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REPDIGITS IN THE BASE b AS SUMS OF FOUR
BALANCING NUMBERS
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Abstract. The sequence of balancing numbers (By,) is defined by the recurrence relation
Bn =6B,,_1 — B,,_2 for n > 2 with initial conditions By = 0 and By = 1. By, is called the
nth balancing number. In this paper, we find all repdigits in the base b, which are sums of
four balancing numbers. As a result of our theorem, we state that if By, is repdigit in the
base b and has at least two digits, then (n,b) = (2,5), (3,6). Namely, Bo = 6 = (11)5 and
Bz =35 = (55)¢.
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1. INTRODUCTION

The sequence of balancing numbers (B,,) is defined by the recurrence relation
B, =6B,,_1 — B, _5 for n > 2 with initial conditions By = 0, B; = 1. B, is called
the nth balancing number. We have the Binet formula

A — g
42

where A = 3+21/2 and § = 3—2+/2, which are the roots of the characteristic equation
22 —6x+1=0.It can be seen that 5 < A < 6,0 < § <1, Ad =1, and

(1.1) B, =

)\n

(1.2) B, < ok

For more information about the sequence of balancing numbers, see [11], [10], and [7].
A repdigit is a non-negative integer whose digits are all equal. Investigation of the
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repdigits in the second-order linear recurrence sequences has been of interest to
mathematicians. In [4], the authors have found all Fibonacci and Lucas numbers,
which are repdigits. The largest repdigits in Fibonacci and Lucas sequences are
Fs = 55 and Ls = 11. After that, in [2], the authors showed that the largest
Fibonacci number which is a sum of two repdigits is Fyy = 6765 = 6666 + 99.
In [3], the authors have found all Pell and Pell-Lucas numbers which are repdigits.
The largest repdigits in Pell and Pell Lucas sequences are P3 = 5 and Q)2 = 6.
Later, Luca (see [5]) found all repdigits which are sums of three Fibonacci numbers.
In [9], the authors have found all repdigits which are sums of three Pell numbers.
In the subsequent work [6], the authors tackled the same problem by taking four
Pell numbers instead of three Pell numbers. In this study, we determine all repdigits
which are sums of four balancing numbers. Briefly, we solve the equation

A" — 1)

(1.3) N = By, + By + B + By, = —

for2<b<10,1<d<9, m; >2mg>m3>my >0,and n > 2. If N is a solution
of the equation (1.3), then (my,mz2, m3, mg,b,d,n, N) is an element of the set

{(1, 1,1,0,2,1,2,3),(1,1,1,1,3,1,2,4),(2,0,0,0,5,1,2,6),(2,1,0,0,2,1,3,7),
(2,1,0,0,6,1,2,7),(2,1,1,0,3,2,2,8),(2,1,1,0,7,1,2,8),(2,1,1,1,8,1,2,9),
(2,2,0,0,5,2,2,12),(2,2,1,0,3,1,3,13),(2,2,1,1,6,2,2,14), (2,2, 2,0,5, 3,2, 18),
(2,2,2,0,8,2,2,18),(2,2,2,2,5,4,2,24),(2,2,2,2,7,3,2,24), (3,0,0,0,6, 5, 2,35),
(3,1,0,0,8,4,2,36),(3,2,1,0,4,2,3,42), (3,2,1,1,6, 1, 3,43),(3,2,2,1,7,6, 2,48),
(3,3,0,0,9,7,2,70),(3,3,2,1,10,7,2,77),(3,3,3,2,10,1, 3, 111),
(4,2,2,2,10,2,3,222), (4,4,3,1,10,4, 3, 444)}.

Furthermore, we conclude that if B,, is repdigit in the base b and has at least two
digits, then (n,b) = (2,5),(3,6). Namely, Bo = 6 = (11)5 and B3 = 35 = (55)s.
Our study can be viewed as a continuation of the previous works on this subject.
We follow the approach and the method presented in [6]. In Section 2, we introduce
necessary lemmas and theorems. Then, we prove our main theorem in Section 3.

