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SUMMARY 

 

 

Keywords: Software Testing, Unit Testing, Test Data, Evolutionary Algorithm, 

Genetic Algorithm 

 

Software testing is an essential and fundamental part of the software development 

lifecycle.  Testing helps delivering a higher quality system to end users.  However, it 

is costly as it needs to be written and updated as the process continues to ensure that it 

does its job in detecting faults and bugs in the system.  

 

One of the problems in maintaining test cases is the input data used to run the tests 

such a way that it covers each path and line of code of the software product. Generation 

of these test data is a typical activity which has to be accomplished through any 

standard automated test data generation tool. 

 

Random test data generators are among the most widely used tools to generate input 

data for the tests. However, the data types and parameters has to be manually tailored 

into the tools and needs to be updated manually once the source code or the test cases 

are changed.  It is a costly process and takes a lot of time and effort to generate and 

update these data. 

 

There  are  various  test  data  generator  tools  are  available  such  as:  random  test  

data generator, symbolic evaluator, function minimization methods.  In recent years 

some more advanced heuristic search techniques have been applied to software testing. 

 

In this study, we propose a model which automates the test data generation process. It 

significantly reduces the time required to generate the input data.  At the same time, 

the data generated by our model outperforms the data generated randomly in terms of 

accuracy and sensibility of the input data. It is based on the most widely used heuristic 

algorithms which is genetic algorithm. 

 

We run the model on a sample class with 6 independent public methods of different 

method signature, return type and number of arguments. It takes 5 seconds to 

generate10 possible inputs for each method with a mean standard deviation of 0.15 

and best candidate fitness average of 8.82 and mean fitness of 9.79.  The results will 

be further discussed in results section of the study. 
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GENETİK ALGORİTMA KULLANARAK JAVA DİLİNDE 
DİNAMİK BİRİM TESTİ İÇİN TEST VERİSİ ÜRETİMİ 

ÖZET 

 

Anahtar Kelimeler: Yazılım Testi, Birim Testi, Test Verisi, Evrimsel Algoritma, 

Genetik Algoritma 

 

Yazılım testi, yazılım geliştirme yaşam döngüsünün önemli ve temel bir parçasıdır. 

Test etme, son kullanıcılara daha kaliteli bir sistem sunmaya yardımcı olur. Fakat, 

süreç, sistemdeki hataları tespit etme işlemini yerine getirdiğinden emin olmak için 

yazılması ve sürekli güncel tutulması gerektiğinden maliyetli bir işlemdir. 

 

Test senaryolarını sürdürmedeki sorunlardan biri, testleri yazılım ürününün her bir 

yolunu ve kod satırını kapsayacak şekilde çalıştırmak için kullanılan girdi verileridir. 

Bu test verilerinin oluşturulması, herhangi bir standart otomatikleştirilmiş test verisi 

oluşturma aracıyla gerçekleştirilmesi gereken tipik bir faaliyettir. 

 

Rastgele test veri oluşturucuları, testler için girdi verileri oluşturmak için en yaygın 

kullanılan araçlar arasındadır. Ancak, veri türleri ve parametrelerin araçlara göre 

manuel olarak uyarlanması ve kaynak kodu veya test senaryoları değiştirildiğinde 

manuel olarak güncellenmesi gerekir. Bu maliyetli bir süreçtir ve bu verileri 

oluşturmak ve güncellemek çok zaman ve çaba gerektirir. 

 

Rastgele test verisi oluşturucu, sembolik değerlendirici, fonksiyon minimizasyon 

yöntemleri gibi çeşitli test verisi oluşturucu araçları mevcuttur. Son yıllarda, yazılım 

testine bazı daha gelişmiş iyileştirilmiş arama teknikleri uygulanmıştır. 

 

Bu çalışmada, test verisi oluşturma sürecini otomatikleştiren bir model önerilmiştir. 

Giriş verilerini oluşturmak için gereken süreyi önemli ölçüde azaltmaktadır. Aynı 

zamanda, önerilen modelde, üretilen veriler, giriş verilerinin doğruluğu ve duyarlılığı 

açısından rastgele oluşturulan verilerden daha iyi performans göstermiştir. Önerilen 

modelde en yaygın kullanılan sezgisel algoritmalara dayanan Genetik algoritma 

kullanılmıştır. 

 

Geliştirilen model, farklı yöntem imzası, dönüş türü ve argüman sayısı olan 6 bağımsız 

genel yöntemle örnek bir sınıf üzerinde çalıştırılmıştır. Ortalama standart sapma 0,15 

ve en iyi aday uygunluk ortalaması 8,82 ve ortalama uygunluk 9,79 olan her bir yöntem 

için 10 olası girdi üretmek ortalama 5 saniye sürmüştür. Sonuçlar çalışmanın sonuçlar 

bölümünde detaylı bir şekilde tartışılmıştır. 

 



 

 

CHAPTER 1. INTRODUCTION 
 

 

Software testing is one of the areas that are gaining in importance today. Especially 

Test-Oriented development and agile software processes are a proof of this. Whether 

the test is performed at the beginning or at the end, what is important is that the test is 

performed with good data [1].  

 

Writing a good test to the developed software will reduce the maintenance cost in the 

following processes and will return to the company as a plus gain. Since it is not 

possible to test all inputs in the test data universal set in software unit test, if the subset 

to be selected well passes the test, all inputs in the universal set are considered to have 

passed the test [2]. At this point, it is of great importance to select a good test data. 

Manually generating test data can take time and selecting data to represent the 

universal set can be very difficult. Therefore, creating automatic test data with various 

methods is one of the preferred methods today. 

 

The methods used can be random, static analysis, symbolic execution, search-based 

and heuristic algorithms. In the production of search-oriented test data, the focus is on 

determining the situations where the function will fail [3]. In this thesis, the success or 

failure rates of the test data to be produced using the genetic algorithm and the test unit 

test will constitute the suitability value of the genetic algorithm.  

 

Although there are similar studies in the literature, the studies conducted in the target 

area of this study are limited and their focus is different. For example, satisfactory 

results have been obtained in a study that focuses more on the control flow in the 

program code and produces test data with the Genetic algorithm [4]. Test data was 

generated by using the genetic algorithm but this time focusing on the data flow [5]. 

In a study producing unit test data for static analysis, symbolic execution for the rule 

was used [6]. 
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In a study in which the genetic algorithm was used in unit testing, they performed the 

random unit test and completed the same test in 10 percent of the normal test time [7]. 

Again, using the genetic algorithm, the synthetic program code, which was 

successfully produced for the production of test data, was used [8]. In another different 

approach, testing was applied for the Java language using the test data state matching 

technique [9].  

 

In another study in which the genetic algorithm was used unsuccessfully, they stated 

that using the genetic algorithm would be a good choice in terms of code coverage 

[10]. Using advanced search strategies on the C code, test data was generated for 

dynamic unit testing, and it was found that the code was more successful than 

traditional methods in terms of coverage [11]. Unit tests to be carried out in this way 

will be more powerful tests and will affect the software quality positively [12].  

 

In the light of these studies, it is seen that software testing is important as well as the 

quality of the data to be selected in this test. Therefore, in this thesis, test data will be 

produced for dynamic unit test in Java language using the Genetic Algorithm, which 

is known to be successful in generating data. 

 

1.1.  Related Work  

 

Xanthakis et al. was the first to use a genetic algorithm to generate test data. With the 

support of a genetic algorithm, test data was created for this implementation for the 

structures that were not covered in the random search. Genetic Algorithm was used for 

generating the test data for all the branch predicates [13]. 

 

Pei, M., E. D. Goodman et al. proposed a test data generator for single-path coverage 

using the genetic algorithm technique. In his survey, he discovered that the majority 

of test-data generators used symbolic evaluation, which was common at the time. They 

concluded that dynamic testing was ineffective and static testing was impractical [14]. 

