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SUMMARY

Keywords: Probabilistic fatigue crack growth, Fracture mechanics, Monte Carlo
simulation

Cracks can be seen in many engineering structures. It is important to determine the
mechanical strength and life of the cracked structure or design a mechanical part with
a damage tolerance approach. It is hard to determine the remaining life of machine
parts exactly, since they include some uncertainties and variations in governing
parameters of the problem, such as geometric dimensions and the variability of
material properties and loading conditions. Therefore, for such problems, crack growth
lives must be estimated by means of probabilistic approaches considering the variables
that affect lives.

In this study, for three-dimensional fatigue crack growth problems, a probabilistic
crack growth life estimation procedure, which also involves Monte Carlo Simulations,
was developed and validated by controlled laboratory experiments. The uncertainty in
material properties affecting fatigue crack propagation life was determined using
standard Compact Tension (CT) specimens machined from 7075-T6 aluminium alloy.
Fatigue crack growth models for constant or variable amplitude loading in the
literature were investigated and an improved model has been proposed. The data
obtained from two-dimensional crack propagation tests were used in three-
dimensional crack propagation simulations. A non-standard specimen made from
Aluminium 7075-T6 has been designed for three-dimensional mode-I fatigue surface
crack growth tests. Surface crack growth experiments under constant and variable
amplitude loads were conducted using this specimen. Fatigue crack growth
simulations were also carried out by considering the geometric tolerances of the
specimen, the scatter of the fatigue crack growth-related material properties and the
variability in loading. Experimental results were compared with simulations for
different crack growth models, allowing validation of the proposed probabilistic
fatigue crack growth methodology.
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FCPAS KULLANILARAK OLASILIK TEMELLI UC-BOYUTLU
KIRILMA MEKANIGI VE UYGULAMALARI ICIN PROSEDUR
OLUSTURULMASI

OZET

Anahtar kelimeler: Olasilik temelli yorulma ¢atlak ilerlemesi, Kirllma mekanigi,
Monte Carlo simulasyonu

Miihendislik yapilarinda kullanilan bir ¢ok elamanda ¢atlaklarla karsilasilmaktadir.
Catlak iceren yapimin mekanik dayaniminin ve Omriiniin belirlenmesi veya tasarim
asamasindaki bir elemanin hasar toleransi yaklasimiyla modellenmesi onemlidir.
Geometrik toleranslar, malzeme 6zellikleri gibi belirsizlikler ve yiikleme sartlarindaki
degiskenliklerden dolayr makina pargalari i¢in kesin bir dmiir tahmininde bulunmak
zordur. Bu nedenle omiir degerlerini etkileyecek degiskenlikler dikkate alinarak
olasilik temelli yaklagimlarda bulunulmaktadir.

Bu c¢alismada, ii¢ boyutlu yorulma gatlak ilerleme problemleri i¢in Monte Carlo
simulasyonu ile olasilik temelli 6miir tahmin yontemi olusturulmus ve deneylerle
dogrulanmistir. Yorulma catlak ilerleme dmriinii etkileyen malzeme 6zelliklerindeki
belirsizlik, 7075-T6 aliiminyum ile standart Compact Tension numunesi kullanilarak
belirlenmistir. Sabit ve degisken genlikli yiikleme altinda literatiirdeki yorulma ¢atlak
ilerleme modelleri degerlendirilmis ve iyilestirilmis model dnerilmistir. iki boyutlu
catlak ilerleme deneylerinde elde edilen veriler ii¢ boyutlu ¢atlak ilerleme analizlerinde
kullanilmigtir. 7075-T6 aliiminyum ile standart olmayan ve {i¢ boyutlu mod-I yiizey
catlagi igeren numune tasarlanmigtir. Bu numune ile sabit ve degisken genlikli yiikler
altinda ii¢ boyutlu catlak ilerleme deneyleri gergeklestirilmistir. Numune tlizerindeki
geometrik toleranslar, malzeme 6zelliklerindeki sagilimlar ve yiikleme sartlarindaki
degiskenlikler —dikkate alinarak yorulma c¢atlak ilerleme simulasyonlari
gerceklestirilmistir. Farkli catlak ilerleme modellerini kullanilarak gergeklestirilen
simulasyon sonugclar1 deneylerle karsilastirilmistir.
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CHAPTER 1. INTRODUCTION

1.1. Background of Fracture Mechanics

Cracks can be seen in many engineering applications because of the material defects,
design and manufacturing. A structure that includes crack, can be safe under short-
term static loading conditions, but in case of fatigue loading, the remaining mechanical
life must be re-evaluated. The structure must be investigated to determine whether the
crack grows under the applied fatigue loading. If so, the crack growth rates and
remaining life must be calculated. Fracture mechanics is a research area that
investigates the mechanical strength and remaining lives of cracked structures by using
the basic principles of mechanics along with some special approaches. The science of
fracture mechanics is vital for sectors such as aviation, space, energy, transportation
and defense, which are critical areas in case of damage, since a large number of
casualties or high maintenance costs may occur. The importance of fracture mechanic
studies is increasing with the developments in aviation, space, nuclear studies, military

and defense systems.

In the 15th century, Leonardo Da Vinci noted an inverse relationship between the
length and fracture load of the wires produced from the same material and having the
same cross-sectional area. Afterward in some studies performed by different scientists,
it has been explained that fracture was caused by material defects and there might be
more defects in a longer wire [1]. Based on these studies A.A. Griffith has published
new studies about fracture theory (1920; 1924) which are known as the first systematic
research on fracture mechanics [1]-[3].

During the Second World War years, the USA launched Emergency Ship Building
Program. Large numbers of the ships built in this program experienced unexpected



damages. Investigation of shipwrecks showed that cracks and gaps occurred during the
welding process triggered these catastrophic failures especially when the materials get
brittle in cold water. After these findings, researchers focused on Griffith's studies,
which had not been popular for years, and research on fracture mechanics has gained

pace.

Irvin [4] published his study and he showed the way to apply fracture mechanics theory
on engineering problems by using stress intensity factors. Thus, studies on Linear
Elastic Fracture Mechanics (LEFM) were accelerated. On the other hand, his approach
is not compatible with ductile materials because of the plastic zone on crack tips. For
ductile materials, J.R. Rice proposed a new method that calculates the strain energy

release rate by using J integral [5].

1.2. Probabilistic Fracture Mechanics

The maintenance period of a machine is directly related to the life of its sub-
components. Therefore, the life of each component must be evaluated separately.
Crack propagation rate of a component for a given load spectrum can be calculated by
using the crack growth properties of the material and its geometry. However, external
forces predicted for machine parts in the design may be different from those under the
operating conditions. Furthermore, load spectrum can be characteristically random
such as the loading profile of an airplane. It is difficult to determine an exact life for
machine parts due to the variability in material properties and the small changes in the
geometry. For this reason, the Probabilistic Fracture Mechanics (PFM) method is
needed to express crack growth life by considering the variability of inputs in crack

growth life equations such as initial crack size, geometry, material properties and load.

If the number of input variables is more than three, it is recommended to use Monte-
Carlo simulation or First/Second Order Reliability Methods (FORM / SORM)
approach [6]. Therefore, Monte Carlo simulation method was adopted in this study.
This method can be explained simply as determining the distribution of the output

values generated by the relation between the output variables and the input variables,



which are randomly picked from their distributions. To obtain the probability
distribution of the output, a re-calculation process is necessary for each randomly

picked input data.

1.3. Literature Review

Modeling of crack growth behavior under fatigue loading is very important for safely
operating the parts containing cracks. It is known that an unstable fracture occurs when
the stress intensity factor reaches the fracture toughness of the material, which can be
obtained experimentally including its scattered variation. Variability in material
properties, loading conditions, geometrical tolerances and other environmental
conditions affect the crack growth rate. For estimating the crack growth life under

operating conditions, probabilistic fracture mechanics is generally used.

During the operation of a machine part, the most effective parameter on crack growth
life is the loading spectrum. The size of the plastic zone in the crack tip changes and

crack growth rate retards due to overload cycles in the loading spectrum.

Early studies related to crack growth focused on constant amplitude loading. The most
common fatigue crack growth equation is Paris-Erdogan Equation [7] in the literature
owing to its simplicity. This equation can be used in the second region of the crack
growth curve and the stress ratio (mean stress effect) is not used. Forman [8], Walker
[9], and Newman [10] proposed new models, considering the stress ratio in the

calculation of the crack growth rate.

As variable amplitude loading results in variations on plastic zone size on the crack
tip, novel approaches with different levels of details addressing this phenomenon were
also proposed. Some models in the literature such as Elber [11], Wheeler [12] and
Willenborg [13] are based on cycle-by-cycle analysis to investigate the interaction
effect in loading profiles. For example, Elber [11] has considered the crack closure
effect, while Wheeler [12] and Willenborg [13] have compared plastic zone sizes

between loading profiles. Another approach is used in several studies, such as Barsom



[14], Hudson [15], Manjunatha [16] with a more general view on loading spectrum
using root mean square. Even though many models have been proposed in the
literature, no universal model is proposed which can be applied to all cases due to the

challenges arising from different characteristics of variable amplitude loading.

Wheeler [12] determined the crack propagation behavior by comparing the plastic
zone size at the crack tip created by the load cycles. If the current plastic zone is in the
boundaries of a larger plastic zone that has already occurred and active, a retardation
multiplier is added to the equation of Paris-Erdogan. The value of the retardation
multiplier is between zero and one. An empirical Wheeler exponent is necessary to
calculate the Wheeler retardation multiplier. Wheeler [12] showed that this exponent
depended on the material and loading spectrum. The exponent can be found by trial
and error, based on the comparison of the calculated life with the experiment. Sheu
B.C. [17] experimentally demonstrated that the exponent in the Wheeler model is also
dependent on the initial crack length and the overload ratio. A new model based on
plastic zone size was proposed by Willenborg [13] with no empirical exponent, and an
effective stress intensity factor is identified and substituted in Forman fatigue crack
growth equation in the Willenborg model. The crack growth retardation is determined
by using the effective stress intensity factor. If the overload ratio is greater than or
equal to 2, it yields a mathematical obstacle. This problem has been solved by adding
a multiplier in the Modified Willenborg model [18]. The capability of modeling crack
growth for underload was enhanced by using a piecewise function, called Generalized
Modified Willenborg Model. Further details of models and formulations are given in
Section 3.6.

Wheeler and/or Willenborg Models were compared with the experimental results in
several studies in the literature. Meggiolaro and Castro [19] calculated the crack
propagation life with different models, using the singular and block loading test spectra
for two-dimensional crack propagation generated by Zhang S et al. [20]. In their study,
the best result was obtained by using the Wheeler Model with a retardation parameter
values between %2 and %22 for different load spectrum types.



Xiaoping et al. [21] proposed a piecewise function of stress ratio for the retardation
multiplier in the Wheeler Model, and the crack growth curves in different stress ratios
were combined to obtain the modified multiplier and exponent. In other words, the
Wheeler Model was related to the stress ratio. In the same study, another parameter is
added to represent the interaction effects between load profiles. A specimen with a
central crack made of 350WT steel was subjected to block loading and results were

compared with the tests and showed good accordance.

Crack growth tests of Center Crack Tension (CCT) specimen, made of 2219-T851
aluminum alloy, were performed under random loading by ASTM in 1981. Three
loading spectrums were taken from an airplane and the loading values are scaled to
specimen levels. Six different studies used this experimental data to estimate crack
growth life were published in a single book [22]. In these studies, Multiparameter
Yield Zone [23], Modified Elber [24], root mean square [15] and Walker FCG
equation in Generalized Willenborg/Chang model were used [25]. The latter model
was also used by considering the negative loads to be equal to zero. None of the models
were found to be specifically used for random loading since the error in the life
estimation changes significantly under different load spectrums. The ratio of the
calculated crack growth life to the test results varies from 0.45 to 1.28.

Wu and Ni [26] has performed two-dimensional crack propagation experiments using
2024-T351 aluminum material under constant amplitude. The average and standard
deviation values of the distribution of crack length versus the number of cycles were
calculated with the data from 30 different tests and it was observed that, as expected,
the standard deviation increased with the number of cycles. Using the probability
model of Yang and Manning [27], they plotted the cumulative probability distribution
compatible with the experimental data.

Monte Carlo Simulation Method is a useful tool for risk assessment in engineering
problems. It is based on the iteration of the solution of the problem by using the
randomly picked input variables. If the number of samples taken from the variables is

sufficient, it gives accurate results but the samples in the Monte Carlo (MC) Method



must be independent of each other. The two interrelated material constants, C and n,
are used for calculation of crack growth rate. Selecting these variables as independent
in the Monte Carlo Simulation will cause inaccurate results. More detailed explanation
of the MC Simulation and sampling process can be found in Annis’s work [28].
Farahmand and Abdi [29] has investigated the effect of fracture toughness K,c and Kin
on crack growth life by using GENPAM, a computer software for probabilistic
material and structural analysis. They used 2219-T87 aluminum alloy, with a fracture
toughness and threshold values having variations between 5% to 10%. A shift was
observed on fatigue crack growth curves due to variation of the considered material

properties.

1.4. Objective of The Present Study

Engineering problems contain inherent uncertainties arising from geometric
dimensions, material properties (elasticity modulus, thermal conduction, crack
propagation properties, etc.) and external loads (load, thermal input, boundary
conditions, etc.). The changes in inputs of the problem affect the variability intervals
of the output parameters obtained from the solution of the problem. For this reason,
the variability of the output parameters is also calculated by using probabilistic

approaches.

In this dissertation, it is aimed to develop a computational method in order to determine
the variability in fracture parameters and crack propagation rates, considering the
variations in load, geometry and material properties using the "Fracture and Crack

Propagation Analysis System (FCPAS)".

Design of experiment (DOE) analysis was performed, and a transfer function was
obtained to calculate KI SIFs for three-dimensional crack on the Lee James specimen
used in tests. To reduce the computation time of DOE analysis, the calculation of the
element stiffness matrices in FRAC3D has been parallelized with OpenMP commands

and the details are explained in Chapter 2.



In Chapter 3; Two-dimensional crack propagation models were evaluated with the data
obtained from the experiments under constant and variable loading to determine the
variations in the crack propagation material properties. Three-dimensional crack
propagation studies were carried out using the data and experiences obtained from
Chapter 3 and the details are explained in Chapter 4. In this context, tests were carried
out in different crack propagation test groups with different loading spectrums using
non-standard specimen with three-dimensional cracks. In Chapter 5, probabilistic
crack growth life predictions were made using Monte Carlo analysis and the results
were verified by experiments. A flowchart is given in Figure 1.1. for the probabilistic

crack growth life prediction.

Inputs |

{ Crack Sizes (a,c)

> Transfer
[ Function—) r Outputs —
Material Properties (C,n) Stress .
o —  Cracked [— Intensity —> Pfrfj}?faga;?;ln
9:/:/ Structure Factors (K) ife (

.

Loads (F)
[t ——

Figure 1.1. A flowchart for the probabilistic crack growth life estimation




CHAPTER 2. PARALLELIZATION OF FINITE ELEMENT
STIFFNESS MATRICES USING OPENMP

In probabilistic studies, a large number of statistical data is required. Since obtaining
statistical data by experiments is costly and time-consuming, Design of Experiment
(DOE) analyses are generally preferred to create a transfer function to calculate the
stress intensity factors (SIF)s as functions of the problem’s governing (input)
parameters. Monte Carlo (MC) simulations are, then, performed by using the
calculated SIFs, and the variations in the input parameters, including the material
properties obtained by experiments. In this study, the above procedure is applied and

the results of MC simulations are verified with those from the related experiments.

Two DOE tables, including 405 and 288 independent cases for fracture analyses were
created by using FCPAS (Fracture and Crack Propagation Analysis System) [30].
Some routines FRAC3D [31], finite element solver of FCPAS, including solver and
stress calculation, were parallelized using OpenMP commands in a previous study
[32]. However, calculation of the element stiffness matrices and assembling them into
the global stiffness matrix were being performed on one processor. In this study, before
performing the DOE analyses for the probabilistic simulations, it is planned to reduce
the solution time with multiple processors in all calculations by using OpenMP
commands in FRAC3D. Further details of the studies using multiple processors will
be given in this section. A paper titled “Implementation of Parallel Computations on
3-D Enriched Finite Elements Used for Fracture Analyses” [33] was also published

using the results in this chapter.



2.1. FRAC3D: Finite Element Solver of Fracture and Crack Propagation
Analyses System (FCPAS)

The use of numerical methods for engineering problems has increased with the
advances in computer technology. These advancements in technology also make it
possible to solve fracture mechanics problems easily for complex geometries.

The Finite Element Method (FEM) is one of the most common numerical methods in
engineering. Since the FEM performs solutions based on nodes, defining the element
type can be considered as the first step. Depending on the element type, element
matrices are created to represent the behavior of elements. Then, a global structural
matrix is generated by assembling the element matrices. External loads and the
boundary conditions are also taken into account in the corresponding matrices and
their solutions.

Displacement of an element {u} can be calculated by using the nodal degree of
freedom {d} and the shape function matrix [N] of the element. Differentiation of the
displacement {u} gives the strains. Strain-nodal displacement matrix [B] is obtained

by differentiation of the shape function matrix [N].

{u} =[N]{d} (2.1
{e} = [0]{u} yields {e} =[B]{d} (2.2)
[B] = [0]{N} (2.3)

Element stiffness matrix in global coordinates can be calculated by using strain-nodal
displacement matrix and elastic property matrix [E] according to Equation (2.4). Ve

denotes the volume of an element.
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[K] = f [BI"[E][B] dV (2.4)
\%

e

Isoparametric formulation of the element stiffness matrix is rewritten in Equation (2.5)
in terms of isoparametric coordinates, ¢, #, p. Note that the isoparametric coordinates
vary between -1 and 1, and the determinant of a Jacobean matrix is added to the

equation.

K= ff [BI"[E][B] ] d{dndp (2.5)

The conventional type of FEM is not suitable for fracture problems because of the
stress singularity problem in the crack tip. The enriched finite element method is one
of the proposed approaches to deal with this obstacle. Strain terms also have
singularity. As we approach the crack tip, it takes very high vaules because of the
singularity. Therefore, it has high level of change. To be able to captute that high level

of change in the strain gradient, more and more integration points are necessary.

FCPAS (Fracture and Crack Propagation Analysis System) [30] is an independent
software that uses the enriched finite element method to calculate stress intensity
factors (SIFs) along a three-dimensional crack front. A solid model is created in
ANSYS and finite element information is taken from ANSYS and converted to FCPAS
finite element input file format. In this process, element and node information along

the crack front is used to identify enriched elements.
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crack front
enriched elements
transition elements

regular elements

Figure 2.1. Enriched and transition elements along the crack front

In Figure 2.1., the enriched elements at the crack front of a finite element model and
the neighboring transition elements are shown. Figure 2.2. shows a representative view

of 20-node enriched element that touches the crack front, which is located in three-

dimensional space.

Figure 2.2. 20-node enriched elements on an arbitrarily oriented crack front [31]

m m ntip
w(n0) = ) NiEm )y +ZoEm,p) <fu(f,n.p> = D NG fu,-> (Z N,(r) K;‘)
=1 =1 =1

m ntip
+Zy(€,m,p) (gu(f.n,p) - Z N;(€,m,p) gu,-> (Z Ny() Ki;)
j=1 i=1
m ntip (26)
G (hu(f, me) = ) NEnp) hu,-> (Z N,() K}ﬁ)
j=1 i=1
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m m ntip
vEMP) = D NE TP vy + 26, ) <f,,(f. me) = ) NEnp) fv,-> (Z N,() K}')
j=1 j=1 i=1

ntip

+Zo(&,1,p) <gu(f, n.p)— Z N;(&,m,p) gv}) <Z Ny(T) Kb)
j=1 i=1
m ntip
+26m.p) (h,,(f. o) = ) NEnp) h,,,-> (Z N,() K}u>
j=1 i=1

(2.7)

m m ntip
W, P) = )" Ni(Em p) Wy + Zo(E1,) (fw(e, me) = ) NEmp) fw,-> <Z N,(D) K;‘)
= j=1 i=1
m ntip
+ZO(EI TI, p) (gw(g' 77' p) - Z IVJ(f' n'p) gW]) <Z Nl(r) K1i1> (28)
j=1 i=1

m ntip
+Zo(&m,p) (hw(f, n,p) — Z N;(§,n.p) hwj> (Z N(T) K1i11>
j=1 i=1

Displacement formulation of enriched finite element is written in Eqn. (2.6) to (2.8).
Nj denotes the shape function of regular elements according to &, n, p local coordinates,
and nodal displacements are labeled as uj, vj and w;j, respectively. The functions fy.y-w,
Qu-v-w, huvw are obtained from the analytically known element of the asymptotic crack
tip displacement expression, and represent the mode I, mode Il and mode Il
displacement components transformed from local to a global coordinate system [31].
Zo(E,m,p) is a function, changing between 0 and 1. Its value is 1 for all enriched finite
elements, and 0 for regular elements. There are also transition elements between
enriched and regular elements. The value of Zo(¢n,p) is either 1 or O for transition

elements depending on neighboring an enriched or regular element. A new term

Z?Ef’ N;(T) K,{ 11, 111 18 added to the end of finite element formulation to calculate the
SIFs with enriched elements in crack front. K} ;, ,;, indicates the SIFs for any element
in crack front under different crack modes. Locally isoparametric coordinate (I')
changes between -1 and 1. The studies of Ayhan and Nied [31], [34] can be referred
for further information about enriched element formulation and their numerical

integration.
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2.2. Calculation of Element Stiffness Matrix by Parallel Computing

In this study, OpenMP directives were used to compute element stiffness matrices in
a parallel manner. OpenMP is a shared-memory parallelization method supported by
many hardware manufacturers, preparing compilers and libraries compatible with
OpenMP. Parallel regions are created between the sentinel "!$" in OpenMP code.
Since the lines starting with an exclamation mark "1"" are the command line in normal
compilers, the code is read only with OpenMP routines in this region. Thus, serial and

parallel regions can be used together in the same code.

