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Hidrolojik zaman serilerinin en önemli özelliklerinden bir tanesi ar­
dışık gözlemlerin birbiri ile serisel olarak bağıntılı olmasıdır. Bu özelli­
ğe hidrolojide «ısrarlılık* adı verilir. Israrlılık biri birinci mertebeden 
serisel korelasyon katsayısı, pl, ile ölçülen kısa süreli ısrarlılık diğeri 
ise Hurst katsayısı, h, ile ölçülen uzun süreli ısrarlılık olmak üzere iki 
kısma ayrılır. Verilen bir geçmiş gözlemler dizisinden sadece birer adet 
Pı ve h parametresi hesap edilebilir ki bunlar bir dereceye kadar taraf­
lıdır.

Bu makalenin esas amacı, yıllık akış serilerinin türetme mekaniz­
malarının ARIMA (1,0,1) modeli olduğu kabulü ile birinci mertebeden 
serisel korelasyon katsayısı ile ilgili taraflılık etkisinin analitik ifadesi­
ni çıkarmaktır.

One of the most important features of hydrological time series is 
that the successive observations are serially correlated with eaclı other. 
This property has been termcd as the persistence in hydrologic pheno- 
menon. By a further consideration the persistence can be divided into 
two parts, one of u'hich is the short term persistence which has been 
so far measured by the first order serial correlation coefficient, pt, and 
the other part is the long - term persistence the measure of which is 
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the Hurst coefficient, h. A given historic sequence yields estimates of 
both p! and h which are biased to some extent.

It is the main objective of this paper to devire an analytical exp- 
ression for the bias amoıınt associated with the şeriat correlation coef­
ficient if the generating mechanism of hydrologic phenomenon is assu- 
med to be the ARIMA {1,0,1) process

1 — INTRODUCTION

The hydrological phenomena evolve along the time axis and the 
measurements of the phenomena made at equal intervals of time cons- 
titute a hydrologic sequence which is referred to as a discrete time 
series. Some of the examples to such a series are rainfall, evaporation, 
streamflo.v sequences ete.

The measured part of an event constitutes historic sequence upon 
which a mathematical model is constructed which is employed in gene­
rating future likely projections of the same phenomenon. Hence, it 
will be possible in a statistical sense to predict the future events on the 
basis of which the hydrologist will then be able tu assess the benefical 
and optimal use of the water rescurces Systems. Thus, it is obvicus that 
when hydrologists are provided with a sequence of observations, one of 
the first steps to be taken is to identify a suitable mathematical model 
and then comes the estimation of the parameters of the model where 
the effect of bias becomes effective.

2 — A BRIEF REVIEW OF MATHEMATİCAL MODELS IN 
HYDROLOGY

Up to now, there are various mathematical models each of -.vhich 
is proposed to preserve, in synthetic sequences some of the most mea- 
ningful characteristics of observations. In this paper attention \vill be 
confined only to annual streamflow sequences which are random in cha- 
racter and due to this randomness it is not possible to represent the 
event entirely by a deterministle model. The only way be control the 
random natured events, is to treıt them in a statistical sense which 
requires the probability distribution funetion of the event.

Some of the aforementioned characteristics are related to this pro­
bability distribution funetion of the event. Among the parameters the 
ınean sho\vs the location of the assumed probability distribution func- 
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tion (pdf), the variancc is the measure of disnersion of observations 
about the mean value. If the pdf of event considered is not symmetrica! 
then it might be a good idea to try and preserve the coefficient of 
skeıvness in the proposed model, but the general idea from the para- 
meter estimation point of vievv is that only low order moments must be 
employed in the model; other\vise, the estimations obtained from liıni- 
ted historic sequence, of a high order moment will be highly biased and 
unrepresentative of the underlying parameter. Furthermore. the esti- 
mated parameter >vith a great bias in its stıucture, will cause the pro- 
posed model to generate future sequences of unrealistic values.

