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SUMMARY

Keywords: Computer vision, smart agricultural applications, precision agriculture,
image processing, deep neural networks.

Plant detection is an active research area in modern robotic applications, which use
computer vision systems to contribute the smart agricultural processes. Detecting a
plant within the image and counting its number in a specified area are vital
functionalities to provide meaningful information about planting such as observing
the growth rate or predicting the yield amount of a significant plant with the help of
classical object detection algorithms and more efficiently with deep neural networks.
Classical models employ image-processing techniques like segmentation and feature
extraction whereas deep neural networks need only to fine-tune the parameters by
training the exclusive datasets towards particular tasks.

In this study, we aim to compare the conventional computer vision methods with
deep neural network outputs and to detect the plants in a plantation area from aerial
images. DenseNet model is exploited as the base model for fine-tuning and an
appropriate hysteresis color threshold is applied to determine the interested colors
within the plantation field. In addition, object localization is performed using the
deep neural network model as well. Additionally, YOLOv3 model is trained with our
dataset for comparison of the accuracy. Our dataset includes 1800 images for 3
classes of plants and there exists 600 per class.

The main goal of this study is to provide an understanding of how precision

agriculture is handled with computer vision technology and to make an improvement
about the subject within the scope of our dataset.

viii



AKILLI TARIM UYGULAMALARI iCiN DERIN SINiR AGLARI
KULLANILARAK HAVA GORUNTULERINDE BITKi TESPITi

OZET

Anahtar kelimeler: Bilgisayar gormesi, akilli tarim uygulamalari, siirdiiriilebilir
tarim, goriintii isleme, derin sinir aglari.

Bitki tanima, akilli tarim uygulamalarina katkida bulunmak adina bilgisayar gérme
sistemlerini kullanan aktif bir aragtirma alanidir. Klasik nesne tanima yontemleri ve
daha etkili olarak derin sinir aglar ile, bir resimdeki bir bitkiyi tanimak ve o bitkinin
belirli bir alandaki adedini saymak, biiyiime oraninin gézlemlenmesi ya da belirli bir
bitkinin verim miktarinin tahmin edilmesi gibi bitkilendirme hakkinda bilgiler
saglamak i¢in ¢ok dnemli fonksiyonlardir. Klasik modeller segmentasyon ve 6zellik
cikarimi gibi goriintli-isleme teknikleri kullanirken, derin sinir aglar1 yalnizca
parametrelerin, 6zel veri setlerinin belirli islere uygun olarak egitilmesi ile ince ayar
yapma gereksinimi duyar.

Bu calismada, klasik bilgisayar gormesi yontemleri ile derin sinir aglar1 ¢iktilarini
karsilagtirmay1 ve bir dikim alanindaki bitkileri havadan goriintiilerden tespit etmeyi
amacladik. Ince-ayar icin DenseNet modelinden faydalamldi ve dikim alanindaki
ilgili renkleri belirlemek adina uygun bir histerez renk esik uygulandi. Ek olarak,
derin sinir aglart modeli kullanilarak nesne lokalizasyonu da uygulandi. Ayrica,
hassasiyet kiyaslamasi icin YOLOv3 modeli de veri setimiz ile egitildi. 3 bitki
sinifindan olusan veri setimiz, her bitki tipi i¢in 600 adet olmak {izere toplam 1800
resimden olusmaktadir.

Bu ¢aligmanin temel amaci, siirdiiriilebilir tarimin bilgisayar gérmesi teknolojisi ile
nasil ele alindiginin anlasilmasini saglamak ve veri setimiz ger¢evesinde konu
hakkinda iyilestirmede bulunmaktir.



CHAPTER 1. INTRODUCTION

As machines have started to get smarter, artificial intelligence has become one of the
top subjects that attract researchers’ and developers’ attention. Many studies are
carried out in order to make machines see, act and even perceive the outside world as
well as a human being. The subject has separated into branches namely machine
learning, computer vision etc. in consequence of these studies. And it seems that the

more the studies get deeper, the more their separation will move on.

Computer vision is the science area that aims to provide machines a high-level of
understanding of the outside world through digital images or videos. Researchers
work on interpreting an image, defining the objects and even counting them in an
image, which are quite easy actions for humans whereas they all are considerably
hard tasks for machines. Not only images, since videos are composed of images,
action determination and emotion recognition through videos are also fields of study

in the deep learning community.

In the recent past, there were studies developed with classical methods. In [1], Hung
et al. proposed an algorithm that utilizes statistical learning and computer vision
techniques in order to identify woody weeds in lands using their shadows. They used
segmentation i.e. color and texture, for feature extraction. In [2], Yang et al. studied
with two stages: one for training to classify each pixel in aerial images as tree or non-
tree, and the other one for correlating a set of tree templates with classification

results and locating candidate crowns.

In recent years, with the remarkable progress in machine learning, studies lead
researchers to use deep learning models in these areas. There exist many studies in

the literature on image processing, object/plant detection in aerial or digital images



etc. accomplished with deep neural networks. Li et al. [3] used a convolutional
neural network (CNN) to detect and count oil palm trees in crowded plant areas.
Olafenwa et al. [4] developed a computer vision and deep learning python library
namely ImageAl, for integrating computer vision technologies easily in new
applications. In [5], Dyrmann et al. used a fully convolutional network for detecting
mono and dicotyledonous weeds in cereal fields. Tian et al. improved YOLO-v3
model by incorporating the DenseNet method for detecting apples in the main

growth stages in orchards [6].

In this study, we studied on ornamental plant detection using convolutional neural
networks with the aim of identifying the name of ornamental plants that are placed in

almost everywhere in Sakarya for landscaping.

We started our work with classifying the plants. For this process, as it becomes easy
to load and build pre-trained models with PyTorch, we used a network based on
PyTorch and DenseNet. Dense convolutional network (DenseNet) shown in Figure
1.1. is a pre-trained model that makes forward feeding in connecting each layer and

we used it as the base model for fine-tuning in this study.

Figure 1.1. DenseNet [7]



In addition to classification, we also trained YOLOv3 model for detecting the

ornamental plants in our dataset. For feature extraction in YOLO training, we used

Darknet-53 network model detailed in Table 1.1., which uses successive 3x3 and 1x1

convolutional layers and has a total of 53 convolutional layers [8].

