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Abstract :

Structurdl or internal damping is defined, different types of damping 
mechanisms are classified and explained. Compler. represantation is used 
as a mathematical model. It is iveli knoıvn that the modes for undamped 
vibration are orthogonal for an elastic structure The situation is searched 
for damped vibration and it is fonnd that the modes are not orthogonal 
for intemally damped Systems. This is because for damped vibration, 
Young's modulus is a function of frequency and differs from state to 
state. The comparision of the viscous and internal damping characters 
is made and the relation betıceen damping factors vvhich correspond 
to both damping, is found.

Sistemlerin iç sürtünmelerle titreşimlerinin sönümü :

özet:
İç sürtünmeli titreşim sönümü tarif edildi, ve bunu meydana geti­

ren değişik tip mekanizmalar sınıflandırılıp, izah edildi. Kompleks değiş­
kenlerle çözüm bir matematik model olarak kullanıldı. Elastik sistemle­
rin sönümsüz titreşimlerinde, modlann ortogonal olduğu bilinir. Bu du­
rum sönümlü titreşimler için araştırıldı ve sönümlü titreşimin modlan- 
mn ortogonal olmadığı görüldü. Buna sebep, sönümlü titreşim halinde 
Young modülünün frekansın bir fonksiyonu olduğu ve değişik frekanslar 
için değişik değerler aldığıdır. Viskoz ve iç sürtünmeli titreşimlere ait 
sönüm karekterleri mukayese edildi ve bu iki hale ait sönüm faktörleri 
arasındaki bağıntı bulundu.

(1) Dr. Asslstant at «Strength of Materials and Stress Analysls* Dlvlslon of Mec- 
hanlcal Bnglneering Dept. of Technlcal Unlverslty of İstanbul.
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Introduction :

The word damping has been used for many years to denote the 
noise reducing procedures. The mechanical meaning of this word is con- 
verting the mechanical vibration energy of solids into the form of other 
kinds of energy. In other words, it is a removal of energy from a vib- 
ratory system. The energy lost is either transmitted away by some 
mechanisms or dissipated within the material. Investigations on the 
damping of materials and its application in engineering was started 
about 200 years ago. First in 1784, Coulomb recognized that the damp­
ing at low stresses may be different from those at high stresses. Then 
he proved that the damping is not only caused by air friction, but also 
by internal losses in the materials. After him, many investigators have 
been studying the viscosity of metals, its non-linear behaviour and the 
effect of stress amplitude, frequency and temperature on the vibra­
tion of solids. Voigt worked on the cyclic bending and the hysteresis loop. 
In the first decades of the tvventieth century, investigations were initiated 
on the possible relationship betvveen damping and fatigue of materials. 
After 1950, damping has been increasingly important for studying of 
noise reduction. In the past ten years research and engineering interest 
in damping of viscoelastic materials has increased.

The control of noise and vibration by the application of damping 
became standart practise in industries. Deadners have been used on the 
car bodies to reduce the noise levels inside the car. Many manufactures 
have been applying «Damping Tapes» for noise control.

Before, noisy operation and resonancy have always been problem 
areas. These effects could usually be miniınized in the previous years by 
seperation of the natural frequency of the system and the exciting fre- 
quency But sometimes such a seperation of frequencies is besoming very 
difficult for the materials which are having many resonances. Also, ran- 
dom excitation, either of mechanical or accoustical origin, become a 
common problem. For example, a jet noise, generally contains most of the 
natural frequencies in airplane structures. In this case, there is no way 
to separate the excitation and natural frequencies. The maximization of 
the damping within a structural system is most useful way in controlling 
resonance and noise problem.

Damping Behavior :

Under cyclic loading conditions, strain is not a linear function of 
stress. Materials do not behave in a perfectly elastic manner at very low 
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stresses. In ali cases, materials or structural systems that dissipate 
energy under cyclic load, display one phenomenon in common; the cyclic 
load-deformation or stress-strain curve form a hysteretic loop. The arca 
in this closed loop is proportional to the energy absorbed.

Many different types of damping mechanisms have been classified 
by investigators. This is as:

A — Anelasticity effects
B — Linear damping mechanisms associated with dislocation
C — Static hystcresis
A large variety of anclastic mechanisms has been identified in me- 

tals. Important types of these are;

a — Macrothermoelasticity effects
b — Microthermoelasticity effects
c — Grain boundary effects
d — Eddy current effects
Ali types of these mechanisms effect the damping behavior. But 

the most important one is the thermoelastic effect and it became a com­
mon mechanism for bending vibration of metals.