2. AUXILIARY RESULTS

In order to solve Diophantine equations of the exponential forms, the authors
have used Baker’s theory of lower bounds for a nonzero linear form in logarithms of
algebraic numbers. Since such bounds are of crucial importance in effectively solving
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Diophantine equations of the similar form, we start with recalling some basic notions
from the algebraic number theory.
Let  be an algebraic number of degree d with the minimal polynomial

d
apz? + a12¥t 4. 4 ag = ap H(x — W) e 7[z],
i=1

where the a;’s are relatively prime integers with ag > 0 and 7(9)’s are the conjugates
of 1. Then

1 d ‘
(2.) ) = 5 (1og0 + 3 togtmax{1n 117 )
i=1

is called the logarithmic height of 5. In particular, if 7 = a/b is a rational number
with ged(a,b) =1 and b > 1, then h(n) = log(max{|al,b}).

The following properties of the logarithmic height are found in many works stated
in the references:

(2.2) h(n=+~) < h(n) + h(y) +log2,
(2.3) h(my™1) < h(n) + h(y),
(2.4) h(n™) = [m|h(n).

The following lemma is deduced from Corollary 2.3 of Matveev (see [8]).

Lemma 2.1. Assume that v1,7s,...,7; are positive real algebraic numbers in a
real algebraic number field K of degree D, by,bs, ..., b; are rational integers, and

is not zero. Then
|A| > exp(—1.4-30""2 . t%2D2(1 + log D)(1 + log B)A1 Ay . .. Ay),

where
B > max{|b1],..., b},

and A; > max{Dh(v;),|logv;|,0.16} for all i =1,...,t.
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In the following lemma, ||z|| denotes the distance from z to the nearest integer.
That is, ||z|| = min{|z — n|: n € Z} for any real number x.

Lemma 2.2 ([1], Lemma 3.3). Let v1,1v5,8 € R be such that 1128 # 0 and
r1,T9 € Z. Put A = B+ x1v1 + x219. Let ¢, 6 be positive constants. Let Xy be
a (large) positive constant such that max{|z1],|z2|} < Xo. Put v = —v1/ve and
1 = B/va. Let p/q be a convergent of v with ¢ > Xy. Suppose that ||q¥| > 2Xo/q
and |A| < cexp(—3dX). Then

qc

X < = 1
% Wl Xo

3. MAIN THEOREM

Theorem 3.1. Let m; > mg > m3 > mq 2 0,2<b<<10and N = B,,,;, + B, +
By + Bm,. If N is a repdigit in the base b and has at least two digits, then (N, b)

are elements of the set

{(3, 2),(4,3),(6,5),(7,2),(7,6),(8,3),(8,7),(9,8), (12,5), (13, 3),
(14,6), (18,5), (18,8), (24,5), (24, 7), (35,6), (36,8), (42,4),
(43,6), (48,7), (70,9), (77,10), (111, 10), (222, 10), (444, 10) }.

Namely,

3=(11)3, 4= (11)3, 6 = (11)5, 7= (111)s, 7 = (11)g, 8 = (22)3, 8 = (11)7,
9=(11)s, 12 = (22)5, 13 = (111)3, 14 = (22), 18 = (33)5, 18 = (22)s,
24 = (33)7, 35 = (55)g, 36 = (44)s, 42 = (222),, 43 = (111)6, 48 = (66)r,

24 = (44)5, 70 = (77)9, 77 = (77)10, 111 = (111)19, 222 = (222)10, 444 = (444),

Proof. Assume that miy > ma > ms > mqy > 0 and N = B,,, + Bn, +
B, + B, . Assume that the equation (1.3) holds. A search in Mathematica in the
range 0 < my < m3 < ma < my < 299 gives only the solutions in the statement of
Theorem 3.1. Assume that m; > 300. Then

d(b™ — 1)

< —1<10" -1,
b—1

B300 Bm1 + Bmz + Bm; + BT)’I4 -

which gives us
log(1 + B3oo) <

228 <
log 10
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That is, n > 228. Since

agr -1
2n71<bn71<bn71+bn72++1< (b 1)
Am ;
= B, + B, + Bmg + By, < 4B, < 44—\/5 < AT 20

by (1.2), we get 3m; + 1 > n > 228. Equation (1.3) can be rewritten as

1 db™ d
(3.1) 4_\/5()\"11 B L I Ly L

We examine (3.1) in four different steps in the following way.

