & 0 & \ddots & & & \\
\vdots & \ddots & \ddots & \ddots & & & \\
& & & & 0 & \mathrm{k}_{\mathrm{r}-2} & 0 \\
& & & & -\mathrm{k}_{\mathrm{r}-2} & 0 & \mathrm{k}_{\mathrm{r}-1} \\
0 & \cdots & & & 0 & -\mathrm{k}_{\mathrm{r}-1} & 0
\end{array}\right]\left[\begin{array}{c}
\mathrm{u}_{\mathrm{p}+1} \\
\mathrm{u}_{\mathrm{p}+2} \\
\mathrm{u}_{\mathrm{p}+3} \\
\vdots \\
\mathrm{u}_{\mathrm{r}-2} \\
\mathrm{u}_{\mathrm{r}-1} \\
\mathrm{u}_{\mathrm{r}}
\end{array}\right]
$$

Corollary: In the n-dimensional Minkowski space R_{1}^{n}, if one of the vectors
$V_{1}, V_{2}, V_{3}, \ldots, V_{p}$ is time-like, the position vectors of the striction space of the generalized b-scroll with $p^{\text {th }}$ degree will be the same with the solutions of the equation system which has the matrix form given above (1) .

Definition 5. In the n-dimensional Minkowski space $\mathrm{R}_{1}^{n}, \eta(I)$ is a spacelike curve with arc length t. If $\boldsymbol{ظ}_{4}, V_{2}, \ldots, V_{r}$ are the Frenet vectors, then

$$
S p \nmid, V_{2}, \ldots, V_{p} \stackrel{\jmath}{j} p<r<, n
$$

is the space-like osculator space with $\mathrm{p}^{\text {th }}$ degree. In this case,

$$
\varphi\left(\mathrm{t}, \mathrm{u}_{\mathrm{p}+1}, \mathrm{u}_{\mathrm{p}+2}, \ldots, \mathrm{u}_{\mathrm{r}}\right)=\eta(\mathrm{t})+\sum_{\mathrm{j}=\mathrm{p}+1}^{\mathrm{r}} \mathrm{u}_{\mathrm{j}} \mathrm{~V}_{\mathrm{j}}(\mathrm{t})
$$

is the parametrization of generalized $b-$ scroll with $p^{\text {th }}$ degree. The directrix of this generalized b-scroll with $p^{\text {th }}$ degree, is the space-like curve $\eta(I)$, that is $\dot{\eta}(t)=V_{1}$ a space-like vector .

$$
E_{r-p}=S p \quad V_{p+1}, V_{p+2}, \ldots, V_{r}
$$

is the time-like generating space of the generalized b-scroll with $p^{\text {th }}$ degree. Only one of the vectors $V_{p+1}, V_{p+2}, \ldots, V_{r}$ is a time-like vector, since the index q is 1 .
First of all, let V_{p+1} be a time-like vector. It means that $\varepsilon_{p}=\left\langle V_{p+1}, V_{p+1}\right\rangle=-1 \quad$ and $\quad \varepsilon_{p+1}=\left\langle V_{p+2}, V_{p+2}\right\rangle, \ldots, \varepsilon_{r-1}=\left\langle V_{r}, V_{r}\right\rangle=1$. According to the definitions of the asymptotic bundle and the tangential bundle of generalized b - scroll with $p^{\text {th }}$ degree,