 

Roper, M et al. In 1995 created a test data generator based on a genetic algorithm with 

the aim of traversing all of a source code’s possible branches. The generator is given 
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a program, which is automatically instrumented and provides input on the achieved 

branch coverage [15]. 

 

Michael et al. created GADGET (Genetic Algorithm Data Generation Tool), a tool 

that produces test data and allows a program to be instrumented automatically without 

the use of a programming language. The only restriction was that only scalar inputs 

could be accepted. GADGET is the first test data generator that has been thoroughly 

tested for a large-scale real-world problem, b737 (part of autopilot system i.e. real-

world control software). They came to the conclusion that the test data generator, 

which uses a random approach to produce data, does not work well for large problems 

[16]. 

 

Tracey et al. developed a test-case data generator based on the optimization technique. 

A large range of test parameters for both functional and non-functional properties may 

be used in this. Specification errors and exception conditions are subjected to 

optimization. Optimization is applied to testing specification failures and exception 

conditions. Various case studies are seen in this production to demonstrate the 

efficiency of this 2 optimization technique for producing test case data [17]. 

 

Pargas et al. improvised the outcome of Jones et al. work. Previously, branch 

knowledge was used to evaluate fitness functions, but here, the control dependency 

graph was used to evaluate fitness. According to them, this approach provides a more 

accurate fitness function than the Jones and Michael approaches discussed previously. 

He also mentioned that this technique with minor changes can also provide path 

coverage [4]. 

 

Wegene et al. developed a Genetic Algorithm-based test data generator for real-world 

embedded software in 2002, with a focus on white box testing, especially statement 

and branch coverage. The test focuses on certain partial goals that are difficult to 

achieve. The stopping conditions are met when all of the branches have been covered 

or when the number of generations has been reached [18]. 
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Hermadi et al. used genetic algorithm to generate test data for path testing in 2003. A 

collection of test data was developed using this method for a set of target paths. With 

this approach, better path coverage was achieved, and efficiency was improved in 

terms of 1) Search space exploitation, 2) Exploration, and 3) Allows for fast 

convergence [19]. 

 

Tonella P et al. created a test case generator based on a genetic algorithm for unit 

testing in a generic scenario in 2004. Chromosomes are used as test cases in this 

approach and they provide information about the objects that must be produced, the 

methods that must be called, and the values that must be used as input. This algorithm 

performs mutations with the objective of maximizing a coverage metric. The paper 

explains how this algorithm is implemented and extended to Java standard library 

classes [20]. 

 

Zhang et al. introduced two fitness functions in 2009, one focused on normalized 

extended hamming distance (SIMILARITY) and the other on branch distance 

(BDBFF), both of which were applied to GA based test data generation with focusing 

on path orientation. For comparing the output of both the fitness functions, a triangle 

classification program was chosen as an example [21]. 

 

Cao, Yang et al. introduced a genetic algorithm-based method for generating test data 

for a single particular path in 2009. To measure the fitness of each individual in the 

population, a genetic algorithm was used to find the best solution by selecting the 

fitness value as the closeness of the execution path and target path with overlapping 

sub paths. The proposed fitness function was tested in a few experiments, and the 

function’s efficiency was calculated in terms of consumed time and convergence 

potential [22]. 

 

In Rauf and Anwar, a GUI-based test criteria to generate software test data presented. 

GUI applications were event driven and used GA to generate software test data [23]. 

 

In Rauf and Anwar, a GUI-based test criteria to generate software test data presented. 

GUI applications were event driven and used GA to generate software test data [23]. 
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In 2011 Malhotra et al. proposed another technique based on adequacy-based test data 

generation, it uses mutation analysis then execute test data generation. Target of GA 

in the study get the optimum solution. Adequacy-based technique was found better 

than path testing technique in terms of number of test cases created and the duration 

taken to create those test cases in study [24, 25, 26]. 

 

There has been other research studies that propose different techniques that would 

possibly replace meta-heuristic and search-based software testing. Lee et al. is one of 

the studies and proposed fitness evaluator program (FEP). To evaluate their approach, 

they implemented in a tool which is called ConGA. This tool was then used to 

evaluation its performance by running on multiple programs written in C language. 

They come to a conclusion that their proposed idea reduces the test data generation 

process as compare to other tools [25, 27]. 

 

In terms of implementing test data generation tools on different systems, McMinn et 

al. Have applied a GA-based generated for large scale programs and then concluded 

that they perform much better than other search algorithms. In addition, to further help 

addressing test data generation for enterprise applications, Fraser et al. created 

EvoSuite which automatically generate unit test for Java applications using JUnit [30, 

31, 32]. 

 

Previous studies have used both gradient descent and GA to find test input for a test 

case. There are some limitations with gradient descent as it struggles to deal with local 

optima. Other studies, for example GADGE, uses GA to generate test input for test 

cases. However, it is more concerned about generating test input that would cover the 

most paths possible regardless of their semantic aspect of the input. 

 

We try to overcome the limitations of previous studies by first: incorporating GA in 

the test data input generation process as well as generating data that would sound more 

natural than the traditional approach. This is done by introducing a new way to deal 

with exceptions and categorize them based on countable and uncountable. This way it 

helps maximizing the fitness of the individuals and allows more clear, understandable, 

readable and natural generation of data. 
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Finally, we apply our technique in a tool that can be easily integrated and implemented 

in any java project regardless of the size of the project. It dynamically adapts to the 

methods and provides input through successive generations of data and tune them 

using GA operators to maximize its performance. It is fast, highly scalable and can be 

easily plugged into any java project. 

 

1.2.  Unit testing in object-oriented applications 

 

One of the crucial steps in SDLC is unit testing. By testing the units or small pieces of 

the application, we make sure that the applications functions properly and it does it 

correctly what we expect from it. To ensure this, software tester, engineers and 

developers write tests for each and every important feature or functionality in the 

system. It is obvious that it is a daunting process and takes lot of time and effort as 

well as a high cost. To overcome these tradeoffs with writing tests, several studies have 

been performed to further ease this process and reduce time and effort. 

 

1.3.  Test Data Generation  

 

Generators specifically designed for creating test-data can be used to automate the 

testing process and automatically generate test data for the applications. Basically, the 

generation process encompasses a set of techniques used to determine the optimal set 

of data used to examine the selected criteria. This includes (path, branch, statement 

and etc.) coverage. [14]. 

 

1.4.  Objective and Aims of the Study 

 

To deliver high quality software systems, testing is written to detect bugs in the early 

stages of the development. This partially ensures customer satisfaction with the 

product and makes modification and maintain of the software much easier and 

affordable in the future. However, it comes at a cost of time and budget especially in 

the early stages of SDLC. For this reason, several tools and techniques have developed 
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and proposed to facilitate this process and write tests in a shorter period of time with 

much less effort. The idea of automating this process constitutes the object of our work. 

 

In this study, we propose a model that helps generating test data automatically for unit 

tests written for application units. To achieve this, the genetic algorithm, which is 

among the most popular methods in the area and proven to be very successful, is used. 

The goal of the thesis is to generate input data that minimize the errors that occur 

during software develop process and to detect them during the test phase. 

 

1.5.  Structure of the Thesis  

 

Following this introductory chapter: 

 

Chapter 2: There are many techniques for software testing. In this chapter, we go 

through main techniques and briefly explain their pros and cons. 

 

Chapter 3: This chapter shines light on the idea behind GA. What is it? What is the 

aim of using it? What are some of its applications with example? Then we go through 

main GA operators and their functions and usage as well as challenges associated with 

their implementation. 

 

 Chapter 4: In this chapter we described briefly the tool and the implementation of 

Genetic Algorithms for generating effective and efficient test data. 

 

Chapter 5: In this chapter the results and the output of the tool are explained with 

clarification using graphs and charts. 