However, ali of the proposed models seem to presnrve, in common, 
the three essential parameters, namely, the mean, p. the Standard devia- 
tion, c, and the first order serial correlation coefficient, p, . These are 
just the three parameters necessary to generate lag-one Markov sequ- 
ences where the present value of observation is assumed to be depen- 
dent on its past and a random shock vvhich is independent of the past. 
The general expression of this model is given by,

xt—p = pI(®/-ı—p) p,2)b?E( (1)
vvhere e, is a norma Uy and independently distributed random variable 
with zero mean and unit variance.

Recently, a new parameter vvhich vvas first introduced into hydro- 
logy by Hurst (1951) in relation with his studies about the long term 
storage capacity of reservoirs, has given nevv insights into synthetic 
hydrology. This parameter referred to as the Hurst coefficient is a 
measure of the long - term persistancc in a hydrological sequence. For 
r.atural streamflovv sequences vvhich are dependent, Feller (1951) has 
shovvn that h is asymptotically equal to 0.5. Moreover, the phenomena 
which yield h values greater than 0.5 is knovvn among hydrologists as 
the Hurs phenomenon.

From the Hurst phenomenon point of vievv, the Markov processes 
are not capable of preserving h values greater than 0.5. Due to this de- 
fect of the Markov processes hydrologists began to search new models 
that vvould be adequate to Preserve h as well as p, a and p, simultane- 
ously. It appears that the first set of models proposed for this purpose 
vere the discrete fractional Gaussion noises (dfon) vvhich vvere pre- 
sented into hydrology by Mandelbrot and Wallis (1969). Although, the­
se models are capable of preserving any h value betvveen 0 and 1, their 
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use requires tremendous amount of both Computer time and memory. 
Later, a simple model referred to as the ARIMA (1, 0, 1) process was 
adopted as a potential model for simulating hydrological events by 0’- 
Connel (1971). The advantages of the ARIMA (1, 0, 1) process över the 
Markovian models are that, for high values of p, small values of h can 
be preserved in synthetic sequences and the Computer time needed for 
the generation of an ARIMA (1, 0, 1) sequence is drastically less than 
the time reçuired for dfGn. The white Markov Process proposed into 
hydrology by Şen (1974) has the same advantage as that of the ARI­
MA (1, 0, 1) process.

Finally, the Broken Line process proposed by Mejia (1971) as a 
potential model, is claimed to preserve the Crossing properties of histo- 
roc sequence and it is also proven that in its continuous form the pre- 
servation of h is possible.

3 — THE SOURCES OF BİAS

After the Identification of the model for a specific purposc such 
as the generation of future streamflows, the parameters of the model 
have to be estimated on the basis of historic sequence, available. One 
of the essential properties required from an estimator is that it must 
yield an unbiased estimate in the long run. Although, both the maximum 
likelihood and method of moments estimates yield unbiased estimates in 
the long run, when the length of sequence is short ali of the proposed 
estimators will give biased values of the parameter estimated.

In this study, it is clear that the magnitude of bias will be depending 
on the nature of the estimator. However, the estimators given for the 
mean and variance are the same vvhether it is the maximum likelihood 
or method of moments estimator. In the estimation of the first order 
serial correlation coefficient there exists a distinction betvveen the ma- 
ximum likelihood and the method of moments estimaters. The estimators 
of the mean and the variance are

n
■=2xı ,2)

ı=l
and

n
s’=(»Ai) E-*>’ (3)

ı-l
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respectively. On the other hand, the moment and the makimum like- 
lihood estimators of the first orderserial correlation coefficient are gi-

respectively. There are also various other definitions of the serial cor­
relation coefficient given in the statistics literatüre and the most im- 
portant ones are reviewed by Wallis and O’Connel (1972). The circular 
definition of the serial correlation coefficient proposed by Kendall (1954) 
yields the same bias correstion factors as the maximum likelihood esti- 
mator presented by Jenkins and Watts (1968).

Another source of bias comes from the estimation of the mean va- 
lue of a given sequence. If the population mean value is known then the 
bias effect will be less than the case where the mean is estimated from 
a given historic scguence. As it is stated by Marriot and Pope (1954) 
this kind of bias vvhich is present even when the autocorrelation coef­
ficient is equal to zero, and it is always negative in a long series i.e. the 
expectation of the serial correlation coefficient calculated using the es­
timated mean is ahvays algabrically negative and near to 1.

