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SUMMARY 

Keywords: Computer vision, smart agricultural applications, precision agriculture, 
image processing, deep neural networks.  
 
Plant detection is an active research area in modern robotic applications, which use 
computer vision systems to contribute the smart agricultural processes. Detecting a 
plant within the image and counting its number in a specified area are vital 
functionalities to provide meaningful information about planting such as observing 
the growth rate or predicting the yield amount of a significant plant with the help of 
classical object detection algorithms and more efficiently with deep neural networks. 
Classical models employ image-processing techniques like segmentation and feature 
extraction whereas deep neural networks need only to fine-tune the parameters by 
training the exclusive datasets towards particular tasks.  
 
In this study, we aim to compare the conventional computer vision methods with 
deep neural network outputs and to detect the plants in a plantation area from aerial 
images. DenseNet model is exploited as the base model for fine-tuning and an 
appropriate hysteresis color threshold is applied to determine the interested colors 
within the plantation field. In addition, object localization is performed using the 
deep neural network model as well. Additionally, YOLOv3 model is trained with our 
dataset for comparison of the accuracy. Our dataset includes 1800 images for 3 
classes of plants and there exists 600 per class.  
 
The main goal of this study is to provide an understanding of how precision 
agriculture is handled with computer vision technology and to make an improvement 
about the subject within the scope of our dataset. 
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AKILLI TARIM UYGULAMALARI İÇİN DERİN SİNİR AĞLARI 
KULLANILARAK HAVA GÖRÜNTÜLERİNDE BİTKİ TESPİTİ 

ÖZET 

Anahtar kelimeler: Bilgisayar görmesi, akıllı tarım uygulamaları, sürdürülebilir 
tarım, görüntü işleme, derin sinir ağları.  
 
Bitki tanıma, akıllı tarım uygulamalarına katkıda bulunmak adına bilgisayar görme 
sistemlerini kullanan aktif bir araştırma alanıdır. Klasik nesne tanıma yöntemleri ve 
daha etkili olarak derin sinir ağları ile, bir resimdeki bir bitkiyi tanımak ve o bitkinin 
belirli bir alandaki adedini saymak, büyüme oranının gözlemlenmesi ya da belirli bir 
bitkinin verim miktarının tahmin edilmesi gibi bitkilendirme hakkında bilgiler 
sağlamak için çok önemli fonksiyonlardır. Klasik modeller segmentasyon ve özellik 
çıkarımı gibi görüntü-işleme teknikleri kullanırken, derin sinir ağları yalnızca 
parametrelerin, özel veri setlerinin belirli işlere uygun olarak eğitilmesi ile ince ayar 
yapma gereksinimi duyar.  
 
Bu çalışmada, klasik bilgisayar görmesi yöntemleri ile derin sinir ağları çıktılarını 
karşılaştırmayı ve bir dikim alanındaki bitkileri havadan görüntülerden tespit etmeyi 
amaçladık. İnce-ayar için DenseNet modelinden faydalanıldı ve dikim alanındaki 
ilgili renkleri belirlemek adına uygun bir histerez renk eşik uygulandı. Ek olarak, 
derin sinir ağları modeli kullanılarak nesne lokalizasyonu da uygulandı. Ayrıca, 
hassasiyet kıyaslaması için YOLOv3 modeli de veri setimiz ile eğitildi. 3 bitki 
sınıfından oluşan veri setimiz, her bitki tipi için 600 adet olmak üzere toplam 1800 
resimden oluşmaktadır.  
 
Bu çalışmanın temel amacı, sürdürülebilir tarımın bilgisayar görmesi teknolojisi ile 
nasıl ele alındığının anlaşılmasını sağlamak ve veri setimiz çerçevesinde konu 
hakkında iyileştirmede bulunmaktır.  



	

	
	

CHAPTER 1. INTRODUCTION 

As machines have started to get smarter, artificial intelligence has become one of the 

top subjects that attract researchers’ and developers’ attention. Many studies are 

carried out in order to make machines see, act and even perceive the outside world as 

well as a human being. The subject has separated into branches namely machine 

learning, computer vision etc. in consequence of these studies. And it seems that the 

more the studies get deeper, the more their separation will move on. 

 

Computer vision is the science area that aims to provide machines a high-level of 

understanding of the outside world through digital images or videos. Researchers 

work on interpreting an image, defining the objects and even counting them in an 

image, which are quite easy actions for humans whereas they all are considerably 

hard tasks for machines. Not only images, since videos are composed of images, 

action determination and emotion recognition through videos are also fields of study 

in the deep learning community. 

 

In the recent past, there were studies developed with classical methods. In [1], Hung 

et al. proposed an algorithm that utilizes statistical learning and computer vision 

techniques in order to identify woody weeds in lands using their shadows. They used 

segmentation i.e. color and texture, for feature extraction. In [2], Yang et al. studied 

with two stages: one for training to classify each pixel in aerial images as tree or non-

tree, and the other one for correlating a set of tree templates with classification 

results and locating candidate crowns.  