 

Chapter 6: Presents the scope of the study conclusion and future-work to be conducted 



 

 

CHAPTER 2. SOFWARE TESTING PRINCIPLES 
 

 

This chapter discusses various software testing techniques which are being used 

widely to make software product stable and fault free. The main objective of software 

testing is to increase software product quality and reliability to make minimal software 

product error [1]. 

 

Below are the principles of Software Testing [35]: 

1. The main purpose of system testing is to uncover errors as much as possible. 

2. Testing process starts with the smallest part of the program which is a unit then to 

the largest part which are modules. As the testing process progress the aim of it will 

be finding errors in integrated clusters of modules and ultimately in the entire system. 

3. It is impossible to conduct exhaustive testing. Even for a moderately sized programs, 

the number of paths is enormous. So it is difficult to test every possible combination 

of paths. 

4. Testing process to be most effective should be done by independent third party. The 

term “most effective” refers to the type of testing that has the best chance of detecting 

errors. 

 

2.1.  Types of Testing 

 

Another categorization for software testing is [36]: 

 

1. Black- box Testing 

2. White- box Testing 

 

2.1.1.  Black box or functional testing 

 

In black box testing, a software product is considered as a black box and its 

implementation logic, structure and intelligence is not considered during testing phase. 
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The only objective is to provide input parameters and to take output of the software 

product with respect to given inputs. During black box testing inputs/ output are 

analyzed as shown in  

 

Figure 2.1. General specification of black box testing 

 

Black box testing attempts to find errors in the following categories:  

A. Function missing 

B. Errors in the interface 

C. Data structure error 

D. Performance errors  

E. Termination and Initialization  

 

2.1.2.  White box testing or structural testing 

 

Software engineers can write test using white box testing that: 

 

A. Each path within the code has been traversed. 

B. Make sure that logical conditions meet their criteria. 

C. Assure its validity by exercising its internal structure. 

D. Loops are visited at least once within its boundaries. 
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Figure 2.2. General specification of white box testing 

 

2.2.  Automated Test Data Generation 

 

Software testing is an important and fundamental part of the software development life 

cycle. Despite its criticality and value in ensuring the stability of software products. 

Software testing has certain limitations and problems. One of the problems in software 

testing is to generate a set of data for testing the software product. 

 

Primary objective of these testing data set is to cover each path and line of code of the 

software product [3]. Generation of these test data is a typical activity which has to be 

accomplished through any standard automated test data generation tool. There are 

various test data generator tools are available such as: random test data generator, 

symbolic evaluator, function minimization methods [38].  

 

Recently, different algorithms have been used in the area to improve its efficiency. 

These algorithms are based on advanced heuristic approach among them is 

evolutionary algorithm. It is found that they perform much better than random 

generator in most of the time [39].  

 

Meta-heurist search technique is used by evolutionary testing using GA. As a result of 

the searching process of this method, test parameters are generated to satisfy a set of 

predefined criteria for each test. The process includes an objective function aka (fitness 
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function) to measure the effectiveness of each generated input and facilitate the 

algorithm in the selection decision.



 

 

CHAPTER 3. GENETIC ALGORITHM 

 

 

Genetic algorithms [40] are a subset of evolutionary computation a branch of artificial 

intelligence. It’s an adaptive heuristic search approach based on natural selection and 

genetics in evolutionary theory. The basic concept of the Genetic Algorithm (GA) is 

to simulate processes in natural systems that are required for evolution, especially 

those that follow the survival of the fittest principles. Generally it is used in those cases 

where the search space is wide and cannot be easily traversed using traditional search 

methods. 

 

A population, individual, chromosome and gene are the most important elements in 

genetic algorithm. At the beginning, the algorithm generates an initial population in 

order to begin with selecting fittest individuals gradually. These selected candidates 

contribute to the upcoming population so that it helps with discarding least fit 

candidate from the population. This process continues until the algorithm come to a 

conclusion that it has selected fittest candidates or it never gets to the optimal solution 

which is called termination condition as shown in Figure 3.2. 

 

3.1.  History of Genetic Algorithm 

 

Ingo Rechenberg was the first who introduced evolutionary computing in the 1960s in 

his work “Evolution strategies”. His concept was then further developed by other 

researchers. Later John Holland invented Genetic Algorithms (GAs), which he and his 

students and colleagues created and their work published under a book named 

“Adaptation in Natural and Artificial Systems” in 1975 [41]. 

 

John Koza in 1992 was used genetic algorithm to do tasks in the application programs. 

He named this method “Genetic Programming” (GP) [42].
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3.2.  Search Space Challenge 

 

When a problem occurs, a set of solution is proposed in order to overcome it. The goal 

is to select the most efficient solution. Search space encompasses all available 

solutions while each solution represents a possible solution for the problem. Each point 

in the search space represents one possible solution [43]. 

 

Fitness value is used to rank each solution for the problem. GA strives to select the 

solution with the best fitness value. This is the major factor that helps with deciding 

which solution to select either (maximum or minimum) depending on the underlying 

problem. 

 

One of the challenges in dealing with such problems is the size of its search space. Due 

to its large size it might be difficult to decide where actually to start. For this reason, 

many techniques and methods have been used to deal with this issue, for example, hill 

climbing, simulated annealing and GA and etc. The solutions selected by these 

algorithm are considered optimal as it outperforms its random selected counterpart by 

huge margin. 

 

 

 

Figure 3.1. Example of a search space 

 

3.3.  Representation of Each Individual 

 

GAs work such a way that it selects one in each generation from a population. 

However, in most cases a random population is generated to start with. In other cases, 

some input can be feed into the GA to help initializing the starting population. 
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A chromosome is described as a set of smaller units called genes. The fitness function 

evaluates the quality of each individual by the value of its genes. After the first 

population, the members go through evaluation phase in order to selected fittest 

individuals for further processing. The difference in their fitness value shows how 

different individuals are from each other. 

 

In this process, we try to maximize the fitness value. The individuals with higher 

fitness value has a higher chance of surviving. The individuals will participate later in 

GA operators which are selection, mutation and crossover to produce fitter individual 

than those produced randomly. [43]. 

 

Once the individuals are selected, they go through GA operators in order to ensure a 

diversity among the generated individuals. The elements of two individuals are 

coupled through a process called crossover. It is should be noted that, unlike mutation, 

it is from two different individuals not only one. The main concept of crossover is to 

make sure that a better offspring can be produced from the coupled parents. 

 

Unlike crossover, mutation happens within particular individuals by swapping its 

elements. This prevents stagnation near a local optima and ensures diversity in the 

chromosomes. A strategy should be defined prior to the process in order to identify the 

individuals that can stay and those who cannot adapt to the change. This process is 

repeated until the termination condition is satisfied. 

 

3.4.  Basic Steps of Genetic Algorithm 

 

Below are the steps of Genetic Algorithm: 

1. [Start] Generate random population of n chromosomes (suitable solutions for the 

problem) 

2. [Fitness] Evaluate the fitness f(x) of each chromosome x in the population 

3. [New population] Create a new population by repeating following steps until the 

new population is complete. 

(a) [Selection] Select two parent chromosomes from a population according o their 

fitness value. 
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(b) [Crossover] with a crossover probability cross over the parents to form new 

offspring (children). If no crossover was performed, offspring is the exact copy of 

parents. 

(c) [Mutation] with a mutation probability mutate new offspring at each locus (Position 

in chromosome). 

(d) [Accepting] Place new offspring in the new population 

4. [Replace] Use new generated population for a further run of the algorithm 

5. [Test] if the end condition is satisfied, stop, and return the best solution in 

6. Current population 

7. [Loop] Go to step 2 

 

 

 

Figure 3.2. General flow chart for genetic algorithm (GA) 
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3.5.  Chromosomes Representation(Encoding) 

 

Chromosome representation can have a huge impact on the performance of a GA-

based function. In Genetic Algorithm there are different methods of chromosome 

representation, e.g. using binary, Gray, integer or floating data types. 