A further source of bias depends on the generation model itself. For 
the same set of parameters and the estimator the magnitude of bias is a 
function of the model employed.

As a summary, the magnutide of bias is dependent on there majör 
factors namely, the estimator that is used to estimate the parameter con- 
cemed, the type of process such as the Markov process, ARIMA (1, 0,1) 
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process, the white Markov process and finally whether the mean value 
is known or not.

One of the most frequently used estimators of the serial correlation 
coefficient has been proposed by Kendall (1954) which is referred to as 
the circular definition in vvhich the (n + 1) - th observation of the se- 
ries is assumed to be equal to the i - Lh observation, the cstimator is 
expressed as,

4 — BİAS CORRECTION ALGORITHMS

So far, in the literatüre of time series analysis, to the best of aut- 
hor’s kno.vledge, there is not an e.xact algorithm proposed, to be valid 
for bias correction of rk.

However, there are few approximation algorithms currently used 
in hydrology. One of the earliest of such an algorithm has been presen- 
ted by Quenouille (1957) but it is a rough method of removing bias in 
the first order serial correlation coefficient given by

Pı’ — 2 Pı----- ğ- fPı.ı + P1.2) (7)

where p! is the estimate of the first order serial correlation coefficient 
of the time series, considered in full length, then, the vvhole time series 
is divided into two halves each having their individual first order cor­

relation coefficients as pı ! and p, . . p,f in Eq. 7 is supposed to be correc- 
ted value of the correlation coefficient. As it is stated by Wallis and

O’Connel (1972) on average the variance of p/ is greater than the vari- 

ance of unbiased pj estimated by other procedures, consequently, it was 
concluded that this algorithm cannot be universally recommended, but if 
many short realizations of the same process are available then the mean 
of pı*» may be satisfactory.
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Another very successful algorthm is given by Kendall (1954) in the 
discussion part of the paper by Marriott and Pope (1954). He assumed 
the estimates of the lag - one correlation coefficient to be normally dis- 
tributed and derived the necessary analytical ezpressions to order n '. 
This latter way of finding bias correction factors is adopted in this pa­
per. The revievv of Kendall’s bias correction has been given in Appendix 
A and the expected value of r, is rederived as,

E(A) Cov(A.B) B(A) Var(B) ®
Kr'}~E(B) E’(B) + ~E3(B) (

5 — BİAS cokrections fok vakious definitions 
OF «p!»

So far, in this paper oniy the sources of bias and the methods of 
finding unbiased estimates have been mentioned. In this section, the 
expressions for the actual bias correction of the ARIMA (1,0,1) pro­
cess will be given.

First of ali the ordinary definition is taken into consideration and 
then the smali sample expectation of rt has been shown in Appendix B 
to be

1 f(l—0—2p,)(l—<6—2P12) 1Elr.)-^-—--------- - 4p,| (9)

This last expression is in accordance with the statement made by O’Con- 
nell (1973) as ‘the bias in p, observed for smali samples of an ARIMA 
(1, 0, 1) process are functions of the sample size ,n, and the driving pa­
rameters 0 and 0 of the process’.

If the circular or the maximum likelihood definition of the corre­
lation coefficient is adopted the resulting expression for the bias cor­
rection is shown in Appendix C,

B(r,) = p,- ~ d ~ P.) +3 P, + <0-P,)| (W)

