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Coincidence and Common Fixed Point
Theorems via C-Class Functions in Elliptic

Valued Metric Spaces

Mahpeyker Öztürk, Işıl A. Kösal and Hidayet H. Kösal

Abstract

The main goal of this study is to define a new metric space which is
a generalization of complex valued metric spaces introduced by Azam
et al. [1] using the set of elliptic numbers

Ep =
{
ε = ν + iω : ν, ω ∈ R, i2 = p < 0

}
,

and this space is named as an elliptic valued metric space. Some topo-
logical properties of this new space are examined. Also, some fixed point
results are established in the setting of elliptic valued metric spaces by
introducing new classes of mappings which the obtained results are real
generalizations of the consequences of several fixed point theorems in
the existing literature.

1 Introduction

In 1906, M. R. Fréchet realized the axiomatic development of metric spaces.
Inspired by the natural development of the metric concept and its application
areas in mathematical analysis many researchers have recently made various
attempts to extend and generalize this concept. Some of these generalizations
can be sampled as quasi metric, semimetric, 2-metric, rectangular (Brianciari
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or generalized) metric, G-metric, partial metric, b-metric, modular metric,
cone metric and complex valued metric etc.

In 2011, Azam et al.[1] and later Rouzkard et al. [2] studied on complex
valued metric spaces wherein some fixed point theorems for different type
mappings especially involving rational expressions were established. Indeed,
complex valued metric spaces constitute a special class of cone metric spaces
which defined by Huang et al. [4]. However some fixed point theorems were
not established in cone metric spaces for the mappings that provide contractive
conditions with rational inequalities and involving product, since the definition
of a cone metric space is grounded on the underlying Banach space which is
not a division ring. Therefore, some results of mathematical analysis involving
divisions and products can be studied in complex valued metric spaces.

The complex number system was first studied in the 16th century by Italian
mathematicians G. Cardan and R. Bombelli [3], defined the complex unit as
i2 = −1. Since then, various mathematicians have modified this unit. The
hyperbolic number system, which provides many convenience in the solution
of mechanical problems, has been defined by English geometer W. Clifford
[14] with i2 = 1, (i 6= ∓1). Another modification for i is i2 = 0, (i 6= 0). The
German geometer E. Study [15] introduced the dual numbers by using i2 = 0
which this concept has applications in many fields such as kinematics, robotic
control, spatial mechanics, and virtual reality. In the later years, these three
number systems have been extended using the unit i as p ∈ R, i2 = p. The
number system defined by the i2 = p is called generalized complex number
system. This system is named in different ways according to the values of p. If
p < 0 then this system is called elliptical number system (especially, if p = −1
then the complex number system is obtained), if p = 0 then this system is
named parabolic or dual number system and finally if p > 0 then the obtained
number system is called hyperbolic number system [3].

Fixed point theory has numerous applications in almost all areas of math-
ematical sciences. The fixed point theorem, generally known as the Banach
contraction principle or Banach’s fixed point theorem appeared in explicit
form in Banach’s thesis in 1922, which states that every contraction map-
ping defined on a complete metric space has a unique fixed point. Banach’s
contraction principle ensures, under appropriate conditions, the existence and
uniqueness of a fixed point. The study of common fixed point of mappings
satisfying contractive type conditions has been a very active field of research
activity during the last three decades so several interesting results have been
found by various authors.

This paper aims to introduce the concept of elliptic valued metric spaces
and examine some topological properties of this space. Bearing in mind the
concept of C-class functions suggested by Ansari in 2014 [6] we extend some
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contractive conditions involving rational expressions for four self mappings
with weakly compatible property and obtain the coincidence and common
fixed points of four self mappings in the setting of elliptic valued metric spaces.

2 Algebraic Properties of Elliptic Numbers

In the sequel, we recall some notations and definitions that will be made use
of in our subsequent discussions. For more details one can see [3].

Let Ep denote the system of numbers

Ep =
{
ε = ν + iω : ν, ω ∈ R, i2 = p < 0

}
.

For an elliptic number ε = ν + iω, the real number ν is called the real part of
ε and ω is called the imaginary part of ε.

i. Summation of elliptic numbers ε1 = ν1 + iω1 and ε2 = ν2 + iω2 is defined
as

ε1 + ε2 = ν1 + ν2 + i (ω1 + ω2) .

ii. Multiplication of an elliptic number ε1 ∈ Ep with a scalar λ ∈ R is defined
as λε1 = λ (ν1 + iω1) = λν1 + iλω1. In addition, elliptic multiplication
of two elliptic numbers ε1, ε2 ∈ Ep is defined as

ε1ε2 = (ν1 + iω1) (ν2 + iω2) = (ν1ν2 + pω1ω2) + i (ν1ω2 + ν2ω1) .

iii. The conjugate of an elliptic number ε is denoted by ε and it is

ε = Re (ε)− Im (ε) = ν − iω.

iv. The definition of the norm for an elliptic number is

‖ε‖E =
√
εε =

√
ν2 − pω2.