Work-sharing and the synchronization between threads are among the most critical
issues in parallelizing. Since all threads read/write shared data at the same time, some

synchronization problems may occur. For this reason, the variables must be classified

Element no:
lton

Determine element
type

|

Calculate shape
functions

L

Calculate element
stiffness matrix

}

Assemble on global
stiffness matrix

as private or shared, carefully.

Figure 2.3. Serial processing algorithm

A serial algorithm is given in Figure 2.3. This algorithm calculates an element stiffness
matrix using the shape function related to the element type. Then, assembles it into a
global stiffness matrix for each element. Note that, high order integral calculation is
required for the shape functions of enriched elements, and it is time-consuming as

these steps are running for each element one by one in a serial manner.
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| Number of elements: n |

| Input number of thread: t |

Thread Number:1 | Thread Number: t
7/ Element no: 1 / _______ / Element no: n ﬁ—
¥ }
Determine element Determine element
fype type
Calculate shape Calculat_e shape
functions functions
Calculate element Calculate element
stiffness matrix stiffness matrix
! I
Assemble on global stiffness

matrix

Figure 2.4. Parallel processing algorithm

The calculations of the elements can be performed at the same time by work-sharing
as seen in Figure 2.4., so that the total processing time can be shortened. In FCPAS,
the shape function is calculated by calling the related subroutine, after determining the
element types according to the numbers and locations of nodes. Parallelizing the
"Calling a sub-routine™ makes it possible to calculate the element stiffness matrix and
assemble it in the global stiffness matrix for more than one element at the same time.
In order for the same global stiffness matrix is to be reached by each thread, it must be
defined as shared. But, at a given time, only one thread must be operating in the global
stiffness matrix in order to avoid a reduction problem during the addition of the
element stiffness matrix to the global stiffness matrix. Calculation of an element
stiffness matrix must be done by only one thread. The corresponding components

belonging to the element, such as element load matrix, must be private.

2.3. Case Studies and The Results

11 different cases, such as surface crack, edge crack, corner crack and inclined surface

crack were analyzed with the serial and parallel version of FCPAS in the same
computer (8 GB RAM, i7-4710 2.5 GHz CPU). All cases were in mode-I loading
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condition except inclined surface crack that generates mode-I, -1l and -111 SIFs. Details

of the models can be seen in Table 2.1.

Table 2.1. Details of the 11 cases and their comparisons between serial and parallel computing time

Element Matrix Calculation &
Model | Number of | Number | Enriched | Transition Assembly

No Elements | of Nodes | Elements | Elements Serial [s] | Parallel (2) [s] %
gain
1 499 3886 6 1.82 1.27 30.2
2 2826 20084 12 4.43 2.82 36.3
3 6104 34673 12 5.87 3.52 40.0
4 33833 62123 100 300 210.12 67.58 67.9
5 39012 71814 200 400 312.87 101.99 67.3
6 46948 91513 160 480 315.55 110.99 64.8
7 52861 106357 160 480 347.65 111.0 68.1
8 57174 117271 240 720 488.79 166.34 66.0
9 77817 143350 200 600 433.00 138.85 67.9
10 88859 195934 480 1440 981.43 335.66 65.8
11 135186 251842 602 1814 1290.17 418.11 67.6

FCPAS writes “wall clock time” of the main calculation processes in a file. The time

spent for “Element Matrix Calculation & Assembly” was read from the file and

presented in Table 2.1. along with the percentage of saved time for all cases. The total

number of elements, number of the enriched and transition elements were given

separately. As the total number of enriched and transition elements (non-regular

element) increases, the time difference between serial and parallel computing has

become significant. Parallel computing is more efficient for a high number of enriched

and transition elements since it takes more solution time to calculate the stiffness

matrices requiring high order numerical integrations. Figure 2.5. shows the relation

between the computation time and the number of non-regular elements.



16

1400

O Serial X Parallel (2)

1200
1000
800

600

Time (second)

400

200

0 500 1000 1500 2000 2500
Non-Regular element numbers

Figure 2.5. Computation time vs total number of non-regular elements

The SIFs were calculated for all cases and the results of parallel processing were
verified with the results of serial computing. A detailed view of the model and
calculated SIFs are given in Figure 2.6. - Figure 2.11. The cases of 5, 6, 7, 8 and 10
are surface crack in a finite thickness plate with the same aspect ratio and the graph
was plotted only for case 5. As seen in Figure 2.6. - Figure 2.11. there is no difference

between the results of serial and parallel computing methods.
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Figure 2.6. Edge crack in a finite thickness plate, a/w = 0.7 (Case 1)
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Figure 2.7. Central crack on a functionally graded material (Case 2)
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Figure 2.8. Edge crack in a finite thickness plate, a/w = 0.1 (Case 3)
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Figure 2.9. Surface crack in a finite thickness plate, a/c = 0.33 (Case 4)
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Figure 2.10. Surface crack in a plate, a/c =2 — submodelling (Case 5)
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Figure 2.11. Surface crack in a finite thickness plate, a/c = 0.33 (Case 9)
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Figure 2.12. Validation model for the inclined surface crack in a finite thickness plate (Case 11)



CHAPTER 3. PROBABILISTIC FRACTURE  MECHANICS
STUDIES FOR TWO-DIMENSIONAL FATIGUE
CRACK GROWTH PROBLEMS

In this chapter, axial tensile, fracture toughness and crack propagation tests under
constant and variable-amplitude loads are discussed for usage in probabilistic fracture
mechanics studies. The variabilities of material properties were determined by axial
tensile, fracture toughness and constant-amplitude crack propagation tests. Using these
data, the variable amplitude loading test results were compared with the existing crack

propagation models in the literature and the results were presented.

This chapter has been prepared by using data from the reports of the TUBITAK-funded
project, 217M690 “Fracture and Crack Propagation System — Phase 3 [35].

3.1. Determination of Variabilities on Fracture and Crack Growth Material

Properties

In this section, the variability caused by material properties was experimentally
investigated. Certificated hot-rolled 7075-T651 aluminum alloy slabs with a thickness
of 30 mm were used in all experiments. The crack orientation is in the direction of L-
T. The specimens used in axial tensile or two-dimensional crack growth tests were
machined by CNC milling at Sakarya University, Engineering Faculty, Laboratory of
Department of Mechanical Engineering. Experiments were done by MTS
axial/torsional fatigue test machine in Sakarya University Research, Development and
Application Center (SARGEM). The axial tension and the torque capacity of the
machine are 100 kN and 1100 Nm, respectively.
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3.2. Axial Tension Tests

First, axial tension tests were performed to determine the mechanical strength of the
material. The yield stresses were obtained as 497, 512 and 507 MPa from three tests
with specimens of 90 mm critical length and 5.5 mm thickness. Stress-strain curves of
these tests are given in Figure 3.1.

Note: Displacements were measured on the actuator since the aim of the tensile test

was to determine yield stress. An axial extensometer was not used.
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Figure 3.1. Stress-Strain curves for aluminum 7075-T651

After the tensile tests, it was observed that the fracture was in the critical section and
was generally perpendicular to the loading direction, as expected for a brittle material

under tensile stress. The view of the specimens after tests are given in Figure 3.2.

7 R T WO W s ) (5 [ 5 g S R .

Figure 3.2. View of specimens after tensile testing
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3.3. Fracture Toughness Tests

29 tests were carried out under the same load conditions to determine the variability
of fracture toughness. The 7075-T651 aluminum alloy specimens used in the tests were
identical and produced according to ASTM E399-12 standard [36]. The specimens
were of 25 mm thickness. The width of the specimen (the distance between the center
of the loading pin and back) is 50 mm and the other dimensions that depends on the
width according to ASTM E399-12. Technical drawing of the compact tension (CT)

specimen is given in Figure 3.3.
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Figure 3.3. Technical drawing of CT specimen

Brief notes related to the ASTM E399-12 standard are given below.

— Specimen thickness B, must be compatible with the inequality B >
2
2.5 (K’C/Uy) . Therefore, the thickness value must be greater than 10 mm for
aluminum 7075 alloy.

2
— Specimen width w, must be compatible with the inequality w > 5 (K’C/gy)
In this condition, the width must be greater than 16.5 mm for 7075 aluminum

alloy.
— The width must be between 2 and 4 times of thickness.
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— The applied load cannot be greater than 80% of the fracture toughness while
generating the precrack.

— Loading rate must be between 0.55 and 2.75 MPa.m%%/s in fracture toughness
test.

— After the fracture toughness test, the crack front must be measured from three
different points that are equally spaced along with the thickness. The difference
between one of the three points and the average of them cannot be greater than

10%. The symmetry of the specimen can be verified with this condition.

The relation between fracture load and stress intensity factor is empirically given by
ASTM E399-12 in Equation 3.1.

2+2
Kic = ;—Q\/W (1(_2""3)/2 [0.866 +4.64 (%) —13.32 (%)2 +14.72 (%)3 —56 (%)4] 3.1)
w

Pqis the fracture load and Kc is the fracture toughness, w is the width of the specimen
in Eqn. (3.1). Pq is determined by the trend of the force-displacement curve. Force-
displacement curve obtained from the test can be classified into three types as seen in
Figure 3.4. and the procedure of determination of Pq was written in the standard for
each type. If the force-displacement curve is not linear, like type-I, a linear line is
drawn by using the 95% secant of the curve and the intersection point of two lines is
equal to fracture load. Type-I1I is seen in the tests where a partial fracture occurs on the
specimen before fast fracture. Fracture load is equal to the first jump point on the curve.
Type-I11 curve is linear and does not contain any discontinuity during the test, thus the

fracture load is the maximum load.
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Figure 3.4. Typical force-displacement curves obtained from fracture toughness tests [36]

CT specimens were manufactured in the L-T direction and experimental procedures
were determined according to ASTM E-399 as explained above. It is expected that the
fracture toughness for 7075-T6 material is about 29 MPa.m%®, The fatigue load was
calculated by using Egn. (3.1) as the half of fracture toughness, and applied to the
specimen to generate precrack. The stress ratio (R) of the fatigue load was 0.1. The
final length of the precrack was expected to be 25 mm, and half millimetric labels were
pasted on the surfaces to measure the crack length during the tests. Two microscope
cameras were placed front and back sides of the specimen to monitor the crack growth.
Precrack generating process was stopped when the crack reached 25 mm. Note that;
this precrack length on surfaces is not the exact dimension used in the calculation of
fracture toughness. It is measured on the cracked surface after the fracture test. The

experimental setup is given in Figure 3.5.
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Figure 3.5. Experimental test setup

After the precracking process, axial tension force was applied with a loading rate of
0.6 kN/s and the specimens were fractured. The force-displacement data were recorded
during the test. Images were taken from the fracture surfaces and the precrack length
was measured from equally divided three different points ai, az, as along with the
thickness by using pixel size with Analyzing Digital Images-ADI16 [37] software and
the average of three measurements were taken as the precrack length (Analyzing

Digital Images-ADI16 software is free for noncommercial use).

axisofthepin o ack  fast fracture
hole surface

Figure 3.6. Measurement of precrack length on fracture surface
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Fracture load Pq was determined by using the force-displacement curves, obtained
from each fracture toughness test. According to Eqn (3.1), fracture toughness was
calculated by using the average precrack length. Figure 3.7. is given as an example of

force-displacement curves from tests.

29 different fracture toughness tests are listed in Table 3.1. Fracture toughness values
K¢ are presented in the last column of the table. The average of K¢ is 29.957 MPa.m%>,

and the standard deviation and variance are 1.306 and 1.705, respectively.
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Figure 3.7. Force-displacement curves from some tests and determination of the fracture load



Table 3.1. Detailed information for all of fracture toughness tests

Max. Load

e [for 'Zlif\lc)rac" (rr(r#n) (rr?ﬁn) (n??n) (i%rﬁ)) (Eﬁ) Mo s
20171011 01| 7.2 | 26.080 | 26580 | 26.700 | 26.453 | 15.99 | 30.290
20171011 02 | 7.2 | 265540 | 26.700 | 26.140 | 26.460 | 14.34 | 27.181
20171012 01 | 7.2 | 26.720 | 27.490 | 27550 | 27.253 | 14.45 | 28.892
20171016 01 | 7.2 | 26.170 | 25.970 | 25.670 | 25.937 | 1652 | 30.277
20171016 02 | 72 | 26.710 | 26.460 | 26.200 | 26.487 | 1624 | 30.842
20171027 01| 50 | 26590 | 26.860 | 26.480 | 26.643 | 15.45 | 29.650
20171102 01| 60 | 26550 | 27.100 | 26.950 | 26.867 | 14.88 | 28.980
20171104 01| 56 | 25.960 | 26.620 | 26.600 | 26.393 | 14.88 | 28.080
20171123 01| 5.6 | 27.700 | 27.430 | 26.630 | 27.253 | 13.81 | 27.606
20171127 02 | 60 | 27.300 | 26.770 | 26.370 | 26.813 | 15.77 | 30.594
20171207 02 | 60 | 26.030 | 26.410 | 26.820 | 26.420 | 16.14 | 30.519
20171212 01| 60 | 25970 | 26.300 | 26.790 | 26.353 | 14.83 | 27.920
20171212 02 | 58 | 27610 | 27.110 | 26,570 | 27.097 | 15.26 | 30.186
20180110 01| 6.2 | 26.630 | 26570 | 26.060 | 26.420 | 15.20 | 28.745
20180117 01| 6.2 | 27.060 | 26.900 | 26.340 | 26.767 | 16.05 | 31.055
20180124 01| 6.2 | 26.740 | 26.450 | 26.740 | 26.643 | 16.49 | 31.636
20180124 02 | 6.2 | 26.410 | 26.350 | 26.660 | 26.473 | 16.61 | 31521
20180124 04 | 62 | 25.910 | 26.180 | 26.350 | 26.147 | 16.85 | 31.201
20180125 02 | 64 | 25.670 | 26.050 | 26.610 | 26.110 | 16.35 | 30.299
20180125 03 | 64 | 26270 | 25.800 | 25.870 | 25.980 | 16.68 | 30.657
20180125 04 | 64 | 25580 | 25550 | 26.080 | 25.737 | 17.08 | 30.894
20180212 01 | 7.0 | 26500 | 26.440 | 26.630 | 26.523 | 16.71 | 31.810
20180212 02 | 7.0 | 26.600 | 27.320 | 26.870 | 26.930 | 1552 | 30.349
20180213 01 | 7.0 | 26530 | 27.250 | 27.320 | 27.033 | 1455 | 28.652
20180213 02 | 7.0 | 26950 | 27.270 | 26.770 | 26.997 | 1532 | 30.090
20180213 03 | 7.0 | 25.670 | 25.840 | 26.250 | 25.920 | 16.90 | 30.935
20180214 01| 7.0 | 26.600 | 27.040 | 26.930 | 26.857 | 1451 | 28.244
20180214 02 | 70 | 26.080 | 25.700 | 26.100 | 25.960 | 16.38 | 30.063
20180502 01| 7.0 | 26.110 | 26.040 | 26.670 | 26273 | 16.85 | 31550
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Histograms were plotted with the fracture toughness values given in Table 3.1. with

four different distribution type (normal, lognormal, weibull, gamma), as shown in

Figure 3.8.
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Figure 3.8. Histogram graphs for fracture toughness a) Normal distribution, b) Lognormal distribution, ¢) Weibull

distribution, d) Gamma Distribution

The top view of all specimens after fracture toughness tests are shown in Figure 3.9.

Figure 3.9. Top view of the used specimens for fracture tests
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3.4. Fatigue Crack Growth Tests Under Constant Amplitude Loading

Fatigue crack growth tests under constant amplitude loading were performed to
determine the variability in crack growth properties. CT specimens were machined
from 7075-T651 with the dimensions given in Figure 3.3. and the crack was oriented
in L-T direction. ASTM E647-15 [38] standard was applied during the tests. Some

points regarding the standard are provided below.

— Crack growth direction is expected to be planar under mode-I loading, so the
crack growth angle must be less than 10 degrees with the plane.

— The precrack length must be greater than one-tenth of the specimen thickness.

— The applied maximum load to generate the precrack must be smaller than the
initial SIF of the fatigue crack growth test.

— Fatigue crack growth length must be measured from both sides of the specimen
and the average value must be used in the calculations. The difference between
the measurements cannot exceed one-fourth of the specimen thickness.

— 2% sensitivity For maximum fatigue load, should be provided in
measurements.

— If“a/w” is smaller than 0.2, Eqn (3.1) cannot be used to calculate the SIF.

The numbers of the fatigue crack growth tests are given in Table 3.2. Constant
amplitude tests were planned with four different stress ratios are also shown in Table
3.2. More tests were performed for R = 0.1 and 0.5 than for R = 0.7 and 0.8 stress ratio.
For a given AK, the crack growth life was shorter in R = 0.7 and 0.8 tests than R = 0.1
and 0.5 tests, therefore the number of tests was not increased in R = 0.7 and 0.8 tests.
The crack length was measured by two microscope cameras and crack opening

displacement (COD) gage, placed on the specimen.
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Table 3.2. Test matrix for FCG under constant amplitude

Test Count Specimen Type
Fatigue crack growth tests under constant amplitude — R = 0.1 21 CT
Fatigue crack growth tests under constant amplitude — R = 0.5 20 CT
Fatigue crack growth tests under constant amplitude — R = 0.7 10 CT
Fatigue crack growth tests under constant amplitude — R = 0.8 10 CT

During the tests, the images are taken from two sides of the specimen by two
microscope cameras, and the cycle count of the test were monitored from the screen
window of the control software of the fatigue machine. The screen was captured
periodically by an in-house software. The crack length was measured based on pixel
size by using the captured pictures, and crack growth curves were plotted, accordingly.
Pixel size was calibrated with a sticker of half-millimeter scale steps. A sample of

screen view is seen in Figure 3.10.

SIS (]

Camera_1 140068000 N Ek=10000 A%0 M550
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|

05 |l L
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Figure 3.10. Camera views and the cycle during the fatigue crack growth test

3.4.1. FCG tests under constant amplitude R = 0.1

21 fatigue crack growth tests were performed under constant amplitude loading with
stress ratio of 0.1. The linear region was determined from crack growth curves, and C-
n crack growth constants in Paris-Erdogan Equation (3.2) were found by using the
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trend line tool in Microsoft Excel. One of the graphs of these tests is shown in Figure
3.11. All tests in this category are given in Table 3.3. in detail. In Figure 3.11., da/dN
- AK measurements on the front and back surfaces are shown with triangle and square
markers, respectively. Also, the average values are shown with circle symbols. The
trend line and its equation can also be seen in the same graph. Constants in Paris-
Erdogan Equation (3.2) are obtained by using the equation of the trend line. The crack

length versus cycle graph is also given in Figure 3.11.
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Figure 3.11. Crack growth curves, R = 0.1

Paris-Erdogan constants obtained from all tests under R = 0.1 conditions are also
provided in Table 3.3. In the first two tests, a highly scattered crack growth data were
observed. Calculated constants using these tests were considered as outliers and were

marked in red.