$$
\begin{aligned}
\dot{\mathrm{V}}_{\mathrm{p}} & =-\varepsilon_{\mathrm{p}-2} \varepsilon_{\mathrm{p}-1} \mathrm{k}_{\mathrm{p}-1} \mathrm{~V}_{\mathrm{p}-1}+\mathrm{k}_{\mathrm{p}} \mathrm{~V}_{\mathrm{p}+1} \\
\dot{\mathrm{~V}}_{\mathrm{p}+1} & =-\varepsilon_{\mathrm{p}-1} \varepsilon_{\mathrm{p}} \mathrm{k}_{\mathrm{p}} \mathrm{~V}_{\mathrm{p}}+\mathrm{k}_{\mathrm{p}+1} \mathrm{~V}_{\mathrm{p}+2} \\
= & \mathrm{k}_{\mathrm{p}} \mathrm{~V}_{\mathrm{p}}+\mathrm{k}_{\mathrm{p}+1} \mathrm{~V}_{\mathrm{p}+2} \\
\dot{\mathrm{~V}}_{\mathrm{p}+2} & =-\varepsilon_{\mathrm{p}} \varepsilon_{\mathrm{p}+1} \mathrm{k}_{\mathrm{p}+1} \mathrm{~V}_{\mathrm{p}+1}+\mathrm{k}_{\mathrm{p}+2} \mathrm{~V}_{\mathrm{p}+3} \\
= & \mathrm{k}_{\mathrm{p}+1} \mathrm{~V}_{\mathrm{p}+1}+\mathrm{k}_{\mathrm{p}+2} \mathrm{~V}_{\mathrm{p}+3} \\
\dot{\mathrm{~V}}_{\mathrm{p}+3} & =-\varepsilon_{\mathrm{p}+1} \varepsilon_{\mathrm{p}+2} \mathrm{k}_{\mathrm{p}+2} \mathrm{~V}_{\mathrm{p}+2}+\mathrm{k}_{\mathrm{p}+3} \mathrm{~V}_{\mathrm{p}+4} \\
= & -\mathrm{k}_{\mathrm{p}+2} \mathrm{~V}_{\mathrm{p}+2}+\mathrm{k}_{\mathrm{p}+3} \mathrm{~V}_{\mathrm{p}+4} \\
& \vdots
\end{aligned}
$$

are obtained by using Frenet formulas. If V_{p+1} is time-like, then only first terms of vectors \dot{V}_{p+1} and \dot{V}_{p+2} will change their signs. However, other signs will not change.
$p(t)$ is any curve family with equation

$$
\mathrm{p}(\mathrm{t})=\mathrm{\eta}(\mathrm{t})+\sum_{\mathrm{j}=\mathrm{p}+1}^{\mathrm{r}} \mathrm{u}_{\mathrm{j}}(\mathrm{t}) \mathrm{V}_{\mathrm{j}}(\mathrm{t})
$$

and it has the derivative

$$
\begin{aligned}
\dot{p}(t) & =\dot{\eta}+\sum_{j=p+1}^{r} \dot{u}_{j} V_{j}+\sum_{j=p+1}^{r} u_{j} \dot{V}_{j} \\
= & V_{1}+\sum_{j=p+1}^{r} \dot{u}_{j} V_{j}+\sum_{j=p+1}^{r-1} u_{j} \varepsilon_{j-2} \varepsilon_{j-1} k_{j-1} V_{j-1}+k_{j} V_{j+1}-\varepsilon_{r-2} \varepsilon_{r-1} u_{r} k_{r-1} V_{r-1} \\
= & V_{1}+\sum_{j=p+1}^{r} \dot{u}_{j} V_{j}-\varepsilon_{j-2} \varepsilon_{j-1} \sum_{j=p+1}^{r-1} u_{j} k_{j-1} V_{j-1}+\sum_{j=p+1}^{r-1} u_{j} k_{j} V_{j+1}-\varepsilon_{r-2} \varepsilon_{r-1} u_{r} k_{r-1} V_{r-1} \\
= & V_{1}+\dot{u}_{p+1} V_{p+1}+\dot{u}_{p+2} V_{p+2}+\dot{u}_{p+3} V_{p+3}+\ldots+\dot{u}_{r-2} V_{r-2}+\dot{u}_{r-1} V_{r-1}+\dot{u}_{r} V_{r} \\
& +u_{p+1} k_{p} V_{p}+u_{p+2} k_{p+1} V_{p+1}-u_{p+3} k_{p+2} V_{p+2}-u_{p+4} k_{p+3} V_{p+3}-\ldots \\
& -u_{r-2} k_{r-3} V_{r-3}-u_{r-1} k_{r-2} V_{r-2}+u_{p+1} k_{p+1} V_{p+2}+u_{p+2} k_{p+2} V_{p+3}+\ldots \\
& +u_{r-3} k_{r-3} V_{r-2}+u_{r-2} k_{r-2} V_{r-1}+u_{r-1} k_{r-1} V_{r}-u_{r} k_{r-1} V_{r-1} \\
= & V_{1}+u_{p+1} k_{p} V_{p}+\mathbf{u}_{p+1}+u_{p+2} k_{p+1} \underline{V}_{p+1}+\mathbf{Q}_{p+2}+u_{p+1} k_{p+1}-u_{p+3} k_{p+2} \bar{V}_{p+2} \\
& +\mathbf{Q}_{p+3}+u_{p+2} k_{p+2}-u_{p+4} k_{p+3} V_{p+3}+\ldots+\mathbf{4}_{r-2}+u_{r-3} k_{r-3}-u_{r-1} k_{r-2} \underline{V}_{r-2} \\
& +\mathbf{4}_{r-1}+u_{r-2} k_{r-2}-u_{r} k_{r-1} \bar{V}_{r-1}+\mathbf{4}_{r}+u_{r-1} k_{r-1} \bar{V}_{r} .
\end{aligned}
$$

