Çok Komponentli Distilasyon İçin Yeni Bir Software Paket

A New Software Package for The Calculation of Multicomponent Distillation

Edip BUYUKKOCA ${ }^{(1)}$

Bu makalede yazar tarafından geliştirilen ve yazılan, Gok Komponentli Distilasyon Hesaplamaların da başarıyla uygulaması yapılan yeni bir FORTRAN IV proyramı tanıtılacaktır. Söz konusu komputer programi ile ideal ve ideal olmayan çok komponentli distilasyon hesaplamaları «Değiştirilmiş Tridiagonal Matris (Modified Tridiagonal Matrix) ve Rilaksasyon (Modified Relaxation) metodlari kullantlarak yapilmaktadir. Hcsaplamalura esas alman verilerde, buhar bastnct-temperatür iliskileri için Antoine denklemi, sıvı ve buhar fazı denge şartları için Wilson ve Margules denklemleri kullanalmaktadir. Program azeotrop ve ekstraktif distilasyon problemlerini az bir hesaplama zamanı içinde büyük gïvenirlilikle ̧̧özebilmeiktc ve birden fazla besleme akımı ve yan akım ihtiva eden kompleks rlistilasyon kolonlarina kolaylikla uygulanabilmektedir.

Proyramin ana özellikleri ve uygulama esaslari verildikten sonra bir uygulama çalsşması Su-E'tanol-Metanol azeotrop sistemi için yapılmiştır.

In this puper has been introduce a FORTRAN IV computer program for the calculation of multicomponent distillation which was de-

1) Instructor of the State Academy of Eng. and Arch. of Sakarya, Adapazrı TURKEY.
veloped and written by the author. The proposed computer program uses the methods of the Modified Tridiagonal Matrix and Relaxation for the calculation of ideal and nonideal multicomponent distiallation processes. The data of calculation are based on Antoine equation for vapor pressure-temperature relations, and Wilson and Margules equations for the conditions of varpor-liquid equilibrium. The proposed program can applied easily to the complex distillation columns which have multi - feeds and side - cut streams and solves the problem of Extractive and Azeotropic distillation in a small computation time with a big accuracy.

After giving the main feature and principles of application, an application work is illustrated by Water - Ethanol-Methanol, azeotrope system.

Introduction and A Brief Survey on The Multicomponent Distillation

The multicomponent distillation has been most rapidly developed subject in chemical engineering science and its importance is apparent from the tremendous number of papers written on this subject. It is clear such as accumulated literature has several calculation proccdurcs for multicomponent distillation. Those calculation procedures can be classified into four groups namely a) Stage - by - stage, b) Short cut, c) Iteration and d) Relaxation procedures.

The first realistic and pratical method of solving separation problems was stage - by - stage analysis shown by Sorel in 1893 (La réctification de l'alcool, Paris, 1893). The general method of stage - by - stage calculation for multicomponent systems was first shown by Lewis and Matheson [Ind.Eng.Chem.24..494 (1932)] and by Underwood [Trans. Inst. Chem. Engr. (London) 10, 112, (1932)|. The method of Lewis and Matheson was futher improved by Robinson and Gilliland |Elements of Fractional Distillation, 4 th Ed. Mc. Graw - Hill New York, 1950].

The short - cut methods which allow determination of the number of theoretical plates as a function of reflux ratio, minimum plates, and minimum reflux are commonly used to study the effect of reflux ratio on investment and operating costs with a minimum of tedious and extensive calculations. The Colborn |Trans. A.I. Ch. E., 37, 805 (1941)]. and Underwood [Chem. Eng. Progr. 44, 603 (1948)] minimum reflux methods are used for more accurate calculation of minimum reflux while the Brown - Martin [Trans. A. I. Ch. E., 35, 679 (1939)] method can be used for safe approximations.

Iteration methods are best - suited for solution of almost the reverse problem for which stage - by - stage can be used. Iteration solutions were first proposed by Thiele and Geddes [Ind. Eng. Chem. 24, 289 (1933)]. Amundson and Potinen [Ind. Eng. Chem. 50, 730 (1958)], have proposed a general methad of solution through matrices. Edmister |A.I. Ch. E. Journal 3, 165 (1957)] has solved the equations through development of a series expression relating the amount of a component at a stage to the amount in a product. The Smith LA. I. Ch. E. Journal 6, 451 (1960)), [Design of Equilibrium Stage Processes Mc. Graw - Hill, New York, 1963] and Hanson et al. [Computation of Multistage Separation Processes, Reinhold, New York, 1962] have solved the equations by a method which assumes the amount of a component in a product and calculates to the other end of the column, tracking the error made in the assumed amount can be calculated and precise corrections applied at each stage. The Lyster et al. |Pet. Ref., 38, No. 6, 221 (1959), Pet. Ref. 38,No.7, 151 (1959).. Pet. Ref. 38, No. 10, 139 (1959)] and Holland |Multicomponent Distillation, Prentice - Hall Englewood Cliffs., New Jersey, 1963| have developed correction methods to improve the calculated product compositions for complicated columns, and have worked cxtensively on convergence techniques, Yamada and Sugie [Studies on the Multicomponent Distillation, Bulletin of Nagoya Institute of Technology, vol. 19, pp-517-528, (1967)| have proposed the Modified Successive Approximation Method, Successive Perturbation and Successive Iteration Methods.