 

In recent years, with the remarkable progress in machine learning, studies lead 

researchers to use deep learning models in these areas. There exist many studies in 

the literature on image processing, object/plant detection in aerial or digital images 
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etc. accomplished with deep neural networks. Li et al. [3] used a convolutional 

neural network (CNN) to detect and count oil palm trees in crowded plant areas. 

Olafenwa et al. [4] developed a computer vision and deep learning python library 

namely ImageAI, for integrating computer vision technologies easily in new 

applications. In [5], Dyrmann et al. used a fully convolutional network for detecting 

mono and dicotyledonous weeds in cereal fields. Tian et al. improved YOLO-v3 

model by incorporating the DenseNet method for detecting apples in the main 

growth stages in orchards [6].    

 

In this study, we studied on ornamental plant detection using convolutional neural 

networks with the aim of identifying the name of ornamental plants that are placed in 

almost everywhere in Sakarya for landscaping.  

 

We started our work with classifying the plants. For this process, as it becomes easy 

to load and build pre-trained models with PyTorch, we used a network based on 

PyTorch and DenseNet. Dense convolutional network (DenseNet) shown in Figure 

1.1. is a pre-trained model that makes forward feeding in connecting each layer and 

we used it as the base model for fine-tuning in this study.  
 

 
Figure 1.1. DenseNet [7] 
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In addition to classification, we also trained YOLOv3 model for detecting the 

ornamental plants in our dataset. For feature extraction in YOLO training, we used 

Darknet-53 network model detailed in Table 1.1., which uses successive 3x3 and 1x1 

convolutional layers and has a total of 53 convolutional layers [8].  
 

Table 1.1. Darknet-53 [8] 

 Type Filter Size Output 
 Convolutional 32 3 x 3 256 x 256 

 Convolutional 64 3 x 3 / 2 128 x 128 

 Convolutional 32 1 x 1  

1x Convolutional 64 3 x 3  

 Residual   128 x 128 

 Convolutional 128 3 x 3 / 2 64 x 64 

 Convolutional 64 1 x 1  

2x Convolutional 128 3 x 3  

 Residual   64 x 64 

 Convolutional 256 3 x 3 / 2 32 x 32 

 Convolutional 128 1 x 1  

8x Convolutional 256 3 x 3  

 Residual   32 x 32 

 Convolutional 512 3 x 3 / 2 16 x 16 

 Convolutional 256 1 x 1  

8x Convolutional 512 3 x 3  

 Residual   16 x 16 

 Convolutional 1024 3 x 3 / 2 8 x 8 

 Convolutional 512 1 x 1  

4x Convolutional 1024 3 x 3  

 Residual   8 x 8 

 Avgpool  Global  

 Connected  1000  

 Softmax    

 

The following chapters of this thesis are titled as Literature Review, Methodology, 

Results and, Discussion and Conclusions respectively. 

 



	

	
	

 

CHAPTER 2. LITERATURE REVIEW 

In this chapter, we made references to the studies about the topic in the literature, 

starting from the major title Computer Vision.  

 

2.1. Computer Vision 

 

Computer Vision is one of the fields of Artificial Intelligence, which can recognize 

and understand images through computers and software systems [4]. It covers a 

variety of subjects such as image recognition and object detection [4]. Computer 

Vision is the branch of computer science that has enabled computers to see through a 

web camera and record the scene in its own language. 

 

2.2. Machine Learning 

 

Machine learning is the area that occurred as an answer to the question of whether 

computers can go beyond “what we know how to order it to perform” [9]. With 

machine learning, the classical programming method of giving rules and data and 

getting output as a result has moved to a new paradigm as giving data and output and 

getting rules as the output [9]. This simple paradigm of machine learning is being 

used among a wide scale of tasks ranging from image classification to speech 

recognition [9]. There are researches, which are done by using machine learning-

based methods for oil palm tree detection [3], image prediction and object detection 

[10]. 

 

Machine learning can also be described as making the computer understand through 

a given pattern. The system or namely the model is trained over some number of 

samples and made capable of learning from the data.   



	

	

5 

2.3. Deep Learning 

 

Deep learning is one of the subfields of machine learning that provides a 

mathematical framework for learning representations from data [9]. Despite the 

traditional way of programming that analyzes the data in a linear way, deep learning 

method processes the data in a nonlinear way with its hierarchical structure [10]. 

Deep learning is a fast and effective tool for counting trees from airborne optical 

imagery [10]. 

 

“Deep” in deep learning corresponds to the successive layers of representations [9]. 

The number of layers that contribute to a model of data is the depth of the model [9]. 

Deep learning maps inputs i.e. images to targets i.e. label “plant” by a deep sequence 

of data transformations called layers, which are learned through examples [9].  