b—1 b-—1

Step 1: Equation (3.1) can be reorganized as

AT b
3.2 2 (14 N2 ymaTmL g yma—may
(3.2) 4\/5( )
= e e s o)
b1 42 :

This implies that

ﬁ(l_}_)\mzfnu 4 \mamm +/\m47m1) db™ < d n 4 _ A2

42 151" 42 T e
Dividing both sides of the above inequality by ﬁiAml(l LoAma—m g z\ma—ma
AT e get

(3.3) Ty < AZ7m
where
(3.4) [y =1—XA"mapn 4dv2

(b — 1)(1 + \Mi—ma | \me2—mg | )\M37m4)'

Suppose that I'y = 0. Then

4d~/2b™
AT N N2 NS = dv/2b .
b—1
Conjugating in Q(v/2) gives us
4d~/2b™
O 4 0T 4 0T 4 0 = — Z\/_f .
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Then

4d~/2b™

1 [07 4 0T 4 072 4 T =0T 4 0T 4072 40T < 4,

which is impossible. Therefore I’y # 0. Now we apply Lemma 2.1 to (3.4). Let

4d/2
(b — 1)(1 4 \mi—ma L \ma—ma | )\mg—m4)

T = >\7 Y2 = bv V3 =

and by := —my, by := n, by := 1, where v1,72,73 € @(\/_) and by,bo,b3 € Z. We
can take D = 2. As m1 > my4 and 3m1 + 1 > n, we can also take B := 3m1 +1 >
max{|-myl,|n|,1|}. It is clear that h(y1) = h(\) = 1logA and h(y2) = h(b) <
h(10) = log 10 and so we can take A; := 1.8, Ay := 4.7. Since

4d/2
= 42
3 (b= 1)(1L+ N 4 Ama—ma ¢ e ma) <42

and

R (e O O e N s s G ) B N
= < AmTma

it follows that |[logvys| < 2+ (m1 — my4)log A. On the other hand,

h(ys) < h(4dV/2) + h(b — 1) + h(A™ ™4 4 A2 ST )
< h(36V2) + (b — 1) +log2 + (A3 (A1 78 4 A2 4 1))
< h(36) + h(V2) + h(b— 1) + 2log 2 + h(A™27™4) 4 p(AT2T M (\M M2 | 1))
< h(36) + (\/5) 4+ h(b—1) +31og 2 + (A3 4) 4 h(AT2TTE) 4 p(ATIT2)

log
< log 36 + T +log(b—1) + 3log2 + (m3 — ma)h(N)
+ (mg — m3)h(X) + (m1 — ma)h(N)
1
<9+ §(m1 —my) log A.

Thus we can take Az := 18 + (m1 — my) log A\. By applying Lemma 2.1 to I'; given
by (3.4) and using (3.3), we get

AT S Ty | > exp(C(1 + log(3my + 1)) - 1.8 - 4.7(18 4 (my — my) log \)),
where C' = —1.4- 305 - 39/2. 22(1 4+ log 2). Therefore we get
(3.5)  mylog\—2log\ < 8.3-10(1 +log(3my + 1))(18 + (m1 — my) log \).
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Step 2: Equation (3.1) can be written as
A ap™

3.6 14 \me=m1 g yms—mi) _
30 4\/5( )=
d )\m4
=- 54 52 4 5T 4 5™,
b—1 4\/_ \/‘( )
This gives
A db™ Amat2
3.7 1 + )\m2 mi + /\m; miy _ < .
(37) 5 ) <2

Dividing both sides of (3.7) by ; WL (14 Am2=ma 4 \™ms—m1) e get

\ma—ma +2

2—(m1—ma)
(3.8) ITo| < TR VPR vem— <A 4),
where
4d+/2
(39) ]-—\2 — 1 _ Afm3b’n \/_