If there exist a common perpendicular to two constructive rullings in the
skew surface, then the foot of common perpendicular on the main rulling is called the central point. The locus of central points is called the striction space,[7].

Under the condition of orthonormalizm, the solution vectors u of the equation

$$
\left\langle\dot{\mathrm{p}}(\mathrm{t}), \frac{\mathrm{d}}{\mathrm{dt}}\left[\sum_{\mathrm{i}=\mathrm{p}+1}^{\mathrm{r}} \mathrm{u}_{\mathrm{i}}(\mathrm{t}) \mathrm{V}_{\mathrm{i}}(\mathrm{t})\right]\right\rangle=0
$$

are the position vectors of the striction space. This equation implies that

$$
\begin{aligned}
& +\mathbb{4}_{p+3}+u_{p+2} k_{p+2}-u_{p+4} k_{p+3}^{2}+\ldots+\mathbb{4}_{r-2}+u_{r-3} k_{r-3}-u_{r-1} k_{r-2}, \\
& +\mathbb{4}_{r-1}+u_{r-2} k_{r-2}-u_{r} k_{r-1}^{\Omega}+\mathbb{4}_{r}+u_{r-1} k_{r-1}^{\Omega}=0 \text {. }
\end{aligned}
$$

If $u_{p+1} k_{p}=0$, then, $u_{p+1} \neq 0$ then $k_{p}=0$ or if $k_{p} \neq 0$ and $u_{p+1}=0$. In the other terms, we can continue on the similiar way. Let assume that all of the curvatures k_{i} be different from zero. In this condition, if $u_{p+1}=0$, we can take $\dot{u}_{p+1}=0, u_{p+2}=0 \Rightarrow \dot{u}_{p+2}=0 \Rightarrow u_{p+3}=0 \Rightarrow \ldots$ So, the space-like directrix $\eta(I)$ of this generalized $b-$ scroll with $\mathrm{p}^{\text {th }}$ degree, is the striction space. Under the special condition

$$
\dot{\mathrm{u}}_{\mathrm{p}+1}+\mathrm{u}_{\mathrm{p}+2} \mathrm{k}_{\mathrm{p}+1}=0
$$

we can solve the differential equation system. Using the equations

$$
\begin{aligned}
\dot{u}_{\mathrm{p}+1} & =-\mathrm{k}_{\mathrm{p}+1} \mathrm{u}_{\mathrm{p}+2} \\
\dot{\mathrm{u}}_{\mathrm{p}+2} & =\mathrm{k}_{\mathrm{p}+2} \mathrm{u}_{\mathrm{p}+3}-\mathrm{k}_{\mathrm{p}+1} \mathrm{u}_{\mathrm{p}+1} \\
\dot{\mathrm{u}}_{\mathrm{p}+3} & =\mathrm{k}_{\mathrm{p}+3} \mathrm{u}_{\mathrm{p}+4}-\mathrm{k}_{\mathrm{p}+2} \mathrm{u}_{\mathrm{p}+2} \\
\vdots & \\
\dot{u}_{\mathrm{r}-2} & =\mathrm{k}_{\mathrm{r}-2} \mathrm{u}_{\mathrm{r}-1}-\mathrm{k}_{\mathrm{r}-3} \mathrm{u}_{\mathrm{r}-3} \\
\dot{\mathrm{u}}_{\mathrm{r}-1} & =\mathrm{k}_{\mathrm{r}-1} \mathrm{u}_{\mathrm{r}}-\mathrm{k}_{\mathrm{r}-2} \mathrm{u}_{\mathrm{r}-2} \\
\dot{\mathrm{u}}_{\mathrm{r}} & =-\mathrm{k}_{\mathrm{r}-1} \mathrm{u}_{\mathrm{r}-1}
\end{aligned}
$$