It is obvious that Ep is a two-dimensional vector space over field R with
addition and scalar multiplication. Hence one to one mapping can be charac-
terised from Ep to R2 and each elliptical number ε = ν + iω can be expressed
uniquely in the (ordinary) plane. This plane is called elliptical plane and in
an elliptical plane the distance between two elliptic numbers ε1 = (ν1, ω1) and
ε2 = (ν2, ω2) is designated by

‖ε1 − ε2‖E =

√
(ν1 − ν2)

2 − p(ω1 − ω2)
2
.
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In this elliptic plane, the set of all elliptical numbers located 1 unit away from
the origin is ellipse and is expressed by the equation ν2 − pω2 = 1 [3].

Throughout this study, θ is used as the zero vector of the space Ep.
Now, define a partial order � on Ep as follows:

Let ε1 = ν1 + iω1 ∈ Ep and ε2 = ν2 + iω2 ∈ Ep,

ε1 � ε2 ⇔ Re (ε1) ≤ Re (ε2) and Im (ε1) ≤ Im (ε2) . (2.1)

It follows that ε1 � ε2 if any one of the following statements holds:

o1. Re (ε1) = Re (ε2) and Im (ε1) < Im (ε2) ;

o2. Re (ε1) < Re (ε2) and Im (ε1) = Im (ε2) ;

o3. Re (ε1) < Re (ε2) and Im (ε1) < Im (ε2) ;

o4. Re (ε1) = Re (ε2) and Im (ε1) = Im (ε2) .

In particular, the expression ε1 � ε2 (ε1 6= ε2) will be used if one of o1, o2 and
o3 is provided and the expression ε1 ≺ ε2 will only be used if o3 is provided.
Some basic features of the partial order � on Ep can be given as follows:

po1. If θ � ε1 � ε2, then ‖ε1‖E < ‖ε2‖E.

po2. ε1 � ε2 is equivalent to ε1 − ε1 � θ.

po3. If ε1 � ε2 and ε2 � ε3, then ε1 � ε3.

po4. If ε1 � ε2 and Λ > 0, (Λ ∈ R), then Λε1 � Λε2.

po5. θ � ε1 and θ � ε2 do not imply θ � ε1ε2.

3 Elliptic Valued Metric Spaces and Some Topological
Properties

Inspired by the method Azam et al. used in their study [1] we introduce
elliptic valued metric space and examine some topological properties which
are necessary for our main discussion.

Definition 3.1. Let Ξ be a non empty set. A function e : Ξ× Ξ→ Ep is an
elliptic valued metric on Ξ if it satisfies the following properties:

(E1) θ � e(σ, ς) for all σ, ς ∈ Ξ;
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(E2) e(σ, ς) = θ if and only if σ = ς;

(E3) e(σ, ς) = e(ς, σ) for all σ, ς ∈ Ξ;

(E4) e(σ, ς) � e(σ, τ) + e(τ, ς) for all σ, ς, τ ∈ Ξ.

In this case, the pair (Ξ, e) is called an elliptic valued metric space.

Example 3.1. Let Ξ = Ep be the set of elliptic numbers. Define e : Ep×Ep →
Ep by

e (ε1, ε2) = ‖ν1 − ν2‖E + i ‖ω1 − ω2‖E ,
where ε1 = ν1 + iω1, ε2 = ν2 + iω2 ∈ Ep. Then (Ep, e) is an elliptic valued
metric space.

Example 3.2. Let Ξ = Ep be the set of elliptic numbers and ε1, ε2 ∈ Ξ.
Define the mapping e : Ep × Ep → Ep by

e (ε1, ε2) = ‖ε1 − ε2‖Ee
iΘp ,Θp ∈

[
0,
π (p− 1)

8p

]
,

where Θp is argument of ε1 and ε2 and p < 0 and p ∈ R. Then one can easily
check that (Ep, e) is an elliptic valued metric space.

3.1 On Some Topology Related to Elliptic Valued Metric Spaces

In this subsection, some topological properties related to elliptic valued metric
space will be mentioned.