Relaxation solutions are conceptually the most simple methods of solution for any multistage separation process. They were first proposed by Rose et al. [Ind. Eng. Chem. 50, 797 (1958)] and Duffin [Solution of Multistage Separation Problems by Using Digital Computers. Ph. D. Thesis, University of California, Berkeley, 1959|. Extension of the rer laxation method to include heat balance was proposed by Hanson et al. |Computation of Multistage Seperation Processes, Reinhold, New York 1962).

The above mentioned methods of calculation of multicomponent distilation processes can be programmed to the any near computer. But, the basic methods of calculation have not been improved to take adequate advantage of the rapidity and accuracy of the computing devices. Therefore, the principal advantage lies in the ability of the computer (when correctly programmed) to solve complex trial - and - error iterative calculations with ease in a short time. Generally, proposed com.
puter methods of calculation of multicomponent distillation fall into two categories which utilize the equations and approach previously described. One method involves the assumption of the component distribution in the distillate and bottoms product, the feed plate location, and the reflux ratio, and computation is carried out plate to plate from the top of the column toward the feed plate and from the bottom of the column toward the feed plate until the composition ratios or composition calculated from both directions match within designated limits in the vicinity of the feed location. The other method involves the assumption of the reflux ratio, number of plates, and the temperature profile and, starting from the feed compositions, the calculation is carried out plate to plate for the number of stages specified in the rectifying section. By repeatedly modifying the assumed temperature on each plate and repeating the calculations, the bubble or dew-point temperature for the liquid or vapor at each plate is matched. The calculation proceeds in a similar manner for the number of stages specified in the stripping section to obtain the bubble point or dew point of the vapor and liquid at each plate. If the first trial does not converge, a different number of plates, reflux ratio, or temperature profile is assumed and the calculation is repeated. (Distillation, M. V. Winkle, Mc Graw-Hill Book Company, 1967)

The Application Procedure of I)ISTHB Computer Progran

In the design of a fractionating column essensially required information are the determination of the number of plates (or packed height) and the column diameter. The determination of the parameters of actual design is required a theoretical design which are needed following column specifications.

- Quantity, composition and thermal condition of the feed,
- Column pressure,
- Type of overhead condenser,
- Reflux ratio or (V_{1} or L_{n}),
- Quantity of distillate and composition.

In general case the number of theoretical stages is defined by DISTHB computer program in the way of calculation as a trial and error procedure. In each trial calculation, a number of theoretical stages is assumed for the given condition of the problem which in the above mentioned data.

If the first trial does not converge, a different number theoretical stages is assumed and the appliciation of DISTHB is reapeted.

In the other cases, the DISTHB computer program can be applied to define the optimal feed conditions, reflux ratio and feed stages which are described by user as a trial specification.

The Main Feature of the Proposed Computer Program.

The main feature of the proposed computer program is written in FORTRAN IV, and called DISTHB. The main feature of the DISTHB is given by following computer output.


```
IME VETITJD USED IN THIS PHOGKAM AKE TME MODIFIED TRIUIAGUNAL
MATRIX METHOD AND THE MUDIFIED RELAXATION METMOD.
METHJD=1 REFERS TO THE MODIFIED IKIDIAGOIVAL MATRIX METHOU
WHICR IS GOOD FOH GENERAL COMPEEA CULUMNS.
METHUD=2 REFERS TO THE MODIFIED RELAXATIUN METHOD WHICH IS
GOOD FOR GENEHAL COMPLEX COLUMNS EEXTHACTIVE DISTILLATION
COLUMNS. AND ALEOTROPIC DISTILLATIUN CULUMNS.
THE VAPOR-LIUNID EQUILIBRIUM KELAIIUNSHIFS USED IN THIS PROGRAM
    ARE THDSE JF ILSSN AHD MARGULES.
    vVLel REFERS TO THF WILSON'S METMOD.
    NVLE2 REFERS TO THE MARGULFS'S MLTHOU.
```



```
    THIS PROGRAM IS DESIGPATED FJR A UENEHAL COMPLEX DISTILLATION
    COLUNN. THERTFDRE. SOME SPECIAL COLIMMSIWHICH MAY NUT BE
    HEGAMDED AS A GEVERAL COMPLEX COLUMN•COULU NOT BE SOLVED.
    IF SLCH JCCASION APPEAS. THE USER SHOILD NEFEH TO THE UTHER PRCGRAM
    DEVELOPED FUK THE SPECIAL COLUMN.
    vOMENCLATURE JF INPUT DATA, ****
    IITLE=TME TITLE of YUUR CALCULAIION. II SHUULD bE GRITTEN
            WITHIN 80 CHARACTERS.
M=NUMGFP OF COMPUNENYS
i=tolal number of stages
THE PIRST STAGE HEFEKS TO THE COMUENSER AND THE LAST(N-TH)
STAGE REFERS TU TME REBOILER.
NVL =PAGAMETER WHICH SELECIS THE VAPOR-LIUUIO ECUILIBNIUM EQUATION,
            T.AKINE THE VALUE OF ONE JR T*O
\(V(1)=M O L A R\) FLOW RAIE UF VAPOR LEAVING FRUM THE CONDENSER
```