we can obtain Lyapunov matrix

$$
\left[\begin{array}{l}
\dot{u}_{p+1} \\
\dot{u}_{p+2} \\
\dot{u}_{p+3} \\
\vdots \\
\dot{u}_{r-1} \\
\dot{u}_{r}
\end{array}\right]=\left[\begin{array}{llllll}
0 & -k_{p+1} & 0 & \cdots & 0 \\
-k_{p+1} & 0 & k_{p+2} & \ddots & & \vdots \\
0 & -k_{p+2} & 0 & \ddots & & \\
\vdots & \ddots & \ddots & \ddots & 0 \\
0 & \cdots & & & 0 & k_{r-1} \\
0 & \cdots & & -k_{r-1} & 0
\end{array}\right]\left[\begin{array}{l}
u_{p+1} \\
u_{p+2} \\
u_{p+3} \\
\vdots \\
u_{r-1} \\
u_{r}
\end{array}\right]
$$

That is, the position vectors of the striction space are the solutions of the homogeneous differantial equation

$$
\dot{U}(t)=A(t) U(t)
$$

In further studies, it is possible to seek for other solutions, except these special solutions.

Now let V_{p+2} be a time-like vector, in the time-like generating space E_{r-p} of generalized b - scroll with $p^{\text {th }}$ degree. It means that

$$
\varepsilon_{\mathrm{p}+1}=\left\langle\mathrm{V}_{\mathrm{p}+2}, \mathrm{~V}_{\mathrm{p}+2}\right\rangle=-1
$$

and

$$
\varepsilon_{\mathrm{p}}=\left\langle\mathrm{V}_{\mathrm{p}+1}, \mathrm{~V}_{\mathrm{p}+1}\right\rangle=1, \varepsilon_{\mathrm{p}+2}=\left\langle\mathrm{V}_{\mathrm{p}+3}, \mathrm{~V}_{\mathrm{p}+3}\right\rangle=1, \ldots, \varepsilon_{\mathrm{r}-1}=\left\langle\mathrm{V}_{\mathrm{r}}, \mathrm{~V}_{\mathrm{r}}\right\rangle=1
$$

are obtained. According to the definitions of the asymptotic bundle and the tangential bundle of generalized b-scroll with $p^{\text {th }}$ degree,

$$
\begin{aligned}
& \dot{V}_{p+1}=-\varepsilon_{p-1} \varepsilon_{p} k_{p} V_{p}+k_{p+1} V_{p+2} \\
&=-k_{p} V_{p}+k_{p+1} V_{p+2} \\
& \dot{V}_{p+2}=-\varepsilon_{p} \varepsilon_{p+1} k_{p+1} V_{p+1}+k_{p+2} V_{p+3} \\
&= k_{p+1} V_{p+1}+k_{p+2} V_{p+3} \\
& \dot{V}_{p+3}=-\varepsilon_{p+1} \varepsilon_{p+2} k_{p+2} V_{p+2}+k_{p+3} V_{p+4} \\
&= k_{p+2} V_{p+2}+k_{p+3} V_{p+4} \\
& \dot{V}_{p+4}=-\varepsilon_{p+2} \varepsilon_{p+3} k_{p+3} V_{p+3}+k_{p+4} V_{p+5} \\
&=-k_{p+3} V_{p+3}+k_{p+4} V_{p+5} \\
& \vdots
\end{aligned}
$$

are obtained by using Frenet formulas. It is obvious that, if V_{p+2} is time-like, then only the first terms of vectors \dot{V}_{p+2} and \dot{V}_{p+3} will change their signatures. The others will not change.
$p(t)$ is any curve family with equation

$$
\mathrm{p}(\mathrm{t})=\mathrm{\eta}(\mathrm{t})+\sum_{\mathrm{j}=\mathrm{p}+1}^{\mathrm{r}} \mathrm{u}_{\mathrm{j}}(\mathrm{t}) \mathrm{V}_{\mathrm{j}}(\mathrm{t})
$$

and it has the differantial form

$$
\begin{aligned}
& \dot{p}(t)=V_{1}-u_{p+1} k_{p} V_{p}+\dot{u}_{p+1}+u_{p+2} k_{p+1} V_{p+1}+\dot{u}_{p+2}+u_{p+1} k_{p+1}+u_{p+3} k_{p+2} V_{p+2} \\
& +\dot{u}_{p+3}+u_{p+2} k_{p+2}-u_{p+4} k_{p+3} V_{p+3}+\ldots+\dot{u}_{r-2}+u_{r-3} k_{r-3}-u_{r-1} k_{r-2} V_{r-2} \\
& +\dot{u}_{r-1}+u_{r-2} k_{r-2}-u_{r} k_{r-1} V_{r-1}+\dot{u}_{r}+u_{r-1} k_{r-1} V_{r} .
\end{aligned}
$$