 

In learning process, the transformation implemented by a layer is parameterized by 

its weights [9]. Learning means finding a set of values for the weights of all layers in 

a network so that example inputs are mapped to the related targets correctly by the 

network [9].  

 

In a deep neural network, there exist a large amount of parameters, which makes it 

necessary to measure how far the output is from what is expected for finding the 

correct value for the weights, and this task is handled by the loss function of the 

network [9]. Loss function of a network does the computation of a distance score 

using the predictions of the network and the specified output i.e. target [9]. The score 

is then used as a feedback signal for adjusting the weight values in a direction that 

will lower the loss score for the current example [9].   

 

2.4. Convolutional Neural Networks 

 

Convolutional neural networks (CNNs) were built in the 1970s and proposed as the 

early architectures of deep neural networks [11]. The development of deep neural 

networks has facilitated CNNs to improve rapidly [11]. They are used among a large 
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scale of computer vision studies such as object detection [4], tree counting [11], oil 

palm tree detection and counting [3], fig plant segmentation [12] and so on.  

 

CNNs, or more precisely, the gold standard for image classification since 2012, have 

improved a lot in a way, which enables them to not only classify objects but also 

detect and locate the objects (with bounding boxes) in images [13].  

 

CNNs have been used in a variety of studies in the literature. In [5], Dyrmann et al. 

used a fully convolutional network with the aim of detecting the locations of weeds 

that are distinguished as monocots or dicots in images from cereal fields. They stated 

that the reason for not choosing RCNN (region-based CNN), fast-RCNN or faster-

RCNN was the architectures of them limiting their usage due to long processing 

times on standard hardware [5]. In [14], Xu et al designed a CNN for cotton bloom 

detection because of its effectiveness in recognizing flower species and the 

advantages of it over traditional machine learning methods in feature extraction. 

Fuentes-Pacheco et al. proposed a CNN with an encoder-decoder architecture for 

studying the problem of plant segmentation at the granularity of pixel on the grounds 

of convolutional layers’ highly robust approximation functions and their 

achievements with different image-related tasks [12]. Fan et al. built a convolutional 

neural network with the aim of classifying candidate regions as tobacco plant regions 

or nontobacco plant regions [15]. In [3], Li et al. used high-resolution remote sensing 

images of oil palm trees from Malaysia with the aim of detecting and counting the 

trees with a convolutional neural network based framework.  

 

In order to train a convolutional neural network, a number of training and test 

samples are needed. In [3], Li et al. have remarked that they have collected manually 

interpreted samples for this process. Then, by tuning its main parameters, they have 

optimized the CNN. In [10], Singh et al. have	studied on swimming pool detection 

using aerial imagery, and they have used a pre-trained neural network that has been 

trained on over one million images from the ImageNet corpus in order to extract 

features and do the fine-tuning operation. Fuentes-Pacheco et al. used a total 110 

RGB images with high-resolution of 4000 x 3000 pixels [12], whereas Dyrmann et 
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al. selected 1368 images for training and validation from a set of 118000 images 

collected by a camera system in various fields and at different times [5]. Xu et al. 

collected data with one flight of a drone and stated that they counted the blooms in 

each plot on the same day of drone flight [14].   

 

2.4.1. Detection and classification of plants with CNNs 

Object or more specifically plant detection in images has been a significant area in 

today’s world enclosed with AI. Cultivators need to optimize their time and 

resources in order to keep pace with the business life. Plants should be monitored 

while they grow up, or a spray system should be accurate in detecting the crop 

centerline for the sake of productivity maximization.  

  

With deep learning era, studies on image processing like object detection and 

classification have reached a level of almost 100% success rate with convolutional 

neural network methods such as RCNN, fast-RCNN and YOLO, which leaded 

different procedures in studies. The network that Dyrmann et al. studied uses the first 

five layers of VGG16 as basic feature extraction layers and a set of default bounding 

boxes at each location in the final feature maps to determine the locations of weeds 

[5]. Li et al. used LeNet in their CNN model in [3] while Fuentes-Pacheco et al. used 

a CNN model inspired by SegNet architecture for the process of pixel-wise semantic 

segmentation in [12]. 

 

2.5. YOLO: You-Only-Look-Once 

In recent years, alongside the models of CNNs and RCNNs, a state-of-the-art model 

in object detection has emerged namely You-Only-Look-Once: YOLO.  

 

YOLO is the new object detection approach developed by Redmon et al. [16] that 

frames object detection as a regression problem to spatially separated bounding 

boxes and associated class probabilities [16]. Unlike sliding window or region 

proposal-based techniques, YOLO can be trained on full images in one evaluation 
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[16]. With YOLO, a single convolutional network predicts multiple bounding boxes 

and class probabilities for those boxes at the same time and it directly optimizes 

detection performance [16].  

 

Since its establishment, it has been improved to detect a large variety of different 

objects with more accuracy and speed [17][8]. YOLOv2 can predict detections for 

more than 9000 categories, and the detection can be held in real-time [17].  

