
Sabit kesitli bir boruda konsantrasyon dağılımının 
asimptotik hali

Asymptotic behaviour ot the concentration distribution 
in a pipe of constant eross seetion

M. Emin ERDOĞAN0

Bu makalede, sabit kesitli bir boruda, konsantrasyon dağılımına ait 
momentler kullanılarak, konsantrasyon dağılımının asimptotik durumu 
incelenmiştir. Genel bir tetkik, ortalama konsantrasyonun, asimptotik 
halde, akımın ortalama hızıyla hareket eden bir noktaya göre normal da­
ğılıma uyduğunu göstermiştir. Ayrıca, konsantrasyon momentlerinin sağ­
ladığı denklemlerin nasıl çözülebileceği açıklanmıştır.

In this paper, the asymptotic behaviour of the concentration distri­
bution in a pipe of constant eross seetion, by use of moments of the con­
centration distribution, is considered. A general analysis shows that the 
mean concentration is ultimately distributed about a point vohich moves 
at the mean speed of the flow according to the normal distribution. Fur- 
thermore, the way to be folUnoed, in the Solutions of the eguations satis­
fied by the moments of the concentration distribution, is crplained.

1. Introduction
If a solute is injected into a solvent which is in a steady laminar 

flow through a circular pipe, it is dispersed longitudinally due to the vari- 
ation in fluid över the eross seetion of the pipe interaeting with lateral 
molecular diffusion and longitudinal molecular diffusion. Experimen- 
tally and theoretically it has been shown [11 that the combined effect of 
longitudinal convection and lateral diffusion is to disperse the solute longi­
tudinally relative to a frame, vvhich moves with the mean speed of the
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Asymptotic behavioıır of the concentration distribntion in a pipe... 25

flow, by a process vvhich is described by one - dimensional diffusion equa- 
tion. This fact was refound by Aris [21 using the moments of the dis­
tribution of solute. The most important feature of the theory of disper- 
sion given by Taylor [1] is that it enables one to describe the average 
concentration in a three - dimensional system by the solution of the one - 
dimensional diffusion equation. This fact has been confirmed by many 
authors both experimentally and theoretically (see references in [3|).

The analysis used for laminar flovv has been extended to the cases 
of turbulent flovv in a circular pipe [4] and turbulent flovv in a vvide chan- 
ncl vvith frce surface |5|. A conclusion follovvs the fact that the combi- 
ned action of turbulent lateral diffusion and convection by the mean 
flovv, and longitudinal turbulent diffusion are ultimately to make the 
matter spread out symmetrically about a frame moving vvith the dis- 
charge velocity. A Virtual diffusion coefficient may be defined if the sta- 
tistical properties of the flovv do not change vvithin a cylindrical boundary 
(see discussion in 16]).

The present paper describes the application of the analysis used for 
laminar flovv in a straight pipe |2j and for the flovv betvveen tvvo paral- 
lel plates | 71 to the case of turbulent flovv in a pipe of constant but ar- 
bitrary cross section, taking into account a secondary flovv över the cross 
section of the pipe. It is found that there are some similarities betvveen 
the asymptotic behaviour of the higher moments of the concentration 
ditribution in a straight pipe of circular cross section and that in a pipe 
of constant but arbitrary cross section in vvhich flovv is three-dimensional.

The analysis used in the present paper shovvs that the mean concen­
tration ultimately distributed about a point vvhich moves at the mean 
speed of the flovv according to the normal lavv of error, regardless the 
initial distribution of the concentration. Although the results given in 
the present paper are in the case of turbulent flovv, they can be readily 
applied to the case of laminar flovv.

2. Equation of turbulent diffusion
For an incompressible turbulent flovv, far from the laminar region, 

the concentration is given by the equation

‘'r + u Vc = 0, (2 )
at

vvhere c is the instantaneous value of concentration and u(x. t) is the 
instantaneous value of velocity. Substituting c and u, c-C- -c' and 
u = v- v'in equation (2.1), and then taking the average of it one finds
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dC
3? + v ' c ~ ‘ <>vtc') (2.2)

vvhere C and v are the mean values of the concentration and the velocity 
respectively, and prime denotes the fluctuating quantities. In the case of 
the diffusion in a pipe of constant cross section, the turbulent diffusion 
flux can be vvritten as 18].