 

3.5.1.  Binary encoding 

 

Bit format is the most common type of encoding type. Here the variable values are 

encoded as bit strings, composed of characters copied from the binary alphabet 0, 1 

[40].  

 

The solutions to a problem are represented by chromosomes, where each chromosome 

consists of a set of variables. Figure 3.3. Describes a problem which consists of a 

chromosome of three variables A, B and C. Each of these bit fields (A, B and C) 

represents an input variable value and its smallest unit is one bit that carries the 

information [34]. 

 

 

 

Figure 3.3. Binary encoding 

 

3.5.2.  Tree encoding 

 

Tree Encoding is one of the types of encoding that uses in programming expressions, 

i.e. like genetic programming. Here every chromosome is a tree of an object such as, 

a function or a command in the program. Figure 3.4. Shows an example of Tree 

encoding [44]. 
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Figure 3.4. Tree encoding 

 

3.6.  Selection 

 

Chromosomes are selected from the population for crossover operation. The problem 

is how to select these chromosomes. There are many methods in selecting the best 

candidates. Which are Roulette wheel selection, Tournament selection, Steady state 

selection, Elitism and some others. Some of them are discussed in this section. 

 

3.6.1.  Roulette wheel selection 

 

In this selection method, the element (individual/parent) occupies a portion of the 

wheel based on the fitness value it has. This makes sure that the individual that has 

better quality will have a higher chance of selection, while the individuals with lower 

fitness value still have a chance to be selected as shown in Figure 3.5. 

 

It has two major advantages. First, due to the fact that the fittest candidates have higher 

probability, they more likely survive the selection process and pass to the next stage. 

The second advantage is that, the individuals with lower fitness value might still pass 

to the next stage and produce better individuals if they are crossed with other 

individuals in the population.  
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Figure 3.5. Roulette wheel selection method 

 

 

Figure 3.6. Roulette wheel selection algorithm 

 

3.6.2.  Tournament selection 

 

It is one of the most widely used selection algorithms. In this algorithm, a random 

number of individuals are selected from a population in order to compete and pass to 
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the next generation. Those with highest fitness values are selected and passed to the 

next tournament. This way, the best parents are selected and hence it gradually narrows 

down search space. 

 

The idea of the algorithm is simple and can be easily implemented. In addition it can 

even work with negative fitness values, which is a major advantages when working 

with real numbers. For example, the fitness function of an algorithm is the 

multiplication of each genes in the chromosome as shown in Figure 3.7. In this 

example, the individuals with higher multiplication values are selected and passed to 

the second round of the tournament. 

 

The first round between two pairs which are 2, 5, 4 and 2, 3, 4. The result of the first 

multiplication of genes is 40 and the second one is 24. Therefore, it is clear that the 

first chromosome wins and passes to the next round of the tournament. The same 

process is repeated for selecting the next parent. At the end, the individuals with 

stronger traits remain and passes to the next generation. 
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Figure 3.7. Tournament selection method 

 

3.6.3.  Elitism 

 

After creating a new population from the crossover and mutation operation, we have a 

big possibility that we lose the best chromosomes. Elitism is a method that copies few 

of the best chromosomes to the new created population. The benefit of elitism is to 

increase the performance of the Genetic Algorithm, because it avoids losing the best 

chromosomes. 

 

The pseudo code below shows the process of genetic algorithm with elitism. 
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Figure 3.8. Elitism selection algorithm 

 

3.6.4.  Steady-state selection 

 

In Steady state selection a part of the chromosomes can sustain to the next generation. 

In every generation the highest chromosomes are chosen to create the new offspring, 

Then the one with the lowest fitness value are removed and replaced with the new 

offspring. The process continue and the rest of the population survive to the next 

generation. 

 

 

Figure 3.9. Steady state selection method 

 

3.7.  Crossover 

 

Crossover is the process of selecting two parents from the population to create one or 

more offspring’s using their genetic material. 
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3.7.1.  Single point crossover 

 

This is the simplest type of crossover where a crossover point is selected, here the 

beginning part of the first parent is copied till the crossover point and the remaining 

part is copied from the second parent. 

 

 

Figure 3.10. Single point crossover 

 

3.7.2.  Two point crossover 

 

In two point crossover, two position are selected. Binary string of the first part of the 

chromosome is copied till the crossover point of the first parent. The center part is 

copied from the second parent, the rest is chosen from the last part of the first parent. 

 

 

Figure 3.11. Two point crossover 

 

3.7.3.  Uniform crossover 

 

In this type of selection randomly bits are copied from the first or from the second 

parent. 

 

 

Figure 3.12. Uniform crossover 
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3.8.  Mutation 

 

After a certain iteration, there is a possibility that genes in chromosomes can repeat 

each other as a result of crossings. To eliminate this condition and provide 

chromosome diversity, some chromosomes are mutated. For example, in Figure 3.13, 

only two genes of the chromosome mutate (the value becomes one if it is zero, and 

zero if it is one). 

 

Figure 3.13. Bit inversion mutation 

 

3.9.  Population Size and Elitism Rate 

 

There are two main parameters of GA. Which are the population size and Elitism rate 

that are described below. 

 

3.9.1.  Population size 

 

This is about the size of the population that GA needs to explore to find the optimal 

solution. In Genetic Algorithm it is very important to have a big population, because 

if there are few chromosomes, the possibility to perform crossover operation is very 

low. 

 

3.9.2.  Elitism rate 

 

From this percentage we can conclude the percentage of best individuals that are 

survived to the next generation without any modifications, after applying crossover 

and mutation operators. 



 

 

CHAPTER 4. METHODOLOGY AND EXPERIMENTS 
 

 

In this chapter, we discuss the techniques used to implement the tools and different 

configuration options to run and evaluate our model. 

 

4.1.  Experimental Settings 

 

In implementing any tool that works with Evolutionary algorithm & GA, the type of 

the problem that the algorithm solves has to be carefully analyzed to make sure that it 

is a suitable algorithm for the specified problem. Before considering GA for any 

problem, two main factors has been considered in order to make sure it will be 

applicable for the problem. 

 

The first and most important factor is the process of encoding the solutions to the 

problem. There are several ways to perform this process. One of the simplest and most 

well-known encoding method is bit string where each solution is a sequence of binary 

digits (zeros and ones). Mutation and crossover can be easily applied on this technique. 

However, it does not imply that this technique can't be used for complicated problem. 

It depends on the way the solutions are encoded. 

 

The second most important factor is the objective function which is so called fitness 

function. This functions allows measuring the quality and efficiency of particular 

solutions. It does not necessarily need to classify individual based on true, false or right 

or wrong. But it should be able to rank the candidates so that it directs the model to 

select fittest solution. 

 

The next step in the implementation is to transform the domain in to GA form. In this 

case, a gene is represented by a method parameter, a chromosome is the combination 

of all genes in other words all parameters of a method. An individual is a set of
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Chromosomes which in this study is a set of combinations for a method that would 

possibly traverse all paths of the method. For the rest of GA requirements the concepts 

grows to adapt with the algorithm. 

 

For instance, we have the below method: 

 

public void setMemberAge(long age)  

        throws UncountableException, CountableException { 

 

    if (age > 120 || age < 1) { 

        throw new UncountableException("Invalid age!"); 

    } 

 

    if (!(age > 12 && age < 20)) { 

        throw new CountableException("Is not teenage"); 

    } 

} 
 

 

Figure 4.1. A method to demonstrate transformation to a GA compatible code 

 

This method has two arguments. Both of them are integer typed. In this scenario, age 

and yearsOfService are two different genes. They both together form the chromosome. 

The genes with different parameter value combinations for multiple different 

chromosomes, and hence all together form the individual. 