Table 3.3. Details of the R = 0.1 constant amplitude crack growth tests

Precrack Fatigue crack growth
Max. ISthttaiss Max.
Specimen Load for | aqvg) FCG
for Cycle C n
Name Precrack | (mm) £CG load
(kN) R (kN)

20171017_01 7.0 26.445 0.1 9.0 | 4641 | 5.785E-21 | 13.822
20171019 01 5.0 25.670 0.1 6.5 | 15278 | 1.347E-14 | 2.368
20171020 01 5.0 26.350 0.1 6.5 | 12767 | 9.678E-08 | 3.406
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Table 3.3. Details of the R = 0.1 constant amplitude crack growth tests (Continued)

20171023_01 5.6 25.215 0.1 6.5 | 10925 | 2.150E-07 | 3.177
20171108_01 5.6 25.785 0.1 6.2 | 15787 | 7.421E-07 | 2.569
20171122 01 5.6 24.925 0.1 6.2 | 21429 | 9.993E-07 | 2.432
20171128 01 5.6 25.115 0.1 6.2 | 12900 | 2.061E-07 | 3.202
20171208 01 5.8 25.745 0.1 6.2 | 21264 | 1.227E-07 | 3.161
20171213 01 5.8 25.745 0.1 6.2 | 13515 | 1.340E-06 | 2.349
20171215 01 6.0 25.765 0.1 6.2 | 13325 | 1.120E-06 | 2.511
20180108 01 6.0 25.440 0.1 6.5 | 15022 | 1.633E-07 | 3.159
20180109 01 6.0 25.840 0.1 6.5 | 12615 | 1.859E-06 | 2.279
20180424 01 6.2 25.450 0.1 7.0 | 14576 | 4.039E-07 | 2.805
20180425_01 6.4 25.235 0.1 7.0 | 14545 | 2.141E-06 | 2.192
20180425_02 6.6 25.710 0.1 7.0 | 9217 | 2.611E-08 | 3.948
20180719 _01 6.4 25.865 0.1 7.0 | 13028 | 5.041E-07 | 2.728
20180720_01 6.4 25.930 0.1 7.0 | 12239 | 1.828E-07 | 3.103
20180724 01 6.4 25.765 0.1 7.0 | 11749 | 4.353E-07 | 2.815
20180724 02 6.4 25.800 0.1 7.0 | 11416 | 2.211E-07 | 3.082
20180730_01 6.4 25.743 0.1 7.0 | 11274 | 3.841E-07 | 2.869
20180806_02 6.4 25.530 0.1 7.0 | 13079 | 4.421E-07 | 2.776

Five different studies [39]-[43] which include crack growth constants for 7075-T6
aluminum alloy under R = 0.1 were used to validate the experimentally determined C-
n constants in this study. Crack growth rates were calculated by using Paris-Erdogan
Equation (3.2) with different C-n constants between AK = 10 — 30 MPa.m°%°.
Calculated crack growth rates and their comparisons with data in the literature can be
seen in Figure 3.12. Calculated crack growth rates are drawn with black dashed lines
for the given values of C-n in Table 3.3. and colored lines are used for the literature
data. The calculated crack growth rates with obtained C-n values are in line with the
literature data as seen in Figure 3.12. In addition, the variability of experimental results

in data obtained in this study is close to that of the data from the literature.
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Figure 3.12. Comparison experimentally obtained C-n with data from the literature, R =0.1

3.4.2. FCG tests under constant amplitude R =0.5

20 fatigue crack growth tests were carried out under constant amplitude loading with
the stress ratio of 0.5. The same procedures of R = 0.1 were adopted in these tests. As
expected, crack propagation life under R = 0.5 is longer than R = 0.1 for the same
maximum fatigue load (Pmax= 7 KN) since the amplitude of the alternating fatigue load
is smaller than that of R = 0.1. One of the graphs for these tests is shown in Figure
3.13. Also, detailed information of all tests related to this category can be seen in Table
3.4.
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Figure 3.13. Crack growth curves, R = 0.5
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Table 3.4. Details of the R = 0.5 constant amplitude crack growth tests

Precrack Fatigue crack growth
. Max. i‘:iss Max.
SpNeC|men Load for (avg) for FCG Cycle c N

ame Precrack | (mm) FCG load

(kN) R (kN)
20180430 01 6.4 25.460 0.5 7.0 28947 | 1.132E-06 | 2.690
20180503 01 6.4 25.705 0.5 7.0 29352 | 9.334E-07 | 2.783
20180511 01 6.4 25.331 0.5 7.0 29147 | 3.466E-06 | 2.164
20180507 01 6.4 25.772 0.5 7.0 26031 | 7.139E-07 | 2.942
20180514 01 6.4 25.251 0.5 7.0 37341 | 1.146E-06 | 2.654
20180515 01 6.4 25.820 0.5 7.0 32804 | 2.135E-07 | 3.437
20180515 02 6.4 25.345 0.5 7.0 33061 | 8.331E-07 | 2.775
20180516 01 6.4 25.345 0.5 7.0 32390 | 1.074E-06 | 2.728
20180517 01 6.4 25.380 0.5 7.0 29452 | 1.513E-06 | 2.600
20180521 01 6.4 25.379 0.5 7.0 29868 | 6.015E-07 | 3.050
20180731 01 6.4 25.439 0.5 7.0 30055 | 6.721E-07 | 2.946
20180731 02 6.4 26.615 0.5 7.0 24606 | 3.067E-07 | 3.306
20180801 01 6.4 25.850 0.5 7.0 27094 | 6.004E-07 | 3.026
20180804 01 6.4 25.740 0.5 7.0 31630 | 1.116E-06 | 2.656
20180804 02 6.4 25.545 0.5 7.0 23423 | 2.426E-07 | 3.532
20180805 01 6.4 25.810 0.5 7.0 33592 | 8.701E-07 | 2.764
20180805 _02 6.4 25.647 0.5 7.0 33650 | 9.762E-07 | 2.732
20180806 01 6.4 26.070 0.5 7.0 30112 | 6.754E-07 | 2.918
20180806 03 6.4 26.154 0.5 7.0 26971 | 8.078E-07 | 2.834
20180806 04 6.4 26.070 0.5 7.0 28651 | 2.116E-06 | 2.383

3.4.3. FCG tests under constant amplitude R = 0.7

10 fatigue crack growth tests were performed under constant amplitude loading with
the stress ratio of 0.7. The same procedures of R = 0.1 were adopted in these tests.
Crack propagation life under R = 0.7 is longer than R = 0.1 and 0.5 for the same
maximum fatigue load (Pmax= 7 kN). Thus, the maximum fatigue load was set as 10
kKN. One of the graphs for these tests is shown in Figure 3.14. Also, detailed

information of all tests related to this category can be seen in Table 3.5.
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Figure 3.14. Crack growth curves, R = 0.7

Table 3.5. Details of the R = 0.7 constant amplitude crack growth tests

Precrack Fatigue crack growth
Max. Stress Max.
oo | bk | (o | e | b | o | e |

(kN) R (kN)
20180604 01 6.4 25.815 0.7 7.0 111151 | 3.329E-07 | 3.437
20180605 01 6.4 26.095 0.7 7.0 91726 | 9.635E-07 | 2.927
20180607 01 6.4 25.596 0.7 7.0 119324 | 5.146E-07 | 3.245
20180613 01 6.4 25.610 0.7 10.0 31985 | 1.595E-06 | 2.639
20180710 01 6.4 25.610 0.7 10.0 26274 | 9.292E-08 | 4.250
20180716 01 6.4 26.020 0.7 10.0 24130 | 1.140E-07 | 4.097
20180717 01 6.4 25.585 0.7 10.0 31901 | 2.692E-07 | 3.590
20180718 01 6.4 25.665 0.7 10.0 29900 | 7.891E-07 | 3.044
20180719 02 6.4 25.975 0.7 10.0 31273 | 1.719E-07 | 3.770
20180903 01 6.4 26.300 0.7 10.0 21983 | 3.312E-07 | 3.503

3.4.4. FCG tests under constant amplitude R = 0.8

The last constant amplitude loading test group is generated with the R = 0.8 stress
ratio. As the upper and lower levels of the load are very close to each other for R =
0.8, crack growth is the slowest among the constant amplitude loading tests. Initially
10 kN maximum fatigue loading was applied to the specimen, then the load was
changed to 11.5 kN incrementally to obtain the desired crack growth life. Crack
propagation life under R = 0.8 is longer than R = 0.7 for the same maximum fatigue
load (Pmax= 10 kN). One of the graphs for these tests is shown in Figure 3.15. Also,

detailed information of all tests related to this category can be seen in Table 3.6.
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Figure 3.15. Crack growth curves, R =0.8

Table 3.6. Details of the R = 0.8 constant amplitude crack growth tests

Precrack Fatigue crack growth
Max. %t;fis; Max.
Specimen Load for A(avg) FCG
for Cycle C n
Name Precrack | (mm) £CG load
(kN) AN (1)

20180619_01 6.4 25.599 0.8 10.0 | 68327 | 9.985E-07 | 3.174
20180620_01 6.4 26.030 0.8 12.0 | 24481 | 2.725E-09 | 6.873
20180622_01 6.4 25.837 0.8 11.0 | 51953 | 5.826E-07 | 3.526
20180626_01 7.0 26.155 0.8 115 | 31503 | 1.292E-09 | 7.446
20180628_01 6.4 26.010 0.8 115 | 28114 | 3.837E-07 | 3.847
20180629 01 7.0 26.437 0.8 11.5 | 33542 | 6.236E-08 | 4.882
20180702_01 6.4 25.996 0.8 11.5 | 41972 | 1.332E-07 | 4.326
20180704_01 6.4 25.549 0.8 11.5 | 32035 | 2.887E-08 | 5.589
20180709 01 6.4 25.765 0.8 11.5 | 39372 | 2.522E-08 | 5.424
20180709_02 6.4 25.769 0.8 115 | 40772 | 3.316E-08 | 5.313

3.4.5. Investigation of variation in crack growth rates under constant amplitude

loading

C-n constants of each test were presented in Table 3.3. - Table 3.6. The variability in
crack growth rates for different C-n values were calculated by using Equation (3.2).

The calculations were performed for the initial, middle and last values of AK.

Many types of distributions can represent the scatter obtained in experiments. To select
a distribution type and use it through the following steps, the distribution type that best
fits the obtained data was analyzed. 12 different distribution types were examined in
MINITAB software [44], and the results are given in Table 3.7. The abbreviation "AD"
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in Table 3.7. refers to the Anderson-Darling value. For a good distribution fit, low
values of AD are desired. “P” is another important parameter and if the “P” value is
smaller than 0.05, it means that the selected distribution model does not give the
correct results. Six distribution types gave appropriate results. For all cases in Table
3.7., the highest “P” value is marked in green and invalid cases of “P” values are
marked in red. All cases were examined, and it was concluded that the Lognormal

distribution is the most suitable model for the obtained data.

Table 3.7. Results of different distribution models

R=01 First Point Mid-Point End Point
Distribution AD P AD P AD P
Normal 0.359 0.413 0.881 0.019 1.041 0.007
Lognormal 0.343 0.452 0.523 0.16 0.417 0.298
Exponential 5.298 <0.003 5.565 <0.003 3.949 <0.003
2-Parameter Exponential 1.84 <0.010 0.286 >0.250 0.227 >0.250
Weibull 0.448 >0.250 1.008 <0.010 0.918 0.017
Gamma 0.33 >0.250 0.649 0.092 0.595 0.136

R=05 First Point Mid-Point End Point
Distribution AD P AD P AD P
Normal 0.357 0.42 0.782 0.035 0.873 0.02
Lognormal 0.365 0.403 0.477 0.211 0.414 0.305
Exponential 7.433 <0.003 6.882 <0.003 5.616 <0.003
2-Parameter Exponential | 3.379 <0.010 0.462 >0.250 1.233 0.03
Weibull 0.619 0.096 1.307 <0.010 1.089 <0.010
Gamma 0.337 >0.250 0.553 0.173 0.531 0.193

R=0.7 First Point Mid-Point End Point
Distribution AD P AD P AD P
Normal 0.31 0.497 0.765 0.031 0.66 0.059
Lognormal 0.327 0.45 0.616 0.078 0.431 0.243
Exponential 3.846 <0.003 3.541 <0.003 2.903 <0.003
2-Parameter Exponential 1.33 0.012 0.497 >0.250 0.597 0.185
Weibull 0.382 >0.250 0.904 0.017 0.719 0.049
Gamma 0.343 >0.250 0.689 0.076 0.521 0.203

R=0.8 First Point Mid-Point End Point
Distribution AD P AD P AD P
Normal 0.398 0.297 0.581 0.096 0.539 0.123
Lognormal 0.33 0.443 0.433 0.24 0.337 0.426
Exponential 2.53 <0.003 3.278 <0.003 2.19 0.004
2-Parameter Exponential | 0.501 >0.250 0.617 0.169 0.185 >0.250
Weibull 0.453 0.243 0.697 0.057 0.508 0.189
Gamma 0.392 >0.250 0.509 0.214 0.431 >0.250
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Histograms were obtained using MINITAB [44] for specific AK values by using da /
dN curves calculated for different C-n values in cases of R = 0.1, 0.5, 0.7, 0.8 stress
ratios, respectively. The horizontal axis of graphs was labeled as da/dN per 1000 cycles
for the initial, middle and final values of AK and are shown in Figure 3.16. -Figure

3.19.
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Figure 3.17. da/dN variations under constant amplitude loading, R = 0.5
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3.5. Fatigue Crack Growth Tests Under Variable Amplitude Loading

Single overload, block loading and random loading tests are discussed in this section.
The literature has not provided any standard for the variable amplitude loading tests.
CT specimen with the given dimensions in Figure 3.3. is used in the variable amplitude
loading tests for two-dimensional crack growth. Performed tests in this category are
provided in Table 3.8.

Table 3.8. Test matrix for FCG under variable amplitude

Test Performed | Specimen Type
Single Overload 9 CT
Single Underload 5 CT
Block Overload 14 CT
Block Underload 3 CT
Random Loading (Artificial spectrum) 11 CT
Random Loading (Partial FALSTAFF) 13 CT

3.5.1. Fatigue crack growth under single overload

Fatigue crack growth was initiated under 7 kN fatigue loading and 0.1 stress ratio by
using CT specimen having a precrack. While running the test under constant
amplitude, a single overload was applied at the 7000th cycle. The single overload was
9 kN in the early tests, but since the expected retardation effect could not be observed,
the magnitude of the single overload was increased for the following tests. During the
test, the crack was monitored with two microscope cameras from the back and front
surfaces of the specimen. Crack growth curves were plotted by pixel size measurement
of pictures. Properties of single overload and the other information about tests are

given in Table 3.9.
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Table 3.9. Single overload tests

Single overload Precrack Fatigue crack growth
Specimen Ritt{gs%i)r Max. Load a Rittirc?sfi)r Max. Load
P for Precrack | @9 for FCG  |Fou/Fawan| Cycle
Name precrack (mm) FCG
(kN) (kN)
R R

20181031 01 0.1 6.4 24.930 0.1 7.0 2.00 28294
20181101 01 0.1 6.4 25.015 0.1 7.0 1.71 15649
20181005 01 0.1 6.4 24.985 0.1 7.0 1.71 13898
20181007 01 0.1 6.4 24.800 0.1 7.0 1.57 13239
20181012 01 0.1 6.4 24.787 0.1 7.0 1.29 11529
20181013 01 0.1 6.4 24.860 0.1 7.0 1.29 12654
20181013 02 0.1 6.4 24.805 0.1 7.0 1.86 18401
20181014 01 0.1 6.4 24.461 0.1 7.0 1.86 17902
20181014 02 0.1 6.4 24.628 0.1 7.0 1.57 16488

The effect of using different single overload magnitudes on crack growth life was
investigated experimentally. The retardation effect increased in accordance with the
application of greater magnitudes of single overload. In addition, it has been observed
that the low ratio of single overload (1.29) did not affect crack propagation life

significantly.
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Figure 3.20. Effect of single overload ratio on crack growth life



41

3.5.2. Fatigue crack growth under single underload

The performed experiments indicate that the single underload does not affect the crack
propagation life, similar to the literature. Note that, the term underload here means a
decrease in load, but the specimen is always in tension and no compression effect is
applied to crack surfaces. The compression effect on the crack tip is out of the scope

of this dissertation.

Any changes in crack growth behavior are not expected in underload tests since the
plastic region generated by underload is smaller than its previous size. Five tests were

performed to observe the underload effect on crack growth behavior.
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Figure 3.21. Effect of underload on crack growth behavior

In Figure 3.21., the blue colored continuous curve is the result of an experiment at 9
kN constant amplitude fatigue load. Underload tests are indicated with dashed lines.
During the 9kN/7kN underload test, 7 KN underload was applied at the 1000th cycle
and 9 kN is applied for other cycles. The curves obtained from these two tests are
colored blue in Figure 3.21. The difference between blue curves can be interpreted as
underload affecting life, but repeated tests were conducted to clarify whether that was

caused by material properties, test conditions, or any other effect. The difference
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between the underload and the FCG load was increased as 11kN/7kN, and the same
procedure was applied again. Four tests were performed with this procedure, and it is
concluded that the difference in blue curves in Figure 3.21. was not caused by the
underload effect. It is clearly seen that there are no changes in the slope of the crack
propagation curves immediately after the application of underload. This may show that
the single underload has no retarding or accelerating effect on crack propagation. This
finding also supports the approach of using positive AK values in the crack propagation

models under random loading, which will be explained in the next sections.

3.5.3. Fatigue crack growth under block overload

Block overload tests were also performed using the CT specimens. Detailed
information is given in Table 3.10. for block overload tests with different fatigue load
and cycle periods. The first four experiments shown in Table 3.10. can be considered
as preliminary tests to determine the cycle periods and magnitude of overload. Then,
the magnitude of the fatigue load was determined, and the effect of the block overload
period on crack growth life was investigated. 13 kKN overload block was applied with
“n” cycles between two 7 kN constant amplitude fatigue loading with 1000 cycles,
repeatedly. The effect of overload block size on the crack growth rate can be seen in
Figure 3.22.

Table 3.10. Block overload tests

Block
overload Precrack Fatigue crack growth
Stress Max. Stre_ss Max.
. . Ratio | Load | g
Specimen | Ratio for | Load for| agvg) oL . .
for | for | — |Cycle| Block loading behavior
Name precrack | precrack | (mm) rce | Fca Fga/an
R (kN)
R | (kN)
20181206 01 0.1 6.4 |24.774] 0.1 | 7.0 | 1.57 |28294|2000x7kN + 2000x11kN +
2018121201 0.1 6.4 |24523] 0.1 | 7.0 | 143 [15649|1000x7kN + 1000x10KkN +
2018121902 0.1 6.4 124880 0.1 | 7.0 | 2.00 |13898| 100x7kN + 100x14kN +
2018121903 0.1 6.4 |24.765| 0.1 | 7.0 | 2.00 |13239| 200x7kN +  50x14KkN +..
2018122501 0.1 6.4 [24.976] 0.1 | 7.0 | 1.86 |11529|1000x7kN +  50x13kN +..
2018122502 0.1 6.4 ]25.065| 0.1 | 7.0 | 1.86 |12654|1000x7kN + 100x13kN+
20181226 01| 0.1 6.4 24945 0.1 | 7.0 | 1.86 |18401|1000x7kN +  50x13kN+
20181227 01| 0.1 6.4 [24.829] 0.1 | 7.0 | 1.86 |17902|1000x7kN + 200x13kN+
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Table 3.10. Block overload tests (Continued)

20181227.02| 0.1 6.4 124612 0.1 | 7.0 | 1.86 |16488|1000x7kN + 500x13kN+
20181228 01| 0.1 6.4 125320 0.1 | 7.0 | 1.86 [18401|1000x7kN +  20x13kN+
2019010301] 0.1 6.4 124.925[ 0.1 | 7.0 | 1.86 [17902|1000x7kN +  10x13kN+

As seen in Figure 3.22., the size of the block overload cycle has an important role in
crack growth life. If the block overload is applied for a long time (i.e., n = 500 and
200) new plastic zone is created consequently, and it accelerates the crack growth. In
case of a short cycle of block overload, crack propagates slower compared to the case
of single overload. The occurring plastic zone size by block overload dominates the
crack growth behavior. As a result, crack propagates very slowly under fatigue loading
except at the overload block. Thus, a significant increase in crack propagation life is
observed. This effect on crack growth life is inversely proportional to the size of the
overload cycle. It can be deduced that; although the number of cycles is low, overloads
are applied more frequently and each time newly expanded plastic zones are created

through which the crack tip slowly passes.
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Figure 3.22. Effect of block overload size on crack growth life



44

3.5.4. Fatigue crack growth under block underload

There was no significant change in crack growth life by applying a single underload.
It was also seen that the application of underload as blocks did not have an additional
significant effect. In other words, the crack propagation behavior in this case is similar
to block overload case as explained in Section 3.5.3. The only difference here is the
initial order of high and low block loads shifts. Therefore, no additional tests were

needed. The underload applied tests can be seen in Figure 3.23.
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Figure 3.23. Effect of block overload size on crack growth life

3.5.5. Fatigue crack growth under random loading

Fatigue crack propagation tests under random loading were performed with CT
specimens. Two different load spectrums were used, and each one was repeated
continuously until the specimen was fractured. One of these loading spectrums was
easier for the investigation of the interaction between load profiles, which will be
named as Spectrum-1 (SP-1). The other spectrum is the partial FALSTAFF which was
provided by TUSAS (TAI). The FALSTAFF profile is also available in the literature.
The partial FALSTAFF spectrum will be named as Spectrum-2 (SP2). The number of
the tests in this category of the FCG tests is given in Table 3.8.
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The SP1 spectrum was a simple spectrum and self-created to investigate the difficulties
of crack propagation under random loading. Firstly, it is aimed to determine the
optimum load of SP1 for the tests which will be completed within 3-4 hours at low
testing frequency (2-3 Hz). Tests were performed to determine the final load values of
the profiles in Spectrum-1, and the modified values of the loading profile are shown
in Figure 3.24. The spectrums are given in Figure 3.24. in chronological order, and

Figure 3.24-c. is the final version of Spectrum-1.
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Figure 3.24. Random loading spectrum-1 (SP1)

Table 3.11. Detailed information for Spectrum-1 FCG tests

Spectrum -1 Precrack Fatigue crack growth

Stress Max.

Shecnen | Secimen | Rt for | poanfor | o | speerum | cyo
R (kN)

20190502_01 CT 0.1 6.4 24.780 | Spectrum 1/a+b | 38616

20190503 01 CT 0.1 6.4 24.260 | Spectrum 1/b 1195

20190503 02 CT 0.1 6.4 24.603 | Spectrum 1/b 6223

20190506_01 CT 0.1 6.4 24.590 | Spectrum 1/c 31221

20190506_02 CT 0.1 6.4 24.459 | Spectrum 1/c 42706

20190507 01 CT 0.1 6.4 24.461 | Spectrum 1/c 28459

20200330 01 CT 0.1 6.4 24.748 | Spectrum 1/c 38601




Table 3.11. Detailed information for Spectrum-1 FCG tests (Continued)

20200611_01 CT 0.1 6.4 24.377 | Spectrum 1/c 18381
20200611_02 CT 0.1 6.4 24.464 | Spectrum 1/c 29468
20200612_01 CT 0.1 6.4 24.416 | Spectrum 1/c 29485
20200612_02 CT 0.1 6.4 24.470 | Spectrum 1/c 33654

46

Fatigue crack growth lives are given in Table 3.11. for different versions of Spectrum-

1 shown in Figure 3.24.a-b-c. As seen in Table 3.11., the test performed with

Spectrum-1a has a higher cycle than Spectrum-1b. Based on these results, it was

concluded that the optimal test duration was obtained in Spectruml-c, and it was

applied in the following tests. Crack growth curves obtained with Spectrum-1c are

given in Figure 3.25. These curves were drawn by using the microscope camera views.
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Figure 3.25. Crack growth curves with Spectruml-c



47

Figure 3.26. Fracture surfaces of the specimen tested under Spectrum-1-c

The second spectrum for random loading crack propagation tests is FALSTAFF
(Fighter Aircraft Loading STAndard For Fatigue Evaluation), named Spectrum-2, and
it was recorded during a flight of an airplane [45]. The original version of FALSTAFF
iIs 35000 cycles, and some of them have load values. In this study, the most
repeated/representative part of the spectrum was selected, and the magnitude of load
profiles was scaled for the CT specimen. Compressive loads were made equal to zero
to prevent compressive residual stress at the crack tip which causes crack surfaces to
contact each other. Adopting from the previous tests, the maximum load in Spectrum-
2 was determined as 11 kN. Whole FALSTAFF spectrum and the selected part used
in Spectrum-2 are given in Figure 3.27.



o ® =
o e |

S = = 2
'S

Force [Normalized]

Force (Max. 11 kN)

48

Figure 3.27. FALSTAFF and Partial FALSTAFF (Spectrum-2, SP2) loading profiles for CT Specimen

Table 3.12. Detailed information of Spectrum-2 FCG tests

Spectrum -2 Precrack Fatigue crack growth
Stress Max.
Shecmen | Shsimen | Rt o oo o | e | speerum | cyo
R (kN)
20190827 01 CT 0.1 6.4 24.863 | Spectum-2 | 17002
20190828 01 CT 0.1 6.4 24.610 | Spectum-2 | 15964
20191008 01 CT 0.1 6.4 24.794 | Spectum-2 | 18880
20191008 02 CT 0.1 6.4 24.985 | Spectum-2 | 7861
20191009 01 CT 0.1 6.4 24.720 | Spectum-2 | 8889
20191009 02 CT 0.1 6.4 24.460 | Spectum-2 | 24274
20191010 01 CT 0.1 6.4 24.430 | Spectum-2 | 19118
20190826 01 CT 0.1 6.4 24.404 | Spectum-2 | 27885
20200616 01 CT 0.1 6.4 24.548 | Spectum-2 | 16344
20200617 01 CT 0.1 6.4 24.668 | Spectum-2 | 21892
20200617 02 CT 0.1 6.4 25.295 | Spectum-2 | 1594
20200618 01 CT 0.1 6.4 24.785 | Spectum-2 | 6843
20200618 02 CT 0.1 6.4 24.473 | Spectum-2 | 23899
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Figure 3.28. Crack growth curves under Spectrum-2

The detailed information is given in Table 3.12. for the tests performed under
Spectrum-2. All tests were performed under the same condition, however different
crack growth life values were observed in the results, even for the tests with very close
initial crack lengths. Fatigue crack growth curves can be seen in Figure 3.28., and
fracture surfaces of the used specimen are shown in Figure 3.29

Figure 3.29. Fracture surfaces of the specimen tested under Spectrum-2
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3.6. Fatigue Crack Growth Models Under Variable Amplitude Loading

In this section, first, constant amplitude loading models are explained, as the fatigue
crack growth models for variable amplitude loading are generally based on constant
amplitude loading models. Then, the models for variable amplitude loading are
discussed that consider the crack growth retardation or acceleration.