 

In [18], the developers of YOLO stated that, they applied a single neural network to 

the full image, which divides the image into regions and predicts bounding boxes and 

probabilities for each region.  

 

YOLO divides the input image into an S x S grid in which each grid cell predicts 

only one object [19]. Each grid cell also makes a fixed number of bounding box 

guesses with each box has one box confidence score, but the one-object rule limits 

the closeness of detected objects [19]. Thus, some objects may be missed by YOLO 

if they are too close to each other [19]. In Figure 2.1., there are two bounding boxes 

made by the yellow grid cell in order to locate the person in the image [19].  
 

	
Figure 2.1. Bounding box guesses for an object made by a grid cell 
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In addition to guessing B bounding boxes each with a box confidence score, and 

predicting only one object regardless of the number B, each grid cell also predicts C 

conditional class probabilities –one per class for the likeliness of the object class- 

[19]. 

 

Each boundary box contains five elements namely x, y, z, w and box confidence 

score [19]. The confidence score reflects the likeliness of a box to contain an object 

(objectness) and the accuracy of the bounding box [19]. The bounding box width w 

and height h is normalized by the image width and height [19]. The x and y values 

are offsets to the corresponding cell [19]. Thereby x, y, w, h are all ranges between 0 

to 1 [19]. The probability of belonging to a particular class is the conditional class 

probability [19]. As a result, the prediction of YOLO is (S, S, BX5 + C) which is 

equal to (7, 7, 30) for PASCAL VOC evaluation [19].  

 

YOLO has 24 convolutional layers followed by 2 fully connected layers [19]. The 

network design is shown in Figure 2.2. YOLO reduces the spatial dimension to 7x7 

with 1024 output channels at each location by using a CNN [19]. It performs a linear 

regression using two fully connected layers for making 7x7x2 bounding box 

predictions, which is shown in the middle images in Figure 2.3. [19]. The final 

predictions is made by taking the high box confidence scores that are greater than 

0.25 shown in the right image in Figure 2.3. [19]. 
 

	
Figure 2.2. Network design of YOLO [19] 
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Figure 2.3. How Yolo works [18] 

	

The class confidence score measures the confidence on the classification and the 

localization and it is calculated for prediction box as in Equation 2.1 [19]. The 

elements of the equation are given in Equation 2.2 and Equation 2.3 respectively.  

 

class confidence score = box confidence score × conditional class probability     (2.1) 

 

Box confidence score ≡ Pr(object) · IoU               (2.2) 

Conditional class probability ≡ Pr(classi∣object)             (2.3) 

Class confidence score ≡ Pr(classi) · IoU  

 = box confidence score × conditional class probability     

 

Here,  

 

Pr(object) is the probability of a box to contain an object 

IoU, which corresponds to intersection over union, is the area between the predicted 

box and the ground truth 

Pr(classi∣object) stands for the probability of an object belonging to classi given the 

object is presence 

Pr(classi) is the probability the object belongs to classi [19]. 
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In order to calculate loss, YOLO uses sum-squared error between the predictions and 

the ground truth [19]. The loss function is composed of the classification loss, the 

localization loss and the confidence loss [19].  

 

If an object is detected, the squared error of the class conditional probabilities for 

each class gives the classification loss at each cell [19]. It is calculated by Equation 

2.4: 

 

𝟙!
!"#  (𝑝! 𝑐  −  𝑝!(𝑐))!!∈!"#$$%$

!!
!!!               (2.4) 

 

In this equation, 𝟙!
!"#  = 1 if an object appears in cell i, 0 otherwise, and 𝑝!(𝑐) denotes 

the conditional class probability for class c in cell i [19].  

 

The errors in the predicted boundary box locations and sizes give the localization 

loss [19]. Only the box responsible for detecting the object is counted [19]. Equation 

2.5 is used to calculate localization loss:  

 

𝜆!""#$  𝟙!"
!"# 𝑥! −  𝑥! ! +  𝑦! −  𝑦! !

!

!!!

!!

!!!

 

+ 𝜆!""#$  𝟙!"
!"# 𝑤! −  𝑤!

!
+  ℎ! −  ℎ!

!
!
!!!

!!
!!! 				 	 										(2.5) 

 

Here, 𝟙!"
!"# = 1 if the j bounding box in cell i is responsible for detecting the object, 0 

otherwise. 𝜆!""#$  value increases the weight for the loss in the bounding box 

coordinates [19]. YOLO puts more emphasis on the bounding box accuracy by 

multiplying the loss by 𝜆!""#$, which is taken 5 by default [19].  

	

The	confidence	loss	that	corresponds	to	measuring	the	objectness	of	the	box	is	

calculated	in	two	ways	separated	by	whether	an	object	is	detected	or	not	[19].	If	

an	 object	 is	 detected	 in	 the	 box,	 Equation	 2.6	 is	 used,	 and	 Equation	 2.7	

otherwise	[19].		
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𝟙!"
!"#  (𝐶!  −  𝐶!)!!