 

Several parameters has to be taken into consideration that will eventually affect the 

algorithm performance. These parameters includes but not limited to, number of 

populations, number of individuals in each population, number of chromosomes in 

each individual and so on. While all these parameters have impact on the efficiency of 

the algorithm, but they can be tuned in order to suit the needs of specific 

application/class. But the major challenge is with the number of chromosome since the 

outcome and performance of the algorithm is strongly tied to this parameter. 

 

The challenge is, how we should decide about the number of combinations that would 

possibly traverse most of the paths of the method. For the purpose of this study we 
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came with a random number of 10. That means each individual is composed of 10 

different chromosomes. The ideal way of selecting this number would be traversing 

each method to get the number of paths and then used as the number of chromosomes 

for each individual. 

 

One of the major reasons why GA is widely used is because of its simplicity in 

implementation. It is quite easy to implement as compared to other algorithms used in 

the area. In this study Java is selected as it is among most popular programming 

languages and has lots of packages and libraries that can be easily integrated into the 

project. In addition, it is one of the most advanced languages in terms of applying 

object-oriented paradigm. 

 

To create this tool Watchmaker used, which is an extensible, high-performance, 

Object-oriented framework for implementing platform-independent evolutionary 

algorithms in Java [45]. 

 

In this study we focused on public methods only that are accessible both inside and 

outside the scope of the class. Any instance of that class will have access to public 

methods and can invoke them. For the data type we considered only primitive type 

which are (byte, short, int, long, float, double, boolean, char). The reason for choosing 

only primitive types is because the tool is in the first stage after it developed we can 

implement other data types like string and objects. The search space contains many 

individuals where each individual consists of 10 chromosomes. The reason behind 

choosing 10 chromosome is that selecting this number would be traversing each 

method to get the number of paths and then used as the number of chromosomes for 

each individual. Figure 4.2. Shows the flowchart of the proposed technique. 
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Figure 4.2. The proposed technique flowchart  

 

In the source code before sending any method to the algorithm their conditions 

checked to know they are public and primitive types or not. Another challenge when 

dealing with data generation is how to generate a meaningful data that would sound 

more natural than random data. For example, if we assume that we have a method 

which determine whether a person is teenage or not. We name this method as 

isTeenage which takes a single parameter which is the age of the person. Let’s assume 

that one of the generated numbers is 1000, this can actually be sent for test. However 

in real life a person does not live 1000 years. This is only an example and the random 

integer generator of java can generate several different numbers that even it is 

syntactically correct, but it does not sound natural when a software engineer writes 

tests for this kind of method. 

 

In real life applications this kind of situation is handled by making sure that the data is 

validated and then sent to the method for processing. But we assume that this scenario 

stays as is and we want our model to deal with this case. We created two types of 

exceptions which inherit the main java Exception class. We named them Countable 

and Uncountable exceptions. This will allow the fitness function to determine whether 

it is an exception that makes sense to be counted. In other words, is this really a data 
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which sounds natural when applied to a method for testing? So for the above example 

for isTeenage(int age) method if the random generator generates any number that is 

more than 120 years and less than 1 year will not be counted and hence our test data 

makes more sense when applied to the methods. 

 

If we look at the method above we can see it is a public method which passes a 

primitive data type (long age). This method is accepting age as a parameter but in case 

the user entered 1000 this is a logical error where age is impossible to be 1000. For 

this reason we created the below exceptions to handle this problem. 

 

public class CountableException extends BaseException { 

 

    public CountableException(String message) { 

        super(message); 

    } 

    @Override 

    boolean isCountable() { 

        return true; 

    } 

} 

 

public class UncountableException extends BaseException { 

 

    public UncountableException(String message) { 

        super(message); 

    } 

    @Override 

    boolean isCountable() { 

        return false; 

    } 

}  

Figure 4.3. An example of countable and uncountable exception method code 

 

4.2.  Selection Strategies 

 

Selection is one of the most important GA operations. The performance of the 

algorithm highly depends on the performance of the selection algorithm. Because the 

GA further process the individual candidate based on the solutions or candidates went 

through selection process. Poor selection algorithm leads to poor performance of the 
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algorithm. Usually, it prefers strong candidates over weak candidates. However, there 

are sometimes where some features in a weak candidate might make up a strong 

offspring if selected. For this reason a good selection algorithm usually goes with fitter 

candidates however sometimes other candidates might be selected to ensure diversity. 

Sometimes, switching between different selection algorithms leads to much better 

results of the GA algorithm. 

 

4.3.  The Fitness Evaluator 

 

The fitness function is the crucial part of GA. This function is responsible for telling 

the algorithm how fit the generated data is. We try to maximize the function in order 

to reach to our target fitness and then decide about how good each candidate/individual 

is and how it fits in to our problem. Below is the fitness function in our tool: 

 

public double getFitness(List<ParamModel> candidate, List<? extends List<Param

Model>> population) { 

    int errors = 0; 

        for (int i = 0; i < Config.NUMBER_OF_CHROMOSOMES; i++) { 

            ParamModel model = candidate.get(i); 

 

            try { 

                this.m.invoke(this.obj, model.getParams()); 

            }  

            catch (IllegalAccessException e) { 

                 e.printStackTrace(); 

            } catch (IllegalArgumentException e) { 

                 e.printStackTrace(); 

            } 

            catch (InvocationTargetException e) { 

                if(CountableException.class == e.getCause().getClass()) { 

                    errors = errors + 1; 

            } 

        }  

    } 

    return errors; 

} 

 
 

Figure 4.4. Get candidate fitness value function code 
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Before an individual/candidate is represented or shaped by a list of chromosome it 

should be send for evaluation. Then run it on the real method that we want to test the 

data for. If an error found, catch it and check to know if it is a countable error or not. 

If it is a countable error then it adds to the errors list. Our target is to maximize the 

errors until we reach the target fitness.  

 

It is worth mentioning that a ParamModel represents a chromosome. Each 

ParamModel object or chromosome is consist of an array of genes which represent a 

parameter of the method.  

 

4.4.  Termination Conditions 

 

Termination conditions are set of conditions which tells the algorithm when to stop. 

There are a few reasons why the evolution need to stop. First it needs to set a limitation 

for number of generation, because sometimes the algorithm might not reach to an 

optimal solution or generation so it keeps running forever. Another case is when the 

optimal solution reached before actually reaching the limit number of generation. For 

example, we tell the algorithm to stop after 1000 generations. However the algorithm 

might reach to the ideal or optimal generation in less than 100 generation. So at that 

time, what would be the point of running the algorithm until the last generation? 

Therefore, we allow the algorithm to terminate after reaching the target fitness. Setting 

the target fitness will save the process a lot of time. There will be a significant impact 

on the performance of the tool when it is run and tested with a large code base. 

 

Another condition is related to time, how long should we allow the algorithm to run? 

Sometimes none of the above condition will be satisfied which might be due to the fact 

that it takes a lot of time to generate the random data due to its complexity. It is not 

necessary the case with our study, but in some other cases the random generation of 

data might take a lot of time. Therefore, we do not want the algorithm keep running 

for a long time and we want to terminate it after a certain period of time.  

 

There are other conditions as well, but we will not go through them as we have not 

implemented them in our tool. We have set 1000 generation as a threshold for the 
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generations. In terms of the target fitness, we have set 10 as the target fitness we are 

willing to get before actually stopping the algorithm. For the most of our cases, we 

reach the target fitness way before reaching the generation limit. We will talk about 

the results in details in the results section. 

 

4.5.  Model Evaluation 

 

In this study genetic algorithms used to generate test data for a java class Sample- 

Class.java which contains 6 public methods with different primitive types. The class 

structure is shown in Table 4.1. and approximation level are the two building blocks 

used for fitness function. The number of matched branching nodes between the 

traversed branches and target branch by an individual is called ”partial aim,”, where 

the local distance value is calculated for the individuals and the approximation level is 

the number of matched branching nodes between the traversed branches and a target 

branch by an individual. 