3.6.1. Fatigue crack growth modeling under constant amplitude loading
3.6.1.1. Paris-Erdogan fatigue crack growth model [7]

This model is commonly used in the literature and it is valid for the second region of
the fatigue crack growth curve that exhibits the linear relation between log(da/dN) and
log(AK). The crack growth rate can be calculated by using Equation (3.3). The stress

ratio is not considered in this model as can be noticed from Equation (3.3).

da

an — c@K” (3.3)

Calculation of Paris-Erdogan constants (C-n) was explained in Section 3.4. and the

obtained values from the tests were tabulated.
3.6.1.2. Walker’s fatigue crack growth model [9]

This model is valid in the second region of the crack growth curve like Paris-Erdogan
Model. In addition to Paris-Erdogan model it takes into account the effect of stress
ratio as presented in Equation (3.4).

da AK ]n

an ¢ [(1 —R)LTw (3.4)
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This model needs an empirical parameter y,, introduced in Equation (3.5). AKwalker IS

proposed to calculate the empirical parameter y,,.

AKyaiker = Kmax(1 — R)¥™ (35)
AK
Kmax = m (36)

da/dN vs. AKwaiker curves from the tests are plotted in the logarithmic scale under
different stress ratios. Curves obtained from different stress ratios are gathered as a
straight line by changing the y» exponent. As seen in the literature, finding the
appropriate value of this empirical exponent can be difficult, and it might be

impossible in some cases.

Crack growth rates of the tests given in Table 3.3. -Table 3.6. were also calculated by
using the Walker crack growth model. In this case, AKwaker Was calculated as
explained above, and yw was determined by using da/dN vs. AKwaiker curves. Crack
growth rates were calculated by using Equation (3.4) under different stress ratios for
the same AK value by changing the yw. The closest alignment of 4 different
(da/dN)waiker points were found with y, = 0.631 by using the Microsoft Excel Solver
[46]. Itis seen in Figure 3.30. that points marked at different stress ratios with the value

of yw = 0.631 show a linear trend.
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Figure 3.30. Determination of Walker exponent, yw

The function of the trendline gives the C-n constant for Walker fatigue crack growth
model. If the stress ratio equals to zero, the C-n constants in Walker Equation (3.4)
should be equal to the Paris-Erdogan constants in Equation (3.3). As the R value is
close to zero (R = 0.1), the obtained coefficients of both models almost match in this

study.
3.6.1.3. Forman fatigue crack growth model [8]:

This model calculates the crack growth rate in the second and third regions of crack
growth curve by using the stress ratio and fracture toughness. The crack growth rate is
calculated by using Equation (3.7).

da  CQAK™ Cr(AK)™
dN ~ (1-R)"K;c —AK ~ (1 = R)K;c — Kimax (3.7)

Cr and m are the crack growth constants in Forman model. The Q in Equation (3.8)

decides if the Forman model can be used for da/dN calculations.

L1 = RYKye — AK] = Cr(AK)™

=

(3.8)
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Figure 3.31. Determination of Forman constants depending on Q vs. AK

If the calculated Q values points exhibit a linear trend in Q vs AK chart in logarithmic
axes, then the Forman model can be used. The test results were plotted on a logarithmic
scale, and constants were obtained by fitting a linear trendline. The usability of Forman
model with the tests were investigated in Figure 3.31. and Forman constants were
determined as Cr = 2.533E-9 and m = 3.051. Crack growth rates of different stress
ratios were calculated by using these constants and compared with the experimental

results for validation. Comparisons can be seen in Figure 3.32.
In addition, a simplified version of the Forman model is also given in Equation (3.9).

da _ CAK)"

dN AK
L (3.9)
(1-R)Kjc
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Figure 3.32. Comparison of calculated crack growth rate with experiments under different stress ratios

3.6.2. Fatigue crack growth modeling under variable amplitude loading

3.6.2.1. Wheeler Model [12]

Wheeler model can be used to determine the crack growth behavior for single or
periodic overload. The model determines the retardation of the crack growth by
comparing the largest size of the yield zones from previous cycles with the ongoing
plastic zone sizes at the crack tip. Definition of plastic zone sizes at crack tip is seen
in Figure 3.33., where the current plastic zone is shown in black for any cycle and its
size is compared with the plastic zone size which has been created by the overload at
a previous cycle. If the current plastic zone size at the crack tip is smaller than the
plastic zone formed under the previously applied overload, the Paris-Erdogan Equation
is multiplied by a retardation parameter, otherwise Paris-Erdogan Equation is used as

itis.
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Figure 3.33. Definition of plastic zones at crack tip [12]

d
2~ gp(c AR

N (3.10)
R, )y
; at+R,)<a
Or = (ap —a (e R) <y (3.11)
1 (a+Ry)2ap
1 (kY _ .
R, = a_y for plain strain (3.12)

Wheeler exponent in Equation (3.11) depends on the material, overload rate and crack
length at the cycle of overload [17]. Determination of the Wheeler exponent “y” is

explained below:

— After the overload, the total number of cycles (Nwst) required for the crack
growth rate to reach its previous rate before the overload is determined.

— Plastic zone size is calculated for each cycle by Equation (3.12) after the
overload.

— Crack growth life is calculated by Equations (3.10) and (3.11) with the
estimated values of Wheeler exponent “y” until the retardation parameter Qr
equals to 1.

— The Wheeler exponent “y” is determined by satisfying the condition of that the

calculated crack growth life equal to the experimental crack growth life.
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3.6.2.2. Sheu Model [47]

This model is based on the Wheeler model. In the Wheeler model, if the crack tip
plastic zone reaches the limits of the plastic region created by the overload, the crack
propagation rate turns to its pre-overload value again under the fatigue load. Song P.
et al [47] stated that in Sheu model, the crack growth retardation effect lasts longer
compared to the Wheeler model. They proposed a modification on the plastic zone to
calculate the retardation parameter as "effective plastic zone created by overload". The
comparison of the plastic zones at crack tip proposed by Wheeler and this model is
given in Figure 3.34.

Plastic zone generated  Effective plastic zone Current
Current plastic zone by ovel;load generated by overload  plastic zone
[T N T oy A | T T g |
a) 1 1
1 1
1 1
1 1
1 1
1 1
1 1
it 1 1
I e = 1 1
i |
1 1
1 1
1 1
i 1 1
1 1
1 1
~“+—a >[‘7Ry_. 0o
1 Reo * Ry i’
v (lp >
Figure 3.34. Definition of plastic zone at the end of retardation a) Wheeler, b) Sheu [47]
R y
y r
; a, + R <a
@IR — <a0 + R’po _ ai) ( 0 po) p

(3.13)
1 (ap + R'yo) = a,

In Equation (3.13); a, represents the crack length at the cycle of overload, Ry is the
plastic zone radius generated by overload in Wheeler model, R’y is the effective
plastic zone radius proposed by Sheu P. et al. and aq is the crack growth delay under

the overload effect.
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3.6.2.3. Xiaoping Model [21]

This model proposes some modifications to the Wheeler model by using the equivalent

SIF approach to model the crack growth retardation behavior. AK,,, in Equation (3.15)

is the SIF for zero stress ratio. Crack growth curves obtained under different stress

ratios are converted to R = 0 by using Equations (3.15) and (3.16).

da

W = C[(AKeqo)n - (AKthO)n] (3_14)

AKer = MRMPAK (3'15)
(1-R) P —-5<R<0

Mp,=4 (1- R)_ﬁ 0<R<05 (3.16)
(1.05 — 1.4R + 0.6R?)~F 05<R<1

Mg is a parameter used to shift all crack growth curves obtained under different stress
ratios to R = 0. Mp identifies the interaction effect between load profiles. f and S1 terms
in Equation (3.16) can be found as explained above, in the Walker Model. First, da/dN
vs. MrRAK curves are plotted for all tests under different stress ratios with the estimated
value of f. Then, the difference between the curves is approximated to zero by

changing g parametrically with the help of Microsoft Excel Solver [46].

The value of f was obtained as 0.4 by using the tests given in Table 3.3. - Table 3.6.,
and the combined curves are given in Figure 3.35. f1 term was not calculated in this

study since the negative stress ratio was not applied in tests.
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Figure 3.35. Determination of 4 in Xiaoping model

Figure 3.36. is given to better understand the modification proposed by Xiaoping H.
et al. to the Wheeler model.

Current Plastic zone
plastic zone created by overload

Plastic zone created r
by overload/underload:

Figure 3.36. Plastic zone size definition in Xiaoping Model [21]

Three different plastic zones are seen in Figure 3.36. One of them is the current plastic
zone and the others are created by the overload. This model realizes the determination
of the second overload effect where the plastic zone of the first overload is still active.

This relation is given in Equation (3.17) - (3.19).
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R y
Yy
; + R, < + Ro, — R
My = (aOL + Row —a—RA> Ty st e (3.17)
1 a+Ry2a0L+ROL_RA
o AK N2
2= a(—ay ) (3.18)
AKy = FVTa (0pih — Oin) (3.19)

3.6.2.4. Yuen and Taheri Model [48]

This model can be used in the crack propagation experiments where single or multiple
overloads are applied together. As a modification to the Wheeler model, the
acceleration of the crack growth rate right after the overload, the retardation, the
interaction between the loading profiles and the yielding in the critical cross-section
were taken into account. Thus, four parameters are used in this model. One of them is
the same with retardation parameter @Or in the Wheeler Model. @p is the delay
parameter for crack growth and @ is the interaction parameter related to the loading
profiles. The crack growth calculation of the proposed model is provided in Equation
(3.20).

da
[ n
AN Dr Op D; [C(AKg)"] (3.20)
Eiit;:g ﬁlait\lrzjg:g lCl:qent Effetive plastic zone Cment
Y plastic zone occured by overload plastic zone

~+—"oL I Ryor

Figure 3.37. Definition of plastic zones in Yuen and Taheri Model [48]
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Figure 3.38. Crack growth behavior after an overload [48]

In Figure 3.37a. plastic zones are presented for the cycle after overload and in Figure
3.37h. crack length is demonstrated at the position just before the end of the retardation
effect caused by overload. The schematic view is given in Figure 3.38. for the crack
growth retardation behavior and the length of the crack in delay retardation is indicated

as ad.
a +R —a Ymod
_ - (3.21)
1 (aOL + Rd,OL) < (ai + Rd,i)
2 2
Ga = TaoL— Taa = B (K"L) (K">
d= TaoL~ Taad = o | \o.
- - (3.22)

Op is used for modeling the delay retardation given in Figure 3.38. f is the effective

plastic zone parameter in Equation (3.22).
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AK,,.
Rd,i )Ymod ( ) ( )
; (ap + Rgi) <lag, + R .
or + Raor — i di oL aot) (3.23)

Ak; (aor + Raor) < (a; +Ray)

AKqc is @ main parameter of Equation (3.20) and it is calculated by Equation (3.23)
which is a piecewise function of plastic zone size. Ko. is the SIF at the overload cycle

and Kiis the SIF at the current cycle.

In order to calculate the effects of consecutive overloads, the @; term is added to the
Wheeler model. The relationship between the two overloads can be in three different
types as presented in Equation (3.24). For this, a piecewise function representing three

different situations is given in Equation (3.24).

9
Ry aor + Ryor — a;\"™?
pil OL p,OL i
1-(1=0mini)ll— a; + Rgi<app + R
( Q)mm,L) ( aoy T Rp,OL —q; Rd,i i d,i OL d,oL
R . ar +R —a Ymod
bt oL p,OL i
= 1-(1- ini) | 1— aopr, + R <a; + Rg;
( Qan,l) ( aoL I Rp,OL —q Rd,i ) OL d,oL i d,i (324)
a; + Rd,i < Aoy, + Rp,OL
1 (aoL + Rpor) < (a;+Rpy)

3.6.2.5. Willenborg Model [13]

In this model, the retardation of the crack growth rate is defined as a function of the
SIF. Therefore, empirical parameters like Wheeler exponent are not required. In the
Willenborg model, Forman fatigue crack growth model is used along with the effective
SIF. By using the Forman model, the crack propagation rate becomes dependent on

the stress ratio.

da _ Cr(AKerp)™
AN~ (1= Refs)Kc — AKysy (3.25)
R Kmineff

eff = (3.26)
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Kninerf = Kmin — Kr ; Kmaxerr = Kmnax — Kr (3.27)
Aa 0.5
K. = (K. {1 - —} _K
s max/OL ZOL max (328)
2
7 _ 1 [(Kmax)OL] 329
oL — o |7 .
o, (3.29)
AK; ; Kmax,eff,i and Kmin,eff,i >0
AKoppi = Kmaxerr.i Kminefri =0 (3.30)
0 Kmax,eff,i <0

The crack growth rate can be calculated by using Equation (3.25)-(3.30). Cr and m are
crack growth constants in Forman Equation. Ress is effective stress ratio, Kmaxefr and
Kmin,eff are effective stress intensity factors obtained from Equation (3.27). If the result
of Equation (3.27) is negative, these parameters become zero. K is the residual SIF
and if the plastic zone size at the current cycle is smaller than the plastic zone size at
the overload cycles, then K is calculated. Otherwise, it is equal to zero. (Kmax)oL iS the
SIF at the overload cycle. 4a is the crack growth distance under the retardation effect.
In this model, if the overload ratio is greater than or equals to 2, the crack growth rate

cannot be calculated because of the math error in Equation (3.27).
3.6.2.6. Generalized Willenborg Model [18]

This model includes a modification of the Willenborg model. The equations in the
Willenborg model are valid, except that the residual SIF, Kr, suggested in Equation
(3.28) is multiplied with a @ parameter. Adding the parameter @ makes it possible to
crack growth modelling in the case of the overload ratio is greater than or equals to 2.

Parameter @ is calculated by Equation (3.31).

| _ OKen
AK

°= Re-1

(3.31)
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Rso is the shut-off ratio and it is obtained as 3.0 for 7075-T651 aluminum alloy from
the literature [49]. In the same reference, it is stated that the change of this value

between 2.5 and 3.5 has an effect of only 3% on results.

The generalized Willenborg model also calculates the crack growth rate for the
underload effect. This capability of the model has been added thanks to the updates by
NASGRO [50]. After this update, the model is named as Modified Generalized
Willenborg Model. Equation (3.32) was proposed to calculate the effects of underload
[50]. The o term is equal to the @ obtained for RuL= 0. Ky is the SIF for the cycle
where the underload is applied.

2.5230, _
@ - i[l + 3.5(0.25 - RUL)O'G] ’

K
RUL = UL/KOL < 0.25

1 Ry, = KUL/KOL > 0.25 (3.32)

3.6.2.7. Root Mean Square Approach for Crack Growth Life Calculation [16]

This method is quite different from the methods that determine the crack propagation
behavior according to the crack tip plastic zone size. It proposes a simple approach for
random loading. Root mean square (RMS) is determined along the loading spectrum
and crack growth life is calculated like constant amplitude loading. K* SIF is
calculated by using Equation (3.33) as the driving force in crack growth, and AK*

symbolizes the positive changes in SIF. a is taken 0.5 for aluminum alloy [16].

K" = [(AK+)a(Kmax)1_a]
(3.33)

N, 0.5

1

NZ(O-max)zl (334)
=1

rms
Omin =

NT‘ 0-5
l (O’ i )2 o.rms —
E min ’ max —
N' 1
l:

da o [1— (8K;H/AKY?]
ay = (8K )* [1— (AK*/C3)?] (3.35)




64

The crack growth rate is calculated by using Equation (3.35). This equation includes
four different parameters (C1, Cz, Cs, Kw) which must be obtained experimentally.
After substituting the values of Ki and Cz = K¢ in Equation (3.35), C; and C; are

determined by fitting a sinusoidal spline to experimental results.

3.6.3. Validation of the fatigue crack growth models for variable amplitude

loading with experimental results

Crack growth life was calculated with different FCG models under single overload,
block overload and random loading. The comparisons of these models with

experimental results are discussed in this section.
3.6.3.1. Modeling of single overload tests
Fatigue crack propagation models were applied for single overload tests after the

7000th load cycle under 7 KN (R = 0.1) constant amplitude and the results are plotted
in Figure 3.20.
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Figure 3.39. Comparison of variable amplitude loading models for FoL/Fdaan = 1.29 overload ratio
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Figure 3.40. Comparison of variable amplitude loading models for FoL/Fgaan = 1.57 overload ratio
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Figure 3.41. Comparison of variable amplitude loading models for FoL/Fgaan = 1.71 overload ratio
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Figure 3.42. Comparison of variable amplitude loading models for FoL/Fgaan = 1.85 overload ratio
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Figure 3.43. Comparison of variable amplitude loading models for FoL/Fgaan = 2.0 overload ratio

The crack growth rates for different levels of overloads were calculated using the
previously defined models and the results are presented in Figure 3.39. - Figure 3.43.
Strong agreements between test results and predictions are observed using Wheeler
model and its modified versions as seen in the figures. The Willenborg model and the
other two modifications do not show a good agreement with experiments. It is stated

in the literature that if the overload ratio is equal to or greater than two, reasonable
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results cannot be obtained by the Willenborg model [13]. Also, the Generalized
Willenborg model, proposed to solve the overload ratio problem, does not show a good

agreement with experimental results.

3.6.3.2. Modeling of block overload tests

The block overload tests were discussed in Section 3.5.3. Different overload cycle
sizes and their effects on crack growth behavior were demonstrated experimentally.
Crack growth life was calculated with different models from the literature, and the
calculated results were presented comparatively in graphs.
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Figure 3.44. Comparison of variable amplitude loading models for block overload, n = 10
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Figure 3.46. Comparison of variable amplitude loading models for block overload, n =200
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Figure 3.47. Comparison of variable amplitude loading models for block overload, n = 500

As can be seen in Figure 3.44. - Figure 3.47., the experimental results are closely
predicted when the Wheeler Model and its modifications are used. Life calculations
using the Willenborg model and its modifications don’t match with the experimental

results.

3.6.3.3. Modeling of random loading tests

Cycle by cycle analyses were performed for modeling of crack growth under random
loading tests. Modeling crack growth under random loading is challenging since the
changes in stress ratio depend on the loading profiles. In practice, increases in SIF
propagate the crack. Crack growth rate was calculated for the positive part of AK in
the loading spectrum, and the negative part (load release) was not used in crack growth.
The stress ratio was also calculated in the positive part. In Figure 3.48., one cycle is
determined with three different points (ex: 1-2-3) called as Spectrum Profile Position
Index (SPPI).
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Figure 3.48. Definition of spectrum profile positions

Crack growth life calculation for random loading will be explained by using a random
loading spectrum, including four-cycles in different amplitudes, given in Figure 3.48.
The continuous lines show the increment of load and the dashed lines show the
decrease of load. The first cycle in Figure 3.48. consists of points 1,2 and 3, identifying
the profile position. All numbers (1,2,3,4...) are named as Profile Position Index.
Increments in load, in other words, continuous lines are used to calculate the stress
ratio. For example, the ratio of point 1 over point 2 gives the stress ratio for the first
cycle, consisting of profile positions, 1, 2 and 3. The same calculation process is used

for stress ratio along the whole spectrum.

As explained in Section 3.6.2., the fatigue crack growth rate is calculated by using
Paris-Erdogan Equation in the Wheeler model. This approach was sufficient since the
Wheeler model was intentionally proposed to determine crack growth behavior under
single overloads. The stress ratio always varies in the random loading. Even if the
maximum stresses of fatigue load profiles of different amplitudes are the same, the
difference between the maximum and the minimum stresses should not be equal. It is
known that this difference directly affects the crack growth rate. Therefore, using a
crack growth model, considering the stress ratio, is a reasonable approach for random
loading. Wheeler model was used with Forman and Walker crack propagation
equations to calculate crack growth rate under random loading in this study.
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In order to propose a different approach, the Paris-Erdogan Equation was used in the
original Wheeler model with the coefficients obtained from Walker or Forman
Equations. Thus, a simpler model was also studied by expressing the experimental data
of different amplitudes in a composite manner. Modeling studies have also been
carried out with the Generalized Willenborg, Xiaoping and root mean square (RMS)

approach are explained in Section 3.6.2.



Table 3.13. Comparison of variable amplitude fatigue crack growth model results

CT SP1 CT SP2
Cycle Edge crack length Cycle Edge crack length
Model FCG model FCG equation Test Sim. Test Sim. Test Sim. | Test Sim.

