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SUMMARY 

 

 

Keywords: Probabilistic fatigue crack growth, Fracture mechanics, Monte Carlo 

simulation 

 

Cracks can be seen in many engineering structures. It is important to determine the 

mechanical strength and life of the cracked structure or design a mechanical part with 

a damage tolerance approach. It is hard to determine the remaining life of machine 

parts exactly, since they include some uncertainties and variations in governing 

parameters of the problem, such as geometric dimensions and the variability of 

material properties and loading conditions. Therefore, for such problems, crack growth 

lives must be estimated by means of probabilistic approaches considering the variables 

that affect lives. 

 

In this study, for three-dimensional fatigue crack growth problems, a probabilistic 

crack growth life estimation procedure, which also involves Monte Carlo Simulations, 

was developed and validated by controlled laboratory experiments. The uncertainty in 

material properties affecting fatigue crack propagation life was determined using 

standard Compact Tension (CT) specimens machined from 7075-T6 aluminium alloy. 

Fatigue crack growth models for constant or variable amplitude loading in the 

literature were investigated and an improved model has been proposed. The data 

obtained from two-dimensional crack propagation tests were used in three-

dimensional crack propagation simulations. A non-standard specimen made from 

Aluminium 7075-T6 has been designed for three-dimensional mode-I fatigue surface 

crack growth tests. Surface crack growth experiments under constant and variable 

amplitude loads were conducted using this specimen. Fatigue crack growth 

simulations were also carried out by considering the geometric tolerances of the 

specimen, the scatter of the fatigue crack growth-related material properties and the 

variability in loading. Experimental results were compared with simulations for 

different crack growth models, allowing validation of the proposed probabilistic 

fatigue crack growth methodology. 

  



 
 

xxiv 
 

 

 

 

FCPAS KULLANILARAK OLASILIK TEMELLİ ÜÇ-BOYUTLU 

KIRILMA MEKANİĞİ VE UYGULAMALARI İÇİN PROSEDÜR 

OLUŞTURULMASI 
 

 

ÖZET 

 

 

Anahtar kelimeler: Olasılık temelli yorulma çatlak ilerlemesi, Kırılma mekaniği, 

Monte Carlo simulasyonu 

 

Mühendislik yapılarında kullanılan bir çok elamanda çatlaklarla karşılaşılmaktadır. 

Çatlak içeren yapının mekanik dayanımının ve ömrünün belirlenmesi veya tasarım 

aşamasındaki bir elemanın hasar toleransı yaklaşımıyla modellenmesi önemlidir. 

Geometrik toleranslar, malzeme özellikleri gibi belirsizlikler ve yükleme şartlarındaki 

değişkenliklerden dolayı makina parçaları için kesin bir ömür tahmininde bulunmak 

zordur. Bu nedenle ömür değerlerini etkileyecek değişkenlikler dikkate alınarak 

olasılık temelli yaklaşımlarda bulunulmaktadır.  

 

Bu çalışmada, üç boyutlu yorulma çatlak ilerleme problemleri için Monte Carlo 

simulasyonu ile olasılık temelli ömür tahmin yöntemi oluşturulmuş ve deneylerle 

doğrulanmıştır. Yorulma çatlak ilerleme ömrünü etkileyen malzeme özelliklerindeki 

belirsizlik, 7075-T6 alüminyum ile standart Compact Tension numunesi kullanılarak 

belirlenmiştir. Sabit ve değişken genlikli yükleme altında literatürdeki yorulma çatlak 

ilerleme modelleri değerlendirilmiş ve iyileştirilmiş model önerilmiştir. İki boyutlu 

çatlak ilerleme deneylerinde elde edilen veriler üç boyutlu çatlak ilerleme analizlerinde 

kullanılmıştır. 7075-T6 alüminyum ile standart olmayan ve üç boyutlu mod-I yüzey 

çatlağı içeren numune tasarlanmıştır. Bu numune ile sabit ve değişken genlikli yükler 

altında üç boyutlu çatlak ilerleme deneyleri gerçekleştirilmiştir. Numune üzerindeki 

geometrik toleranslar, malzeme özelliklerindeki saçılımlar ve yükleme şartlarındaki 

değişkenlikler dikkate alınarak yorulma çatlak ilerleme simulasyonları 

gerçekleştirilmiştir. Farklı çatlak ilerleme modellerini kullanılarak gerçekleştirilen 

simulasyon sonuçları deneylerle karşılaştırılmıştır.  

 



1 
 

 
 

 

 

 

CHAPTER 1. INTRODUCTION 

 

 

1.1.  Background of Fracture Mechanics 

 

Cracks can be seen in many engineering applications because of the material defects, 

design and manufacturing. A structure that includes crack, can be safe under short-

term static loading conditions, but in case of fatigue loading, the remaining mechanical 

life must be re-evaluated. The structure must be investigated to determine whether the 

crack grows under the applied fatigue loading. If so, the crack growth rates and 

remaining life must be calculated. Fracture mechanics is a research area that 

investigates the mechanical strength and remaining lives of cracked structures by using 

the basic principles of mechanics along with some special approaches. The science of 

fracture mechanics is vital for sectors such as aviation, space, energy, transportation 

and defense, which are critical areas in case of damage, since a large number of 

casualties or high maintenance costs may occur. The importance of fracture mechanic 

studies is increasing with the developments in aviation, space, nuclear studies, military 

and defense systems. 

 

In the 15th century, Leonardo Da Vinci noted an inverse relationship between the 

length and fracture load of the wires produced from the same material and having the 

same cross-sectional area. Afterward in some studies performed by different scientists, 

it has been explained that fracture was caused by material defects and there might be 

more defects in a longer wire [1]. Based on these studies A.A. Griffith has published 

new studies about fracture theory (1920; 1924) which are known as the first systematic 

research on fracture mechanics [1]–[3]. 

 

During the Second World War years, the USA launched Emergency Ship Building 

Program. Large numbers of the ships built in this program experienced unexpected 
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damages. Investigation of shipwrecks showed that cracks and gaps occurred during the 

welding process triggered these catastrophic failures especially when the materials get 

brittle in cold water. After these findings, researchers focused on Griffith's studies, 

which had not been popular for years, and research on fracture mechanics has gained 

pace. 

 

Irvin [4] published his study and he showed the way to apply fracture mechanics theory 

on engineering problems by using stress intensity factors. Thus, studies on Linear 

Elastic Fracture Mechanics (LEFM) were accelerated. On the other hand, his approach 

is not compatible with ductile materials because of the plastic zone on crack tips. For 

ductile materials, J.R. Rice  proposed a new method that calculates the strain energy 

release rate by using J integral [5]. 

 

1.2.  Probabilistic Fracture Mechanics 

 

The maintenance period of a machine is directly related to the life of its sub-

components. Therefore, the life of each component must be evaluated separately. 

Crack propagation rate of a component for a given load spectrum can be calculated by 

using the crack growth properties of the material and its geometry. However, external 

forces predicted for machine parts in the design may be different from those under the 

operating conditions. Furthermore, load spectrum can be characteristically random 

such as the loading profile of an airplane. It is difficult to determine an exact life for 

machine parts due to the variability in material properties and the small changes in the 

geometry. For this reason, the Probabilistic Fracture Mechanics (PFM) method is 

needed to express crack growth life by considering the variability of inputs in crack 

growth life equations such as initial crack size, geometry, material properties and load. 

 

If the number of input variables is more than three, it is recommended to use Monte-

Carlo simulation or First/Second Order Reliability Methods (FORM / SORM) 

approach [6]. Therefore, Monte Carlo simulation method was adopted in this study. 

This method can be explained simply as determining the distribution of the output 

values generated by the relation between the output variables and the input variables, 
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which are randomly picked from their distributions. To obtain the probability 

distribution of the output, a re-calculation process is necessary for each randomly 

picked input data.  

 

1.3.  Literature Review 

 

Modeling of crack growth behavior under fatigue loading is very important for safely 

operating the parts containing cracks. It is known that an unstable fracture occurs when 

the stress intensity factor reaches the fracture toughness of the material, which can be 

obtained experimentally including its scattered variation. Variability in material 

properties, loading conditions, geometrical tolerances and other environmental 

conditions affect the crack growth rate. For estimating the crack growth life under 

operating conditions, probabilistic fracture mechanics is generally used. 

 

During the operation of a machine part, the most effective parameter on crack growth 

life is the loading spectrum. The size of the plastic zone in the crack tip changes and 

crack growth rate retards due to overload cycles in the loading spectrum. 

 

Early studies related to crack growth focused on constant amplitude loading. The most 

common fatigue crack growth equation is Paris-Erdogan Equation [7] in the literature 

owing to its simplicity. This equation can be used in the second region of the crack 

growth curve and the stress ratio (mean stress effect) is not used. Forman [8], Walker 

[9], and Newman [10] proposed new models, considering the stress ratio in the 

calculation of the crack growth rate.  

 

As variable amplitude loading results in variations on plastic zone size on the crack 

tip, novel approaches with different levels of details addressing this phenomenon were 

also proposed. Some models in the literature such as Elber [11], Wheeler [12] and 

Willenborg [13] are based on cycle-by-cycle analysis to investigate the interaction 

effect in loading profiles. For example, Elber [11] has considered the crack closure 

effect, while Wheeler [12] and Willenborg [13] have compared plastic zone sizes 

between loading profiles. Another approach is used in several studies, such as Barsom 
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[14], Hudson [15], Manjunatha [16] with a more general view on loading spectrum 

using root mean square. Even though many models have been proposed in the 

literature, no universal model is proposed which can be applied to all cases due to the 

challenges arising from different characteristics of variable amplitude loading. 

 

Wheeler [12] determined the crack propagation behavior by comparing the plastic 

zone size at the crack tip created by the load cycles. If the current plastic zone is in the 

boundaries of a larger plastic zone that has already occurred and active, a retardation 

multiplier is added to the equation of Paris-Erdogan. The value of the retardation 

multiplier is between zero and one. An empirical Wheeler exponent is necessary to 

calculate the Wheeler retardation multiplier. Wheeler [12] showed that this exponent 

depended on the material and loading spectrum. The exponent can be found by trial 

and error, based on the comparison of the calculated life with the experiment. Sheu 

B.C. [17] experimentally demonstrated that the exponent in the Wheeler model is also 

dependent on the initial crack length and the overload ratio. A new model based on 

plastic zone size was proposed by Willenborg [13] with no empirical exponent, and an 

effective stress intensity factor is identified and substituted in Forman fatigue crack 

growth equation in the Willenborg model. The crack growth retardation is determined 

by using the effective stress intensity factor. If the overload ratio is greater than or 

equal to 2, it yields a mathematical obstacle. This problem has been solved by adding 

a multiplier in the Modified Willenborg model [18]. The capability of modeling crack 

growth for underload was enhanced by using a piecewise function, called Generalized 

Modified Willenborg Model. Further details of models and formulations are given in 

Section 3.6. 

 

Wheeler and/or Willenborg Models were compared with the experimental results in 

several studies in the literature. Meggiolaro and Castro [19] calculated the crack 

propagation life with different models, using the singular and block loading test spectra 

for two-dimensional crack propagation generated by Zhang S et al. [20]. In their study, 

the best result was obtained by using the Wheeler Model with a retardation parameter 

values between %2 and %22 for different load spectrum types. 
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Xiaoping et al. [21] proposed a piecewise function of stress ratio for the retardation 

multiplier in the Wheeler Model, and the crack growth curves in different stress ratios 

were combined to obtain the modified multiplier and exponent. In other words, the 

Wheeler Model was related to the stress ratio. In the same study, another parameter is 

added to represent the interaction effects between load profiles. A specimen with a 

central crack made of 350WT steel was subjected to block loading and results were 

compared with the tests and showed good accordance. 

 

Crack growth tests of Center Crack Tension (CCT) specimen, made of 2219-T851 

aluminum alloy, were performed under random loading by ASTM in 1981. Three 

loading spectrums were taken from an airplane and the loading values are scaled to 

specimen levels. Six different studies used this experimental data to estimate crack 

growth life were published in a single book [22]. In these studies, Multiparameter 

Yield Zone [23], Modified Elber [24], root mean square [15] and Walker FCG 

equation in Generalized Willenborg/Chang model were used [25]. The latter model 

was also used by considering the negative loads to be equal to zero. None of the models 

were found to be specifically used for random loading since the error in the life 

estimation changes significantly under different load spectrums. The ratio of the 

calculated crack growth life to the test results varies from 0.45 to 1.28. 

 

Wu and Ni [26] has performed two-dimensional crack propagation experiments using 

2024-T351 aluminum material under constant amplitude. The average and standard 

deviation values of the distribution of crack length versus the number of cycles were 

calculated with the data from 30 different tests and it was observed that, as expected, 

the standard deviation increased with the number of cycles. Using the probability 

model of Yang and Manning [27], they plotted the cumulative probability distribution 

compatible with the experimental data. 

 

Monte Carlo Simulation Method is a useful tool for risk assessment in engineering 

problems. It is based on the iteration of the solution of the problem by using the 

randomly picked input variables. If the number of samples taken from the variables is 

sufficient, it gives accurate results but the samples in the Monte Carlo (MC) Method 
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must be independent of each other. The two interrelated material constants, C and n, 

are used for calculation of crack growth rate. Selecting these variables as independent 

in the Monte Carlo Simulation will cause inaccurate results. More detailed explanation 

of the MC Simulation and sampling process can be found in Annis’s work [28]. 

Farahmand and Abdi [29] has investigated the effect of fracture toughness Kıc and Kth 

on crack growth life by using GENPAM,  a computer software for probabilistic 

material and structural analysis. They used 2219-T87 aluminum alloy, with a fracture 

toughness and threshold values having variations between 5% to 10%. A shift was 

observed on fatigue crack growth curves due to variation of the considered material 

properties. 

 

1.4.  Objective of The Present Study  

 

Engineering problems contain inherent uncertainties arising from geometric 

dimensions, material properties (elasticity modulus, thermal conduction, crack 

propagation properties, etc.) and external loads (load, thermal input, boundary 

conditions, etc.). The changes in inputs of the problem affect the variability intervals 

of the output parameters obtained from the solution of the problem. For this reason, 

the variability of the output parameters is also calculated by using probabilistic 

approaches. 

 

In this dissertation, it is aimed to develop a computational method in order to determine 

the variability in fracture parameters and crack propagation rates, considering the 

variations in load, geometry and material properties using the "Fracture and Crack 

Propagation Analysis System (FCPAS)". 

 

Design of experiment (DOE) analysis was performed, and a transfer function was 

obtained to calculate KI SIFs for three-dimensional crack on the Lee James specimen 

used in tests. To reduce the computation time of DOE analysis, the calculation of the 

element stiffness matrices in FRAC3D has been parallelized with OpenMP commands 

and the details are explained in Chapter 2. 
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In Chapter 3; Two-dimensional crack propagation models were evaluated with the data 

obtained from the experiments under constant and variable loading to determine the 

variations in the crack propagation material properties. Three-dimensional crack 

propagation studies were carried out using the data and experiences obtained from 

Chapter 3 and the details are explained in Chapter 4. In this context, tests were carried 

out in different crack propagation test groups with different loading spectrums using 

non-standard specimen with three-dimensional cracks. In Chapter 5, probabilistic 

crack growth life predictions were made using Monte Carlo analysis and the results 

were verified by experiments. A flowchart is given in Figure 1.1.  for the probabilistic 

crack growth life prediction. 

 

 

Figure 1.1. A flowchart for the probabilistic crack growth life estimation
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CHAPTER 2. PARALLELIZATION OF FINITE ELEMENT 

STIFFNESS MATRICES USING OPENMP 
 

 

In probabilistic studies, a large number of statistical data is required. Since obtaining 

statistical data by experiments is costly and time-consuming, Design of Experiment 

(DOE) analyses are generally preferred to create a transfer function to calculate the 

stress intensity factors (SIF)s as functions of the problem’s governing (input) 

parameters. Monte Carlo (MC) simulations are, then, performed by using the 

calculated SIFs, and the variations in the input parameters, including the material 

properties obtained by experiments. In this study, the above procedure is applied and 

the results of MC simulations are verified with those from the related experiments. 

 

Two DOE tables, including 405 and 288 independent cases for fracture analyses were 

created by using FCPAS (Fracture and Crack Propagation Analysis System) [30]. 

Some routines FRAC3D [31], finite element solver of FCPAS, including solver and 

stress calculation, were parallelized using OpenMP commands in a previous study 

[32]. However, calculation of the element stiffness matrices and assembling them into 

the global stiffness matrix were being performed on one processor. In this study, before 

performing the DOE analyses for the probabilistic simulations, it is planned to reduce 

the solution time with multiple processors in all calculations by using OpenMP 

commands in FRAC3D. Further details of the studies using multiple processors will 

be given in this section. A paper titled “Implementation of Parallel Computations on 

3-D Enriched Finite Elements Used for Fracture Analyses” [33] was also published 

using the results in this chapter. 
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2.1.  FRAC3D: Finite Element Solver of Fracture and Crack Propagation 

Analyses System (FCPAS) 

 

The use of numerical methods for engineering problems has increased with the 

advances in computer technology. These advancements in technology also make it 

possible to solve fracture mechanics problems easily for complex geometries.  

 

The Finite Element Method (FEM) is one of the most common numerical methods in 

engineering. Since the FEM performs solutions based on nodes, defining the element 

type can be considered as the first step. Depending on the element type, element 

matrices are created to represent the behavior of elements. Then, a global structural 

matrix is generated by assembling the element matrices. External loads and the 

boundary conditions are also taken into account in the corresponding matrices and 

their solutions. 

 

Displacement of an element {u} can be calculated by using the nodal degree of 

freedom {d} and the shape function matrix [N] of the element. Differentiation of the 

displacement {u} gives the strains. Strain-nodal displacement matrix [B] is obtained 

by differentiation of the shape function matrix [N]. 

 

{u} = [N]{d} (2.1) 

{} = []{u}  yields  {} = []{d} (2.2) 

[B] = []{N} (2.3) 

 

Element stiffness matrix in global coordinates can be calculated by using strain-nodal 

displacement matrix and elastic property matrix [E] according to Equation (2.4). Ve 

denotes the volume of an element.  
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[𝑘] =  ∫ [𝐵]𝑇[𝐸][𝐵]
𝑉𝑒

 𝑑𝑉 (2.4) 

 

Isoparametric formulation of the element stiffness matrix is rewritten in Equation (2.5) 

in terms of isoparametric coordinates, ζ, η, ρ. Note that the isoparametric coordinates 

vary between -1 and 1, and the determinant of a Jacobean matrix is added to the 

equation. 

 

[𝑘] =  ∭[𝐵]𝑇[𝐸][𝐵]

1

−1

 𝐽 𝑑𝜁𝑑𝜂𝑑𝜌 (2.5) 

 

The conventional type of FEM is not suitable for fracture problems because of the 

stress singularity problem in the crack tip.  The enriched finite element method is one 

of the proposed approaches to deal with this obstacle. Strain terms also have 

singularity. As we approach the crack tip, it takes very high vaules because of the 

singularity. Therefore, it has high level of change. To be able to captute that high level 

of change in the strain gradient, more and more integration points are necessary. 

 

FCPAS (Fracture and Crack Propagation Analysis System) [30] is an independent 

software that uses the enriched finite element method to calculate stress intensity 

factors (SIFs) along a three-dimensional crack front. A solid model is created in 

ANSYS and finite element information is taken from ANSYS and converted to FCPAS 

finite element input file format. In this process, element and node information along 

the crack front is used to identify enriched elements. 
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Figure 2.1. Enriched and transition elements along the crack front 

 

In Figure 2.1., the enriched elements at the crack front of a finite element model and 

the neighboring transition elements are shown. Figure 2.2. shows a representative view 

of 20-node enriched element that touches the crack front, which is located in three-

dimensional space. 

 

 

Figure 2.2. 20-node enriched elements on an arbitrarily oriented crack front [31] 

 

𝑢(𝜉, 𝜂, 𝜌) =∑𝑁𝑗(𝜉, 𝜂, 𝜌)

𝑚

𝑗=1

𝑢𝑗 + 𝑍0(𝜉, 𝜂, 𝜌)(𝑓𝑢(𝜉, 𝜂, 𝜌) − ∑𝑁𝑗(𝜉, 𝜂, 𝜌)

𝑚

𝑗=1

𝑓𝑢𝑗)(∑𝑁𝑖()

𝑛𝑡𝑖𝑝

𝑖=1

𝐾𝐼
𝑖) 

+𝑍0(𝜉, 𝜂, 𝜌) (𝑔𝑢(𝜉, 𝜂, 𝜌) − ∑𝑁𝑗(𝜉, 𝜂, 𝜌)

𝑚

𝑗=1

𝑔𝑢𝑗)(∑ 𝑁𝑖()

𝑛𝑡𝑖𝑝

𝑖=1

𝐾𝐼𝐼
𝑖 ) 

+𝑍0(𝜉, 𝜂, 𝜌) (ℎ𝑢(𝜉, 𝜂, 𝜌) − ∑𝑁𝑗(𝜉, 𝜂, 𝜌)

𝑚

𝑗=1

ℎ𝑢𝑗)(∑ 𝑁𝑖()

𝑛𝑡𝑖𝑝

𝑖=1

𝐾𝐼𝐼𝐼
𝑖 ) 

 

 

(2.6) 
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𝑣(𝜉, 𝜂, 𝜌) =∑𝑁𝑗(𝜉, 𝜂, 𝜌)

𝑚

𝑗=1

𝑣𝑗 + 𝑍0(𝜉, 𝜂, 𝜌) (𝑓𝑣(𝜉, 𝜂, 𝜌) − ∑𝑁𝑗(𝜉, 𝜂, 𝜌)

𝑚

𝑗=1

𝑓𝑣𝑗)(∑𝑁𝑖()

𝑛𝑡𝑖𝑝

𝑖=1

𝐾𝐼
𝑖) 

+𝑍0(𝜉, 𝜂, 𝜌) (𝑔𝑣(𝜉, 𝜂, 𝜌) − ∑𝑁𝑗(𝜉, 𝜂, 𝜌)

𝑚

𝑗=1

𝑔𝑣𝑗)(∑ 𝑁𝑖()

𝑛𝑡𝑖𝑝

𝑖=1

𝐾𝐼𝐼
𝑖 ) 

+𝑍0(𝜉, 𝜂, 𝜌) (ℎ𝑣(𝜉, 𝜂, 𝜌) − ∑𝑁𝑗(𝜉, 𝜂, 𝜌)

𝑚

𝑗=1

ℎ𝑣𝑗)(∑ 𝑁𝑖()

𝑛𝑡𝑖𝑝

𝑖=1

𝐾𝐼𝐼𝐼
𝑖 ) 

 

 

(2.7) 

𝑤(𝜉, 𝜂, 𝜌) =∑𝑁𝑗(𝜉, 𝜂, 𝜌)

𝑚

𝑗=1

𝑤𝑗 + 𝑍0(𝜉, 𝜂, 𝜌) (𝑓𝑤(𝜉, 𝜂, 𝜌) − ∑𝑁𝑗(𝜉, 𝜂, 𝜌)

𝑚

𝑗=1

𝑓𝑤𝑗)(∑𝑁𝑖()

𝑛𝑡𝑖𝑝

𝑖=1

𝐾𝐼
𝑖) 

+𝑍0(𝜉, 𝜂, 𝜌) (𝑔𝑤(𝜉, 𝜂, 𝜌) − ∑𝑁𝑗(𝜉, 𝜂, 𝜌)

𝑚

𝑗=1

𝑔𝑤𝑗)(∑ 𝑁𝑖()

𝑛𝑡𝑖𝑝

𝑖=1

𝐾𝐼𝐼
𝑖 ) 

+𝑍0(𝜉, 𝜂, 𝜌) (ℎ𝑤(𝜉, 𝜂, 𝜌) − ∑𝑁𝑗(𝜉, 𝜂, 𝜌)

𝑚

𝑗=1

ℎ𝑤𝑗)(∑ 𝑁𝑖()

𝑛𝑡𝑖𝑝

𝑖=1

𝐾𝐼𝐼𝐼
𝑖 ) 

(2.8) 

 

Displacement formulation of enriched finite element is written in Eqn. (2.6) to (2.8). 

Nj denotes the shape function of regular elements according to ξ, η, ρ local coordinates, 

and nodal displacements are labeled as uj, vj and wj, respectively. The functions fu-v-w, 

gu-v-w, hu-v-w are obtained from the analytically known element of the asymptotic crack 

tip displacement expression, and represent the mode I, mode II and mode III 

displacement components transformed from local to a global coordinate system [31]. 