Although bias corrections can be worked out by Eq. 9 or Eq. 10, 
they do not lend themselves to a simple analytical form for the unbiased 
population p, as in the case of the lag - one Markov process. Of course, 
a cubic equation in p, form Eq. 9 and another cubic equation from Eq.l0 
can be wr itten straightforvvardly; but to find a solution to these expres- 
sions can be difficult and tedious.
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One way of finding 0 and 0 values to be employed in the generating 
process in order to obtain an unbiased value of pı, is to prepare tables 
which include the number of observations n and the parameters pı, 0 
and 0. One sample of such a table is given in Table 1. The values in Tab- 
le 1 are obtained by using the madmum likelihood definition of p,. It is 
obvious that the purpose of tables is to solve Eq. 9 and Eq.lO numeri- 
cally. Interpolation is required if necessary. To give an example of how 
to use the tables just an arbitrary set of parameters is picked out as 
n = 40, pı = 0.218, 0 = 0.85 and 0 automatically tums out to be 0.68. 
Now, if the given set is employed in the generating process without any 
bias correction, in the long - term the first order serial correlation coef- 
ficient will turn out to be 0.155 which can easily be taken from the Tab­
le 1. Now that, it is required the process to yield an unbiased value of 
Pı, some bias correction must be applied to p, by means of adjusting 0. 
As a result 0 is a control parameter for the correction of bias. The pro- 
cedureworks as follows. The appropriate column with n is found, then, 
downwards in this column, the value of p] is sought. Önce p, is spotted 
then moving horizontally to the left the corresponding values of p* 
and 0* are found. With these new parameters n, 0, pı* and 0* ARIMA 
(1, 0, 1) sequences can be generated so that in the long run an unbiased 
vaue of pı will emerge.

To apply the aforementioned procedure, it is necessary to have tab­
les comprising ali the values of 0 and 0. Obviously, if the parameters 
are corrected for bias then their variances do not remain the same; 
they might increase. However, the variance of the above found new 
estimate of p,* cannot be analytically solved; in such a case the Monte 
Carlo techniques must be employed. The comparision of the bias correc- 
tions of the ARIMA (1, 0, 1) process with that of tha Markov process, 
on the grounds that both have the same first order serial correlation 
value will prove that the former model’s bias is greater than the latter 
one.

Another important point is obvious that, as has already been pre- 
sented by Wallis and O’Connell (1972) for the Markov process there are 
upper and lower constrains for the bias correction procedure. Outside of 
these limit values the bias correction procedure is not valid. From hyd- 
rological point of view such a situation will hardly be encountered for 
the streamflovv sequences (annual) for which the first order serial cor­
relation coefficient is around 0.2.
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As far as the validity of the two equations namely Eq. 9 and Eq. 10 
is concerned there is again some restriction which cannot be analytically 
proved. That is, these two equations will yield untrue bias corrections 
as 0 approaches to unity It has been experimentally found that for va- 
lues of 0 greater than 0.9 bias corrections will be violated and they 
must not be used in the generating process.

6 — APPEND1X A

This appendbc presents the revievv of the bias correction algorithm 
proposed by Kendall (1954). To simplify the expression, the normal dis- 
tribution is assumed to be valid for the estimate of the first order serial 
correlation coefficient.

Ali of the estimators used for the serial correlation coefficient can, 
in general, be written in the follovving form,

Tk= (B.C)W (A,1)

vvhere A is the k — th order autocovariance function, B and C are va- 
riances of the two overlapping subsectors of the actual series. If it is the 
maximum likelihood estimator them B equals C. B and C will have their 
own probability distribution fuctions (pdf) for any given length of series 
i.c. they are ali random variables (r. v.) and in turn have their own 
moment. Let the first order moments of A, B and C be represented by 
E (A), E (B) and E (C), respectively. The terms on the right hand side 
of Eq. A. 1 can be revvritten as follows,

r - E(A) + a
k {[B(B) + b][B(C) + c]}“-5 * 1

where a, b and c are the deviations from their respective expectations 
and again the same şort of r.v’s are valid vvhere the only difference is 
that the new set of r.v’s has expectation equal to zero.

Hovvever, the right hand side of Eq. A. 2 can be eocpanded into an 
infinite summation by applying the Binomial expansion formula to each 
one of the terms both in the nominator and in the denominator, so that 
the expectation of sides vvill be easy and straightforward. First of ali 
Eq. A. 2 can be revvritten as,

rt = [B(A) + a] • [B(B) + b]~,/? • [E(C)+c]-'/2 
or,



80 Zekâi Şen

g(A)
rt E(B).E(C)

a 
E(A) ’ + E(B)

1-1/2 c
E(C)

1 — 1/2

After the application of the Binomial expansion one can obtain,

1 c 3 c2 , 1 b , 1 b.c
= 1— 2 ’ ®(C) 8 ’ B2(C) ’ 2 ’ EtB) 4 ' E(B).E(C)

