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SUMMARY 

 

 

Keywords: Multiple Linear Regression, STLF, Load Forecasting, Control Center 

Component. 

 

Due to the importance of electricity and its impacts on the human living environment, 

several studies have been conducted to forecast and possibly reduce forecast errors of 

the electricity load. 

  

In this thesis, the load data of Iraq Sulaymaniyah city are used. Forward selection, 

backward elimination, and stepwise approaches are used to determine the variables in 

the multiple regression equation. The 6-year data of 2014-2019 was used to develop 

the day-ahead forecasting models, while the 2019 year was used as a test dataset to 

validate the model. Each year was divided into two-time intervals according to the 

change in load behaviour. The long-term seasonality effect was tried to be determined.  

  

The results show that instead of all data, the series divided into two according to long-

term seasonality could estimate the load with lower errors. Divided series will help the 

control center to have a better estimation of electricity demand and energy purchase. 

Using our model, they will be capable of forecasting electricity load for upcoming 

months and years to replace the traditional way of calculating and reporting load. 

 



 

viii 
 

LİNEER REGRESYON İLE ŞEHİR BAZLI GÜNLÜK ELEKTRİK 

YÜK TAHMİNİ ÜZERİNDE MEVSİMSEL ETKİLERİN 

DEĞERLENDİRİLMESİ 

ÖZET 

 

 

Anahtar Kelimeler: Çoklu Doğrusal Regresyon, STLF, Yük Tahmini, Kontrol Merkezi 

Bileşeni. 

 

Elektriğin önemi ve insan yaşam ortamı üzerindeki etkileri nedeniyle, elektrik 

yükünün tahmini ve elektrik yük tahmin hatalarını düşürmek için çeşitli çalışmalar 

yapılmıştır. 

 

Bu çalışmada Irak Süleymaniye şehrinin yük verileri kullanılmıştır. Çoklu regresyon 

denklemindeki değişkenleri belirlemek için ileriye doğru seçim, geriye doğru eleme 

ve kademeli yaklaşımlar kullanılmaktadır. Gün öncesi tahmin modellerini geliştirmek 

için 2014-2019 yılları arasındaki 5 yıllık veri, modeli doğrulamak için ise 2019 yıla ait  

test veri seti kullanılmıştır. Her yıl, yük davranışındaki değişime göre iki zaman 

aralığına bölünmüştür. Böylece, uzun dönemli mevsimsellik etkisi belirlenmeye 

çalışılmıştır. 

 

Sonuçlar, tüm veriler yerine uzun dönemli mevsimselliğe göre ikiye ayrılan serinin 

daha düşük hata ile yükü tahmin edebileceğini göstermektedir. Bölünmüş seriler, 

kontrol merkezinin elektrik talebini ve enerji alımını daha iyi tahmin etmesine 

yardımcı olacaktır. Modelimizi kullanarak, geleneksel yük hesaplama ve raporlama 

yönteminin yerine gelecek aylar ve yıllar için elektrik yükünü tahmin edebilecekler. 



 

 

 INTRODUCTION 

 

 

Electricity is produced from two different types of sources which are called renewable 

and non-renewable sources. Renewable includes solar, wind, radiation, etc. Non-

renewables are coal, natural gas, and oil. Unfortunately, our region entirely depends 

on non-renewable energy. 

 

Most of the energy is produced by electrical generators as well as water turbines. Due 

to the lack of enough water sources, the majority is produced using electrical 

generators. Once produced, they are transferred to the substations in the cities through 

overhead power lines suspended by towers.  

 

Supplying power is one of the significant challenges in Iraq. The Government can 

barely provide 24 hours of electricity in a day. A portion of the energy is supplied by 

generators that belong to the private sector. Government or private, in both scenarios 

where electricity is generated, the source of the power is fuel (examples; gasoline, 

petroleum). Therefore, it has to consider the amount of fuel required to provide the 

necessary power. Besides, for the rest of the electrical energy generated, Government 

has to dedicate a particular portion of the annual budget for the companies that work 

in the sector to overcome the shortage of power. Nevertheless, Government could not 

fully provide the 24 hours of electricity. 

 

There are several control centers taking care of power distribution in each city. 

Electricity is supplied based on a specific schedule derived from recent days, months, 

and years. For instance, the Government provides power for 14 hours in spring and 8 

hours in summer.
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Due to high energy demand and low supply in Sulaimaniyah city, there is insufficient 

energy to be stored. Once produced, it is either distributed or sent to other parts of Iraq. 

But in general, electricity can not be stored; it needs to be transformed to other forms 

of energy and reuse once required. One of the most critical storage media is the battery, 

then comes flywheel, etc. 

 

Lack of fuel, shutting down the feeders for maintenance are examples of rapid declines 

that cause the schedule changes. Forecasting load consumption helps 

government/companies make a tactical decision about the power supply and 

distribution for upcoming days, months, and even years. 

 

This traditional power distribution approach has been working for the past years. 

However, there is no formal way of predicting how much power will be needed next 

year(s). They should formulate a strategic plan to balance the load, minimize the 

immediate power shortage, and even develop an annual report that will help reduce the 

chance of errors, estimate the required power, and maximize hours of dedicating the 

power supply to people. The governors should do accurate demand forecasting to 

achieve balanced electricity with minimum loss and power shortage. Demand 

forecasting of electricity load is one of the aims of this thesis. 

 

Forecasting is a method of predicting what the future will bring. Every function inside 

an organization requires an estimate of what the future will look like to create its 

current plans. Today, all firms work in an unpredictable environment. Organizations 

should analyze the environment using various forecasting tools, determine their 

strengths and weaknesses, and develop plans. Predicting is making plans based on a 

set of assumptions or forecasts that may or may not be accurate. Demand forecasting 

is critical for businesses to receive the most precise estimate of the changes feasible to 

survive, strive for operational excellence, and maintain a competitive advantage.  

 

According to William J. Stevenson of Operations Management, a good forecast should 

have the following characteristics: Accuracy, reliability, timely, simple to use and 

understand, expense [1]. 
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The projections are based on historical data. The current behavior of these components 

and the likelihood of their occurrence in the future is, to some extent, an extension of 

how they have occurred in the past and present. However, unanticipated alterations 

can always occur. Forecasting is inextricably linked to planning.  

 

According to the businesses, annual, monthly, weekly, daily forecasts can be done. For 

example, while annual population growth is more likely to forecast, monthly 

forecasting is more important in estimating interest rates. A household appliances store 

is more likely to provide weekly sales forecasts, while a gas supply company may need 

to forecast daily. The concept of time in the estimation changes according to each 

business and condition. For a person who trades in the stock market, minute forecasts 

can be “short-term forecasts,” hourly or daily forecasts can be “medium-term 

forecasts”, weekly or monthly forecasts can be “long-term forecasts”. Daily forecasts 

in this thesis are referred to as “short-term forecasts” in the electricity market, monthly 

forecasts are referred to as “medium-term forecasts”, annual and higher forecasts are 

referred to as “long-term forecasts”. 

 

This thesis examines multiple linear regression (MLR) to predict electricity load for 

the upcoming year based. The data mainly composed 24 hours load on each feeder 

within the regions that belong to the Sulaimaniyah city in Iraq collected from 2014 to 

2019. Since data is hourly-based, it is converted to a daily-based for daily forecasting. 

 

 Literature Review 

 

Different models were focused on and discussed on applying these models in 

forecasting electricity demands in the literature.  

  

Saber et al. conducted short-term load forecasting using multivariable linear regression 

with stochastic and dependable big data. The multicore parallel processing was used 

in all matrix operations; the mean absolute percent error is 3.99% of actual recorded 

data [2]. 
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Furthermore, Kolasa-Wiecek and Alicja analyzed greenhouse gas (GHG) emissions 

generated by Poland’s energy sector. In their study, a multiple stepwise regression 

model was applied to the data from the 1989-2011 period, and it was shown that the 

obtained regression model could explain 90% of the variability [3]. 

  

Fumo and RafeBiswas analyzed the hourly and daily energy consumption of an HVAC 

(Heating, Ventilation, and Air Conditioning) system in a research house using simple 

linear regression, multiple linear regression, and quadratic regression. Their results 

proved that the accuracy of the models increased with the time of the observed data 

[4]. 

 

In addition, Amber et al. used multiple regression to create a mathematical equation to 

estimate the daily energy demand in university buildings on London’s South Bank 

University’s Southwark Campus. Their study determined that temperature, weekday-

weekend situations, and building type excessively affect using five-year data [5]. 