Composite C-n Wheeler Forman Const wth Paris-Erdogan 57200 27.8 mm 30996 27.5mm
Composite C-n Wheeler Walker Const. wth Paris-Erdogan 175000 25.6 mm 56677 26.4 mm
Walker Wheeler Walker _ 63500 ~ [ 27.5mm - 38868 | =~ |27.6 mm
Forman Wheeler Forman 31500 | 82200 | 26.8 | 27.2mm | , g0, | 41574 | 27.2 |27.4mm
Xiaoping Wheeler Paris-Erdogan 189000 | MM | 39.6 mm 52890 | MM |27.3 mm
G.Willenborg GWillenborg |Forman 95700 30.5 mm 52156 29.9 mm
RMS (Manjunatha) [RMS Similar to Newman 26700 31.1mm 28556 31.0 mm

72
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Measurement of crack length was done on the surface of the specimen since it was not
possible to measure it from inside the crack front, which is close to being straight for
the CT specimen. From the broken specimens’ fracture surfaces after the random
loading tests, it was observed that the crack lengths were different in the middle and
the edge of the specimen. This difference, named as crack tunneling in the literature,
had not been observed in constant amplitude loading tests. Crack tip plastic zone sizes
change between the surface and middle of the specimen since the plane stress condition
is dominating on the free-surfaces of the specimen, while the middle is under the plane
strain condition. Therefore, crack propagation at the edge of the specimen is slower
than that of the middle point on the crack front. Therefore, the measured distance from
the surface of the specimen during the test is shorter than the measured one from the
inner part of the specimen. It was deduced from the comparison between simulations
and experiments, there is no need to calculate crack growth retardation in the middle
of the specimen in the models since the plastic zone size is much smaller in the interior

point of the crack front than that of the free-surface points (Figure 3.49).
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Figure 3.49. Consideration of the retardation in the center of the specimen

As seen in Table 3.13. the crack growth life predictions obtained by the simulations
are significantly higher than the experiments. Thus, improvements on the model are

necessary.
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3.6.3.4. Improvements on 2-D crack growth models under random loading

To improve the FCG models in the literature the loading spectrum was used to develop
a multiplier independent from the experimental results. For this, a cycle-by-cycle
analysis was performed on the loading spectrum to obtain an index, named Spectrum

Overload Index. The determination of “Spectrum Overload Index” is explained below.

— The average of the peaks along the spectrum is calculated.

— The percent deviation of each peak from the average is calculated.

— The percent deviation of each peak from average is compared to the ratio of
the number of peaks that are equal to or greater than the specified peak for all
peaks above the average. After operating the process for all peaks, the closest
value of comparison (ideally equal) is selected, and it is added to 1. The
obtained value is called the Spectrum Overload Index (SOL Index). For
example, in a spectrum loading profile, if 25% of all peaks are at least 25%
above the average, the SOL Index equals to 1.25.

12 Difference between the magnitude of profile 4 and the average 19-7TkN=2kN
0 J Number of profiles equal to or greater than the magnitude of profile 4 : 2
Difference between the magnitude of profile 4 and the average 2
———————————————————— o= - == =/0.285
\ The average Average of the peaks 7
\ of the peaks

Number of profiles equal to or greater than the magnitude of profile4_2 _ 0.666
Number of peaks that greater than the average 3 ’

11

12

Spectrum Profile

. Difference between the magnitude of profile 6 and the average :8-7kN=1kN
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Number of peaks that greater than the average : 3 Difference between the magnitude of profile 6 and the average _1_ 0.143
Average of the peaks 7 T

Number of profiles equal to or greater than the magnitude of profile 6 _ 3 _ 1.0
Number of peaks that greater than the average 3 )

Figure 3.50. Calculation of Spectrum Overload Index

For the spectrum profile given in Figure 3.50., the ratio of the difference between the
average and point 4 to the average of the peaks above the average is 0.285. For point
4, the ratio of the cumulative number of peaks above average to the total number of
peaks above the average in the spectrum is 0.666. For point 6, these two values were

calculated as 0.143 and 1.0, respectively. Since the values of 0.285 and 0.666 are closer
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to each other than the values obtained for point 6, the Spectrum Overload Index is
determined as 1 + 0.285 = 1.285. Similar calculations can be done for other points
above the average such as point 10 and it can be seen that the results are similar as the

one for point 4.

In this study, as an improvement for predictions of crack propagation lives under
spectrum loading conditions, the SOL Index is used as a multiplier of the AK term in
the fatigue crack propagation equations. In Equations (3.36) - (3.39), the use of SOL

Index with different models is demonstrated.

: da
Wheeler model with Forman or “* _ @x(C. SOL_index . AK)" (3.36)

Walker constants dN
da [CF(SOL_index .AK)m]
= YR

Wheeler with Forman Eqn.

dN (1 - R)"K;c — AK (3.37)
Wheeler with Walker E da _ . [SOL.index.AK "
eeler wi alker Eqn. N Dr [ (1—R)l™w ] (3.38)
da CF(SOL_index AKeff)m
ill 1 N
Willenborg mode dN ~ (1-Roy)Ke — DKoy (3.39)

In Table 3.14., analyses performed with or without SOL Index in different models, and
comparisons with experimental results obtained by CT specimen are presented. As can
be seen from the table, when the SOL Index is used, the simulation results become
closer to the experimental results. The SOL Index values are found to be 0.14 + 1 =
1.14 and 0.24 + 1 = 1.24 for the Spectrum-1 (Figure 3.24.) and Spectrum-2 (Figure
3.27.), respectively. The crack growth curves for each model are plotted for Spectrum-

1 in Figure 3.52. - Figure 3.58. and for Spectrum-2 in Figure 3.59. -Figure 3.65.
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Figure 3.51. The effect of SOL index with retardation

Wheeler with Forman Eqn. is used to investigate the effect of SOL _index in Figure
3.51. for SP1 and SP2 spectrums. In the figure, considering the retardation_ALL case,
the effect of SOL_index on the results is observed. As can be seen, especially in SP2
spectrum, SOL_index affects the results regardless of the retardation effect. Since the
SOL_index value is low in SP1, this effect cannot be clearly seen in the figure. Figure
3.49. also can be seen for the comparison of the case of retardation applied to the edge
and center of the specimen or only the edge.



Table 3.14. Comparison of variable amplitude fatigue crack growth model with the use of SOL index or not
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CT SP1 CT SP2
Cycle Edge crack length Cycle Edge crack length
Model FCG model FCG equation SOL index | Test Sim. | Test Sim. Test | Sim. Test Sim.

Composite C-n Wheeler Forman Const wth Paris-Erdogan v 44200 27.8mm 20418 27.6 mm
Composite C-n Wheeler Forman Const wth Paris-Erdogan X 57200 27.8 mm 30996 27.5mm
Composite C-n Wheeler Walker Const. wth Paris-Erdogan v 111200 25.6 mm 23124 26.0 mm
Composite C-n Wheeler Walker Const. wth Paris-Erdogan X 175000 25.6 mm 56677 26.4 mm
Walker Wheeler Walker v 43200 27.6 mm 20172 27.7 mm
Walker Wheeler Walker X 31?90 63500 2;8 27.5 mm . ~ | 38868 = 27.6 mm
Forman Wheeler Forman v 55200 | mm | 27.2mm [ 21892 | 91648 |27-2MM| 575 mm
Forman Wheeler Forman X 82200 27.2 mm 41574 27.4 mm
Xiaoping Wheeler Paris-Erdogan X 189000 39.6 mm 52890 27.3mm
GWillenborg GWillenborg  Forman v 63200 27.2mm 29593 26.4 mm
G.Willenborg GWillenborg  Forman X 95700 30.5 mm 52156 29.9 mm
RMS (Manjunatha) RMS Similar to Newman X 26700 31.1 mm 28556 31.0 mm
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Figure 3.52. Crack growth curve by using the Wheeler model with Forman FCG constants (SP1)
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Figure 3.53. Crack growth curve by using the Wheeler model with Walker FCG constants (SP1)

3.2E-02
3.1E-02
3.0E-02
2.9E-02
2.8E-02
2.7E-02

2.6E-02

Crack Length - a- [m]

2.5E-02
2.4E-02
2.3E-02

CT SP1 Edge

= Experiments
— SOL_index=0.14
=== SOL_index is not used

Wheeler Model with Forman

0 20000 40000 60000 80000 100000 120000
Cycle

32E-02
3.1E-02
__3.0E-02
T2.9E-02
=
£2.8E-02
=)
S27E-02
$2.6E-02
'h
Y2502
24E-02
23E-02

CT SP1 Center

e Experiments
== SOL_index=0.14
==+ SOL_index is not used

‘Wheeler Model with Forman
" A " . L
0 20000 40000 60000 80000 100000 120000
Cycle

Figure 3.54. Crack growth curve by using the Forman FCG Eqgn in the Wheeler model (SP1)
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Figure 3.55. Crack growth curve by using the Walker FCG Eqn in the Wheeler model (SP1)
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Figure 3.56. Crack growth curve by using Xiaoping model (SP1)
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Figure 3.57. Crack growth curve by using Generalized Willenborg Model (SP1)
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Figure 3.58. Crack growth curve by the Root Mean Square (RMS) approach (SP1)
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Figure 3.59. Crack growth curve by using the Wheeler model with Forman FCG constants (SP2)
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Figure 3.60. Crack growth curve by using the Wheeler model with Walker FCG constants (SP2)
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Figure 3.61. Crack growth curve by using the Forman FCG Eqn in the Wheeler model (SP2)

CT SP2 Edge

T

== Experiment
== SOL_index = 0.24
L === SOL_index is not used

“’h.eeler Mnldel with IW'allﬂlr

0 10000 20000 30000 40000 50000 60000 70000

Cycle

3.2E-02
3.1E-02
3.0E-02
2.9E-02
2.8E-02
2.7E-02
2.6E-02

Crack Length - a- [m]

2.5E-02
2.4E-02
2.3E-02

CT SP2 Center

o Experiment
— SOL_index = 0.24
=== SOL_index is not used

W!leeler .\l?del withIWallier

0

10000 20000 30000 40000 50000 60000 70000
Cycle

Figure 3.62. Crack growth curve by using the Walker FCG Eqn in the Wheeler model (SP2)
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Figure 3.63. Crack growth curve by using Xiaoping model (SP2)
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Figure 3.64. Crack growth curve by using Generalized Willenborg Model (SP2)
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Figure 3.65. Crack growth curve by the Root Mean Square (RMS) approach (SP2)

Simulations performed using the SP1 and SP2 loading profiles show that the use of
SOL Index is appropriate for 2-D, i.e., straight or through-thickness crack front, fatigue
crack propagation. Among the different models applied with SOL Index, the closest
results to experiments are obtained by using the Walker or Forman crack growth
equation with the Wheeler model (Figure 3.54. - Figure 3.55., Figure 3.61. - Figure
3.62.).

The proposed SOL Index approach is also validated with the experimental results in
the literature by using the in-house FORTRAN code [51], [52]. In the referred papers,
two-dimensional crack propagation in a plate under random loading was studied. The
SIF formula was updated according to the references, and simulations were performed
with the spectrum and crack size given by R. Porter [34]. Since the material
coefficients C-n were not given in this study, the coefficients for the same material

were taken from the literature [53] and presented below.
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Cuwalker = 1.42 10 [mm/cycle & MPa.m®®] and n = 3.59 m = 6.80
Crorman = 2.31 10® [mm/cycle & MPa.m®%] and n = 3.38

As can be seen from Figure 3.66., the experimental crack growth curve was excellently
predicted by using the SOL Index. Calculated SOL Index was 0.14 + 1 = 1.14 for the
loading profile, presented in the study. Therefore, the proposed crack growth model

with SOL Index under variable amplitude load has been validated with an independent

study from the literature.
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Figure 3.66. Comparison of the results with literature



CHAPTER 4. PROBABILISTIC FRACTURE  MECHANICS
STUDIES FOR THREE-DIMENSIONAL FATIGUE
CRACK GROWTH

In this chapter, three-dimensional crack propagation on a specimen containing surface
cracks was investigated. Experimental and computational analyses were performed
after determining the specimen type and geometric dimensions. Tolerances were
determined in the specimen geometry and the effect of these tolerances on the SIF was
investigated by the Design of Experiment (DOE) analyses. Transfer functions were
obtained to calculate the SIFs for different points along the crack front, namely the
free-surface points and the depth point, by evaluating the results of the DOE. A chart
showing the workflow in Chapter-4 is given in Figure 4.1.

Design of specimen
and test setup

1

FE analysis for specimen
and loading apparatus

i

Desing of Experiment
(DOE)

[Determination of Transfer] E The probability that any The probability that any
Function according to rcrack length corresponds number of cycles corresponds E
DOE ! toacertain time. to a specific crack length
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Calculation of crack
growth rate
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life prediction
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critical
length? ! !

g Cyde .}
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Figure 4.1. Flow chart in Chapter-4

Crack growth curve (mean)
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4.1. Design of the Specimen and the Test Setup

CT specimen in ASTM standard is used for two-dimensional crack propagation (two-
dimensional finite element model is required in modeling), and there is no standardized
testing specimens with three-dimensional surface crack. Therefore, firstly, specimen
geometries were determined in order to study the three-dimensional surface cracking
both experimentally and computationally. Studies were conducted on two different

specimen types.

First, it was planned to apply a tensile load on a plate with a countersunk hole as seen
in Figure 4.2. A countersunk hole was drilled on a 10 mm thick plate and the tensile
load required for fracture point in the experiment was calculated using the finite

element method.

N
\
Loading

apparatus
~

il

Specimen

Figure 4.2. A countersunk plate for 3-D fatigue crack growth tests

Finite element analysis was performed with crack being modeled along the
countersunk hole in the thickness direction and the SIF results are as shown in Figure
4.3. The SIFs at the crack front are quite low under the 10 kN tensile force applied in
the model. Also, since the plate with a thickness of 10 mm may lead the plane stress
condition in the tests, increasing the specimen thickness would also be required. Both
the low SIFs and increasing the specimen thickness will require even higher loads for

fracturing the specimen.
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Figure 4.3.SIFs along the countersunk at different plate thickness

Since the SIFs obtained in the countersunk plate are quite low, another specimen from
the literature was analyzed, named Lee James Specimen [54], [55]. This specimen is
similar to CT specimen, except its height is longer and contains a semi-elliptical
surface crack. Thus, this makes it possible to view the crack in the specimen from the

front.

Lee James (LJ) specimen with its original dimensions and the ellipsoid notch on it can
be seen in Figure 4.4. An initial crack was generated as (a/2¢ = 1, a = 2.75 mm) and
crack growth simulation was performed under 10 kN mode-1 load. Propagating crack

profiles and the corresponding KI stress intensity factors are also given in Figure 4.4.
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Figure 4.4.KI SIFs and crack profiles for Lee James Specimen with the original dimensions

As can be seen from the figure, the SIFs are much higher compared to the plate with
countersunk hole. It was decided to make modifications in Lee James specimen in
order to increase crack growth rate under the same load. The specimen width was
increased from 50 mm to 62.5 mm to enlarge the cross-section for crack propagation,
and the specimen height was reduced incrementally from 106 mm to 90 mm and to 80
mm to save material in manufacturing of specimens. The final geometry of the

specimen is given in Figure 4.5.

ww og
wuw g

62.5 mm

[ -

Figure 4.5. Final dimensions of Lee James specimen
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Elasto-plastic analysis was also performed with the final geometry (62.5 mm width &
80 mm height) using the 7075-T6 aluminum alloy material properties. In the FEA
model, a surface crack (a/c = 1, a =6 mm) was generated around an spherical notch (r
=5 mm), and contact mechanics between the specimen, pins and loading apparatus
were defined. In elasto-plastic analysis, it was controlled whether the applied load to
generate the desired SIFs causes a yielding in some points of the specimen. In addition,
the linearity of the load-displacement curve in the vicinity of the crack tips was
checked. It was seen that the yield stress was not exceeded in any point except at the
crack tip of the designed specimen. In addition, it was observed that the crack tip
opening displacements were directly proportional to the force according to changes in
distance between points A and B in Figure 4.8. Thus, there was no additional non-
linear deformation on the specimen that would affect the SIFs at the crack tip. Details

of the elasto-plastic analysis are given in Figure 4.6. - Figure 4.8.

Figure 4.6. Lee James specimen, loading apparatus and applied boundary conditions for elasto-plastic analysis
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Figure 4.7. Von-Mises stress results from elasto-plastic analysis with a spherical notch under 35 kN
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Figure 4.8. The relation between the crack opening displacement and non-dimensional load magnitude

After determining the external dimensions of the specimen, fracture analyses were
performed. First, a surface crack with 6 mm crack width (c) and aspect ratio (a/ 2¢ =
0.5) was placed in front of the specimen and analyzed. As expected, the SIFs were
very low in this case. Thereupon, a notch was generated that creates stress
concentration, and fracture analyses were re-performed to optimize the notch
geometry. After many analyses, two alternatives were selected, and their results are
presented in Figure 4.9. in terms of notch dimensions (width, depth, height) and the
corresponding SIFs. Similar SIFs were obtained in both alternatives and the ellipsoid

(10 mm total width, 2 mm total height and 4 mm depth) was chosen.
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Figure 4.9. Notch geometry and its effect on stress intensity factor
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4.2. Design of Experiment (DOE) Analyses

In fatigue crack propagation experiments, material properties were investigated as the
main effect that cause scattering in life values in Section 3.1. Another factor that causes
scattering is the geometric tolerances in the specimen. A large number of experiments
with combinations of tolerances in specimen geometry are required to determine the
effect of scattering on the results. Considering the time, difficulty and cost of hundreds

of tests, it is more reasonable to use FEM, representing the experiments.
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4.2.1. Strain gauge measurements for verification of Finite Element Analysis

In order to verify that the results obtained by FEA fully represent the experiments,
strain gauge measurements were compared with the strains obtained from the analyses.
A total of five strain gauges were pasted to the left and right of the notch placed on the
front side, to the back, and left and right surfaces of the specimen.

The locations and directions of strain gauges were determined by FEA, using the
maximum principal stresses and their directions at the corresponding node, presented
in Figure 4.11.

Figure 4.11. Location and direction of the strain gauges on different surfaces of the specimen
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Figure 4.12. Measured resistance by using strain gauges
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The strain gauge-assembled specimen was loaded at 0-2-4-6-8-10-12 KN
incrementally and then unloaded gradually. Resistance changes were measured, and
the results are plotted in Figure 4.12., and the data is given in Table 4.1. In the bottom
row of the table, strain values calculated by the finite element method are given on a
gray background. The minimum difference of the strain between the measurements
and computational results was 0.67% and the maximum difference was 12.47%, which
are obtained at the left and right sides of the notch, respectively. These two strain
gauges were in similar positions and directions at the right and left of the notch.
According to the results of FEA, the strain values of these two points are very close to
each other. Different results from the two strain gauges might be caused by the factors
such as adhesion or measurement error. As can be seen from the table, since the strain
values obtained from the finite element model and experiments are very close, it was
proved that the load and related boundary conditions in the experiments are correctly
represented in the finite element model.

Table 4.1. Strain gauge measurement data

Leftof | % |Rightof | % | Backof | % Lefgfs'de % R'QTfs'de %
the notch | error | the notch | error | Specimen | error - error . error
Specimen Specimen

g for 0-2 kN | 0.00086 | -13 | 0.00135 | 37.6 | -0.00059 | 15.0 | 0.00026 |14.6| 0.00024 | 5.8
g for 0-4 kN | 0.00123 | -12 | 0.00123 | 25.0 | -0.00056 | 9.2 | 0.00025 |10.2| 0.00024 | 7.7
¢ for 0-6kN | 0.00117 | -5.6 | 0.00117 | 18.6 | -0.00056 | 8.1 | 0.00026 |13.7| 0.00024 | 5.6
¢ for 0-8kN | 0.00113 | -1.5 | 0.00113 | 14.5|-0.00055 | 7.1 | 0.00025 |10.7| 0.00024 | 4.5
¢ for 0-10kN| 0.00111 | 0.7 | 0.00111 | 12.5|-0.00056 | 8.1 | 0.00025 | 8.2 | 0.00023 | 3.1

Leftof | % |Rightof | % | Backof | % Lefg]f'de % R'grgfs'de %
the notch | error | the notch | error | Specimen | error - error . error
Specimen Specimen
¢ for I0KN'1'9 00200 | 0.67 | 0.00098 | 12.4 | -0.00052 | 8.14 | 0.00023 |8.17| 0.00023 | 3.09
(ANSYS) . . . . . . . . . .

4.2.2. Determining the effect of geometric variables on the SIF

Geometric tolerances in specimen dimensions were observed due to machining
process. In order to consider these geometric tolerances, some dimensions on the
specimen were determined as variables. The variables are summarized in Table 4.2.

Six different variables were defined, and in total, 405 different cases were analyzed as
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the combination of variables. Three of the geometric parameters, x-y-z positions of the
ellipsoid as shown in Figure 4.13., can affect the SIFs. The machining tolerance was
selected as + 0.2 mm for x-y-z positions of the ellipsoid considering the machining
process performed by the Electro Discharge Machining (EDM). The length and depth
of the initial crack and the thickness of the specimen machined by CNC milling was

also determined as variables.