The Nomenclature of Input Data for DISTHB

DISTHB computer program are composed a main program and 29 subprograms which are shown by Figure 1. The subprograms contain three types of subroutines namely a) Subprograms for reading b) Subprograms for calculation c) Subprograms for printing.

```
MMAX=20
NMAX= <OO
COMMO:/JNE/PAI
```


A) Subprograms
for Reading

1. SUB. READ 1
2. DATA BLOCK

Fig. 1. The Subprograms of DISTHB computer program.

The Handling of DATA for DISTHB Computer Progran

DISTHB computer program can be applied to the any digital computer which has a FORTRAN IV compiler. The organization of the DATA DECK is depents on the feature of used computer machine. The DISTHB has a organization of control card as any optimization program. It is never need special control card. But, the data can be punched into cards using the EBCDIC code: In this section the format of cards punched in EBCDIC code will be described.

In all cases, there are two types of cards in the data file:

1) Control cards, which are specified by computer machine,
2) Data cards, which contain the actual data values.

Notes on Input Data

1) The all integer numbers of data cards are defined by FORMAT (I5).
2) The all non-integer numbers of data cards are defined by FURMAT (F10.3).
3) Only, the type of used method and the equation of vapor-liquide equilibrium relationships, and the number of components and theoretical stages are defined in integer form. The other variables are defined in non-integer form.
4) The title of searching problem and the name of components (which is discribed of composition of liquid and vapor) of data cards can be composed by alphameric and special characters.
5) The names of all components which are appearing in llth group of data cards must be composed of from 1 to 16 alphameric and special characters.
6) This program terminates when there is no data card for the reading of the input data. If, it had have been some problems to be simultaneously solved, put the sets of the input data together in order. The problems will be solved one by one according to the order of the input data set.
7) The dimension size is tetatively given for up to twenty components and two hundred stages. If, the available memories are not enough, or the problem under consideration exceeds this limitation, the appropriate change of the dimension size is necessary.
8) In this program, the measurement of design variables are defined by metric system as follows; the amount of stream (vapor and liquid) with $\left[\mathrm{Kg} \mathrm{mol} \mid\right.$, temperature with centigrate $\left[{ }^{\circ} \mathrm{C}\right]$ and pressure with $[\mathrm{mm} \mathrm{Hg}]$

The Organization of the DATA DECK

1) A TITLE card is always the first card, and an ENDATA card is always the last card of a data deck. The TITLE card gives a user specified name to the data deck. It has the following format:

Columns	Field 1
Type of contents	$1-80$
Nome assigned by user	

The TITLE may contains from one to eighty of the following characters, in any order: A to $Z, 0$ (zero) to 9, (period).
2) The METHOD card is always the second card and it contains 1 or 2. [1] indicates MTMM (Moddified Tridiagonal Matrix Method), [2] indicates MRM (Modifed Relaxation Method). It has the following format:

Columns $|$| Field 1 |
| :--- |
| Type of contents |
| Nomenclature |

3) The EQUATION card is the third card and it containts 1 or 2. [1] indicates Wilson Equation, [2] indicated Margules Equation. It has the following format:

Columns	Field 1
Type of contents	$1-5$
Nomenclature	1 or 2
	EQUATION (NVL)

4) The group of fourth card contains the number of the components and the stages. It has the following format :

Columns	Field 1	Field 2
Type of contents	$1-5$	$6-10$
Nomenclature	\mathbf{M}	number of numponents

5) The fifth card of data cards contains the molar flow rate of vapor which is leaving from the condenser, the reflux ration at the top of column and the total pressure of the column. It has the following format:

Field 1	Field 2	Field 3	
Columns	$1-10$	$11-20$	$21-30$
Type of contents	Molar flow rate of vapor which is leaving from condenser	Reflux ratio at the top of column	Total pressure of column
Nomenclature	$\mathrm{V}(1)$	R	PAI

6) The sixth group of data is not one card. It depends on the number of stage. This group of data cards contain the feed moles at the each stage. If there is no feed into any stage it will be contain empty field. It has the following format and it is illustrated for three feeds.