Under the condition of orthonormalism, the solution vectors u of the equation

$$
\left\langle\dot{\mathrm{p}}(\mathrm{t}), \frac{\mathrm{d}}{\mathrm{dt}}\left[\sum_{\mathrm{i}=\mathrm{p}+1}^{\mathrm{r}} \mathrm{u}_{\mathrm{i}}(\mathrm{t}) \mathrm{V}_{\mathrm{i}}(\mathrm{t})\right]\right\rangle=0
$$

are the position vectors of the striction curve (space). This equation implies that

$$
\begin{aligned}
& -\mathbf{u}_{p+1} k_{p}{ }^{2}+\boldsymbol{u}_{p+1}+u_{p+2} k_{p+1}{ }^{2}-\boldsymbol{u}_{p+2}+u_{p+1} k_{p+1}+u_{p+3} k_{p+2}{ }^{2} \\
& +\mathbf{@}_{\mathrm{p}+3}+\mathrm{u}_{\mathrm{p}+2} \mathrm{k}_{\mathrm{p}+2}-\mathrm{u}_{\mathrm{p}+4} \mathrm{k}_{\mathrm{p}+3},{ }^{2}+\ldots+\mathbf{4}_{\mathrm{r}-2}+\mathrm{u}_{\mathrm{r}-3} \mathrm{k}_{\mathrm{r}-3}-\mathrm{u}_{\mathrm{r}-1} \mathrm{k}_{\mathrm{r}-2},{ }^{2} \\
& +\mathbf{u}_{\mathrm{r}-1}+\mathrm{u}_{\mathrm{r}-2} \mathrm{k}_{\mathrm{r}-2}-\mathrm{u}_{\mathrm{r}} \mathrm{k}_{\mathrm{r}-1}{ }^{2},+\mathbf{u}_{\mathrm{r}}+\mathrm{u}_{\mathrm{r}-1} \mathrm{k}_{\mathrm{r}-1}{ }^{\mathrm{z}},=0 \\
& \text { If } u_{p+1} k_{p}=0 \text {, then } u_{p+1} \neq 0 \text { then, } k_{p}=0 \text { or if } k_{p} \neq 0 \text { and }
\end{aligned}
$$ $u_{p+1}=0$. In the other terms we can continue on the similiar way. Let assume that all of the curvatures k_{i} be different from zero. In this condition, if $u_{p+1}=0$, we can take $\dot{u}_{p+1}=0, u_{p+2}=0 \Rightarrow \dot{u}_{p+2}=0 \Rightarrow u_{p+3}=0 \Rightarrow \ldots$ So, the space-like directrix $\eta(I)$ of this generalized b-scroll with p th degree, is the striction space.

Under the special condition

$$
\dot{u}_{p+2}+u_{p+1} k_{p+1}+u_{p+3} k_{p+2}=0
$$

we can solve the differential equation system. Using the equations

$$
\begin{aligned}
& \dot{\mathrm{u}}_{\mathrm{p}+1}=-\mathrm{k}_{\mathrm{p}+1} \mathrm{u}_{\mathrm{p}+2} \\
& \dot{\mathrm{u}}_{\mathrm{p}+2}=-\mathrm{k}_{\mathrm{p}+1} \mathrm{u}_{\mathrm{p}+1}-\mathrm{k}_{\mathrm{p}+2} \mathrm{u}_{\mathrm{p}+3} \\
& \dot{\mathrm{u}}_{\mathrm{p}+3}=\mathrm{k}_{\mathrm{p}+3} \mathrm{u}_{\mathrm{p}+4}-\mathrm{k}_{\mathrm{p}+2} \mathrm{u}_{\mathrm{p}+2} \\
& \vdots \\
& \dot{\mathrm{u}}_{\mathrm{r}-2}=\mathrm{k}_{\mathrm{r}-2} \mathrm{u}_{\mathrm{r}-1}-\mathrm{k}_{\mathrm{r}-3} \mathrm{u}_{\mathrm{r}-3} \\
& \dot{\mathrm{u}}_{\mathrm{r}-1}=\mathrm{k}_{\mathrm{r}-1} \mathrm{u}_{\mathrm{r}}-\mathrm{k}_{\mathrm{r}-2} \mathrm{u}_{\mathrm{r}-2} \\
& \dot{\mathrm{u}}_{\mathrm{r}}=-\mathrm{k}_{\mathrm{r}-1} \mathrm{u}_{\mathrm{r}-1}
\end{aligned}
$$