-V •(»•/)= V,-(EVtC)+ 9 (e* 
dx \ dx !

vvhere s an e*, which depend only on the cross sectional variables, are 
diffusivities ; and s denotes the cross sectional derivatives and x is the 
coordinate vvhich is taken along the pipe. Thus, equation (2.2) has the 
follovving from

+v - VO = V,-(eV,O) + ,ot dx\ dx I
or

~ + v, • V,O + u* 9C = V,- (eV,C) + (e* -9-l , 
Ol dx \ 3x ) (2.3)

vvhere vs is the cross sectional velocity and u* is the axial velocity vvhich 
depend only on the cross sectional variables ; the general case will not be 
considered in the present paper.

Since the velocity components and the diffusivities depend only on 
the cross sectional variables, using the continuity equation for velocity 
field, equation (2.3) can be vvritten as

+ V, (Ov,) + -d(Cu*) = V. -(eVsC)+^-(e* • (2.4)
ot dx 3x1 dx /

It is convenient to vvrite oquation (2.4) in a frame vvhich moves at the 
mean speed of the flovv. For this vve put

X = x - U„ t , - = t ,

vvhere X = X (x, t) , -c = t (x, t) and Um is the mean velocity. Using the 
properties of partial derivatives vve have

30 _ 3(7 dC = 30 _ 30 .
3x 8X ’ dt ~ 3~ UmdX ’

and inserting them into equation (2.4) vve find
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'J' + V.-(Cv,)+ (uC) = V,-(eV4C) + (e*C), (2.5)
dr dA oA

\vherc u = u‘ — U,n is the velocity with respect to the moving frame and 
it has zero mean, and t is replaced by t.

The boundary and the initial conditions are

e = at vvall and C(A,X,0) = C„(A.X), (2.6)an

respectively ; where A represents the cross sectional variables and 3/3n 
denotes the normal derivative to wall.

3. The moments of the coneentration distribution
The q th moment of the coneentration distribution is given by

00

CM(A,t)= [ X‘<C(A,X,t)dX. (3.1)
---- 00

The zero order moment is related to the total mass of the matter, the 
first order moment is related to the position of the centre of mass, the 
second order moment is related to the variance of the distribution of sol- 
ute, the third order moment is related to the skewness of the distribu­
tion and the fourth order moment is related to the kurtosis of the dis­
tribution. In order to have more knovvledge about the distribution of sol- 
ute the higher more than the fourth vvill be necessary 121.

In order to obtain the eauations satisfied by the momenets of the 
distribution of solute let us multiply equation (2.5) by Xq and integrate 
with respect to X in the interval ( OO , 4- oo ) , by the use of the bound­
ary conditions for the coneentration vve obtain (see Appendix A)

+V,-(C'Wvs)-VJ-(EVsC(,'’) = quC,(<'-,’)-<7(q (3.2)

where it is assumed that the sufficient conditions on the behaviour of 
the coneentration at both ends of the cloud of the solute are satisfied. 
The boundary conditions given by (2.6) can be vvritten in terms of the 
moments as

e —---- = 0 at vvall, C^) (A,O) = Co<q) (A). (3.3)ön
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It is possible to estimate the variations of the moments using the 
mean values of the moments of the concentration. The average of the 
q th moment of concentration is given by

CJ" =r y f CW(A t)dS, (3.4)

S

where S denotes the eross seetion of the pipe, and it is assumcd constant.

Let us take the average of ali quantities in equation (3.2) över the 
eross seetion and the use of the integral identities (see Appendix B) we 
obtain

dC <•»-=q{uC<< ”.. + </!</ 1){£’(’ 21 . ; (3.5)

vvhere { },„ shows the mean of any quantity.

Aris 12 J showed for a straight pipe that the first two moments are 
ultimately sufficient to deseribe the concentration distribution. Hovvever, 
in order to get more Information such as skewness and kurtosis, it is nec- 
essary to find the third and the fourth and also the higher moments of 
concentration.

4. The Solutions of the moment equations

In this paragraph, first we vvrite the equation (3.2) for q = 0 , 1,2 , 
... , n , ... and then we find the dependence of the concentration moments, 
up to n th order, on t. Furthermore, here, we show that it is possible to 
separate the concentration moments two parts in which one part depends 
only on the eross scetional variables and the other depends on the eross 
sectional variables and time.