Definition 3.2. Let (Ξ, e) be an elliptic valued metric space. A point σ ∈ Ξ
is called e-interior point of a set A ⊆ Ξ whenever there exists θ ≺ δ ∈ Ep such
that

BE(σ, δ) = {ς ∈ Ξ : e(σ, ς) ≺ δ} ⊆ A,
where BE(σ, δ) is an e-open ball. Then BE[σ, δ] = {ς ∈ Ξ : e(σ, ς) � δ} is an
e-closed ball in the setting of elliptic valued metric space.

Definition 3.3. Let (Ξ, e) be an elliptic valued metric space. A point σ ∈ Ξ
is called e-limit point of a set A ⊆ Ξ whenever for every θ ≺ δ ∈ Ep,

(BE(σ, δ)− {σ}) ∩ A 6= ∅.

A is called e-open whenever each element of A is an e-interior point of A.
Moreover, a subset F ⊆ Ξ is called e-closed whenever each e-limit point of F
belongs to F. The family

Σ = {BE(σ, δ) : σ ∈ Ξ, θ ≺ δ},

is a sub-basis for a Hausdorff topology on Ξ.
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Definition 3.4. Let {σn}n∈N be a sequence in (Ξ, e). The sequence {σn}n∈N
is said to e-converge σ ∈ Ξ if and only if θ ≺ δ ∈ Ξ, there exists n0 ∈ N
such that e(σn, σ) ≺ δ for all n > n0. It is denoted by σn → σ as n → ∞ or
lim
n→∞

σn = σ.

Definition 3.5. A sequence {σn}n∈N in an elliptic valued metric space (Ξ, e)
is said to be an e-Cauchy sequence if and only if for any θ ≺ δ ∈ Ξ, there
exists n0 ∈ N such that for all n > n0, e(σn, σn+m) ≺ δ, where m ∈ N.

An elliptic valued metric space (Ξ, e) is said to be e-complete if and only if
every e-Cauchy sequence in Ξ e-converges in Ξ.

We require the following lemmas.

Lemma 3.1. Let (Ξ, e) be an elliptic valued metric space and {σn}n∈N be a
sequence in Ξ. Then the sequence {σn}n∈N e-converges to σ ∈ Ξ if and only
if ‖e(σn, σ)‖E → 0 as n→∞.

Proof. Let us assume that that {σn} e-converges to σ. Choose

δ =
ε√

1− p
+ i

ε√
1− p

,

for a given positive real number ε and p < 0. Then θ ≺ δ ∈ Ep and there is
a natural number n0 such that e (σn, σ) ≺ δ for all n > n0 and p < 0. Thus,
‖e (σn, σ)‖E < ‖δ‖E = ε for all n > n0. Consequently, lim

n→∞
‖e (σn, σ)‖E = 0.

Conversely, granted that lim
n→∞

‖e (σn, σ)‖E = 0 . Then for θ ≺ δ ∈ Ep, there

exists a real number ζ > 0, such that for ε ∈ Ep and ‖ε‖E < ζ ⇒ ε ≺ δ. For this
ζ, there exists a natural number n0 such that ‖e (σn, σ)‖E < ζ for all n > n0.
This concludes that e (σn, σ) ≺ δ for all n > n0. Hence {σn}n∈N e-converges
to σ.

Lemma 3.2. Let (Ξ, e) be an elliptic valued metric space and {σn}n∈N be a
sequence in Ξ. Then the sequence {σn}n∈N is an e-Cauchy sequence if and
only if ‖e(σn, σn+k)‖E → 0 as n→∞, where k ∈ N.

Proof. Suppose that {σn}n∈N is a e-Cauchy sequence. Choose

δ =
ε√

1− p
+ i

ε√
1− p

,

for a given positive real number ε and p < 0. Then θ ≺ δ ∈ Ep and there
exists a natural number n0 such that e (σn, σn+k) ≺ δ for all n > n0, p < 0
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and k ∈ N. Therefore ‖e (σn, σn+k)‖E < ‖δ‖ = ε for all n0 ∈ N and k ∈ N.
Then the following statement is obtained;

lim
n→∞

‖e (σn, σn+k)‖E = 0,

where k ∈ N.
Conversely, suppose that ‖e (σn, σn+k)‖E → 0 as n → ∞ and k ∈ N. Then
given θ ≺ δ ∈ Ep, there is a real number ζ > 0, such that for ε ∈ Ep and
‖ε‖E < ζ ⇒ ε ≺ δ. For this ζ, there exist a natural number n0 such that
‖e (σn, σn+k)‖E < ζ for all n > n0 and k ∈ N, which means e (σn, σn+k) ≺ δ
for all n > n0 and k ∈ N, so {σn}n∈N is an e-Cauchy sequence.