!!!
!!
!!!                  (2.6) 

 

where  

𝐶! is the box confidence score of the box j in cell i, and 𝟙!"
!"# = 1 if the j th boundary 

box in cell i is responsible for detecting the object, 0 otherwise [19]. 

 

𝜆!""#$  𝟙!"
!""#$ !

!!!
!!
!!! (𝐶!  −  𝐶!)!                   (2.7) 

 

where  

𝟙!"
!""#$  is the complement of 𝟙!"

!"# , 𝐶! is the box confidence score of the box j in cell 

i, and 𝜆!""#$ weights down the loss when detecting background [19]. 

 

Since most boxes do not contain any objects, in order to remedy the possible class 

imbalance problem, this loss is weighted down by a factor 𝜆!""#$, which is taken 0.5 

by default [19].  

 

For calculating the final loss, localization, confidence and classification losses are all 

added together [19].  

 

In YOLOv3, 3 predictions are made per location, which are each composed by a 

boundary box, objectness and 80 class scores [19].  

 

Throughout the literature review process about plant detection, we saw a large 

variety of detection studies including apple detection with YOLOv3 [6], but we came 

up against a gap about ornamental plant detection. 

 

Sakarya is one of the leading cities in ornamental plant industry in Turkey and there 

are some ornamental plants that are used for landscape design nearly all over the city 

without their names written around. Therefore, we wanted to study on detection of 

these ornamental plants for people, who are interested in flowers and want to learn 

the name of an ornamental plant that is placed in the park.  



	

	
	

 

CHAPTER 3. METHODOLOGY  

This chapter contains detailed information about the whole work we have done 

throughout the study.  

 
3.1. Model Development 

 

An ornamental plant is a plant that becomes prominent with its flowers, leaves or 

shape, and is grown as houseplants for decorating houses or gardens.  

 

Center of Sakarya being in the first place, there exist a wide range of production 

areas in Arifiye, Sapanca and Pamukova. According to Turkish Statistical Institute’s 

data, Sakarya has a significant place in interior and outdoor ornamental plant 

production in Turkey [20] so that it has its own sectorial festival named Sakarya 

Peyzaj ve Süs Bitkiciliği Festivali since 2018.  

 

The ornamental plants we used in our study can be encountered almost everywhere 

in the city; in parks, in gardens, on sidewalks etc. People, who are interested in 

flowers, may want to buy the same plants from plant cultivators. However, if they 

haven’t taken a photo of them, they would probably need to describe the plants as far 

as they remember, or maybe need to tour around the cultivators' products to find 

them. 

 

In our study, we chose to study on ornamental plant detection using deep neural 

networks with the aim of solving or at least handling these issues. We started with 

classifying the plants using a network, which is a PyTorch implementation with 

DenseNet model. We then trained YOLOv3 on ornamental plants for comparing the 

accuracy of the two models.  
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To train a convolutional neural network in a reasonable amount of time, strong GPU 

is a must. Therefore, we trained our model on Google Colaboratory, which provides 

free GPU for machine learning applications. A preview of Google Colaboratory user 

interface is in Figure 3.1.  
 

	
Figure 3.1. Google Colaboratory User Interface 

 

3.2. Collecting Data / Creating the Dataset  

 

Training a convolutional neural network for detecting plants in images, a vast 

amount of training images are needed. The dataset used in this study is composed of 

three ornamental plants namely thuja, gold euonymus and sacred bamboo. The data 

is collected by taking images with a drone and a mobile phone, and also by 

downloading from the Internet.  

 

After sorting the data, in order to increase the number of instances in the dataset, 

some additional operations are done such as data augmentation, manual cropping, 

mirroring and beveling. In the end of the work, a dataset of 1800 images (600 per 

plant) was obtained.  

 

Samples of each ornamental plant in our dataset can be seen in Figure 3.2.  
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Figure 3.2. The ornamental plants in our dataset 

	

For the classification process, we separated our dataset as 1440 train and 360 valid 

images, whereas by creating .txt files for each image in the dataset, we obtained a 

total of 3600 objects in the plants_data directory for YOLO training. Details about 

.txt files are explained under Methodology caption.  

 

3.3. Methodology  

 

In order to do object detection with a CNN, we first need to collect data and separate 

it as train and test samples. When creating the model, the training data is given as 

input to the model, which will take the information of images and do the extraction 

of visual features. In addition to the feature extraction model, a classification model 

is needed.  

 

After the classification model is created, testing data is used. All features are 

extracted from the testing data and then the system is moved on to the model to 

compare the features with the classes for determining which class the testing data 

belongs to.  