we can obtain Lyapunov matrix

$$
\left[\begin{array}{l}
\dot{u}_{p+1} \\
\dot{u}_{p+2} \\
\dot{u}_{p+3} \\
\vdots \\
\dot{u}_{r-2} \\
\dot{u}_{r-1} \\
\dot{u}_{r}
\end{array}\right]=\left[\begin{array}{lllllll}
0 & -k_{p+1} & 0 & 0 & \cdots & & 0 \\
-k_{p+1} & 0 & -k_{p+2} & 0 & \ddots & & \vdots \\
0 & -k_{p+2} & 0 & k_{p+3} & \ddots & & \\
\vdots & \ddots & -k_{p+3} & \ddots & \ddots & & \\
& & & \ddots & & k_{r-2} & 0 \\
& & & & -k_{r-2} & 0 & k_{r-1} \\
0 & \cdots & & & 0 & -k_{r-1} & 0
\end{array}\right]\left[\begin{array}{l}
u_{p+1} \\
u_{p+2} \\
u_{p+3} \\
\vdots \\
u_{r-2} \\
u_{r-1} \\
u_{r}
\end{array}\right]
$$

That is, the position vectors of the striction space are the solutions of the
homogeneous differantial equation

$$
\dot{U}(t)=A(t) U(t)
$$

In further studies, it is possible to seek for the other solutions, except these special solutions.

Finally, let V_{r} be the time-like vector of the time-like generating space E_{r-p} of generalized b-scroll with p th degree. It means that

$$
\varepsilon_{\mathrm{r}-1}=\left\langle\mathrm{V}_{\mathrm{r}}, \mathrm{~V}_{\mathrm{r}}\right\rangle=-1
$$

and
$\varepsilon_{\mathrm{p}}=\left\langle\mathrm{V}_{\mathrm{p}+1}, \mathrm{~V}_{\mathrm{p}+1}\right\rangle=1, \varepsilon_{\mathrm{p}+1}=\left\langle\mathrm{V}_{\mathrm{p}+2}, \mathrm{~V}_{\mathrm{p}+2}\right\rangle=1, \ldots, \varepsilon_{\mathrm{r}-2}=\left\langle\mathrm{V}_{\mathrm{r}-1}, \mathrm{~V}_{\mathrm{r}-1}\right\rangle=1$
are obtained. According to the definitions of the asymptotic bundle and the tangential bundle of generalized b-scroll with p th degree,

$$
\begin{aligned}
\dot{\mathrm{V}}_{\mathrm{r}-1} & =-\varepsilon_{\mathrm{r}-3} \varepsilon_{\mathrm{r}-2} \mathrm{k}_{\mathrm{r}-2} \mathrm{~V}_{\mathrm{r}-2}+\mathrm{k}_{\mathrm{r}-1} \mathrm{~V}_{\mathrm{r}} \\
& =-\mathrm{k}_{\mathrm{r}-2} \mathrm{~V}_{\mathrm{r}-2}+\mathrm{k}_{\mathrm{r}-1} \mathrm{~V}_{\mathrm{r}} \\
\dot{\mathrm{~V}}_{\mathrm{r}} & =-\varepsilon_{\mathrm{r}-2} \varepsilon_{\mathrm{r}-1} \mathrm{k}_{\mathrm{r}-1} \mathrm{~V}_{\mathrm{r}-1} \\
& =\mathrm{k}_{\mathrm{r}-1} \mathrm{~V}_{\mathrm{r}-1}
\end{aligned}
$$

are obtained by using Frenet formulas. It is obvious that, if V_{r} is time-like, then only \dot{V}_{r} will change its signature. The others will not change.
$p(t)$ is any curve family with equation