1x

2x

8x

8x

4x

Table 1.1. Darknet-53 [8]

Type Filter Size Output
Convolutional 32 3x3 256 x 256
Convolutional 64 3x3/2 128x 128
Convolutional 32 Ix1

Convolutional 64 3x3

Residual 128 x 128
Convolutional 128 3x3/2 64x64
Convolutional 64 Ix1

Convolutional 128 3x3

Residual 64 x 64
Convolutional 256 3x3/2 32x32
Convolutional 128 Ix1

Convolutional 256 3x3

Residual 32x32
Convolutional 512 3x3/2 16x16
Convolutional 256 Ix1

Convolutional 512 3x3

Residual 16 x 16
Convolutional 1024 3x3/2 8x8
Convolutional 512 Ix1

Convolutional 1024 3x3

Residual 8x 8
Avgpool Global

Connected 1000

Softmax

The following chapters of this thesis are titled as Literature Review, Methodology,

Results and, Discussion and Conclusions respectively.



CHAPTER 2. LITERATURE REVIEW

In this chapter, we made references to the studies about the topic in the literature,

starting from the major title Computer Vision.

2.1. Computer Vision

Computer Vision is one of the fields of Artificial Intelligence, which can recognize
and understand images through computers and software systems [4]. It covers a
variety of subjects such as image recognition and object detection [4]. Computer
Vision is the branch of computer science that has enabled computers to see through a

web camera and record the scene in its own language.

2.2. Machine Learning

Machine learning is the area that occurred as an answer to the question of whether
computers can go beyond “what we know how to order it to perform” [9]. With
machine learning, the classical programming method of giving rules and data and
getting output as a result has moved to a new paradigm as giving data and output and
getting rules as the output [9]. This simple paradigm of machine learning is being
used among a wide scale of tasks ranging from image classification to speech
recognition [9]. There are researches, which are done by using machine learning-
based methods for oil palm tree detection [3], image prediction and object detection

[10].

Machine learning can also be described as making the computer understand through
a given pattern. The system or namely the model is trained over some number of

samples and made capable of learning from the data.



2.3. Deep Learning

Deep learning is one of the subfields of machine learning that provides a
mathematical framework for learning representations from data [9]. Despite the
traditional way of programming that analyzes the data in a linear way, deep learning
method processes the data in a nonlinear way with its hierarchical structure [10].
Deep learning is a fast and effective tool for counting trees from airborne optical

imagery [10].

“Deep” in deep learning corresponds to the successive layers of representations [9].
The number of layers that contribute to a model of data is the depth of the model [9].
Deep learning maps inputs i.e. images to targets i.e. label “plant” by a deep sequence

of data transformations called layers, which are learned through examples [9].

In learning process, the transformation implemented by a layer is parameterized by
its weights [9]. Learning means finding a set of values for the weights of all layers in
a network so that example inputs are mapped to the related targets correctly by the

network [9].

In a deep neural network, there exist a large amount of parameters, which makes it
necessary to measure how far the output is from what is expected for finding the
correct value for the weights, and this task is handled by the loss function of the
network [9]. Loss function of a network does the computation of a distance score
using the predictions of the network and the specified output i.e. target [9]. The score
is then used as a feedback signal for adjusting the weight values in a direction that

will lower the loss score for the current example [9].

2.4. Convolutional Neural Networks

Convolutional neural networks (CNNs) were built in the 1970s and proposed as the

early architectures of deep neural networks [11]. The development of deep neural

networks has facilitated CNNs to improve rapidly [11]. They are used among a large



scale of computer vision studies such as object detection [4], tree counting [11], oil

palm tree detection and counting [3], fig plant segmentation [12] and so on.

CNNs, or more precisely, the gold standard for image classification since 2012, have
improved a lot in a way, which enables them to not only classify objects but also

detect and locate the objects (with bounding boxes) in images [13].

CNNs have been used in a variety of studies in the literature. In [5], Dyrmann et al.
used a fully convolutional network with the aim of detecting the locations of weeds
that are distinguished as monocots or dicots in images from cereal fields. They stated
that the reason for not choosing RCNN (region-based CNN), fast-RCNN or faster-
RCNN was the architectures of them limiting their usage due to long processing
times on standard hardware [5]. In [14], Xu et al designed a CNN for cotton bloom
detection because of its effectiveness in recognizing flower species and the
advantages of it over traditional machine learning methods in feature extraction.
Fuentes-Pacheco et al. proposed a CNN with an encoder-decoder architecture for
studying the problem of plant segmentation at the granularity of pixel on the grounds
of convolutional layers’ highly robust approximation functions and their
achievements with different image-related tasks [12]. Fan et al. built a convolutional
neural network with the aim of classifying candidate regions as tobacco plant regions
or nontobacco plant regions [15]. In [3], Li et al. used high-resolution remote sensing
images of oil palm trees from Malaysia with the aim of detecting and counting the

trees with a convolutional neural network based framework.

In order to train a convolutional neural network, a number of training and test
samples are needed. In [3], Li et al. have remarked that they have collected manually
interpreted samples for this process. Then, by tuning its main parameters, they have
optimized the CNN. In [10], Singh et al. have studied on swimming pool detection
using aerial imagery, and they have used a pre-trained neural network that has been
trained on over one million images from the ImageNet corpus in order to extract
features and do the fine-tuning operation. Fuentes-Pacheco et al. used a total 110

RGB images with high-resolution of 4000 x 3000 pixels [12], whereas Dyrmann et



al. selected 1368 images for training and validation from a set of 118000 images
collected by a camera system in various fields and at different times [5]. Xu et al.
collected data with one flight of a drone and stated that they counted the blooms in

each plot on the same day of drone flight [14].

2.4.1. Detection and classification of plants with CNNs

Object or more specifically plant detection in images has been a significant area in
today’s world enclosed with Al. Cultivators need to optimize their time and
resources in order to keep pace with the business life. Plants should be monitored
while they grow up, or a spray system should be accurate in detecting the crop

centerline for the sake of productivity maximization.

With deep learning era, studies on image processing like object detection and
classification have reached a level of almost 100% success rate with convolutional
neural network methods such as RCNN, fast-RCNN and YOLO, which leaded
different procedures in studies. The network that Dyrmann et al. studied uses the first
five layers of VGG16 as basic feature extraction layers and a set of default bounding
boxes at each location in the final feature maps to determine the locations of weeds
[5]. Li et al. used LeNet in their CNN model in [3] while Fuentes-Pacheco et al. used
a CNN model inspired by SegNet architecture for the process of pixel-wise semantic

segmentation in [12].