 

Also, Akpinar and Yumusak used MLR in the day-ahead natural gas forecast for 2012. 

In their work, expanding data and sliding window approaches were compared. The 

results showed sliding window approach could predict lower errors. The rest of the 

study tested models with different window sizes and showed that the 4-week window 

size had the lowest MAPE value [6]. 

 

Moreover, Kim et al. conducted a study forecasting peak load demand for an 

institutional building in Seoul; they used ARIMA models, ARIMA-GARCH models, 

multiple seasonal exponential smoothing, and ANN models. The data were collected 

from 23 facilities in the campus area. The best model was found with moving window 

simulations and step-ahead forecasts. In addition, they used weather and holiday 

variables, which were critical for load estimation. The ANN model with external 

variables (NARX) was the best for 1-hour to 1-day ahead forecasting [7]. 

 

Yan et al. Prerared a factor-based bottom-up forecasting model to estimate the 

electricity consumption and carbon emission during 2015-2040 periods for the 
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Japanese residential sector. The models consist of nine scenarios that combine three 

levels of household size, and three levels of per capita gross domestic product growth 

are taken into account to estimate the electricity consumption for space heating and 

cooling, water heating, cooking, and appliances. They performed that the total 

residential electricity consumption will reach a peak during the 2020s. And the total 

carbon will keep decreasing by 51.14-72.16 Mt between 2015 and 2040 [8]. 

 

Also, Larsen et al. introduced a new estimation methodology for electricity usage with 

the daylight and occupancy-controlled artificial lighting in an office, which is accurate 

and rapid. The technique is validated for an office building in Oslo, Norway, utilizing 

data from the Building Management System and experimentally generated data. They 

applied on a case-study and cell-office, during the 6-day measuring period, used 

measured external irradiance and the actual occupancy profile for the office. During 

the measurement period, the calculated electricity use is predicted to be 0.3 kWh/m2 

(6 days). For the case-study office, a rough assessment of electricity use can be 

performed using the same methodology, but with the Norwegian reference year 

weather file instead of measured irradiance as a background. In this case, annual 

electricity use in the office corresponds to 10.5 kWh/m2 year, which is approximately 

0.32 kWh/m2 (6 days) for the period of measurements [9]. 

 

In addition, Seyedzadeh et al. used ML models for building energy estimation and 

benchmarking, as well as the benefits and downsides of each model. Beside ML 

techniques and other black box methods, only Gaussian Process (GP) was used for 

model training with uncertainty estimations. ANN produced a fast and precise short-

term load forecasting for Energy Management System (EMS)s where temerature and 

humidity data is collected using sensors, while GP is more beneficial for long-term 

energy estimation when there is uncertainty in input variables [10]. 

 

Also, Motlagh et al. produced a joint probability model of electricity demand based on 

occupant’s age grades and household income levels. They designed the bottom-up 

technique by using a micro-level database for 70 houses in Australia. A neural 
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regression generalization technique using back-propagation and cognitive mapping is 

developed to estimate electricity consumption. 

 

 The aggregated result is then confirmed against the Australian national census data 

from 2012. As a result, the model is improved through a top-down review. The 

findings also suggest a higher percentage of per capita demand for adults in the high 

and medium-income classes and a lower percentage for individuals in the low-income 

category. The ratio of child demand to adult demand is highest in low-income 

households and lowest in middle-income households, with high-income households 

having the best balance of adult and child per capita demand [11]. 

 

Cao, et al. used data from the Chinese Urban Household Survey over 2009–2025 using 

alternative linear and nonlinear autonomous trends. They develop a preferred forecast 

range of 85–143 percent growth in residential per capita power demand. 

 

 According to their analysis, per capita, income growth accounts for 43% percent of 

the rise, with the remaining due to unexplained historical trends. Increases in the stock 

of specific essential appliances, particularly air conditioners, account for around one-

third of the income-driven demand. The remaining two-thirds are derived from non-

specific sources of income-driven growth and are based on an estimated income 

elasticity that decreases from 0.28 to 0.11 as income increases. 

 

While the supply of refrigerators is not expected to grow, it discovered that they 

account for approximately 20% of household electricity demand. The extensive range 

of 85–143 percent is due to alternative credible temporal trend assumptions. However, 

the estimation price of electricity result was -0.7. These estimations indicate that 

carbon price and appliance efficiency policies might significantly lower demand [12]. 

 

In addition, Al-Mosawy et al. analyzed household electricity consumption of 

residential areas in Baghdad by studying a set of factors, which are the average daily 

outdoor air temperature, the plot area of residential. It has been discovered that the 
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annual electricity consumption is directly proportional to the plot coverage ratio for 

residential units, the number of housing unit residents, and the household income. 

 

While the increase in the number of members of the housing unit and the increase in 

monthly household income are inversely proportional to the coverage ratio, the lowest 

electricity consumption achieved is (45 kWh) when the average daily temperature is 

(23°) Celsius in April. It reaches its highest value of (169 kWh) when the average daily 

temperature is (39°) Celsius in July.  

 

The results revealed that small plot areas and high coverage residential units consume 

less electricity than large plot units. Six quantitative models were developed to 

describe electricity consumption behavior regarding the variables studied [13]. 

 

In another study, Abuella et al. prepared an analysis model for the European Center 

for Mid-Range Weather Forecast (ECMWF) using MLR to produce probabilistic 

estimates of solar energy, and they performed a short-term load prediction [14]. 

 

Also, Hong et al. prepared MLR models using the 3-year hourly energy demand of the 

U.S. utility, and they used a year as a hold-out sample. They also showed the 

relationship between system load and temperature in graphical form monthly [15]. 

 

Yildiz et al. first modeled the monthly delivered natural gas demand estimation by 

decomposition of time series. Next, the residuals were examined by various 

independent variables regression. As a result of the regression model, it is seen that 

the variables of standard precipitation index of 24 months, natural gas sold to 

commercial consumers, and total natural gas underground storage capacity are 

determined as significant. The hybrid approach has yielded lower percentage errors 

[16].   

 

In addition, Zhang, et al. applied three forecast models: multiple linear regression, 

random forest, and gradient boosting. They were merged solar capacity to estimate 
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hourly load in southern California, and the result shows that the models were more 

accurate where lower loads [17].    

  

Amiri et al. used multiple regression to develop a cooling and heating load model to 

estimate energy consumption and performance for commercial buildings in the U.S. 

The difference between heating and cooling loads compared to the result demonstrated 

from energy simulations; their result showed that outlined the benefits and prospects 

of this method for determining the energy efficiency of commercial buildings [18]. 

 

Braun et al. demonstrated an examination of a supermarket’s electricity use in northern 

England. A multiple regression model has been used data from the 1961–1990 interval 

in their study, and the model was obtained forecasts the climatic period 2030–2059. 

The estimated outcome is then compared between these two times. As a result, power 

usage is expected to grow by 5.5%, with 2.1% being the most conservative estimate. 

Gas usage is expected to decline by up to 28%. (13% central estimate) [19]. 

  

Vu et al. applied multicollinearity and backward elimination methods to identify the 

most influential variables and generate a multiple regression model for monthly 

forecasting of energy consumption in the Australian state of New South Wales. The 

outcome demonstrated that the suggested model had a reduced prediction error [20]. 

 

Wu et al. constructed a linear regression model to forecast energy usage based on 

online monitoring data from 30 single functional and 20 multipurpose buildings. On-

site studies revealed that the sub-item energy consumption index obtained from 

multifunctional structures had lower inaccuracy than single functional buildings. The 

inaccuracy was the lowest in the hotel industry, totaling about 1.1%. In the office 

sector, the variance was 3.9 % [21]. 

 

Vasquez et al. prepared an analysis model for the annual energy consumption of the 

Puerto Princesa Distribution System for 2019-2028, using MLR to provide a 

forecasting model. The variables considered for the regression analysis were peak 
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demand and the number of customers. The result showed the MLR was a decent match, 

and the error performance test proved that the mean percent error was 0.74% [22]. 

  

Bianco et al. used simple and multiple linear regression to estimate energy 

consumption for the historical data are from 1970–2007 in Italy, with the variables 

gross domestic product (GDP), GDP per capita, and population. The result showed 

that R2 is 0.981 for the total residential and non-residential consumption. Then the 

results of the models are compared with the national forecasts available in Italy, which 

showed excellent accuracy [23]. 

  

Aranda et al. analyzed the energy consumption of annual Spanish banking sectors, and 

a multiple linear regression model was applied. They obtained three models; the first 

one used to predict the energy consumption for the whole banking sector, second and 

third is to estimate the energy consumption for the branches with low winter climate 

severity (Model 2), with high winter climate severity (Model 3). Results showed that 

the verification of the first model had the lowest determination coefficient that allows 

for the detection of weak bank branches [24]. 