In bending vibration, the material that is on the outer or convea 
side is expanded and cooled while that on the concave side is compressed 
and raised in temperature. Heat flow will occur across the material and 
there will be some energy loss.

Comple.v Representation :

When we have a material which is subject to time-dependent varia- 
tion of stress and strain, the fundamental deformation is no longer rela- 
ted to stress by a simple constant of proportionality. Or, when we have 
a model which is subjected to harmonic loading conditions, strain is not 
a linear function of stress. Mostly, the goveming equation is a linear 
partial differential equation of arbitrary order of the from

(a0+ A^+A2^i+---- + An^-\a=İBo++
\ Ov Öl' . \ ot Ot y

(D
vvhere A„ and Bn are constants, t is time, cr is stress and e is strain. For
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sinusoidal time dependent stress and strain as;
İÜ» İÜ»

u = soe , s = Eoe (2)
and substituting these reJations into eqn. (1), we obtain

[ Aq 4- (iw)A! 4- (iw)2 A2 + • • • + (tur A„]ff=[B0 + Gu)B} 4- (tw)2B2 + • • • + «w»’ B„]f. 
vvhich can be easily vvritten as

E*= ^-=E(w) + iE'(w) (3)

vvhere E(v) and E'(ıo) are functions of frequency. That is to say, the 
ratio of stress to strain in the material may be represented not by a 
real number but by a complex quantity vhich is Young’s Complex mo- 
dules. When '.ve have a material vvhich is stressed in shear, the complex 
ratio of stress to strain may be \vritten as

(4)

vvhere G(w) and G'(w) are functions of frequency. Eqns. (3) and (4) 
can be vvritten in the following form

£“*=£^[14-15^]

G*=Gfw;[i-i5G(w;] (5)

vvhere (8C) is the ratio of imaginary part to real part of complex Yo­
ung’s modulus and called as damping factor lor bending vibration, (Sg) 
is the ratio of imaginary part to real part of complex shear modulus 
and called as damping factor for shear vibration.

Similarly the Bulk modulus will be in the form as

B*=B(w)[1+İ5g(m)] (6)

There is a relation betvveen these three material moduli as

9 B* G* 
(3B* 4-G*) (7)

For viscoelastic materials, 8fl«8f, and G B«l. With these approxima- 
tions, we find that;

Ebs3G and 8EeSc (8)
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Orthogonality of eigenvectors of intemally damped vibration :

It is known that linear dynamic systems without damping give nor­
mal modes. Now, we will apply this property to the internally damped 
systems and see if it is satisfied.

The goveming equations for a beam are

dV(x} . , dP(x)_ 
dx

_ M (x) 
E*I (9)

^-=V(x) ,
dx

dw (x) 
dx 0(w)

Let us consider two different States of vibration for which the vari- 
ables are

Vt, M,, 0,, w. State I

V/, M,, p,, Wj State II

The first eçuation of eqn. (9), for State I is

dVt(x) . n “S-+ *<*> = ’

Multiplying both terms by w, and integrate along the beam, we get

0 o

p, Wjdx = 0 (10)

grating eqn. (10) by parts and using eqn. (9), we obtain

l ı.
wlVi — M<p,j +

0 0

L L

-ğ-Tj I M t M. dx + I Pi-

ö ö
dx = 0 (11)

A similar relation can be found as in the following form

z. L

wtVj — Mj p, +
0 o

4 z.
vy I Mj M; dx+ I pj Wi dx — 0 

b b
(12)

From eqns. (11) and (12), we obtain
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L L l
w]Vt —Mf&j —Wi'Vj 

0 0 0

‘ v'3' ■ Jl E,'! MtM~ 
0 0

L
+ I (pı Wj — pj Wi) dx = 0 

o

(13)

In this equatıon, first four tenns are boundary conditions and assuming 
both states T and II satisfy the same boundary conditions, then eqn (13) 
becomes

L L
ppiwj-p,wi)dx=J

o ö
MjM, dx (14)

For undamped vibration, E*I does not change from state I to state 
II. Thus

E, *1= E, *I--E9I (15)

And the expression on right hand side of eqn. (14) is symmetric with 
respect to the endices i and j.

Let P be as;

P = — P* (15)0*
and

ioj/
w(x, t)=w(x)e (17)

then we obtain
z.