 

The workflow is visualized in Figure 3.3. 
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Figure 3.3. Workflow of a CNN 

 

3.3.1. Plant classification with PyTorch  

 

In this study, for the classification process, we used PyTorch as feature extraction 

model and DenseNet for classification model. In this step, we used a model that was 

originally developed by Anne Bonner [21]. We modified the code and our dataset 

according to each other so that our data can be trained with the model. We separated 

our dataset as train and valid sets as in Figure 3.4. and then, we created the data.json 

file shown in Figure 3.5. that is needed for applying the category names.  
 

	
Figure 3.4. Our dataset plant_data 
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Figure 3.5. data.json file preview 

	

After uploading our dataset and data.json file on Google Colaboratory, we imported 

the needed libraries and downloaded the DenseNet model.  

 

We used the same data transforms and classifier in the model, which are shown in 

Figure 3.6. and Figure 3.7. respectively.  
 

	
Figure 3.6. Data transforms defined in the code [21] 
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Figure 3.7. Classifier code [21] 

 

For the training, we used the train model adopted from Transfer Learning for 

Computer Vision Tutorial [22] and we trained the model for 30 epochs. We also tried 

training for 20 epochs and got a high accuracy but nevertheless, we preferred to use 

30 for better results.  

 

The loss and accuracy values of training process are shown on Figure 3.8. Values for 

the validation process are shown on Figure 3.9. as well. 

	
Figure 3.8. Training loss & accuracy chart 
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Figure 3.9. Validation loss & accuracy chart 

 

After training process, we evaluated the model for validation on our valid (test) set 

with the script in Figure 3.10. and had an accuracy rate of 99%.  
 

	
Figure 3.10. Evaluation code for the model [21] 

	

With DenseNet model, the training process has reached a high level of accuracy 

within a couple of epochs. At the end of 30 epochs, we run the script in figure 3.12. 



	

	

20 

for testing the ornamental plant in Figure 3.11. and it resulted with an accuracy of 

99% in predicting the class of the plant. The result is also shown in Figure 3.12. 
 

	
Figure 3.11. IMG_5751.jpg 

	

	
Figure 3.12. Result of classification with PyTorch 
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3.3.2. Plant detection with YOLOv3 

 

In addition to classification, we also tried to detect plants in images. For this process, 

we used namely the state-of-the-art Yolov3 (you-only-look-once) model. Since it 

takes much time to train Yolov3, we also trained the tiny-Yolov3 model 

simultaneously for being on the safe side.  

 

Before training YOLO, data annotation is needed, which means creating a file for 

each image in the dataset with the same name but with .txt extension containing the 

object class number, x and y coordinates of the center of object’s bounding box, and 

width and height of the bounding box respectively. A sample of a txt file is shown in 

Figure 3.13.  

 

There exists a row entry for every bounding box drawn in an image, representing the 

information about the box [23]. The first field object class number is an integer value 

that stands for the class of the object and ranges from 0 to number of classes-1 [23].  
 

	
Figure 3.13. A sample of .txt file 

	

The second and the third entry are center-x and center-y and they correspond to the x 

and y coordinates of the center of the bounding box [23].  

 

The last two entries, namely width and height, stand for the width and height of the 

bounding box [23]. All entries other than the first one are divided by the image width 

and height respectively for normalization [23]. 

 

It is quite a tedious task to do the annotation process manually for a big dataset. 

Therefore we used a data annotation tool developed by Murugavel [24]. The GUI of 

the annotation tool is shown in Figure 3.14. It is quite simple and is opened as the 

commend python main.py is entered on terminal.  
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Figure 3.14. GUI of Yolo Annotation Tool [24] 

 

As soon as the directory of the dataset is entered in the search bar, namely Image 

Dir, the images in the dataset are opened randomly one by one for drawing a 

bounding box around the object with labels listed as a dropdown menu on the right 

top of the window to specify the object being selected in the current image. Figure 

3.15. shows the annotation of the image of a thuja.  
 

	
Figure 3.15. Annotation of an image 

	

Each image is saved with the annotations when Next button on the GUI is clicked. 

Normally, the .txt files created with annotation tool should be converted into YOLO 
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format by normalizing. Luckily, Murugavel [24] has made this operation inside the 

main.py, so we did not be obliged to do a converting process.  

 

When annotating process is done all the images in the dataset, in order to create the 

train and test data, we run the process.py script shown in Figure 3.16., which resulted 

in separating the dataset as train.txt and test.txt files according to the percentage_test 

value in the script.  
 

	
Figure 3.16. process.py script [24] 

 

After data annotation, we continued with creating the files required for YOLO 

training, which are obj.data, obj.names, yolov3.cfg files. In our study, we named the 

files as plant-obj.data, plant-obj.names and plants-yolov3.cfg respectively. Besides, 

we edited the tiny-yolov3.cfg file as plants-tiny-yolov3.cfg for training tiny Yolov3 

model.  