4-1. The zero order solution

For q 0 equation (3.2) becomes

dc<°>
—3-7-+V’ (CWv.)- V,-(EVrC"ob=O, (4.1)Ol

and equation (3.5) behaves

dC^> „
~dt = o : ’4-2’

the boundary conditions (3.3) take the forms
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’âC ,0>£-^■—=0 at wall, C<°>A.0) = C0™(A). (4.3)
c»

Eqation (4.2) gives -constant. This means that the total mass 
of solute is conserved in ali times. We take this constant as unity without 
any loss of generality. Thus C(° ultimately goes to unity and it can be 
written as

C™ = g00 + o (A , t), (4.4)

where gM is a constant and from the definition of the average we find 
that <7oo = l ; O( A, t) denotes a function which depends on the cross sec- 
tional variables and time, and vvhen t goes to infinity this function goes 
to zero. For the purpose here we do not need the explicit form of it. As 
it has been explained previously we see from equation (4.4) that, the part 
vvhich depends only on the cross sectional variables and the part vvhich 
depends on time are superposable.

Jf.2. The first order solution

For q = 1 equation (3.2) becomes

Vj. (£VsC'(h) = uC<% (4.5)
dt

and equation (3.5) behaves

; (4.6)dt

the boundary conditions (3.3) take the forms

e ;ı' =0 at wall, C<1'(A,0j = Co<1M). (4.7)
3n

Since C'ü) ultimately goes to unity and {u}m=0, then we obtain 
asymptotically C'^^constant. Thus, we have

C<>) = /00U) + O(A ,t) , (4.8)

\vhere fM (A) - f (A) satisfies the equation

V,-(/v,)~ V,-(eV,/) = u. (4.9)

and the boundary condition for f (A) becomes 
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e =0 at wall.dfn
The solution of eqution (4.9) subjected to the boundary condition de- 
pends on the explicit forms of u , vs and e ; however, we do not discuss 
it here for the purpose in the present paper.

As it has been previously explained, the first order moment of the 
concentration distribution is related to the centre of the total mass of 
mater. Since equation (4.6) gives asymptotically constant, the pos- 
ition of the centre of mass does not change according to a point which 
moves at the mean speed of the flovv. This means that the centre of mass 
ultimately moves at the mean speed of the flow.

lf.3. The sccond order solution

For q—2 oquation (3.2) becomes

ar(J)
St +V, • (C<2> vs)—V.-(e VIC(20 = 2MC'1) + 2e*{C<0> (4.10)

and equation (3.5) behaves
dC! (»)
‘T =2{u C<1)}m4-2 {e*C(0) }m ; (4.11)at

the boundary conditions (3.3) take the forms

e-t— =0 at wall, C& (A,O) = Co^ (A). (4.12)

From equation (4.4) and equation (4.8), equation (4.11) ultimately be­
comes

ddM =2{u/}m + 2{e*}m.

The expression of C|2'nı suggests

= tgn + g10(A) + O (A ,t), (4.13)

vvhere gu—2x and x is given by

x = {n/)m+ {£•}„. (4.14)

When t goes to infinity the dominant term in equation (4.13) be­
comes and this gives the variance of the distribution. Tn other words, the 
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half of the derivative of the variance with respect to t equals to the ap- 
parent diffusion coefficient. Without loss of generality, gM(A) can be 
taken as a function which has a zero mean. In order to obtain the equa- 
tion satisfied by gK, substituting equation (4.13) into equation (4.10) 
and using \7 -vs=0 one finds

V, -(gıoV.l-V, •(EVJp]U) = 2M/ + 2(£*—z), (4.15)

vvhere gw sattisfies the condition

e ^,n =0 at wall. 
dn

If.lf. The third order solution

For q=3 oquation (3.2) becomes

+ V,- (C<3>v,) — V, ■(eV,CW) = 3uC<2) + 3!£*C<1), (4.16)
dt

and equatıon (3.5) behaves
tir (3) =3{MC(O)m4-3!{£*C)m ; (4.17)

dt

the boundary conditions (3.3) take the forms

e .',r = o at vvall, C<3>(A,O) = Co(3M).
dn

From equation (4.8) and equation (4.13), equation (4.17) ultimately be­
comes

dC w~ = 3{uy10)m + 3!{£’7)„1 .
d t

The expression of C<3,nı suggcsüj

C<3> = t /„ (A) + fw (A) + O (A , t) . (4.18)

fu is eqal to the sum of 3ug10-|-3 !s*f and a function which has a zero 
mean. Substituting C(3), C<21 and C'1’ into equation (4.16) one finds Equali-

• (/nv.) — V, • (EV,/n) = 3! ıtx,
/n + V, * (/ıov«^ V, • (£ VJ/ıo) = 3wgJO + 3! £*/.