Figure 4.13. Offsets of the ellipsoid notch

Table 4.2. Tolerances of Lee James Specimen

Variables Min. Value Max. Value Increment Factor
Precrack Length 6.6 mm 7.4 mm 0.2 mm 5
Precrack Depth Function of Precrack Length

Ellipsoid DX -0.2 mm 0.2 mm 0.2 mm 3
Ellipsoid DY -0.2 mm 0.2 mm 0.2 mm 3
Ellipsoid DZ -0.2 mm 0.2 mm 0.2 mm 3
Thickness 24.9 mm 25.1 mm 0.1 mm 3

Before starting the DOE Analysis, a mesh sensitivity analysis on crack front mesh was
performed. In the sensitivity analysis, a full model with loading apparatus including
contacts between the specimen, pins, and loading apparatus was considered. The
element size at the crack front was defined as one 50" - 100™" - 200" - 300" - 400™ of
the crack depth, and other conditions in the analysis were kept constant. As can be

seen from Figure 4.14., the results are very close to each other. 2.2% difference was



94

calculated between the coarsest and finest cases. Thus, crack tip element size was
defined as one percent of the crack depth.
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Figure 4.14. Effect of element size on SIF in Lee James Specimen

A macro in ANSYS APDL was prepared that can parametrically place the ellipsoid
notch and the surface crack in the Lee James specimen. In the macro, the specimen,
the pins and the loading apparatus were modeled according to the test conditions, and
the contact mechanics were used between the parts. ANSYS v12.1 [56] was used in
the stress analysis of the assembled model. Displacements of nodes, belonging to the
loading holes, were read from the ANSYS solution file, and written as the
displacement boundary condition in the fracture analysis. SIFs were calculated along
the crack front by sub-modeling, using FCPAS.

4.2.3. Determining the transfer function for calculating KI SIF

405 DOE Analyses were conducted in order to observe the effect of each geometric
variable on the SIF. The SIF results from these 405 cases were analyzed independently
by using MINITAB software [44]. A sample view of the DOE table is presented in
Figure 4.15.
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Case | Crack Length AX AY Thickness AZ Case | Crack Length AX AY Thickness AZ
Number [mm] [mm] [mm] [mm] [mm] Number [mm] [mm] [mm] [mm] [mm]
1 6.60 -0.20 -0.20 24.90 -0.20 82 7.20 -0.20 -0.20 24.90 -0.20
6.60 -0.20 -0.20 25.00 -0.20 83 7.20 -0.20 =0.20 25.00 -0.20
3 6.60 -0.20 -0.20 -0.20 84 7.20 -0.20 -0.20 H -0.20
4 6.60 -0.20 0.00 24.90 -0.20 85 7.20 -0.20 0.00 24.90 -0.20
5 6.60 -0.20 25.00 -0.20 86 7.20 -0.20 25.00
6 6.60 -0.20 -0.20 87 7.20 -0.20
7 6.60 -0.20 -0.20 88 7.20 -0.20
8 6.60 -0.20 -0.20 89 7.20 -0.20
9 6.60 -0.20 -0.20 90 7.20 -0.20
10 6.60 0.00 -0.20 -0.20 91 7.20 0.00
11 6.60 0.00 -0.20 25.00 -0.20 92 7.20 0.00 -0.20 25.00 -0.20
Pr zen non nan nan o =an n oo oo ~on

Figure 4.15. A sample view of the DOE table

The results of the main effect analysis for different points at the crack front are given
in Figure 4.16. - Figure 4.18. In the main effect analysis performed in MINITAB [44].

it is seen that the thickness has a linear effect and the Ax and Ay (right/left - down/up

offset of the ellipsoid notch) have no significant effect on the SIF. The depth of the

EDM notch, denoted by Az, has a nearly linear effect on the results. It has also been

observed that the crack size and the specimen thickness affect the results linearly.

[ Precrack_Lenght

Elipsoid DX

Elipsoid_DY

Thickness

Elipsoid_DZ

4.85

Ll - o+
&8 3 3 8

Mean [MPa.m0-5]

=
g

4.55

Figure 4.16. Effect of geometric variables on Kl SIF (Right end)

o

PPN PN
P & PP S

S & &
Q‘}&QQ‘JP

a "L‘:r a

'\\

: NN
F & o

[ Number of Cycles 1
L

Soedmen o



96

3.80 | Precrack_Lenght Elipsoid DX | Elipsoid DY | Thickness | Elipsoid_DZ

w
=
o

Mean [MPa m9.9]
[#%]
=]

v-‘--—‘_-\. |

3.65-
S D o ) $ N
w@é’-\-“'\f"'\ﬁ o e@ e’? 9'-9 QS’Q 0'39 ,,y"’ ,,_6:-@ ,,9"@ 9“9 AN
Figure 4.17. Effect of geometric variables on Kl SIF (center)
485_Precmck_Lengn, Elipsoid DX | Elipsoid DY |  Thickness | Elipsoid_DZ
4.80 |
o
o 4.75
&
& 410
c 4.65-
L]
@
= 460
4.55 ]
4.50-

e K
SESPP P S P PSP S P ST

Figure 4.18. Effect of geometric variables on KI SIF (Left end)

The interaction effects of the variables are seen in Figure 4.19. Since the graphics at
the right, left and midpoints on the crack front are very similar, the interaction effect
is given only for the center point. According to Figure 4.19., the crack length and the
thickness affect the results together. However, any interaction was not observed
between Ax, Ay and Az of the ellipsoid and the crack length.
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Figure 4.19. The interaction effect between the geometric variables on SIF (center of crack front)

The ineffective variables were removed and then the DOE table was updated with the
crack dimensions given in Figure 4.20. Since the variable Ax, representing the
horizontal eccentricity of the ellipsoid EDM notch, was removed from the equation, a
separate transfer function for the right and left ends in the KI calculation is not needed,

since the problem becomes symmetric with respect to the centerline of the specimen.

The values in the box indicated with different colors in Figure 4.20. show the cross
combinations and include a total of 76 different cases after excluding the repeated
cases. The boxes were created with reasonable crack lengths and depths by taking into
account possible crack growth patterns and shapes obtained from the previous
simulations. Considering three different factors of the Az parameter for the ellipsoid

notch, the DOE Analysis Matrix, therefore, contains a total of 228 analyses.
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Figure 4.20. Combinations of the crack dimensions for DOE
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From the results of the fracture analyses performed for 228 different cases, a multi-
parameter regression analysis was conducted by using the values of crack depth and

free surface points. The obtained transfer functions are given below.

Kledge =1.1458 —248.3 A +69.66 B —94.7 C +17710 A% — 264201 C?
Klcenter = 0.33277 + 52.214 A — 20.119 B + 7.86 C+ 36443 C?

(4.1)
(4.2)

In the equations above, crack length, crack depth and ellipsoid AZ are expressed as A,
B and C, respectively. Normal probability plots and histograms are given in Figure

4.21. for the transfer functions.
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Figure 4.21. Residual plots for transfer functions

In order to verify the accuracy of the transfer functions given in Equations (4.1) and
(4.2), independent crack propagation analyses were performed on the LJ specimen.
The results are presented in Figure 4.22., and the crack growth curve obtained with the
transfer function is plotted in blue. The red line shows the test result which was

performed under constant amplitude loading (R = 0.1) with LJ specimen. Besides,



929

another crack propagation simulation was performed explicitly using FCPAS, which

calculates the SIFs in the crack front by using enriched element formulation.

Figure 4.22. Crack propagation analysis by using transfer function and comparison with the test
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SIFs and crack growth profiles can be seen in Figure 4.23. and Figure 4.24.,
respectively. As expected, SIFs are lower at the depth point of the crack than the edges.
Based on the depth point, 5.5 MPa.m®° SIF is generated under 10 kN for the initial
crack. This means that crack propagates slowly under 10 kN. Considering this finding,

higher load will be applied in the tests in 3D crack propagation tests.

4.2.4. 3-D crack growth tests under variable amplitude loading

4.2.4.1. Fracture tests by using Lee James Specimen

Lee James Specimens were machined from 7075-T651 aluminum alloy with CNC
milling in the dimensions mentioned in Section 4.1. Then, the notch was created by
using the electro-discharge machining (EDM). Details of the notching process with
EDM are given in Figure 4.25. EDM process can cause the change in the
microstructure of the material which affects crack growth behavior but the boundaries
of this change in microstructure do not reach precrack length. Therefore, this change

does not affect fracture or crack growth in the test results.

Electrode,
copper

Machining of EDM notch

Figure 4.25. Creating ellipsoid notch on Lee James Specimen by using EDM

15 kN fatigue load was applied to generate the precrack around the ellipsoid notch.
The precrack fatigue load was terminated as the crack length on the free surface
monitored by the camera reaches around 1.5 mm. Then, the fracture toughness test was
done under the static tensile load of 0.65 kN/s. The dimensions of the notch created by
EDM were checked on fracture surfaces. Details of the fracture toughness tests are
given in Table 4.3. Fracture toughness results could not be obtained from the last two
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tests indicated in gray background in Table 4.3. Since the crack size is very small, the
required load for fracture was quite high in the 20190304_05 test. For this reason,

fracture load was not applied to avoid any damage to the test machine and apparatus.

Table 4.3. Fracture toughness tests with Lee James Specimen

Stress Max.
SpNecimen Ratio for | Load for ggg(t:tlf ELZ‘;E Frc;;;e FrLag;L:jre
ame precrack | Precrack (mm) mm) | (kNJs) (kN)
R (kN)
20190220 01 0.1 15 28.44 5.79 0.65 | 56.461
20190222 01 0.1 15 30.8 8.59 0.65 | 35.332
20190226 01 0.1 15 29.82 6.865 0.65 | 41.023
20190304 01 0.1 15 28.66 6.63 0.65 | 48.374
20190304 02 0.1 15 31.35 9.845 0.65 | 30.538
20190304 03 0.1 15 29.94 6.615 0.65 | 41.152
20190304 04 0.1 15 31 9.26 0.65 | 31.979
20190304 05 0.1 15 27.81 4.36 0.65 NaN
20190304 06 0.1 15 33 9.91 0.65 NaN

Another finding was also noticed other than fracture load from the tests given in Table
4.3. Since there is three-dimensional crack propagation in Lee James specimen, it is
not possible to monitor the crack propagation along with the depth point during the
test. To monitor this, the depths and surface lengths of the cracks were measured by
using pixel sizes from the fracture surface pictures and the data were shown in Figure
4.26. after the tests. It was observed that the dimensions in the surface and depth
directions of the crack were related. A linear equation with a high R? between the crack
depth and the crack length is given in Figure 4.26.
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Figure 4.26. The relation between crack depth and length
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Since there is no test standard for three-dimensional crack propagation and an
empirical formula similar to that used for the CT specimen was used in calculating the
SIFs, it was investigated if the fracture load obtained in the experiments for LJ
specimen can be calculated computationally. Fracture analyses were performed by
employing FCPAS and using the crack dimensions from the experiments given in
Table 4.3. The SIFs distributions obtained from analyses are given in Figure 4.27.
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Figure 4.27. K1 SIF distribution for different surface crack size

As can be seen from Figure 4.27., in the analyses under the fracture loads obtained
from the experiments, the SIFs were calculated around 35-40 MPa.m®® at the free
surface points. The difference in SIF between the midpoint and the edge was greater
in smaller cracks. This means that there is a constraint effect on fracture in the depth
direction of the crack. As the crack size increases, constraint effect decreases, and the
variability of the SIFs along the crack front decreases. The specimens used in the tests

are shown in Figure 4.28.
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Figure 4.28. Lee James specimen used in fracture toughness tests
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In Figure 4.28., the LJ specimens used in fracture tests are shown in an increasing
order of fatigue pre-crack sizes from left to right. In the three specimens on the right,
fast fracture surfaces are perpendicular to the loading direction as expected but if the
first three specimens on the left are carefully examined, unexpected fracture surfaces
forming under mode-I loading can be seen. To investigate the underlying mechanics-
and materials-related mechanisms for the fast fracture surface deflection seen in the
Figure 4.28., a stress-based approach is performed. The findings can be explained with
the material properties for differently oriented cracks in the same material. To carry
out this, principal stresses around the free-surface crack tips for the different crack
sizes in the tested specimens are analyzed by finite element method. In Figure 4.29.,
the principal stress distributions around the crack tip obtained from finite element
analysis are given for surface crack size 2c = 14.42 mm. In this case, the distance of
one-sided pre-crack length from the edge of the ellipsoid notch is 2.21 mm, which is a
small to mid-level FCG increment. Since the fatigue precrack is quite small in these
specimens, the magnitude of the second principal stress in the crack tip is close to its
primary principal stress. Although no external loading is applied in the thickness
direction of the specimen, a constraint effect is generated by the Poisson’s ratio and
deformation kinematics of the solid material surrounding the ellipsoid notch. The crack
surfaces through the thickness and the constraint effect cause the high-magnitude
second principal stress for short surface cracks. According to the scheme given in
Figure 4.29., a crack surface propagating in the described direction is the S-L direction.
As can be found from Iri¢ and Ayhan's study, fracture toughness in L-T direction is
around 29 MPa-m®°, and in S-L direction is around 25 MPa-m°° [57]. Also, same
findings has been reported by Campell F.C as 32 MPa-m®% in L-T direction and 21
MPa-m®® in S-L direction [58]. Therefore, the crack is oriented perpendicular to the
initial pre-crack (S-L direction) by the second principal stress. This explains that if the
required tensile component of the stress for an S-L-direction crack is present, the crack

can propagate in the S-L direction.
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Figure 4.29. a) Crack growth according to the rolling direction, b) principal stress distributions

The finite element analysis given in Figure 4.29. was repeated for all crack lengths in
the experiments and the principal stress values were obtained. For all specimens and
their fatigue pre-crack lengths tested under monotonically increasing loads, the ratio
of the first and the second principal stress is plotted in Figure 4.30. If the ratio of the
first and the second principal stress is around 1.2 or less, fast fracture surfaces are
formed in the parallel direction to the mode-I loading. As the crack length increases,
the first principal stress dominates, and fracture surfaces are formed in the mode-I
opening direction, i.e., L-T direction.
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4.2.4.2. Fatigue crack growth tests under constant amplitude loading by using

Lee James Specimen

A total of 49 tests were performed with Lee James specimen under constant amplitude
(R=0.1, 0.5, 0.8) and random (spectrum) loading (SP1-SP2-SP3). A similar test setup

to that given in Section 3 was used for three-dimensional crack growth tests. The

numbers of tests are given in Table 4.4. During these tests, two crack tips on the

specimen were monitored with a single camera. In Figure 4.31., the experimental setup

and screenshots of the computer screen taken during the tests are presented.

Screenshots were recorded periodically in order to plot the cycle vs. crack length

curves.

Table 4.4. Numbers of 3-D fatigue crack growth tests

Test Count | Specimen Type
Fatigue crack growth tests under constant amplitude - R =0.1 5 LJ
Fatigue crack growth tests under constant amplitude - R =0.5 5 LJ
Fatigue crack growth tests under constant amplitude — R = 0.8 9 LJ
Fatigue crack growth under random loading - LJ-SP1 10 LJ
Fatigue crack growth under random loading - LJ-SP2 10 LJ
Fatigue crack growth under random loading -LJ-SP3 10 LJ
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Figure 4.31. Test setup for 3-D fatigue crack growth and the screenshot [59]

Table 4.5. 3-D fatigue crack growth tests under constant amplitude

Precrack Fatigure crack growth
Stre;s Stre_ss Max.
Specimen Specimen Rfa to Max. Load A(avg) Ratio Load for
Name Type or for Precrack (mm) for ECG Cycle
precrack (kN) FCG (kN)
R R

20191011 01 LJ 0.1 124 5.805 0.1 15.5 12224
20191011 02 LJ 0.1 12.4 6.530 0.1 15.5 10978
20191014 01 LJ 0.1 124 6.125 0.1 15.5 12487
20191014 02 LJ 0.1 12.4 6.006 0.1 15.5 14698
20191015 01 LJ 0.1 12.4 6.079 0.1 15.5 14176
20191015 _02 LJ 0.1 13 5.883 0.5 17 34296
20191016 _01 LJ 0.1 13 6.305 0.5 20 20218
20191016_02 LJ 0.1 13 5.963 0.5 20 23200
20191017_02 LJ 0.1 13 6.110 0.5 20 18321
20191025 01 LJ 0.1 13 6.255 0.5 20 18298
20191018 01 LJ 0.1 17 7.440 0.8 30 33246
20191022 01 LJ 0.1 17 6.310 0.8 32 51679
20191023 01 LJ 0.1 17 6.215 0.8 32 44590
20191024 _02 LJ 0.1 17 6.243 0.8 32 56501
20191101_02 LJ 0.1 17 7.920 0.8 32 22930
20191111 01 LJ 0.1 17 6.243 0.8 32 54388
20191113 01 LJ 0.1 17 7.920 0.8 32 53222
20191113 02 LJ 0.1 17 7.920 0.8 32 55623
20191203 01 LJ 0.1 17 7.920 0.8 32 64835
20191204 01 LJ 0.1 17 6.405 0.8 32 74322
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The fatigue crack growth curves of the performed tests are given in Figure 4.32. Also,
fracture surfaces formed under R = 0.1, 0.5 and 0.8 are given in Figure 4.33. -Figure
4.35., respectively. The crack surface did not occur symmetrically in some of the tests,
especially under R = 0.8. The specimens exhibiting high anti-symmetry at the crack
front were not used and these experiments were repeated. Details about the problem
of anti-symmetry on the crack front will be explained in Section 4.2.4.4.
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Figure 4.32. Curves obtained from constant amplitude 3-D fatigue crack growth tests

Figure 4.33. Fracture surfaces from 3-D fatigue crack growth tests under R= 0.1 constant amplitude
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Figure 4.34. Fracture surfaces from 3-D fatigue crack growth tests under R= 0.5 constant amplitude

Figure 4.35. Fracture surfaces from 3-D fatigue crack growth tests under R= 0.8 constant amplitude

The scatter of the experimental results are compared with a study in the literature that
experimentally investigated the crack propagation under constant amplitude loading
by using aluminum 7075 alloy. [60]. Crack growth curves of the repeated tests
conducted by the reference are given in Figure 4.36a. Figure 4.36b. was the
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experimental results of the tests with LJ specimens under R = 0.1 conducted in this
dissertation as described in the previous sections. There is no similarity between Figure
4.36a-b. in terms of loading conditions and specimen type. The two graphs are given
together only to show that the scatters are within reasonable boundaries. In the
reference study [60], the ratio of the minimum number of cycles to the maximum is
0.72. This value is 0.89 in the experimental study presented in this dissertation. In other
words, the scattering in this study is slightly less than the scattering obtained in the

compared study.
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Figure 4.36. Comparison of the scatters from the tests under R = 0.1 with the reference study [60]

4.2.4.3. 3-D Fatigue crack growth tests under random loading

After constant amplitude loading tests, random loading conditions were applied on the
LJ specimen. As in the two-dimensional crack propagation tests using the CT
specimen, two spectrums (SP1 and SP2) were used for random loading experiments,
and another spectrum (SP3) was applied for validation. First, SP1, given in Section
3.5, was scaled by a factor of 3.18 for the LJ specimen, yielding a maximum load of
35 kN. The spectrum (SP1) is presented in Figure 4.37. Details of tests performed with

this spectrum are also given in Table 4.6.
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Figure 4.37. Spectrum-1 for 3-D fatigue crack growth

Table 4.6. Details of the 3-D FCG tests performed under Spectrum-1

Precrack Fatigure crack growth
Stress Max Max.
. . Ratio : Load
Specimen Specimen Load for | agvg
for Spectrum for | Cycle
Name Type Precrack | (mm)
precrack (kN) FCG
R (KN)
20191030 01 LJ 0.1 17 6.305 | Spectrum-1 | 35 | 40128
20191030_02 LJ 0.1 17 6.090 | Spectrum-1 | 35 | 42650
20191031 01 LJ 0.1 17 6.665 | Spectrum-1 | 35 | 37044
20191031 02 LJ 0.1 17 6.920 | Spectrum-1 | 35 | 32024
20191101 01 LJ 0.1 17 6.670 | Spectrum-1 | 35 | 35022
20200619 01 LJ 0.1 17 6.160 | Spectrum-1 | 35 | 44638
20200622 01 LJ 0.1 17 6.285 | Spectrum-1 | 35 | 47104
20200622_02 LJ 0.1 17 6.390 | Spectrum-1 | 35 | 43608
20200623 01 LJ 0.1 17 6.318 | Spectrum-1 | 35 | 43192
20200623 02 LJ 0.1 17 5.953 | Spectrum-1 | 35 | 53266

110
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Figure 4.38. Fracture surfaces occurred under Spectrum-1 loading for 3-D FCG

The fracture surfaces generated by Spectrum-1 are shown in Figure 4.38. Crack

propagation curves obtained from the tests under Spectrum-1 are given in Figure 4.39.,

in which results from specimens with different initial crack lengths are given as

separate curves. Since it was not possible to monitor the crack depths during the test,

they were measured from the fracture surface after the tests and are presented in a

separate graph. The size of the crack depth is only given for the last step since overload

striation markings could not be seen clearly around the precrack.
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Figure 4.39. Crack growth curves obtained from 3-D FCG tests under Spectrum-1
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In Section 3.5, a partial FALSTAFF (Spectrum-2) spectrum was explained for CT
specimen. This spectrum was used repeatedly in the tests and simulations until the end
of the crack growth life. It was decided to scale this spectrum and use it in three-
dimensional crack propagation tests. Since the critical load for LJ specimen is higher
than CT specimen, the maximum load value of 11 kN for CT specimen in the
Spectrum-2 was scaled to 35 kN for LJ specimen. Thus, reasonable crack growth life
cycles were obtained for 3-D crack growth tests. The applied Spectrum-2 load profile

to LJ specimen is shown in Figure 4.40.
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Figure 4.40. Partial FALSTAFF (Spectrum-2) loading profiles for LJ Specimen

Table 4.7. Details of the 3-D FCG tests performed under Spectrum-2

Precrack Fatigure crack growth

Stress Max. Load Max.

Specimen Specimen | Ratio for i A(avg) Load
for Precrack Spectrum Cycle

Name Type precrack (kN) (mm) for FCG

R (kN)
20200624 02 LJ 0.1 17 6.205 |Spectrum-2| 35 37968
20200625 01 LJ 0.1 17 6.163 | Spectrum-2| 35 35626
20200625 _02 LJ 0.1 17 6.720 |Spectrum-2| 35 28657
20200626 _01 LJ 0.1 17 6.100 |Spectrum-2| 35 33826
20200626_02 LJ 0.1 17 5.886 |Spectrum-2| 35 37436
20200627_01 LJ 0.1 17 5.916 |[Spectrum-2| 35 38536
20200629 01 LJ 0.1 17 6.003 |[Spectrum-2| 35 35169
20200630_01 LJ 0.1 17 5.694 |[Spectrum-2| 35 42209
20200630_02 LJ 0.1 17 5.948 |[Spectrum-2| 35 37508
20200701_01 LJ 0.1 17 5.823 |Spectrum-2| 35 39718
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The details of the tests performed under Spectrum-2 are given in Table 4.7. The

numbers of life cycles and initial crack lengths show that the tests are repeatable.