2.5. YOLO: You-Only-Look-Once

In recent years, alongside the models of CNNs and RCNNS, a state-of-the-art model
in object detection has emerged namely You-Only-Look-Once: YOLO.

YOLO is the new object detection approach developed by Redmon et al. [16] that
frames object detection as a regression problem to spatially separated bounding
boxes and associated class probabilities [16]. Unlike sliding window or region

proposal-based techniques, YOLO can be trained on full images in one evaluation



[16]. With YOLO, a single convolutional network predicts multiple bounding boxes
and class probabilities for those boxes at the same time and it directly optimizes

detection performance [16].

Since its establishment, it has been improved to detect a large variety of different
objects with more accuracy and speed [17][8]. YOLOvV2 can predict detections for

more than 9000 categories, and the detection can be held in real-time [17].

In [18], the developers of YOLO stated that, they applied a single neural network to
the full image, which divides the image into regions and predicts bounding boxes and

probabilities for each region.

YOLO divides the input image into an S x S grid in which each grid cell predicts
only one object [19]. Each grid cell also makes a fixed number of bounding box
guesses with each box has one box confidence score, but the one-object rule limits
the closeness of detected objects [19]. Thus, some objects may be missed by YOLO
if they are too close to each other [19]. In Figure 2.1., there are two bounding boxes

made by the yellow grid cell in order to locate the person in the image [19].

- -

Figure 2.1. Bounding box guesses for an object made by a grid cell



In addition to guessing B bounding boxes each with a box confidence score, and
predicting only one object regardless of the number B, each grid cell also predicts C
conditional class probabilities —one per class for the likeliness of the object class-

[19].

Each boundary box contains five elements namely x, y, z, w and box confidence
score [19]. The confidence score reflects the likeliness of a box to contain an object
(objectness) and the accuracy of the bounding box [19]. The bounding box width w
and height h is normalized by the image width and height [19]. The x and y values
are offsets to the corresponding cell [19]. Thereby x, y, w, h are all ranges between 0
to 1 [19]. The probability of belonging to a particular class is the conditional class
probability [19]. As a result, the prediction of YOLO is (S, S, BX5 + C) which is
equal to (7, 7, 30) for PASCAL VOC evaluation [19].

YOLO has 24 convolutional layers followed by 2 fully connected layers [19]. The
network design is shown in Figure 2.2. YOLO reduces the spatial dimension to 7x7
with 1024 output channels at each location by using a CNN [19]. It performs a linear
regression using two fully connected layers for making 7x7x2 bounding box
predictions, which is shown in the middle images in Figure 2.3. [19]. The final
predictions is made by taking the high box confidence scores that are greater than

0.25 shown in the right image in Figure 2.3. [19].

448

7
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12 ——
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56
N —
448 3 28 aﬁ
3 1413 7N 7 7
) B ; | E— X HX
| | 14 , ) ;
3 192 256 512 1024 1024 1024 4096 30
Conv. Layer Conv. Layer Conv. Layers Conv. Layers Conv. Layers Conv. Layers  Conn. Layer  Conn. Layer
7x7x64-52 3Ix3x192 1x1x128 1x1x2567 o4 1x1x512 1.5 3x3x1024
Maxpool Layer  Maxpool Layer 3x3x256 3x3x512 3x3x1024 3x3x1024
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3x3x512 3x3x1024 3x3x1024-s-2
Maxpool Layer  Maxpool Layer
2x2-s2 2x2-s2

Figure 2.2. Network design of YOLO [19]
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Figure 2.3. How Yolo works [18]

The class confidence score measures the confidence on the classification and the
localization and it is calculated for prediction box as in Equation 2.1 [19]. The

elements of the equation are given in Equation 2.2 and Equation 2.3 respectively.

class confidence score = box confidence score % conditional class probability  (2.1)

Box confidence score = P(object) - loU (2.2)
Conditional class probability = P,(class;lobject) (2.3)
Class confidence score = P,(class;) - loU

= box confidence score % conditional class probability

Here,

P,(object) is the probability of a box to contain an object

IoU, which corresponds to intersection over union, is the area between the predicted
box and the ground truth

P,(class;lobject) stands for the probability of an object belonging to class; given the
object is presence

P,(class;) is the probability the object belongs to class; [19].
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In order to calculate loss, YOLO uses sum-squared error between the predictions and
the ground truth [19]. The loss function is composed of the classification loss, the

localization loss and the confidence loss [19].

If an object is detected, the squared error of the class conditional probabilities for
each class gives the classification loss at each cell [19]. It is calculated by Equation

2.4:
fio ]liObj Zcealasses(pi(c) - ﬁi(c))z (24)

In this equation, Ilfbj =1 if an object appears in cell i, 0 otherwise, and p;(c) denotes

the conditional class probability for class ¢ in cell 7 [19].

The errors in the predicted boundary box locations and sizes give the localization
loss [19]. Only the box responsible for detecting the object is counted [19]. Equation

2.5 is used to calculate localization loss:

s2 B
Acoord z z ]l(i)jb] [(xi - fi)z + (yl - yi)z]

i=0 j=0

+/1600rd Zfio Z?:O ]1;)]'bj [(\/Wl - \/51)2 + (\/EL - \/ﬁi)z] (25)

Here, ]lfjbj = 1 if the j bounding box in cell i is responsible for detecting the object, 0
otherwise. A.yorq value increases the weight for the loss in the bounding box
coordinates [19]. YOLO puts more emphasis on the bounding box accuracy by

multiplying the loss by A.,,q4, Which is taken 5 by default [19].

The confidence loss that corresponds to measuring the objectness of the box is
calculated in two ways separated by whether an object is detected or not [19]. If
an object is detected in the box, Equation 2.6 is used, and Equation 2.7

otherwise [19].
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2 1 ~
Lo Xio 1 (€ — C)? (2.6)

where
C; is the box confidence score of the box j in cell 7, and Ilfjbj = 1 if the j th boundary

box in cell i is responsible for detecting the object, 0 otherwise [19].

2 bij ~
Anoobj Z?=O Z?:O ﬂ?joo ! (Ci - Ci)z (2.7)
where
ﬂZOObj is the complement of Iliojbj , C; is the box confidence score of the box j in cell

i, and Ay,,p; Weights down the loss when detecting background [19].

Since most boxes do not contain any objects, in order to remedy the possible class

imbalance problem, this loss is weighted down by a factor A,,,,p, Which is taken 0.5

by default [19].