(4.19)
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zation of the coefficient of t to zero gives the first equation and equa- 
lization of the terms independent of time to zero gives the second equa- 
tion. We do not need the explicit form of f10 for the purpose in the pre- 
sent paper ; hovvever, it can be chosen as a function which has zero mean.

We need the explicit form of f„ . Comparing equation (4.19) with 
equation (4.9) we get

fn = 3!xf.

Substituting the form of f„ into eauation (4.İS) one finds

C<3> = 3!xtf(A) + f10(.4) + O(A,t). (4.20)

Jf.5. The fourth ordcr solution

For q 4 equation (3.2) becomes

ac<4> + V,(C<4»v.) — V.-(eViC<9) = 4mC<3) + 12eW, (4.21)ot

and equation (3.5) behaves

riC Ğ) .
- = 4{MC(3>}m + 12{E*C<2>)m ; (4.22)

the boundary conditions (3.3) take the forms

e =0 at wall, C(«>(A,0) = C0<4M).

From equation (4.20) and equation (4.13), oquation (4.22) ııltimately 
becomes

dC,W
d( = 3!4x(h/} ,/ + 4{«/10}m + 12X2x{E«M + 12{E')y10}m

= 4! x[{ız/}„1 + {£*)m]t + [4(î</,0}„1 + 12{E*Q10}m]

= 4! x’f+ [4{u/ıO}m + 12{s*</)O}m] •

Thus, C ' has quadratic form in terms of t. The expression of C(4,m 
suggests
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(W = Pg^ tg^k.) + g20(A) + O(A,t), (4.23)

where {g22 },„ = !x2 '2 • Substituting C(4) , C” and C’ 1 into equation (4.21) 
one finds

V. ■ (y.,, vj - V. • (t V,y22) = 0.

2y22 + • (y2I v,)— Vs • (e VJyin) = 4u/n +12£’*</„ ,

y2ı + V, • (y20vJ — V, ■ (e V ,g^=4?t /10 + 12E*y]0,

due to the uniformity condition for t goes to infinity. The term with t2 
gives the first eguation, the term with t does the second and the term 
independent of time does the third. From the first equation and the boun- 
dary condition we obtain that g;. is constant. Thus g22 equals to its mean, 
namely gj—4!z“ 2 . Substituting the values of g™ , fn and gn into the se­
cond equation one finds

V, V,-(£\7sy21) = 4! x(wf + E*) — 4! x2 •

It is clear that if we take the average of this equation the left hand si­
de becomes zero by use of the integral identities and the boundary con- 
ditions, and the right hand side cauals to zero because of {uf -|-E*}m=x. 
Hovvever, we do not need the explicit form of gn for the purpose in the 
present paper.

1}.6. The fifth order sohıtion

For q=5 equation (3.2) becomes

+ V,-(C‘5>v,)- V, •(eVsC<5>) = 5mCC> + 20e*C<3>, (4.24)dt

and equation (3.5) behaves
dr 0)-^4- = 5 {uC<4)}m + 20{E*C(s)}„,; (4.25)

at

the boundary conditions (3.3) take the forms

e -=0 at wall, C^(A,0) = Cû(5)(A) • d>t

Substituting the quantities appearing on the right hand side of equa- 
tion (4.25) one finds
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(id <5) 5 1
—"— = —' x2<2{u}m + 5Hw^2i}m + 5{ugM}m + 5! 4- 20{e*/lo}md l

= [5{ug21}„, + 5! x{e*/}m]t + [5{Mg2U}m + 2O{E*/ıo}n.].

where {u}„,-0 . C'5^ has a cıuadratic form in terms of t. From the form 
of C<S),O we can estimate

C<s> = t2 /22( A) + </„(A) + f,0(A] ■+ O(A, tJ , (4.26)

where 2fra is equal to the sum of 5ug^+5!x£*f and a function with zero 
mean. Substituting C3’ , C,n and C<3' into equation (4.24) one obtains

5 1
V, • (/22VJ— V, (eVJ22) = x2u, 

M

V, • (/2Iv.) — V, • (eV,/21)=5my2] + 5!xe*/ ,

/21 + • ' f/20v-) V, • (e V,/jq) —5W32o + 2Oe 710/

due to uniformity condition at infinity. The term with t’ gives the first 
equation, the term with t does the second and the term independent of 
time does the third. Comparing the first equation with equation (4.9) 
we have f^=5!xJf/2 . We do not need the explicit forms of the other 
functions appearing in oquation (4.261. Thus we may write

C& = Jft'+fnt+fn+OtA.t) •

It is possible to generalize the expressions so far we have obtained.