Z0(ξ,η,ρ) is a function, changing between 0 and 1. Its value is 1 for all enriched finite 

elements, and 0 for regular elements. There are also transition elements between 

enriched and regular elements. The value of Z0(ξ,η,ρ) is either 1 or 0 for transition 

elements depending on neighboring an enriched or regular element. A new term 

∑ 𝑁𝑖()
𝑛𝑡𝑖𝑝
𝑖=1 𝐾𝐼,   𝐼𝐼,   𝐼𝐼𝐼

𝑖
 is added to the end of finite element formulation to calculate the 

SIFs with enriched elements in crack front. 𝐾𝐼,   𝐼𝐼,   𝐼𝐼𝐼
𝑖

 indicates the SIFs for any element 

in crack front under different crack modes. Locally isoparametric coordinate (Γ) 

changes between -1 and 1. The studies of Ayhan and Nied [31], [34] can be referred 

for further information about enriched element formulation and their numerical 

integration.  
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2.2.  Calculation of Element Stiffness Matrix by Parallel Computing 

 

In this study, OpenMP directives were used to compute element stiffness matrices in 

a parallel manner. OpenMP is a shared-memory parallelization method supported by 

many hardware manufacturers, preparing compilers and libraries compatible with 

OpenMP. Parallel regions are created between the sentinel "!$" in OpenMP code. 

Since the lines starting with an exclamation mark "!" are the command line in normal 

compilers, the code is read only with OpenMP routines in this region. Thus, serial and 

parallel regions can be used together in the same code.  

 

Work-sharing and the synchronization between threads are among the most critical 

issues in parallelizing. Since all threads read/write shared data at the same time, some 

synchronization problems may occur. For this reason, the variables must be classified 

as private or shared, carefully. 

 

Figure 2.3. Serial processing algorithm 

 

A serial algorithm is given in Figure 2.3. This algorithm calculates an element stiffness 

matrix using the shape function related to the element type. Then, assembles it into a 

global stiffness matrix for each element. Note that, high order integral calculation is 

required for the shape functions of enriched elements, and it is time-consuming as 

these steps are running for each element one by one in a serial manner.  
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Figure 2.4. Parallel processing algorithm 

 

The calculations of the elements can be performed at the same time by work-sharing 

as seen in Figure 2.4., so that the total processing time can be shortened. In FCPAS, 

the shape function is calculated by calling the related subroutine, after determining the 

element types according to the numbers and locations of nodes. Parallelizing the 

"Calling a sub-routine" makes it possible to calculate the element stiffness matrix and 

assemble it in the global stiffness matrix for more than one element at the same time. 

In order for the same global stiffness matrix is to be reached by each thread, it must be 

defined as shared. But, at a given time, only one thread must be operating in the global 

stiffness matrix in order to avoid a reduction problem during the addition of the 

element stiffness matrix to the global stiffness matrix. Calculation of an element 

stiffness matrix must be done by only one thread. The corresponding components 

belonging to the element, such as element load matrix, must be private. 

 

2.3.  Case Studies and The Results 

 

11 different cases, such as surface crack, edge crack, corner crack and inclined surface 

crack were analyzed with the serial and parallel version of FCPAS in the same 

computer (8 GB RAM, i7-4710 2.5 GHz CPU). All cases were in mode-I loading 



15 

 

 
 

condition except inclined surface crack that generates mode-I, -II and -III SIFs.  Details 

of the models can be seen in Table 2.1. 

 

Table 2.1. Details of the 11 cases and their comparisons between serial and parallel computing time 

Model 

No 

Number of 

Elements 

Number 

of Nodes 

Enriched 

Elements 

Transition 

Elements 

Element Matrix Calculation & 

Assembly 

Serial [s] Parallel (2) [s] 
% 

gain 

1 499 3886 2 6 1.82 1.27 30.2 

2 2826 20084 4 12 4.43 2.82 36.3 

3 6104 34673 4 12 5.87 3.52 40.0 

4 33833 62123 100 300 210.12 67.58 67.9 

5 39012 71814 200 400 312.87 101.99 67.3 

6 46948 91513 160 480 315.55 110.99 64.8 

7 52861 106357 160 480 347.65 111.0 68.1 

8 57174 117271 240 720 488.79 166.34 66.0 

9 77817 143350 200 600 433.00 138.85 67.9 

10 88859 195934 480 1440 981.43 335.66 65.8 

11 135186 251842 602 1814 1290.17 418.11 67.6 

 

FCPAS writes “wall clock time” of the main calculation processes in a file. The time 

spent for “Element Matrix Calculation & Assembly” was read from the file and 

presented in Table 2.1. along with the percentage of saved time for all cases. The total 

number of elements, number of the enriched and transition elements were given 

separately. As the total number of enriched and transition elements (non-regular 

element) increases, the time difference between serial and parallel computing has 

become significant. Parallel computing is more efficient for a high number of enriched 

and transition elements since it takes more solution time to calculate the stiffness 

matrices requiring high order numerical integrations. Figure 2.5. shows the relation 

between the computation time and the number of non-regular elements.  
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Figure 2.5. Computation time vs total number of non-regular elements 

 

The SIFs were calculated for all cases and the results of parallel processing were 

verified with the results of serial computing. A detailed view of the model and 

calculated SIFs are given in Figure 2.6. - Figure 2.11. The cases of 5, 6, 7, 8 and 10 

are surface crack in a finite thickness plate with the same aspect ratio and the graph 

was plotted only for case 5. As seen in Figure 2.6. - Figure 2.11. there is no difference 

between the results of serial and parallel computing methods. 

 

 

Figure 2.6. Edge crack in a finite thickness plate, a/w = 0.7 (Case 1) 
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Figure 2.7. Central crack on a functionally graded material (Case 2) 

 

 

Figure 2.8. Edge crack in a finite thickness plate, a/w = 0.1 (Case 3) 

 

 

Figure 2.9. Surface crack in a finite thickness plate, a/c = 0.33 (Case 4) 
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Figure 2.10. Surface crack in a plate, a/c =2 – submodelling (Case 5) 

 

 

Figure 2.11. Surface crack in a finite thickness plate, a/c = 0.33 (Case 9) 

 

 

Figure 2.12. Validation model for the inclined surface crack in a finite thickness plate (Case 11) 
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CHAPTER 3. PROBABILISTIC FRACTURE MECHANICS 

STUDIES FOR TWO-DIMENSIONAL FATIGUE 

CRACK GROWTH PROBLEMS 
 

 

In this chapter, axial tensile, fracture toughness and crack propagation tests under 

constant and variable-amplitude loads are discussed for usage in probabilistic fracture 

mechanics studies. The variabilities of material properties were determined by axial 

tensile, fracture toughness and constant-amplitude crack propagation tests. Using these 

data, the variable amplitude loading test results were compared with the existing crack 

propagation models in the literature and the results were presented. 

 

This chapter has been prepared by using data from the reports of the TUBITAK-funded 

project, 217M690 “Fracture and Crack Propagation System – Phase 3” [35]. 

 

3.1.  Determination of Variabilities on Fracture and Crack Growth Material 

Properties 

 

In this section, the variability caused by material properties was experimentally 

investigated. Certificated hot-rolled 7075-T651 aluminum alloy slabs with a thickness 

of 30 mm were used in all experiments. The crack orientation is in the direction of L-

T. The specimens used in axial tensile or two-dimensional crack growth tests were 

machined by CNC milling at Sakarya University, Engineering Faculty, Laboratory of 

Department of Mechanical Engineering. Experiments were done by MTS 

axial/torsional fatigue test machine in Sakarya University Research, Development and 

Application Center (SARGEM). The axial tension and the torque capacity of the 

machine are 100 kN and 1100 Nm, respectively. 
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3.2.  Axial Tension Tests 

 

First, axial tension tests were performed to determine the mechanical strength of the 

material. The yield stresses were obtained as 497, 512 and 507 MPa from three tests 

with specimens of 90 mm critical length and 5.5 mm thickness. Stress-strain curves of 

these tests are given in Figure 3.1.  

 

Note: Displacements were measured on the actuator since the aim of the tensile test 

was to determine yield stress. An axial extensometer was not used. 

 

 

Figure 3.1. Stress-Strain curves for aluminum 7075-T651 

 

After the tensile tests, it was observed that the fracture was in the critical section and 

was generally perpendicular to the loading direction, as expected for a brittle material 

under tensile stress. The view of the specimens after tests are given in Figure 3.2. 

 

 

Figure 3.2. View of specimens after tensile testing 
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3.3.  Fracture Toughness Tests 

 

29 tests were carried out under the same load conditions to determine the variability 

of fracture toughness. The 7075-T651 aluminum alloy specimens used in the tests were 

identical and produced according to ASTM E399-12 standard [36]. The specimens 

were of 25 mm thickness. The width of the specimen (the distance between the center 

of the loading pin and back) is 50 mm and the other dimensions that depends on the 

width according to ASTM E399-12. Technical drawing of the compact tension (CT) 

specimen is given in Figure 3.3. 

 

 

Figure 3.3. Technical drawing of CT specimen 

 

Brief notes related to the ASTM E399-12 standard are given below. 

− Specimen thickness B, must be compatible with the inequality B ≥

2.5 (
𝐾𝐼𝐶

𝜎𝑦⁄ )
2

. Therefore, the thickness value must be greater than 10 mm for 

aluminum 7075 alloy. 

− Specimen width w, must be compatible with the inequality w ≥ 5(
𝐾𝐼𝐶

𝜎𝑦⁄ )
2

  

In this condition, the width must be greater than 16.5 mm for 7075 aluminum 

alloy. 

− The width must be between 2 and 4 times of thickness. 
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− The applied load cannot be greater than 80% of the fracture toughness while 

generating the precrack. 

− Loading rate must be between 0.55 and 2.75 MPa.m0.5/s in fracture toughness 

test. 

− After the fracture toughness test, the crack front must be measured from three 

different points that are equally spaced along with the thickness. The difference 

between one of the three points and the average of them cannot be greater than 

10%. The symmetry of the specimen can be verified with this condition.   

 

The relation between fracture load and stress intensity factor is empirically given by 

ASTM E399-12 in Equation 3.1. 

 

𝐾𝐼𝐶 = 
𝑃𝑄

𝐵√𝑤
 
(2 +

𝑎
𝑤
)

(1 −
𝑎
𝑤
)
3/2
 [0.866 + 4.64 (

𝑎

𝑤
) − 13.32 (

𝑎

𝑤
)
2

+ 14.72 (
𝑎

𝑤
)
3

− 5.6 (
𝑎

𝑤
)
4

] 
(3.1) 

 

PQ is the fracture load and KIC is the fracture toughness, w is the width of the specimen 

in Eqn. (3.1). PQ is determined by the trend of the force-displacement curve. Force-

displacement curve obtained from the test can be classified into three types as seen in 

Figure 3.4. and the procedure of determination of PQ was written in the standard for 

each type. If the force-displacement curve is not linear, like type-I, a linear line is 

drawn by using the 95% secant of the curve and the intersection point of two lines is 

equal to fracture load. Type-II is seen in the tests where a partial fracture occurs on the 

specimen before fast fracture. Fracture load is equal to the first jump point on the curve. 

Type-III curve is linear and does not contain any discontinuity during the test, thus the 

fracture load is the maximum load. 
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Figure 3.4. Typical force-displacement curves obtained from fracture toughness tests [36] 

 

CT specimens were manufactured in the L-T direction and experimental procedures 

were determined according to ASTM E-399 as explained above. It is expected that the 

fracture toughness for 7075-T6 material is about 29 MPa.m0.5. The fatigue load was 

calculated by using Eqn. (3.1) as the half of fracture toughness, and applied to the 

specimen to generate precrack. The stress ratio (R) of the fatigue load was 0.1. The 

final length of the precrack was expected to be 25 mm, and half millimetric labels were 

pasted on the surfaces to measure the crack length during the tests. Two microscope 

cameras were placed front and back sides of the specimen to monitor the crack growth. 

Precrack generating process was stopped when the crack reached 25 mm. Note that; 

this precrack length on surfaces is not the exact dimension used in the calculation of 

fracture toughness. It is measured on the cracked surface after the fracture test. The 

experimental setup is given in Figure 3.5. 
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Figure 3.5. Experimental test setup 

 

After the precracking process, axial tension force was applied with a loading rate of 

0.6 kN/s and the specimens were fractured. The force-displacement data were recorded 

during the test. Images were taken from the fracture surfaces and the precrack length 

was measured from equally divided three different points a1, a2, a3 along with the 

thickness by using pixel size with Analyzing Digital Images-ADI16 [37] software and 

the average of three measurements were taken as the precrack length (Analyzing 

Digital Images-ADI16 software is free for noncommercial use). 

 

 

Figure 3.6. Measurement of precrack length on fracture surface 
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Fracture load PQ was determined by using the force-displacement curves, obtained 

from each fracture toughness test. According to Eqn (3.1), fracture toughness was 

calculated by using the average precrack length. Figure 3.7. is given as an example of 

force-displacement curves from tests. 

 

29 different fracture toughness tests are listed in Table 3.1. Fracture toughness values 

Kıc are presented in the last column of the table. The average of Kıc is 29.957 MPa.m0.5, 

and the standard deviation and variance are 1.306 and 1.705, respectively. 

 

 

 

Figure 3.7. Force-displacement curves from some tests and determination of the fracture load 
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Table 3.1. Detailed information for all of fracture toughness tests 

Specimen  

Name 

Max. Load 

for Precrack 

(kN) 

a1 

(mm) 

a2 

(mm) 

a3 

(mm) 

a(avg) 

(mm) 

PQ 

(kN) 

KIC 

MPa.m0.5 

20171011_01 7.2 26.080 26.580 26.700 26.453 15.99 30.290 

20171011_02 7.2 26.540 26.700 26.140 26.460 14.34 27.181 

20171012_01 7.2 26.720 27.490 27.550 27.253 14.45 28.892 

20171016_01 7.2 26.170 25.970 25.670 25.937 16.52 30.277 

20171016_02 7.2 26.710 26.460 26.290 26.487 16.24 30.842 

20171027_01 5.0 26.590 26.860 26.480 26.643 15.45 29.650 

20171102_01 6.0 26.550 27.100 26.950 26.867 14.88 28.980 

20171104_01 5.6 25.960 26.620 26.600 26.393 14.88 28.080 

20171123_01 5.6 27.700 27.430 26.630 27.253 13.81 27.606 

20171127_02 6.0 27.300 26.770 26.370 26.813 15.77 30.594 

20171207_02 6.0 26.030 26.410 26.820 26.420 16.14 30.519 

20171212_01 6.0 25.970 26.300 26.790 26.353 14.83 27.920 

20171212_02 5.8 27.610 27.110 26.570 27.097 15.26 30.186 

20180110_01 6.2 26.630 26.570 26.060 26.420 15.20 28.745 

20180117_01 6.2 27.060 26.900 26.340 26.767 16.05 31.055 

20180124_01 6.2 26.740 26.450 26.740 26.643 16.49 31.636 

20180124_02 6.2 26.410 26.350 26.660 26.473 16.61 31.521 

20180124_04 6.2 25.910 26.180 26.350 26.147 16.85 31.291 

20180125_02 6.4 25.670 26.050 26.610 26.110 16.35 30.299 

20180125_03 6.4 26.270 25.800 25.870 25.980 16.68 30.657 

20180125_04 6.4 25.580 25.550 26.080 25.737 17.08 30.894 

20180212_01 7.0 26.500 26.440 26.630 26.523 16.71 31.810 

20180212_02 7.0 26.600 27.320 26.870 26.930 15.52 30.349 

20180213_01 7.0 26.530 27.250 27.320 27.033 14.55 28.652 

20180213_02 7.0 26.950 27.270 26.770 26.997 15.32 30.090 

20180213_03 7.0 25.670 25.840 26.250 25.920 16.90 30.935 

20180214_01 7.0 26.600 27.040 26.930 26.857 14.51 28.244 

20180214_02 7.0 26.080 25.700 26.100 25.960 16.38 30.063 

20180502_01 7.0 26.110 26.040 26.670 26.273 16.85 31.550 

 

Histograms were plotted with the fracture toughness values given in Table 3.1. with 

four different distribution type (normal, lognormal, weibull, gamma), as shown in 

Figure 3.8. 
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Figure 3.8. Histogram graphs for fracture toughness a) Normal distribution, b) Lognormal distribution, c) Weibull 

distribution, d) Gamma Distribution 

 

The top view of all specimens after fracture toughness tests are shown in Figure 3.9. 

 

 

Figure 3.9. Top view of the used specimens for fracture tests 
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3.4.  Fatigue Crack Growth Tests Under Constant Amplitude Loading 

 

Fatigue crack growth tests under constant amplitude loading were performed to 

determine the variability in crack growth properties. CT specimens were machined 

from 7075-T651 with the dimensions given in Figure 3.3. and the crack was oriented 

in L-T direction. ASTM E647-15 [38] standard was applied during the tests. Some 

points regarding the standard are provided below.  

 

− Crack growth direction is expected to be planar under mode-I loading, so the 

crack growth angle must be less than 10 degrees with the plane. 

− The precrack length must be greater than one-tenth of the specimen thickness. 

− The applied maximum load to generate the precrack must be smaller than the 

initial SIF of the fatigue crack growth test. 

− Fatigue crack growth length must be measured from both sides of the specimen 

and the average value must be used in the calculations. The difference between 

the measurements cannot exceed one-fourth of the specimen thickness. 

− 2% sensitivity For maximum fatigue load, should be provided in 

measurements. 

− If “a/w” is smaller than 0.2, Eqn (3.1) cannot be used to calculate the SIF. 

 

The numbers of the fatigue crack growth tests are given in Table 3.2. Constant 

amplitude tests were planned with four different stress ratios are also shown in Table 

3.2. More tests were performed for R = 0.1 and 0.5 than for R = 0.7 and 0.8 stress ratio. 

For a given ∆K, the crack growth life was shorter in R = 0.7 and 0.8 tests than R = 0.1 

and 0.5 tests, therefore the number of tests was not increased in R = 0.7 and 0.8 tests. 

The crack length was measured by two microscope cameras and crack opening 

displacement (COD) gage, placed on the specimen. 
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Table 3.2. Test matrix for FCG under constant amplitude 

Test Count Specimen Type 

Fatigue crack growth tests under constant amplitude – R = 0.1 21 CT 

Fatigue crack growth tests under constant amplitude – R = 0.5 20 CT 

Fatigue crack growth tests under constant amplitude – R = 0.7 10 CT 

Fatigue crack growth tests under constant amplitude – R = 0.8 10 CT 

 

During the tests, the images are taken from two sides of the specimen by two 

microscope cameras, and the cycle count of the test were monitored from the screen 

window of the control software of the fatigue machine. The screen was captured 

periodically by an in-house software. The crack length was measured based on pixel 

size by using the captured pictures, and crack growth curves were plotted, accordingly. 

Pixel size was calibrated with a sticker of half-millimeter scale steps. A sample of 

screen view is seen in Figure 3.10. 

 

 

Figure 3.10. Camera views and the cycle during the fatigue crack growth test 

 

3.4.1. FCG tests under constant amplitude R = 0.1  

 

21 fatigue crack growth tests were performed under constant amplitude loading with 

stress ratio of 0.1. The linear region was determined from crack growth curves, and C-

n crack growth constants in Paris-Erdogan Equation (3.2) were found by using the 
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trend line tool in Microsoft Excel. One of the graphs of these tests is shown in Figure 

3.11. All tests in this category are given in Table 3.3. in detail. In Figure 3.11., da/dN 

- ΔK measurements on the front and back surfaces are shown with triangle and square 

markers, respectively. Also, the average values are shown with circle symbols. The 

trend line and its equation can also be seen in the same graph. Constants in Paris-

Erdogan Equation (3.2) are obtained by using the equation of the trend line. The crack 

length versus cycle graph is also given in Figure 3.11. 

 

𝑑𝑎

𝑑𝑁
= 𝐶(∆𝐾)𝑛 

(3.2) 

 

 

Figure 3.11. Crack growth curves, R = 0.1 

 

Paris-Erdogan constants obtained from all tests under R = 0.1 conditions are also 

provided in Table 3.3. In the first two tests, a highly scattered crack growth data were 

observed. Calculated constants using these tests were considered as outliers and were 

marked in red. 

 

Table 3.3. Details of the R = 0.1 constant amplitude crack growth tests 

 Precrack Fatigue crack growth 

Specimen 

Name 

Max.  

Load for 

Precrack 

(kN) 

a(avg) 

(mm) 

Stress 

Ratio 

for 

FCG 

R  

Max. 

FCG 

load 

(kN) 

Cycle C n 

20171017_01 7.0 26.445 0.1 9.0 4641 5.785E-21 13.822 

20171019_01 5.0 25.670 0.1 6.5 15278 1.347E-14 2.368 

20171020_01 5.0 26.350 0.1 6.5 12767 9.678E-08 3.406 



31 

 

 
 

Table 3.3. Details of the R = 0.1 constant amplitude crack growth tests (Continued) 

20171023_01 5.6 25.215 0.1 6.5 10925 2.150E-07 3.177 

20171108_01 5.6 25.785 0.1 6.2 15787 7.421E-07 2.569 

20171122_01 5.6 24.925 0.1 6.2 21429 9.993E-07 2.432 

20171128_01 5.6 25.115 0.1 6.2 12900 2.061E-07 3.202 

20171208_01 5.8 25.745 0.1 6.2 21264 1.227E-07 3.161 

20171213_01 5.8 25.745 0.1 6.2 13515 1.340E-06 2.349 

20171215_01 6.0 25.765 0.1 6.2 13325 1.120E-06 2.511 

20180108_01 6.0 25.440 0.1 6.5 15022 1.633E-07 3.159 

20180109_01 6.0 25.840 0.1 6.5 12615 1.859E-06 2.279 

20180424_01 6.2 25.450 0.1 7.0 14576 4.039E-07 2.805 

20180425_01 6.4 25.235 0.1 7.0 14545 2.141E-06 2.192 

20180425_02 6.6 25.710 0.1 7.0 9217 2.611E-08 3.948 

20180719_01 6.4 25.865 0.1 7.0 13028 5.041E-07 2.728 

20180720_01 6.4 25.930 0.1 7.0 12239 1.828E-07 3.103 

20180724_01 6.4 25.765 0.1 7.0 11749 4.353E-07 2.815 

20180724_02 6.4 25.800 0.1 7.0 11416 2.211E-07 3.082 

20180730_01 6.4 25.743 0.1 7.0 11274 3.841E-07 2.869 

20180806_02 6.4 25.530 0.1 7.0 13079 4.421E-07 2.776 

 

Five different studies [39]–[43] which include crack growth constants for 7075-T6 

aluminum alloy under R = 0.1 were used to validate the experimentally determined C-

n constants in this study. Crack growth rates were calculated by using Paris-Erdogan 

Equation (3.2) with different C-n constants between ΔK = 10 – 30 MPa.m0.5. 

Calculated crack growth rates and their comparisons with data in the literature can be 

seen in Figure 3.12. Calculated crack growth rates are drawn with black dashed lines 

for the given values of C-n in Table 3.3. and colored lines are used for the literature 

data. The calculated crack growth rates with obtained C-n values are in line with the 

literature data as seen in Figure 3.12. In addition, the variability of experimental results 

in data obtained in this study is close to that of the data from the literature. 
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Figure 3.12. Comparison experimentally obtained C-n with data from the literature, R = 0.1 

 

3.4.2. FCG tests under constant amplitude R = 0.5  

 

20 fatigue crack growth tests were carried out under constant amplitude loading with 

the stress ratio of 0.5. The same procedures of R = 0.1 were adopted in these tests. As 

expected, crack propagation life under R = 0.5 is longer than R = 0.1 for the same 

maximum fatigue load (Pmax = 7 kN) since the amplitude of the alternating fatigue load 

is smaller than that of R = 0.1. One of the graphs for these tests is shown in Figure 

3.13. Also, detailed information of all tests related to this category can be seen in Table 

3.4. 

 

 

Figure 3.13. Crack growth curves, R = 0.5 
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Table 3.4. Details of the R = 0.5 constant amplitude crack growth tests 

 Precrack Fatigue crack growth 

Specimen 

Name 

Max.  

Load for 

Precrack 

(kN) 

a(avg) 

(mm) 

Stress 

Ratio 

for 

FCG 

R  

Max. 