For calculating the final loss, localization, confidence and classification losses are all

added together [19].

In YOLOV3, 3 predictions are made per location, which are each composed by a

boundary box, objectness and 80 class scores [19].

Throughout the literature review process about plant detection, we saw a large
variety of detection studies including apple detection with YOLOv3 [6], but we came

up against a gap about ornamental plant detection.

Sakarya is one of the leading cities in ornamental plant industry in Turkey and there
are some ornamental plants that are used for landscape design nearly all over the city
without their names written around. Therefore, we wanted to study on detection of
these ornamental plants for people, who are interested in flowers and want to learn

the name of an ornamental plant that is placed in the park.



CHAPTER 3. METHODOLOGY

This chapter contains detailed information about the whole work we have done

throughout the study.

3.1. Model Development

An ornamental plant is a plant that becomes prominent with its flowers, leaves or

shape, and is grown as houseplants for decorating houses or gardens.

Center of Sakarya being in the first place, there exist a wide range of production
areas in Arifiye, Sapanca and Pamukova. According to Turkish Statistical Institute’s
data, Sakarya has a significant place in interior and outdoor ornamental plant
production in Turkey [20] so that it has its own sectorial festival named Sakarya

Peyzaj ve Siis Bitkiciligi Festivali since 2018.

The ornamental plants we used in our study can be encountered almost everywhere
in the city; in parks, in gardens, on sidewalks etc. People, who are interested in
flowers, may want to buy the same plants from plant cultivators. However, if they
haven’t taken a photo of them, they would probably need to describe the plants as far
as they remember, or maybe need to tour around the cultivators' products to find

them.

In our study, we chose to study on ornamental plant detection using deep neural
networks with the aim of solving or at least handling these issues. We started with
classifying the plants using a network, which is a PyTorch implementation with
DenseNet model. We then trained YOLOV3 on ornamental plants for comparing the

accuracy of the two models.
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To train a convolutional neural network in a reasonable amount of time, strong GPU
is a must. Therefore, we trained our model on Google Colaboratory, which provides
free GPU for machine learning applications. A preview of Google Colaboratory user

interface is in Figure 3.1.

(= ificati i
plant classification pytorch.ipynb B comment 2% Shae A o e
File Edit View Insert Runtime Tools Help All changes saved
RAM

+ Code + Text v Disk v /' Editing A~

PV B R W

Table of contents ~ Code snippets ~ Files X
© # Adapted from https://pytorch.org/tutorials/beginner/transfer learning tutorial.html

+ Upload ¢C Refresh & Mount Drive def train_model(model, criterion, optimizer, sched, num epochs=5):
since = time.time()

-
» @ —MACOSX best_model_wts = copy.deepcopy(model.state_dict())
» @@ plant_data best_acc = 0.0
» @ sample_data .

; for epoch in range(num_epochs):
[ datajson print('Epoch {}/{}'.format(epoch+l, num epochs))
B rlant_data.zip print('-' * 10)

# Each epoch has a training and validation phase
for phase in ['train', 'valid']:

if phase == 'train':

model.train() # Set model to training mode
else:

model.eval() # Set model to evaluate mode

running_loss = 0.0
running_corrects = 0

# Iterate over data.

for inputs, labels in dataloaders[phase]:
inputs = inputs.to(device)
labels = labels.to(device)

# zero the parameter gradients

Disk 37.09 GB available ontimizer zera aradf\

Figure 3.1. Google Colaboratory User Interface

3.2. Collecting Data / Creating the Dataset

Training a convolutional neural network for detecting plants in images, a vast
amount of training images are needed. The dataset used in this study is composed of
three ornamental plants namely thuja, gold euonymus and sacred bamboo. The data
is collected by taking images with a drone and a mobile phone, and also by

downloading from the Internet.

After sorting the data, in order to increase the number of instances in the dataset,
some additional operations are done such as data augmentation, manual cropping,
mirroring and beveling. In the end of the work, a dataset of 1800 images (600 per

plant) was obtained.

Samples of each ornamental plant in our dataset can be seen in Figure 3.2.
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thuja gold euonymus sacred bamboo

Figure 3.2. The ornamental plants in our dataset

For the classification process, we separated our dataset as 1440 train and 360 valid
images, whereas by creating .zx¢ files for each image in the dataset, we obtained a
total of 3600 objects in the plants data directory for YOLO training. Details about

.txt files are explained under Methodology caption.

3.3. Methodology

In order to do object detection with a CNN, we first need to collect data and separate
it as train and test samples. When creating the model, the training data is given as
input to the model, which will take the information of images and do the extraction
of visual features. In addition to the feature extraction model, a classification model

1s needed.

After the classification model is created, testing data is used. All features are
extracted from the testing data and then the system is moved on to the model to
compare the features with the classes for determining which class the testing data

belongs to.

The workflow is visualized in Figure 3.3.
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Training Data Testing Data

Plantl

An image
of plant2

Model

Model

(Classification)

(Feature
extraction)

Figure 3.3. Workflow of a CNN

3.3.1. Plant classification with PyTorch

In this study, for the classification process, we used PyTorch as feature extraction
model and DenseNet for classification model. In this step, we used a model that was
originally developed by Anne Bonner [21]. We modified the code and our dataset
according to each other so that our data can be trained with the model. We separated
our dataset as train and valid sets as in Figure 3.4. and then, we created the data.json

file shown in Figure 3.5. that is needed for applying the category names.

[5) data_dir = 'plant_data’
train_dir = data_dir + '/train'
valid_dir = data_dir + '/valid'

Figure 3.4. Our dataset plant_data
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{

Il3ll: llthujall'
"1": "sacred bamboo",
"2": "gold euonymus"

}

Figure 3.5. data.json file preview

After uploading our dataset and data.json file on Google Colaboratory, we imported

the needed libraries and downloaded the DenseNet model.

We used the same data transforms and classifier in the model, which are shown in

Figure 3.6. and Figure 3.7. respectively.