(to,-2 — toy) I W{ Wj dx - 0
İ)

For the case of <,t, x , we find that
/.

I tVi • w}dx- 0 

o
(18)

This is the orthogonality condition for undamped free vibration of beam. 
But vvhen we have structural damping involved with the motion, we will 
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have difficulties to get the normal modes. Because, the Young’s modulus 
E* will display different values for different frequencies with structural 
damping included. In other words, the Young’s modulus is no more 
constant but it is dependent on frequency. So, when we take structural 
damping into account, then

Efl^E*! (19)

and equation (18) is not equal to zero. Therefore, when
L

I Wt ■ Wj dx 0 (20)
ü

Thus, we now have an important result which can be stated as; 
The eigenvectors of internally damped vibration of a beam are not ortho- 
gonal, since Young’s modulus E* varies with frequency.

The conıparision of the viscous and the structural damping 
characters :

In general, analytical solution of damping in vibrating systems are 
solved with damping forces proportional to velocity. More recently, there 
has been introduced the concept of a damping force proportional to amp- 
litude. In both cases, the damping forces are in phase with the velocity 
of vibration. Now, we can compare these two different kinds of damping 
in the following way.

It is well known that for the free vibration of a simple degree of 
freedom damped system sets up the differential equation of motion in 
the form

mx l cx l fcx=0 (21)

where m : The mass of the system

c : Viscous damping coefficient

k : Spring stiffness

Structural damping appears to be in phase with the velocity but 
proportional to the amplitude while viscous damping force is propor­
tional to the velocity.
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The equation of the motion for intemally damped system will be 
in the form

mv. 8)x=0 (22)

where 6 : Intemal damping coefficent

Here, a complex stiffness, fc(l-H5), serves to represent both components 
of the force proportional to displacement, x. One component kx is the 
usual spring force. The other component, <kSx is in phase with the velo- 
city, this is the damping force:.

The solution of equation (21) has a known solution as
—cföm1

/.(t) = e (AI cos w»ı t + sin t) (23)

where a„ı : Natural frequency of the damped motion.
and is given by

Here, wnl decreases as c increases.

In order to solve equation (22), let

x-xoer' (25)

Substituting this equation (25) into equation (22), we find

mr^+kd+i S) —0 (26)

In this relation, either r is complex or 6 must be zero. Let

r—r'+ir" (27)
Then 

zn(r”+’i 2 r'r"—r"2) 4-fc(İJ-i 5) =0 

which gives two relations as 

2 mr'r" {-k 6=0

k = 0 (28)

Form these two relations, we find
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(30)

In equation (29), negative r' must be taken into account in order to get 
the decay solution. Equation (30), gives the natura) frequency of the 
internally damped system as

/ i. ____
= ( 2nı ' (1 + Vİ + S2]’/2

Thus the solution of the equation (22) vvill be

x(t) = e [A2 cos co»2 t + B2 sin wn21]

(31)

(32)

From the comparision of equations (24) and (31), we can see the dif- 
ference between viscous and internal damping characters.

In a system which has viscous damping characters, gives a damped 
natura) frequency vvhich decreases with increasing in damping.

In a system which has internal damping character gives a damped 
natura) frequency which increases with increase in damping.

In order to find a relation betvveen viscous factor c and internal 
damping factor 3, we could compare the decay curves (envalope curves 
of the Solutions).

The envalope of equation (23) is given by and the envalope 
of the equation (32) is given by e-''1

A measuring method of the damping in a free vibration is mostly 
known as the logaritmic decrement. The time interval for a cycle is gi­
ven by 2 z/w„ sec. Thus, the logaritmic decrement for the first case 
vvould be

------——— r
. e mwn. m v(k/m) — C2l4m2

e 2m\ oJnj/

And the logarithmic decrement for the second case, vvould be
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— r't

^-[-l + Vl+32]
O

â2 = e (34)

In order to get the same logaritmic decrement, the relation between 
S and c would be

and
2 c _ 2L r _ i. ,/ı . rai _ _

Vc«2—c1 « 1 l+v/1 + 52

where cc—2\/km, critical damping factor

Thus, the relation becomes

282Ç 25 v r c, —=------,---- : where ç = —
y/1— ? l+v/1+82 ce

(35)

(36)

For a aystem for which \~c/cc is a small quantity, l-2 could be 
neglected comparing to the unity. And the same thing could be said for

Vl + 82 = 1
Then the relation between 8 and c is found as in the following form

2^=6 (37)
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