FCG 

load 

(kN) 

Cycle C n 

20180430_01 6.4 25.460 0.5 7.0 28947 1.132E-06 2.690 

20180503_01 6.4 25.705 0.5 7.0 29352 9.334E-07 2.783 

20180511_01 6.4 25.331 0.5 7.0 29147 3.466E-06 2.164 

20180507_01 6.4 25.772 0.5 7.0 26031 7.139E-07 2.942 

20180514_01 6.4 25.251 0.5 7.0 37341 1.146E-06 2.654 

20180515_01 6.4 25.820 0.5 7.0 32804 2.135E-07 3.437 

20180515_02 6.4 25.345 0.5 7.0 33061 8.331E-07 2.775 

20180516_01 6.4 25.345 0.5 7.0 32390 1.074E-06 2.728 

20180517_01 6.4 25.380 0.5 7.0 29452 1.513E-06 2.600 

20180521_01 6.4 25.379 0.5 7.0 29868 6.015E-07 3.050 

20180731_01 6.4 25.439 0.5 7.0 30055 6.721E-07 2.946 

20180731_02 6.4 26.615 0.5 7.0 24606 3.067E-07 3.306 

20180801_01 6.4 25.850 0.5 7.0 27094 6.004E-07 3.026 

20180804_01 6.4 25.740 0.5 7.0 31630 1.116E-06 2.656 

20180804_02 6.4 25.545 0.5 7.0 23423 2.426E-07 3.532 

20180805_01 6.4 25.810 0.5 7.0 33592 8.701E-07 2.764 

20180805_02 6.4 25.647 0.5 7.0 33650 9.762E-07 2.732 

20180806_01 6.4 26.070 0.5 7.0 30112 6.754E-07 2.918 

20180806_03 6.4 26.154 0.5 7.0 26971 8.078E-07 2.834 

20180806_04 6.4 26.070 0.5 7.0 28651 2.116E-06 2.383 

 

3.4.3. FCG tests under constant amplitude R = 0.7  

 

10 fatigue crack growth tests were performed under constant amplitude loading with 

the stress ratio of 0.7. The same procedures of R = 0.1 were adopted in these tests. 

Crack propagation life under R = 0.7 is longer than R = 0.1 and 0.5 for the same 

maximum fatigue load (Pmax= 7 kN). Thus, the maximum fatigue load was set as 10 

kN. One of the graphs for these tests is shown in Figure 3.14. Also, detailed 

information of all tests related to this category can be seen in Table 3.5. 
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Figure 3.14. Crack growth curves, R = 0.7 

 

Table 3.5. Details of the R = 0.7 constant amplitude crack growth tests 

 Precrack Fatigue crack growth 

Specimen 

Name 

Max. 

Load for 

Precrack 

(kN) 

a(avg) 

(mm) 

Stress 

Ratio 

for FCG 

R  

Max. 

FCG 

load 

(kN) 

Cycle C n 

20180604_01 6.4 25.815 0.7 7.0 111151 3.329E-07 3.437 

20180605_01 6.4 26.095 0.7 7.0 91726 9.635E-07 2.927 

20180607_01 6.4 25.596 0.7 7.0 119324 5.146E-07 3.245 

20180613_01 6.4 25.610 0.7 10.0 31985 1.595E-06 2.639 

20180710_01 6.4 25.610 0.7 10.0 26274 9.292E-08 4.250 

20180716_01 6.4 26.020 0.7 10.0 24130 1.140E-07 4.097 

20180717_01 6.4 25.585 0.7 10.0 31901 2.692E-07 3.590 

20180718_01 6.4 25.665 0.7 10.0 29900 7.891E-07 3.044 

20180719_02 6.4 25.975 0.7 10.0 31273 1.719E-07 3.770 

20180903_01 6.4 26.300 0.7 10.0 21983 3.312E-07 3.503 

 

3.4.4. FCG tests under constant amplitude R = 0.8  

 

The last constant amplitude loading test group is generated with the R = 0.8 stress 

ratio. As the upper and lower levels of the load are very close to each other for R = 

0.8, crack growth is the slowest among the constant amplitude loading tests. Initially 

10 kN maximum fatigue loading was applied to the specimen, then the load was 

changed to 11.5 kN incrementally to obtain the desired crack growth life. Crack 

propagation life under R = 0.8 is longer than R = 0.7 for the same maximum fatigue 

load (Pmax= 10 kN). One of the graphs for these tests is shown in Figure 3.15. Also, 

detailed information of all tests related to this category can be seen in  Table 3.6. 
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Figure 3.15. Crack growth curves, R = 0.8 

 

Table 3.6. Details of the R = 0.8 constant amplitude crack growth tests 

 Precrack Fatigue crack growth 

Specimen 

Name 

Max.  

Load for 

Precrack 

(kN) 

a(avg) 

(mm) 

Stress 

Ratio 

for 

FCG 

R  

Max. 

FCG 

load 

(kN) 

Cycle C n 

20180619_01 6.4 25.599 0.8 10.0 68327 9.985E-07 3.174 

20180620_01 6.4 26.030 0.8 12.0 24481 2.725E-09 6.873 

20180622_01 6.4 25.837 0.8 11.0 51953 5.826E-07 3.526 

20180626_01 7.0 26.155 0.8 11.5 31503 1.292E-09 7.446 

20180628_01 6.4 26.010 0.8 11.5 28114 3.837E-07 3.847 

20180629_01 7.0 26.437 0.8 11.5 33542 6.236E-08 4.882 

20180702_01 6.4 25.996 0.8 11.5 41972 1.332E-07 4.326 

20180704_01 6.4 25.549 0.8 11.5 32035 2.887E-08 5.589 

20180709_01 6.4 25.765 0.8 11.5 39372 2.522E-08 5.424 

20180709_02 6.4 25.769 0.8 11.5 40772 3.316E-08 5.313 

 

3.4.5. Investigation of variation in crack growth rates under constant amplitude 

loading 

 

C-n constants of each test were presented in Table 3.3. - Table 3.6. The variability in 

crack growth rates for different C-n values were calculated by using Equation (3.2). 

The calculations were performed for the initial, middle and last values of K. 

 

Many types of distributions can represent the scatter obtained in experiments. To select 

a distribution type and use it through the following steps, the distribution type that best 

fits the obtained data was analyzed. 12 different distribution types were examined in 

MINITAB software [44], and the results are given in Table 3.7. The abbreviation "AD" 
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in Table 3.7. refers to the Anderson-Darling value. For a good distribution fit, low 

values of AD are desired. “P” is another important parameter and if the “P” value is 

smaller than 0.05, it means that the selected distribution model does not give the 

correct results. Six distribution types gave appropriate results. For all cases in Table 

3.7., the highest “P” value is marked in green and invalid cases of “P” values are 

marked in red. All cases were examined, and it was concluded that the Lognormal 

distribution is the most suitable model for the obtained data. 

Table 3.7. Results of different distribution models 

R = 0.1 First Point Mid-Point End Point 

Distribution AD P AD P AD P 

Normal                    0.359 0.413 0.881 0.019 1.041 0.007 

Lognormal                 0.343 0.452 0.523 0.16 0.417 0.298 

Exponential               5.298 <0.003 5.565 <0.003 3.949 <0.003 

2-Parameter Exponential 1.84 <0.010 0.286 >0.250 0.227 >0.250 

Weibull                   0.448 >0.250 1.008 <0.010 0.918 0.017 

Gamma 0.33 >0.250 0.649 0.092 0.595 0.136 

R = 0.5 First Point Mid-Point End Point 

Distribution AD P AD P AD P 

Normal                    0.357 0.42 0.782 0.035 0.873 0.02 

Lognormal                 0.365 0.403 0.477 0.211 0.414 0.305 

Exponential               7.433 <0.003 6.882 <0.003 5.616 <0.003 

2-Parameter Exponential 3.379 <0.010 0.462 >0.250 1.233 0.03 

Weibull                   0.619 0.096 1.307 <0.010 1.089 <0.010 

Gamma 0.337 >0.250 0.553 0.173 0.531 0.193 

R = 0.7 First Point Mid-Point End Point 

Distribution AD P AD P AD P 

Normal                    0.31 0.497 0.765 0.031 0.66 0.059 

Lognormal                 0.327 0.45 0.616 0.078 0.431 0.243 

Exponential               3.846 <0.003 3.541 <0.003 2.903 <0.003 

2-Parameter Exponential 1.33 0.012 0.497 >0.250 0.597 0.185 

Weibull                   0.382 >0.250 0.904 0.017 0.719 0.049 

Gamma 0.343 >0.250 0.689 0.076 0.521 0.203 

R = 0.8 First Point Mid-Point End Point 

Distribution AD P AD P AD P 

Normal 0.398 0.297 0.581 0.096 0.539 0.123 

Lognormal 0.33 0.443 0.433 0.24 0.337 0.426 

Exponential 2.53 <0.003 3.278 <0.003 2.19 0.004 

2-Parameter Exponential 0.501 >0.250 0.617 0.169 0.185 >0.250 

Weibull 0.453 0.243 0.697 0.057 0.508 0.189 

Gamma 0.392 >0.250 0.509 0.214 0.431 >0.250 
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Histograms were obtained using MINITAB [44] for specific K values by using da / 

dN curves calculated for different C-n values in cases of R = 0.1, 0.5, 0.7, 0.8 stress 

ratios, respectively. The horizontal axis of graphs was labeled as da/dN per 1000 cycles 

for the initial, middle and final values of K and are shown in Figure 3.16. -Figure 

3.19. 

 

 

Figure 3.16. da/dN variations under constant amplitude loading, R = 0.1 

 

 

Figure 3.17. da/dN variations under constant amplitude loading, R = 0.5 
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Figure 3.18.da/dN variations under constant amplitude loading, R = 0.7 

 

 

Figure 3.19. da/dN variations under constant amplitude loading, R = 0.8 

 

 

 

 



39 

 

 
 

3.5.  Fatigue Crack Growth Tests Under Variable Amplitude Loading 

 

Single overload, block loading and random loading tests are discussed in this section. 

The literature has not provided any standard for the variable amplitude loading tests. 

CT specimen with the given dimensions in Figure 3.3. is used in the variable amplitude 

loading tests for two-dimensional crack growth. Performed tests in this category are 

provided in Table 3.8. 

 

Table 3.8. Test matrix for FCG under variable amplitude 

Test Performed Specimen Type 

Single Overload 9 CT 

Single Underload 5 CT 

Block Overload 14 CT 

Block Underload 3 CT 

Random Loading (Artificial spectrum) 11 CT 

Random Loading (Partial FALSTAFF) 13 CT 

 

3.5.1. Fatigue crack growth under single overload 

 

Fatigue crack growth was initiated under 7 kN fatigue loading and 0.1 stress ratio by 

using CT specimen having a precrack. While running the test under constant 

amplitude, a single overload was applied at the 7000th cycle. The single overload was 

9 kN in the early tests, but since the expected retardation effect could not be observed, 

the magnitude of the single overload was increased for the following tests. During the 

test, the crack was monitored with two microscope cameras from the back and front 

surfaces of the specimen. Crack growth curves were plotted by pixel size measurement 

of pictures. Properties of single overload and the other information about tests are 

given in Table 3.9. 
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Table 3.9. Single overload tests 

Single overload Precrack Fatigue crack growth 

Specimen 

Name 

Stress 

Ratio for 

precrack 

R 

Max. Load 

for Precrack 

(kN) 

a(avg) 

(mm) 

Stress 

Ratio for 

FCG 

R 

Max. Load 

for FCG 

(kN) 

FOL/Fda/dN Cycle 

20181031_01 0.1 6.4 24.930 0.1 7.0 2.00 28294 

20181101_01 0.1 6.4 25.015 0.1 7.0 1.71 15649 

20181005_01 0.1 6.4 24.985 0.1 7.0 1.71 13898 

20181007_01 0.1 6.4 24.800 0.1 7.0 1.57 13239 

20181012_01 0.1 6.4 24.787 0.1 7.0 1.29 11529 

20181013_01 0.1 6.4 24.860 0.1 7.0 1.29 12654 

20181013_02 0.1 6.4 24.805 0.1 7.0 1.86 18401 

20181014_01 0.1 6.4 24.461 0.1 7.0 1.86 17902 

20181014_02 0.1 6.4 24.628 0.1 7.0 1.57 16488 

 

The effect of using different single overload magnitudes on crack growth life was 

investigated experimentally. The retardation effect increased in accordance with the 

application of greater magnitudes of single overload. In addition, it has been observed 

that the low ratio of single overload (1.29) did not affect crack propagation life 

significantly. 

 

 

Figure 3.20. Effect of single overload ratio on crack growth life 
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3.5.2. Fatigue crack growth under single underload 

 

The performed experiments indicate that the single underload does not affect the crack 

propagation life, similar to the literature. Note that, the term underload here means a 

decrease in load, but the specimen is always in tension and no compression effect is 

applied to crack surfaces. The compression effect on the crack tip is out of the scope 

of this dissertation. 

 

Any changes in crack growth behavior are not expected in underload tests since the 

plastic region generated by underload is smaller than its previous size. Five tests were 

performed to observe the underload effect on crack growth behavior. 

 

 

Figure 3.21. Effect of underload on crack growth behavior 

 

In Figure 3.21., the blue colored continuous curve is the result of an experiment at 9 

kN constant amplitude fatigue load. Underload tests are indicated with dashed lines. 

During the 9kN/7kN underload test, 7 kN underload was applied at the 1000th cycle 

and 9 kN is applied for other cycles. The curves obtained from these two tests are 

colored blue in Figure 3.21. The difference between blue curves can be interpreted as 

underload affecting life, but repeated tests were conducted to clarify whether that was 

caused by material properties, test conditions, or any other effect. The difference 
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between the underload and the FCG load was increased as 11kN/7kN, and the same 

procedure was applied again. Four tests were performed with this procedure, and it is 

concluded that the difference in blue curves in Figure 3.21. was not caused by the 

underload effect. It is clearly seen that there are no changes in the slope of the crack 

propagation curves immediately after the application of underload. This may show that 

the single underload has no retarding or accelerating effect on crack propagation. This 

finding also supports the approach of using positive ΔK values in the crack propagation 

models under random loading, which will be explained in the next sections. 

 

3.5.3. Fatigue crack growth under block overload 

 

Block overload tests were also performed using the CT specimens. Detailed 

information is given in Table 3.10. for block overload tests with different fatigue load 

and cycle periods. The first four experiments shown in Table 3.10. can be considered 

as preliminary tests to determine the cycle periods and magnitude of overload. Then, 

the magnitude of the fatigue load was determined, and the effect of the block overload 

period on crack growth life was investigated. 13 kN overload block was applied with 

“n” cycles between two 7 kN constant amplitude fatigue loading with 1000 cycles, 

repeatedly. The effect of overload block size on the crack growth rate can be seen in 

Figure 3.22.  

 

Table 3.10. Block overload tests 

Block 

overload Precrack Fatigue crack growth 

Specimen 

Name 

Stress 

Ratio for 

precrack 

R 

Max. 

Load for 

precrack 

(kN) 

a(avg) 

(mm) 

Stress 

Ratio 

for 

FCG 

R 

Max. 

Load 

for 

FCG 

(kN) 

FOL
Fda/dN

 Cycle Block loading behavior 

20181206_01 0.1 6.4 24.774 0.1 7.0 1.57 28294 2000x7kN + 2000x11kN + 

20181212_01 0.1 6.4 24.523 0.1 7.0 1.43 15649 1000x7kN + 1000x10kN + 

20181219_02 0.1 6.4 24.880 0.1 7.0 2.00 13898   100x7kN +   100x14kN + 

20181219_03 0.1 6.4 24.765 0.1 7.0 2.00 13239   200x7kN +      50x14kN +.. 

20181225_01 0.1 6.4 24.976 0.1 7.0 1.86 11529 1000x7kN +      50x13kN +.. 

20181225_02 0.1 6.4 25.065 0.1 7.0 1.86 12654 1000x7kN +    100x13kN+ 

20181226_01 0.1 6.4 24.945 0.1 7.0 1.86 18401 1000x7kN +      50x13kN+ 

20181227_01 0.1 6.4 24.829 0.1 7.0 1.86 17902 1000x7kN +    200x13kN+ 
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Table 3.10. Block overload tests (Continued) 

20181227_02 0.1 6.4 24.612 0.1 7.0 1.86 16488 1000x7kN +    500x13kN+ 

20181228_01 0.1 6.4 25.320 0.1 7.0 1.86 18401 1000x7kN +      20x13kN+ 

20190103_01 0.1 6.4 24.925 0.1 7.0 1.86 17902 1000x7kN +      10x13kN+ 

 

As seen in Figure 3.22., the size of the block overload cycle has an important role in 

crack growth life. If the block overload is applied for a long time (i.e., n = 500 and 

200) new plastic zone is created consequently, and it accelerates the crack growth. In 

case of a short cycle of block overload, crack propagates slower compared to the case 

of single overload. The occurring plastic zone size by block overload dominates the 

crack growth behavior. As a result, crack propagates very slowly under fatigue loading 

except at the overload block. Thus, a significant increase in crack propagation life is 

observed. This effect on crack growth life is inversely proportional to the size of the 

overload cycle. It can be deduced that; although the number of cycles is low, overloads 

are applied more frequently and each time newly expanded plastic zones are created 

through which the crack tip slowly passes. 

 

 

Figure 3.22. Effect of block overload size on crack growth life 
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3.5.4. Fatigue crack growth under block underload 

 

There was no significant change in crack growth life by applying a single underload. 

It was also seen that the application of underload as blocks did not have an additional 

significant effect. In other words, the crack propagation behavior in this case is similar 

to block overload case as explained in Section 3.5.3. The only difference here is the 

initial order of high and low block loads shifts. Therefore, no additional tests were 

needed. The underload applied tests can be seen in Figure 3.23. 

 

 

Figure 3.23. Effect of block overload size on crack growth life 

 

3.5.5. Fatigue crack growth under random loading 

 

Fatigue crack propagation tests under random loading were performed with CT 

specimens. Two different load spectrums were used, and each one was repeated 

continuously until the specimen was fractured. One of these loading spectrums was 

easier for the investigation of the interaction between load profiles, which will be 

named as Spectrum-1 (SP-1). The other spectrum is the partial FALSTAFF which was 

provided by TUSAS (TAI). The FALSTAFF profile is also available in the literature. 

The partial FALSTAFF spectrum will be named as Spectrum-2 (SP2). The number of 

the tests in this category of the FCG tests is given in Table 3.8. 
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The SP1 spectrum was a simple spectrum and self-created to investigate the difficulties 

of crack propagation under random loading. Firstly, it is aimed to determine the 

optimum load of SP1 for the tests which will be completed within 3-4 hours at low 

testing frequency (2-3 Hz). Tests were performed to determine the final load values of 

the profiles in Spectrum-1, and the modified values of the loading profile are shown 

in Figure 3.24. The spectrums are given in Figure 3.24. in chronological order, and 

Figure 3.24-c. is the final version of Spectrum-1. 

 

 

Figure 3.24. Random loading spectrum-1 (SP1) 

 

Table 3.11. Detailed information for Spectrum-1 FCG tests 

Spectrum -1  Precrack Fatigue crack growth 

Specimen 

Name 

Specimen  

Type 

Stress 

Ratio for 

precrack 

R 

Max. 

Load for 

Precrack 

(kN) 

a(avg) 

(mm) 
Spectrum Cycle 

20190502_01 CT 0.1 6.4 24.780 Spectrum 1/a+b 38616 

20190503_01 CT 0.1 6.4 24.260 Spectrum 1/b 1195 

20190503_02 CT 0.1 6.4 24.603 Spectrum 1/b 6223 

20190506_01 CT 0.1 6.4 24.590 Spectrum 1/c 31221 

20190506_02 CT 0.1 6.4 24.459 Spectrum 1/c 42706 

20190507_01 CT 0.1 6.4 24.461 Spectrum 1/c 28459 

20200330_01 CT 0.1 6.4 24.748 Spectrum 1/c 38601 
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Table 3.11. Detailed information for Spectrum-1 FCG tests (Continued) 

20200611_01 CT 0.1 6.4 24.377 Spectrum 1/c 18381 

20200611_02 CT 0.1 6.4 24.464 Spectrum 1/c 29468 

20200612_01 CT 0.1 6.4 24.416 Spectrum 1/c 29485 

20200612_02 CT 0.1 6.4 24.470 Spectrum 1/c 33654 

 

Fatigue crack growth lives are given in Table 3.11. for different versions of Spectrum-

1 shown in Figure 3.24.a-b-c. As seen in Table 3.11., the test performed with 

Spectrum-1a has a higher cycle than Spectrum-1b. Based on these results, it was 

concluded that the optimal test duration was obtained in Spectrum1-c, and it was 

applied in the following tests. Crack growth curves obtained with Spectrum-1c are 

given in Figure 3.25. These curves were drawn by using the microscope camera views. 

 

 

Figure 3.25. Crack growth curves with Spectrum1-c 
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Figure 3.26. Fracture surfaces of the specimen tested under Spectrum-1-c  

 

The second spectrum for random loading crack propagation tests is FALSTAFF 

(Fighter Aircraft Loading STAndard For Fatigue Evaluation), named Spectrum-2, and 

it was recorded during a flight of an airplane [45]. The original version of FALSTAFF 

is 35000 cycles, and some of them have load values. In this study, the most 

repeated/representative part of the spectrum was selected, and the magnitude of load 

profiles was scaled for the CT specimen. Compressive loads were made equal to zero 

to prevent compressive residual stress at the crack tip which causes crack surfaces to 

contact each other. Adopting from the previous tests, the maximum load in Spectrum-

2 was determined as 11 kN. Whole FALSTAFF spectrum and the selected part used 

in Spectrum-2 are given in Figure 3.27. 
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Figure 3.27. FALSTAFF and Partial FALSTAFF (Spectrum-2, SP2) loading profiles for CT Specimen 

 

Table 3.12. Detailed information of Spectrum-2 FCG tests 

Spectrum -2  Precrack Fatigue crack growth 

Specimen 

Name 

Specimen  

Type 

Stress 

Ratio for 

precrack 

R 

Max. 

Load for 

Precrack 

(kN) 

a(avg) 

(mm) 
Spectrum Cycle 

20190827_01 CT 0.1 6.4 24.863 Spectum-2 17002 

20190828_01 CT 0.1 6.4 24.610 Spectum-2 15964 

20191008_01 CT 0.1 6.4 24.794 Spectum-2 18880 

20191008_02 CT 0.1 6.4 24.985 Spectum-2 7861 

20191009_01 CT 0.1 6.4 24.720 Spectum-2 8889 

20191009_02 CT 0.1 6.4 24.460 Spectum-2 24274 

20191010_01 CT 0.1 6.4 24.430 Spectum-2 19118 

20190826_01 CT 0.1 6.4 24.404 Spectum-2 27885 

20200616_01 CT 0.1 6.4 24.548 Spectum-2 16344 

20200617_01 CT 0.1 6.4 24.668 Spectum-2 21892 

20200617_02 CT 0.1 6.4 25.295 Spectum-2 1594 

20200618_01 CT 0.1 6.4 24.785 Spectum-2 6843 

20200618_02 CT 0.1 6.4 24.473 Spectum-2 23899 

 

. 
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Figure 3.28. Crack growth curves under Spectrum-2 

 

The detailed information is given in Table 3.12. for the tests performed under 

Spectrum-2. All tests were performed under the same condition, however different 

crack growth life values were observed in the results, even for the tests with very close 

initial crack lengths. Fatigue crack growth curves can be seen in Figure 3.28., and 

fracture surfaces of the used specimen are shown in Figure 3.29 

 

 

Figure 3.29. Fracture surfaces of the specimen tested under Spectrum-2 
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3.6.  Fatigue Crack Growth Models Under Variable Amplitude Loading 

 

In this section, first, constant amplitude loading models are explained, as the fatigue 

crack growth models for variable amplitude loading are generally based on constant 

amplitude loading models. Then, the models for variable amplitude loading are 

discussed that consider the crack growth retardation or acceleration. 

 

3.6.1. Fatigue crack growth modeling under constant amplitude loading 

 

3.6.1.1.  Paris-Erdogan fatigue crack growth model [7] 

 

This model is commonly used in the literature and it is valid for the second region of 

the fatigue crack growth curve that exhibits the linear relation between log(da/dN) and 

log(ΔK). The crack growth rate can be calculated by using Equation (3.3). The stress 

ratio is not considered in this model as can be noticed from Equation (3.3). 

 

𝑑𝑎

𝑑𝑁
= 𝐶(∆𝐾)𝑛 

(3.3) 

 

Calculation of Paris-Erdogan constants (C-n) was explained in Section 3.4. and the 

obtained values from the tests were tabulated. 

 

3.6.1.2.  Walker’s fatigue crack growth model [9] 

 

This model is valid in the second region of the crack growth curve like Paris-Erdogan 

Model. In addition to Paris-Erdogan model it takes into account the effect of stress 

ratio as presented in Equation (3.4). 

 

𝑑𝑎

𝑑𝑁
= 𝐶 [

∆𝐾

(1 − 𝑅)1−𝛾𝑤
]
𝑛

 (3.4) 
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This model needs an empirical parameter 𝛾𝑤 introduced in Equation (3.5). KWalker is 

proposed to calculate the empirical parameter 𝛾𝑤.  

 

∆𝐾𝑤𝑎𝑙𝑘𝑒𝑟 = 𝐾𝑚𝑎𝑥(1 − 𝑅)
𝛾𝑤 (3.5) 

𝐾𝑚𝑎𝑥 = 
∆𝐾

(1 − 𝑅)
 (3.6) 

 

da/dN vs. ΔKwalker curves from the tests are plotted in the logarithmic scale under 

different stress ratios. Curves obtained from different stress ratios are gathered as a 

straight line by changing the γw exponent. As seen in the literature, finding the 

appropriate value of this empirical exponent can be difficult, and it might be 

impossible in some cases. 