We use the notations K and IntK to indicate the following subsets of Ep.

K = {ε ∈ Ep : θ � ε} = {ε = ν + iω ∈ Ep : ν ≥ 0, ω ≥ 0},

and
IntK = {ε ∈ Ep : θ ≺ ε} = {ε = ν + iω ∈ Ep : ν > 0, ω > 0}.

In the set K every increasing sequence which is bounded from above is e-
convergent (or every decreasing sequence which is bounded from below is e-
convergent).

Remark 3.1. In an elliptic valued metric space (Ξ, e) the following statements
hold true. Let {σn}n∈N, {ςn}n∈N be sequences in (Ξ, e).

i. If θ � σn � ςn, for all n ∈ N, then lim
n→∞

σn = σ and lim
n→∞

ςn = ς ⇒ θ �
σ � ς.

ii. If σn � ςn � τn, for all n ∈ N, then

lim
n→∞

σn = lim
n→∞

τn = σ ⇒ lim
n→∞

ςn = σ.

iii. The e-limit of a e-convergent sequence in an elliptic valued metric space
is unique.

Definition 3.6. Let ~ : K→ K be a function.

i. ~ is monotone increasing if for any σ, ς ∈ K, σ � ς ⇔ ~(σ) � ~(ς).

ii. ~ is said to be e-continuous at σ0 ∈ K if for any sequence {σn}n∈N ∈ K,

σn → σ0 ⇒ ~(σn)→ ~(σ0).
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Recently, Ansari et al.[5] introduced complex C-class functions. Inspiring the
idea of them we redefine C-class functions in the setting of elliptic valued
metric space.

Definition 3.7. Let F : K × K → Ep be a function. For any σ, ς ∈ K the
following conditions hold:

C1. F is e-continuous;

C2. F(σ, ς) � σ;

C3. F(σ, ς) = σ implies that either σ = θ or ς = θ;

C4. F(θ, θ) = θ.

Then the function F is called an elliptic valued C-class function.

The following functions can be given as an example of elliptic valued C-class
functions.

Example 3.3. Let σ, ς ∈ K.

i. F(σ, ς) = σ − ς;

ii. for some η ∈ (0, 1), F(σ, ς) = ησ;

iii. F(σ, ς) = σ − χ(σ), where χ : K → K is e-continuous, χ(θ) = θ and
χ(σ) � θ if σ � θ;

iv. F(σ, ς) = σΓ(σ), where Γ : K→ [0, 1) e-continuous.

In our following discussion we need to redefine the following control functions.
We denote by Υ the set of all functions κ : IntK∪{θ} → IntK∪{θ} satisfying

i. κ is e-continuous and non-decreasing,

ii. κ(σ) � θ if σ � θ and κ(θ) = θ.

The following lemma is necessary for proofs of our results. Its proof runs in
the same line with the proof of lemma given by Choudhury et al. [7], so we
omit them.

Lemma 3.3. Let (Ξ, e) be an elliptic valued metric space such that e(σ, ς) ∈
IntK, for σ, ς ∈ Ξ with σ 6= ς. Let χ ∈ Υ be such that either χ(σ) � e(σ, ς)
or e(σ, ς) � χ(σ), for σ ∈ IntK and σ, ς ∈ Ξ. Let {σn}n∈N be a sequence in
Ξ for which {e(σn, ςn)}n∈N is monotonic decreasing. Then {e(σn, ςn)}n∈N is
e-convergent to either δ = θ or δ ∈ IntK.
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4 Fixed Point Theorems for Mappings via Elliptic Val-
ued C-Class Functions in Elliptic Valued Metric Spaces

In the following, we need the concept of weakly compatibility to prove our
theorems which were introduced by Jungck [8].

Definition 4.1. Let ~ and ℘ be self maps of a set Ξ. If ω = ~ν = ℘ν for
some ν ∈ Ξ, then ν is called a coincidence point of ~ and ℘, and ω is called
a point of coincidence of ~ and ℘. Self maps ~ and ℘ are said to be weakly
compatible if they commute at their coincidence point; that is; if ~ν = ℘ν for
some ν ∈ Ξ, then ~℘ν = ℘~ν.

Now we present our main results by expanding the contractive conditions of
[9] and also in its references [10], [11] via elliptic valued C-class function in the
setting of elliptic valued metric space.