 

Figure 3.17. shows the plant-obj.data file, which is a plain text file that contains the 

information about our detector.  
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Figure 3.17. plant-obj.data file 

	

The class parameter is the number of classes. The train and valid parameters keeps 

the absolute paths of the train.txt and test.txt files respectively [23]. The names 

parameter is the path of file that contains the class names. Lastly, the backup 

parameter is the path to an existing directory where the weights file generated 

through training will be saved [23].  
 

In Figure 3.18., the plant-obj.names file that consists of object names in the dataset 

each written on a new line is shown.  
	

	
Figure 3.18. plant-obj.names file 

 

For creating the plants-yolov3.cfg and plants-tiny-yolov3.cfg files, we followed the 

instructions that Murugavel used in Yolov3 training process [25]. We copied the 

original .cfg files and edited the batch, subdivisions, classes and filters values 

according to our dataset. Figure 3.19. shows the upper part of our configuration file.  
 

	
Figure 3.19. plants-tiny-yolov3.cfg file preview 
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The Batch hyper-parameter in Yolov3 determines the number of images that are 

going to be used in each training step. Our batch value is 24, which means 24 images 

are used in one iteration for updating the parameters of the neural network [23].  

 

Subdivisions is a configuration parameter in Yolov3 that stands for decreasing the 

GPU VRAM requirements by being divided by the batch value.  

 

Since the classes value for our dataset is 3, we calculated the filters parameter with 

the formula filters=(classes+5)*3, and updated the values as 24 in our case.  

 

Width, height and channels configuration parameters determine the input size and the 

number of channels [23]. The input training images are resized to width x height 

before training, which is 416 x 416 in our case. Channels show that the input images 

would be 3-channel RGB [23].  

 

Momentum and decay parameters control how the weight is updated [23]. 

Momentum is used to penalize large weight changes between iterations, whereas 

decay controls overfitting issues [23].  

 

Learning rate is typically a number between 0.01 and 0.0001 that controls how 

aggressively the learning process will be, based on the current batch of data [23].  

 

Max_batches stands for how many iterations the training process will run for.  

 

Since the training process starts with zero information, the learning rate is needed to 

be high in the beginning. However, as the neural network encounters a lot of data, it 

should be decreased over time.  Steps parameter provides the control of learning rate 

decrease [23]. In our configuration, the learning rate will start from 0.001 and remain 

constant for 400000 iterations. Then, it will multiply by scales parameter and get the 

new learning rate [23].  
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Even though the learning rate should be high in the beginning of the training and low 

later on, the training speed tends to increase with a lower learning rate for a short 

period of time at the very beginning [23]. Burn-in parameter handles the control of 

this issue [23].  

 

The angle, saturation, exposure and hue parameters can be used for data 

augmentation. Angle makes it possible to randomly rotate the given image by angle 

[23]. Besides, saturation, exposure and hue can be used to transform the colors of the 

picture [23]. We used the default values for these parameters.  
	

Before starting the training process, we cloned the darknet directory and placed our 

files into it. The dataset folder named plants, plant-obj.data, plant-obj.names, 

train.txt and test.txt files under data folder, the configuration files plants-yolov3.cfg 

and plants-tiny-yolov3.cfg under cfg folder. In addition, plant-obj.data and plant-

obj.names files are needed to be in cfg folder, so we copied them into it.  

 

Then we downloaded the pre-trained Darknet-53 weights, which contains 

convolutional weights trained on ImageNet and enables the network to learn faster. 

After that, we started the training by the command below:  
 

./darknet detector train data/plant-obj.data cfg/plants-

tiny-yolov3.cfg darknet53.conv.74 -dont_show -map 
 

Training tiny-Yolov3 model was much faster than Yolov3 model so that we could be 

able to train until 67000 in tiny-Yolov3 whereas we reached only to 6000 with 

Yolov3. Thus we continued our training with tiny-Yolov3 model. Besides, as we 

trained our dataset on Google Colaboratory, which ends every session after 12 hours, 

we did the training partially.  

 

We started with pre-trained Darknet-53 weights and reached about 70000 iterations 

within our session. Through the training process, a new weights file is saved at every 

100-iterations. Thus, after each session, we started a new one and continued the 

training with the last saved weights file.  
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The training process can be ended when the average loss value is 0.6, and the smaller 

the value is good for better results [25]. We trained our model till the maximum 

iteration number specified in the .cfg file is reached at which the average loss value 

was around 0.4.  

 

In Yolo training, unlike the traditional methods, there is no training and validation 

accuracy graph. Instead, there exist average loss and mean average precision charts, 

which are saved during training as a .png file with -map flag.  

 

As we mentioned in detail in Section 2.5, YOLO uses three loss functions separated 

as classification, objectness (confidence) and box (localization). The scripts for each 

function, which reside in the yolo_layer.c file in darknet/src repository, are shown in 

the Figures below [26]. The loss values are calculated by taking the sum of squares 

of delta values.  

 

The script for calculating delta for classification loss is shown in Figure 3.20. and 

Figure 3.21. respectively.  
 