 

Crack growth rates of the tests given in Table 3.3. -Table 3.6. were also calculated by 

using the Walker crack growth model. In this case, ΔKwalker was calculated as 

explained above, and γw was determined by using da/dN vs. ΔKwalker curves. Crack 

growth rates were calculated by using Equation (3.4) under different stress ratios for 

the same ΔK value by changing the γw. The closest alignment of 4 different 

(da/dN)walker points were found with γw = 0.631 by using the Microsoft Excel Solver 

[46]. It is seen in Figure 3.30. that points marked at different stress ratios with the value 

of γw = 0.631 show a linear trend. 
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Figure 3.30. Determination of Walker exponent, γw 

 

The function of the trendline gives the C-n constant for Walker fatigue crack growth 

model. If the stress ratio equals to zero, the C-n constants in Walker Equation (3.4) 

should be equal to the Paris-Erdogan constants in Equation (3.3). As the R value is 

close to zero (R = 0.1), the obtained coefficients of both models almost match in this 

study. 

 

3.6.1.3.  Forman fatigue crack growth model [8]: 

 

This model calculates the crack growth rate in the second and third regions of crack 

growth curve by using the stress ratio and fracture toughness. The crack growth rate is 

calculated by using Equation (3.7). 

 

𝑑𝑎

𝑑𝑁
=

𝐶𝐹(∆𝐾)
𝑚

(1 − 𝑅)𝑛𝐾𝐼𝐶 − ∆𝐾
= 

𝐶𝐹(∆𝐾)
𝑚

(1 − 𝑅)𝐾𝐼𝐶 − 𝐾𝑚𝑎𝑥
 (3.7) 

 

CF and m are the crack growth constants in Forman model. The Q in Equation (3.8) 

decides if the Forman model can be used for da/dN calculations. 

 

𝑄 =
𝑑𝑎

𝑑𝑁
[(1 − 𝑅)𝐾𝐼𝐶 − ∆𝐾]  =   𝐶𝐹(∆𝐾)

𝑚  
(3.8) 
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Figure 3.31. Determination of Forman constants depending on Q vs. ∆K 

 

If the calculated Q values points exhibit a linear trend in Q vs ∆K chart in logarithmic 

axes, then the Forman model can be used. The test results were plotted on a logarithmic 

scale, and constants were obtained by fitting a linear trendline. The usability of Forman 

model with the tests were investigated in Figure 3.31. and Forman constants were 

determined as CF = 2.533E-9 and m = 3.051. Crack growth rates of different stress 

ratios were calculated by using these constants and compared with the experimental 

results for validation. Comparisons can be seen in Figure 3.32. 

 

In addition, a simplified version of the Forman model is also given in Equation (3.9). 

 

𝑑𝑎

𝑑𝑁
=

𝐶(∆𝐾)𝑛

1 −
∆𝐾

(1 − 𝑅)𝐾𝐼𝐶

 
(3.9) 
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Figure 3.32. Comparison of calculated crack growth rate with experiments under different stress ratios 

 

3.6.2. Fatigue crack growth modeling under variable amplitude loading 

 

3.6.2.1.  Wheeler Model [12] 

 

Wheeler model can be used to determine the crack growth behavior for single or 

periodic overload. The model determines the retardation of the crack growth by 

comparing the largest size of the yield zones from previous cycles with the ongoing 

plastic zone sizes at the crack tip. Definition of plastic zone sizes at crack tip is seen 

in Figure 3.33., where the current plastic zone is shown in black for any cycle and its 

size is compared with the plastic zone size which has been created by the overload at 

a previous cycle. If the current plastic zone size at the crack tip is smaller than the 

plastic zone formed under the previously applied overload, the Paris-Erdogan Equation 

is multiplied by a retardation parameter, otherwise Paris-Erdogan Equation is used as 

it is. 
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Figure 3.33. Definition of plastic zones at crack tip [12] 

 

𝑑𝑎

𝑑𝑁
= ∅𝑅(𝐶 ∆𝐾)

𝑛 
(3.10) 

∅𝑅 = {
(

𝑅𝑦

𝑎𝑝 − 𝑎
)

𝑦

        ;               (𝑎 + 𝑅𝑦) < 𝑎𝑝

         1                                  (𝑎 + 𝑅𝑦) ≥ 𝑎𝑝 

 (3.11) 

𝑅𝑦 =
1

𝜋 4√2
(
𝐾𝐼
𝜎𝑦
)

2

           𝑓𝑜𝑟 𝑝𝑙𝑎𝑖𝑛 𝑠𝑡𝑟𝑎𝑖𝑛 (3.12) 

 

Wheeler exponent in Equation (3.11) depends on the material, overload rate and crack 

length at the cycle of overload [17]. Determination of the Wheeler exponent “y” is 

explained below: 

 

− After the overload, the total number of cycles (Ntest) required for the crack 

growth rate to reach its previous rate before the overload is determined. 

− Plastic zone size is calculated for each cycle by Equation (3.12) after the 

overload. 

− Crack growth life is calculated by Equations (3.10) and (3.11) with the 

estimated values of Wheeler exponent “y” until the retardation parameter ØR 

equals to 1. 

− The Wheeler exponent “y” is determined by satisfying the condition of that the 

calculated crack growth life equal to the experimental crack growth life.  
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3.6.2.2.  Sheu Model [47] 

 

This model is based on the Wheeler model. In the Wheeler model, if the crack tip 

plastic zone reaches the limits of the plastic region created by the overload, the crack 

propagation rate turns to its pre-overload value again under the fatigue load. Song P. 

et al [47] stated that in Sheu model, the crack growth retardation effect lasts longer 

compared to the Wheeler model. They proposed a modification on the plastic zone to 

calculate the retardation parameter as "effective plastic zone created by overload". The 

comparison of the plastic zones at crack tip proposed by Wheeler and this model is 

given in Figure 3.34. 

 

 

Figure 3.34. Definition of plastic zone at the end of retardation a) Wheeler, b) Sheu [47] 

 

∅′𝑅 = {
(

𝑅𝑦

𝑎0 + 𝑅′𝑝𝑜 − 𝑎𝑖 
)

𝑦

        ;               (𝑎0 + 𝑅′𝑝𝑜) < 𝑎𝑝

         1                                                    (𝑎0 + 𝑅′𝑝𝑜) ≥ 𝑎𝑝 

 (3.13) 

 

In Equation (3.13); 𝑎0 represents the crack length at the cycle of overload, Rpo is the 

plastic zone radius generated by overload in Wheeler model, R’po is the effective 

plastic zone radius proposed by Sheu P. et al. and ɑd is the crack growth delay under 

the overload effect. 
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3.6.2.3.  Xiaoping Model [21] 

 

This model proposes some modifications to the Wheeler model by using the equivalent 

SIF approach to model the crack growth retardation behavior. ∆𝐾𝑒𝑞0 in Equation (3.15) 

is the SIF for zero stress ratio. Crack growth curves obtained under different stress 

ratios are converted to R = 0 by using Equations (3.15) and (3.16). 

 

𝑑𝑎

𝑑𝑁
= 𝐶[(∆𝐾𝑒𝑞0)

𝑛 − (∆𝐾𝑡ℎ0)
𝑛] (3.14) 

∆𝐾𝑒𝑞0 = 𝑀𝑅𝑀𝑃∆𝐾 (3.15) 

𝑀𝑅 = {

  (1 − 𝑅)−𝛽1                                      − 5 ≤ 𝑅 < 0   

 (1 − 𝑅)−𝛽                                            0 ≤ 𝑅 < 0.5

(1.05 − 1.4𝑅 + 0.6𝑅2)−𝛽                0.5 ≤ 𝑅 < 1

 (3.16) 

 

MR is a parameter used to shift all crack growth curves obtained under different stress 

ratios to R = 0. MP identifies the interaction effect between load profiles. β and β1 terms 

in Equation (3.16) can be found as explained above, in the Walker Model. First, da/dN 

vs. MRΔK curves are plotted for all tests under different stress ratios with the estimated 

value of β. Then, the difference between the curves is approximated to zero by 

changing β parametrically with the help of Microsoft Excel Solver [46]. 

 

The value of β was obtained as 0.4 by using the tests given in Table 3.3. - Table 3.6., 

and the combined curves are given in Figure 3.35. β1 term was not calculated in this 

study since the negative stress ratio was not applied in tests. 
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Figure 3.35. Determination of β in Xiaoping model 

 

Figure 3.36. is given to better understand the modification proposed by Xiaoping H. 

et al. to the Wheeler model. 

 

 

Figure 3.36. Plastic zone size definition in Xiaoping Model [21] 

 

Three different plastic zones are seen in Figure 3.36. One of them is the current plastic 

zone and the others are created by the overload. This model realizes the determination 

of the second overload effect where the plastic zone of the first overload is still active. 

This relation is given in Equation (3.17) - (3.19). 
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𝑀𝑃 = {
(

𝑅𝑦

𝑎𝑂𝐿 + 𝑅𝑂𝐿 − 𝑎 − 𝑅∆
)

𝑦

        ;               𝑎 + 𝑅𝑦 < 𝑎𝑂𝐿 + 𝑅𝑂𝐿 − 𝑅∆

                1                                                      𝑎 + 𝑅𝑦 ≥ 𝑎𝑂𝐿 + 𝑅𝑂𝐿 − 𝑅∆ 

 (3.17) 

𝑅∆ = 𝛼 (
∆𝐾𝑈
𝜎𝑌

)
2

 (3.18) 

∆𝐾𝑈 = 𝐹√𝜋𝑎 (𝜎𝑚𝑖𝑛
𝑖−1 − 𝜎𝑚𝑖𝑛

𝑖 ) (3.19) 

 

3.6.2.4.  Yuen and Taheri Model [48]  

 

This model can be used in the crack propagation experiments where single or multiple 

overloads are applied together. As a modification to the Wheeler model, the 

acceleration of the crack growth rate right after the overload, the retardation, the 

interaction between the loading profiles and the yielding in the critical cross-section 

were taken into account. Thus, four parameters are used in this model. One of them is 

the same with retardation parameter ØR in the Wheeler Model. ØD is the delay 

parameter for crack growth and ØI is the interaction parameter related to the loading 

profiles. The crack growth calculation of the proposed model is provided in Equation 

(3.20). 

 

𝑑𝑎

𝑑𝑁
= ∅𝑅 ∅𝐷 ∅𝐼 [𝐶(∆𝐾𝑎𝑐)

𝑛] 
(3.20) 

 

 

Figure 3.37. Definition of plastic zones in Yuen and Taheri Model [48] 
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Figure 3.38. Crack growth behavior after an overload [48] 

 

In Figure 3.37a. plastic zones are presented for the cycle after overload and in Figure 

3.37b. crack length is demonstrated at the position just before the end of the retardation 

effect caused by overload. The schematic view is given in Figure 3.38. for the crack 

growth retardation behavior and the length of the crack in delay retardation is indicated 

as ɑd. 

 

∅𝐷 = {
(
𝑎𝑂𝐿 + 𝑅𝑑,𝑂𝐿 − 𝑎𝑖

𝑅𝐷,𝑖  
)

𝑦𝑚𝑜𝑑

        ;               (𝑎𝑖 + 𝑅𝑑,𝑖) < (𝑎𝑂𝐿 + 𝑅𝑑,𝑂𝐿)

         1                                                          (𝑎𝑂𝐿 + 𝑅𝑑,𝑂𝐿) ≤ (𝑎𝑖 + 𝑅𝑑,𝑖) 

 (3.21) 

𝑎𝑑 = 𝑟𝑑,𝑂𝐿 − 𝑟𝑑,𝑑 =  𝛽 [(
𝐾𝑂𝐿
𝜎𝑦
)

2

− (
𝐾𝑑
𝜎𝑦
)

2

]  (3.22) 

 

ØD is used for modeling the delay retardation given in Figure 3.38. β is the effective 

plastic zone parameter in Equation (3.22). 
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∆𝐾𝑎𝑐

= {
∆𝐾𝑖 + (∆𝐾𝑂𝐿 − ∆𝐾𝑖). (1 −

𝑅𝑑,𝑖  
𝑎𝑂𝐿 + 𝑅𝑑,𝑂𝐿 − 𝑎𝑖

)

𝑦𝑚𝑜𝑑

;   (𝑎𝑖 + 𝑅𝑑,𝑖) < (𝑎𝑂𝐿 + 𝑅𝑑,𝑂𝐿)

        ∆𝐾𝑖                                                                                    (𝑎𝑂𝐿 + 𝑅𝑑,𝑂𝐿) ≤ (𝑎𝑖 +𝑅𝑑,𝑖) 

 (3.23) 

 

ΔKac is a main parameter of Equation (3.20) and it is calculated by Equation (3.23) 

which is a piecewise function of plastic zone size. KOL is the SIF at the overload cycle 

and Ki is the SIF at the current cycle.  

 

In order to calculate the effects of consecutive overloads, the Øi term is added to the 

Wheeler model. The relationship between the two overloads can be in three different 

types as presented in Equation (3.24). For this, a piecewise function representing three 

different situations is given in Equation (3.24). 

 

∅𝑖

=

{
 
 
 
 

 
 
 
 1 − (1 − ∅𝑚𝑖𝑛,𝑖). (1 −

𝑅𝑝,𝑖  
𝑎𝑂𝐿 + 𝑅𝑝,𝑂𝐿 − 𝑎𝑖

 
𝑎𝑂𝐿 + 𝑅𝑝,𝑂𝐿 − 𝑎𝑖

𝑅𝑑,𝑖
)

𝑦𝑚𝑜𝑑

 𝑎𝑖 + 𝑅𝑑,𝑖 < 𝑎𝑂𝐿 + 𝑅𝑑,𝑂𝐿
       

1 − (1 − ∅𝑚𝑖𝑛,𝑖). (1 −
𝑅𝑝,𝑖  

𝑎𝑂𝐿 + 𝑅𝑝,𝑂𝐿 − 𝑎𝑖
 
𝑎𝑂𝐿 + 𝑅𝑝,𝑂𝐿 − 𝑎𝑖

𝑅𝑑,𝑖
)

𝑦𝑚𝑜𝑑

  𝑎𝑂𝐿 + 𝑅𝑑,𝑂𝐿 ≤ 𝑎𝑖 + 𝑅𝑑,𝑖

                                                                                                                           𝑎𝑖 + 𝑅𝑑,𝑖 < 𝑎𝑂𝐿 + 𝑅𝑝,𝑂𝐿

 1                                                                                                                     (𝑎𝑂𝐿 + 𝑅𝑝,𝑂𝐿) ≤ (𝑎𝑖 + 𝑅𝑝,𝑖) 

 (3.24) 

 

3.6.2.5.  Willenborg Model [13]  

 

In this model, the retardation of the crack growth rate is defined as a function of the 

SIF. Therefore, empirical parameters like Wheeler exponent are not required. In the 

Willenborg model, Forman fatigue crack growth model is used along with the effective 

SIF. By using the Forman model, the crack propagation rate becomes dependent on 

the stress ratio. 

 

𝑑𝑎

𝑑𝑁
=

𝐶𝐹(∆𝐾𝑒𝑓𝑓)
𝑚

(1 − 𝑅𝑒𝑓𝑓)𝐾𝐶 − ∆𝐾𝑒𝑓𝑓
 

(3.25) 

𝑅𝑒𝑓𝑓 =
𝐾min𝑒𝑓𝑓

𝐾max𝑒𝑓𝑓
 

(3.26) 
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𝐾min𝑒𝑓𝑓 = 𝐾𝑚𝑖𝑛 − 𝐾𝑟          ;          𝐾max𝑒𝑓𝑓 =  𝐾𝑚𝑎𝑥 − 𝐾𝑟 
(3.27) 

𝐾𝑟 = (𝐾𝑚𝑎𝑥)𝑂𝐿 {1 −
∆𝑎

𝑍𝑂𝐿
}
0.5

− 𝐾𝑚𝑎𝑥 (3.28) 

𝑍𝑂𝐿 =
1

𝛽𝜋
[
(𝐾𝑚𝑎𝑥)𝑂𝐿

𝜎𝑦
]

2

 (3.29) 

𝛥𝐾𝑒𝑓𝑓,𝑖 = {

𝛥𝐾𝑖        ;               𝐾𝑚𝑎𝑥,𝑒𝑓𝑓,𝑖 𝑎𝑛𝑑   𝐾𝑚𝑖𝑛,𝑒𝑓𝑓,𝑖 > 0

𝐾𝑚𝑎𝑥,𝑒𝑓𝑓,𝑖                                       𝐾𝑚𝑖𝑛,𝑒𝑓𝑓,𝑖 ≤ 0 

0                                                       𝐾𝑚𝑎𝑥,𝑒𝑓𝑓,𝑖 ≤ 0 
 (3.30) 

 

The crack growth rate can be calculated by using Equation (3.25)-(3.30). CF and m are 

crack growth constants in Forman Equation. Reff is effective stress ratio, Kmax,eff and 

Kmin,eff are effective stress intensity factors obtained from Equation (3.27). If the result 

of Equation (3.27) is negative, these parameters become zero. Kr is the residual SIF 

and if the plastic zone size at the current cycle is smaller than the plastic zone size at 

the overload cycles, then Kr is calculated. Otherwise, it is equal to zero. (Kmax)OL is the 

SIF at the overload cycle. Δa is the crack growth distance under the retardation effect. 

In this model, if the overload ratio is greater than or equals to 2, the crack growth rate 

cannot be calculated because of the math error in Equation (3.27). 

 

3.6.2.6.  Generalized Willenborg Model [18]  

 

This model includes a modification of the Willenborg model. The equations in the 

Willenborg model are valid, except that the residual SIF, Kr, suggested in Equation 

(3.28) is multiplied with a Ø parameter. Adding the parameter Ø makes it possible to 

crack growth modelling in the case of the overload ratio is greater than or equals to 2. 

Parameter Ø is calculated by Equation (3.31). 

 

∅ = 
1 −

∆𝐾𝑡ℎ
∆𝐾

(𝑅𝑆𝑜 − 1)
 (3.31) 
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RSO is the shut-off ratio and it is obtained as 3.0 for 7075-T651 aluminum alloy from 

the literature [49]. In the same reference, it is stated that the change of this value 

between 2.5 and 3.5 has an effect of only 3% on results. 

 

The generalized Willenborg model also calculates the crack growth rate for the 

underload effect. This capability of the model has been added thanks to the updates by 

NASGRO [50]. After this update, the model is named as Modified Generalized 

Willenborg Model. Equation (3.32) was proposed to calculate the effects of underload 

[50]. The Ø0 term is equal to the Ø obtained for RUL= 0. KUL is the SIF for the cycle 

where the underload is applied. 

 

∅ =

{
 
 

 
 2.523∅0
[1 + 3.5(0.25 − 𝑅𝑈𝐿)

0.6]
        ;               𝑅𝑈𝐿 =

𝐾𝑈𝐿
𝐾𝑂𝐿
⁄ < 0.25

1                                                                      𝑅𝑈𝐿 =
𝐾𝑈𝐿

𝐾𝑂𝐿
⁄ > 0.25

 

 (3.32) 

 

3.6.2.7.  Root Mean Square Approach for Crack Growth Life Calculation [16]  

 

This method is quite different from the methods that determine the crack propagation 

behavior according to the crack tip plastic zone size. It proposes a simple approach for 

random loading. Root mean square (RMS) is determined along the loading spectrum 

and crack growth life is calculated like constant amplitude loading. K* SIF is 

calculated by using Equation (3.33) as the driving force in crack growth, and ΔK+ 

symbolizes the positive changes in SIF. α is taken 0.5 for aluminum alloy [16]. 

 

𝐾∗ = [(∆𝐾+)𝛼(𝐾𝑚𝑎𝑥)
1−𝛼] 

(3.33) 

𝜎𝑚𝑖𝑛
𝑟𝑚𝑠 = [

1

𝑁
∑(𝜎𝑚𝑖𝑛)

2

𝑁𝑟

𝑖=1

]

0.5

            ,           𝜎𝑚𝑎𝑥
𝑟𝑚𝑠 = [

1

𝑁
∑(𝜎𝑚𝑎𝑥)

2

𝑁𝑟

𝑖=1

]

0.5

 (3.34) 

𝑑𝑎

𝑑𝑁
= 𝐶1(∆𝐾

∗)𝐶2
[1 − (∆𝐾𝑡ℎ

∗ /∆𝐾∗)2]

[1 − (∆𝐾∗/𝐶3)
2]

 (3.35) 
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The crack growth rate is calculated by using Equation (3.35). This equation includes 

four different parameters (C1, C2, C3, Kth) which must be obtained experimentally. 

After substituting the values of Kth and C3 = Kıc in Equation (3.35), C1 and C2 are 

determined by fitting a sinusoidal spline to experimental results. 

 

3.6.3. Validation of the fatigue crack growth models for variable amplitude 

loading with experimental results 

 

Crack growth life was calculated with different FCG models under single overload, 

block overload and random loading. The comparisons of these models with 

experimental results are discussed in this section. 

 

3.6.3.1.  Modeling of single overload tests 

 

Fatigue crack propagation models were applied for single overload tests after the 

7000th load cycle under 7 kN (R = 0.1) constant amplitude and the results are plotted 

in Figure 3.20. 

 

 

Figure 3.39. Comparison of variable amplitude loading models for FOL/Fda/dN = 1.29 overload ratio  
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Figure 3.40. Comparison of variable amplitude loading models for FOL/Fda/dN = 1.57 overload ratio 

 

 

Figure 3.41. Comparison of variable amplitude loading models for FOL/Fda/dN = 1.71 overload ratio 
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Figure 3.42. Comparison of variable amplitude loading models for FOL/Fda/dN = 1.85 overload ratio 

 

 

Figure 3.43. Comparison of variable amplitude loading models for FOL/Fda/dN = 2.0 overload ratio 

 

The crack growth rates for different levels of overloads were calculated using the 

previously defined models and the results are presented in Figure 3.39. - Figure 3.43. 

Strong agreements between test results and predictions are observed using Wheeler 

model and its modified versions as seen in the figures. The Willenborg model and the 

other two modifications do not show a good agreement with experiments. It is stated 

in the literature that if the overload ratio is equal to or greater than two, reasonable 
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results cannot be obtained by the Willenborg model [13]. Also, the Generalized 

Willenborg model, proposed to solve the overload ratio problem, does not show a good 

agreement with experimental results. 

 

3.6.3.2.  Modeling of block overload tests 

 

The block overload tests were discussed in Section 3.5.3. Different overload cycle 

sizes and their effects on crack growth behavior were demonstrated experimentally. 

Crack growth life was calculated with different models from the literature, and the 

calculated results were presented comparatively in graphs. 

 

 

Figure 3.44. Comparison of variable amplitude loading models for block overload, n = 10 
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Figure 3.45. Comparison of variable amplitude loading models for block overload, n = 50 

 

 

Figure 3.46. Comparison of variable amplitude loading models for block overload, n = 200 
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Figure 3.47. Comparison of variable amplitude loading models for block overload, n = 500 

 

As can be seen in Figure 3.44. - Figure 3.47., the experimental results are closely 

predicted when the Wheeler Model and its modifications are used. Life calculations 

using the Willenborg model and its modifications don’t match with the experimental 

results. 

 

3.6.3.3.  Modeling of random loading tests 

 

Cycle by cycle analyses were performed for modeling of crack growth under random 

loading tests. Modeling crack growth under random loading is challenging since the 

changes in stress ratio depend on the loading profiles. In practice, increases in SIF 

propagate the crack. Crack growth rate was calculated for the positive part of K in 

the loading spectrum, and the negative part (load release) was not used in crack growth. 

The stress ratio was also calculated in the positive part. In Figure 3.48., one cycle is 

determined with three different points (ex: 1-2-3) called as Spectrum Profile Position 

Index (SPPI). 
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Figure 3.48. Definition of spectrum profile positions 

 

Crack growth life calculation for random loading will be explained by using a random 

loading spectrum, including four-cycles in different amplitudes, given in Figure 3.48. 

The continuous lines show the increment of load and the dashed lines show the 

decrease of load. The first cycle in Figure 3.48. consists of points 1,2 and 3, identifying 

the profile position. All numbers (1,2,3,4…) are named as Profile Position Index. 

Increments in load, in other words, continuous lines are used to calculate the stress 

ratio. For example, the ratio of point 1 over point 2 gives the stress ratio for the first 

cycle, consisting of profile positions, 1, 2 and 3. The same calculation process is used 

for stress ratio along the whole spectrum. 