Field 1	Fleld 2	Field 3	
Columns	$1-10$	$11-20$	$21-30$
Type of contents	feed moles at first stage	feed moles at second stage	feed moles at thirth stage
Nomenclature	F(1)	$F(2)$	F (3)

7) The seventh group of data cards contain the temperature of feeds, termal factor of the column feeds and molar composition of feeds. It has the following format:

The below mentioned format is illustrated for one feed and three components. When $F(J)$ is zero, the values of $\operatorname{TFEED}(J), Q(J)$, and Z(I. J) are automatically set to zero. Therefore, the data for TFEED(J), $Q(J)$, and $Z(I, J)$ are necessary, only when $F(J)$ is non-zero. The 1 -st component is designated as the one which has the highest boiling tem-
perature, and the M-th (the last) is designated as the one which has the lowest boiling temperature.

	Fleld 1	Field 2	Field 3	Fleld 4	Fleld 5
Columns	$1-10$	11-20	21-30	$11-40$	41-50
Type of contents	Feed temperature of J-th stage	Termal factor of the columns feed at . I -th stage	Feed molar compasition of 1 -st component at J-th stage	Feed molar composition of 2 -nd component at J-th stage	Feed molar composition of 3 -rd component at J-th stage
Nomenclature	TFEED (J)	Q (J)	Z (1, J)	Z (2, J)	Z (3, J)

8) The 8 -th group of data cards contain the molar flow rate of vapor side-cut at the J - th stage. It has the following format, and it is illustrated for three side-cut streams.

	Field 1	Field 2	Field 3
Columns	1-10	$11-20$	$21-30$
Type of contents	Molar flow rate of vapor side cut at 1 -th stage	Molar flow rate of vapor side cut at 2 -nd stage	Molar flow rate of vapor side cut at 3 -rd stage
Nomenclature	W(1)	W(2)	W(3)

Notice : The first stage is condenser and the last stage is reboiler.
9) The 9 - th group of data cards contain the molar flow rate of liquide side-cut at the J -th stage. It has the following format; and it is illustrated three liquid side-cut streams.

10) The tenth card of data cards contain the boiling temperature of the components from 1. to \mathbf{M}. It has the following format:

Field 1	Field 2	Field 3	
Columns	$1-10$	$11-20$	$21-30$
Type of contents	Bolling temp. of $1-$ st component	Bolling temp. of 2nd. component	Boiling temp. of 3 rd. component
Nomenclature	$\mathrm{TB} \mathrm{(1)}$	$\mathrm{~TB} \mathrm{(2)}$	TB (3)

11) The 11-th group data contains the name of component which should be written within 16 characters. It has following format:

5 - 1	Field 1	Field 2	Field 3
Columns	1-16	$17-32$	$33-48$
Type of contents	name of component of 1 -th	name of component of 2-nd	name of component of 3-rd
Nomenclature	Name assigned by user	Name assigned by user	Name assigned by user

12) The 12 -th group data of data cards contains the constants of the Wilson equation or the Margules equation. The ideal mixtures may be treated by setting these constants to unity for the Wilson equation and to zero for the Margules equation. If, it is used three suffix constants for the Wilson and Margules equations and each card uses for a component. It has following format:

	for the first component		
	Ficld 1	Field 2	Fleld 3
Columns	1-10	11-20	$21-30$
Type of contents	1 - st constant of used equation	2 -nd constant of used equation	2-rd constant of used equation
Nomenclature	WW(1, 1)	WW(1,2)	WW(1,3)

13) The 13 -rd group data of data cards contains the constants in the Antoine equation with (-B). It has following format and can be used up 80 columns of each card. The following illustration is for the first component and other components can take places in the same data cards.

	Fleld 1	Field 2	Fleld 3
Columns	$1-10$	$11-20$	21-30
Type of contents	1 - st constant of Antoine Eq. for 1 -st component	2-nd constant of Antoine Eq. for 1 -st component	3-rd constant of Antoine Eq. for 1 -st component
Nomenclature	A (1)	A (2)	A (3)

The Handling of the Required Information of the DIS'IHB Computer Program for Applications

The above mentioned 13 groups data are classified into three classes namely a) to determine the name of illustrated problem, used equations and methods which are $1,2,3$, and 11 , of data, b) to determine the given parameters of distillation column which are $4,5,6,7,8,9$ and 10 groups of DATA c) to determine the constant of used equations which are 12 and 13 groups of DATA.

The first classe of the groups of DATA is indicated by the distillation type, such as azeotropic, extractive distillation etc. The second classe is indicated by the column conditions, the third classe is indicated by the constants of the used equations and methods. Therefore some parts of DATA can be determine by given problem, other parts must be handling from the data books which are THE THERMAL FACTOR of FEEDS of COLUMN, CONSTANTS of ANTOINE, WILSON and MARGULES.