	
Figure 3.20. Delta for class loss function of Yolov3 part 1 
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Figure 3.21. Delta for class loss function of Yolov3 part 2 

	
Figure 3.22. shows delta for objectness loss calculation. 
 

	
Figure 3.22. Delta for objectness loss function of Yolov3 

	

Delta for box loss calculation is shown in Figures 3.23., 3.24. and 3.25. respectively. 
	

	
Figure 3.23. Delta for box loss function of Yolov3 part 1 
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Figure 3.24. Delta for box loss function of Yolov3 part 2 

	

	
Figure 3.25. Delta for box loss function of Yolov3 part 3 

 

Mean average precision is the mean value of average precisions of each class [26]. 

The average precision is average value of 11 points on precision-recall curve for each 

probability of detection for the same class [26]. Equations for precision and recall are 

shown in Figure 3.26. 
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Figure 3.26. Calculation of precision and recall [24] 

 

The loss and mAP-chart of our tiny-Yolov3 model training is in Figure 3.27. in 

which the average loss value is 0.4361 and the mAP is 46.0% for the last iteration.  
 

	
Figure 3.27. Average loss & mean average precision chart 
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It can be seen from the chart that the average loss value has decreased perceptibly 

after 400000 iterations, at which the new learning rate is calculated by scales value as 

we mentioned above.  

	

At the end of our training process, we had a success rate over 80% with tiny-Yolov3 

for many of our test images as in Figure 3.28. and Figure 3.29.  
 

	
Figure 3.28. Test result of tiny-yolov3 model for IMG_5751.jpg 

	

	
Figure 3.29. Predictions shown on IMG_5751.jpg 

	

Besides, for some test images, although we had correct predictions, the class 

probabilities were under 70% such as in Figure 3.30. and 3.31.  
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The reason for this might be a consequence of limited data annotation. Since we had 

images of flower gardens where determining every single plant is quite hard even by 

human eyes, we did not draw boxes around all of them. As a result, the model could 

be able to detect some number of plants in one image.  
	

	
Figure 3.30. Test result of tiny-yolov3 model for im1.jpg 

	

	
Figure 3.31. Predictions shown on im1.jpg 

	



	

	
	

 

CHAPTER 4. RESULTS 

In this study, we aimed to facilitate specifying ornamental plants in Sakarya parks for 

everyone by classifying and detecting three ornamental plants with convolutional 

neural networks. For these processes, we used PyTorch and Yolov3 model 

respectively.   

 

We trained our 1800-image dataset on a network developed with DenseNet and 

PyTorch. In consequence of a 30 epochs training, we reached a success rate of 99% 

in predicting the class of the plant. Figure 4.1. shows a test image of a gold 

euonymus and its result is indicated in Figure 4.2. 
 

	
Figure 4.1. Test image img1.jpg of a gold euonymus 
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Figure 4.2. PyTorch classification result on img1.jpg 

 

We also tried to detect the three ornamental plants in our dataset with Yolov3 and 

tiny Yolov3 models.  

 

We succeeded in training the tiny-Yolov3 model and got a success rate over 80% in 

detecting plants, but we could not be able to get a rate in Yolov3 model due to 

training on Google Colaboratory. Figure 4.3. shows the test and result of a gold 

euonymus with tiny-yolov3 model.  
 

	
Figure 4.3. Tiny-Yolov3 model's detection on a gold euonymus plant image  
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In Figure 4.4., result of a sacred bamboo test image, which is shown in Figure 4.5., is 

indicated. 
 

	
Figure 4.4. Test results of tiny-yolov3 model on iu.jpg 

	

	
Figure 4.5. Predictions shown on iu.jpg 

	

We believe that the Yolov3 model would also be successful with high accuracy in 

detecting the plants by a training that is continued until getting average loss value 

under 0.6, which would have taken weeks on Google Colaboratory. 



	

	
	

CHAPTER 5. DISCUSSION AND CONCLUSIONS 

Detecting the type of a plant and counting the number of plants in fields are 

significant topics in artificial intelligence applications that are being studied for 

years.  

 

In this study, we wanted to draw attention to ornamental plants as we see them 

everywhere in Sakarya. At the end of our study, we succeeded both in classifying 

and detecting the plants in our dataset. We got a success rate of 99% in classification 

with PyTorch and over 80% accuracy in detecting with tiny-yolov3 model.   

 

Creating a large dataset with high resolution images and doing data annotation 

process more precisely would give better results in detecting the plants, which would 

also create a way for counting the flowers through images.  

 

A future study about classification and detection of plants can be carried out on 

counting the flowers in a field through images for the sake of providing automation 

for plant cultivators’ stock tracking. Because we think that counting thousands of 

plants in a field is an irrational task for humans. As artificial intelligence has reached 

a level of creating robots that can imitate humans, it should also be creating ways to 

make people cut free from being responsible for such tasks.  
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