 

As explained in Section 3.6.2., the fatigue crack growth rate is calculated by using 

Paris-Erdogan Equation in the Wheeler model. This approach was sufficient since the 

Wheeler model was intentionally proposed to determine crack growth behavior under 

single overloads. The stress ratio always varies in the random loading. Even if the 

maximum stresses of fatigue load profiles of different amplitudes are the same, the 

difference between the maximum and the minimum stresses should not be equal. It is 

known that this difference directly affects the crack growth rate. Therefore, using a 

crack growth model, considering the stress ratio, is a reasonable approach for random 

loading. Wheeler model was used with Forman and Walker crack propagation 

equations to calculate crack growth rate under random loading in this study. 
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In order to propose a different approach, the Paris-Erdogan Equation was used in the 

original Wheeler model with the coefficients obtained from Walker or Forman 

Equations. Thus, a simpler model was also studied by expressing the experimental data 

of different amplitudes in a composite manner. Modeling studies have also been 

carried out with the Generalized Willenborg, Xiaoping and root mean square (RMS) 

approach are explained in Section 3.6.2. 
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Table 3.13. Comparison of variable amplitude fatigue crack growth model results  

   CT SP1 CT SP2 

   Cycle Edge crack length Cycle Edge crack length 

Model FCG model FCG equation Test Sim. Test Sim. Test Sim. Test Sim. 

Composite C-n Wheeler Forman Const wth Paris-Erdogan 

≈  

31590 

57200 

≈  

26.8 

mm 

27.8 mm 

≈  

21892 

30996 

≈  

27.2 

mm 

27.5 mm 

Composite C-n Wheeler Walker Const. wth Paris-Erdogan 175000 25.6 mm 56677 26.4 mm 

Walker Wheeler Walker 63500 27.5 mm 38868 27.6 mm 

Forman Wheeler Forman 82200 27.2 mm 41574 27.4 mm 

Xiaoping Wheeler Paris-Erdogan 189000 39.6 mm 52890 27.3 mm 

G.Willenborg GWillenborg Forman 95700 30.5 mm 52156 29.9 mm 

RMS (Manjunatha) RMS Similar to Newman 26700 31.1 mm 28556 31.0 mm 
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Measurement of crack length was done on the surface of the specimen since it was not 

possible to measure it from inside the crack front, which is close to being straight for 

the CT specimen. From the broken specimens’ fracture surfaces after the random 

loading tests, it was observed that the crack lengths were different in the middle and 

the edge of the specimen. This difference, named as crack tunneling in the literature, 

had not been observed in constant amplitude loading tests. Crack tip plastic zone sizes 

change between the surface and middle of the specimen since the plane stress condition 

is dominating on the free-surfaces of the specimen, while the middle is under the plane 

strain condition. Therefore, crack propagation at the edge of the specimen is slower 

than that of the middle point on the crack front. Therefore, the measured distance from 

the surface of the specimen during the test is shorter than the measured one from the 

inner part of the specimen. It was deduced from the comparison between simulations 

and experiments, there is no need to calculate crack growth retardation in the middle 

of the specimen in the models since the plastic zone size is much smaller in the interior 

point of the crack front than that of the free-surface points (Figure 3.49). 

 

 

Figure 3.49. Consideration of the retardation in the center of the specimen 

 

As seen in Table 3.13. the crack growth life predictions obtained by the simulations 

are significantly higher than the experiments. Thus, improvements on the model are 

necessary. 
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3.6.3.4.  Improvements on 2-D crack growth models under random loading 

 

To improve the FCG models in the literature the loading spectrum was used to develop 

a multiplier independent from the experimental results. For this, a cycle-by-cycle 

analysis was performed on the loading spectrum to obtain an index, named Spectrum 

Overload Index. The determination of “Spectrum Overload Index” is explained below. 

 

− The average of the peaks along the spectrum is calculated. 

− The percent deviation of each peak from the average is calculated. 

− The percent deviation of each peak from average is compared to the ratio of 

the number of peaks that are equal to or greater than the specified peak for all 

peaks above the average. After operating the process for all peaks, the closest 

value of comparison (ideally equal) is selected, and it is added to 1. The 

obtained value is called the Spectrum Overload Index (SOL Index). For 

example, in a spectrum loading profile, if 25% of all peaks are at least 25% 

above the average, the SOL Index equals to 1.25. 

 

 

Figure 3.50. Calculation of Spectrum Overload Index 

 

For the spectrum profile given in Figure 3.50., the ratio of the difference between the 

average and point 4 to the average of the peaks above the average is 0.285. For point 

4, the ratio of the cumulative number of peaks above average to the total number of 

peaks above the average in the spectrum is 0.666. For point 6, these two values were 

calculated as 0.143 and 1.0, respectively. Since the values of 0.285 and 0.666 are closer 
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to each other than the values obtained for point 6, the Spectrum Overload Index is 

determined as 1 + 0.285 = 1.285. Similar calculations can be done for other points 

above the average such as point 10 and it can be seen that the results are similar as the 

one for point 4. 

 

In this study, as an improvement for predictions of crack propagation lives under 

spectrum loading conditions, the SOL Index is used as a multiplier of the ΔK term in 

the fatigue crack propagation equations. In Equations (3.36) - (3.39), the use of SOL 

Index with different models is demonstrated. 

 

Wheeler model with Forman or 

Walker constants 

𝑑𝑎

𝑑𝑁
= ∅𝑅(𝐶 .  𝑆𝑂𝐿_𝑖𝑛𝑑𝑒𝑥 . ∆𝐾)

𝑛 (3.36) 

Wheeler with Forman Eqn. 
𝑑𝑎

𝑑𝑁
= ∅𝑅 [

𝐶𝐹(𝑆𝑂𝐿_𝑖𝑛𝑑𝑒𝑥 . ∆𝐾)
𝑚

(1 − 𝑅)𝑛𝐾𝐼𝐶 − ∆𝐾
] (3.37) 

Wheeler with Walker Eqn. 
𝑑𝑎

𝑑𝑁
= ∅𝑅𝐶 [

𝑆𝑂𝐿_𝑖𝑛𝑑𝑒𝑥 . ∆𝐾

(1 − 𝑅)1−𝛾𝑤
]
𝑛

 (3.38) 

Willenborg model 
𝑑𝑎

𝑑𝑁
=
𝐶𝐹(𝑆𝑂𝐿_𝑖𝑛𝑑𝑒𝑥 . ∆𝐾𝑒𝑓𝑓)

𝑚

(1 − 𝑅𝑒𝑓𝑓)𝐾𝐶 − ∆𝐾𝑒𝑓𝑓
 

(3.39) 

 

In Table 3.14., analyses performed with or without SOL Index in different models, and 

comparisons with experimental results obtained by CT specimen are presented. As can 

be seen from the table, when the SOL Index is used, the simulation results become 

closer to the experimental results. The SOL Index values are found to be 0.14 + 1 = 

1.14 and 0.24 + 1 = 1.24 for the Spectrum-1 (Figure 3.24.) and Spectrum-2 (Figure 

3.27.), respectively. The crack growth curves for each model are plotted for Spectrum-

1 in Figure 3.52. - Figure 3.58. and for Spectrum-2 in Figure 3.59. -Figure 3.65. 
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Figure 3.51. The effect of SOL index with retardation 

 

Wheeler with Forman Eqn. is used to investigate the effect of SOL_index in Figure 

3.51. for SP1 and SP2 spectrums.  In the figure, considering the retardation_ALL case, 

the effect of SOL_index on the results is observed. As can be seen, especially in SP2 

spectrum, SOL_index affects the results regardless of the retardation effect. Since the 

SOL_index value is low in SP1, this effect cannot be clearly seen in the figure. Figure 

3.49. also can be seen for the comparison of the case of retardation applied to the edge 

and center of the specimen or only the edge. 
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Table 3.14. Comparison of variable amplitude fatigue crack growth model with the use of SOL index or not 

    CT SP1 CT SP2 

    Cycle Edge crack length Cycle Edge crack length 

Model FCG model FCG equation SOL index Test Sim. Test Sim. Test Sim. Test Sim. 

Composite C-n Wheeler Forman Const wth Paris-Erdogan  

≈  

31590 

44200 

≈  

26.8 

mm 

27.8mm 

≈  

21892 

20418 

≈  

27.2 mm 

27.6 mm 

Composite C-n Wheeler Forman Const wth Paris-Erdogan  57200 27.8 mm 30996 27.5 mm 

Composite C-n Wheeler Walker Const. wth Paris-Erdogan  111200 25.6 mm 23124 26.0 mm 

Composite C-n Wheeler Walker Const. wth Paris-Erdogan  175000 25.6 mm 56677 26.4 mm 

Walker Wheeler Walker  43200 27.6 mm 20172 27.7 mm 

Walker Wheeler Walker  63500 27.5 mm 38868 27.6 mm 

Forman Wheeler Forman  55200 27.2 mm 21648 27.5 mm 

Forman Wheeler Forman  82200 27.2 mm 41574 27.4 mm 

Xiaoping Wheeler Paris-Erdogan  189000 39.6 mm 52890 27.3 mm 

GWillenborg GWillenborg Forman  63200 27.2 mm 29593 26.4 mm 

G.Willenborg GWillenborg Forman  95700 30.5 mm 52156 29.9 mm 

RMS (Manjunatha) RMS Similar to Newman  26700 31.1 mm 28556 31.0 mm 
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Figure 3.52. Crack growth curve by using the Wheeler model with Forman FCG constants (SP1) 

 

 

Figure 3.53. Crack growth curve by using the Wheeler model with Walker FCG constants (SP1) 

 

 

Figure 3.54. Crack growth curve by using the Forman FCG Eqn in the Wheeler model (SP1) 
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Figure 3.55. Crack growth curve by using the Walker FCG Eqn in the Wheeler model (SP1) 

 

 

Figure 3.56. Crack growth curve by using Xiaoping model (SP1) 

 

 

Figure 3.57. Crack growth curve by using Generalized Willenborg Model (SP1) 
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Figure 3.58. Crack growth curve by the Root Mean Square (RMS) approach (SP1) 

 

 

Figure 3.59. Crack growth curve by using the Wheeler model with Forman FCG constants (SP2) 

 

 

Figure 3.60. Crack growth curve by using the Wheeler model with Walker FCG constants (SP2) 
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Figure 3.61. Crack growth curve by using the Forman FCG Eqn in the Wheeler model (SP2) 

 

 

Figure 3.62. Crack growth curve by using the Walker FCG Eqn in the Wheeler model (SP2) 

 

 

Figure 3.63. Crack growth curve by using Xiaoping model (SP2) 
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Figure 3.64. Crack growth curve by using Generalized Willenborg Model (SP2) 

 

 

Figure 3.65. Crack growth curve by the Root Mean Square (RMS) approach (SP2) 

 

Simulations performed using the SP1 and SP2 loading profiles show that the use of 

SOL Index is appropriate for 2-D, i.e., straight or through-thickness crack front, fatigue 

crack propagation. Among the different models applied with SOL Index, the closest 

results to experiments are obtained by using the Walker or Forman crack growth 

equation with the Wheeler model (Figure 3.54. - Figure 3.55., Figure 3.61. - Figure 

3.62.).  

 

The proposed SOL Index approach is also validated with the experimental results in 

the literature by using the in-house FORTRAN code [51], [52]. In the referred papers, 

two-dimensional crack propagation in a plate under random loading was studied. The 

SIF formula was updated according to the references, and simulations were performed 

with the spectrum and crack size given by R. Porter [34]. Since the material 

coefficients C-n were not given in this study, the coefficients for the same material 

were taken from the literature [53] and presented below. 
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Cwalker  = 1.42 10-8 [mm/cycle & MPa.m0.5] and n = 3.59 m = 6.80  

CForman = 2.31 10-6 [mm/cycle & MPa.m0.5] and n = 3.38 

 

As can be seen from Figure 3.66., the experimental crack growth curve was excellently 

predicted by using the SOL Index. Calculated SOL Index was 0.14 + 1 = 1.14 for the 

loading profile, presented in the study. Therefore, the proposed crack growth model 

with SOL Index under variable amplitude load has been validated with an independent 

study from the literature. 

 

 

Figure 3.66. Comparison of the results with literature 
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CHAPTER 4. PROBABILISTIC FRACTURE MECHANICS 

STUDIES FOR THREE-DIMENSIONAL FATIGUE 

CRACK GROWTH 
 

 

In this chapter, three-dimensional crack propagation on a specimen containing surface 

cracks was investigated. Experimental and computational analyses were performed 

after determining the specimen type and geometric dimensions. Tolerances were 

determined in the specimen geometry and the effect of these tolerances on the SIF was 

investigated by the Design of Experiment (DOE) analyses. Transfer functions were 

obtained to calculate the SIFs for different points along the crack front, namely the 

free-surface points and the depth point, by evaluating the results of the DOE. A chart 

showing the workflow in Chapter-4 is given in Figure 4.1. 

 

 

Figure 4.1. Flow chart in Chapter-4 
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4.1.  Design of the Specimen and the Test Setup 

 

CT specimen in ASTM standard is used for two-dimensional crack propagation (two-

dimensional finite element model is required in modeling), and there is no standardized 

testing specimens with three-dimensional surface crack. Therefore, firstly, specimen 

geometries were determined in order to study the three-dimensional surface cracking 

both experimentally and computationally. Studies were conducted on two different 

specimen types. 

 

First, it was planned to apply a tensile load on a plate with a countersunk hole as seen 

in Figure 4.2. A countersunk hole was drilled on a 10 mm thick plate and the tensile 

load required for fracture point in the experiment was calculated using the finite 

element method. 

 

   

Figure 4.2. A countersunk plate for 3-D fatigue crack growth tests 

 

Finite element analysis was performed with crack being modeled along the 

countersunk hole in the thickness direction and the SIF results are as shown in Figure 

4.3. The SIFs at the crack front are quite low under the 10 kN tensile force applied in 

the model. Also, since the plate with a thickness of 10 mm may lead the plane stress 

condition in the tests, increasing the specimen thickness would also be required. Both 

the low SIFs and increasing the specimen thickness will require even higher loads for 

fracturing the specimen. 
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Figure 4.3.SIFs along the countersunk at different plate thickness 

 

Since the SIFs obtained in the countersunk plate are quite low, another specimen from 

the literature was analyzed, named Lee James Specimen [54], [55]. This specimen is 

similar to CT specimen, except its height is longer and contains a semi-elliptical 

surface crack. Thus, this makes it possible to view the crack in the specimen from the 

front. 

 

Lee James (LJ) specimen with its original dimensions and the ellipsoid notch on it can 

be seen in Figure 4.4. An initial crack was generated as (ɑ/2c = 1, ɑ = 2.75 mm) and 

crack growth simulation was performed under 10 kN mode-I load. Propagating crack 

profiles and the corresponding KI stress intensity factors are also given in Figure 4.4. 
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Figure 4.4.KI SIFs and crack profiles for Lee James Specimen with the original dimensions 

 

As can be seen from the figure, the SIFs are much higher compared to the plate with 

countersunk hole. It was decided to make modifications in Lee James specimen in 

order to increase crack growth rate under the same load. The specimen width was 

increased from 50 mm to 62.5 mm to enlarge the cross-section for crack propagation, 

and the specimen height was reduced incrementally from 106 mm to 90 mm and to 80 

mm to save material in manufacturing of specimens. The final geometry of the 

specimen is given in Figure 4.5.  

 

 

Figure 4.5. Final dimensions of Lee James specimen 
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Elasto-plastic analysis was also performed with the final geometry (62.5 mm width & 

80 mm height) using the 7075-T6 aluminum alloy material properties. In the FEA 

model, a surface crack (a/c = 1, a = 6 mm) was generated around an spherical notch (r 

=5 mm), and contact mechanics between the specimen, pins and loading apparatus 

were defined. In elasto-plastic analysis, it was controlled whether the applied load to 

generate the desired SIFs causes a yielding in some points of the specimen. In addition, 

the linearity of the load-displacement curve in the vicinity of the crack tips was 

checked. It was seen that the yield stress was not exceeded in any point except at the 

crack tip of the designed specimen. In addition, it was observed that the crack tip 

opening displacements were directly proportional to the force according to changes in 

distance between points A and B in Figure 4.8. Thus, there was no additional non-

linear deformation on the specimen that would affect the SIFs at the crack tip. Details 

of the elasto-plastic analysis are given in Figure 4.6. - Figure 4.8. 

 

 

Figure 4.6. Lee James specimen, loading apparatus and applied boundary conditions for elasto-plastic analysis 
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Figure 4.7. Von-Mises stress results from elasto-plastic analysis with a spherical notch under 35 kN 

 

 

Figure 4.8. The relation between the crack opening displacement and non-dimensional load magnitude 

 

After determining the external dimensions of the specimen, fracture analyses were 

performed. First, a surface crack with 6 mm crack width (c) and aspect ratio (a / 2c = 

0.5) was placed in front of the specimen and analyzed. As expected, the SIFs were 

very low in this case. Thereupon, a notch was generated that creates stress 

concentration, and fracture analyses were re-performed to optimize the notch 

geometry. After many analyses, two alternatives were selected, and their results are 

presented in Figure 4.9. in terms of notch dimensions (width, depth, height) and the 

corresponding SIFs. Similar SIFs were obtained in both alternatives and the ellipsoid 

(10 mm total width, 2 mm total height and 4 mm depth) was chosen. 
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Figure 4.9. Notch geometry and its effect on stress intensity factor 

 

 

Figure 4.10. The final dimensions of the LJ specimen 

 

4.2.  Design of Experiment (DOE) Analyses 

 

In fatigue crack propagation experiments, material properties were investigated as the 

main effect that cause scattering in life values in Section 3.1. Another factor that causes 

scattering is the geometric tolerances in the specimen. A large number of experiments 

with combinations of tolerances in specimen geometry are required to determine the 

effect of scattering on the results. Considering the time, difficulty and cost of hundreds 

of tests, it is more reasonable to use FEM, representing the experiments. 
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4.2.1.  Strain gauge measurements for verification of Finite Element Analysis 

 

In order to verify that the results obtained by FEA fully represent the experiments, 

strain gauge measurements were compared with the strains obtained from the analyses. 

A total of five strain gauges were pasted to the left and right of the notch placed on the 

front side, to the back, and left and right surfaces of the specimen. 

 

The locations and directions of strain gauges were determined by FEA, using the 

maximum principal stresses and their directions at the corresponding node, presented 

in Figure 4.11. 

 

 

Figure 4.11. Location and direction of the strain gauges on different surfaces of the specimen 

 

 

Figure 4.12. Measured resistance by using strain gauges 
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The strain gauge-assembled specimen was loaded at 0-2-4-6-8-10-12 kN 

incrementally and then unloaded gradually. Resistance changes were measured, and 

the results are plotted in Figure 4.12., and the data is given in Table 4.1. In the bottom 

row of the table, strain values calculated by the finite element method are given on a 

gray background. The minimum difference of the strain between the measurements 

and computational results was 0.67% and the maximum difference was 12.47%, which 

are obtained at the left and right sides of the notch, respectively. These two strain 

gauges were in similar positions and directions at the right and left of the notch. 

According to the results of FEA, the strain values of these two points are very close to 

each other. Different results from the two strain gauges might be caused by the factors 

such as adhesion or measurement error. As can be seen from the table, since the strain 

values obtained from the finite element model and experiments are very close, it was 

proved that the load and related boundary conditions in the experiments are correctly 

represented in the finite element model. 

 

Table 4.1. Strain gauge measurement data 

  

Left of 

the notch 

% 

error 

Right of 

the notch 

% 

error 

Back of 

Specimen 

% 

error 

Left side 

of 

Specimen 

% 

error 

Right side 

of 

Specimen 

% 

error 

ε for 0-2 kN 0.00086 -13 0.00135 37.6 -0.00059 15.0 0.00026 14.6 0.00024 5.8 

ε for 0-4 kN 0.00123 -12 0.00123 25.0 -0.00056 9.2 0.00025 10.2 0.00024 7.7 

ε for 0-6kN 0.00117 -5.6 0.00117 18.6 -0.00056 8.1 0.00026 13.7 0.00024 5.6 

ε for 0-8kN 0.00113 -1.5 0.00113 14.5 -0.00055 7.1 0.00025 10.7 0.00024 4.5 

ε for 0-10kN 0.00111 0.7 0.00111 12.5 -0.00056 8.1 0.00025 8.2 0.00023 3.1 

  

Left of 

the notch 

% 

error 

Right of 

the notch 

% 

error 

Back of 

Specimen 

% 

error 

Left side 

of 

Specimen 

% 

error 

Right side 

of 

Specimen 

% 

error 

ε for 10 kN 

(ANSYS) 
0.00100 0.67 0.00098 12.4 -0.00052 8.14 0.00023 8.17 0.00023 3.09 

 

4.2.2. Determining the effect of geometric variables on the SIF 

 

Geometric tolerances in specimen dimensions were observed due to machining 

process. In order to consider these geometric tolerances, some dimensions on the 

specimen were determined as variables. The variables are summarized in Table 4.2. 

Six different variables were defined, and in total, 405 different cases were analyzed as 
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the combination of variables. Three of the geometric parameters, x-y-z positions of the 

ellipsoid as shown in Figure 4.13., can affect the SIFs. The machining tolerance was 

selected as ± 0.2 mm for x-y-z positions of the ellipsoid considering the machining 

process performed by the Electro Discharge Machining (EDM). The length and depth 

of the initial crack and the thickness of the specimen machined by CNC milling was 

also determined as variables. 

 

 

Figure 4.13. Offsets of the ellipsoid notch 

 

Table 4.2. Tolerances of Lee James Specimen 

Variables Min. Value Max. Value Increment Factor 

Precrack Length 6.6 mm 7.4 mm 0.2 mm 5 

Precrack Depth Function of Precrack Length 

Ellipsoid DX -0.2 mm 0.2 mm 0.2 mm 3 

Ellipsoid DY -0.2 mm 0.2 mm 0.2 mm 3 

Ellipsoid DZ -0.2 mm 0.2 mm 0.2 mm 3 

Thickness 24.9 mm 25.1 mm 0.1 mm 3 

 

Before starting the DOE Analysis, a mesh sensitivity analysis on crack front mesh was 

performed. In the sensitivity analysis, a full model with loading apparatus including 

contacts between the specimen, pins, and loading apparatus was considered. The 

element size at the crack front was defined as one 50th - 100th - 200th - 300th - 400th of 

the crack depth, and other conditions in the analysis were kept constant. As can be 

seen from Figure 4.14., the results are very close to each other. 2.2% difference was 
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calculated between the coarsest and finest cases. Thus, crack tip element size was 

defined as one percent of the crack depth. 

 

 

Figure 4.14. Effect of element size on SIF in Lee James Specimen 

 

A macro in ANSYS APDL was prepared that can parametrically place the ellipsoid 

notch and the surface crack in the Lee James specimen. In the macro, the specimen, 

the pins and the loading apparatus were modeled according to the test conditions, and 

the contact mechanics were used between the parts. ANSYS v12.1 [56] was used  in 

the stress analysis of the assembled model. Displacements of nodes, belonging to the 

loading holes, were read from the ANSYS solution file, and written as the 

displacement boundary condition in the fracture analysis. SIFs were calculated along 

the crack front by sub-modeling, using FCPAS. 

 

4.2.3. Determining the transfer function for calculating KI SIF 

 

405 DOE Analyses were conducted in order to observe the effect of each geometric 

variable on the SIF. The SIF results from these 405 cases were analyzed independently 

by using MINITAB software [44]. A sample view of the DOE table is presented in 

Figure 4.15. 
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Figure 4.15. A sample view of the DOE table 

 

The results of the main effect analysis for different points at the crack front are given 

in Figure 4.16. - Figure 4.18. In the main effect analysis performed in MINITAB [44]. 

it is seen that the thickness has a linear effect and the Δx and Δy (right/left - down/up 

offset of the ellipsoid notch) have no significant effect on the SIF. The depth of the 

EDM notch, denoted by Δz, has a nearly linear effect on the results. It has also been 

observed that the crack size and the specimen thickness affect the results linearly.  

 

 

Figure 4.16. Effect of geometric variables on KI SIF (Right end) 
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Figure 4.17. Effect of geometric variables on KI SIF (center) 

 

 

Figure 4.18. Effect of geometric variables on KI SIF (Left end) 

 

The interaction effects of the variables are seen in Figure 4.19. Since the graphics at 

the right, left and midpoints on the crack front are very similar, the interaction effect 

is given only for the center point. According to Figure 4.19., the crack length and the 

thickness affect the results together. However, any interaction was not observed 

between Δx, Δy and Δz of the ellipsoid and the crack length. 
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Figure 4.19. The interaction effect between the geometric variables on SIF (center of crack front) 

 

The ineffective variables were removed and then the DOE table was updated with the 

crack dimensions given in Figure 4.20. Since the variable Δx, representing the 

horizontal eccentricity of the ellipsoid EDM notch, was removed from the equation, a 

separate transfer function for the right and left ends in the KI calculation is not needed, 

since the problem becomes symmetric with respect to the centerline of the specimen. 