 

Asadi et al. developed a novel model that applied regression equations to forecast and 

figure out energy consumption in commercial buildings during the early phases of 

building design based on construction features, form, and occupancy schedule in the 

United States. Their findings were included in a set of regression equations to estimate 

energy consumption in each design scenario. The best agreement was found between 

the projected data and the DOE simulation based on the constructed regression model. 

The highest error rate was less than 5% [25]. 

  

Siyu Zhou and Neng Zhu; developed an analytical model for four Chinese climates: 

hot summer and warm winter, hot summer and cold winter, cold, and extremely cold 

They created several regression models to predict the energy consumption of office 

buildings in various climates when diverse building envelope designs are factored into 

the equation. Simulation evaluations and actual case evaluations were performed to 

evaluate the feasibility and correctness of the regression models during the regression 
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model assessment. The simulated assessments had a ±5% mistake rate, whereas the 

actual case evaluation had a ±15% error rate [26]. 

 

Mohammed et al. used a regression model to estimate the energy consumption of one 

of Saudi Arabia’s most critical energy-consuming categories of facilities: schools. The 

model was created using 350 actual data points of energy usage collected from Saudi 

Arabia’s eastern region schools. According to the results, the model correctly 

forecasted the energy consumption of school buildings with a greater than 90% 

accuracy [27]. 

  

Dhaval and Deshpande; applied For day-ahead load forecasting, multiple linear 

regression (MLR) is used. The load in an electrical power system is affected by 

temperature, the due point with seasons, and the load corresponds with past load 

consumption (Historical data). The findings revealed that the model predicted with 

95% accuracy [28]. 

  

Supapo et al. multiple linear regression models were developed for predicting load 

consumption on Palwan’s Aborlan-Narra-Quezon supply system from 2016 to 2025. 

The results demonstrated that the proposed approach is adequate. For prediction 

accuracy, the mean average percentage error (MAPE) for each year between historical 

and anticipated load data was calculated to be 2.26 % [29]. 

  

Tuaimah et al. conducted short-term (up to 24 hours) load forecasting for historical 

data of Iraqi Power System, using multiple linear regression model (MLR) method, 

produced two models: (winter season, summer season) models. They got the 

compassionate model to the fluctuation of temperature. It needed a very accurate 

temperature forecast, as a slight change of temperature is causes a significant 

difference in load prediction [30]. 

 

 Moreover, in recent years, there are several studies with the other techniques used, 

such as computational intelligence (artificial intelligence), learning-based techniques, 
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including Auto-Regressive Integrated Moving Average (ARIMA), that have been used 

in [31], [32]. 

 

In studies on multiple regression techniques, electrical consumption estimation, and 

energy planning in the literature, it has been observed that seasonal effects, 

temperature, and calendar events are effective in load consumptions. With this 

motivation, it was thought that evaluating the seasonal impact with separate models 

would reduce the error by making more accurate predictions. City electricity 

consumption data was obtained to carry out this thesis. The data mainly composed 24 

hours load on each feeder within the regions that belong to the Sulaymaniyah City in 

Iraq. Since it is daily data, use Short-Term Load Forecasting (STLF) to create the 

model. This thesis examines multiple linear regression (MLR) applications to predict 

electricity load for the upcoming year based on the data collected from 2014 to 2019. 

 

In Section 2, the multiple regression technique is explained. The data and seasonality 

are mentioned in Section 3. In addition, the hypothesis question of the thesis is given 

in Section 3. In Section 4, the results are shown, and a general evaluation is done. In 

the last section, the results are summarized as a conclusion. 

 



 

 

 METHODOLOGY 

 

 

This chapter goes through types of regression methods and how they are applied in the 

thesis. Forward selection outperforms the others in terms of performance. The details 

will be further discussed in this chapter. 

 

 Multiple Linear Regression 

 

Over the last few decades, there has been a great deal of study into electric load 

forecasting. Most research in this field aims to design models that can predict the 

energy load profile with greater precision.  

 

Predictive models are used to estimate events at any period. It is widely used in sports, 

weather and healthcare, auto insurance [33], [34]. One of the most common methods 

used in this area is linear [35], [36]. In the behavioral sciences, it is one of the most 

commonly used predictive analyses. It is essentially the relationship between one or 

more explanatory variables and a dependent variable. Multiple Linear Regression 

(MLR), frequently known as multiple regression, is a statistical method that predicts 

the outcomes of a response variable and use many explanatory factors  [5]. It is a tried 

and true approach. They are widely applied in forecasting in sectors. It is accurate and 

robust [37]. 

  

Many analysts have addressed the issue of using both qualitative and quantitative 

factors in regression or multivariate analysis [38],[39].  

 

The goal of multiple linear regression (MLR) is to model the linear relationship 

between the explanatory (independent) variables and response (dependent) variables; 

the independent variables can be continuous or categorical [40], [19]. The goal of 
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reducing the gap between the observed and estimated values is often accomplished by 

curve fitting using the regression approach. The mathematical expression of the MLR 

is given in Equation (2.1). 

 

𝑌𝑖  =  𝛽0 +  𝛽1 𝑥𝑖1  +  … + 𝛽𝑝 𝑥𝑖𝑝  +  𝜀𝑖                                                                                                    (2.1) 

 

where: 

i = the number of days, 

yi = dependent variable, the electrical charge, 

xi = explanatory variables, 

β0 = the average coefficient of the model, 

βp = slope coefficients for each explanatory variable, 

β0 ...... βp = the linear coefficient of each explanatory variable. 

ε: The residual (fitted error) is used to assess the overall significance (F-test) of the 

equation as well as the significance of each regression coefficient (t-test). To achieve 

accurate findings from these analyses, the residual must be average and stable, with a 

mean of zero and a constant variance of σ 2 [19], [41]. 

  

MLR model works better when the relationship between dependent and explanatory 

variables is linear. Multiple linear regression analysis predicts trends and future values, 

either points or ranges. Until now, MLR has been used in numerous load forecasting 

studies. Different methodologies, prediction periods, mathematical models, and 

datasets results were discussed in the literature review of the thesis. 

  

Short Term Load Forecasting (STLF) is a reliable technique for estimating system 

loads from hours to days in advance. A strong forecasting strategy is crucial for 

generating economic output, securing systems, managing them, and planning. Linear 

regression analysis is a strong approach for predicting unknown values of a variable 

based on the actual value of another variable (factors) [2]. 
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 Forward Selection 

 

The forward selection approach continuously applies variables to the model. The first 

variable in the model has the most significant similarity to the independent variable y. 

Since adjusting for the influence of the first variable, the variable that entering the 

model as the second independent variable has the strongest relationship with y. When 

the last variable entering the sample has an irrelevant regression coefficient, or when 

all variables are used in the model, the mechanism ends as shown in Figure 2.1.  

 

 

Figure 2.1. Forward selection diagram 

 

Figure 2.2. shows the first three steps of the forward selection method for the Winter 

to Summer Train dataset (details are given in Section 3), which starts with no variable 

called the Null Model. In the following steps, the model selects the variables by 

comparing the p-value or R2  or other predicators involved in the selection process, 

such as SBC and AIC (Figure 2.2.). 
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Figure 2.2. Three steps of Forward selection diagram 

 

 

 

 

 

 

 

 

 

 

 

The model starts with intercept, which means that it has not selected an attribute for 

comparison yet. In this step, the parameter values are given in Table 2.1. (Adj R2 = 0, 

AIC = 21,717, SBC = 20,872). As a result, the estimated intercept, t-value, and 

standard error are 1,346,456, 175.2, 7,685.300005, respectively. It is ready to 

determine the most significant variables to inter the model (Table 2.2.). 

 

Table 2.1. Firs-step result of Forward selection method (Null model) 

Step 0. 

Effect  

 

 

Entered: 

Intercept 

 Errors 

Adj R2 0 

  AIC 21,717 

SBC 20,872 

Parameter Estimates Estimates t-Value Standard Error 

Intercept 1,346,456 175.2 7,685.300005 

 

The first variable is Avg(Tempavg) selected then added to the model as a first step, it is 

one of the significant entry candidates variables by pre-determined criteria Table 2.2. 