 

Table 4.1. SampleClass structure 

Method Name Return Type Parameters 

determineGuess boolean int userAnswer, int computerNumber 

setMemberAge void long age 

isQualifiedForRetirement boolean long age, long yearsOfService 

withdraw double boolean active, double amount 

calculateScore int char entered, char prompted 
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package ga; 

import ga.exception.CountableException; 

import ga.exception.UncountableException; 

public class SampleClass { 

 

    public boolean determineGuess(int userAnswer, int computerNumber)  

            throws UncountableException, CountableException { 

        if (userAnswer <= 0 || userAnswer > 100) { 

            throw new UncountableException("Invalid number range!"); 

        } 

        if (userAnswer > computerNumber) { 

            throw new CountableException("Your guess is too high, try again"); 

        } 

        if (userAnswer < computerNumber) { 

            throw new CountableException("Your guess is too low, try again"); 

        } 

        return (userAnswer == computerNumber); 

    } 

    public void setMemberAge(long age)  

            throws UncountableException, CountableException { 

 

        if (age > 120 || age < 1) { 

            throw new UncountableException("Invalid age!"); 

        } 

        if (!(age > 12 && age < 20)) { 

            throw new CountableException("Is not teenage"); 

        } 

    } 

    public boolean isQualifiedForRetirement(long age, long yearsOfService) 

            throws UncountableException, CountableException { 

        if (age < 1 || age > 120 || yearsOfService < 1 ||  

                yearsOfService > 60 || age < yearsOfService) { 

            throw new UncountableException("Invalid number range!"); 

        } 

        if (yearsOfService < 15) { 

            throw new CountableException("Not enough years of service"); 

        } 

        if (age < 60) { 

            String errorMsg = "The person is young, therefore not qualified for retiremen

t"; 

            throw new CountableException(errorMsg); 

        } 

        return true; 

    } 

    public double withdraw(boolean active, double amount)   

 

Figure 4.5. Sample class structure code 
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            throws UncountableException, CountableException { 

        if (amount < 1) { 

            throw new UncountableException("Invalid amount number!"); 

        } 

        if (!active) { 

            throw new CountableException("The account is not active"); 

        } 

        if (amount < 1 || amount > 3000) { 

            throw new CountableException(""); 

        } 

        return amount; 

    } 

    // A user wants to improve typing skill 

    public int calculateScore(char entered, char prompted)  

            throws CountableException { 

        int score = 0; 

        char smallEnteredChar = Character.toLowerCase(entered); 

        char smallPromptedChar = Character.toLowerCase(prompted); 

        if (Character.compare(smallEnteredChar, smallPromptedChar) != 0) { 

            throw new CountableException("The letters are not the same!"); 

        } 

        boolean enteredCase = Character.isUpperCase(entered); 

        boolean promptedCase = Character.isUpperCase(prompted); 

        if (enteredCase != promptedCase) { 

            String errorMsg = "The entered key and prompted cases key are not the same

"; 

            throw new CountableException(errorMsg); 

        } 

        return score; 

    } 

 

    public void registerUser(String username, String password)  

            throws CountableException { 

        if (username.length() < 6) { 

            throw new CountableException("Username can not be less than 6 characters!

"); 

        } 

        if (password.length() < 6 || password.length() > 12) { 

            throw new CountableException("Password should be between 6-

12 characters!"); 

        } 

        // create user and return username 

    } 

 

}  

Figure 4.6. Sample class structure code (continued) 



 

 

CHAPTER 5. RESULTS AND DISCUSSION 
 

 

In this chapter we highlight the results and the output of the tool with detailed 

explanations of the results.  

 

When working with GA, the results are different from a cycle or iteration when 

running several times since it depends on the random data generated by the underlying 

system and platform and even hardware. To minimize the standard deviation between 

the data generated by the model in each cycle, we ran it 10 times and calculated the 

average. This way, we can draw conclusion and formalize the results of our model. 

 

5.1.  Performance Measures 

 

To measure the performance of the algorithm, 6 metrics have been taken into 

consideration which are the elapsed time, fitness average, mean fitness, total number 

of generations, terminated by generation count, and standard deviation. 

 

The elapsed time is used to calculate the total time required to generate the fittest input 

for the test case. Standard deviation is used to measure the dispersion of the input data 

with regard to the fitness function. 

 

Number of generations used to determine the required number of generation to get to 

the best candidate. Finally, the termination by generation count implies that the 

algorithm has terminated before actually generating an ideal input for the specified 

method.
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5.2.  Iterations 

 

To test the performance of the algorithm, we ran it 10 times to find out the performance 

difference of the model when it is ran multiple times. This can be stabilized in the 

future by feeding the random generator with seeds that would generate same input 

when ran several times. All the metrics mentioned in the previous section have been 

collected as it is shown in Table 5.1.  

 

Table 5.1. Elapsed time for each iteration in seconds 

Iteration Total Time (Second) Algorithm(Second) I/O(Second) 

1 5 3.31 1.69 

2 5 2.5 2.5 

3 6 3.57 2.43 

4 6 3.57 2.43 

5 3 0.82 2.18 

6 4 1.53 2.47 

7 6 3.28 2.72 

8 5 2.46 2.54 

9 3 0.99 2.01 

10 4 1.68 2.32 

Average 4.7 2.37 2.33 

 

The results indicate that it takes (5, 5, 6, 6, 3, 4, 6, 5, 3, 4) seconds respectively 

including I/O with the average elapsed time of 4.7 seconds. This significantly 

decreases when we calculate the generation process only instead of I/O which is only 

2.37 seconds. The elapsed time is directly proportional to the number of methods, 

number of parameters and the complexity of each method.  

 

According to the results the fastest time the algorithm was able to generate fittest 

candidate is 3 seconds and the longest or slowest time is 6 seconds. But most of the 

time the tool was able to process the methods within 5 seconds. This is the total time 

from running the application until generating and exporting the results to csv file for 

the sake of analysis. Generally the average time required to run the algorithm is only 

2.21 seconds as we mentioned before. 
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Regarding the best candidate fitness, as mentioned before the optimal candidate fitness 

value is 10. In the iteration where the results recorded the average fitness value of the 

best candidate is 6.56 as shown in Table 5.2. It is worth mentioning that this is the 

average value for each generation of each round until the best candidate reached. 

Otherwise the best candidates reach the max value except the only case where the 

algorithm ended by the generation count. The highest the best candidate fitness is, the 

closer it is to the optimal input for the method. 

 

Table 5.2. Summary of the data 

Attributes Results 

Best candidate fitness average 6.56 

Best candidate standard deviation 0.37 

Mean fitness 7.52 

Total Number Of Generations 1740 

Terminated by generation count 1 

Elapsed time(Seconds) 1.68 

 

The total number of generation for the entire class is 1740. It varies according to the 

parameters and complexity of the methods. That is because it depends on the range of 

the input for each data type. For example a double type surpasses int type by a large 

margin. Therefore, whenever the algorithm starts generating random values to guess 

the correct input it has a larger range of possibility. When the number of parameters 

of methods increase, the complexity increases by N2 as it has to provide a combination 

of values rather than one single scalar value.  

 

The average sd is 0.3678177 which basically means that how far are we from the 

optimal solution. It is inversely proportional to the mean fitness. Because in mean 

fitness we try to get to the fitness value as much as possible while in sd we try to 

eliminate the difference as much as possible. Hence, the higher mean fitness is, the 

lower sd is. There is not quite a fixed value for sd as we start running the algorithm, 

after each generating each individual it has to measure the sd and select an individual 

with lower sd in the upcoming generations. 
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5.3.  Performance Measures for Each Method of the Class 

 

Table 5.3 shows the performance measure of the algorithm for each method where BA, 

BSD, MF, TC, ET, TG, Min, Max stands for best candidate fitness average, best 

candidate standard deviation, mean fitness, terminated by generation count, elapsed 

time (seconds), total generations, min generation, max generation. It can be clearly 

seen that only isQualifiedForReqtirement has a round which was terminated by the 

generation count which is 1000. Generally when a process terminated by generation 

count means that it has not reach the optimal solution for the certain round. 