4-7. The solution of any order

From the expressions of the Solutions obtained, up to the fifth or­
der, the n th order and n + 1 th order Solutions can be deduced. We sum- 
marize the Solutions obtained as

C'<°> = 14-O(A,t),

C^ = f(A) + O(A,t),

C^ = 2xt + </I0(A)+O(A,t),



Asynıptotic behavioıır of the concentratioıı distrihution in a pipe... 35

C<3> = (2 ' 2 ' f (A) + f 10( A)+ O(A,t),
-1 • &

C^> = C2:^^Y'n + tgu(A) + gn(A}AO(A,t),

C(5> = (2X2^—— f(A) + tfn(A) + f70(A) + O(A,t) •

The expressions given above suggest that, for example, the sixth order 
solution is in the form (see Appendix C)

(2 < 31'
Cb ~ ~ t^M(A) + t9sı(A) + fir3O(A)4O(A,t)-

o: l

\Ve can estimate the n th term as

+ .... t (j^A^ + g^AyA O(A,t) ■

Since we assume that expression of C,3n) is in the form vvritten above. 
we have to deduce the expression of n - th order solution.

Forq=nh-1 equation (3.2) becomes

-  + V, • (C(2nl,)vJ-V,-(EV,C<2n+I>) 
d»

= (2n + l)uC<,n> + 2n(2n + l)E*C‘2n+’>
and equation (3.5) behaves

(M+l)
‘ ° = (2n + l){uC<3a>}m + 2n(2n + l){E*C<2”+2}m;at

the boundary condition (3.3) take the forıns

e^—=0 at wall, C<5’( A.O) = C0<J»(A) • 
dn

Since the dominant term of C,în) is in order of t" and the coefficient of t" 
is constant, as it was seen from the equation satisfied by Cnı<In*’,) , the 
dominant term of Cm|2n+1) becomes in order of t" . This discussion sug- 
gests
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C(2„ H) = tn f m(A) + . . . . + tfni{A) fro{A} 4. 0(A>t} .

Substituting this expression into equation satisfied by C(2nf,) gives
<2>ı 4-1) ’ (2yi)

»U"-' + t"[V,-(U)-V, •(£?,/..)]+ ■ •• • =------ yy-—« + •••

Equalizing the coefficient of the terıns in order of t11 one finds

V, • — VHeV./J =
(2n + l) !(2x)" 

»!2*

Comparing this equation with equation (4.9) we ha ve

(2n +1)! (2x ,

Thus we may write

C<2"+’> = (2+l^fOI }lA}+.....+ tfn](A'+f„0(A) + O(A.t) ■

The coefficients of the dominant terms in the experessions of the mo- 
ments of even order are constants and those of the moments of odd or­
der are functions vvhich depend on the cross section. In the expression 
of any order moment, a term vvhich dcpends only on the cross sectional 
variables always exists and the other terms depend on time. In this sense 
a linear separation ahvays may be made. The part dependent on time can 
be subdivided in two parts, as one is a polinomial in terms of time and 
the other is a term vvhich goes to zero when time goes to infinity. Such 
a separation has been used by many author (see for example | 9|) vvithout 
proof.

5. Con.parison vvith the normal distribution
If we use the definition of the absolute skevvness of the distribution 

(see for example [10]) as

and we substitute in 0ı the asymptotic form vvhich are

Cm<3> ~ 6x{f}înt , (V> ~ 2xt , 
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we optain that 3, ultimately varies as 1/f; thus, any distribution of 
the solute tends to become more symmetrical.

We use the fourth moment to measure the degree to which a given 
distribution is flattened at its centre. This measure is given by

C <*>R,= . _'■ [(W

The asymptotic forms of Cm<4' and C;n(2) are

12x2t2, Cm™ - 2 /. t.

Substituting the values of Cnı(4) and in B, we ultimately have

k-3,

which is a Standard for the normal distribution.
The higher order ske\vness and kurtosis are given in the following 

forms

o - C-(2n)

respectively. The first is a measure of the skevvness of the distri­
bution and the second is related to the Central flattened. For n—1 we 
have 8, and for n = 2 we have 3? ■

In the asymptotic case \ve have

Cm<>n" (2,L+1)!z '■ (7,,(2)^2xt
n!

Thus ı varies asymptotically as 1 t. Therefore, the distribution be- 
comes more symmetrical.