(b—1)(1 + \ma—ms 4 \ma—ms)’
It can be seen that I'y # 0. Now we apply Lemma 2.1 to (3.9). Let

4dv/2
(b —1)(1 4+ Amr—ms 4 \ma2—ms)

Mi=A yi=b, 3=

and by := —mg, by := n, bz := 1, where 71,7%2,7v3 € Q(v/2) and by, ba, b3 € Z. We
can take D = 2. As m; > mg and 3m1 + 1 > n, we can also take B :=3m; +1 >
max{|-mg|,|n|,1}. It is clear that h(y1) = h(A) = 1logA and h(y2) = h(b) <
h(10) = log 10. Therefore, we can take A; := 1.8, Ay := 4.7. Since

V3= -1+ )\iii/i e s <4V2
and
vl = (b= DA+ N™ T 4 N7 2y
4dv2 42
it follows that |log 3| < 2+ (m1 —ms)log A\. On the other hand,
h(vs) < h(4dvV/2) 4+ h(b — 1) + R(XN™ ™2 4 \™27™s 1 1)

h (b—

h(36V2) + h(b — 1) + log2 + h(A2 ™3 (\™1=™2 4 1))

h(36) + h(V/2) + h(b — 1) + 2log 2 + h(A2778) 4 p(A1~2)

log 36 + 1T + 1og(b - 1) + 2log2 + (m2 — mg)h(/\) + (ml _ mg)h()\)

V/AN/ANV/AN

N

N

1
8+ 5(m1 — mg) log A.
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Thus we can take Az := 16 + (m1 — ms) log A\. By applying Lemma 2.1 to I's given
by (3.9) and using (3.8), we get

AZ(mai=ma) S Py | > exp(C(1 + log(3my + 1)) - 1.8 - 4.7(16 4 (m1 — m3) log \)),
where C' = —1.4-305 - 39/2 . 22(1 4 log 2). Thus we get
(3.10) (my —my)logA—2log A < 8.3-10"2(1 +log(3my +1))(16 + (m1 —m3) log \).

Step 3: Now, we write equation (3.1) as

A o™ d AT 4\
3.11 (1 4 N2 — _
(3.11) 4v/2 ( ) b—1 b—1 42
O™ 42 4 M3
44/2 '
Thus
AT o™ d 1 4
3.12 T AT — < = (AT A —
(3.12) 4\/5( ) b—11 " b—1 4\/5( ) 44/2
Amg—‘,—Q
Ev
Dividing both sides of (3.12) by 4—\1/5/\ml (1 4+ Am2=m1) we get
)\m,g—m1+2
3.13 ol < ———— <« /\2—(7”1—7”3)7
( ) | 3| (1_’_>\m27m1)
where
4dv/2
(3.14) Ig=1-—X"m2p" av2

(b—1)(1 + Xma—ma)’
It can be seen that I's # 0. Now we apply Lemma 2.1 to (3.14). Let

B 4dv/2
BT o= D)1+ amame)

M= >‘7 Y2 = ba

and
b1 = —Ma, b2 =n, bg = 1,

where v1,72,73 € @(\/ﬁ) and by,bo,b3 € Z. We can take D = 2. As m; > ms and
3m1 4+ 1 > n, we can also take B := 3my + 1 > max{|—msz/|, |n|,1}. It is clear that

__log A

h(y1) = h(X) and h(y2) = h(b) < h(10) =log 10
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and so we can take A; := 1.8, Ay := 4.7. Since

4d\/2
BB DA+ V2
and
-1 _ (b - 1)(1 + )‘mlimz) 9 mi—m
= < )\ 1 27
s 1dv2 22

it follows that |[logvys| < 2+ (m1 — ma)log A. On the other hand,

(4dV/2) + h(b — 1) + log 2 + h(A™ ~™2)
(36) + h(V/2) + h(b— 1) +log 2 + (m1 — ma)h()\)

hys) < h
<h
log 2 1
— log 36 + —o— + log(b — 1) + log 2 + (m1 —mz) log A
1
<7+ 5(m1 — mz2)log A.