 

Table 5.3. Summary of performance for all methods  

Method Name BA BSD MF TC ET TG Min Max 

calculateScore 8.88 0.23 9.91 0 0.08 42 3 8 

determineGuess 7.37 0.6 9.33 0 0.11 76 9 11 

isQualifiedForRetirement 6.79 0.24 7.37 1 1.13 1304 29 42 

setMemberAge 4.6 0.9 6.9 0 0.12 188 19 21 

withdraw 5.91 0.84 8.2 0 0.24 130 12 16 

 

We can determine the least generations required to get to optimal solution from the 

min and max attributes of Table 5.3. calculateScore requires the least generations of 3 

while isQualifiedForRequirement requires 29 generations to get to the fittest value. 

Method parameters play an important role in this scenario. For instance, calculateScore 

accepts two parameters of char, while isQualifiedForReqtirement requires 2 

parameters of long. It is obvious that long has a much larger range of possibilities. 

Therefore, it requires more generations to make a right guess.  

 

While the ratio of the difference between min and max values are relatively the same 

among the methods, but we cannot formalize the ratio as it significantly changes when 

running multiple iteration. This is because it highly depends on the initial value of the 

input which is 100.The total number of generations are 42, 76, 1304, 188, 130 

respectively. While setMemberAge has a single parameter, but it requires a higher 

number of generation than withdraw although the later has two parameter. The 

complexity of the method also plays an important role in the number of generations 

required to guess the right input. There is significant difference in the time required to 
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generate all the inputs between these two methods. Data generation for the first one 

requires only 0.116 while for the second one requires 0.242. It clearly shows that while 

withdraw needs less generation to get to the highest fitness but requires more time due 

to its complexity. 

 

To further investigate the results and dive more deep into the way the algorithm work, 

logging the creation of generation, mutation and crossover is integrated into the core 

module of the proposed tool as it is shown in Table A.1, Table A.3, Table A.4. This is 

only a small portion of the log and it is only for one method which is calculateScore. 

 

Table 5.4. Contains best candidate for each method in only one of the rounds for the 

sake of validating the generated input. These candidates does not necessarily contain 

data that would possibly traverse all paths of the method. This is one of the weakness 

of our proposed method and can be improved by integrating with tools that traverses 

all possible paths of a given method. 

 

Table 5.4. Sample input data generated by the algorithm 

Method name Best Candidate 

calculateScore [[W, M], [M, c], [O, e], [k, l], [d, k], [j, m], [t, M], 

[m, J], [c, V], [m, k]] 

determineGuess [[6, 7], [1, 3], [5, 9], [3, 5], [3, 1], [8, 4], [6, 3], 

[6, 8], [8, 5], [5, 3]] 

isQualifiedForRetirem

ent 

[[3, 2], [7, 7], [30, 4], [96, 2], [50, 6], [6, 6], 

[30, 8], [5, 5], [7, 2], [33, 8]] 

setMemberAge [[5], [9], [94], [7], [7], [2], [66], [6], [50], [1]] 

withdraw [[true, 376091.67], [false, 53263.29], [true, 482417.49], 

[false, 820788.87], [true, 222086.01], [false, 886813.84], 

[false, 398886.68], [true, 633687.5], [true, 157370.31], 

[false, 130025.44]] 

 



 

 

CHAPTER 6. CONCLUSION AND FUTURE WORK 
 

 

Automated testing is one of the major steps in software development life-cycle. It is 

crucial that the software tested before production in order to deliver a high quality 

application for the client. Though, it comes at cost of writing and maintaining it. 

 

In this study we propose a model to mitigate the testing process by automating the data 

generated for the tests. This way, it will reduce a lot of time setting and updating test 

data for test cases. 

 

In order to achieve this, we use Genetic Algorithms which is known to be very 

effective in the area where there is a large searching space. As the data used to test is 

relatively large, we need to use an algorithm that reduces the range and provide 

reasonable input to the test cases. For this reason, GA is the perfect fit for our concept. 

 

Only public methods that are accessible both inside and outside the scope of the class 

are used in this study. Regarding data types, only primitive types which are (byte, 

short, int, long, float, double, Boolean, char) are again in the scope of this study. The 

reason for choosing only primitive types is because the tool is in the first stage 

(prototyping), other data types like string and other types objects can be integrated 

later into the tool.  

 

One of the major challenges in generating test data is generating meaningful data that 

would probably make sense and what is so called human readable and understandable. 

Tools that are available right now are source code unaware and generate data 

randomly. To overcome this issue, to new error class types are introduced which are 

countable and uncountable. This way, the algorithm tries to depend on the countable 

errors rather than uncountable and meaningless data. 
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The fitness function is the crucial part of GA. This function is responsible for telling 

the algorithm how fit the generated data is. In this type of application, fitness function 

is maximized to reach to our target fitness and then decide about how good each 

candidate/individual is and how it fits in the acknowledged problem.  

 

The performance of the tool is quite promising. After testing on a sample class, it was 

able to generate test data within less than 3 seconds with an average standard deviation 

of 0.37 and total number of generations of 1740. 

 

We assert that, using our proposed technique will help companies save a lot of time 

and effort. It is still in early stages, but can be further improved and used as either a 

library or a standalone tool. In addition, it will help teams in ensuring code quality, 

because otherwise the tool will end up generating poor data that would sound more 

like a random data. Many different adaptations, tests, and experiments have been left 

for the future. Below are some of the future works that can be done on top of our 

proposed model: 

 

1. Test the tool with different data types and object such as String, custom objects 

instead of only primitive types (byte, short, int, long, float, double, Boolean, char). 

 

2. Other types of methods and data types can be incorporated in the future to further 

develop and apply in real life projects. 

 

3. Other selection, mutation, crossover algorithms can be used to enhance the 

performance of the tool. 

 

4. Integrate other frameworks and tools that is able to generate the number of paths in 

each method to further maximize the fitness function. 

 

5. Caching techniques can be integrated into the tool to increase its performance. 
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APPENDIX 

 

Appendix 1:  Contains best candidate per each round for calculateScore method with 

the number of generations and the elapsed time. 

 

Appendix 1. Best candidate per round for calculateScore method  

Round Generation Elapsed 

time(ms) 

Best Candidate 

11 1 20 [[F, A], [l, r], [T, T], [d, M], [a, M], [D, D], [t, a], [H, N], 

[L, B], [M, z]] 

11 2 24 [[m, m], [M, s], [A, P], [J, J], [m, a], [h, l], [A, d], [b, M], 

[w, M], [j, L]] 

11 3 27 [[S, J], [k, a], [A, S], [c, K], [M, L], [k, k], [b, E], [B, e], 

[k, j], [A, d]] 

11 4 29 [[W, M], [M, c], [O, e], [k, l], [d, k], [j, m], [t, M], [m, J], 

[c, V], [m, k]] 

12 1 3 [[L, R], [J, J], [e, d], [j, J], [K, h], [J, M], [l, L], [Y, f], [d, 

d], [B, t]] 

12 2 4 [[V, S], [M, M], [M, l], [L, c], [n, h], [d, J], [A, A], [K, w], 

[s, d], [s, v]] 

12 3 5 [[M, a], [N, q], [a, a], [p, T], [a, A], [l, T], [L, r], [J, L], [T, 

l], [n, b]] 

12 4 6 [[l, r], [B, M], [C, C], [e, A], [l, M], [C, m], [w, J], [e, s], 

[C, S], [P, J]] 

12 7 8 [[B, l], [B, J], [C, C], [e, A], [l, M], [w, J], [C, m], [e, s], 

[n, S], [i, H]] 

12 8 9 [[k, a], [t, C], [K, p], [K, d], [T, m], [M, B], [a, p], [J, R], 

[T, i], [D, l]] 