[ ] # transforms for the training and testing sets
data_transforms = {

'train': transforms.Compose( [
transforms.RandomRotation(30),
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406],

[0.229, 0.224, 0.225])

])l

'valid': transforms.Compose( [
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406],

[0.229, 0.224, 0.225])

1)

}

# Load the datasets with ImageFolder
image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x),
data_transforms[x])
for x in ['train', 'valid']}

# Using the image datasets and the trainforms, define the dataloaders
batch_size = 64
dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=batch_size,
shuffle=True, num workers=4)
for x in ['train', 'valid']}

class_names = image_datasets(['train'].classes

Figure 3.6. Data transforms defined in the code [21]
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for param in model.parameters():
param.requires_grad = False

def build classifier(num_in_features, hidden_layers, num out_features):

classifier = nn.Sequential()
if hidden_layers == None:

classifier.

else:

layer_sizes
classifier.
classifier.
classifier.
classifier.
classifier.

add_module( 'fc0', nn.Linear(num_in_features, 102))

= zip(hidden_layers[:-1], hidden_layers[l:])
add_module( 'fc0', nn.Linear(num_in_features, hidden_layers[0]))
add_module( ‘'relu0', nn.ReLU())
add_module( 'drop0', nn.Dropout(.6))
add_module( 'relul', nn.ReLU())
add_module( 'dropl', nn.Dropout(.5))

for i, (hl, h2) in enumerate(layer_sizes):
classifier.add_module('fc'+str(i+l), nn.Linear(hl, h2))
classifier.add module('relu'+str(i+l), nn.ReLU())
classifier.add_module('drop'+str(i+l), nn.Dropout(.5))

classifier.

add_module( 'output’', nn.Linear(hidden_layers[-1], num_out_features))

Figure 3.7. Classifier code [21]

For the training, we used the train model adopted from Transfer Learning for

Computer Vision Tutorial [22] and we trained the model for 30 epochs. We also tried

training for 20 epochs and got a high accuracy but nevertheless, we preferred to use

30 for better results.

The loss and accuracy values of training process are shown on Figure 3.8. Values for

the validation process are shown on Figure 3.9. as well.

1.2

Training Loss & Accuracy

/_\/x‘, Accuracy, 09283
08 |

0.6

04

0.2

1 2 3 45

LOSS 26

6 7 8 9 10111213 14151617 18 19 20 21 22 23 24 25 26 27 28 29 30
Epochs

Figure 3.8. Training loss & accuracy chart
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Validation Loss & Accuracy
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Figure 3.9. Validation loss & accuracy chart

After training process, we evaluated the model for validation on our valid (test) set

with the script in Figure 3.10. and had an accuracy rate of 99%.

[

]

O

# Evaluation
model.eval()
accuracy = 0
for inputs, labels in dataloaders['valid']:
inputs, labels = inputs.to(device), labels.to(device)

outputs = model(inputs)

# Class with the highest probability is our predicted class
equality = (labels.data == outputs.max(1l)[1])

# Accuracy is number of correct predictions divided by all predictions
accuracy += equality.type as(torch.FloatTensor()).mean()

print("Test accuracy: {:.3f}".format(accuracy/len(dataloaders['valid'])))

Test accuracy: 0.991

Figure 3.10. Evaluation code for the model [21]

With DenseNet model, the training process has reached a high level of accuracy

within a couple of epochs. At the end of 30 epochs, we run the script in figure 3.12.
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for testing the ornamental plant in Figure 3.11. and it resulted with an accuracy of

99% in predicting the class of the plant. The result is also shown in Figure 3.12.

Figure 3.11. IMG_5751.jpg

img_path = '/content/IMG_5751.jpg"’

probs, classes = predict2(img_path, model.to(device))
print (probs)

#print(classes)

plant_names = [data[class_names[e]] for e in classes]
print(plant_names)

plt.figure(figsize=(20, 3))

plt.subplot(133)
plt.bar(plant_names, probs)
plt.show()

[0.9999449253082275, 4.596586222760379e-05, 9.045640581462067e-06]
[ 'sacred bamboo', 'gold euonymus', 'thuja']

1.0 4

0.8 1

0.6 1

0.4 1

0.2 1

0.0~ T T
sacred bamboo gold euonymus thuja

Figure 3.12. Result of classification with PyTorch
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3.3.2. Plant detection with YOLOvV3

In addition to classification, we also tried to detect plants in images. For this process,
we used namely the state-of-the-art Yolov3 (you-only-look-once) model. Since it
takes much time to train Yolov3, we also trained the tiny-Yolov3d model

simultaneously for being on the safe side.

Before training YOLO, data annotation is needed, which means creating a file for
each image in the dataset with the same name but with .£x¢ extension containing the
object class number, x and y coordinates of the center of object’s bounding box, and
width and height of the bounding box respectively. A sample of a txt file is shown in
Figure 3.13.

There exists a row entry for every bounding box drawn in an image, representing the
information about the box [23]. The first field object class number is an integer value

that stands for the class of the object and ranges from 0 to number of classes-1 [23].

.6366666666666667 0.6133333333333334 0.54 0.6666666666666667
.7733333333333334 0.25333333333333335 0.4266666666666667 0.4666666666666667
.2566666666666667 0.2066666666666667 ©.43333333333333335 0.37333333333333335

P
)
)
® 0.21333333333333335 0.56 0.36000000000000004 0.6000000000000001

LSRR

Figure 3.13. A sample of .txt file

The second and the third entry are center-x and center-y and they correspond to the x

and y coordinates of the center of the bounding box [23].

The last two entries, namely width and height, stand for the width and height of the
bounding box [23]. All entries other than the first one are divided by the image width

and height respectively for normalization [23].

It is quite a tedious task to do the annotation process manually for a big dataset.
Therefore we used a data annotation tool developed by Murugavel [24]. The GUI of
the annotation tool is shown in Figure 3.14. It is quite simple and is opened as the

commend python main.py is entered on terminal.
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[ JON ) Yolo Annotation Tool
Image Dir: || Load
Choose Class: bodurcennetbambusu
Examples: Bounding boxes:
Delete
ClearAll
<< Prev Next >> Progress: [ Go to Image No. Go x:114,y: 0

Figure 3.14. GUI of Yolo Annotation Tool [24]

As soon as the directory of the dataset is entered in the search bar, namely /mage
Dir, the images in the dataset are opened randomly one by one for drawing a
bounding box around the object with labels listed as a dropdown menu on the right
top of the window to specify the object being selected in the current image. Figure

3.15. shows the annotation of the image of a thuja.

000 Yolo Annotation Tool
Image Dir: plants Load
Choose Class: topmazi B
Bounding boxes:
(21, 4) -> (125, 150) -> (topmazi)

Examples:

Delete

ClearAll
<< Prev Next >> 0010/1500 Go to Image No. Go x: 125, y: 149

Figure 3.15. Annotation of an image

Each image is saved with the annotations when Next button on the GUI is clicked.