 

 

 

Intercept 

Avg(Tempavg) 

Intercept 

Avg(Tempavg) 

MinPressure 

AIC  

SBC 

Adj R
2
 

 

AIC  

SBC 

Adj R
2
 

 

AIC  

SBC 

Adj R
2
 

 

Intercept 
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Table 2.2. Most significant candidate variables for Step1 

Best 10 Entry Candidates for Step 1 

Rank Effect Log p-Value Pr > F 

1 Avg(Tempavg) -532.387 <.0001 

2 Avg(Tempmin) -523.308 <.0001 

3 Avg(Tempmax) -512.609 <.0001 

4 Max(Tempmax) -428.8936 <.0001 

5 Max(Tempavg) -413.5074 <.0001 

6 Max(Tempmin) -400.5002 <.0001 

7 Min(Tempavg) -369.4979 <.0001 

8 Min(Tempmin) -364.7489 <.0001 

9 Min(Tempmax) -363.7383 <.0001 

10 AvgPressure -270.3600 <.0001 

 

Avg(Tempavg) added to the model, which has the highest Adj R2, lowest AIC, SBC, 

and BIC, among other candidate variables.  

 

Table 2.3. Result of Forward selection model with the first variable 

 

Step 1. 

 

  

Effect  

Entered:  

Avg(Tempavg) 

 Adj R2 0.7137  

Errors AIC 20,658  

 SBC 19,819  

Parameter Estimates Estimates t -Value Standard Error 

Intercept 277,153 11.72 23,638 

Avg(Tempavg) 37,969 45.94 826.557822 

 

The next step is to add another significant variable to the model, which is 

(MinPressure) in the candidate variables (Table 2.4.); all error types and parameter 

estimates results are shown in (Table 2.5.). 

Table 2.4. Most significant candidate variables Step2 

Best 10 Entry Candidates for Step 2 

Rank Effect Log p-Value Pr > F 

1 Min. Pressure -35.4757 <.0001 

2 Avg. Pressure -29.9936 <.0001 

3 Max. Pressure -24.415 <.0001 

4 Avg. Humidity -22.5411 <.0001 

5 Max. Humidity -18.7974 <.0001 

6 Max(Tempmin) -12.4616 <.0001 

7 Avg. Type of Weather -11.1241 <.0001 

8 Max(Tempavg) -10.371 <.0001 

9 Min. Humidity -9.2327 <.0001 

10 Avg(Tempmax) -7.4911 0.0006 
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Table 2.5. Forward selection model with 2 variables 

 

Step 2. 

 

  

Effect  

Entered:   

Min. Pressure 

 Adj R2 0.735  

Errors AIC 0.735  

 SBC 19,759  

Parameter Estimates Estimates t -Valsue Standard Error 

Intercept 7,871,199 8.61 914,559 

Avg(Tempmax) 32,778 32.41 1,011.377055 

Min. Pressure -7,399.977316 
-8.31 

890.911445 

 

Moreover, As the model improves per the same criteria (such as fixed value (p-value 

0.05), AIC, SBC), repeats the procedure. When all remaining variables include a p-

value more significant than a certain level when added to the model, the stopping 

criteria are fulfilled. As mentioned before, it reaches this point, forward selection will 

stop and will be left with a model that only contains variables with p-values greater 

than a certain threshold.  

 

One of the estimates used by the regression model is a standardized coefficient. It is 

essentially the measure of the standard deviation of the variable as it progresses. Its 

primary advantage is unitless. For instance, the dataset includes temperature, wind, 

and holidays, which might affect the output while having different units. Temperature 

is measured using Celsius while the wind is measured in km/hour and holidays are 

essentially a boolean value. 
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Figure 2.3. Coefficient Progression for Load 

 

The coefficient progression for load falls between 10 and -4, where the majority of the 

variables are between -1 and +1. The max coefficient progression for load demand 

belongs to Avg(Tempavg), and Avg(Tempmax) has the lowest coefficient progression for 

load value as it progresses. 

 

As it is mentioned before, one of the measures that the model uses to measure the 

significance of a predictor is adjusted R2. The adjusted R2 is a modified version of R2. 

The value of R2 determines the importance of the given predictor. 

 

In this step, most of the predictors are quite close to each other, which indicates that 

they have a similar impact on load consumption. It can be clearly seen after moving 

from step-0, which is a null model (intercept), to the following steps, which start 

incorporating the predictors into the steps, the values remain almost the same for all 

predictors as is shown in Figure 2.3. 

 

The algorithm uses several criteria to select a model from a finite set of models. BIC, 

SBC, AIC, Adj R2 are among the criteria used by the regression model. Due to the fact, 
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the predictors have a relatively similar impact ratio on the data, and these criteria 

produce an identical flow of value as they move away from the intercept, as shown in 

Figure 2.4. The graph shows that the model has selected the last value as the best 

criteria value. However, it is different for SBC as it established the 13th step instead 

of the last step. Nevertheless, in terms of the output, it remains as is. 

 

 

Figure 2.4. Fit criteria for load 

 

 Backward Elimination  

 

In contrast to forward selection, backward selection starts with the entire set of 

attributes instead of one single attribute. Then removes the least significant attributes 

gradually according to an objective function until it satisfies the termination condition. 

 

The first variable to be removed is the one that relates the minimum to the reduction 

of predictive error sum of squares (PRESS). Assuming that there are many 

insignificant variables, the procedure begins by removing the following most 
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insignificant variable. When all variables are essential or all, but one has been 

discarded, the process is terminated (Figure 2.5.). 

 

 

Figure 2.5. Backward elimination diagram 

 

The first step in backward elimination is to choose a confidence interval or p-value. In 

most situations, a 5% significance threshold is selected, which results in a p-value of 

0.05. then fit the model with all of the attributes provided. After that, obtain the 

characteristic or predictor with the greatest p-value. Moreover, if the p-value is more 

significant than the significance level, the first step removes the variable from the 

dataset. If the p-value is the highest in the set, less than the significance level, it is the 

last step, which means that it is done, trying to delete the component from the dataset 

and then re-fitting the model using the new dataset. Return to step 3 after fitting the 

model to the new dataset. Once if it is in step 6, It signifies that the feature selection 

procedure is complete. Furthermore, it performed backward elimination to 
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successfully filter out elements that were not important enough for the model. (Figure 

2.5.) [20]. 

 

Figure 2.6. depicts the first three steps of the backward elimination procedure for one 

of the models in this study. All variables are introduced to the model and then 

eliminated one by one, with the variable with the highest probability of (p-value) 

removed. For instance, in the first step, the variable (Max. Type of Weather) with the 

highest p-value among the other variables were excluded from the dataset. 

 

 

Figure 2.6. Three steps of Backward elimination diagram 

  

The same technique is repeated for the subsequent steps, whereas the final step is if 

one of the variables has the highest p-value in the set and is less than the significance 

level. 

 
Table 2.6. First step of Backward elemination model 

 

Step 0.  

 

 

Effect 

Entered: 

Intercept 

 Errors 

Adj R2 0.7892 

  AIC 20,430 

SBC 19,742 

Parameter Estimates Estimates t-Value Standard Error 

Intercept + All variables 
6,722,182 4.89 1,375,210 
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The results show that the first model starts with all variables in the dataset. For the 

next step, the eliminator removes one of the variables (Max. Type of Weather) that has 

the highest p-value compared to all other candidate variables shown in Table 2.7. 

 

Table 2.7. Backward elimination in the second step (removing one variable) 

 

Step 0.  

 

 

Effect 

Entered: 

Intercept 

  

Errors 

Adj R2 0.7895 

  AIC 20,428 

SBC 19,736 

Parameter Estimates Estimates t-Value Standard Error 

      Intercept 6,722,182 4.89 1,375,210 

 
+ All variables 

– Max.Type of Weather 
   

 

Also, for the next step, the model has removed the variable (Max. Wind Deg.), which 

has the highest p-value between all other variables, shown in Table 2.8. Table 2.9. 

 

Table 2.8. Best 10 Removal Candidates variables 

Best 10 Removal Candidates 

Rank Effect Log p-Value Pr > F 

1 Max. Type  of Weather -0.1732 0.8410 

2 Max. Wind Deg. -0.2907 0.7478 

3 AvgSunday -0.3656 0.6938 

4 AvgHolidayOther -0.3704 0.6905 

5 Max. Wind Speed -0.5609 0.5707 

6 Avg. Wind Speed -0.5829 0.5583 

7 Avg. Pressure -0.6041 0.5466 

8 Min(Tempavg) -0.6156 0.5403 

9 Min. Type of Weather -0.7203 0.4866 

 

Table 2.9. shows the result of the third step, which removed (Max. Wind Deg.) from 

the dataset. 
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Table 2.9. Backward elimination in the third step removing (MaxWind_Deg.) 