3 b.c2 ,3 b2 3 b2.c , 9 b2.c2 ' a
16 ’ E[B).E2(C) + 8 ‘ E2(B) 16 ' E2{B).E(C) ' 64 E*(B).E2(C) E(A)

1 a.c , 3 a.c2 1 a.b 1 a.b.c
~2 ‘ E(A).E[C) +8* ‘ E{A}.El(C} ~ 2 ’ E(A).E(B) + 4 ’ E(A).E(B).E[C)

3 a.b.c2 3 a.b2 3 a.b2.c
16 ’ E(AYE(BTe2TC) + 8 ’ Et'Âj.EHB) “ 16 ' E(A).E2(B).E(C) +

9 a.b2.c2_______ _
+ 64 ’ E(A).E‘(B).E2(C) ............ ' ’

A further simplification of the above expression is obtained by asuuming 
that B = (7. In the case of the maximum likelihood estimator this equi- 
valence is perfectly satisfied, but it is an approxiınation when the esti- 
ınation is vvorked out by the method of moments. So,

E(B)=E(C) ; ®(b2)=g(c2) = ₺’(b.c) = Varh
Thus, by taking the expectation of botn sides of Eq. A. 3,

g(A) E(b2) _ E(a.b)
E(B) *+ E2(B) E(A).E(B)

or,
. E(A) Cov(a.b) , BL4).Varb ..

W(B>— B’İBİ '■ K W <A-4’

This last expression gives the general bias correction algorithm for any 
kind of process and it was first applied to various processes such as 
the Markov.moving average and white noise processes.

7 — APPENDIX B

In this part of the appendix, bias correction formula for the ARI­
MA (1, 0, 1) process will be e;xposed. The definition used for the first 
order serial correlation coefficient is that of the one given in Eq. 4. The 
corresponding A, B and C values are,
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n—k n — k n -k
A = —V! x, x. 1 f P xJI P J (B.l)

(n—k) £J (n—kr \ lJ )\Li /
ı=ı <=ı i—ı

n—k n—k
8=^— P x<i— < P. x,f (B,2)

(n—k) Zj (n—kr I £j /
f=l 1=1

and
2 H’ IB-3) 

1=1 1=1

As is obvious from these last two expressions, it is a fair assump- 
tion to say that B = C, so there are two variables left to be treated 
which are A and B. Eq. A. 3 requires only the expected values and the 
covariance of these two variables which can be evaluated as follows. Let 
us put n — k = v in the above expression then by taking the expectation 
of B,

After a tedious and long algabric calculations E (B) has been simpli- 
fied by Şen (1974) as,

A’(B) = Â 
v1

v—1 
y (B.4)

and

B(A)= — v Vpi —Pi — (v-;).(pt_7 + p*_y) (B.5)

On the basis of these two last expressions the expected value of the 
serial correlation coefficient of any order can be calculated provided 
that the particular correlation structure of the process concerned is gi- 
ven. In this paper, the process considered is the ARIMA (1, 0, 1) pro­
cess of vvhich the correlation structure is given as,
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(1—0.OM0-O)
' 1-f O2—2 00

pA = 0 p* 1 for k>2 (B.6)
So if the necessary calculations are performed we get,

H(B)
1 Jv—ı—— V

n 1—0V-1 p, 1—0 1
Vpl 1—0 1—<f> 1-0 (v—l).0v—1

when the higher terms than n 1 are ignored the expression shrinks to

E(B) = 1---- --------v v(l —0) (B.7)

The expected value of A for any kind of process is given by Şen (1974) 
as,

E(A)t — v vpt —

v—1

j.-o
(V-j)Pl.j

2 (v“fc“y)py
;=ı

for k>0

For the ARIMA (1, 0, 1) process to the order of n 1 E (A) becomes

RU) = M‘ ’----- 1 (B.8)
v(l—<P) v

The other tvvo terms required for Eq. A. 4 are given by Kendall (1954) 
as,

oo

Cov(A,B)=-?- V P/.P/+4

In the case of the ARIMA (1, 0, 1) process this last expression turns 
out to be

Cov(A1B) = -ç-lpI0*_1 + k.pI2.0*-J+2. p,7 * j (B.9)

and finally,
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+ °3

Var(B)=-J- g p2, 

j—-03

Transformation of this expression through the ARIMA (1, 0, 1) process

2 i 2. p,2 \Var(B) = - - 2+v | 1—9 / (B.10)