Definition 4.2. Let (Ξ, e) be an elliptic valued metric space, M,N,P,R :
Ξ → Ξ be self mappings. Suppose there exist κ, χ ∈ Υ and F ∈ C such that
for all σ, ς ∈ Ξ with

κ (e (Mσ,Nς)) � F (κ (Z (σ, ς)) , χ (Z (σ, ς))) , (4.1)

where
Z (σ, ς) = e(Pσ,Mσ)e(Pσ,Nς)

e(Pσ,Mσ)+e(Pσ,Rς)+e(Pσ,Nς)

for all σ, ς ∈ Ξ with σ 6= ς if e (Pσ,Mσ) + e (Pσ,Rς) + e (Pσ,Nς) 6= θ;

e (Mσ,Nς) > θ, if e (Pσ,Mσ) + e (Pσ,Rς) + e (Pσ,Nς) = θ.

Then the pair {M,N} is called a generalized CE-{P,R} contractive pair of
type I.

Theorem 4.1. Let (Ξ, e) be an e-complete elliptic valued metric space and
M,N,P,R : Ξ → Ξ be self mappings. Assume that the following statements
hold:

i. the pair {M,N} is generalized CE-{P,R} contractive pair of type I;

ii. NΞ ⊆ PΞ and MΞ ⊆ RΞ;

iii. one of the ranges MΞ, NΞ, PΞ and RΞ is e-closed.
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Then C(M,P ) = {x ∈ Ξ : x = Mz = Pz} 6= ∅ and C(N,R) = {x ∈ Ξ :
x = Nz = Rz} 6= ∅. In addition, if {M,P} and {N,R} are weakly compatible
pairs then the mappings M,N,P and R have a unique common fixed point in
Ξ.

Proof. Without loss of generality assume that

e (Pσ,Mσ) + e (Pσ,Rς) + e (Pσ,Nς) 6= θ

then e (Mσ,Nς) > θE. For an arbitrary point σ0 ∈ Ξ, by the hypothesis of
theorem condition i., choose a point σ1 ∈ Ξ such that Mσ0 = Rσ1 = ς0. For a
point σ1, there exists a point σ2 in Ξ such that Nσ1 = Pσ2 = ς1. Inductively,
we can construct a sequence {ςn} in Ξ such that

Mσ2n = Rσ2n+1 = ς2n

Nσ2n+1 = Pσ2n+2 = ς2n+1, (4.2)

for all n = 0, 1, 2, .... Let us suppose that ς2n+1 6= ς2n for all n = 0, 1, 2, ....
First, we show that lim

n→∞
e (ςn, ςn+1) = θ. Using the facts (4.1) and (4.2), we

get

κ (e (ς2n, ς2n+1)) = κ (e (Mσ2n, Nσ2n+1)) � F (κ (Z (σ2n, σ2n+1)) , χ (Z (σ2n, σ2n+1))) ,

where

Z (σ2n, σ2n+1) = e(Pσ2n,Mσ2n)e(Pσ2n,Nσ2n+1)
e(Pσ2n,Mσ2n)+e(Pσ2n,Rσ2n+1)+e(Pσ2n,Nσ2n+1)

= e(ς2n−1,ς2n)e(ς2n−1,ς2n+1)
e(ς2n−1,ς2n)+e(ς2n−1,ς2n)+e(ς2n−1,ς2n+1)

< e(ς2n−1,ς2n)e(ς2n−1,ς2n+1)
e(ς2n−1,ς2n+1) < e (ς2n−1, ς2n) .

Since κ, χ ∈ Υ is non-decresing we get

κ (e (ς2n, ς2n+1)) � F (κ (e (ς2n−1, ς2n)) , χ (e (ς2n−1, ς2n))) .

Owing to the property of F

κ (e (ς2n, ς2n+1)) � F (κ (e (ς2n−1, ς2n)) , χ (e (ς2n−1, ς2n)))

� κ (e (ς2n−1, ς2n)) ,
(4.3)

and monotonicity of κ we have

e (ς2n, ς2n+1) ≺ e (ς2n−1, ς2n) ,
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which yields that the sequence {e (ς2n, ς2n+1)} is a decreasing sequence. Hence
by lemma(3.3), there exists an τ ∈ K with either τ = θ or τ ∈ IntK such that

e (ς2n, ς2n+1)→ τ as n→∞. (4.4)

Taking limit as n→∞ in (4.3), using (4.4) and e-continuity of the functions
κ, χ and F, we obtain

κ (τ) � F (κ (τ) , χ (τ)) � κ (τ) ,

and due to the property of F we get

F (κ (τ) , χ (τ)) = κ (τ) ,

and concluded that κ (τ) = θ = χ (τ)⇔ τ = θ, in other words

e (ς2n, ς2n+1)→ θ as n→∞. (4.5)

Next, we show that {ς2n} is a e-Cauchy sequence. If {ς2n} is not a e-Cauchy
sequence, then there exists δ ∈ Ep with θ ≺ δ, for all N ∈ N, there exist
m,n ∈ N with n > m ≥ n0 such that

e(ςm, ςn) ⊀ χ(δ).