Normally, the .txt files created with annotation tool should be converted into YOLO
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format by normalizing. Luckily, Murugavel [24] has made this operation inside the

main.py, so we did not be obliged to do a converting process.

When annotating process is done all the images in the dataset, in order to create the
train and test data, we run the process.py script shown in Figure 3.16., which resulted
in separating the dataset as train.txt and test.txt files according to the percentage_test

value in the script.

import glob, os

# Current directory
current_dir = os.path.dirname(os.path.abspath(__file_))

print(current_dir)
current_dir = '<Your Dataset Path>'

# Percentage of images to be used for the test set
percentage_test = 10;

# Create and/or truncate train.txt and test.txt
file_train = open('train.txt', 'w')
file_test = open('test.txt', 'w')

# Populate train.txt and test.txt
counter = 1
index_test = round(100 / percentage_test)
for pathAndFilename in glob.iglob(os.path.join(current_dir,
Il*.jpgll) ):
title, ext = os.path.splitext(os.path.basename(pathAndFilename))

if counter == index_test:
counter = 1
file_test.write(current_dir + "/" + title + '.jpg' + '"\n")
else:
file_train.write(current_dir + "/" + title + '.jpg' + "\n")
counter = counter + 1

Figure 3.16. process.py script [24]

After data annotation, we continued with creating the files required for YOLO
training, which are obj.data, obj.names, yolov3.cfg files. In our study, we named the
files as plant-obj.data, plant-obj.names and plants-yolov3.cfg respectively. Besides,
we edited the tiny-yolov3.cfg file as plants-tiny-yolov3.cfg for training tiny Yolov3

model.

Figure 3.17. shows the plant-obj.data file, which is a plain text file that contains the

information about our detector.
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classes= 3

train = data/train.txt
valid = data/test.txt
names = data/plant-obj.names

backup = backup/

Figure 3.17. plant-obj.data file

The class parameter is the number of classes. The train and valid parameters keeps
the absolute paths of the train.txt and test.txt files respectively [23]. The names
parameter is the path of file that contains the class names. Lastly, the backup
parameter is the path to an existing directory where the weights file generated

through training will be saved [23].

In Figure 3.18., the plant-obj.names file that consists of object names in the dataset

each written on a new line is shown.

bodur_cennet_bambusu
top_mazi
gold_taflan

Figure 3.18. plant-obj.names file

For creating the plants-yolov3.cfg and plants-tiny-yolov3.cfg files, we followed the
instructions that Murugavel used in Yolov3 training process [25]. We copied the
original .cfg files and edited the batch, subdivisions, classes and filters values

according to our dataset. Figure 3.19. shows the upper part of our configuration file.

[net]

# Testing
batch=24
subdivisions=8
# Training

# batch=64

# subdivisions=2
width=416
height=416
channels=3
momentum=0.9
decay=0.0005
angle=0
saturation =
exposure = 1.
hue=.1

1.5
5

learning_rate=0.001
burn_in=1000
max_batches = 500200
policy=steps
steps=400000,450000
scales=.1,.1

Figure 3.19. plants-tiny-yolov3.cfg file preview
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The Batch hyper-parameter in Yolov3 determines the number of images that are
going to be used in each training step. Our batch value is 24, which means 24 images

are used in one iteration for updating the parameters of the neural network [23].

Subdivisions is a configuration parameter in Yolov3 that stands for decreasing the

GPU VRAM requirements by being divided by the batch value.

Since the classes value for our dataset is 3, we calculated the filters parameter with

the formula filters=(classes+5)*3, and updated the values as 24 in our case.

Width, height and channels configuration parameters determine the input size and the
number of channels [23]. The input training images are resized to width x height
before training, which is 416 x 416 in our case. Channels show that the input images

would be 3-channel RGB [23].

Momentum and decay parameters control how the weight is updated [23].
Momentum is used to penalize large weight changes between iterations, whereas

decay controls overfitting issues [23].

Learning rate is typically a number between 0.01 and 0.0001 that controls how

aggressively the learning process will be, based on the current batch of data [23].

Max_batches stands for how many iterations the training process will run for.

Since the training process starts with zero information, the learning rate is needed to
be high in the beginning. However, as the neural network encounters a lot of data, it
should be decreased over time. Steps parameter provides the control of learning rate
decrease [23]. In our configuration, the learning rate will start from 0.001 and remain
constant for 400000 iterations. Then, it will multiply by scales parameter and get the

new learning rate [23].
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Even though the learning rate should be high in the beginning of the training and low
later on, the training speed tends to increase with a lower learning rate for a short
period of time at the very beginning [23]. Burn-in parameter handles the control of

this issue [23].

The angle, saturation, exposure and hue parameters can be used for data
augmentation. Angle makes it possible to randomly rotate the given image by angle
[23]. Besides, saturation, exposure and hue can be used to transform the colors of the

picture [23]. We used the default values for these parameters.

Before starting the training process, we cloned the darknet directory and placed our
files into it. The dataset folder named plants, plant-obj.data, plant-obj.names,
train.txt and fest.txt files under data folder, the configuration files plants-yolov3.cfg
and plants-tiny-yolov3.cfg under cfg folder. In addition, plant-obj.data and plant-

obj.names files are needed to be in cfg folder, so we copied them into it.

Then we downloaded the pre-trained Darknet-53 weights, which contains
convolutional weights trained on ImageNet and enables the network to learn faster.

After that, we started the training by the command below:

./darknet detector train data/plant-obj.data cfg/plants-
tiny-yolov3.cfg darknet53.conv.74 -dont show -map

Training tiny-Yolov3 model was much faster than Yolov3 model so that we could be
able to train until 67000 in tiny-Yolov3 whereas we reached only to 6000 with
Yolov3. Thus we continued our training with tiny-Yolov3 model. Besides, as we
trained our dataset on Google Colaboratory, which ends every session after 12 hours,

we did the training partially.

We started with pre-trained Darknet-53 weights and reached about 70000 iterations
within our session. Through the training process, a new weights file is saved at every
100-iterations. Thus, after each session, we started a new one and continued the

training with the last saved weights file.



27

The training process can be ended when the average loss value is 0.6, and the smaller
the value is good for better results [25]. We trained our model till the maximum
iteration number specified in the .cfg file is reached at which the average loss value

was around 0.4.

In Yolo training, unlike the traditional methods, there is no training and validation
accuracy graph. Instead, there exist average loss and mean average precision charts,

which are saved during training as a .png file with -map flag.