The determination of the thermal factor of feeds of column, and constants of Antoine, Wilson and Margules

The thermal factor of feeds of column can be calculated by using following three equations, those equations are drived by using $\& T h e$ principe of constant rate of molar vaporisation of the Mc. Cabe-Thiele.
a) drived based on the amount of liquid phase

$$
\begin{equation*}
q=\frac{\bar{L}-L}{F} \tag{1}
\end{equation*}
$$

b) drived based on the amount of vapor phase

$$
\begin{equation*}
q=1-\frac{V-\bar{V}}{F} \tag{2}
\end{equation*}
$$

c) drived based on the enthalpy of the liquid and vapor phase

$$
\begin{equation*}
q=\frac{H_{f}-h_{F}}{H_{f}-h_{f}} \tag{3}
\end{equation*}
$$

The nomenclature of the used symbol in Eq. (1), (2), (3)
q : Thermal factor in DISTHB program Q
L : Molar amounts of liquid which is coming into feed stage,
$\bar{L} \quad$: Molar amounts of liquid which is going down from feed stage
F : Feed stream
V : Molar amounts of vapor which is going up from feed stage
V : Molar amounts of vapor which is coming into feed stage
H_{i} : Enthalpy of vapor which is going up from feed stage
h_{f} : Enthalpy of liquid which is coming into feed stage
h_{F} : Enthalpy of feed stream
Figure 2 are shown the condition of feeds in five cases as the following,
a) Feed is liquid at boiling point $q=1$
b) Feed is cold liquid $q>1$
c) Feed is staturated vapor $q=0$

(a)

(b)

(C)

(d)

(e)

Fig. 2. Illustration of condition of feeds
d) Feed is superheated vapor $q<0$ and negative
e) Feed is mixture of liquid and vapor $0<q<1$

Three illustrations are given by the following examples.

Example 1: (for the b case) Calculate the thermal factor of feed for the given conditions.
$C_{p}: 30 \mathrm{Btu} /(\mathrm{lb}-\mathrm{mol})\left({ }^{\circ} \mathrm{F}\right)$
λ_{ν} : $900 \mathrm{Btu} / \mathrm{lb} \mathrm{mol}$ (lantent heat)
$T_{F}: 400^{\circ} \mathrm{F}$

$$
q=\frac{C_{p} T_{F}+\lambda_{v}}{\lambda_{v}}=1+\frac{C_{p} T_{F}}{\lambda_{v}}=1+\frac{30 \times 40}{9000}=1.13
$$

Example 2: (for the d case) Calculate the thermal factor of feed for the given conditions.
C_{p} : $14 \mathrm{Btu}(1 \mathrm{~b} \mathrm{~mol})\left({ }^{\circ} \mathrm{F}\right)$
$T_{F}: 50^{\circ} \mathrm{F}$
$\lambda_{\nu}: 900 \mathrm{Btu} / \mathrm{lb} \mathrm{mol}$

$$
q=\frac{C_{P}\left(-T_{F}\right)}{\lambda_{F}}=\frac{(14)(-50)}{9000}=-0.078
$$

Example 3: (for the e case) calculate the thermal factor of feed for the given condition.

Condition: Feed includes 40% liquid and 60% vapor

$$
q=\frac{\bar{L}-L}{F} \quad \bar{L}-L=F \times 0.40, \quad q=\frac{F \times 0.40}{F}=0.40
$$

Notice : in such as condition q is always equal to liquid $\%$

Determination of Reflux Ratio :

The reflux ratio is determined by $R=\frac{L_{0}}{D}$
R : Reflux ratio on top of column
D : Moles of top product (mol kgr)
L_{0} : Moles of reflux stream (mol kgr)

Determination of the constants of Antoine Equation

Vapor pressurc and temperature are commonly related by means of the Antoine Equation |Compt. Rend. Acad. Sci., Paris, NF: 681, 836, 1143 (1888) |

$$
\log P=A-\frac{B}{C+t}
$$

where, A, B, and C are constants for a particular compout. 2 over a relatively narrow temperature range (usually not over $100^{\circ} \mathrm{C}$). Values of these constant for various compounds and families of compounds and the temperature ranges for which the constants apply appear in a number of references. Dreisbach [Physical Properties of Chemial Compounds I, II and III. Am. Chem. Soc. Advan. chem. ser., nos 15 (1955); 22 (1959) ; 29 (1961)], API Project Report No. 44 [\&Selected values of physical and Thermodynamic Properties of Hydrocarbons and Related compounds,s Carnegie Press, Pittsburgh, 1953]. Perry |Chemical Enginuers' Handbook, 3 rd. ed., Mc Graw-Hill, 1950], and others present eithur the Antoine constants, tabular vapor pressure data, or both.

An cxample: Determine of the constants of Antoine Equ. for ethylbenzene,

Solution: The three points of data permit the direct solution for a set of Antoine constants by algebraic means. An alternative method described in Dreisbach can be used. The constand C is solved for first by the empirical formula :

$$
C=239-0.19 t_{n}
$$

Pressure, mm Hg	Temperature, ${ }^{\circ} \mathrm{C}$	
760	Ethylbenzene	Ethyl cyclohexanc
100	136.19	131.78
30	74.1	69.04
46.7	41.50	

where t_{b} is the normal boiling points. The three linear equations can then be solved for the best values of A and B.