Hence by the property of χ, χ(δ) � e(ςm, ςn). Therefore, there exist two se-
quences {ς2m(k)} and {ς2n(k)} of {ς2n} where m(k) is smallest integer such
that m(k) > n(k) ≥ k and

e(ς2m(k), ς2n(k)) � χ (δ) , (4.6)

and
e(ς2m(k)−2, ς2n(k)) ≺ χ (δ) . (4.7)

Now, from (4.6-4.7) we obtain

lim
k→∞

e
(
ς2m(k), ς2n(k)

)
= χ (δ) , (4.8)

lim
k→∞

e
(
ς2m(k)+1, ς2n(k)

)
= χ (δ) , (4.9)

lim
k→∞

e
(
ς2m(k)+2, ς2n(k)+1

)
= χ (δ) , (4.10)

lim
k→∞

e
(
ς2m(k)+1, ς2n(k)+1

)
= χ (δ) . (4.11)
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In inequality (4.1), let us suppose that σ = ς2m(k)+2 and ς = ς2n(k)+1, for all
k ≥ 0. Then,

κ
(
e
(
ς2m(k)+2, ς2n(k)+1

))
= κ

(
e
(
Mσ2m(k)+2, Nσ2n(k)+1

))
� F

(
κ
(
Z
(
σ2m(k)+2, σ2n(k)+1

))
, χ
(
Z
(
σ2m(k)+2, σ2n(k)+1

)))
,

(4.12)

where

Z
(
σ2m(k)+2, σ2n(k)+1

)
=

e(Pσ2m(k)+2,Mσ2m(k)+2)e(Pσ2m(k)+2,Nσ2n(k)+1)
e(Pσ2m(k)+2,Mσ2m(k)+2)+e(Pσ2m(k)+2,Rσ2n(k)+1)+e(Pσ2m(k)+2,Nσ2n(k)+1)

=
e(ς2m(k)+1,ς2m(k)+2)e(ς2m(k)+1,ς2n(k)+1)

e(ς2m(k)+1,ς2m(k)+2)+e(ς2m(k)+1,ς2n(k))+e(ς2m(k)+1,ς2n(k)+1)

With the equalities (4.8-4.11) we obtain that

lim
k→∞

Z
(
σ2m(k)+2, σ2n(k)+1

)
= θ. (4.13)

In inequality (4.12), letting k → ∞ using (4.13) and the continuity property
of the functions κ, χ and F, we have

κ (χ (δ)) � F (κ (θ) , χ (θ)) = θ,

so χ(δ) = θ and δ = θ implies a contradiction. Hence for all n ∈ N, {ςn} is
an e-Cauchy sequence. As (Ξ, e) is e-complete, then it yields that {ςn} and
hence any subsequence thereof, e-converge to ξ ∈ Ξ. So the sequences

{Mσ2n}, {Nσ2n+1}, {Pσ2n+2}, {Rσ2n+1} → ξ ∈ Ξ (4.14)

as n→∞
Case i. Suppose PΞ is e-closed. In view of (4.14), we have ξ ∈ PΞ such that
ξ = Pυ. In (4.1), applying σ = υ and ς = ς2n+1 we obtain

κ (e (Mυ,Nς2n+1)) � F (κ (Z (υ, ς2n+1)) , χ (Z (υ, ς2n+1))) , (4.15)

where

Z (υ, ς2n+1) =
e (Pυ,Mυ) e (Pυ,Nς2n+1)

e (Pυ,Mυ) + e (Pυ,Rς2n+1) + e (Pυ,Nς2n+1)
.

Letting k → ∞ in inequality (4.15) and using the continuity of the functions
κ, χ and F the following statement is obtained.

κ (‖e (Mυ, ξ)‖E) � F (κ (‖Z (υ, ξ)‖E) , χ (‖Z (υ, ξ)‖E)) ,
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and Mυ = ξ. Hence
Mυ = Pυ = ξ.

Because ξ = Mυ ∈ MΞ ⊆ RΞ, we have ξ ∈ RΞ, then there exits ζ ∈ Ξ such
that Rζ = ξ. We now show that Rζ = Nζ. From (4.1),

κ (e (Mσ2n, Nζ)) � F (κ (Z (σ2n, ζ)) , χ (Z (σ2n, ζ))) ,

where

‖Z (σ2n, ζ)‖E =

∥∥∥∥ e (Pσ2n,Mσ2n) e (Pσ2n, Nζ)

e (Pσ2n,Mσ2n) + e (Pσ2n, Rζ) + e (Pσ2n, Nζ)

∥∥∥∥
E
.