Thus we can take Az := 14 + (m; — mg)log A. By applying Lemma 2.1 to I's given
by (3.14) and using (3.13), we get

AZ=(mi=ms) 5 Pg) > exp(C(1 + log(3my 4 1)) - 1.8 - 4.7(14 4 (my — my) log \)),
where C' = —1.4-30° - 39/2.22(1 + log2). Then we get

(3.15) (m1 —mg)log A — 2log A
< 8.3-10"%(1 4+ log(3my 4+ 1))(14 + (m1 — ma) log \).

Step 4: Equation (3.1) can be written as

A1 dab™ d 1
316 —_ = — — )\’mz +)\WL3 +)\m4
(319) Wa b1 b1 ays )
1
+ —=(0"" + 6" + ™M 4 0™).
Wik )

This gives us

42 b—11"b—1 42 42 T 42

Dividing both sides of (3.17) by 4_\1@>\M1’ we get

(3.17)

(3.18) T4 < A2~ (ma=ma)
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where

4d+/2

(3.19) Py 1o y-mipnddV2
b—1"

It can be seen that I'y # 0. Now we apply Lemma 2.1 to (3.19). Let

_ 4dv2
Cb—1

and by := —my, by :=n, bz := 1, where y1,72,73 € @(\/_) and by, by, b3 € Z. We can
take D = 2. As 3my + 1 > n, we can also take B := 3my + 1 > max{|—my|, |n|,1}.
It is clear that 2(71) = h(\) = 4 log A and h(72) = h(b) < h(10) = log 10. Therefore,
we can take Ay := 1.8, Ay := 4.7. Since

4dv2 <4v3 S _b-1_ 9

and =—— < —,
BT S BTz S 2

it follows that |log~s| < 1.8. On the other hand,

h(7s) < h(4dV/2) + h(b — 1) < h(36) + h(V/2) + h(9)
= log 36 + IT +log9 < 6.2.

Thus we can take Az := 12.4. By applying Lemma 2.1 to I'y given by (3.19) and
using (3.18), we get

A2(ma=ma) S 7y > exp(C(1 + log(3my + 1)) - 1.8 - 4.7 - 12.4),
where C' = —1.4-30° - 39/2. 22(1 + log 2). Therefore
(3.20) (m1 —ma)log A — 2log A < 1.02- 10**(1 + log(3m; + 1)).

From (3.20), (3.15), (3.10), and (3.5), we get m1 < 1.38 - 1061,

Let
4d
(3.21) A1 = —mqlog A+ nlogb + log 2 \/1_
From (3.16), we can see that
A 4dv2\ ™
- = 1—A"mpn ——(1—expA
42 b-1 4\/_( b—1) Wik pA)
d dm 1 300
=—— — By, — By — By < —c+—=<0
b—1 g e Dme T P ST
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as mq

0<Ai<expA;—1=

This means that
(3.22)

with m; — ma < my <

Xo=42-10°">3m; +1>

> 300. Thus Ay > 0 and therefore from (3.18) we obtain

4d\/2
1

1— A" < \Ttme—ma
b _

|A1| < A2 exp(—1.76(m; — m2))

1.38 - 1051, In order to apply Lemma 2.2 to (3.21), we take
max{m,n} and

1 4d\/§
2
= =1. =—log —=
c=XA, § 76, Y= b b T
log A 4d
:K, v1 = —logA, wvy=1logh, [ =Ilog \/_
logb b—

We find that ¢ = ¢35 satisfies the hypothesis of Lemma 2.2 for 2 < b <

10 and

1 <d<9. By Lemma 2.2, we get m; — mo < 122 for 2 < b < 10 and so mo >
my — 122 > 300 — 122 = 178.
Let
4dv/2
2 Ay = —molog A logb + I .
(3.23) 2 mz log A + nlogb + log G- D(mm 1 1)
From (3.11) we can see that
AT db™
AT
4f( - b—1
AT 4dv/2
14 A27m) (1 — N2
4\f( * I )(b—l)(1+)\m1—m2)
A" 4 A= (1 exp Ag)
4\/— P A2
d om m2
= - — B, - B
b—1 +4\/§+4\/§ e
1 5300 5178
< - <0
MV ARYG
as my > 300 and my > 178. Therefore Ay > 0 and so from (3.13), we obtain
4d+/2
0< Ay <expAa—1=|1-X""2p" V2 < \Fma—ma