As we mentioned in detail in Section 2.5, YOLO uses three loss functions separated
as classification, objectness (confidence) and box (localization). The scripts for each
function, which reside in the yolo layer.c file in darknet/src repository, are shown in
the Figures below [26]. The loss values are calculated by taking the sum of squares

of delta values.

The script for calculating delta for classification loss is shown in Figure 3.20. and

Figure 3.21. respectively.

void delta_yolo_class(float xoutput, float *delta, int index, int class_id, int classes, int stride,
float *avg_cat, int focal_loss, float
label_smooth_eps, float xclasses_multipliers)

int n;
if (deltalindex + stridexclass_id]){
deltalindex + stridexclass_id] = (1 - label_smooth_eps) - output[index + stridexclass_id];
if (classes_multipliers) deltalindex + stridexclass_id] *= classes_multipliers(class_id];
if(avg_cat) *avg_cat += output[index + stridexclass_id];
return;
}
// Focal loss
if (focal_loss) {
// Focal Loss
float alpha = @.5; // 8.25 or 0.5
//float gamma = 2; // hardcoded in many places of the grad-formula

int ti = index + stridexclass_id;

float pt = output[ti] + 0.000000000000001F;

// http://fooplot.com/
#W3sidH1wZSI6MCwiZXEiOiItKDEteCkqKDIgeCpsh2coeCkreC@xKSIsImNvbGIyIjoilzAWMDAWMCI9LHSidH1WZSI6

MTAwMH1d

float grad = =(1 - pt) * (2 * ptxlogf(pt) + pt - 1); // http://blog.csdn.net/linmingan/
article/details/77885832

//float grad = (1 pt) * (2 % ptxlogf(pt) + pt 1); // https://github.com/unsky/focal-loss

Figure 3.20. Delta for class loss function of Yolov3 part 1
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for (n = @; n < classes; ++n) {
deltalindex + stridexn] = (((n == class_id) ? 1 : 8) - output[index + stridexn]);

deltalindex + stridexn] %= alpha%grad;

if (n == class_id) *avg_cat += output[index + stridexn];

}
}
else {
// default
for (n = @; n < classes; ++n) {
deltalindex + stridexn] = ((n == class_id) ? (1 - label_smooth_eps) : (8 + label_smooth_eps/
classes)) - output[index + stridexn];
if (classes_multipliers && n == class_id) deltalindex + stridexclass_id] %=
classes_multipliers(class_id];
if (n == class_id && avg_cat) =xavg_cat += output[index + stridexn];
}
}

Figure 3.21. Delta for class loss function of Yolov3 part 2

Figure 3.22. shows delta for objectness loss calculation.

1l.deltalobj_index] = 1l.cls_normalizer * (@ - l.output[obj_index]);
if (best_match_iou > l.ignore_thresh) {
1.deltalobj_index] = 9;
}
if (best_iou > l.truth_thresh) {
1l.deltalobj_index] = l.cls_normalizer * (1 - l.output[obj_index]);

int class_id = state.truth[best_t*(4 + 1) + bxl.truths + 4];

if (l.map) class_id = l.map[class_id];

int class_index = entry_index(1l, b, n¥l.wkl.h + jxl.w + i, & + 1);

delta_yolo_class(l.output, l.delta, class_index, class_id, l.classes, l.wxl.h, @, 1l.focal_loss,
1.label_smooth_eps, l.classes_multipliers);

box truth = float_to_box_stride(state.truth + best_t*x(4 + 1) + bxl.truths, 1);

const float class_multiplier = (l.classes_multipliers) ? l.classes_multipliers(class_id] : 1.8f;

delta_yolo_box(truth, l.output, l.biases, l.mask[n], box_index, i, j, 1l.w, 1l.h, state.net.w,
state.net.h, l.delta, (2 - truth.wxtruth.h), l.wxl.h, l.iou_normalizer * class_multiplier,
l.iou_loss, 1);

Figure 3.22. Delta for objectness loss function of Yolov3
Delta for box loss calculation is shown in Figures 3.23., 3.24. and 3.25. respectively.

ious delta_yolo_box(box truth, float xx, float xbiases, int n, int index, int i, int j, int 1w, int 1h,
int w, int h, float %delta, float scale, int stride, float iou_normalizer, IOU_LOSS iou_loss, int
accumulate)

ious all_ious = { @ };

// i - step in layer width

// j - step in layer height

// Returns a box in absolute coordinates

box pred = get_yolo_box(x, biases, n, index, i, j, 1w, 1lh, w, h, stride);
all_ious.iou = box_iou(pred, truth);

all_ijous.giou = box_giou(pred, truth);

all_ious.diou = box_diou(pred, truth);

all_ious.ciou = box_ciou(pred, truth);

// avoid nan in dx_box_iou
if (pred.w == @) { pred.w

if (pred.h == @) { pred.h

if (iou_loss == MSE) // old loss
{

=1.0; }
= 1.0; }

float tx = (truth.xxlw - 1i);

float ty = (truth.yxlh - j);

float tw = log(truth.wxw / biases[2 % nl);
float th = log(truth.hxh / biases[2 x n + 1]);

Figure 3.23. Delta for box loss function of Yolov3 part 1
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// accumulate delta

deltalindex + @ * stride] += scale * (tx - x[index + @ * stride]) * iou_normalizer;
deltalindex + 1 % stride] += scale * (ty - x[index + 1 % stride]) * iou_normalizer;
deltalindex + 2 % stride] += scale * (tw - x[index + 2 % stride]) * iou_normalizer;
deltalindex + 3 % stride] += scale x (th - x[index + 3 % stride]) * iou_normalizer;
}
else {

// https://github.com/generalized-iou/g-darknet

// https://arxiv.org/abs/1902.89630v2

// https://giou.stanford.edu/

all_ious.dx_iou = dx_box_iou(pred, truth, iocu_loss);

// jacobian“t (transpose)

//float dx = (all_ious.dx_iou.dl + all_ious.dx_iou.dr);

//float dy = (all_ious.dx_iou.dt + all_ious.dx_iou.db);

//float dw = ((-0.5 * all_ious.dx_iou.dl) + (8.5 % all_ious.dx_iou.dr));
//float dh = ((-0.5 * all_ious.dx_iou.dt) + (8.5 % all_ious.dx_iou.db));