 

Step 0.  

 

 

Effect 

Entered: 

Intercept 

 Errors 

Adj R2 0.7897 

  
AIC 20,426 

SBC 
19,729 

 

Parameter Estimates Estimates t-Value Standard Error 

Intercept 6,722,714 4.90 1,372,637 

 

+ All variables 

– Max.Type of Weather 

– Max. Wind Deg. 

   

 

In addition, the standardized coefficient is essentially the measure of the standard 

deviation of the variable as it progresses. Its primary advantage is that it is unitless, as 

mentioned before. 

 

The coefficient progression for load falls between 14 and -8, where the majority of the 

variables are between -1 and +1. The max coefficient progression for load demand 

belongs to Avg(Tempavg), and Max(Tempavg) has the lowest coefficient progression for 

load value as it progresses. 

 

 

Figure 2.7. Coefficient Progression for Load 
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Figure 2.7. shows the changes in standard coefficient through each step. One of the 

most important factors affecting the method decision of eliminating the attributes is 

the standard coefficient. But as it can be seen in the figure, there is not any change in 

value. They stay the same for both Avg(Tempavg) and Avg(Tempmax) throughout the 

process. 

 

The same criteria are used by the backward elimination method as forward method: 

BIC, SBC, AIC, Adj R2. for SBC. It can be clearly seen that all criteria have the same 

flow except Adj R2. The algorithm’s peak, top, or most preferred value lies in the 10th 

step of the elimination. The flow of others is pretty similar, although the preferred 

values differ from one method to another, as shown in Figure 2.8. 

 

 

Figure 2.8. Fit Criteria for Load of Backward elimination method 
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 Stepwise Method 

 

A variable that entered the model in the earlier stages of selection may be discarded in 

the later stages in a stepwise process. The computations used for variable similarities 

and differences are the same as those used for forward and backward selection. The 

stepwise approach is a forward selection process, but the probability of eliminating a 

variable is contemplated at each point, as in backward elimination. The number of 

variables maintained in the model is determined by the degree of importance assumed 

for variable inclusion and exclusion. It depicted one of the sample’s phases in (Figure 

2.9.). 

 

 

Figure 2.9. Stepwise method diagram 

 

The first step is to establish a significance threshold for determining when to include 

a predictor in the stepwise model. This threshold is known as the Alpha-to-Enter 

significance level, and it is denoted by αE. It should also provide a significance level 

for determining when a predictor should be removed from the stepwise model. That 

is, first: 

a. Indicate the Alpha-to-Enter significance level that is usually larger than the 

standard 0.05 threshold so that entering predictors into the model is not too 

difficult.  
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b. Specify an Alpha-to-Remove significance level that will typically be greater 

than the usual 0.05 level so that it is not too easy to remove predictors from the 

model  [30]. 

At each step, the process applies an important independent variable to the model (if 

any), selecting the variable that minimizes the Akaike information criterion (AIC), 

which calculates the relative consistency of a predictive model. 

 

 

Figure 2.10. Three steps of Stepwise selection method diagram 

 

Since stepwise regression is the combination of both backward and forward regression, 

there is a high probability of getting similar results, especially in the early steps of the 

process. It starts with intercept then applies backward regression to the model. The 

intercept has a t-Value of 175.2 with Adj R2 of 0, shown in Table 2.10. The attributes 

were candidate of ten significance variables for the next step shown in Table 2.11. 
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Table 2.10. First-step result of Stepwise selection method 

 

Step 0.  

 

 

Effect 

Entered: 

Intercept 

 Errors 

Adj R2 0 

  AIC 21,717 

SBC 20,872 

 

Parameter Estimates 
Estimates t-Value Standard Error 

Intercept 1,346,456 175.2 7,685.300005 

 

Table 2.11. Best 10 entry candidates variables for Step 1 

Best 10 Entry Candidates for Step 1 

Rank Effect Log p-Value Pr > F 

1 Avg(Tempavg) -532.387 <.0001 

2 Avg(Tempmin) -523.308 <.0001 

3 Avg(Tempmax) -512.609 <.0001 

4 Max(Tempmax) -428.8936 <.0001 

5 Max(Tempavg) -413.5074 <.0001 

6 Max(Tempmin) -400.5002 <.0001 

7 Min(Tempavg) -369.4979 <.0001 

8 Min(Tempmin) -364.7489 <.0001 

9 Min(Tempmax) -363.7383 <.0001 

10 AvgPressure -270.3600 <.0001 

 

Avg(Tempavg) has the highest rank based on the p-values, while AvgPressure has the 

lowest rank. For this reason, Avg(Tempavg) has a higher chance of getting passed to 

the next step, as it is shown in Table 2.11. 

 

Table 2.12. Second-step result of Stepwise selection method 

 

Step 1.  

 

 

Effect  

Entered:  

Avg(TempAvg) 

 Adj R2 0.7137  

Errors AIC 20,658  

 SBC 19,819  

Parameter Estimates Estimates t -Value Standard Error 

Intercept 277,153 11.72 23,638 

Avg(Tempavg) 37,969 
45.94 

826.557822 

 

As the model proceeds and passes the next step, it has to recalculate values once again 

for each attribute. According to Table 2.12, Avg(Tempavg) has been added to the 

selected candidates in the second step. The t-value is 45.94, with a standard error of 

roughly 826. The Adj R2 slightly increases from 0 to 0.7 as it moves away from 

intercept in the next step. 
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After the recalculation process, they are again ranked in the selection pool, as it is 

shown in Table 2.13. The Min. Pressure has the highest chance as it is ranked number 

one in the collection. It can be clear that there is a quite difference between step one 

and step two  entry candidate p-values as the previously selected candidates play an 

important role in determining the t-Value and p-Value. 

 

Table 2.13. Best 10 entry candidates variables for Step 2 

Best 10 Entry Candidates for Step 2 

Rank Effect Log p-Value Pr > F 

1 Min. Pressure -35.4757 <.0001 

2 Avg. Pressure -29.9936 <.0001 

3 Max. Pressure -24.415 <.0001 

4 Avg. Humidity -22.5411 <.0001 

5 Max. Humidity -18.7974 <.0001 

6 Max(Tempmin) -12.4616 <.0001 

7 Avg. Type of Weather -11.1241 <.0001 

8 Max(Tempavg) -10.371 <.0001 

9 Min. Humidity -9.2327 <.0001 

10 Avg(Tempmax) -7.4911 0.0006 

 

For the third step, Min. Pressure is the selected candidate with a t-Value of -8.31 and 

Adj R2 of 0.735, as is shown in Table 2.14. This way, the process continues until it 

reaches the final step and decides which candidates to choose and which has the most 

impact on the predicator. It helps to eliminate in-significant predicators on the resulting 

predicted value. 

 
Table 2.14. Third-step rsult of Stepwise sselection method 

 

Step 2.  

 

 

Effect  

Entered:  Min. 

Pressure 

 Adj R2 0.735  

Errors AIC 0.735  

 SBC 19,759  

Parameter Estimates Estimates t -Value Standard Error 

Intercept 7,871,199 8.61 914,559 

Avg(Tempmax) 32,778 32.41 1,011.377055 

Min. Pressure -7,399.977316 -8.31 890.911445 

 

The standard coefficient goes through quite a change as it moves from the first step to 

the latest step. Avg(Tempavg) gets to the highest value in 13 and stays the same 

throughout the process. In terms of intercept, it is always the same and remains the 
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same throughout the process. However, Min(Tempavg) undergoes a significant decline 

in value as it passes through step 12, as shown in Figure 2.11. 

 

Figure 2.11. Fit Criteria for Load in Stepwise method 

 

According to (Figure 2.12.), all of the fit criteria reach the peak in the last step of the 

process. Although they reach that value quite before, the model has to recalculate for 

each step. They all decline except Adj-R2, which gradually rises as it reaches step-4. 

Adj-R2 is among the most significant factors which contribute to candidate selection. 
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Figure 2.12. Fit Criteria for Load in the Stepwise method 

 

Defining the forecasting method (Multiple linear regression) and using it for Short 

term Load forecasting such a statistical technique, after that defining each method of 

Multiple linear regression like Forward selection, Backward elimination and Stepwise 

method, with showing a sample of 3 steps to one of the models in the study, with the 

working technique diagram for each method.



 

 

  MODELING 
 

 

Dataset is one of the major elements of prediction. The results highly depend on the 

provided dataset. In addition, preparing and processing the dataset also highly impacts 

the performance of the algorithm. We explain the details of the dataset, algorithm, and 

modeling in this chapter. 