For ethylbenzene,

$$
\begin{gathered}
\log P=A-\frac{D}{t+c} \\
C=239-0.19(136.19)=213.12 \\
B_{12}=\frac{\log \left(P_{2} / P_{1}\right)}{\left(1 /\left(t_{1}+C\right)-1 /\left(t_{2}+C\right)\right.}=\frac{0.52288}{1 / 259.82-1 / 287.22}=1424.1 \\
B_{13}=1423.7 \quad B_{21}=1423.3 \quad B_{a v}=1423.7
\end{gathered}
$$

substituting directly for A,

$$
A_{1}=6.95668 \quad A_{2}=6.95683 \quad A_{3}=6.95656 \quad A_{a 1}=6.9567
$$

For ethyl cyclohexane the solution is identical

Tabulated Results for Ethylbenzene

	Antolne constants		
Source or method	A	B	C
Direct algehraic			
Solution	9.093	3007.6	384.722
Dreisbach's method	9.8567	1423.7	213.12
Published values	6.95719	1424.255	213.206

Determination of the constants of Margules and Wilson Equations:
The values of these constants for various conpounds and families of compounds and the temperature and pressure ranges for which the constants apply appear in a number of references.

It can be recommended the following references for the handling of the constants of Margules Equation.

1 - J.H. Perry, Chemical Engineers' Handbook section 13-6, Table 13-4, 19634 th Edition
2 - Joffe, J., Ind. Eng. Chem. 47:2553 (1953)
3 - E. Hála, I. Wichterle, J. Polák and T. Boublik «Vapour-Liquid Equilibrium Data at Normal Pressures Pergamon Press Ltd. 1968.

4 - Null, R.H., Phase Equilibrium in Proces Design Wiley-Interscience, 1970

It can be recommended the following references for the handling of the constants of Wilson Equation.

1 - Wilson, A and Simms, E.D., Ind. Eng. Chem., 44, 2214 (1952)
2 - Null, R.H., Phase Equilibrium in Process Design, Wiley-Interscience, 1970

3 - Winkle, V.M., Distillation, Mc - Graw - Hill 1967
4 - Frank C., Radice Jr., Analysis of Some Modeling Equations used in the Prediction of Multicomporent Equlibrium Data, Univ. of. R.I. Prof. Harold N. Knickle 368 pp. On file Univ. of R.I. Loan copi available Univ. Microfilm

The Type of Applications of DISTHB Computer Program

1 - For the design of any kind of distillation columns
a) Ideal systems
b) non-ideal systems
c) Azeotropic distillation
d) Extractive distillation
e) Some special distillation

2 - Re-design of any working distillation columns
3 - Design of Distillation systems for solvent recovery
The sample problem: A continous fractionating column operating at 760 mm Hg is to be designed to separate $1 \mathrm{~mol} \mathrm{kgr} / \mathrm{hr}$ of a solution of water, ethanol and methanol, containing 0.50 mole fraction water, 0.30 mole fraction ethanol, and 0.20 mole fraction methanol. The top product will be $0.50 \mathrm{~mol} \mathrm{kgr} / \mathrm{hr}$. A reflux ratio of 3.0 mol kgr of reflux per mol kgr of reflux per mol kgr of product is to be used. The feed will be liquid at its boiling point, and the reflux will be returnet to the column containing 0.5 mol kgr vapor at boiling point. The theoretical strage number is 11 include condenser and reboiler.
a) Determine the stage variables
b) Calculate the composition of top and bottom products
c) Determine the liquid composition profile
d) Determine the vapor composition profile
e) Determine the relative volatility profile

The Handling DATA by a Special Form

The data sheet of DISTHB computer program is prepared within three pages which are illustrated as a following;

The first page of data sheat contians TITLE, METHOD, NVL, M, $\mathrm{N}, \mathrm{V}(1), \mathrm{R}, \mathrm{PAI}$, and $\mathrm{F}(\mathrm{J})$, TFEED (J) and $\mathrm{Q}(\mathrm{J})$

The second page of data sheet contains $W(J), U(J), Z(I, J)$ and TB
The third page of data sheet contains the constants of Antoine Equ. and Margules or Wilson Equ.

SHEET of DATA
 (Distillation)

Vapor pressure Antoine equ. $\mathrm{LOG}(\mathrm{P})=\mathrm{A}-\mathrm{B} /(\mathrm{T}+\mathrm{C})$

Gempr No.	A	B	C
	7.967	-1668.210	228.00
2	8.045	-1554.300	22265
3	7.879	-1473.110	230.00

Activity Coefficient

$-\frac{\mathrm{J}}{\mathrm{J}}$	1	2	3
1	00	0.421	0.231
2	0.778	0.0	0.0
3	0.378	0.0	0.0