 

The values in the box indicated with different colors in Figure 4.20. show the cross 

combinations and include a total of 76 different cases after excluding the repeated 

cases. The boxes were created with reasonable crack lengths and depths by taking into 

account possible crack growth patterns and shapes obtained from the previous 

simulations. Considering three different factors of the z parameter for the ellipsoid 

notch, the DOE Analysis Matrix, therefore, contains a total of 228 analyses. 

 

 

Figure 4.20. Combinations of the crack dimensions for DOE 
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From the results of the fracture analyses performed for 228 different cases, a multi-

parameter regression analysis was conducted by using the values of crack depth and 

free surface points. The obtained transfer functions are given below. 

 

KIedge  = 1.1458 – 248.3 A + 69.66 B – 94.7 C +17710 A2 – 264201 C2 (4.1) 

KIcenter = 0.33277 + 52.214 A – 20.119 B + 7.86 C+ 36443 C2 (4.2) 

 

In the equations above, crack length, crack depth and ellipsoid Z are expressed as A, 

B and C, respectively. Normal probability plots and histograms are given in Figure 

4.21. for the transfer functions. 

 

 

 

Figure 4.21. Residual plots for transfer functions 

 

In order to verify the accuracy of the transfer functions given in Equations (4.1) and 

(4.2), independent crack propagation analyses were performed on the LJ specimen. 

The results are presented in Figure 4.22., and the crack growth curve obtained with the 

transfer function is plotted in blue. The red line shows the test result which was 

performed under constant amplitude loading (R = 0.1) with LJ specimen. Besides, 
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another crack propagation simulation was performed explicitly using FCPAS, which 

calculates the SIFs in the crack front by using enriched element formulation.  

 

 

Figure 4.22. Crack propagation analysis by using transfer function and comparison with the test 

 

Figure 4.23. KI SIFs for LJ specimen calculated by FCPAS 

 

 

Figure 4.24. Crack profiles for LJ specimen obtained by FCPAS 
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SIFs and crack growth profiles can be seen in Figure 4.23. and Figure 4.24., 

respectively. As expected, SIFs are lower at the depth point of the crack than the edges. 

Based on the depth point, 5.5 MPa.m0.5 SIF is generated under 10 kN for the initial 

crack. This means that crack propagates slowly under 10 kN. Considering this finding, 

higher load will be applied in the tests in 3D crack propagation tests. 

 

4.2.4. 3-D crack growth tests under variable amplitude loading 

 

4.2.4.1.  Fracture tests by using Lee James Specimen 

 

Lee James Specimens were machined from 7075-T651 aluminum alloy with CNC 

milling in the dimensions mentioned in Section 4.1. Then, the notch was created by 

using the electro-discharge machining (EDM). Details of the notching process with 

EDM are given in Figure 4.25. EDM process can cause the change in the 

microstructure of the material which affects crack growth behavior but the boundaries 

of this change in microstructure do not reach precrack length. Therefore, this change 

does not affect fracture or crack growth in the test results. 

 

 

Figure 4.25. Creating ellipsoid notch on Lee James Specimen by using EDM 

 

15 kN fatigue load was applied to generate the precrack around the ellipsoid notch. 

The precrack fatigue load was terminated as the crack length on the free surface 

monitored by the camera reaches around 1.5 mm. Then, the fracture toughness test was 

done under the static tensile load of 0.65 kN/s. The dimensions of the notch created by 

EDM were checked on fracture surfaces. Details of the fracture toughness tests are 

given in Table 4.3. Fracture toughness results could not be obtained from the last two 
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tests indicated in gray background in Table 4.3. Since the crack size is very small, the 

required load for fracture was quite high in the 20190304_05 test. For this reason, 

fracture load was not applied to avoid any damage to the test machine and apparatus.  

Table 4.3. Fracture toughness tests with Lee James Specimen 

Specimen 

Name 

Stress 

Ratio for 

precrack 

R 

Max. 

Load for 

Precrack 

(kN) 

Crack 

depth 

(mm) 

Crack 

length 

(mm) 

Force 

rate 

(kN/s) 

Fracture 

Load 

(kN) 

20190220_01 0.1 15 28.44 5.79 0.65 56.461 

20190222_01 0.1 15 30.8 8.59 0.65 35.332 

20190226_01 0.1 15 29.82 6.865 0.65 41.023 

20190304_01 0.1 15 28.66 6.63 0.65 48.374 

20190304_02 0.1 15 31.35 9.845 0.65 30.538 

20190304_03 0.1 15 29.94 6.615 0.65 41.152 

20190304_04 0.1 15 31 9.26 0.65 31.979 

20190304_05 0.1 15 27.81 4.36 0.65 NaN 

20190304_06 0.1 15 33 9.91 0.65 NaN 

 

Another finding was also noticed other than fracture load from the tests given in Table 

4.3. Since there is three-dimensional crack propagation in Lee James specimen, it is 

not possible to monitor the crack propagation along with the depth point during the 

test. To monitor this, the depths and surface lengths of the cracks were measured by 

using pixel sizes from the fracture surface pictures and the data were shown in Figure 

4.26. after the tests. It was observed that the dimensions in the surface and depth 

directions of the crack were related. A linear equation with a high R2 between the crack 

depth and the crack length is given in Figure 4.26. 

 

 

Figure 4.26. The relation between crack depth and length 
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Since there is no test standard for three-dimensional crack propagation and an 

empirical formula similar to that used for the CT specimen was used in calculating the 

SIFs, it was investigated if the fracture load obtained in the experiments for LJ 

specimen can be calculated computationally. Fracture analyses were performed by 

employing FCPAS and using the crack dimensions from the experiments given in 

Table 4.3. The SIFs distributions obtained from analyses are given in Figure 4.27. 

 

 

Figure 4.27. KI SIF distribution for different surface crack size 

 

As can be seen from Figure 4.27., in the analyses under the fracture loads obtained 

from the experiments, the SIFs were calculated around 35-40 MPa.m0.5 at the free 

surface points. The difference in SIF between the midpoint and the edge was greater 

in smaller cracks. This means that there is a constraint effect on fracture in the depth 

direction of the crack. As the crack size increases, constraint effect decreases, and the 

variability of the SIFs along the crack front decreases. The specimens used in the tests 

are shown in Figure 4.28. 

 

 

Figure 4.28. Lee James specimen used in fracture toughness tests 
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In Figure 4.28., the LJ specimens used in fracture tests are shown in an increasing 

order of fatigue pre-crack sizes from left to right. In the three specimens on the right, 

fast fracture surfaces are perpendicular to the loading direction as expected but if the 

first three specimens on the left are carefully examined, unexpected fracture surfaces 

forming under mode-I loading can be seen. To investigate the underlying mechanics- 

and materials-related mechanisms for the fast fracture surface deflection seen in the 

Figure 4.28., a stress-based approach is performed. The findings can be explained with 

the material properties for differently oriented cracks in the same material. To carry 

out this, principal stresses around the free-surface crack tips for the different crack 

sizes in the tested specimens are analyzed by finite element method.  In Figure 4.29., 

the principal stress distributions around the crack tip obtained from finite element 

analysis are given for surface crack size 2c = 14.42 mm. In this case, the distance of 

one-sided pre-crack length from the edge of the ellipsoid notch is 2.21 mm, which is a 

small to mid-level FCG increment. Since the fatigue precrack is quite small in these 

specimens, the magnitude of the second principal stress in the crack tip is close to its 

primary principal stress. Although no external loading is applied in the thickness 

direction of the specimen, a constraint effect is generated by the Poisson’s ratio and 

deformation kinematics of the solid material surrounding the ellipsoid notch. The crack 

surfaces through the thickness and the constraint effect cause the high-magnitude 

second principal stress for short surface cracks. According to the scheme given in 

Figure 4.29., a crack surface propagating in the described direction is the S-L direction. 

As can be found from İriç and Ayhan's study, fracture toughness in L-T direction is 

around 29 MPa-m0.5, and in S-L direction is around 25 MPa-m0.5 [57]. Also, same 

findings has been reported by Campell F.C as 32 MPa-m0.5 in L-T direction and 21 

MPa-m0.5 in S-L direction [58]. Therefore, the crack is oriented perpendicular to the 

initial pre-crack (S-L direction) by the second principal stress. This explains that if the 

required tensile component of the stress for an S-L-direction crack is present, the crack 

can propagate in the S-L direction.  
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Figure 4.29. a) Crack growth according to the rolling direction, b) principal stress distributions 

 

The finite element analysis given in Figure 4.29. was repeated for all crack lengths in 

the experiments and the principal stress values were obtained. For all specimens and 

their fatigue pre-crack lengths tested under monotonically increasing loads, the ratio 

of the first and the second principal stress is plotted in Figure 4.30. If the ratio of the 

first and the second principal stress is around 1.2 or less, fast fracture surfaces are 

formed in the parallel direction to the mode-I loading.  As the crack length increases, 

the first principal stress dominates, and fracture surfaces are formed in the mode-I 

opening direction, i.e., L-T direction.  
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Figure 4.30. Change of the ratio of principal stresses (S1/S2) depending on crack sizes 

 

4.2.4.2.  Fatigue crack growth tests under constant amplitude loading by using 

Lee James Specimen 

 

A total of 49 tests were performed with Lee James specimen under constant amplitude 

(R = 0.1, 0.5, 0.8) and random (spectrum) loading (SP1-SP2-SP3). A similar test setup 

to that given in Section 3 was used for three-dimensional crack growth tests. The 

numbers of tests are given in Table 4.4. During these tests, two crack tips on the 

specimen were monitored with a single camera. In Figure 4.31., the experimental setup 

and screenshots of the computer screen taken during the tests are presented. 

Screenshots were recorded periodically in order to plot the cycle vs. crack length 

curves. 

 

Table 4.4. Numbers of 3-D fatigue crack growth tests 

Test Count Specimen Type 

Fatigue crack growth tests under constant amplitude – R = 0.1 5 LJ 

Fatigue crack growth tests under constant amplitude – R = 0.5 5 LJ 

Fatigue crack growth tests under constant amplitude – R = 0.8 9 LJ 

Fatigue crack growth under random loading - LJ-SP1 10 LJ 

Fatigue crack growth under random loading - LJ-SP2 10 LJ 

Fatigue crack growth under random loading -LJ-SP3 10 LJ 
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Figure 4.31. Test setup for 3-D fatigue crack growth and the screenshot [59] 

 

Table 4.5. 3-D fatigue crack growth tests under constant amplitude 

    Precrack Fatigure crack growth 

Specimen 

Name 

Specimen  

Type 

Stress 

Ratio 

for 

precrack 

R  

Max. Load 

for Precrack 

(kN) 

a(avg) 

(mm) 

Stress 

Ratio 

for 

FCG 

R 

Max. 

Load for 

FCG 

(kN) 

Cycle 

20191011_01 LJ 0.1 12.4 5.805 0.1 15.5 12224 

20191011_02 LJ 0.1 12.4 6.530 0.1 15.5 10978 

20191014_01 LJ 0.1 12.4 6.125 0.1 15.5 12487 

20191014_02 LJ 0.1 12.4 6.006 0.1 15.5 14698 

20191015_01 LJ 0.1 12.4 6.079 0.1 15.5 14176 

20191015_02 LJ 0.1 13 5.883 0.5 17 34296 

20191016_01 LJ 0.1 13 6.305 0.5 20 20218 

20191016_02 LJ 0.1 13 5.963 0.5 20 23200 

20191017_02 LJ 0.1 13 6.110 0.5 20 18321 

20191025_01 LJ 0.1 13 6.255 0.5 20 18298 

20191018_01 LJ 0.1 17 7.440 0.8 30 33246 

20191022_01 LJ 0.1 17 6.310 0.8 32 51679 

20191023_01 LJ 0.1 17 6.215 0.8 32 44590 

20191024_02 LJ 0.1 17 6.243 0.8 32 56501 

20191101_02 LJ 0.1 17 7.920 0.8 32 22930 

20191111_01 LJ 0.1 17 6.243 0.8 32 54388 

20191113_01 LJ 0.1 17 7.920 0.8 32 53222 

20191113_02 LJ 0.1 17 7.920 0.8 32 55623 

20191203_01 LJ 0.1 17 7.920 0.8 32 64835 

20191204_01 LJ 0.1 17 6.405 0.8 32 74322 
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The fatigue crack growth curves of the performed tests are given in Figure 4.32. Also, 

fracture surfaces formed under R = 0.1, 0.5 and 0.8 are given in Figure 4.33. -Figure 

4.35., respectively. The crack surface did not occur symmetrically in some of the tests, 

especially under R = 0.8. The specimens exhibiting high anti-symmetry at the crack 

front were not used and these experiments were repeated. Details about the problem 

of anti-symmetry on the crack front will be explained in Section 4.2.4.4. 

 

 

Figure 4.32. Curves obtained from constant amplitude 3-D fatigue crack growth tests 

 

 

Figure 4.33. Fracture surfaces from 3-D fatigue crack growth tests under R= 0.1 constant amplitude 
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Figure 4.34. Fracture surfaces from 3-D fatigue crack growth tests under R= 0.5 constant amplitude 

 

 

Figure 4.35. Fracture surfaces from 3-D fatigue crack growth tests under R= 0.8 constant amplitude 

 

The scatter of the experimental results are compared with a study in the literature that 

experimentally investigated the crack propagation under constant amplitude loading 

by using aluminum 7075 alloy. [60]. Crack growth curves of the repeated tests 

conducted by the reference are given in Figure 4.36a. Figure 4.36b. was the 



109 

 

 
 

experimental results of the tests with LJ specimens under R = 0.1 conducted in this 

dissertation as described in the previous sections. There is no similarity between Figure 

4.36a-b. in terms of loading conditions and specimen type. The two graphs are given 

together only to show that the scatters are within reasonable boundaries. In the 

reference study [60], the ratio of the minimum number of cycles to the maximum is 

0.72. This value is 0.89 in the experimental study presented in this dissertation. In other 

words, the scattering in this study is slightly less than the scattering obtained in the 

compared study. 

 

 

   (a)     (b) 

Figure 4.36. Comparison of the scatters from the tests under R = 0.1 with the reference study [60] 

 

4.2.4.3.  3-D Fatigue crack growth tests under random loading 

 

After constant amplitude loading tests, random loading conditions were applied on the 

LJ specimen. As in the two-dimensional crack propagation tests using the CT 

specimen, two spectrums (SP1 and SP2) were used for random loading experiments, 

and another spectrum (SP3) was applied for validation. First, SP1, given in Section 

3.5, was scaled by a factor of 3.18 for the LJ specimen, yielding a maximum load of 

35 kN. The spectrum (SP1) is presented in Figure 4.37. Details of tests performed with 

this spectrum are also given in Table 4.6. 
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Figure 4.37. Spectrum-1 for 3-D fatigue crack growth 

 

Table 4.6. Details of the 3-D FCG tests performed under Spectrum-1 

    Precrack Fatigure crack growth 

Specimen 

Name 

Specimen  

Type 

Stress 

Ratio 

for 

precrack 

R  

Max. 

Load for 

Precrack 

(kN) 

a(avg) 

(mm) 
Spectrum 

Max. 

Load 

for 

FCG 

(kN) 

Cycle 

20191030_01 LJ 0.1 17 6.305 Spectrum-1 35 40128 

20191030_02 LJ 0.1 17 6.090 Spectrum-1 35 42650 

20191031_01 LJ 0.1 17 6.665 Spectrum-1 35 37044 

20191031_02 LJ 0.1 17 6.920 Spectrum-1 35 32024 

20191101_01 LJ 0.1 17 6.670 Spectrum-1 35 35022 

20200619_01 LJ 0.1 17 6.160 Spectrum-1 35 44638 

20200622_01 LJ 0.1 17 6.285 Spectrum-1 35 47104 

20200622_02 LJ 0.1 17 6.390 Spectrum-1 35 43608 

20200623_01 LJ 0.1 17 6.318 Spectrum-1 35 43192 

20200623_02 LJ 0.1 17 5.953 Spectrum-1 35 53266 
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Figure 4.38. Fracture surfaces occurred under Spectrum-1 loading for 3-D FCG 

 

The fracture surfaces generated by Spectrum-1 are shown in Figure 4.38. Crack 

propagation curves obtained from the tests under Spectrum-1 are given in Figure 4.39., 

in which results from specimens with different initial crack lengths are given as 

separate curves. Since it was not possible to monitor the crack depths during the test, 

they were measured from the fracture surface after the tests and are presented in a 

separate graph. The size of the crack depth is only given for the last step since overload 

striation markings could not be seen clearly around the precrack.  

 

 

Figure 4.39. Crack growth curves obtained from 3-D FCG tests under Spectrum-1 
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In Section 3.5, a partial FALSTAFF (Spectrum-2) spectrum was explained for CT 

specimen. This spectrum was used repeatedly in the tests and simulations until the end 

of the crack growth life. It was decided to scale this spectrum and use it in three-

dimensional crack propagation tests. Since the critical load for LJ specimen is higher 

than CT specimen, the maximum load value of 11 kN for CT specimen in the 

Spectrum-2 was scaled to 35 kN for LJ specimen. Thus, reasonable crack growth life 

cycles were obtained for 3-D crack growth tests. The applied Spectrum-2 load profile 

to LJ specimen is shown in Figure 4.40. 

 

 

Figure 4.40. Partial FALSTAFF (Spectrum-2) loading profiles for LJ Specimen 

 

Table 4.7. Details of the 3-D FCG tests performed under Spectrum-2 

    Precrack Fatigure crack growth 

Specimen 

Name 

Specimen  

Type 

Stress 

Ratio for 

precrack 

R  

Max. Load 

for Precrack 

(kN) 

a(avg) 

(mm) 
Spectrum 

Max. 

Load 

for FCG 

(kN) 

Cycle 

20200624_02 LJ 0.1 17 6.205 Spectrum-2 35 37968 

20200625_01 LJ 0.1 17 6.163 Spectrum-2 35 35626 

20200625_02 LJ 0.1 17 6.720 Spectrum-2 35 28657 

20200626_01 LJ 0.1 17 6.100 Spectrum-2 35 33826 

20200626_02 LJ 0.1 17 5.886 Spectrum-2 35 37436 

20200627_01 LJ 0.1 17 5.916 Spectrum-2 35 38536 

20200629_01 LJ 0.1 17 6.003 Spectrum-2 35 35169 

20200630_01 LJ 0.1 17 5.694 Spectrum-2 35 42209 

20200630_02 LJ 0.1 17 5.948 Spectrum-2 35 37508 

20200701_01 LJ 0.1 17 5.823 Spectrum-2 35 39718 
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The details of the tests performed under Spectrum-2 are given in Table 4.7. The 

numbers of life cycles and initial crack lengths show that the tests are repeatable. 

 

The fracture surfaces obtained under fatigue crack growth tests using Spectrum-2 

loading are shown in Figure 4.41. Crack propagation curves obtained from the tests 

under Spectrum-2 are presented in Figure 4.42., in terms of crack surface lengths and 

crack depths in separate plots. 

 

 

Figure 4.41. Fracture surfaces occurred under Spectrum-2 loading for 3-D FCG 

 

 

Figure 4.42. Crack growth curves obtained from 3-D FCG tests under Spectrum-2 
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4.2.4.4.  Investigation of the non-symmetry in crack front 

 

In many tests performed with Lee James specimen, it was observed that the crack size 

on both edges of the notch was not symmetrical in the front view. Thereupon, the 

angular/axial adjustment of the test device, the geometry of the specimen and the 

loading apparatus were checked, and it was realized that the problem was not caused 

by these factors. A similar problem had also been observed in CT specimens before. 

This problem was investigated in detail in our study titled "Effects of microstructural 

through‐thickness non‐uniformity and crack size on fatigue crack propagation and 

fracture of rolled Al‐7075 alloy" which has been published in Fatigue & Fracture of 

Engineering Materials & Structures, and the explanations are presented below [59]. 

 

In two or three-dimensional crack propagation tests, it was observed that both crack 

tips in a specimen were not symmetrical and that the striation is discontinuous along 

the crack front. In some regions near the center of the specimen, the crack did not 

propagate as much as the side regions, and thus the symmetry of the crack tips on both 

surfaces is disrupted. In addition, there was a difference in the color of the fast fracture 

surface at the point where the crack propagation lagged. A non-symmetry crack front 

obtained in 3-D FCG tests and a close view of the lagging is given in Figure 4.43. 

Furthermore, the difference in the color of the fast fracture surface at the lagging 

region, which has a darker appearance, is shown in Figure 4.44. 
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Figure 4.43. Tops views of 3-D crack fronts and a close-up view of FCG region 

 

The material Al 7075-T651 is supplied as a plate with a thickness of 30 mm. The 

thickness was decreased to 25 mm by milling from both sides. If the plate was 

machined in equal amounts from both surfaces (2.5 mm from each), it was seen that 

the dark color on the fast fracture surface was at the center of the specimen, and if it 

was machined 5 mm from one side or unequally from both sides, the dark color was 

seen closer to the machined side. The effect of machining is observed in three LJ 

specimens in Figure 4.44. One of them (in the middle) was machined from both 

surfaces equally and the others were machined only from one side. As can be seen 

from the specimen in the middle, when thickness-reduction machining is performed 

equally from both sides, the surface crack grows symmetrically. 

 

 

Figure 4.44. Fracture surfaces of CT and LJ specimens with FCG lagging 
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In the regions of darker color, higher surface roughness is expected. Roughness 

measurement on fast fracture surfaces in specimen thickness direction confirms that 

the darker color band is not just a visual effect. Roughness measurements were taken 

along the thickness of the specimen CT-4 in Figure 4.44. According to roughness 

measurement, the average surface roughness downstream of the lagged crack front 

region is 3-5 times higher than the other regions, presented in Figure 4.45. 

 

 

Figure 4.45. Surface roughness measurements along the thickness of CT specimen (CT-4) 

 

Based on all these findings that the non-symmetry might be caused by the non-

uniformity of the material grains in the thickness direction. Optical microscope and 

scanning electron microscope (SEM) images were also taken to investigate the 

material. The surface was polished then etched about 20 seconds by using Keller 

solution (5% HF 10% H2SO4 85% H2O). The optical microscope images in Figure 

4.46. and Figure 4.47. and the SEM image in Figure 4.48. show that the grains in the 

lagged region did not flatten as much as it was in the side regions of the specimen. It 

is seen that the grains flattened at the surfaces were parallel to the rolling direction, but 

the desired orientation cannot be achieved as much in the center. This makes crack 

propagation difficult in the center part of the specimen compared to side regions along 

with the thickness of the specimen. 
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Figure 4.46. Optical microscopy images of marked regions of the 1st CT specimen in Figure 4.44 

 

 

Figure 4.47. Optical microscopy images of marked regions of the 3rd CT specimen in Figure 4.44 
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Figure 4.48. SEM images of different zones of the crack front of CT specimen (CT-4). 

 

Based on the optical investigations and additional elasto-plastic analyses performed to 

simulate the rolling process of the bulk plate material, it was concluded that the 

difference in grain orientation between center and surfaces causes more ductile crack 

growth in the center and lagging regions. Therefore, crack growth rate in the ductile 

region becomes slower than side regions. In addition, when the specimen is not 

machined equally from both surfaces, the more ductile region generates eccentricity 

relative to the center of the specimen. So, crack growth rate becomes slower for a 

specific point and leading to an anti-symmetric crack front. 

 

 

Figure 4.49. Thickness-direction stress contours for an initially 32-mm thick plate (MPa) 
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An elasto-plastic analysis is performed in ANSYS for rolling process to investigate 

the changes in stress contours through the thickness. Al-7075-T651 at 260oC material 

property is identified using data from the reference [61]. Initially, 32-mm thick plate 

is pressed by cylindrical rollers down to 30-mm thickness. Standard frictional contact 

mechanics is applied between the rollers and the plate. ¼ symmetric boundary 

conditions are identified. The stress contours can be seen in Figure 4.49., where 

minimum value is obtained in the middle of the plate. Thus, it shows that if the 

pressuring displacement of the rollers is not high enough material’s grains near the 

middle of the plate will not flatten and thin as much as its side regions, resulting in 

thicker-grain microstructure. In addition, other factors such as the speed of the 

production line, and changes in temperature will also affect the results. 
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CHAPTER 5. CRACK GROWTH SIMULATION USING THE 

MONTE CARLO METHOD 
 

 

Distributions representing the variables such as material properties, load and geometric 

tolerances were obtained from the experiments described in previous sections. The 

variabilities of these parameters generate scattered crack propagation curves. Monte-

Carlo simulations were performed to estimate the variabilities and distributions of 

crack propagation lives. Material properties, geometric dimensions and variations in 

load were considered as input variables within their specified limits for Monte Carlo 

simulations. 