The fracture surfaces obtained under fatigue crack growth tests using Spectrum-2

loading are shown in Figure 4.41. Crack propagation curves obtained from the tests

under Spectrum-2 are presented in Figure 4.42., in terms of crack surface lengths and

crack depths in separate plots.
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Figure 4.41. Fracture surfaces occurred under Spectrum-2 loading for 3-D FCG
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Figure 4.42. Crack growth curves obtained from 3-D FCG tests under Spectrum-2
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4.2.4.4. Investigation of the non-symmetry in crack front

In many tests performed with Lee James specimen, it was observed that the crack size
on both edges of the notch was not symmetrical in the front view. Thereupon, the
angular/axial adjustment of the test device, the geometry of the specimen and the
loading apparatus were checked, and it was realized that the problem was not caused
by these factors. A similar problem had also been observed in CT specimens before.
This problem was investigated in detail in our study titled "Effects of microstructural
through-thickness non-uniformity and crack size on fatigue crack propagation and
fracture of rolled Al-7075 alloy™ which has been published in Fatigue & Fracture of

Engineering Materials & Structures, and the explanations are presented below [59].

In two or three-dimensional crack propagation tests, it was observed that both crack
tips in a specimen were not symmetrical and that the striation is discontinuous along
the crack front. In some regions near the center of the specimen, the crack did not
propagate as much as the side regions, and thus the symmetry of the crack tips on both
surfaces is disrupted. In addition, there was a difference in the color of the fast fracture
surface at the point where the crack propagation lagged. A non-symmetry crack front
obtained in 3-D FCG tests and a close view of the lagging is given in Figure 4.43.
Furthermore, the difference in the color of the fast fracture surface at the lagging
region, which has a darker appearance, is shown in Figure 4.44.
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Figure 4.43. Tops views of 3-D crack fronts and a close-up view of FCG region

The material Al 7075-T651 is supplied as a plate with a thickness of 30 mm. The
thickness was decreased to 25 mm by milling from both sides. If the plate was
machined in equal amounts from both surfaces (2.5 mm from each), it was seen that
the dark color on the fast fracture surface was at the center of the specimen, and if it
was machined 5 mm from one side or unequally from both sides, the dark color was
seen closer to the machined side. The effect of machining is observed in three LJ
specimens in Figure 4.44. One of them (in the middle) was machined from both
surfaces equally and the others were machined only from one side. As can be seen
from the specimen in the middle, when thickness-reduction machining is performed
equally from both sides, the surface crack grows symmetrically.

Figure 4.44. Fracture surfaces of CT and LJ specimens with FCG lagging
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In the regions of darker color, higher surface roughness is expected. Roughness
measurement on fast fracture surfaces in specimen thickness direction confirms that
the darker color band is not just a visual effect. Roughness measurements were taken
along the thickness of the specimen CT-4 in Figure 4.44. According to roughness
measurement, the average surface roughness downstream of the lagged crack front
region is 3-5 times higher than the other regions, presented in Figure 4.45.

300 S
250
200
150

0.0 0.2 04 0.6 0.8 1.0
Non-Dimensional Crack Position

Figure 4.45. Surface roughness measurements along the thickness of CT specimen (CT-4)

Based on all these findings that the non-symmetry might be caused by the non-
uniformity of the material grains in the thickness direction. Optical microscope and
scanning electron microscope (SEM) images were also taken to investigate the
material. The surface was polished then etched about 20 seconds by using Keller
solution (5% HF 10% H2SO4 85% H:0). The optical microscope images in Figure
4.46. and Figure 4.47. and the SEM image in Figure 4.48. show that the grains in the
lagged region did not flatten as much as it was in the side regions of the specimen. It
is seen that the grains flattened at the surfaces were parallel to the rolling direction, but
the desired orientation cannot be achieved as much in the center. This makes crack
propagation difficult in the center part of the specimen compared to side regions along

with the thickness of the specimen.
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Figure 4.47. Optical microscopy images of marked regions of the 3rd CT specimen in Figure 4.44
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Figure 4.48. SEM images of different zones of the crack front of CT specimen (CT-4).

Based on the optical investigations and additional elasto-plastic analyses performed to
simulate the rolling process of the bulk plate material, it was concluded that the
difference in grain orientation between center and surfaces causes more ductile crack
growth in the center and lagging regions. Therefore, crack growth rate in the ductile
region becomes slower than side regions. In addition, when the specimen is not
machined equally from both surfaces, the more ductile region generates eccentricity
relative to the center of the specimen. So, crack growth rate becomes slower for a

specific point and leading to an anti-symmetric crack front.
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Figure 4.49. Thickness-direction stress contours for an initially 32-mm thick plate (MPa)
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An elasto-plastic analysis is performed in ANSYS for rolling process to investigate
the changes in stress contours through the thickness. Al-7075-T651 at 260°C material
property is identified using data from the reference [61]. Initially, 32-mm thick plate
is pressed by cylindrical rollers down to 30-mm thickness. Standard frictional contact
mechanics is applied between the rollers and the plate. Y4 symmetric boundary
conditions are identified. The stress contours can be seen in Figure 4.49., where
minimum value is obtained in the middle of the plate. Thus, it shows that if the
pressuring displacement of the rollers is not high enough material’s grains near the
middle of the plate will not flatten and thin as much as its side regions, resulting in
thicker-grain microstructure. In addition, other factors such as the speed of the

production line, and changes in temperature will also affect the results.



CHAPTER 5. CRACK GROWTH SIMULATION USING THE
MONTE CARLO METHOD

Distributions representing the variables such as material properties, load and geometric
tolerances were obtained from the experiments described in previous sections. The
variabilities of these parameters generate scattered crack propagation curves. Monte-
Carlo simulations were performed to estimate the variabilities and distributions of
crack propagation lives. Material properties, geometric dimensions and variations in
load were considered as input variables within their specified limits for Monte Carlo

simulations.

First, random input values of geometric tolerances on specimen and material
properties, determined in previous sections, were picked from the distributions. Using
these picked values, crack propagation life analysis was performed cycle by cycle for
the corresponding loading spectrum, and the calculated life was written in a file. In
this process, the load cell sensitivity of the test device was considered (class 0.5) for
the given loading profile. By picking new random values from the distributions of
parameters, the next case analysis was performed with the same procedure. This
process was repeated until the desired number of Monte Carlo simulations is reached.
During the simulation, picking random values by using a probability distribution,
covering the range of input values, is important. In this way, the effects of the

variabilities of input parameters on the results can be estimated realistically.

Although many software packages perform Monte-Carlo analyses, it was thought that
these packages may not provide sufficient flexibility and the necessary adaptations for
crack propagation simulations. Therefore, an in-house Monte-Carlo Simulation code

was created.
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The algorithm of the prepared simulation code is given in Figure 5.1. As seen in the
algorithm, a nested loop is the basis of the algorithm. The outer loop is used to
determine the distributions of the variables and to pick them randomly for each Monte-
Carlo simulation case. The inner loop of the algorithm is designed to perform cycle by
cycle crack propagation analysis for a given loading profile. Load profiles are read
from the "Loadspec.txt" file placed in the same directory of the program.

"Pick variable values from distributions" box is the first process of the algorithm given
in Figure 5.1. Random number generation in accordance with the distribution of the
variable considered is necessary for this process. An open-source random number
generation code in FORTRAN was found from the open sources [62] and it was
verified using MINITAB. Using the statistical data given in Section 3.4.5, the open-
source code was run, and the results were plotted in a histogram graph by MINITAB.
In addition, MINITAB and Fortran Code was used to generate random data with the
same Loc-Scale values, and plotted as a histogram. The histogram plotted by using the

data from two different programs came out very close to each other.
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Figure 5.1. Algorithm of crack growth life estimation code with Monte Carlo Simulation
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Initial crack length - depth, specimen thickness, and the variations on load, conforming
to the normal distribution, and the normal distribution function was defined for picking
random values. Since the load cell sensitivity of the test device was Class 0.5, the
average value was taken as 0 and the standard deviation was assumed 0.005 to define

the load distribution.

In order to determine the crack propagation rate of each cycle, first the average crack
propagation rate was calculated. Afterwards, the standard deviation value (0.001) was
calibrated according to the scattering of the crack propagation curves obtained from
the random loading tests performed with CT specimen is added to the calculated
average crack propagation rate by scaling with a randomly picked number from the
probability distribution. The decision of the Standard deviation value (0.001) will be
explained below in Figure 5.2. - Figure 5.4. A value called "da/dN multiplier" was
used to scale the standard deviation in the histogram plots. The mean of da/dN
multiplier and its standard deviation (o) is 0 and 1, respectively, and it is picked
randomly from the normal distribution in + 36 range. In order to perform mathematical
operations with the da/dN multiplier picked randomly from a normal distribution, the
other elements in the calculation must also show a normal distribution. For this reason,
the mean of crack growth rate and standard deviation was converted to the normal
distribution by taking their logarithm. After summation of the scaled standard
deviation value and the crack propagation rate, the value was transformed back into a
lognormal distribution with the inverse logarithm. Equation (5.1) shows the
calculation of da/dN crack propagation rate used in Monte Carlo analysis.

log1o(1%/ 4y ) = log1o(?%/yy)  + (dadN Multiplier).logio(49/,y )

mean

std.dev (5.1)

SIFs were calculated using the equation in ASTM E399 standard for two-dimensional
crack propagation of CT specimen, and the transfer function given in Section 4 was

used to calculate the SIF for three-dimensional cracks in LJ specimen.
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The term of (logm(da/dN) ) in Equation (5.1) was obtained around 0.1 from the

std.de

experiments performed by using CT specimen. However, it was noticed that the
calculated crack growth life values obtained from the MC simulations are in a wide
range if the standard deviation value was taken 0.1. First, the cause of this scattering
was investigated and then calibration studies were carried out to determine a closer

range to experiments.

1.E-3
¢ Measurement on photos
1 Measurement with COD 8

da/dN [m/cycle]

1.E-8

AK [MPa m°5]

Figure 5.2. Comparison of two different crack length measurement methods

In the previous sections, it was noted that the crack length was measured by two
different methods in constant amplitude tests with CT specimens. One of them is the
measurement of images by pixel sizing and the other is the measurement with COD,
and the latter was used only for validation of the first measurement method. Since the
data from COD was not recorded in variable amplitude loading tests and in the tests
with the nonstandard specimen (LJ), COD was not preferred as a primary measurement
method in this study. A comparison of two different measurement methods is given in
Figure 5.2. The COD measurements are more sensitive as expected. More scattered
data observed in pixel sizing affect the calculated crack growth life and eventually the

MC simulations.
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When a small number of Monte Carlo simulations are performed with the 0.1 standard
deviation value of experiments, the obtained range was matching with experiments.
However, an increased number of Monte Carlo simulations result in an increase in the
range of the scatters consisting of the life curves due to the picking of random numbers
from extreme points of the distribution. In Figure 5.3. and Figure 5.4., the lower and
upper bands of the MC simulations are given for the event number of 10 and 100,

respectively.
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Figure 5.3. The relation between the number of MC simulations and scattering of life curves

When a large number of Monte Carlo simulations were performed, the logarithm of
the calibrated standard deviation value was used to obtain a similar range with the
experiments. As can be seen in Figure 5.4., closer results to the experiments were
obtained by reducing the value of the logarithm of standard deviation. Figure 5.4.
shows the experimental and simulation results performed with CT specimen under

Spectrum-1 loading. Similar graphs were also observed in other specimen and loading

spectrums.
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Figure 5.4. Calibration of the logarithm of standard deviation
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5.1. Probabilistic Crack Growth Life Prediction

After verification studies of the open-source FORTRAN sub-program for random data
generation, the main code for crack propagation based on Monte Carlo method was
generated by using the algorithm given in Figure 5.1. The total number of simulated
events in the Monte Carlo Simulation is an input value and sets the number of values
randomly picked from distributions for each variable. If a distribution is scanned with
a larger number of random data within the range defined by mean and standard
deviation, the sensitivity increases. Therefore, the maximum number of Monte Carlo
Simulation must not be too small. In order to ensure that the number of Monte Carlo
Simulation was sufficient, two different simulations were carried out for two-
dimensional crack propagation with a maximum number of 250 and 100. Histogram
plots of randomly picked variables are given in Figure 5.5. As can be seen in the figure,
there was no significant difference between the simulations in histogram plots. Since
it is easier to analyze and plot results from a smaller number of events, the maximum

event simulation number was defined as 100, in this study.
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Figure 5.5. Effect of the number of Monte Carlo Simulation on the distribution of variables
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The load spectrum was written into an external text file for Monte Carlo Simulation.
Then, the mean and standard deviation values of the specimen thickness, initial crack
length, sensitivity of the load cell, and da/dN multiplier were defined as inputs in the
code. Two different codes were prepared for CT and LJ specimen due to the difference
in variables and calculation of SIFs. If LJ specimen is used in the simulation, the width
and depth of the initial crack and the AZ tolerance in the EDM notch should also be
defined as separate variables. After these variables are entered, the code calculates the
crack growth rate for each load cycle and computes the crack growth lives for all cases
of events defined by the randomly picked values of variables from their individual
distributions. At the end of the Monte Carlo simulation, three separate output text files
are generated. One of these files is named as “***txt” containing the crack
propagation rate and the other results calculated for each cycle of the load spectrum.
Other files are named as “***, Plot_txt” and “***.  Edge plot txt”, where results are
written at the specified cycle intervals for the center and edge points of the crack front,
respectively. Considering that calculations are made for thousands of points of the
spectrum profile for each simulation, it is easier to plot the “*** Plot_txt” files written

only at specific cycles. As an example of the created files, a screenshot is given in

Figure 5.6.
1.edge_plot txt - Not Defteri - ol

Dosya Dugen Bigim Gorandm Yardim
MC Sim, I_block,I_SPPI,I_SPPI_Gl,I_Cyc _Gl,I_Cyc_Loc, dadN, ASze(1_SPPI_G1),SPPI_Load(I_SPPI),SIF(I_SPPI_Gl), DeltasIF(I_SPPI_Gl),a_plast(1_SPPI_Gl), P_zSze(I_SPPI_Gl), FI ~

1 1 1 1 ) 0 ©0.0000E+00 ©0.2450E-01 0.0000E+00 0.0000E+00 ©0.0000E+00 ©0.2052-288 0.0000E+00 0.0000E+00

1 1 200 200 100 100 0.8938E-07 ©0.2451E-01 0.8000E+01 0.13426+402 ©0.5031E+01 ©.2473£-01 0.22556-03 0.1000E+01

1 1 201 201 100 100 0.0000E400 ©0.2451E-01 ©.5000E401 0.8385E+01 -0.5031E401 ©0.2455E-01 0.0000E+00 0.0000E+00

1 1 202 202 100 100 0.0000£400 ©.2451E-01 ©.3000E401 0.5031E+401 -0.3354E+01 ©0.24556-01 ©.0000E+00 0.0000E+00

1 1 401 401 200 200 ©.8957E-07 ©.24526-01 0.8000E+01 ©.1342E+402 0.5034E+01 ©.2474E-01 0.22586-03 0.1000E+01

1 1 402 402 200 200 ©0.0000E400 ©0.24526-01 0.5000E401 0.8389E+01 -0.5034E401 ©0.2456E-01 ©.0000E+00 0.0000E+00

1 1 601 601 300 300 0.11256-07 ©.24526-01 0.6000E+01 0.10076+02 0.3356E+01 ©0.2465€-01 ©.12706-03 0.4673E+00

1 1 602 602 300 300 ©0.0000E400 ©.2452E-01 0.2000E401 0.3356E+01 -0.6712E+401 ©0.2454E-01 ©.0000E+00 0.0000E+00

1 1 801 801 400 400 0.11276-07 ©.24526-01 0.6000E+01 0.10076+02 ©0.3356E401 ©0.24656-01 ©.12716-03 0.4681E+00

1 1 802 802 400 400 0.0000£400 ©.2452E-01 0.0000E400 0.0000E+00 -0.1007E+402 ©0.2455E-01 ©.0000E+00 0.0000E+00

1 1 1001 1001 500 500 0.1759E-07 0.2452E-01 ©.7000E401 0.11756402 0.33576401 ©.2470E-01 0.1730E-03 0.5703E+00

1 1 1002 1002 500 500 0.0000£400 ©.24526-01 0.5000E401 0.11756+402 0.33576+01 ©.2470E-01 0.0000E+00 0.5703E+00

1 2 1 1003 500 ° 0.0000E400 ©.2452E-01 ©.0000E+00 0.0000E+00 ©0.0000E+00 ©.2456E-01 ©.0000E+00 0.0000E+00

1 2 200 1202 600 100 0.6122E-07 ©.2453E-01 0.8000E+01 0.13436+02 0.50376+401 ©0.2476€-01 0.2261E-03 0.6816E+00

1 2 201 1203 600 100 0.0000E400 ©0.2453E-01 ©.5000E401 0.8395E401 -0.5037E401 ©.2458E-01 0.0000E+00 0.0000E+00

1 > > 104 100 0.0000F400 0.2453F-A1 0_2000F4A1  0_SAITELOT -0 IICAFAO1 0 JASRE-01 0 0OOAFLH0 0. OAGAE OO

Figure 5.6. A screenshot from *** plot.txt file

After the MC Simulations, the cycle number (I_Cyc GI) and crack length (ASze
(1_SPPI1_GlI)) values from each file are copied into Microsoft Excel [46] and plotted.
Since this process is tedious with many files, a VBA macro has been prepared in the
Excel Developer. The macro automatically copies the values from the txt files to Excel.
The Excel and ***, txt files must be in the same directory and the last number of MC
Simulation must be entered in the first sheet of the Excel workbook. The code of the
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macro can be seen in Figure 5.7. After the values are copied as individual columns for
each MC simulation in Excel, MINITAB [44] is used to obtain probability

distributions.

Sub dosyaoku()

For a = 1 To Sheets("dosyalar™).Cells(2, 1)
txtFiles = CStria) & ".plot_txt"

Cells(l, a) = txtFiles

Open txtFiles For Input As #1
i=2
Do Until EOF(1)
Line Input #1, textline
Text = Text & textline
Cells(i, a) = Mid(textline, &1, 11}

i=4i+1

Loop
Close £1
Next a
Cells (2, 1).EntireRow.Delete
'MagBox Sheets ("dosyalar™).Cells(2, 1)

End Sub

Figure 5.7. The Excel VBA macro copying the values from txt files to Excel

5.2. Comparison with Experiments and Model Improvement

In Section 3.6.3, deterministically calculated lives for two-dimensional crack
propagation with CT specimens and comparisons with experiments were explained. In
this section, the results of crack propagation simulations considering the mean and
standard deviation of variables using the Monte Carlo method will be explained. The
Spectrum Overload Index (SOL index), explained in Section 3.6.3., was used to
calculate the two-dimensional crack growth rate. Further details were given in Section
3.6.3. In Figure 5.8. -Figure 5.64., plots of crack propagation lives and input-output
distributions obtained by MC Simulations performed under SP1 and SP2 loading
spectrums for CT specimen are given for each model employed in the simulation.
Distributions of outputs obtained by MC Simulations can be displayed in two different
versions, as the crack length probability distribution corresponding to any number of

cycles or as the probability distribution of the load cycles corresponding to any crack
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length. The histograms were plotted as normal distributions. Also, survival plots
(inverse of cumulative distribution curve) were prepared by using these distributions.
The results in Figure 5.8. are given for both the crack front free surface (edge) and the
center points of the CT specimen. MC Simulation results obtained for different models
under different spectrums are given separately. In the first two models, namely
"Forman C-n values with Wheeler" and "Walker C-n values with Wheeler", presented
for each specimen and loading spectrum, the stress ratio was not directly used for each
load cycle. Instead, crack growth rate was calculated with C-n values of combined
da/dN curves generated with different R-ratios, using Forman or Walker models. In
other words, a mean stress effect approach was used with composite da/dN curves
obtained by Forman or Walker model, and crack growth retardation was determined
for each load cycle according to the Wheeler model. In all other models, crack growth

retardation and/or R-ratio calculations were made on a cycle-by-cycle basis.
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Figure 5.8. Probabilistic crack growth life curves and their comparison with the experiments (CT specimen, SP1
loading spectrum, Composite C-n with Forman Constants)
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Figure 5.9. Distributions of the inputs used in crack growth life analysis (CT specimen, SP1 loading spectrum,
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Figure 5.29. Probabilistic crack growth life curves and their comparison with the experiments (CT specimen, SP1
loading spectrum, Generalized Willenborg model)
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Figure 5.31. CDF for crack lengths under constant cycle load conditions (CT specimen, SP1 loading spectrum,
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Figure 5.34. Distributions of the inputs used in crack growth life analysis (CT specimen, SP1 loading spectrum,
Root mean square model)
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Figure 5.37. Probabilistic crack growth life curves and their comparison with the experiments (CT specimen, SP2
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Figure 5.39. CDF for crack lengths under constant cycle load conditions (CT specimen, SP2 loading spectrum,
Composite C-n with Forman Constants)
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Figure 5.40. CDF for load cycles under constant crack length conditions (CT specimen, SP2 loading spectrum,
Composite C-n with Forman Constants)
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Figure 5.41. Probabilistic crack growth life curves and their comparison with the experiments (CT specimen, SP2
loading spectrum, Composite C-n with Walker Constants)
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Figure 5.42. Distributions of the inputs used in crack growth life analysis (CT specimen, SP2 loading spectrum,
Composite C-n with Walker Constants)
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Figure 5.43. CDF for crack lengths under constant cycle load conditions (CT specimen, SP2 loading spectrum,
Composite C-n with Walker Constants)
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Figure 5.44. CDF for load cycles under constant crack length conditions (CT specimen, SP2 loading spectrum,
Composite C-n with Walker Constants)
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Figure 5.45. Probabilistic crack growth life curves and their comparison with the experiments (CT specimen, SP2
loading spectrum, Wheeler model with Forman)
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Figure 5.48. CDF for load cycles under constant crack length conditions (CT specimen, SP2 loading spectrum,
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Figure 5.49. Probabilistic crack growth life curves and their comparison with the experiments (CT specimen, SP2
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Figure 5.51. CDF for crack lengths under constant cycle load conditions (CT specimen, SP2 loading spectrum,
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Figure 5.53. Probabilistic crack growth life curves and their comparison with the experiments (CT specimen, SP2
loading spectrum, Xiaoping model)
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Figure 5.57. Probabilistic crack growth life curves and their comparison with the experiments (CT specimen, SP2
loading spectrum, Generalized Willenborg model)
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Figure 5.59. CDF for crack lengths under constant cycle load conditions (CT specimen, SP2 loading spectrum,
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Figure 5.61. Probabilistic crack growth life curves and their comparison with the experiments (CT specimen, SP2
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Figure 5.63. CDF for crack lengths under constant cycle load conditions (CT specimen, SP2 loading spectrum,
Root mean square model)
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Figure 5.64. CDF for load cycles under constant crack length conditions (CT specimen, SP2 loading spectrum,
Root mean square model)

As in the two-dimensional crack propagation explained above, different crack
propagation models were used for three-dimensional mode-1 crack propagation in LJ
specimen, and the comparison of the models is given in Table 5.1. SOL index, which
was previously described, was also applied and not applied for three-dimensional crack
propagation simulations. As can be seen from Table 5.1., simulations without SOL

index are closer to experimental results. Since propagation of a semi-elliptical surface
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crack is subjected to geometrical constraint due to elliptical shape, it is considered that
after the overload, the three-dimensional crack propagation rate is not as fast as the
two-dimensional crack. As a result, as can be seen from the simulation results with LJ
specimen, the SOL index was not used in the three-dimensional mode-1 crack

propagation analysis.