 

3.1. The Dataset 

 

Three datasets are used in this thesis. The first one is the load demand dataset provided 

by the control distribution center of Sulaimanyah city, which contains (Location name, 

Feeder Name, 24 hours of Load consumption) for 6-years (2014-2019). The data for 

each feeder in the city is recorded once every hour. Therefore, it is concluded that there 

are 24 records for each feeder. The load consumption unit of the dataset is Ampere. 

  

The second dataset contains the weather data as described below. This dataset used in 

this study is to find the effect of weather on the amount of power distribution in the 

city. The region has four complete seasons in terms of weather. However, summer 

constitutes most of the days of the year. Then comes winter, fall, and spring 

consecutively. It is worth mentioning that power distribution during the season days is 

almost the same unless there is a hardware failure or any other faults that reduces 

power generation. 

 

The plan for distributing power generally changes with variations of the weather. For 

example, people consume more power in the summertime because they have to use a 

cooling system such as air conditioning due to high temperatures. For this reason, the 

Control Unit (CU) will have to decrease the supplying period to make sure they can 

even provide the power for the season. While weather changes significantly impact 

power distribution, CUs do not keep track of the temperature. 
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The last dataset used in the study is the holidays. During the holidays, the control center 

usually provides more hours than any other regular day. While weekends are off, but 

it does not affect the hours. The most effective holidays are Eid al Fitr, Eid al Adha, 

Newroz, etc. 

 

3.2. Data Preparation 

 

As mentioned before, the control distribution centers in the cities record the hourly 

load for each feeder in each area. The attributes placed in the dataset are region, feeder 

name, and 24-hours Table (Table 3.1.). 

 

It can be clearly seen that the data is recorded in such a way that the attributes are hours 

from 00:00 to 23:00, and the feeders are listed as a row. There is a separate sheet for 

each day of the month in the year. Therefore it is required to integrate the data and 

collect all hours and days in one large dataset to analyze the data further. It had to be 

transposed the data to accomplish. After, the columns become the rows, and the rows 

are moved to columns. This way, it is much easier to manage and further process the 

data. The outcome of the process and the transition of data is shown in (Table 3.3.). 

 

The input data is converted from hourly form to daily form to organize the data further 

as it is more interested in the sum of the power load based on daily demand rather than 

hours. In daily conversions, the number of independent variables has increased. For 

example, there are 24 highest temperatures in a day. The highest, lowest and average 

values of the 24 hourly highest temperatures can be found as shown in a subset of the 

data in Table 3.2. 

 

 In other words, when a variable is converted into a daily variable, it is shown as three 

variables. (Figure 3.1.) shows that temperature is the essential variable. For this reason, 

after the daily conversion of temperatures, nine independent variables were included 

in the model.  
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The city’s data was fetched from Open Weather website to integrate and formalize the 

impact of weather. The data is based on altitude and latitude. The collected variables 

were latitude, longitude, minimum, average, and maximum temperature, wind speed, 

wind degree, humidity, precipitation, in 1, 3, 6, 12, and 24 hours, cloud cover, pressure, 

weather condition. Finally, the weather data is available in altitude and latitude. 

Therefore, it had to determine the coordinates for each area to match the weather data 

with the correct locations by date. At this stage, the weather attributes were combined 

with the original load dataset [42]. 

  

In addition, many fields, such as religious holidays (Ramadan, Adha, Nawroz, and 

weekends (Friday, Saturday, Sunday)), that would possibly affect the electricity 

demand are added. Ramadan, Adha, Newroz holidays are 3,4,5 days, respectively. 

 

Table 3.1. A subset of raw hourly load demand data according to the location 

Hour 
Location / Feeder 

Rzgary / 1 

(Amp) 

Shaheed / 20 

(Amp) 

Malkandi / 39             

(Amp) 

Azmer / 43 

(Amp) 

01:00 70 55 55 100 

02:00 70 50 35 80 

03:00 70 50 50 70 

04:00 50 45 45 75 

05:00 50 40 50 75 

06:00 60 55 60 80 

07:00 90 55 60 90 

08:00 135 45 60 90 

09:00 225 45 60 95 

10:00 265 50 70 100 

11:00 280 50 75 110 

12:00 285 55 80 115 

13:00 290 50 75 115 

14:00 275 50 75 90 

15:00 210 55 60 90 

16:00 200 55 75 110 

17:00 100 50 85 120 

18:00 55 50 75 115 

19:00 85 60 75 115 

20:00 90 60 80 110 

21:00 80 55 75 115 

22:00 90 55 75 110 

23:00 80 55 70 110 

00:00 75 55 65 105 
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Table 3.2. Subset of the dataset after migrating data from hour to daily load 

Day Month Year Date Avg_TempAvg Max_TempAvg Min_TempAvg 

1 2 2014 2/1/2014 5.73875 10.33 1 

2 2 2014 2/2/2014 1.65 5 -1 

3 2 2014 2/3/2014 -1.12 0 -2 

4 2 2014 2/4/2014 0.042083 1.32 -1 

5 2 2014 2/5/2014 1.813333 5.95 -2.4 

6 2 2014 2/6/2014 0.687916 9 -7 

7 2 2014 2/7/2014 0.664583 10 -7 

8 2 2014 2/8/2014 2.395 11.99 -7 

9 2 2014 2/9/2014 3.98375 13.67 -5 

10 2 2014 2/10/2014 4.773333 14.12 -6 

11 2 2014 2/11/2014 6.975416 14 -4 

12 2 2014 2/12/2014 10.96875 16.28 6.53 

 

3.3. Seasonal Data 

 

Seasons have a direct effect on how much energy is used. The summer season is 

scorching sand dry (Tmax = 46 ◦C), and the winter season is icy (Tmin = -8 ◦C) in 

Sulaymaniyah. In the preliminary analysis phase of the study, the distributions of all 

independent variables with electrical load were prepared. As a result of the scatter 

plots, a high nonlinear relationship with temperature and load has been observed 

(Figure 3.1.).  

 

When the coefficient of determination, which examines the linear relationship with 

electric load, was considered, it was seen that the highest relationship was again 

temperature (R2
Tmean = 0.35).  However, as seen in (Figure 3.1.), the coefficient of 

determination could preferably represent the electric load in the nonlinear state (R2
Tmax 

= 0.65). While a linear relationship is expected between temperature and electric load, 

the nonlinear relationship is an essential part of this study.  

 

It can be clearly seen that load is more affected by the mean temperature in (Figure 

3.1.) As can be seen in the same way, the variable in which the distribution of 

temperature in electricity load is the most robust and the little spread is the mean 

temperature (R2
Tmean ≈ 0.715). It has been observed that if the mean temperature is 

nearly 20°C, load demand is the lowest. There is an increase in consumption both to 

the right and to the left of the temperature. This situation causes nonlinearity. 
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Figure 3.1. Load – Temperature plot of the city 

 

After determining the nonlinear behavior, the demand for the electricity load over time 

series is investigated. In the time series, sudden increases and decreases were observed 

in the transition from winter to summer and from summer to winter. When the load is 

analyzed as a time series, the dates when load demand behavior changed are shown in 

(Table 3.3.), and seasonal models in the study are divided according to these dates. 

 
Table 3.3. Split dates of the models 

 

 

 

 

 

 

 

 

      Winter to Summer             

           (WS Model) 

         Summer to Winter  

            (SW Model) 

First date Last date First date Last date 

- - 01/02/2014 27/04/2014 

28/04/2014 19/10/2014 20/10/2014 03/05/2015 

04/05/2015 18/10/2015 19/10/2015 01/05/2016 

02/05/2016 16/10/2016 17/10/2016 30/04/2017 

01/05/2017 15/10/2017 16/10/2017 29/04/2018 

30/04/2018 14/10/2018 15/10/2018 05/05/2019 

06/05/2019 19/10/2019 20/10/2019 30/11/2019 
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Electric load estimation has been carried out over three different models. In this study, 

it is foreseen to make improvements by trying to be seasonally adjusted. In the first 

model, all historical data were used between 01/02/2014 - 31/11/2018 (Model 1). In 

the second approach, the data divided according to (Table 3.3.) was used in winter to 

summer (WS Model), and summer to winter (SW Model) models divided by 

seasonality. The general estimation model made using WS and SW models is 

expressed as Model 2. 

 

3.3. Goodness-of-fit statistics 

 

Mean absolute percent error (MAPE) and coefficient of determination (R2) values 

were calculated for the errors and fit statistics of the models obtained in this study. 

MAPE and R2 equations are given in (Equation 3.1) and (Equation 3.2), [21], [25], 

[26]. 