If we take limit as n→∞, then we get

κ (‖e (ξ,Nζ)‖E) = θ ⇒ ‖e(ξ,Nζ)‖E = 0

which implies ξ = Nζ. Therefore we attain that

Mυ = Pυ = ξ = Nζ = Rζ,

and C(M,P ) 6= ∅, C(N,R) 6= ∅.

Case ii. Let us suppose that NΞ is e-closed. In this case ξ ∈ NΞ. As
NΞ ⊆ PΞ, we have ξ ∈ PΞ and hence we can choose υ ∈ Ξ such that ξ = Pυ.
Thus the proof follows as in the same procedure in Case i.

For the cases MΞ and RΞ are e-closed, the proofs run as in the same Case i
and Case ii.

In addition to prove the uniqueness of common fixed point of the mappings,
weakly compatibility property have been used. Since the pair {M,P} is weakly
compatible, we have

Mξ = MPυ = PMυ = Pξ.

Now on using the inequality (4.1) with σ = ξ and ς = ζ, we get

κ (e (Mξ,Nζ)) � F (κ (Z (ξ, ζ)) , χ (Z (ξ, ζ))) ,

where

Z (ξ, ζ) =
e (Pξ,Mξ) e (Pξ,Nζ)

e (Pξ,Mξ) + e (Pξ,Rζ) + e (Pξ,Nζ)
.

Then it is obvious that Pξ = Mξ = ξ, so ξ is a common fixed point of M
and P . As the pair {N,R} is weakly compatible, we have

Nξ = NRζ = RNζ = Rξ.
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Now on using the inequality (4.1) with σ = ζ and ς = ξ, we get

κ (e (Mξ,Nυ)) � F (κ (Z (ξ, υ)) , χ (Z (ξ, ν))) ,

where

Z (ξ, υ) =
e (Pξ,Mξ) e (Pξ,Nυ)

e (Pξ,Mξ) + e (Pξ,Rυ) + e (Pξ,Nυ)
.

Then Nξ = Rξ = ξ, so ξ is a common fixed point of N and R.
Finally we show that M,N,P,R have a unique common fixed point in Ξ.
Suppose that ξ and υ are two fixed points. Hence

Mξ = Nξ = Pξ = Rξ = ξ,

Mυ = Nυ = Pυ = Rυ = υ.

In inequality (4.1) replace σ, ς with ξ and υ, respectively.

κ (e (Mξ,Nυ)) � F (κ (Z (ξ, υ)) , χ (Z (ξ, υ))) ,

where

Z (ξ, υ) =
e (Pξ,Mξ) e (Pξ,Nυ)

e (Pξ,Mξ) + e (Pξ,Rυ) + e (Pξ,Nυ)
.

Owing to the properties of function κ, χ and F we conclude that ξ = υ. There-
fore ξ ∈ Ξ is the unique common fixed point of the mappings M,N,P and
R.

Definition 4.3. Let (Ξ, e) be an elliptic valued metric space, M,N,P,R :
Ξ → Ξ be self mappings. Suppose there exist κ, χ ∈ Υ and F ∈ C such that
for all σ, ς ∈ Ξ with

κ (e (Mσ,Nς)) � F (κ (Z (σ, ς)) , χ (Z (σ, ς))) , (4.16)

where
Z (σ, ς) = e(Pσ,Mσ)+e(Pσ,Nς)+[e(Pσ,Rς)]2+e(Pσ,Mσ)e(Pσ,Rς)

e(Pσ,Mσ)+e(Pσ,Rς)+e(Pσ,Nς)

for all σ, ς ∈ Ξ with σ 6= ς if e (Pσ,Mσ) + e (Pσ,Rς) + e (Pσ,Nς) 6= θ;

e (Mσ,Nς) > θ, if e (Pσ,Mσ) + e (Pσ,Rς) + e (Pσ,Nς) = θ.

Then the pair {M,N} is called a generalized CE-{P,R} contractive pair of
type II.

Theorem 4.2. Let (Ξ, e) be an e-complete elliptic valued metric space and
M,N,P,R : Ξ → Ξ be self mappings. Assume that the following statements
hold:
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i. the pair {M,N} is generalized CE-{P,R} contractive pair of type II;

ii. NΞ ⊆ PΞ and MΞ ⊆ RΞ;

iii. one of the ranges MΞ, NΞ, PΞ and RΞ is e-closed.