Arogram DISTHB
Programal EDIP BÜYÜKKOCA

4
$=0$

1 5	10	15	20	25	30	35	40	45	50	55	60	65	20	75	80
$W_{1} A T_{1} E \cdot R$	ETTHsip	D，L，ME	ESTHISMO	$0, h, C, A 5$	$S E_{1}, N_{1} P$	A，	11	1.1	1	1.1	\ldots	，1，	\ldots		
1.2									，1，	1181		－181	－		
1.2								，	1						
	$\ldots, 11$				11.1		1，1	1.	\ldots						
I_{1}	．5．		$3 \cdot 1$	$\cdots 7,6{ }^{\text {a }}$	D， 1,1			1.			1				
	\ldots		\cdots				\cdots		－11」		1，\％，，		， 1		\cdots
1.1	－1	1.1	\cdots	111	$\cdots 1$	1.	1.1	1.	1.1	1.1	\cdots	1.1	1.	1.	1.1
7	5．，1，		1.1 .1		－502		－20		． 30_{1}						
	$\cdots, 5$ ，		．				\cdots		1.1		$\cdots 1$		\cdots	1	\cdots
	0.1		$1{ }_{1}^{1}$	1.	－1．1		1	1．11	1.	11	，，	，	1	い1	1.1
	\cdots		$\stackrel{0}{1+1}$		\ldots		－1．］	，	－111	，1，	\cdots	1.1	1e． 11		1．1．
1	－1	11	$1 \cdot 1$		1．5．		1		，1，						1.1
，1，0	O．1． 1.	1.78	8.1 .1		M，1，			1	1.	1	1.1	1	1.11	，，，	111
WATIER		\ldots	E，T，H，n	$n_{1} O_{1} L_{1}$		M E ，工H	$A_{1} N_{1} O_{1} L_{1}$	1	1111			11	1.1	11.	11
－1．1	$\cdots{ }_{1} 1_{1}$		， $0.4,2,3$		$\cdots, 2,3,1$		Nal		1	［1	11	，，，	い1	1.	1.
	－ 77.8	1－1	－11		1				1.1		，，	1.	，，，	，	1
	－ 3.78		1311		1					1.	1.11	，			
	7.9 .67	-1.668	$8,2,1,0$	1.228	8 ・レレ	11	8.0 .45	－$-15,5$	$4,33_{1}$	1.222	2， 0,65		7.88 .4 .9	-1.47	3，1，1，
1234				－ 22	8ッール	，									
以1	111	－11	レレ	111	111	111	11．	111	111	1.1	1.1	1.	1	111	1.1
－111	11	1.11	111	111		111	1	1	1111	1	1	\cdots	111	1	
以1	111	1	1.1	－1．1	1．1	\cdots	1．1．	1	1111	1.	1	．1．	1.1	1.1	
い11	11.	$\because 1$	111	111		い1	\cdots	1	1.1	1.1	$\xrightarrow{4}$	1	111	1.1	
1．1．			い1．	1．1									．		
L，										$1, \ldots$,	ـ1		－1	－1	

 15 IH: MARGULES EIUAIION.

C3mpoas N P

- 4
- A9ER

11 HANOL

 siagis imbulo be iESS tode 2 \%.
case no． 1

```
10TAL *UMBEM OF SYAGES
15% m,ODUC1 AMOUNT
H01!Dm PRODUC! AmgUN1
HEFLUK NA9|
10T*L DMESSUME
FEEO
```

 FELU SIAGE ND.
    ```
                        CONO.N3.
```

 \(406+62 \pi\)
 "OL Emaction
 FEED CSUDJIS年
 \(\begin{array}{ll}0.2000 & 0.3000 \\ 0.2000 & 0.2000 \\ 0.3000 & 0.3004\end{array}\)
 1074
 0.9400
 0.2004
 $0.100 u$

Case Na. 1