 

MAPE =
1

𝑛
 ∑ ⎸

Ŷ𝐹𝑖−𝑦𝑖

𝑦𝑖 
⎸100%𝑛

𝑖=1                                                                                    (3.1) 

 

𝑅2 =  [
∑ (𝑦𝑖− ŷ)2

𝑖

∑ (𝑦𝑖−ӯ)2
𝑖 

] , 0 ≤  R2 ≤ 1                                                                               (3.2)    

 

In the equations, the value of Yi indicates the actual electric load demand, ŷFi shows 

forecasts, ȳ is the average of the load series, and n is the number of days. 

 

Here, the choice of MAPE and R2 as error terms is important. R2 shows the behavior 

of the entire series, while MAPE shows the error between realization and forecast. 

Suppose there is always the same difference between the forecast and the realization. 

For example, if the realization is 80% more than the forecast throughout the whole 

series, the MAPE will be 80%, even though the R2 value is close to one. R2 is usually 

expected to be high when MAPE is low. Otherwise, the data series may be random 

and away from seasonality. 
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This section provides all modeling steps, such as preparing the dataset as a required 

format for the models, collecting the data, and integrating with the weather attribute 

data after cleaning and organizing the data format. The religious holidays are added 

data. Dividing the dataset according to people’s consumption of electric power at the 

seasons (Summer season and Winter season) seriously influences the models. 

Following the determination of the nonlinear behavior, the demand for the power load 

over time is examined in three models (All data, Winter to Summer dataset, and 

Summer to Winter dataset).  The errors were measured by MAPE and R2, which were 

defined in detail before. 

 



 

 

 RESULTS 

 

 

In this thesis, two approaches are compared. The first of these approaches is load 

estimation using all data. The second approach is to determine whether dividing the 

seasonality effect dataset shown in (Figure 4.1.) will improve the load estimate or not. 

 

The lowest, highest, and average of the pressure, humidity, wind speed, wind direction, 

cloud cover are also included in the models. Weather events are listed ordinally and 

converted from hourly data to daily data accordingly, and the minimum, maximum and 

average value has been obtained. Weekend holidays in Iraq are Fridays and Saturdays. 

For compatibility with other countries, Fridays, Saturdays, and Sundays were included 

as dummy variables in the model. Similarly, it has different effects on religious and 

cultural holidays. For this reason, Eid al-Fitr, Eid al-Adha, and Nowruz holidays were 

included in the model as separate dummy variables. Other public holidays are kept 

under a single dummy variable.  

 

In the next step, separate regression equations were obtained for the model covering 

the whole time (Model 1), WS model, and SW models. Forward selection, backward 

elimination, and stepwise selection were used to eliminate the independent variables 

(Table 4.1.). In the elimination process, Akaike information criterion (AIC), Schwarz 

Bayesian information criterion (SBC), adjusted R2 (Adj  R2) were used as criteria in 

determining the best model. Another method is to look at the statistical significance of 

variables in the elimination process. Models in statistical significance where p-value 

is below 0.1 (p<0.1) and 0.05 (p<0.05)  were also determined. Thus, the equations of 

Model 1, WS Model, and SW Models; were determined with three different 

elimination methods and five different elimination criteria (15 different approaches). 

The numbers of variables that are useful in these models are shown in (Table 4.1.). 
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Table 4.1. Number of independent variables in the proposed models 

 Forward Backward Stepwise 

Models All WS SW All WS SW All WS SW 

AIC 21 20 16 21 20 15 18 20 15 

SBC 13 8 8 13 15 9 13 8 5 

Adj R2 23 24 17 23 24 17 21 24 17 

p<0.1 19 20 14 23 24 17 18 20 12 

p<0.05 18 19 10 23 24 17 17 19 7 

 

It was seen that all three models have common independent variables as a result of 15 

different approaches (Table 4.2.) Model 1 has the average of hourly maximum, 

minimum and average temperatures, maximum of hourly minimum temperatures, 

average and maximum humidity, average and minimum cloud cover in all 15 

approaches. While the Eid al-Adha variable was found in 14 models, the minimum 

hourly minimum temperatures, average pressure, maximum pressure, lowest humidity, 

average wind direction, maximum wind direction, and Friday variables were observed 

in at least ten models. 

 

The maximum of the hourly minimum temperatures, maximum pressure, and 

minimum cloud cover is also found in 15 approaches in the SW Model. The average 

and minimum hourly average, maximum and minimum temperatures, maximum and 

minimum wind speeds, and holiday dummy variables existed in at least ten models. 

 

In the WS Model, the average of hourly maximum, minimum and average 

temperatures, maximum pressure, average humidity, and Friday variables are in 15 

approaches; The minimum pressure is in 14 approaches. The variables of the maximum 

of hourly average, minimum and maximum temperatures, minimum of hourly 

minimum and maximum temperatures, minimum humidity, average and minimum 

wind direction, average weather events, average cloud cover, Eid al-Fitr, and Eid al-

Adha holidays were observed in at least ten models. 
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Table 4.2. Number of usage independent variables in proposed models 

Variable Model 1 SW Model WS Model 

Intercept 15 15 15 

Avg(Tempavg) 15 13 15 

Max(Tempavg) 8 0 13 

Min(Tempavg) 5 11 0 

Avg(Tempmin) 15 13 15 

Max(Tempmin) 15 15 13 

Min(Tempmin) 13 12 12 

Avg(Tempmax) 15 13 15 

Max(Tempmax) 9 1 13 

Min(Tempmax) 4 10 13 

Avg. Pressure 13 5 0 

Max. Pressure 13 15 15 

Min. Pressure 6 0 14 

Avg. Humidity 15 0 15 

Max. Humidity 15 10 5 

Min. Humidity 12 0 13 

Avg. Wind Speed 6 0 0 

Max. Wind Speed 0 11 0 

Min. Wind Speed 6 10 5 

Avg. Wind Degree 12 0 13 

Max. Wind Degree 12 0 0 

Min. Wind Degree 0 0 10 

Avg. Clouds Cover 15 0 13 

Max. Clouds Cover 0 0 5 

Min. Clouds Cover 15 15 0 

Avg. Type of Weather 1 8 13 

Max. Type of Weather 5 0 0 

Min. Type of Weather 0 0 0 

Friday 10 8 15 

Saturday 0 0 5 

Sunday 0 0 0 

Eid al-Fitr Holiday 0 0 12 

Eid al-Adha Holiday 14 0 12 

Nowruz Holiday 0 0 0 

Oher Holidays 0 11 0 

 

4.1. Forecasting Results 

 

The results of three models and 15 approaches obtained were evaluated on MAPE and 

R2. When Model 1 was examined, it was seen that the lowest MAPE and highest R2 

values were found in the backward elimination approach and the highest adj R2, p<0.1, 

and p<0.05 elimination in the training dataset (Table 4.3.). In all three screening 

methods, the same variables are included in the model. In the training dataset, MAPE 
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and R2 values were 16.48% and 0.48, respectively. The test dataset MAPE was 

determined to be 23.95% (Table 4.3.), that the models that gave the best results in 

training had the lowest MAPE value. Again, in the test dataset, the forward selection 

had the highest R2 value (0.3484) in the AIC as a selection criterion. 

 

In the SW Model, the lowest MAPE and highest R2 were found in four approaches in 

the training dataset and were determined as 11.01% and 0.7702, respectively. The 

same independent variables in these four approaches are Adj R2 criteria in the forward 

selection, stepwise selection approaches, Adj R2, and p<0.05 criteria in the backward 

elimination approach. In the test dataset, the lowest MAPE and R2 values were 12.14% 

and 0.7673 in the stepwise selection approach SBC criterion and forward selection 

approach p<0.05 criteria, respectively. 

 

In the WS Model, the lowest MAPE and highest R2 values in the five approaches in 

the training dataset were 5.93% and 0.7965, respectively (Table 4.3.). The lowest 

MAPE was found in the test dataset as 12.70% according to SBC criteria in the 

backward elimination approach. The highest R2 was determined as 0.6785 according 

to SBC criteria in the forward and stepwise selection approach. 