$$
\mathrm{p}(\mathrm{t})=\mathrm{\eta}(\mathrm{t})+\sum_{\mathrm{j}=\mathrm{p}+1}^{\mathrm{r}} \mathrm{u}_{\mathrm{j}}(\mathrm{t}) \mathrm{V}_{\mathrm{j}}(\mathrm{t})
$$

and it has the differential form

$$
\begin{aligned}
\dot{p}(t) & =V_{1}-u_{p+1} k_{p} V_{p}+\mathbf{4}_{p+1}-u_{p+2} k_{p+1} \dot{V}_{p+1}+\mathbf{4}_{p+2}+u_{p+1} k_{p+1}-u_{p+3} k_{p+2} \dot{V}_{p+2} \\
& +\mathbb{4}_{p+3}+u_{p+2} k_{p+2}-u_{p+4} k_{p+3} \bar{V}_{p+3}+\ldots+\mathbf{4}_{r-2}+u_{r-3} k_{r-3}-u_{r-1} k_{r-2} \bar{V}_{r-2} \\
& +\mathbf{4}_{r-1}+u_{r-2} k_{r-2}+u_{r} k_{r-1} \bar{V}_{r-1}+\mathbf{4}_{r}+u_{r-1} k_{r-1} \bar{V}_{r} .
\end{aligned}
$$

Under the condition of orthonormalism, the solution vectors u of the equation

$$
\left\langle\dot{\mathrm{p}}(\mathrm{t}), \frac{\mathrm{d}}{\mathrm{dt}}\left[\sum_{\mathrm{i}=\mathrm{p}+1}^{\mathrm{r}} \mathrm{u}_{\mathrm{i}}(\mathrm{t}) \mathrm{V}_{\mathrm{i}}(\mathrm{t})\right]\right\rangle=0
$$

are the position vectors of the striction curve (space). This equation implies that

$$
\begin{aligned}
& +\mathbf{i}_{\mathrm{p}+3}+\mathrm{u}_{\mathrm{p}+2} \mathrm{k}_{\mathrm{p}+2}-\mathrm{u}_{\mathrm{p}+4} \mathrm{k}_{\mathrm{p}+3}{ }^{\overline{2}}+\ldots+\boldsymbol{1}_{\mathrm{r}-2}+\mathrm{u}_{\mathrm{r}-3} \mathrm{k}_{\mathrm{r}-3}-\mathrm{u}_{\mathrm{r}-1} \mathrm{k}_{\mathrm{r}-2}{ }_{2} \\
& +\mathbf{1}_{\mathrm{r}-1}+\mathrm{u}_{\mathrm{r}-2} \mathrm{k}_{\mathrm{r}-2}+\mathrm{u}_{\mathrm{r}} \mathrm{k}_{\mathrm{r}-1}{ }^{\mathbf{Z}},-\boldsymbol{u}_{\mathrm{r}}+\mathrm{u}_{\mathrm{r}-1} \mathrm{k}_{\mathrm{r}-1}{ }^{\mathbf{z}}=0
\end{aligned}
$$

If $u_{p+1} k_{p}=0$, then $u_{p+1} \neq 0$ then $k_{p}=0$ or if $k_{p} \neq 0$ and $u_{p+1}=0$. In the other terms we can continue on the similiar way. Let assume that all of the curvatures k_{i} be different from zero. In this condition, if $u_{p+1}=0$, we can take $\dot{u}_{p+1}=0, u_{p+2}=0 \Rightarrow \dot{u}_{p+2}=0 \Rightarrow u_{p+3}=0 \Rightarrow \ldots$ So, the space-like directrix $\eta(I)$ of this generalized b-scroll with p th degree, is the striction space. Under the special condition.

$$
\mathbf{a}_{\mathrm{r}}+\mathrm{u}_{\mathrm{r}-1} \mathrm{k}_{\mathrm{r}-1}=0
$$