Probabilistic crack propagation curves obtained from Monte Carlo simulations with
different crack propagation models for LJ specimen are presented in Figure 5.65. -
Figure 5.120. Input and output distributions are also given for each model. The
distributions in MC Simulation outputs are expressed in two different ways as the
crack length probability distribution corresponding to any number of cycles or as the
probability distribution of the load cycles corresponding to any crack length. The
normal probability distributions and cumulative distribution graphs can also be
obtained by using output distributions. In the graphs, the results are given for both the

free surface (edge) and the center of crack tip (center) points of the LJ specimen.



Table 5.1. Comparison of variable amplitude fatigue crack growth model results (LJ Specimen)
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LJ SP1 LJ SP2 LJ SP3
Edge crack Edge crack Edge crack
Cycle length Cycle length Cycle length
SOL
Model FCG model FCG equation index| Test | Sim. | Test| Sim. | Test|Sim.| Test| Sim. | Test | Sim. | Test Sim.
Forman Const wth Paris-
Composite C-n Wheeler Erdogan v 26200 10.7 mm 16164 10.7 mm 20029 10.7 mm
Forman Const wth Paris-
Composite C-n Wheeler Erdogan X 34200 10.7 mm 25200 10.8 mm 27057 10.8 mm
Composite C-n Wheeler Walker v 55700 10.1 mm 14514 11.1 mm 20369 10.9 mm
Composite C-n Wheeler Walker X 83700 10.1 mm 24140 11.1 mm 32072 10.9 mm
20200 | ~ 12980, = 16100 =~
Walker Wheeler Walker v 42650 10.2 11.0 mm 35169 10.2 10.8 mm 31586 103 10.7 mm
Walker Wheeler Walker X 29700 | mm 110.7 mm 22183| mm 110.8 mm 25647 mm | 10.7 mm
Forman Wheeler Forman v 37200 11.4 mm 21240 11.1 mm 25598 10.8 mm
Forman Wheeler Forman X 55200 10.9 mm 36108 10.9 mm 40438 11.1 mm
Xiaoping Wheeler Paris-Erdogan X 55700 10.9 mm 40356 11.0 mm 45301 11.0 mm
GWillenborg  GWillenborg Forman v 50200 11.9 mm 20532 11.7 mm 24553 11.2 mm
RMS (Manujathay RMS Similar to Newman X 19900 12.5 mm 24036 12.5 mm 24800 12.5 mm
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Figure 5.65. Probabilistic crack growth life curves and their comparison with the experiments (LJ specimen, SP1
loading spectrum, Composite C-n with Forman Constants)
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Figure 5.66. Distributions of the inputs used in crack growth life analysis (LJ specimen, SP1 loading spectrum,

Composite C-n with Forman Constants)
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Figure 5.68. CDF for load cycles under constant crack length conditions (LJ specimen, SP1 loading spectrum,

Composite C-n with Forman Constants)
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Figure 5.69. Probabilistic crack growth life curves and their comparison with the experiments (LJ specimen, SP1
loading spectrum, Composite C-n with Walker Constants)
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Figure 5.70. Distributions of the inputs used in crack growth life analysis (LJ specimen, SP1 loading spectrum,
Composite C-n with Walker Constants)
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Figure 5.72. CDF for load cycles under constant crack length conditions (LJ specimen, SP1 loading spectrum,
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Figure 5.77. Probabilistic crack growth life curves and their comparison with the experiments (LJ specimen, SP1
loading spectrum, Wheeler model with Walker)
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Figure 5.81. Probabilistic crack growth life curves and their comparison with the experiments (LJ specimen, SP1
loading spectrum, Xiaoping model)
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Figure 5.85. Probabilistic crack growth life curves and their comparison with the experiments (LJ specimen, SP1
loading spectrum, Generalized Willenborg model)
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Generalized Willenborg model)
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Figure 5.87. CDF for crack lengths under constant cycle load conditions (LJ specimen, SP1 loading spectrum,
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Figure 5.88. CDF for load cycles under constant crack length conditions (LJ specimen, SP1 loading spectrum,
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Figure 5.89. Probabilistic crack growth life curves and their comparison with the experiments (LJ specimen, SP1
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Root mean square model)



173

1004 L2k.g2 |ROOtMean Square Model 100 o [ g taosrire
ELien ELiEn
£ 10E02 4 LOE-02
£ 9.0E03 S 90E03 [Ty
i 75 ey 4
- Li-gPt-center)[ g g:::: | Root Mesn Square Model
s 20000 30000 40000 < T 0 10000 20000 30000 40000
8 50- Cycle g 504 Cycle
S ]
o o
254 254
0 01
0.0072 0.0074 0.0076 0.0078 0.00850 0.00875 0.00900
Crack Depth for 10000th Cycle [m] Crack Length for 10000th Cycle [m]
100 _ 1apgy [RootMean Square Model 100
ERRTIT
T L0E02
f}y.anm R
751 % Sares 75
G somoy L - SP1- Center
- S.O0E-03 . -
c 0 1000 2000 3000 4000 (=
g 501 ) g 501 LJ-SP1-Edge
12602
o o Euwe | 4
“ LOEO2
251 2] fure
§ TOE-03
S fxE :: Rooi Mean Sguare Mopdel
01 o1 0 e 2000, 30000 4000
0.0094 0.0096 0.0098 0.01 0.0116 0.0120 0.0124 0.0128
Crack Depth for 20000th Cycle [m] Crack Length for 20000th Cycle [m]
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Figure 5.92. CDF for load cycles under constant crack length conditions (LJ specimen, SP1 loading spectrum,
Root mean square model)
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Figure 5.93. Probabilistic crack growth life curves and their comparison with the experiments (LJ specimen, SP2
loading spectrum, Composite C-n with Forman Constants)
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Figure 5.94. Distributions of the inputs used in crack growth life analysis (LJ specimen, SP2 loading spectrum,
Composite C-n with Forman Constants)
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Figure 5.96. CDF for load cycles under constant crack length conditions (LJ specimen, SP2 loading spectrum,
Composite C-n with Forman Constants)
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Figure 5.98. Distributions of the inputs used in crack growth life analysis (LJ specimen, SP2 loading spectrum,

Composite C-n with Walker Constants)
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Figure 5.101. Probabilistic crack growth life curves and their comparison with the experiments (LJ specimen, SP2
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Figure 5.103. CDF for crack lengths under constant cycle load conditions (LJ specimen, SP2 loading spectrum,
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Figure 5.112. CDF for load cycles under constant crack length conditions (LJ specimen, SP2 loading spectrum,
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Root mean square model)
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According to the results for 3-D crack propagation obtained by using different models,
the results of the Wheeler model with Forman equation in Figure 5.101., Xiaoping
model in Figure 5.109. and Generalized Willenborg Model in Figure 5.113. are close
to experiments. As explained before, SOL Index was not used for three-dimensional
crack propagation. In both two and three-dimensional crack propagation, the closest
result to the experiments was obtained by the Wheeler model, using the Forman

equation.

5.3. Verification Tests and Simulations for Three-Dimensional Crack Growth

In the previous sections, comparisons between the results of the experiments
performed under two different random loading profiles (spectrum loading) and the
crack propagation curves obtained from probabilistic two- and three-dimensional
crack propagation simulations by using different models were presented. It is
concluded that the use of Wheeler model for crack growth retardation gives better
results with Forman equation in the estimation of two- and three-dimensional mode-I
crack propagation life under random loading. The application of SOL index to
determine the partial crack growth acceleration after overload for two-dimensional
crack propagation problems under random loading was presented as a model
improvement and verified by independent experimental results obtained from the

literature.

Probabilistic analyses were performed using two different load spectrums for three-
dimensional mode-1 crack propagation and the results were compared with
experiments. A new spectrum named as Spectrum-3 (SP3) has been used to verify the
results, which was obtained by selecting a different part of the FALSTAFF spectrum
than the SP2 spectrum. SP3 loading spectrum is given in Figure 5.111.
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Figure 5.121. Partial FALSTAFF (Spectrum-3, SP3) loading profiles for LJ Specimen

500

In order to determine the variations in the crack propagation life curves, 10 tests were

performed under Spectrum-3 by following the procedure described in Section

Details of the tests performed under SP3 are given in Table 5.2.

Table 5.2. Details of the 3-D FCG tests performed under Spectrum-3

3.5.

Precrack Fatigure crack growth

r Max.
Splﬁcimen Specimen Rittigsfsor f'c\)/:alg(r.et?:gk A(avg) Spectrum Loa(aj1 for Cycle

ame Type precrack (kN) (mm) FCG

R (kN)
20200702_01 LJ 0.1 17 5.943 | Spectrum 3 35 39176
20200703_01 LJ 0.1 17 5.805 | Spectrum 3 35 37888
20200703_02 LJ 0.1 17 6.215 | Spectrum 3 35 34797
20200706_01 LJ 0.1 17 5.840 | Spectrum 3 35 39717
20200706_02 LJ 0.1 17 5.800 | Spectrum 3 35 43104
20200707 01 LJ 0.1 17 6.075 | Spectrum 3 35 31586
20200707_02 LJ 0.1 17 5.868 | Spectrum 3 35 38782
20200708_01 LJ 0.1 17 5.890 | Spectrum 3 35 37284
20200708_02 LJ 0.1 17 6.275 | Spectrum 3 35 33014
20200709 01 LJ 0.1 17 5.908 | Spectrum 3 35 41137

After the experiments, Monte Carlo Simulations were performed, and the crack growth

curves obtained by using different models are given in Figure 5.121. - Figure 5.149. in

comparison with the experiments. The input and output distributions are also given for

each model.
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Figure 5.126. Probabilistic crack growth life curves and their comparison with the experiments (LJ specimen, SP3
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Figure 5.127. Distributions of the inputs used in crack growth life analysis (LJ specimen, SP3 loading spectrum,
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Figure 5.128. CDF for crack lengths under constant cycle load conditions (LJ specimen, SP3 loading spectrum,
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As can be seen from the graphs above, it has been confirmed that the probabilistic

crack growth simulations performed under SP3 load spectrum by using the Wheeler

model with Forman equation together, gives the closest results to the experiment, as it

was under SP1 and SP2 load spectrums. In addition, Xiaoping and Generalized

Willenborg models also showed good accordance with results of three-dimensional

mode-1 crack propagation tests, as it was the case under the SP1 and SP2 spectrums.
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Developing a probabilistic method for three-dimensional crack propagation life
estimation using FCPAS software is aimed in this study. A total of 61 two-dimensional
crack propagation tests at 4 different strain rates under constant amplitude were
performed to be used in probabilistic crack growth simulations. Thus, the variation in
material properties affecting the crack propagation was determined. The crack
propagation life was estimated by Monte Carlo simulation, taking into account the
variability in material properties, load sensitivity, and geometric tolerances on the
crack and specimen. In order to compare the predicted life interval, a total of 24 two-
dimensional and 30 three-dimensional crack propagation tests were performed under
random loading.

Wheeler [12] and Willenborg [13] models have been used by the studies in the
literature to calculate variable amplitude crack growth, and researches have been
conducted to improve these models. However, there is no generally accepted model in
the literature for random amplitude loading. Models proposed by different authors in
the literature do not obtain a close result for different load spectrums or materials.
When different load spectrums are applied, the plasticity effect in the crack tip,
generated by load interaction, changes. In a study published by ASTM [22], crack
growth life was calculated by using 6 different models for the same load spectrum.
According to the experimental results, the crack growth life was estimated in the range
0f 1 - 2.13 (Npred / Niest) times. One of the models in the study is Multi-Parameter Yield
Zone [23] which includes 4 different empirical values obtained from the material and
gives the closest life to the tests compared to other used models. It is seen that the
results with Multi-Parameter Yield Zone model change between 0.97 - 1.18 (Npred /
Neest) under different magnitude. Kermanitis A.T. and Pantelakis S.G [63] compared
the results of their models containing material-related parameters such as material
hardening with the experiments (Npred / Ntest) in the ASTM reference [22] mentioned
above, they obtained results in the range of 0.53 - 1.43. In the literature, additional
parameters are used with the proposed models to explain the interaction effect between
loads. X. Huang et al. [21] proposed additional coefficients to define the interaction
effect between the loads and they calculated crack growth life close to the experimental
results for a spectrum used in their study.
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Coefficients’ dependence on the material and experimental results make it difficult to
apply a proposed model. In this dissertation, Spectrum Overload Index (SOL index)
was used to improve a crack growth model in two-dimensional crack propagation.
SOL index is easy to apply as it is a parameter derived directly from the load spectrum,
regardless of the material and experimental results. In this study, close results with
experiments were obtained by Forman with Wheeler Equation model for two-
dimensional crack propagation using the SOL index with two different spectrums.
However, due to the difference in crack propagation behavior, SOL index is not
recommended for three-dimensional cracks. In three-dimensional cracks, the plane
strain condition inside the specimen causes a constrain effect, and it decreases the

crack growth rate in the test.

There is no standard specimen for three-dimensional crack propagation tests in the
literature. In this study, a new specimen type is proposed, which can perform crack
propagation tests without very high load values. Finite element analyzes were
performed on the specimen and the results were verified by strain-gauge
measurements. A transfer function has been obtained for the SIFs calculation in the
specimen by DOE analysis. Close results to experiments were obtained on the
proposed specimen using the Wheeler with Forman Eqn. model for three different
spectrums. For other crack propagation models used, the difference between
experiments and calculations changes. Compared to the studies in the literature, the

ratio of calculated life to experimental results is at reasonable levels.



CHAPTER 6. CONCLUSION AND FUTURE RESEARCH

6.1. Conclusion

This study aims to determine the variability in crack propagation life for three-
dimensional mode-1 fatigue crack propagation problems using the probabilistic
fracture mechanics method. Initially, it is necessary to determine the material
properties such as fracture toughness and fatigue crack propagation, which are
obtained from standard fracture toughness and crack growth experiments using the
Compact Tension (CT) specimen. A large number of crack propagation tests under
different loading types were performed to determine the variability in the material
properties. Therefore, approximately 10 tests were performed under each loading type,
including spectrum loading. The effect of the overload ratio was investigated in the
single overload tests. It was observed that when the overload ratio equals two, the
crack growth life increases more than three times. Then block loading tests were
performed, and the effect of the block overload period on crack growth life was
investigated. In the case of a short cycle of block overload, the crack propagates slower
than the case of single overload. If the block overload is applied for a long-time new

plastic zone is created consequently, and it accelerates the crack growth.

The experimental results were compared with variable amplitude loading models in
the literature, and an improved model was proposed for spectrum loading. Since the
stress ratio is not included in the equation, the calculated results under random loading
by only the Wheeler model represent an unrealistic condition. In the literature, some
modifications to the Wheeler model were proposed to overcome this problem. In this
dissertation, four different approaches have been used to define the crack growth

behavior as a function of the stress ratio in the Wheeler model. The first of these
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approaches is to substitute the Paris-Erdogan C-n coefficients in the Wheeler model
with the coefficients obtained by gathering the da/dN curves with Walker procedure.
In other words, experiments with different stress ratios were combined on a curve with
the Walker procedure, and crack propagation coefficients were obtained. Eventually,
these coefficients were used directly in the Wheeler model. Secondly, the Forman
fatigue crack growth coefficients are directly used in the Wheeler Model with a similar
approach. As the third and fourth approaches, crack propagation life was estimated by
substituting the Forman or Walker equation into the Wheeler model. Calculations were
performed by using these approaches under different loading spectrums, and the
obtained results from each model were plotted for the edge and center of the crack
front, separately. It was found that Wheeler model with Forman equation gives the

closest results to the experiment for two- and three-dimensional crack growth.

Since the plane stress condition is dominant on the sides of the specimens, the crack
propagation rate at the edge is slower than it is at the center of the specimen. For this
reason, the crack growth retardation effect was not applied in the center of the
specimen. Crack tunneling, observed in crack propagation tests under variable
amplitude loading, also supports this approach. Note that only the increasing load
profiles were taken into account for counting the load profiles in spectrum loading,
and the decreasing profiles were not used in the crack growth calculation since they

do not physically open the crack surfaces.

In addition, an improved model, Spectrum Overload (SOL) Index, has been proposed
for modeling two-dimensional crack propagation under random loading. SOL Index is
a multiplier to SIF in the crack propagation equations, representing the weight of the
peaks in the loading spectrum as a percentage. Some studies in the literature have been
focused on the interaction between load profiles. However, these studies mostly try to
explain the order of the profiles and the relation of each profile to its neighbors. An
approach, such as SOL Index, which is calculated along the spectrum for the definition
of crack growth behavior, has not been seen in the literature. Simulations performed
with the SP1 and SP2 loading profiles show that the use of SOL Index is appropriate

for 2-D crack propagation. But simulations without SOL index are closer to
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experimental results for three-dimensional crack propagation. Since propagation of a
semi-elliptical surface crack towards the free surfaces is difficult, it is considered that
the three-dimensional crack propagation rate is not as fast as the two-dimensional
crack after the overload. As a result, as seen from the simulation results on the LJ
specimen, the SOL index was not used in the three-dimensional mode-1 crack

propagation analysis.

The material properties data and crack propagation modeling experience with two-
dimensional crack growth were utilized for three-dimensional crack growth. For three-
dimensional crack growth experiments, a non-standard specimen with semi-elliptical
cracks (modified LJ specimen) was designed by performing finite element analyzes in
different geometries. An ellipsoid-shaped three-dimensional notch was created. Crack
propagation tests were performed under different loading conditions after generating
a pre-crack as the semi-elliptical surface crack around the notch. Transfer functions
were obtained to calculate the SIF for different sizes and positions of the crack in the
specimen by performing three-dimensional fracture analyses with combinations of
aspect ratios and crack depth/length, so that crack propagation can be analyzed for any
crack reasonable crack sizes and loading spectrum. An independent probabilistic crack
propagation analysis code has been developed in FORTRAN that uses the SIF transfer
function obtained for the specimen. Loading spectrum, material properties, initial
crack size, and some geometric tolerances were defined as input distributions. This
code also considers the modeling of the crack growth retardation effect caused by
overload by using a selected model. Analyses are repeated by picking random values
from the input distributions to calculate the crack propagation lives by employing the
Monte Carlo probabilistic simulation method. The variations in the crack propagation
curves were obtained as a result of the Monte Carlo simulation. For each load case,
approximately 10 two- and three-dimensional crack propagation tests were performed
in the laboratory. Then, the Monte Carlo simulations were run in the same conditions
as the tests. The models were calibrated using the experimental results and were further
verified by additional independent experiments. Thus, the probabilistic fatigue crack

growth simulation capability, which is the main purpose of this study, was achieved.
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To give a brief of the results obtained in this thesis;

— Parallel computation of element stiffness matrices and assembly into global
stiffness matrix in FCPAS was performed to save solution time in fracture
analyses.

— The positive parts of the load profiles were used to calculate stress ratio in
spectrum loading.

— Spectrum Overload (SOL) Index has been proposed for modelling two-
dimensional crack propagation under random loading.

— Wheeler model with Forman equation gives the closest results to the
experiment for two- and three-dimensional crack growth.

— A new specimen was designed to investigate three-dimensional crack growth,
and transfer functions were obtained to calculate the SIF.

— Anin-house probabilistic crack propagation code was developed that considers
the general loading spectrum and variabilities in the governing parameters.

— The variations in the crack propagation curves were obtained as a result of the
Monte Carlo simulation.

6.2. Recommendations for Future Results

In this thesis, mode-I crack propagation life is subjected by using 2-D and 3-D linear
elastic fracture mechanics principles. Probabilistic life estimation for mixed-mode
crack propagation can be planned as future research. The plastic zone at the crack tip
must be calculated, and its effect on crack propagation should be considered under

mixed-mode for the mentioned study.

The scatters in material properties are more prominent for the studies in non-linear
fracture mechanics. Probabilistic crack propagation studies can be performed for
ductile materials or under high-temperature conditions. In this way, significant results

can be obtained for engineering applications.
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Prognostic health management and probabilistic fracture mechanics methods can be
used together. It may be possible to obtain results in a smaller range by using update
methods (Kalman filter, Bayesian updating, etc.) while performing probabilistic crack

propagation life estimation during the experiment.
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