(b—1)(1 4+ Ami—m2)
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This shows that
(3.24) |A2| < A2 exp(—1.76(m; —ms3))

with m1 —ma < my < 1.38 x 1051, In order to apply Lemma 2.2 to (3.23), we can
take

1 4d+/2
=X\, §=1.76, Xo=4.2-10° = 1
cT r 00 VT g 08 (b —1)(1 + Am—mz)’
~ log A 4dv/2

B =log

v = —logA, vy =logh, v=

logh’ (b—1)(1 + Ama—mz)’

We find that ¢ = ¢q74 satisfies the hypothesis of Lemma 2.2 for 2 < b < 10 and
1 <d<9. By Lemma 2.2, we get m; —mg < 180 and so mgz > 120.
Let

4d\/2

3.95 As = —mglog A+ nlogh +1 :
( ) 3 mg3 log +n og + og (b_ 1)(>\m17m3 +)\m27m3 +1)

From (3.6), we can see that

mi
i\/i()\mg’ml + AT 4 1) (1 —exp As)
= —L+i(5ml+6m2+5m3)—3 <0
b—1 42 m

as my > 300, mg > 178, m3 > 120. Thus A3z > 0 and so from (3.8), we get

4dv2 < \2Hma—ma

A Asg—1=|1—-A"T3p"
0 <Az <expAs & — 1)1+ N+ Ama—ms)

This implies that
(3.26) |Az] < M exp(—1.76(m; —my))

with m1 —m4 < my < 1.38-10%L. Again, in order to apply Lemma 2.2 to (3.25), we
can take

c=M, §=1.76, Xo=4.2 10,
_log (4dv/2) —log (9(1 + A1 ~™ms 4 \ma—ma)) , _ log)
log b ’ logb’
4dv/2
(b—1)(1 4 Am1—ms 4 \ma—ms)’

() v1 = —log A,

ve = logb, [ =log
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We find that g = qq4¢ satisfies the hypothesis of Lemma 2.2 for 2 < b < 10 and
1 <d<9. Thus, by Lemma 2.2, we get m; — my4 < 137 and so my4 > 163.
Let

4dv/2(b —1)71
AMi—ma | \ma2—ma 4 \mz—m4 | ]’

(3.27) Ay = —mylog A+ nlogb + log

From (3.2), we can see that

™
LA T A AT A AT+ 1)(1 - exp Aa)
1
= 7=+ =™+ + 6™ +6™) <0
=1t 1 )

as my > 300, ma > 178ms > 120, my > 163. Thus A4 > 0 and so from (3.3) we
obtain

4d+/2

0<A Ay —1=|1-\"™p"
< Ay <expAy STy ey

< N2

That is,
|A4] < A2 exp(—1.76m;)

with m; < 1.38 - 10%1. Finally, in order to apply Lemma 2.2 to (3.27), we take

c=M\, §=1.76, Xo=1.38-10%,

1 4dv/2
Y= log )
logb = (b—1)(Ama—ma 4 \m2—ma 4 ms—ma 4 )
log A
v logb’ V1 ogA, vy =logbh,
4d+/2
B =log v2

(b _ 1)(/\m1—m41 4 \m2—ma | )\m3—ma | 1).

We find that g = qq4¢ satisfies the hypothesis of Lemma 2.2 for 2 < b < 10 and
1<d<9. By Lemma 2.2, we get m; < 138, which contradicts our assumption that
my > 300. This completes the proof. O

Corollary 3.1. If B, is a repdigit in the base b and has at least two digits, then
n = 2,3. Namely, B; = 6 = (11)5 and Bs = 35 = (55)6.

Corollary 3.2. Let b be an integer such that 2 < b < 10. If n > 4, then the
equation B,, + 1 = b* has no solution k in positive integers.
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