In the asymptotic case we may write

C„/2") — (2n)f, C„^ - 2 x t.
nı

Thus ultimately has the form
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Pîn-î ~
(2n)l
n!2n

or 

(2n)! _ (2n)(2n—l)(2n—2)(2n— 3)(2n—4) - n(n— l)(n— 2)---5-4-3-21
2“n! ~ 2n(2n—2)(2n— 4) • • 10 8-6 4-2 

and canceling the even terms in the nominator and the denominator we 
find

32„_2 = (2n-l)(2n-3) -3 •

This gives the product of ali odd terms. These are the relations which 
exist between the moments of the normal distribution (see for example 
110J); and in this sense, the mean concentration is ultimately distribu- 
ted about a point which moves with the mean speed of the flow accor- 
ding to the normal law of error.

APPEND1X A

X*>^ + XWI«(0vt)+X’^£?=X<'V, (eVjC) + e*X-'-Ş2^ , 
ot dA dX

= V, • dX .

^-(XAC)+A,-(X«CvI) + X‘' a(MC) =V,-[eV,(X««C)] + E*XŞ ,
Ol O A

o A

co 
a f at J
co -

X9CdX + V,-

—gtı

co

ac
7VT- dx ,—z*q

Afi o:
= V,-(eV,CW)+e* X<£ OA _

X’ CdX

acf)-777- + V. • (v,^») + [KlCu]-, ol

oC<” V, • (v,C^-quCM= V, • (s V,C<,'>)-E*q[x<ı-IC']_'



Auymptotic behaviour of the roncentration distributlon in a pipe... 39

+ e*q(<7- 1) / X’-îC'dXI 

lim X'>C->0 , lim X9 ~ ->0 ;
X—±» x- + ® Ad

V, • (v,C^-quC^-^= V, • (e V.C(,')) + e*qlq-l)C^2» , ot

lim X--'C->0 .
X-*±CO

APPENDEK B

C'■ > ds'l + £ / V, • (C(’>v.) dS— 4 /*v, ■ (EV, C»>) dS 
I O r öl

= 4 / uC<’-*MS + 1/(7-11 / E*C(’ 
af a

s s

= q{uC»-'»}. + q(q—l) (e*C<»-’>«

/ V. • (C(’> V.) dS = / n ' v«CM dl = °

S f
since n.v,=o on r and

J V,-(e V,CW)dS = / n ■ (e V,C™)dl 
S

ac^ 
dn dl = 0,

since e3C 9n=o on r , where r denotes the boundary, n is the unit 
normal vector of r and d/dn is the normal derivative to wall.

APPENDIX C

For q — 6 eguation (3.2) becomes
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0 4-v, • (C^v,)-v,- (eV,C‘6’) = 6wC(s>+30e’C<4),at
and eqation (3.5) behaves

dr (6)
= 6 {w -f-30 {e* C<4)},„.at

Substituting C|S) and C,n into equation satisfied by C,n*s, one finds

dC! (6) 6 1 x2

[2] ARIŞ, R., On the dispersion of a solute in a fluid through a tube, Proc. Roy. Soc.,
A 235 (1956), 67- 77.

—= —5—({M/}m + {e*}m't2 + {8i4/21 4-3OE*021},„t i- {6uf2O4-3OE*02o}m d t

= —jj- t2 4 {6w/214-3Oe* 021)„, ( H6u/2o4-3Oe* gM}m .

From the form of C,,,’0’ we may estimate

C<6) = t3 gi3 (A) +12 032 (A) +1 g3} (A) 4- gx (A) + O (A, t).

Comparison with the expression of C,n(6) gives {gj3}.ın = 6!x:'/6 . Substitu­
ting C(5) and C'4) into cquation satisfied by C(0, one obtains

v. • (gjjv,)—v, •(EV,g33)=O,

S^ss+V. • (032 v,)—V,-(e AJg32)=6u/22 + 30 s*022,

2 0324-V, ■ (03i Vj)—V. -(e Vs 03I) = 6u/214-3O e* g2l,

03t +V. • (030 v,)—V, • (e V, • (e V, 0jo) =6u /2o4-30 e* g20.

due to uniformity condition at infinity. From the term with t3 one obtains 
the first eauation, from the term with t2 one finds the second, from the 
term with t one has the third and from the term independent of time one 
obtains the fourth. The solution of the first equation subjected to the 
boundary condition is gj3=constant. Thus gu equals to its mean, namely 
g33=6!x76.
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