we can solve the differential equation system. Using the equations

$$
\begin{aligned}
\dot{\mathrm{u}}_{\mathrm{p}+1} & =\mathrm{k}_{\mathrm{p}+1} \mathrm{u}_{\mathrm{p}+2} \\
\dot{\mathrm{u}}_{\mathrm{p}+2} & =-\mathrm{k}_{\mathrm{p}+1} \mathrm{u}_{\mathrm{p}+1}+\mathrm{k}_{\mathrm{p}+2} \mathrm{u}_{\mathrm{p}+3} \\
\dot{\mathrm{u}}_{\mathrm{p}+3} & =-\mathrm{k}_{\mathrm{p}+2} \mathrm{u}_{\mathrm{p}+2}+\mathrm{k}_{\mathrm{p}+3} \mathrm{u}_{\mathrm{p}+4} \\
\vdots & \\
\dot{\mathrm{u}}_{\mathrm{r}-2} & =-\mathrm{k}_{\mathrm{r}-3} \mathrm{u}_{\mathrm{r}-3}+\mathrm{k}_{\mathrm{r}-2} \mathrm{u}_{\mathrm{r}-1} \\
\dot{\mathrm{u}}_{\mathrm{r}-1} & =-\mathrm{k}_{\mathrm{r}-1} \mathrm{u}_{\mathrm{r}}-\mathrm{k}_{\mathrm{r}-2} \mathrm{u}_{\mathrm{r}-2} \\
\dot{\mathrm{u}}_{\mathrm{r}} & =-\mathrm{k}_{\mathrm{r}-1} \mathrm{u}_{\mathrm{r}-1}
\end{aligned}
$$

we can obtain Lyapunov matrix

$$
\left[\begin{array}{l}
\dot{u}_{\mathrm{p}+1} \\
\dot{\mathrm{u}}_{\mathrm{p}+2} \\
\mathrm{u}_{\mathrm{p}+3} \\
\vdots \\
\dot{\mathrm{u}}_{\mathrm{r}-2} \\
\dot{\mathrm{u}}_{\mathrm{r}-1} \\
\dot{\mathrm{u}}_{\mathrm{r}}
\end{array}\right]=\left[\begin{array}{llllll}
\mathrm{k}_{\mathrm{p}+1} & 0 & 0 & \cdots & & 0 \\
-\mathrm{k}_{\mathrm{p}+1} & 0 & \mathrm{k}_{\mathrm{p}+2} & 0 & \ddots & \\
0 & -\mathrm{k}_{\mathrm{p}+2} & 0 & \mathrm{k}_{\mathrm{p}+3} & \ddots & \\
\vdots & \ddots & -\mathrm{k}_{\mathrm{p}+3} & \ddots & \ddots & \\
& & & \ddots & & \mathrm{k}_{\mathrm{r}-2} \\
& & & & -\mathrm{k}_{\mathrm{r}-2} & 0 \\
0 & \cdots & & & 0 & -\mathrm{k}_{\mathrm{r}-1} \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
\mathrm{u}_{\mathrm{p}+1} \\
\mathrm{u}_{\mathrm{p}+2} \\
\mathrm{u}_{\mathrm{p}+3} \\
\vdots \\
\mathrm{u}_{\mathrm{r}-2} \\
\mathrm{u}_{\mathrm{r}-1} \\
\mathrm{u}_{\mathrm{r}}
\end{array}\right] .
$$

That is, the position vectors of the striction space are the solutions of the homogeneous differantial equation

$$
\dot{U}(t)=A(t) U(t)
$$

In further studies, it is possible to seek for the other solutions, except these special solutions.

REFERENCES

[1]. Alias, L.J., Ferrandez, A., Lucas, P. 2-type surfaces in S_{1}^{3} and H_{1}^{3} Tokyo J. Math. 17 (1994) 447-454
[2]. Graves, L.K. 1979. Codimension one isometric immersions between Lorentz spaces.Trans. Amer. Math. Soc., 252; 367-392
[3]. O'Neill, B. 1983. Semi-Riemannian geometry with applications to relativity.Academic Press, 468 p., New York.
[4]. Ekmekçi, N. and İlarslan, K. 1998. Higher curvatures of a regular curve in Lorentzian space. Jour. of Inst. of Math \& Camp. Sci. (Math. Ser) Vol. 11, No.2; 97-102.
[5]. İlarslan, K. 2002. Öklid olmayan manifoldlar üzerindeki bazı özel eğriler. Doktora tezi, Ankara Üniversitesi Fen Bilimleri Enstitüsü, 118 s., Ankara
[6]. Sabuncuoğlu, A. 1982. Genelleştirilmiş regle yüzeyler. Doçentlik tezi, Ankara Üniversitesi Fen Bilimleri Enstitüsü, 60 s., Ankara
[7]. Turgut, A. and Hacısalihoğlu, H.H., 1997, Time like ruled surfaces in the Minkowski space. Far East. J. Math. Sci., 5(1); 83-90.