 

First, random input values of geometric tolerances on specimen and material 

properties, determined in previous sections, were picked from the distributions. Using 

these picked values, crack propagation life analysis was performed cycle by cycle for 

the corresponding loading spectrum, and the calculated life was written in a file. In 

this process, the load cell sensitivity of the test device was considered (class 0.5) for 

the given loading profile. By picking new random values from the distributions of 

parameters, the next case analysis was performed with the same procedure. This 

process was repeated until the desired number of Monte Carlo simulations is reached. 

During the simulation, picking random values by using a probability distribution, 

covering the range of input values, is important. In this way, the effects of the 

variabilities of input parameters on the results can be estimated realistically. 

 

Although many software packages perform Monte-Carlo analyses, it was thought that 

these packages may not provide sufficient flexibility and the necessary adaptations for 

crack propagation simulations. Therefore, an in-house Monte-Carlo Simulation code 

was created. 
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The algorithm of the prepared simulation code is given in Figure 5.1. As seen in the 

algorithm, a nested loop is the basis of the algorithm. The outer loop is used to 

determine the distributions of the variables and to pick them randomly for each Monte-

Carlo simulation case. The inner loop of the algorithm is designed to perform cycle by 

cycle crack propagation analysis for a given loading profile. Load profiles are read 

from the "Loadspec.txt" file placed in the same directory of the program. 

 

"Pick variable values from distributions" box is the first process of the algorithm given 

in Figure 5.1. Random number generation in accordance with the distribution of the 

variable considered is necessary for this process. An open-source random number 

generation code in FORTRAN was found from the open sources [62] and it was 

verified using MINITAB. Using the statistical data given in Section 3.4.5, the open-

source code was run, and the results were plotted in a histogram graph by MINITAB. 

In addition, MINITAB and Fortran Code was used to generate random data with the 

same Loc-Scale values, and plotted as a histogram. The histogram plotted by using the 

data from two different programs came out very close to each other.  
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Figure 5.1. Algorithm of crack growth life estimation code with Monte Carlo Simulation 

 



123 

 

 
 

Initial crack length - depth, specimen thickness, and the variations on load, conforming 

to the normal distribution, and the normal distribution function was defined for picking 

random values. Since the load cell sensitivity of the test device was Class 0.5, the 

average value was taken as 0 and the standard deviation was assumed 0.005 to define 

the load distribution. 

 

In order to determine the crack propagation rate of each cycle, first the average crack 

propagation rate was calculated. Afterwards, the standard deviation value (0.001) was 

calibrated according to the scattering of the crack propagation curves obtained from 

the random loading tests performed with CT specimen is added to the calculated 

average crack propagation rate by scaling with a randomly picked number from the 

probability distribution. The decision of the Standard deviation value (0.001) will be 

explained below in Figure 5.2. - Figure 5.4. A value called "da/dN multiplier" was 

used to scale the standard deviation in the histogram plots. The mean of da/dN 

multiplier and its standard deviation (σ) is 0 and 1, respectively, and it is picked 

randomly from the normal distribution in ± 3σ range. In order to perform mathematical 

operations with the da/dN multiplier picked randomly from a normal distribution, the 

other elements in the calculation must also show a normal distribution. For this reason, 

the mean of crack growth rate and standard deviation was converted to the normal 

distribution by taking their logarithm. After summation of the scaled standard 

deviation value and the crack propagation rate, the value was transformed back into a 

lognormal distribution with the inverse logarithm. Equation (5.1) shows the 

calculation of da/dN crack propagation rate used in Monte Carlo analysis. 

 

log10(
𝑑𝑎

𝑑𝑁⁄ )  = log10(
𝑑𝑎

𝑑𝑁⁄ )
𝑚𝑒𝑎𝑛

 + (𝑑𝑎𝑑𝑁 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟). log10(
𝑑𝑎

𝑑𝑁⁄ )
𝑠𝑡𝑑.𝑑𝑒𝑣

  
(5.1) 

 

SIFs were calculated using the equation in ASTM E399 standard for two-dimensional 

crack propagation of CT specimen, and the transfer function given in Section 4 was 

used to calculate the SIF for three-dimensional cracks in LJ specimen. 
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The term of (log
10
(𝑑𝑎 𝑑𝑁⁄ )

𝑠𝑡𝑑.𝑑𝑒𝑣
)  in Equation (5.1) was obtained around 0.1 from the 

experiments performed by using CT specimen. However, it was noticed that the 

calculated crack growth life values obtained from the MC simulations are in a wide 

range if the standard deviation value was taken 0.1. First, the cause of this scattering 

was investigated and then calibration studies were carried out to determine a closer 

range to experiments. 

 

 

Figure 5.2. Comparison of two different crack length measurement methods 

 

In the previous sections, it was noted that the crack length was measured by two 

different methods in constant amplitude tests with CT specimens. One of them is the 

measurement of images by pixel sizing and the other is the measurement with COD, 

and the latter was used only for validation of the first measurement method. Since the 

data from COD was not recorded in variable amplitude loading tests and in the tests 

with the nonstandard specimen (LJ), COD was not preferred as a primary measurement 

method in this study. A comparison of two different measurement methods is given in 

Figure 5.2. The COD measurements are more sensitive as expected. More scattered 

data observed in pixel sizing affect the calculated crack growth life and eventually the 

MC simulations. 
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When a small number of Monte Carlo simulations are performed with the 0.1 standard 

deviation value of experiments, the obtained range was matching with experiments. 

However, an increased number of Monte Carlo simulations result in an increase in the 

range of the scatters consisting of the life curves due to the picking of random numbers 

from extreme points of the distribution. In Figure 5.3. and Figure 5.4., the lower and 

upper bands of the MC simulations are given for the event number of 10 and 100, 

respectively. 

 

 

Figure 5.3. The relation between the number of MC simulations and scattering of life curves 

 

When a large number of Monte Carlo simulations were performed, the logarithm of 

the calibrated standard deviation value was used to obtain a similar range with the 

experiments. As can be seen in Figure 5.4., closer results to the experiments were 

obtained by reducing the value of the logarithm of standard deviation. Figure 5.4. 

shows the experimental and simulation results performed with CT specimen under 

Spectrum-1 loading. Similar graphs were also observed in other specimen and loading 

spectrums. 

 

 

Figure 5.4. Calibration of the logarithm of standard deviation 
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5.1.  Probabilistic Crack Growth Life Prediction 

 

After verification studies of the open-source FORTRAN sub-program for random data 

generation, the main code for crack propagation based on Monte Carlo method was 

generated by using the algorithm given in Figure 5.1. The total number of simulated 

events in the Monte Carlo Simulation is an input value and sets the number of values 

randomly picked from distributions for each variable. If a distribution is scanned with 

a larger number of random data within the range defined by mean and standard 

deviation, the sensitivity increases. Therefore, the maximum number of Monte Carlo 

Simulation must not be too small. In order to ensure that the number of Monte Carlo 

Simulation was sufficient, two different simulations were carried out for two-

dimensional crack propagation with a maximum number of 250 and 100. Histogram 

plots of randomly picked variables are given in Figure 5.5. As can be seen in the figure, 

there was no significant difference between the simulations in histogram plots. Since 

it is easier to analyze and plot results from a smaller number of events, the maximum 

event simulation number was defined as 100, in this study. 

 

 

Figure 5.5. Effect of the number of Monte Carlo Simulation on the distribution of variables  
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The load spectrum was written into an external text file for Monte Carlo Simulation. 

Then, the mean and standard deviation values of the specimen thickness, initial crack 

length, sensitivity of the load cell, and da/dN multiplier were defined as inputs in the 

code. Two different codes were prepared for CT and LJ specimen due to the difference 

in variables and calculation of SIFs. If LJ specimen is used in the simulation, the width 

and depth of the initial crack and the ΔZ tolerance in the EDM notch should also be 

defined as separate variables. After these variables are entered, the code calculates the 

crack growth rate for each load cycle and computes the crack growth lives for all cases 

of events defined by the randomly picked values of variables from their individual 

distributions. At the end of the Monte Carlo simulation, three separate output text files 

are generated. One of these files is named as “***.txt” containing the crack 

propagation rate and the other results calculated for each cycle of the load spectrum. 

Other files are named as “***. Plot_txt” and “***. Edge_plot_txt”, where results are 

written at the specified cycle intervals for the center and edge points of the crack front, 

respectively. Considering that calculations are made for thousands of points of the 

spectrum profile for each simulation, it is easier to plot the “***.Plot_txt” files written 

only at specific cycles. As an example of the created files, a screenshot is given in 

Figure 5.6. 

 

 

Figure 5.6. A screenshot from ***.plot.txt file 

 

After the MC Simulations, the cycle number (I_Cyc_Gl) and crack length (ASze 

(I_SPPI_Gl)) values from each file are copied into Microsoft Excel [46] and plotted.  

Since this process is tedious with many files, a VBA macro has been prepared in the 

Excel Developer. The macro automatically copies the values from the txt files to Excel.  

The Excel and ***. txt files must be in the same directory and the last number of MC 

Simulation must be entered in the first sheet of the Excel workbook. The code of the 
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macro can be seen in Figure 5.7. After the values are copied as individual columns for 

each MC simulation in Excel, MINITAB [44] is used to obtain probability 

distributions. 

 

 

 

Figure 5.7. The Excel VBA macro copying the values from txt files to Excel 

 

5.2.  Comparison with Experiments and Model Improvement 

 

In Section 3.6.3, deterministically calculated lives for two-dimensional crack 

propagation with CT specimens and comparisons with experiments were explained. In 

this section, the results of crack propagation simulations considering the mean and 

standard deviation of variables using the Monte Carlo method will be explained. The 

Spectrum Overload Index (SOL index), explained in Section 3.6.3., was used to 

calculate the two-dimensional crack growth rate. Further details were given in Section 

3.6.3. In Figure 5.8. -Figure 5.64., plots of crack propagation lives and input-output 

distributions obtained by MC Simulations performed under SP1 and SP2 loading 

spectrums for CT specimen are given for each model employed in the simulation. 

Distributions of outputs obtained by MC Simulations can be displayed in two different 

versions, as the crack length probability distribution corresponding to any number of 

cycles or as the probability distribution of the load cycles corresponding to any crack 
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length. The histograms were plotted as normal distributions. Also, survival plots 

(inverse of cumulative distribution curve) were prepared by using these distributions. 

The results in Figure 5.8. are given for both the crack front free surface (edge) and the 

center points of the CT specimen. MC Simulation results obtained for different models 

under different spectrums are given separately. In the first two models, namely 

"Forman C-n values with Wheeler" and "Walker C-n values with Wheeler", presented 

for each specimen and loading spectrum, the stress ratio was not directly used for each 

load cycle. Instead, crack growth rate was calculated with C-n values of combined 

da/dN curves generated with different R-ratios, using Forman or Walker models. In 

other words, a mean stress effect approach was used with composite da/dN curves 

obtained by Forman or Walker model, and crack growth retardation was determined 

for each load cycle according to the Wheeler model. In all other models, crack growth 

retardation and/or R-ratio calculations were made on a cycle-by-cycle basis. 

 

 

Figure 5.8. Probabilistic crack growth life curves and their comparison with the experiments (CT specimen, SP1 

loading spectrum, Composite C-n with Forman Constants) 
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Figure 5.9. Distributions of the inputs used in crack growth life analysis (CT specimen, SP1 loading spectrum, 

Composite C-n with Forman Constants) 

 

 

 

Figure 5.10. Histogram and CDF for crack length under 25000th cycle load conditions (CT specimen, SP1 

loading spectrum, Composite C-n with Forman Constants) 
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Figure 5.11. Histogram and CDF for crack length under 40000th cycle load conditions (CT specimen, SP1 

loading spectrum, Composite C-n with Forman Constants) 

 

 

 

Figure 5.12. Histogram and CDF for crack length under constant crack length conditions (CT specimen, SP1 

loading spectrum, Composite C-n with Forman Constants) 
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Figure 5.13. Probabilistic crack growth life curves and their comparison with the experiments (CT specimen, SP1 

loading spectrum, Composite C-n with Walker Constants) 

 

 

Figure 5.14. Distributions of the inputs used in crack growth life analysis (CT specimen, SP1 loading spectrum, 

Composite C-n with Walker Constants) 
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Figure 5.15. CDF for crack lengths under constant cycle load conditions (CT specimen, SP1 loading spectrum, 

Composite C-n with Walker Constants) 

 

 

Figure 5.16. CDF for load cycles under constant crack length conditions (CT specimen, SP1 loading spectrum, 

Composite C-n with Walker Constants) 
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Figure 5.17. Probabilistic crack growth life curves and their comparison with the experiments (CT specimen, SP1 

loading spectrum, Wheeler model with Forman) 

 

 

Figure 5.18. Distributions of the inputs used in crack growth life analysis (CT specimen, SP1 loading spectrum, 

Wheeler model with Forman) 
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Figure 5.19. CDF for crack lengths under constant cycle load conditions (CT specimen, SP1 loading spectrum, 

Wheeler model with Forman) 

 

 

Figure 5.20. CDF for load cycles under constant crack length conditions (CT specimen, SP1 loading spectrum, 

Wheeler model with Forman) 
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Figure 5.21. Probabilistic crack growth life curves and their comparison with the experiments (CT specimen, SP1 

loading spectrum, Wheeler model with Walker) 

 

 

Figure 5.22. Distributions of the inputs used in crack growth life analysis (CT specimen, SP1 loading spectrum, 

Wheeler model with Walker) 
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Figure 5.23. CDF for crack lengths under constant cycle load conditions (CT specimen, SP1 loading spectrum, 

Wheeler model with Walker) 

 

 

Figure 5.24. CDF for load cycles under constant crack length conditions (CT specimen, SP1 loading spectrum, 

Wheeler model with Walker) 
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Figure 5.25. Probabilistic crack growth life curves and their comparison with the experiments (CT specimen, SP1 

loading spectrum, Xiaoping model) 

 

 

Figure 5.26. Distributions of the inputs used in crack growth life analysis (CT specimen, SP1 loading spectrum, 

Xiaoping model) 

 

 



139 

 

 
 

 

 

Figure 5.27. CDF for crack lengths under constant cycle load conditions (CT specimen, SP1 loading spectrum, 

Xiaoping model) 

 

 

Figure 5.28. CDF for load cycles under constant crack length conditions (CT specimen, SP1 loading spectrum, 

Xiaoping model) 
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Figure 5.29. Probabilistic crack growth life curves and their comparison with the experiments (CT specimen, SP1 

loading spectrum, Generalized Willenborg model) 

 

 

Figure 5.30. Distributions of the inputs used in crack growth life analysis (CT specimen, SP1 loading spectrum, 

Generalized Willenborg model) 
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Figure 5.31. CDF for crack lengths under constant cycle load conditions (CT specimen, SP1 loading spectrum, 

Generalized Willenborg model) 

 

 

Figure 5.32. CDF for load cycles under constant crack length conditions (CT specimen, SP1 loading spectrum, 

Generalized Willenborg model) 
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Figure 5.33. Probabilistic crack growth life curves and their comparison with the experiments (CT specimen, SP1 

loading spectrum, Root mean square model) 

 

 

Figure 5.34. Distributions of the inputs used in crack growth life analysis (CT specimen, SP1 loading spectrum, 

Root mean square model) 

 

 

 



143 

 

 
 

 

 

Figure 5.35. CDF for crack lengths under constant cycle load conditions (CT specimen, SP1 loading spectrum, 

Root mean square model) 

 

 

Figure 5.36. CDF for load cycles under constant crack length conditions (CT specimen, SP1 loading spectrum, 

Root mean square model) 
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Figure 5.37. Probabilistic crack growth life curves and their comparison with the experiments (CT specimen, SP2 

loading spectrum, Composite C-n with Forman Constants) 

 

 

Figure 5.38. Distributions of the inputs used in crack growth life analysis (CT specimen, SP2 loading spectrum, 

Composite C-n with Forman Constants) 
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Figure 5.39. CDF for crack lengths under constant cycle load conditions (CT specimen, SP2 loading spectrum, 

Composite C-n with Forman Constants) 

 

 

Figure 5.40. CDF for load cycles under constant crack length conditions (CT specimen, SP2 loading spectrum, 

Composite C-n with Forman Constants) 
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Figure 5.41. Probabilistic crack growth life curves and their comparison with the experiments (CT specimen, SP2 

loading spectrum, Composite C-n with Walker Constants) 

 

 

Figure 5.42. Distributions of the inputs used in crack growth life analysis (CT specimen, SP2 loading spectrum, 

Composite C-n with Walker Constants) 
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Figure 5.43. CDF for crack lengths under constant cycle load conditions (CT specimen, SP2 loading spectrum, 

Composite C-n with Walker Constants) 

 

 

Figure 5.44. CDF for load cycles under constant crack length conditions (CT specimen, SP2 loading spectrum, 

Composite C-n with Walker Constants) 
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Figure 5.45. Probabilistic crack growth life curves and their comparison with the experiments (CT specimen, SP2 

loading spectrum, Wheeler model with Forman) 

 

 

Figure 5.46. Distributions of the inputs used in crack growth life analysis (CT specimen, SP2 loading spectrum, 

Wheeler model with Forman) 
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Figure 5.47. CDF for crack lengths under constant cycle load conditions (CT specimen, SP2 loading spectrum, 

Wheeler model with Forman) 

 

 

Figure 5.48. CDF for load cycles under constant crack length conditions (CT specimen, SP2 loading spectrum, 

Wheeler model with Forman) 
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Figure 5.49. Probabilistic crack growth life curves and their comparison with the experiments (CT specimen, SP2 

loading spectrum, Wheeler model with Walker) 

 

 

Figure 5.50. Distributions of the inputs used in crack growth life analysis (CT specimen, SP2 loading spectrum, 

Wheeler model with Walker) 
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Figure 5.51. CDF for crack lengths under constant cycle load conditions (CT specimen, SP2 loading spectrum, 

Wheeler model with Walker) 

 

 

Figure 5.52. CDF for load cycles under constant crack length conditions (CT specimen, SP2 loading spectrum, 

Wheeler model with Walker) 
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Figure 5.53. Probabilistic crack growth life curves and their comparison with the experiments (CT specimen, SP2 

loading spectrum, Xiaoping model) 

 

 

Figure 5.54. Distributions of the inputs used in crack growth life analysis (CT specimen, SP2 loading spectrum, 

Xiaoping model) 
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Figure 5.55. CDF for crack lengths under constant cycle load conditions (CT specimen, SP2 loading spectrum, 

Xiaoping model) 

 

 

Figure 5.56. CDF for load cycles under constant crack length conditions (CT specimen, SP2 loading spectrum, 

Xiaoping model) 
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Figure 5.57. Probabilistic crack growth life curves and their comparison with the experiments (CT specimen, SP2 

loading spectrum, Generalized Willenborg model) 

 

 

Figure 5.58. Distributions of the inputs used in crack growth life analysis (CT specimen, SP2 loading spectrum, 

Generalized Willenborg model) 
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Figure 5.59. CDF for crack lengths under constant cycle load conditions (CT specimen, SP2 loading spectrum, 

Generalized Willenborg model) 

 

 

Figure 5.60. CDF for load cycles under constant crack length conditions (CT specimen, SP2 loading spectrum, 

Generalized Willenborg model) 
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Figure 5.61. Probabilistic crack growth life curves and their comparison with the experiments (CT specimen, SP2 

loading spectrum, Root mean square model) 

 

 

Figure 5.62. Distributions of the inputs used in crack growth life analysis (CT specimen, SP2 loading spectrum, 

Root mean square model) 
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Figure 5.63. CDF for crack lengths under constant cycle load conditions (CT specimen, SP2 loading spectrum, 

Root mean square model) 

 

 

Figure 5.64. CDF for load cycles under constant crack length conditions (CT specimen, SP2 loading spectrum, 

Root mean square model) 

 

As in the two-dimensional crack propagation explained above, different crack 

propagation models were used for three-dimensional mode-I crack propagation in LJ 

specimen, and the comparison of the models is given in Table 5.1. SOL index, which 

was previously described, was also applied and not applied for three-dimensional crack 

propagation simulations. As can be seen from Table 5.1., simulations without SOL 

index are closer to experimental results. Since propagation of a semi-elliptical surface 
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crack is subjected to geometrical constraint due to elliptical shape, it is considered that 

after the overload, the three-dimensional crack propagation rate is not as fast as the 

two-dimensional crack. As a result, as can be seen from the simulation results with LJ 

specimen, the SOL index was not used in the three-dimensional mode-I crack 

propagation analysis. 

 

Probabilistic crack propagation curves obtained from Monte Carlo simulations with 

different crack propagation models for LJ specimen are presented in Figure 5.65. -

Figure 5.120. Input and output distributions are also given for each model. The 

distributions in MC Simulation outputs are expressed in two different ways as the 

crack length probability distribution corresponding to any number of cycles or as the 

probability distribution of the load cycles corresponding to any crack length. The 

normal probability distributions and cumulative distribution graphs can also be 

obtained by using output distributions. In the graphs, the results are given for both the 

free surface (edge) and the center of crack tip (center) points of the LJ specimen. 
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Table 5.1. Comparison of variable amplitude fatigue crack growth model results (LJ Specimen) 

    LJ SP1 LJ SP2 LJ SP3 

    Cycle 

Edge crack 

length Cycle 

Edge crack 

length Cycle 

Edge crack 

length 

Model FCG model FCG equation 

SOL 

index Test Sim. Test Sim. Test Sim. Test Sim. Test Sim. Test Sim. 