In this way ali of the necessary terms to vvork out Eq. A. 4 are calcula- 
ted the substitution of which into Eq. A. 4 yields,

5(n) = Pı </>*-’— —j \ W + 2' Pı)-(l + 0-2. P?^*”1)-

—(1—02)p, 0* 1 + 2.k. p^.0* ' (B.ll)

This is the general expression vvhich gives the biased value of the k—th 
order autocorrelation ocefficient or, the amount of bias which is defined 
by E(rk) —pt can be found as,

E(rk)—pj.0*-’ = — 1- 1
<1—</»0 (1-0 + 2. P1).(H-0—2. p,2.^*-»)—

—(1—</>2)Pı. 0‘~' 2 k. p2.0*"2 (B.12)

Hydrologists are interested in the first order serial correlation coeffici- 
ent, hence by substituting k — 1 in the above expressions, the bias va- 
lues for the first order serial correlation coeffiicent becomes,

E(r,) = P- -(1-07) + P (1 + 2. 0-4. p)4-0. p, (2 p,-0) ] + 2 '

(B.13)

and subsequently the amount of bias for rı is,

®(r])-p1 = -^(1-~y- (1-0 + 2. p,).(2+0-2.Pl2)+p^ (B.14)

In order to verify the correctness of the above derived expressions they 
can be checked against the corresponding formula that have already
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appeared in the literatüre for the Markov process. To obtain the Mar- 
kov case it is necessary to substitute p1 = 0 in the aforementioned ex- 
pressions. Thus,

Mrı) = Pı— 1 (3 + Pı) (B.15)

vvhere Eq. B. 15 is exactly equivalent to the one presented by Kendall 
(1954) for the Markov process case.

8 — APPENDIX C

The aim of this last appendix is to provide similar bias correction 
formula for the circular definition of the autocorrelation function given 
in Eq. 6. The only difference of Eq. 6 from that of Eq. 5 is the nomina- 
tor which can be vvritten as,

After performing the necessary algabric calculations E (A) becomes,

E(A) = -J- [(«-fc)p,.0‘-’+fc.0r

Pı 1—1
1—0 1—0 (n—k—D.0" • 1 '

By ignoring the higher order terms the expression can be shortened to,

E(A)=- [n-fcjp#-1 + k.0"~*-1]------------ . (C.ln T J n n (1—0)

Hence, again by substituting the four terms, namely, E (A), E (B), 
Var (B) and Cov (A,B) in Eq. A. 4 the following expressions are obtai- 
ned. In general.

g(n)=p.0*~1--^-j (1—P1.0*-1)+k p,(0 +2. P1).0İ-2

—k. p,.0"-*~ı + 4 (0- p,) j (C.2)
1 — cp >
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When k = 1 is inserted in thc above equation then the smali sample ex- 
pectation of T| is obtained as,

= + «/—P,l <C.3>

Table 1 — Variation of Parameters, ^, = 0.85.

p, 0 n —20 n — 30 n — 40 n — 50 n - 100
0.203 0.700 0.005 0.071 0.104 0.124 0.163
0.218 0.680 0.011 0.080 0.115 0 135 0.177
0.250 0.670 0.023 0.099 0.137 0.159 0.205
0.298 0.640 0.043 0 128 0.171 0.196 0.247
0.329 0.620 0.058 0.139 0.198 0.221 0.275
0.360 0.600 0.075 0.170 0.218 0.246 0.303
0.406 0.570 0.102 0.203 0.254 0.284 0.345
0.503 0.500 0.184 0.295 0.350 0.384 0.450
0.619 0.400 0.286 0.397 0.452 0.486 0.552
0.706 0.300 0.396 0.499 0.551 0.582 0.644
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