```
    0. g000va0 (4,um0ifmer
    0.30000000 &KG=MCLJMR।
    3.0004000
180.0000000 (Mm=MG a)
```

 1.000
 \(\frac{3}{2}\)
 3
0.2000
0.3000
บロロコ PRESSUME

cama. No.

-0.199e900k C4
$-3.1419110 \% 0^{\circ}$
1,2210004203
.2126904E 03
. 2100004! 13

I
10.0
0.1780000 E 0
$0.1780000 F$
0.31800008
0.30
0.4
.210000800
0.0
0.0

EaSt NO. 1

IME TOIAL ITENATIONS: Id

CASE NO. 1

SOLUTIJN

STAGE VARIABLES

| دTAGE | TEIqP. | LIQU10 | | VAPOR | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 (C'UND) | 70.039 | $0.15000 E$ | 01 | 0.0 | |
| 2 | 71.663 | 0.15000 E | 01 | 0.20000F | U1 |
| 3 | 72.863 | $0.15000 E$ | 01 | 0.20000 E | U1 |
| 4 | 73.737 | 0.15000 E | 01 | 0.20000E | U1 |
| 5 | 74.437 | $0.15000 E$ | 01 | 0.20000 E | 01 |
| 6 | 75.230 | 0.25000 E | 01 | $0.20000 E$ | U1 |
| 7 | 75.037 | 0.25000 E | 01 | 0.20000 E | 01 |
| 8 | 76.435 | $0.25000 E$ | 01 | 0.20000 F | 01 |
| 9 | 77.091 | 0.25000 E | 01 | 0.20000 E | U1 |
| 10 | 78.306 | 0.25000 E | 01 | $0.20000 E$ | U1 |
| 11 (REB) | 84.456 | 2.0 | | $0.20000 F$ | U1 |

CASE NO. 1

DRUDUCT AMOUNTS
STAGE COMP MOL FLOW MOL FR.
1(TOP PKODUCT)

| 1 | 0.050340 | 0.1000797 |
| :--- | :--- | :--- |
| 2 | 0.160700 | 0.3214112 |
| 3 | 0.288955 | 0.3774091 |

11(30ITOM PRJOU(1)

| 1 | 0.449454 | 0.8984178 |
| :--- | :--- | :--- |
| 2 | 0.039487 | 0.0789750 |
| 3 | 0.011054 | 0.0221072 |

LIWUID COMPOSIIION PRUFILE

COMP. 1
12

STAGE

| 1 (CUND) | $0.100680 E$ UU |
| :---: | :---: |
| 2 | 0.1467 JJE UO |
| 3 | $0.140301 E 00$ |
| 4 | 0.235948 O 00 |
| 5 | $0.293407 E 00$ |
| 6 | 0.388445 E 00 |
| 7 | 0.4017545 .00 |
| 8 | $0.419513 E$ UC |
| 9 | 0.4570 JYE 00 |
| 10 | C.5982UUE OO |
| 11 (REG) | 0.89891 UE 00 |

$0.321411 E$
$C .348286 E$
$0.442740 E$
$0.456971 E$
$0.440246 E$
0.30
$0.375512 E$

| $0.277909 E$ | $U O$ |
| :--- | :--- |
| $0.454978 E$ | $U O$ |
| $0.266899 E$ | $O O$ |
| $0.2 U 7031 E$ | $C U$ |
| $0.266267 E$ | $U O$ |
| $0.233043 E$ | $U O$ |
| $0.168565 E$ | $U U$ |
| $0.147603 E$ | $U O$ |
| $0.110470 E$ | $O U$ |
| $0.114861 E-O 1$ | |
| $0.221072 E-01$ | |

VAPOR COMFOSIIION PROFILE

COMP.
1
2
3
STAGE

| 1 (COND) | $0.6411 \angle U E-01$ | 0.240380 U UU | 0.645510 E UJ |
| :---: | :---: | :---: | :---: |
| 2 | 0.10068 UE OO | 0.321412500 | 0.277910 E U |
| 3 | $0.1352<1 E 00$ | 0.379067 OU | 0.405713 E UU |
| 4 | 0.16794 UE OO | 0.4124 UTE UU | 0.419654 E OU |
| 5 | 0.202108800 | $0.423040 E$ OU | $0.374754 E$ OU |
| 6 | 0.245284 E OO | ก.410535E OU | 0.344181 E UU |
| 7 | 0.260725 O OO | 0.453490 E OU | 0. 285785 E UU |
| 8 | 0.277307 C OU | 0.492446 E OU | 0.230187 E UU |
| 9 | $0.299554 E 00$ | $0.521380 E$ OU | 0.179060 E UU |
| 10 | $0.346487 E$ OU | 0.520934 E 00 | 0.132568 E UU |
| 12 (REB) | 0.522894 EO | $0.393196 E$ OU | $0.038310 \mathrm{E}-\mathrm{Ul}^{\text {c }}$ |

**** RELATIVE VULATILITY pKUFILE

сомр.
1
2
3
STAGE

| 1 (CUND) | $0.100 C$ Úve | 01 | $0.117446 E$ | 01 | 0.188796 E | 01 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 0.100CuUE | 01 | r.117614E | 01 | $0.105125 E$ | 01 |
| 3 | 0.1 U00UUE | 01 | 0.120531 E | 01 | $0.186367 E$ | 01 |
| 4 | 0.1 U00IJUE | 01 | 0.126821 E | 01 | $0.142073 E$ | U1 |
| 5 | 0.1 uoduue | 01 | 0.139509 E | 01 | $0 .<04319 E$ | \sim_{1} |
| 6 | 0.1000uÚe | 01 | $0.171763 E$ | 01 | 0.433890 E | 01 |
| 7 | $0.100000 E$ | 01 | 0.1700572 E | 01 | $0 .<33) 42 E$ | \checkmark |
| 8 | 0.10000 ée | 01 | 0.112 JhOE | 01 | 0.635177 E | 01 |
| 9 | 0.1000 Uf | 01 | C.183938E | 01 | 0.247307 E | 01 |
| 10 | 0.1 voouve | 01 | $0.272235 E$ | 01 | $0.9<0133 E$ | 01 |
| 11 (Pty) | 0.11JOOUNE | 01 | $0.855614 E$ | 01 | $0.031755 E$ | 41 |