Composite C-n Wheeler 

Forman Const wth Paris-

Erdogan  

42650 

26200 

≈  

10.2 

mm 

10.7 mm 

35169 

16164 

≈  

10.2 

mm 

10.7 mm 

31586 

20029 

≈  

10.3 

mm 

10.7 mm 

Composite C-n Wheeler 

Forman Const wth Paris-

Erdogan  34200 10.7 mm 25200 10.8 mm 27057 10.8 mm 

Composite C-n Wheeler Walker  55700 10.1 mm 14514 11.1 mm 20369 10.9 mm 

Composite C-n Wheeler Walker  83700 10.1 mm 24140 11.1 mm 32072 10.9 mm 

Walker Wheeler Walker  20200 11.0 mm 12980 10.8 mm 16100 10.7 mm 

Walker Wheeler Walker  29700 10.7 mm 22183 10.8 mm 25647 10.7 mm 

Forman Wheeler Forman  37200 11.4 mm 21240 11.1 mm 25598 10.8 mm 

Forman Wheeler Forman  55200 10.9 mm 36108 10.9 mm 40438 11.1 mm 

Xiaoping Wheeler Paris-Erdogan  55700 10.9 mm 40356 11.0 mm 45301 11.0 mm 

GWillenborg GWillenborg Forman  50200 11.9 mm 20532 11.7 mm 24553 11.2 mm 

RMS (Manujatha)  RMS Similar to Newman  19900 12.5 mm 24036 12.5 mm 24800 12.5 mm 
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Figure 5.65. Probabilistic crack growth life curves and their comparison with the experiments (LJ specimen, SP1 

loading spectrum, Composite C-n with Forman Constants) 

 

 

Figure 5.66. Distributions of the inputs used in crack growth life analysis (LJ specimen, SP1 loading spectrum, 

Composite C-n with Forman Constants) 
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Figure 5.67. CDF for crack lengths under constant cycle load conditions (LJ specimen, SP1 loading spectrum, 

Composite C-n with Forman Constants) 

 

 

Figure 5.68. CDF for load cycles under constant crack length conditions (LJ specimen, SP1 loading spectrum, 

Composite C-n with Forman Constants) 
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Figure 5.69. Probabilistic crack growth life curves and their comparison with the experiments (LJ specimen, SP1 

loading spectrum, Composite C-n with Walker Constants) 

 

 

Figure 5.70. Distributions of the inputs used in crack growth life analysis (LJ specimen, SP1 loading spectrum, 

Composite C-n with Walker Constants) 
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Figure 5.71. CDF for crack lengths under constant cycle load conditions (LJ specimen, SP1 loading spectrum, 

Composite C-n with Walker Constants) 

 

 

Figure 5.72. CDF for load cycles under constant crack length conditions (LJ specimen, SP1 loading spectrum, 

Composite C-n with Walker Constants) 
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Figure 5.73. Probabilistic crack growth life curves and their comparison with the experiments (LJ specimen, SP1 

loading spectrum, Wheeler model with Forman) 

 

 

Figure 5.74. Distributions of the inputs used in crack growth life analysis (LJ specimen, SP1 loading spectrum, 

Wheeler model with Forman) 
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Figure 5.75. CDF for crack lengths under constant cycle load conditions (LJ specimen, SP1 loading spectrum, 

Wheeler model with Forman) 

 

 

Figure 5.76. CDF for load cycles under constant crack length conditions (LJ specimen, SP1 loading spectrum, 

Wheeler model with Forman) 
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Figure 5.77. Probabilistic crack growth life curves and their comparison with the experiments (LJ specimen, SP1 

loading spectrum, Wheeler model with Walker) 

 

 

Figure 5.78. Distributions of the inputs used in crack growth life analysis (LJ specimen, SP1 loading spectrum, 

Wheeler model with Walker) 
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Figure 5.79. CDF for crack lengths under constant cycle load conditions (LJ specimen, SP1 loading spectrum, 

Wheeler model with Walker) 

 

 

Figure 5.80. CDF for load cycles under constant crack length conditions (LJ specimen, SP1 loading spectrum, 

Wheeler model with Walker) 
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Figure 5.81. Probabilistic crack growth life curves and their comparison with the experiments (LJ specimen, SP1 

loading spectrum, Xiaoping model) 

 

 

Figure 5.82. Distributions of the inputs used in crack growth life analysis (LJspecimen, SP1 loading spectrum, 

Xiaoping model) 
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Figure 5.83. CDF for crack lengths under constant cycle load conditions (LJ specimen, SP1 loading spectrum, 

Xiaoping model) 

 

 

Figure 5.84. CDF for load cycles under constant crack length conditions (LJ specimen, SP1 loading spectrum, 

Xiaoping model) 
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Figure 5.85. Probabilistic crack growth life curves and their comparison with the experiments (LJ specimen, SP1 

loading spectrum, Generalized Willenborg model) 

 

 

Figure 5.86. Distributions of the inputs used in crack growth life analysis (LJ specimen, SP1 loading spectrum, 

Generalized Willenborg model) 
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Figure 5.87. CDF for crack lengths under constant cycle load conditions (LJ specimen, SP1 loading spectrum, 

Generalized Willenborg model) 

 

 

Figure 5.88. CDF for load cycles under constant crack length conditions (LJ specimen, SP1 loading spectrum, 

Generalized Willenborg model) 
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Figure 5.89. Probabilistic crack growth life curves and their comparison with the experiments (LJ specimen, SP1 

loading spectrum, Root mean square model) 

 

 

Figure 5.90. Distributions of the inputs used in crack growth life analysis (LJ specimen, SP1 loading spectrum, 

Root mean square model) 
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Figure 5.91. CDF for crack lengths under constant cycle load conditions (LJ specimen, SP1 loading spectrum, 

Root mean square model) 

 

 

Figure 5.92. CDF for load cycles under constant crack length conditions (LJ specimen, SP1 loading spectrum, 

Root mean square model) 
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Figure 5.93. Probabilistic crack growth life curves and their comparison with the experiments (LJ specimen, SP2 

loading spectrum, Composite C-n with Forman Constants) 

 

 

Figure 5.94. Distributions of the inputs used in crack growth life analysis (LJ specimen, SP2 loading spectrum, 

Composite C-n with Forman Constants) 

 

 

 



175 

 

 
 

 

 

Figure 5.95. CDF for crack lengths under constant cycle load conditions (LJ specimen, SP2 loading spectrum, 

Composite C-n with Forman Constants) 

 

 

Figure 5.96. CDF for load cycles under constant crack length conditions (LJ specimen, SP2 loading spectrum, 

Composite C-n with Forman Constants) 
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Figure 5.97. Probabilistic crack growth life curves and their comparison with the experiments (LJ specimen, SP2 

loading spectrum, Composite C-n with Walker Constants) 

 

 

Figure 5.98. Distributions of the inputs used in crack growth life analysis (LJ specimen, SP2 loading spectrum, 

Composite C-n with Walker Constants) 
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Figure 5.99. CDF for crack lengths under constant cycle load conditions (LJ specimen, SP2 loading spectrum, 

Composite C-n with Walker Constants) 

 

 

Figure 5.100. CDF for load cycles under constant crack length conditions (LJ specimen, SP2 loading spectrum, 

Composite C-n with Walker Constants) 
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Figure 5.101. Probabilistic crack growth life curves and their comparison with the experiments (LJ specimen, SP2 

loading spectrum, Wheeler model with Forman) 

 

 

Figure 5.102. Distributions of the inputs used in crack growth life analysis (LJ specimen, SP2 loading spectrum, 

Wheeler model with Forman) 
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Figure 5.103. CDF for crack lengths under constant cycle load conditions (LJ specimen, SP2 loading spectrum, 

Wheeler model with Forman) 

 

 

Figure 5.104. CDF for load cycles under constant crack length conditions (LJ specimen, SP2 loading spectrum, 

Wheeler model with Forman) 
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Figure 5.105. Probabilistic crack growth life curves and their comparison with the experiments (LJ specimen, SP2 

loading spectrum, Wheeler model with Walker) 

 

 

Figure 5.106. Distributions of the inputs used in crack growth life analysis (LJ specimen, SP2 loading spectrum, 

Wheeler model with Walker) 
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Figure 5.107. CDF for crack lengths under constant cycle load conditions (LJ specimen, SP2 loading spectrum, 

Wheeler model with Walker) 

 

 

Figure 5.108. CDF for load cycles under constant crack length conditions (LJ specimen, SP2 loading spectrum, 

Wheeler model with Walker) 
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Figure 5.109. Probabilistic crack growth life curves and their comparison with the experiments (LJ specimen, SP2 

loading spectrum, Xiaoping model) 

 

 

Figure 5.110. Distributions of the inputs used in crack growth life analysis (LJspecimen, SP2loading spectrum, 

Xiaoping model) 
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Figure 5.111. CDF for crack lengths under constant cycle load conditions (LJ specimen, SP2 loading spectrum, 

Xiaoping model) 

 

 

Figure 5.112. CDF for load cycles under constant crack length conditions (LJ specimen, SP2 loading spectrum, 

Xiaoping model) 
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Figure 5.113. Probabilistic crack growth life curves and their comparison with the experiments (LJ specimen, SP2 

loading spectrum, Generalized Willenborg model) 

 

 

Figure 5.114. Distributions of the inputs used in crack growth life analysis (LJ specimen, SP2 loading spectrum, 

Generalized Willenborg model) 
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Figure 5.115. CDF for crack lengths under constant cycle load conditions (LJ specimen, SP2 loading spectrum, 

Generalized Willenborg model) 

 

 

Figure 5.116. CDF for load cycles under constant crack length conditions (LJ specimen, SP2 loading spectrum, 

Generalized Willenborg model) 

 

 



186 

 

 
 

 

Figure 5.117. Probabilistic crack growth life curves and their comparison with the experiments (LJ specimen, SP2 

loading spectrum, Root mean square model) 

 

 

Figure 5.118. Distributions of the inputs used in crack growth life analysis (LJ specimen, SP2 loading spectrum, 

Root mean square model) 
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Figure 5.119. CDF for crack lengths under constant cycle load conditions (LJ specimen, SP2 loading spectrum, 

Root mean square model) 

 

 

Figure 5.120. CDF for load cycles under constant crack length conditions (LJ specimen, SP2 loading spectrum, 

Root mean square model) 
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According to the results for 3-D crack propagation obtained by using different models, 

the results of the Wheeler model with Forman equation in Figure 5.101., Xiaoping 

model in Figure 5.109. and Generalized Willenborg Model in Figure 5.113. are close 

to experiments. As explained before, SOL Index was not used for three-dimensional 

crack propagation. In both two and three-dimensional crack propagation, the closest 

result to the experiments was obtained by the Wheeler model, using the Forman 

equation. 

 

5.3.  Verification Tests and Simulations for Three-Dimensional Crack Growth 

 

In the previous sections, comparisons between the results of the experiments 

performed under two different random loading profiles (spectrum loading) and the 

crack propagation curves obtained from probabilistic two- and three-dimensional 

crack propagation simulations by using different models were presented. It is 

concluded that the use of Wheeler model for crack growth retardation gives better 

results with Forman equation in the estimation of two- and three-dimensional mode-I 

crack propagation life under random loading. The application of SOL index to 

determine the partial crack growth acceleration after overload for two-dimensional 

crack propagation problems under random loading was presented as a model 

improvement and verified by independent experimental results obtained from the 

literature. 

 

Probabilistic analyses were performed using two different load spectrums for three-

dimensional mode-I crack propagation and the results were compared with 

experiments. A new spectrum named as Spectrum-3 (SP3) has been used to verify the 

results, which was obtained by selecting a different part of the FALSTAFF spectrum 

than the SP2 spectrum. SP3 loading spectrum is given in Figure 5.111. 
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Figure 5.121. Partial FALSTAFF (Spectrum-3, SP3) loading profiles for LJ Specimen 

In order to determine the variations in the crack propagation life curves, 10 tests were 

performed under Spectrum-3 by following the procedure described in Section 3.5. 

Details of the tests performed under SP3 are given in Table 5.2. 

 

Table 5.2. Details of the 3-D FCG tests performed under Spectrum-3 

    Precrack Fatigure crack growth 

Specimen 

Name 

Specimen  

Type 

Stress 

Ratio for 

precrack 

R  

Max. Load 

for Precrack 

(kN) 

a(avg) 

(mm) 
Spectrum 

Max. 

Load for 

FCG 

(kN) 

Cycle 

20200702_01 LJ 0.1 17 5.943 Spectrum 3 35 39176 

20200703_01 LJ 0.1 17 5.805 Spectrum 3 35 37888 

20200703_02 LJ 0.1 17 6.215 Spectrum 3 35 34797 

20200706_01 LJ 0.1 17 5.840 Spectrum 3 35 39717 

20200706_02 LJ 0.1 17 5.800 Spectrum 3 35 43104 

20200707_01 LJ 0.1 17 6.075 Spectrum 3 35 31586 

20200707_02 LJ 0.1 17 5.868 Spectrum 3 35 38782 

20200708_01 LJ 0.1 17 5.890 Spectrum 3 35 37284 

20200708_02 LJ 0.1 17 6.275 Spectrum 3 35 33014 

20200709_01 LJ 0.1 17 5.908 Spectrum 3 35 41137 

 

After the experiments, Monte Carlo Simulations were performed, and the crack growth 

curves obtained by using different models are given in Figure 5.121. - Figure 5.149. in 

comparison with the experiments. The input and output distributions are also given for 

each model. 
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Figure 5.122. Probabilistic crack growth life curves and their comparison with the experiments (LJ specimen, SP3 

loading spectrum, Composite C-n with Forman Constants) 

 

 

Figure 5.123. Distributions of the inputs used in crack growth life analysis (LJ specimen, SP3 loading spectrum, 

Composite C-n with Forman Constants) 
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Figure 5.124. CDF for crack lengths under constant cycle load conditions (LJ specimen, SP3 loading spectrum, 

Composite C-n with Forman Constants) 

 

 

Figure 5.125. CDF for load cycles under constant crack length conditions (LJ specimen, SP3 loading spectrum, 

Composite C-n with Forman Constants) 
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Figure 5.126. Probabilistic crack growth life curves and their comparison with the experiments (LJ specimen, SP3 

loading spectrum, Composite C-n with Walker Constants) 

 

 

Figure 5.127. Distributions of the inputs used in crack growth life analysis (LJ specimen, SP3 loading spectrum, 

Composite C-n with Walker Constants) 
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Figure 5.128. CDF for crack lengths under constant cycle load conditions (LJ specimen, SP3 loading spectrum, 

Composite C-n with Walker Constants) 

 

 

Figure 5.129. CDF for load cycles under constant crack length conditions (LJ specimen, SP3 loading spectrum, 

Composite C-n with Walker Constants) 
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Figure 5.130. Probabilistic crack growth life curves and their comparison with the experiments (LJ specimen, SP3 

loading spectrum, Wheeler model with Forman) 

 

 

Figure 5.131. Distributions of the inputs used in crack growth life analysis (LJ specimen, SP3 loading spectrum, 

Wheeler model with Forman) 
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Figure 5.132. CDF for crack lengths under constant cycle load conditions (LJ specimen, SP3 loading spectrum, 

Wheeler model with Forman) 

 

 

Figure 5.133. CDF for load cycles under constant crack length conditions (LJ specimen, SP3 loading spectrum, 

Wheeler model with Forman) 
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Figure 5.134. Probabilistic crack growth life curves and their comparison with the experiments (LJ specimen, SP3 

loading spectrum, Wheeler model with Walker) 

 

 

Figure 5.135. Distributions of the inputs used in crack growth life analysis (LJ specimen, SP3 loading spectrum, 

Wheeler model with Walker) 
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Figure 5.136. CDF for crack lengths under constant cycle load conditions (LJ specimen, SP3 loading spectrum, 

Wheeler model with Walker) 

 

 

Figure 5.137. CDF for load cycles under constant crack length conditions (LJ specimen, SP3 loading spectrum, 

Wheeler model with Walker) 
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Figure 5.138. Probabilistic crack growth life curves and their comparison with the experiments (LJ specimen, SP3 

loading spectrum, Xiaoping model) 

 

 

Figure 5.139. Distributions of the inputs used in crack growth life analysis (LJ specimen, SP3 loading spectrum, 

Xiaoping model) 
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Figure 5.140. CDF for crack lengths under constant cycle load conditions (LJ specimen, SP3 loading spectrum, 

Xiaoping model) 

 

 

Figure 5.141. CDF for load cycles under constant crack length conditions (LJ specimen, SP3 loading spectrum, 

Xiaoping model) 
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Figure 5.142. Probabilistic crack growth life curves and their comparison with the experiments (LJ specimen, SP3 

loading spectrum, Generalized Willenborg model) 

 

 

Figure 5.143. Distributions of the inputs used in crack growth life analysis (LJ specimen, SP3 loading spectrum, 

Generalized Willenborg model) 
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Figure 5.144. CDF for crack lengths under constant cycle load conditions (LJ specimen, SP3 loading spectrum, 

Generalized Willenborg model) 

 

 

Figure 5.145. CDF for load cycles under constant crack length conditions (LJ specimen, SP3 loading spectrum, 

Generalized Willenborg model) 
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Figure 5.146. Probabilistic crack growth life curves and their comparison with the experiments (LJ specimen, SP3 

loading spectrum, Root mean square model) 

 

 

Figure 5.147. Distributions of the inputs used in crack growth life analysis (LJ specimen, SP3 loading spectrum, 

Root mean square model) 
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Figure 5.148. CDF for crack lengths under constant cycle load conditions (LJ specimen, SP3 loading spectrum, 

Root mean square model) 

 

 

Figure 5.149. CDF for load cycles under constant crack length conditions (LJ specimen, SP3 loading spectrum, 

Root mean square model) 

 

As can be seen from the graphs above, it has been confirmed that the probabilistic 

crack growth simulations performed under SP3 load spectrum by using the Wheeler 

model with Forman equation together, gives the closest results to the experiment, as it 

was under SP1 and SP2 load spectrums. In addition, Xiaoping and Generalized 

Willenborg models also showed good accordance with results of three-dimensional 

mode-I crack propagation tests, as it was the case under the SP1 and SP2 spectrums. 
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Developing a probabilistic method for three-dimensional crack propagation life 

estimation using FCPAS software is aimed in this study. A total of 61 two-dimensional 

crack propagation tests at 4 different strain rates under constant amplitude were 

performed to be used in probabilistic crack growth simulations. Thus, the variation in 

material properties affecting the crack propagation was determined. The crack 

propagation life was estimated by Monte Carlo simulation, taking into account the 

variability in material properties, load sensitivity, and geometric tolerances on the 

crack and specimen. In order to compare the predicted life interval, a total of 24 two-

dimensional and 30 three-dimensional crack propagation tests were performed under 

random loading.  

 

Wheeler [12] and Willenborg [13] models have been used by the studies in the 

literature to calculate variable amplitude crack growth, and researches have been 

conducted to improve these models. However, there is no generally accepted model in 

the literature for random amplitude loading. Models proposed by different authors in 

the literature do not obtain a close result for different load spectrums or materials. 

When different load spectrums are applied, the plasticity effect in the crack tip, 

generated by load interaction, changes. In a study published by ASTM [22], crack 

growth life was calculated by using 6 different models for the same load spectrum. 

According to the experimental results, the crack growth life was estimated in the range 

of 1 - 2.13 (Npred / Ntest) times. One of the models in the study is Multi-Parameter Yield 

Zone [23] which includes 4 different empirical values obtained from the material and 

gives the closest life to the tests compared to other used models. It is seen that the 

results with Multi-Parameter Yield Zone model change between 0.97 - 1.18 (Npred / 

Ntest) under different magnitude. Kermanitis A.T. and Pantelakis S.G [63] compared 

the results of their models containing material-related parameters such as material 

hardening with the experiments (Npred / Ntest) in the ASTM reference [22] mentioned 

above, they obtained results in the range of 0.53 - 1.43. In the literature, additional 

parameters are used with the proposed models to explain the interaction effect between 

loads. X. Huang et al. [21] proposed additional coefficients to define the interaction 

effect between the loads and they calculated crack growth life close to the experimental 

results for a spectrum used in their study.  
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Coefficients’ dependence on the material and experimental results make it difficult to 

apply a proposed model. In this dissertation, Spectrum Overload Index (SOL index) 

was used to improve a crack growth model in two-dimensional crack propagation. 

SOL index is easy to apply as it is a parameter derived directly from the load spectrum, 

regardless of the material and experimental results. In this study, close results with 

experiments were obtained by Forman with Wheeler Equation model for two-

dimensional crack propagation using the SOL index with two different spectrums. 

However, due to the difference in crack propagation behavior, SOL index is not 

recommended for three-dimensional cracks. In three-dimensional cracks, the plane 

strain condition inside the specimen causes a constrain effect, and it decreases the 

crack growth rate in the test. 

 

There is no standard specimen for three-dimensional crack propagation tests in the 

literature. In this study, a new specimen type is proposed, which can perform crack 

propagation tests without very high load values. Finite element analyzes were 

performed on the specimen and the results were verified by strain-gauge 

measurements. A transfer function has been obtained for the SIFs calculation in the 

specimen by DOE analysis. Close results to experiments were obtained on the 

proposed specimen using the Wheeler with Forman Eqn. model for three different 

spectrums. For other crack propagation models used, the difference between 

experiments and calculations changes. Compared to the studies in the literature, the 

ratio of calculated life to experimental results is at reasonable levels. 
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CHAPTER 6. CONCLUSION AND FUTURE RESEARCH  
 

 

 

6.1.  Conclusion 

 

This study aims to determine the variability in crack propagation life for three-

dimensional mode-I fatigue crack propagation problems using the probabilistic 

fracture mechanics method. Initially, it is necessary to determine the material 

properties such as fracture toughness and fatigue crack propagation, which are 

obtained from standard fracture toughness and crack growth experiments using the 

Compact Tension (CT) specimen. A large number of crack propagation tests under 

different loading types were performed to determine the variability in the material 

properties. Therefore, approximately 10 tests were performed under each loading type, 

including spectrum loading. The effect of the overload ratio was investigated in the 

single overload tests. It was observed that when the overload ratio equals two, the 

crack growth life increases more than three times. Then block loading tests were 

performed, and the effect of the block overload period on crack growth life was 

investigated. In the case of a short cycle of block overload, the crack propagates slower 

than the case of single overload. If the block overload is applied for a long-time new 

plastic zone is created consequently, and it accelerates the crack growth. 

  

The experimental results were compared with variable amplitude loading models in 

the literature, and an improved model was proposed for spectrum loading. Since the 

stress ratio is not included in the equation, the calculated results under random loading 

by only the Wheeler model represent an unrealistic condition. In the literature, some 

modifications to the Wheeler model were proposed to overcome this problem. In this 

dissertation, four different approaches have been used to define the crack growth 

behavior as a function of the stress ratio in the Wheeler model. The first of these 
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approaches is to substitute the Paris-Erdogan C-n coefficients in the Wheeler model 

with the coefficients obtained by gathering the da/dN curves with Walker procedure. 

In other words, experiments with different stress ratios were combined on a curve with 

the Walker procedure, and crack propagation coefficients were obtained. Eventually, 

these coefficients were used directly in the Wheeler model. Secondly, the Forman 

fatigue crack growth coefficients are directly used in the Wheeler Model with a similar 

approach. As the third and fourth approaches, crack propagation life was estimated by 

substituting the Forman or Walker equation into the Wheeler model. Calculations were 

performed by using these approaches under different loading spectrums, and the 

obtained results from each model were plotted for the edge and center of the crack 

front, separately. It was found that Wheeler model with Forman equation gives the 

closest results to the experiment for two- and three-dimensional crack growth. 

  

Since the plane stress condition is dominant on the sides of the specimens, the crack 

propagation rate at the edge is slower than it is at the center of the specimen. For this 

reason, the crack growth retardation effect was not applied in the center of the 

specimen. Crack tunneling, observed in crack propagation tests under variable 

amplitude loading, also supports this approach. Note that only the increasing load 

profiles were taken into account for counting the load profiles in spectrum loading, 

and the decreasing profiles were not used in the crack growth calculation since they 

do not physically open the crack surfaces. 

  

In addition, an improved model, Spectrum Overload (SOL) Index, has been proposed 

for modeling two-dimensional crack propagation under random loading. SOL Index is 

a multiplier to SIF in the crack propagation equations, representing the weight of the 

peaks in the loading spectrum as a percentage. Some studies in the literature have been 

focused on the interaction between load profiles. However, these studies mostly try to 

explain the order of the profiles and the relation of each profile to its neighbors. An 

approach, such as SOL Index, which is calculated along the spectrum for the definition 

of crack growth behavior, has not been seen in the literature. Simulations performed 

with the SP1 and SP2 loading profiles show that the use of SOL Index is appropriate 

for 2-D crack propagation. But simulations without SOL index are closer to 
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experimental results for three-dimensional crack propagation. Since propagation of a 

semi-elliptical surface crack towards the free surfaces is difficult, it is considered that 

the three-dimensional crack propagation rate is not as fast as the two-dimensional 

crack after the overload. As a result, as seen from the simulation results on the LJ 

specimen, the SOL index was not used in the three-dimensional mode-I crack 

propagation analysis. 

  

The material properties data and crack propagation modeling experience with two-

dimensional crack growth were utilized for three-dimensional crack growth. For three-

dimensional crack growth experiments, a non-standard specimen with semi-elliptical 

cracks (modified LJ specimen) was designed by performing finite element analyzes in 

different geometries. An ellipsoid-shaped three-dimensional notch was created. Crack 

propagation tests were performed under different loading conditions after generating 

a pre-crack as the semi-elliptical surface crack around the notch. Transfer functions 

were obtained to calculate the SIF for different sizes and positions of the crack in the 

specimen by performing three-dimensional fracture analyses with combinations of 

aspect ratios and crack depth/length, so that crack propagation can be analyzed for any 

crack reasonable crack sizes and loading spectrum. An independent probabilistic crack 

propagation analysis code has been developed in FORTRAN that uses the SIF transfer 

function obtained for the specimen. Loading spectrum, material properties, initial 

crack size, and some geometric tolerances were defined as input distributions. This 

code also considers the modeling of the crack growth retardation effect caused by 

overload by using a selected model. Analyses are repeated by picking random values 

from the input distributions to calculate the crack propagation lives by employing the 

Monte Carlo probabilistic simulation method. The variations in the crack propagation 

curves were obtained as a result of the Monte Carlo simulation. For each load case, 

approximately 10 two- and three-dimensional crack propagation tests were performed 

in the laboratory. Then, the Monte Carlo simulations were run in the same conditions 

as the tests. The models were calibrated using the experimental results and were further 

verified by additional independent experiments. Thus, the probabilistic fatigue crack 

growth simulation capability, which is the main purpose of this study, was achieved. 
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To give a brief of the results obtained in this thesis; 

 

− Parallel computation of element stiffness matrices and assembly into global 

stiffness matrix in FCPAS was performed to save solution time in fracture 

analyses. 

− The positive parts of the load profiles were used to calculate stress ratio in 

spectrum loading. 

− Spectrum Overload (SOL) Index has been proposed for modelling two-

dimensional crack propagation under random loading.  

− Wheeler model with Forman equation gives the closest results to the 

experiment for two- and three-dimensional crack growth. 

− A new specimen was designed to investigate three-dimensional crack growth, 

and transfer functions were obtained to calculate the SIF. 

− An in-house probabilistic crack propagation code was developed that considers 

the general loading spectrum and variabilities in the governing parameters.  

− The variations in the crack propagation curves were obtained as a result of the 

Monte Carlo simulation. 

 

6.2.  Recommendations for Future Results 

 

In this thesis, mode-I crack propagation life is subjected by using 2-D and 3-D linear 

elastic fracture mechanics principles. Probabilistic life estimation for mixed-mode 

crack propagation can be planned as future research. The plastic zone at the crack tip 

must be calculated, and its effect on crack propagation should be considered under 

mixed-mode for the mentioned study. 

 

The scatters in material properties are more prominent for the studies in non-linear 

fracture mechanics. Probabilistic crack propagation studies can be performed for 

ductile materials or under high-temperature conditions. In this way, significant results 

can be obtained for engineering applications. 
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Prognostic health management and probabilistic fracture mechanics methods can be 

used together. It may be possible to obtain results in a smaller range by using update 

methods (Kalman filter, Bayesian updating, etc.) while performing probabilistic crack 

propagation life estimation during the experiment.
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