7 1 2 [[m, m], [m, r], [c, s], [g, R], [a, r], [C, j], [a, a], [t, m], [f, 

D], [B, B]] 

7 2 3 [[d, B], [S, E], [c, C], [m, J], [t, M], [a, a], [A, A], [j, A], 

[a, C], [t, l]] 

7 3 3 [[T, T], [o, L], [r, Z], [E, d], [w, R], [J, D], [j, I], [D, k], [J, 

f], [B, O]] 

7 4 4 [[n, r], [h, D], [r, z], [K, k], [j, T], [J, t], [C, J], [h, D], [m, 

J], [r, B]] 

8 1 2 [[s, T], [N, t], [L, P], [D, D], [s, T], [N, K], [C, K], [l, I], 

[e, k], [m, t]] 
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Appendix 2. Best candidate per round for calculateScoreMethod continued 

8 2 2 [[A, G], [L, a], [C, R], [R, v], [d, F], [M, m], [K, n], [C, C], 

[t, L], [a, A]] 

8 3 3 [[W, h], [B, H], [S, y], [A, c], [w, J], [y, J], [b, b], [s, D], 

[c, A], [R, Z]] 

8 4 4 [[c, m], [b, h], [j, m], [G, O], [F, D], [l, B], [M, e], [M, S], 

[z, T], [A, H]] 

9 1 1 [[S, S], [G, u], [a, s], [v, k], [e, B], [c, h], [J, a], [r, C], [A, 

M], [A, R]] 

9 2 2 [[A, M], [H, H], [L, a], [b, n], [s, S], [i, E], [U, I], [p, t], [L, 

R], [A, e]] 

9 3 3 [[A, M], [H, H], [L, a], [G, M], [L, b], [c, E], [E, L], [p, t], 

[L, R], [A, e]] 

9 4 4 [[G, J], [b, g], [d, B], [s, j], [M, s], [n, A], [w, O], [E, D], 

[B, m], [J, H]] 

10 1 2 [[J, k], [A, h], [s, r], [e, e], [A, z], [m, K], [D, D], [r, k], [k, 

N], [e, C]] 

10 2 3 [[m, m], [c, K], [e, M], [b, e], [d, G], [J, c], [R, J], [J, r], [E, 

A], [A, R]] 

10 3 4 [[l, M], [A, K], [b, g], [A, W], [k, g], [L, g], [e, C], [K, K], 

[l, j], [N, r]] 

10 4 4 [[H, j], [s, o], [A, R], [E, M], [S, e], [M, l], [m, E], [b, D], 

[i, V], [c, B]] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



51 

 

 

Appendix 3: is a sample of the mutation operator for calculateScore method between 

the first parent and the second parent. Also contains the first offspring that is created 

after the mutation process. 

 

Appendix 3:  Sample mutation for calculateScore method 

 Candidate 

First parent [[A, T], [D, d], [H, n], [c, M], [s, G], [a, r], [l, d], [E, C], [E, K], [k, B]] 

Second parent [[j, C], [c, M], [b, L], [T, h], [E, c], [L, h], [E, N], [A, T], [k, D], [k, P]] 

First offspring [[A, T], [D, d], [H, n], [c, M], [s, G], [a, r], [l, d], [E, C], [E, K], [k, B]] 

Second offspring [[j, C], [c, M], [b, L], [T, h], [E, c], [L, h], [E, N], [A, T], [k, D], [k, P]] 

First parent [[R, C], [L, k], [m, a], [m, s], [j, m], [Z, C], [K, c], [k, D], [O, r], [C, l]] 

Second parent [[m, h], [E, M], [g, n], [t, L], [E, J], [c, G], [a, A], [J, C], [a, i], [L, j]] 

First offspring [[m, h], [E, M], [m, a], [m, s], [j, m], [Z, C], [K, c], [k, D], [O, r], [C, l]] 

Second offspring: [[R, C], [L, k], [g, n], [t, L], [E, J], [c, G], [a, A], [J, C], [a, i], [L, j]] 

First parent [[S, c], [j, N], [g, V], [E, b], [m, j], [a, W], [j, D], [k, M], [w, L], [l, G]] 

Second parent [[s, D], [C, g], [C, T], [j, m], [t, Z], [a, l], [d, j], [Y, E], [T, G], [e, n]] 

First offspring [[s, D], [C, g], [C, T], [j, m], [t, Z], [a, W], [j, D], [k, M], [T, G], [e, n]] 

Second offspring [[S, c], [j, N], [g, V], [E, b], [m, j], [a, l], [d, j], [Y, E], [w, L], [l, G]] 

First parent [[k, w], [k, k], [s, r], [k, V], [a, C], [O, E], [E, D], [m, n], [V, J], [M, p]] 

Second parent [[j, y], [e, D], [N, D], [C, m], [M, T], [d, d], [t, m], [c, j], [A, n], [n, J]] 

First offspring [[j, y], [e, D], [N, D], [C, m], [M, T], [d, d], [t, m], [c, j], [A, n], [M, p]] 

Second offspring [[k, w], [k, k], [s, r], [k, V], [a, C], [O, E], [E, D], [m, n], [V, J], [n, J]] 
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Appendix 4: is a sample of the crossover operator for calculateScore method between 

the original candidate and the mutated candidate. 

 

Appendix 4. Sample crossover for calculateScore method 

 

Candidate 

Original [[e, l], [R, A], [R, e], [R, j], [j, a], [M, N], [s, R], [c, C], [f, E], [c, s]] 

Mutated [[e, l], [R, A], [R, e], [R, j], [j, a], [M, N], [s, R], [c, C], [c, s], [f, E]] 

Original [[L, M], [l, J], [j, A], [N, W], [j, m], [G, I], [A, l], [G, S], [W, p], [S, L]] 

Mutated [[L, M], [l, J], [j, A], [N, W], [j, m], [G, I], [A, l], [W, p], [G, S], [S, L]] 

Original [[N, C], [c, n], [V, M], [G, l], [a, a], [A, d], [K, m], [b, D], [e, G], [d, m]] 

Mutated [[N, C], [c, n], [V, M], [a, a], [G, l], [A, d], [K, m], [b, D], [e, G], [d, m]] 

Original [[T, e], [a, l], [F, A], [h, k], [J, k], [m, R], [l, v], [p, M], [L, v], [N, c]] 

Mutated [[N, c], [a, l], [F, A], [h, k], [J, k], [m, R], [l, v], [p, M], [L, v], [T, e]] 

Original [[s, m], [C, e], [l, M], [o, R], [W, R], [R, d], [j, S], [d, m], [c, G], [j, C]] 

Mutated [[s, m], [C, e], [l, M], [o, R], [W, R], [j, S], [R, d], [d, m], [c, G], [j, C]] 

Original [[M, m], [p, J], [D, r], [k, a], [m, a], [e, M], [D, M], [a, D], [j, f], [M, I]] 

Mutated [[M, m], [D, r], [p, J], [k, a], [m, a], [e, M], [D, M], [a, D], [j, f], [M, I]] 

Original [[A, e], [b, m], [G, I], [m, a], [N, l], [l, m], [a, e], [i, d], [h, M], [B, D]] 

Mutated [[A, e], [b, m], [G, I], [N, l], [m, a], [l, m], [a, e], [i, d], [h, M], [B, D]] 

Original [[s, y], [J, a], [j, s], [k, A], [j, J], [K, c], [H, D], [l, r], [f, c], [j, t]] 

Mutated [[J, a], [s, y], [j, s], [k, A], [j, J], [K, c], [H, D], [l, r], [f, c], [j, t]] 

Original [[j, G], [u, m], [A, g], [k, J], [A, j], [c, A], [K, r], [m, s], [G, b], [M, A]] 

Mutated [[j, G], [u, m], [A, g], [k, J], [A, j], [c, A], [K, r], [G, b], [m, s], [M, A]] 
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