 

The four approaches with the lowest MAPE and the highest R2 values in SW and WS 

models are common in training (Table 4.3.). In these approaches (Forward Selection - 

Adj R2, Backward Elimination - Adj R2, Backward Elimination - p<0.05, Stepwise 

Selection - Adj R2), the same independent variables exist in the model. The results of 

this approach are expressed as Model 2 in the graphs. In SW and WS models, the 

combination of approaches with the lowest MAPE value in the test dataset (Stepwise 

Selection - SBC for SW Model, Backward Elimination - SBC WS Model) is expressed 

as Model 3. The combination of approaches in the test dataset with the highest R2 value 

(Forward Selection - p<0.05 for SW Model, Forward Selection - SBC for WS Model) 

is expressed as Model 4. While Model 3 is expected to give the best result as a 

prediction model, Model 2 can be stated as the best seasonally adjusted training model. 
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Table 4.3. Goodness-of-fit statistics of the proposed approaches 

Approach-Criteria Model 1 SW Model WS Model 

Dataset Train Test Train Test Train Test 

Goodness-of-fit statistics MAPE Adj R2 MAPE Adj R2 MAPE Adj R2 MAPE Adj R2 MAPE Adj R2 MAPE Adj R2 

Forward Selection AIC 16.51% 0.4788 25.49% 0.3484 11.03% 0.7698 22.36% 0.1895 5.96% 0.7950 12.90% 0.6261 

Forward Selection SBC 16.67% 0.4687 26.35% 0.3481 11.18% 0.7625 19.13% 0.7633 6.32% 0.7656 14.31% 0.6785 

Forward Selection Aj R2 16.50% 0.4798 25.49% 0.3483 11.01% 0.7702 22.55% 0.1758 5.93% 0.7965 12.87% 0.6213 

Forward Selection p<0.1 16.53% 0.4775 26.60% 0.3361 11.06% 0.7687 22.26% 0.1881 5.96% 0.7950 12.90% 0.6261 

Forward Selection 

p<0.05 16.54% 0.4765 26.67% 0.3343 11.15% 0.7648 18.85% 0.7673 5.97% 0.7942 12.74% 0.6207 

Backward Elimination – 

AIC 16.49% 0.4796 25.62% 0.2221 11.03% 0.7695 24.77% 0.1060 5.96% 0.7950 12.90% 0.6261 

Backward Elimination – 

SBC 16.67% 0.4693 26.32% 0.3410 11.13% 0.7649 24.15% 0.1252 5.98% 0.7900 12.70% 0.5964 

Backward Elimination - 

Adj R2 16.48% 0.4805 23.95% 0.2707 11.01% 0.7702 22.55% 0.1758 5.93% 0.7965 12.87% 0.6213 

Backward Elimination -

p<0.1 16.48% 0.4805 23.95% 0.2707 122.2% 0.0652 105.15% 0.0346 5.93% 0.7965 12.87% 0.6213 

Backward Elimination - 

p<0.05 16.48% 0.4805 23.95% 0.2707 11.01% 0.7702 22.55% 0.1758 5.93% 0.7965 12.87% 0.6213 

Stepwise Selection - AIC 16.51% 0.4781 25.71% 0.3382 11.03% 0.7695 24.77% 0.1060 5.96% 0.7950 12.90% 0.6261 

Stepwise Selection - SBC 16.67% 0.4687 26.35% 0.3481 11.56% 0.7539 12.14% 0.7434 6.32% 0.7656 14.31% 0.6785 

Stepwise Selection - Adj 

R2 16.50% 0.4796 25.65% 0.3391 11.01% 0.7702 22.55% 0.1758 5.93% 0.7965 12.87% 0.6213 

Stepwise Selection - 

p<0.1 16.52% 0.4774 26.73% 0.3325 11.09% 0.7672 21.82% 0.2093 5.96% 0.7950 12.90% 0.6261 

Stepwise Selection - 

p<0.05 16.53% 0.4763 26.81% 0.3305 11.49% 0.7564 12.19% 0.7465 5.97% 0.7942 12.74% 0.6207 

 

Four model training dataset results are shown in (Figure 4.1.). The positive results of 

seasonal decomposition can be easily seen in models other than Model 1 that shows 

the results with no seasonal split. While Model 1 more consistently predicted winter 

load results, it was not able to predict summer results. In general, it was observed that 

the results were within acceptable tests in the training dataset. 

 

In the test dataset, it is easily seen that the results of Model 1 and Model 2 are 

insufficient, as is shown in Figure 4.2., Figure 4.3., Figure 4.4., Figure 4.5. Model 1 

forecasted demands inaccurately in the summer season, just like in the training phase. 
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Model 2, on the other hand, made very high inaccurate forecasts in the transition from 

winter-summer and summer-winter. Model 3 and Model 4 made close and acceptable 

forecasts. It is seen that Model 3 provides better predictions in summer-winter and 

winter-summer transition compared to Model 4. Better projections in Model 3 show 

that the MAPE variables are more effective in predictions than the R2 variables. 

 

Model results are shown in (Table 4.4.) Model 1 had the highest MAPE and lowest R2 

value in both the training and the test dataset. Model 2, the best approach considering 

only the training dataset according to the seasonal decomposition approach, reduced 

the MAPE value by 25% in the test dataset and obtained more accurate and compatible 

results by doubling the R2. In other words, such an approach will reduce model 

estimation errors.  

 

Model 3 and Model 4 show the best results obtained according to the test data. Model 

3 had the lowest MAPE and highest R2. This is expected. Another dramatic situation 

in the results is Model 4, which was obtained according to the highest R2, has a lower 

R2 than Model 3. It is because the errors of the results in the WS Model and the SW 

Model are high, eliminating the continuity in the prediction. This situation decreased 

the R2. 

 
Table 4.4. Goodness-of-Fit Statistics of The Models 

Dataset Train Test 

Errors MAPE Adj R2 MAPE Adj R2 

Model 1 16.48% 0.4805 23.95% 0.2707 

Model 2 8.57% 0.8188 18.12% 0.4191 

Model 3 8.88% 0.8071 12.40% 0.7133 

Model 4 8.83% 0.8105 16.78% 0.5581 
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Figure 4.1. Training dataset load estimations 

 

 

Figure 4.2. Test dataset load forecasts (part-1) 
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Figure 4.3. Test dataset load forecasts (part-2) 

 

 

Figure 4.4. Test dataset load forecasts (part-3) 
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Figure 4.5. Test dataset load forecasts (part-4) 

 

In this section, the results of the thesis are presented. The performance of the models 

is compared based on the data for the whole year with respect to two time periods from 

winter to summer and summer to winter. Estimates can be more accurate if they are 

based on consumption habits. Another significant finding in the thesis is that in the 

training dataset, backward elimination produces more accurate results, which is lowest 

MAPE is (16.48 %), and highest R2 is (0.4805), compared with forward and stepwise 

selection. Similar to Tuaimah et al. used MLR to create the estimation models for 

historical data of Iraqi power system which are; Winter season model and Summer 

season models. The instability of the temperature in Iraq has a considerable influence 

on the accuracy of the models; that is why they got the critical temperature model [30].  

 

Also, Vasquez et al. used MLR, for the annual energy consumption. The performance 

of their model result was measured by MAPE was (0.74) [22].  Otherwise, Amber et 

al. used the same model to estimate the daily energy demand, but only for university 

buildings, their results affected by temperature, weekday-weekend situations [37]. 

In contrast, our study is quite different from the other studies because of the sensitivity 

of the load consumption at the seasons. 

 



 

 

 CONCLUSION 
 

 

The power distribution centers in Iraq use a traditional approach to predict power 

consumption for upcoming weeks, months, and years. The major issue with this 

approach is the lack of accuracy and the time required to foresee the power load, 

consumption, and demand.  

 

This thesis was conducted to determine whether machine learning algorithms can be 

used to mitigate this process or not. MLR, which is one of the most common 

algorithms used in the area.  

 

According to the study results, load pre-analysis is needed for effective MLR 

forecasting. This is since the load in Sulaimaniyan city is affected by both temperature 

fluctuations and weather conditions. The demand for power changes with changes in 

weather conditions. They need a lot more energy during summer than in winter. 

 

This study has investigated whether the forecast error will decrease or not by dividing 

the data according to the season in the series with seasonal effects. The essential factor 

in the expectation of a reduction in prediction error is nonlinear electrical load 

consumption behavior concerning temperature. In the study, it has been observed that 

using models to reduce seasonal effects reduces prediction errors. In other words, 

dividing data according to consumption behavior enables more accurate estimates. 

Another important finding in the study is that backward elimination finds more 

accurate results than forward and stepwise selection in the training dataset. 

 

The following stages of the study will be carried out to obtain separate MLR equations 

for the sudden increase and decrease regions of the insufficient models in winter-

summer and summer-winter transitions. Thus, it is thought that it will reduce the error 

of the prediction. In addition, the bottom-up consumption of sub-regions in the city 
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could be calculated according to the approach, and the results will be evaluated as 

future research. 
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