Then C(M,P ) = {x ∈ Ξ : x = Mz = Pz} 6= ∅ and C(N,R) = {x ∈ Ξ :
x = Nz = Rz} 6= ∅. In addition, if {M,P} and {N,R} are weakly compatible
pairs then the mappings M,N,P and R have a unique common fixed point in
Ξ.

Proof. The proof has the similar line as the proof of Theorem (4.1).

Definition 4.4. Let (Ξ, e) be an elliptic valued metric space, M,N,P,R :
Ξ → Ξ be self mappings. Suppose there exist κ, χ ∈ Υ and F ∈ C such that
for all σ, ς ∈ Ξ with

κ (e (Mσ,Nς)) � F (κ (Z (σ, ς)) , χ (Z (σ, ς))) , (4.17)

where 
Z (σ, ς) = e(Pσ,Mσ)e(Pσ,Nς)+e(Rς,Mσ)e(Rς,Nς)

e(Pσ,Mσ)+e(Pσ,Nς)

for all σ, ς ∈ Ξ with σ 6= ς if e (Pσ,Mσ) + e (Pσ,Nς) 6= θ;

e (Mσ,Nς) > θ, if e (Pσ,Mσ) + e (Pσ,Nς) = θ.

Then the pair {M,N} is called a generalized CE-{P,R} contractive pair of
type III.

Theorem 4.3. Let (Ξ, e) be an e-complete elliptic valued metric space and
M,N,P,R : Ξ → Ξ be self mappings. Assume that the following statements
hold:

i. the pair {M,N} is generalized CE-{P,R} contractive pair of type III;

ii. NΞ ⊆ PΞ and MΞ ⊆ RΞ;

iii. one of the ranges MΞ, NΞ, PΞ and RΞ is e-closed.

Then C(M,P ) = {x ∈ Ξ : x = Mz = Pz} 6= ∅ and C(N,R) = {x ∈ Ξ :
x = Nz = Rz} 6= ∅. In addition, if {M,P} and {N,R} are weakly compatible
pairs then the mappings M,N,P and R have a unique common fixed point in
Ξ.
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If we replace Z (σ, ς) with the followings we obtain the same results as
above theorems in the setting of elliptic valued metric spaces;

Z (σ, ς) = [e(Pσ,Mσ)+e(Rς,Nς)]2

e(Pσ,Mσ)+e(Pσ,Nς)

for all σ, ς ∈ Ξ with σ 6= ς if e (Pσ,Mσ) + e (Pσ,Nς) 6= θ;

e (Mσ,Nς) > θ, if e (Pσ,Mσ) + e (Pσ,Rς) = θ.

and 
Z (σ, ς) = [e(Pσ,Mσ)]2+[e(Rς,Nς)]2

e(Pσ,Mσ)+e(Pσ,Nς)

for all σ, ς ∈ Ξ with σ 6= ς if e (Pσ,Mσ) + e (Pσ,Nς) 6= θ;

e (Mσ,Nς) > θ, if e (Pσ,Mσ) + e (Pσ,Rς) = θ.

The above results are the generalization of the results existing literature
such as ([9]-[13]).

5 Conclusion

Alternative definitions of imaginary unit i, other than i2 = −1, provided the
identification of interesting and useful complex number systems. The elliptic
valued metric spaces defined in this study, obtained from the elliptic number
system with i2 = p < 0, contain complex valued metric spaces defined by
Azam et al. in 2011, enabling the study of fixed point theory by making
rational and product expressions meaningful. Since p = −1 gives the complex
number system, the results obtained above for elliptical valued metric spaces
are also valid for complex valued metric spaces.
Acknowledgements
The authors would like to thank the anonymous referees for valuable comments
that helped to improve this article.

References

[1] A. Azam, B. Fisher, M. Khan, Common fixed point theorems in complex
valued metric spaces, Numerical Functional Analysis and Optimization,
32 (3), (2011), 243–253.

[2] F. Rouzkard, M. Imdad, Some common fixed point theorems on complex
valued metric spaces, Computers Mathematics with Applications, 64(6),
(2012), 1866-1874.



COINCIDENCE AND COMMON FIXED POINT THEOREMS VIA C-CLASS
FUNCTIONS IN ELLIPTIC VALUED METRIC SPACES 181

[3] A. Harkin, J. Harkin, Geometry of generalized complex numbers, Math-
ematics Magazine, 77(2), (2004) 118-129.

[4] L. G. Huang, X. Zhang, Cone metric spaces and fixed point theorems of
contractive mappings, J. Math. Anal. Appl., 332, (2007), 1468–1476.
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