// jacobiant (transpose)

float dx = all_ious.dx_iou.dt;
float dy = all_ious.dx_iou.db;
float dw = all_ious.dx_iou.dl;
float dh = all_ious.dx_iou.dr;

Figure 3.24. Delta for box loss function of Yolov3 part 2

// predict exponential, apply gradient of e“delta_t ONLY for w,h
dw *= exp(x[index + 2 % stridel);
dh %= exp(x[index + 3 * stridel);

// normalize iou weight
dx *= iou_normalizer;
dy %= iou_normalizer;
dw %= iou_normalizer;
dh %= iou_normalizer;

if (laccumulate) {

deltalindex + 8 * stride] = 8;
deltalindex + 1 * stride] = @;
deltalindex + 2 * stride] = 9;
deltalindex + 3 * stride] = 8;

}

// accumulate delta

deltalindex + @ * stride] += dx;

deltalindex + 1 % stride] += dy;

deltalindex + 2 % stride] += dw;

deltalindex + 3 * stride] += dh;
}

return all_ious;

Figure 3.25. Delta for box loss function of Yolov3 part 3

Mean average precision is the mean value of average precisions of each class [26].
The average precision is average value of 11 points on precision-recall curve for each
probability of detection for the same class [26]. Equations for precision and recall are

shown in Figure 3.26.
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Detected box Detected box |

Precision = Recall =

Figure 3.26. Calculation of precision and recall [24]

The loss and mAP-chart of our tiny-Yolov3 model training is in Figure 3.27. in
which the average loss value is 0.4361 and the mAP is 46.0% for the last iteration.
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Iteration number in cfg max_batches=500200

Figure 3.27. Average loss & mean average precision chart
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It can be seen from the chart that the average loss value has decreased perceptibly
after 400000 iterations, at which the new learning rate is calculated by scales value as

we mentioned above.

At the end of our training process, we had a success rate over 80% with tiny-Yolov3

for many of our test images as in Figure 3.28. and Figure 3.29.

Total BFLOPS 5.451

Loading weights from plants-yolov3-tiny_67800.weights...
seen 64

Done! Loaded 24 layers from weights-file
test/IMG_5751.jpg: Predicted in 1268.315008 milli-seconds.

bodur_cennet_bambusu: 82%

bodur_cennet_bambusu: 84%

Figure 3.28. Test result of tiny-yolov3 model for IMG_5751.jpg

RN

Figure 3.29. Predictions shown on IMG_5751.jpg

Besides, for some test images, although we had correct predictions, the class

probabilities were under 70% such as in Figure 3.30. and 3.31.
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The reason for this might be a consequence of limited data annotation. Since we had
images of flower gardens where determining every single plant is quite hard even by
human eyes, we did not draw boxes around all of them. As a result, the model could

be able to detect some number of plants in one image.

Total BFLOPS 5.451

Loading weights from plants-yolov3-tiny_last.weights...
seen 64

Done! Loaded 24 layers from weights-file

test/iml.jpg: Predicted in 1696.9678806 milli-seconds.

gold_taflan: 54%

gold_taflan: 67%

top_mazi: 33%

gold_taflan: 46%

Figure 3.30. Test result of tiny-yolov3 model for im1.jpg

Figure 3.31. Predictions shown on im1.jpg



CHAPTER 4. RESULTS

In this study, we aimed to facilitate specifying ornamental plants in Sakarya parks for
everyone by classifying and detecting three ornamental plants with convolutional
neural networks. For these processes, we used PyTorch and Yolov3 model

respectively.

We trained our 1800-image dataset on a network developed with DenseNet and
PyTorch. In consequence of a 30 epochs training, we reached a success rate of 99%
in predicting the class of the plant. Figure 4.1. shows a test image of a gold

euonymus and its result is indicated in Figure 4.2.

Figure 4.1. Test image img1.jpg of a gold euonymus
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> [0.9998948574066162, 0.00010360587475588545, 1.4973895758885192e-06]
(1, 0, 2]
['gold taflan', 'bodur cennet bambusu', 'top mazi']

1.0 4

0.8 1

0.6 1

0.4

0.2 4

0.0~ T T
gold taflan bodur cennet bambusu top mazi

Figure 4.2. PyTorch classification result on imgl.jpg

We also tried to detect the three ornamental plants in our dataset with Yolov3 and

tiny Yolov3 models.

We succeeded in training the tiny-Yolov3 model and got a success rate over 80% in
detecting plants, but we could not be able to get a rate in Yolov3 model due to
training on Google Colaboratory. Figure 4.3. shows the test and result of a gold

euonymus with tiny-yolov3 model.

gold_taflan: 87%

gold_taflan: 97%

top_mazi: 48%

Unable to init server: Could not connect: Connection refused

(predictions:1832): Gtk- *%: 18:09:04.929: cannot open display:

= -

Figure 4.3. Tiny-Yolov3 model's detection on a gold euonymus plant image
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In Figure 4.4., result of a sacred bamboo test image, which is shown in Figure 4.5., is

indicated.

Total BFLOPS 5.451

Loading weights from plants-yolov3-tiny_last.weights...
seen 64

Done! Loaded 24 layers from weights-file

test/iu.jpg: Predicted in 1750.430000 milli-seconds.

bodur_cennet_bambusu: 97%

Figure 4.4. Test results of tiny-yolov3 model on iu.jpg

Figure 4.5. Predictions shown on iu.jpg

We believe that the Yolov3 model would also be successful with high accuracy in
detecting the plants by a training that is continued until getting average loss value

under 0.6, which would have taken weeks on Google Colaboratory.



CHAPTER 5. DISCUSSION AND CONCLUSIONS

Detecting the type of a plant and counting the number of plants in fields are
significant topics in artificial intelligence applications that are being studied for

years.

In this study, we wanted to draw attention to ornamental plants as we see them
everywhere in Sakarya. At the end of our study, we succeeded both in classifying
and detecting the plants in our dataset. We got a success rate of 99% in classification

with PyTorch and over 80% accuracy in detecting with tiny-yolov3 model.

Creating a large dataset with high resolution images and doing data annotation
process more precisely would give better results in detecting the plants, which would

also create a way for counting the flowers through images.

A future study about classification and detection of plants can be carried out on
counting the flowers in a field through images for the sake of providing automation
for plant cultivators’ stock tracking. Because we think that counting thousands of
plants in a field is an irrational task for humans. As artificial intelligence has reached
a level of creating robots that can imitate humans, it should also be creating ways to

make people cut free from being responsible for such tasks.
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RESUME
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