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1Abstract—In this paper, a fractional-order sliding mode 

controller (FOSMC) is designed and applied to a four-rotor 

unmanned aerial vehicle (Quadrotor) to perform trajectory 

tracking for different time-varying references. Because 

quadrotor’s nonlinear system dynamics are effected by 

external disturbances and parameter variations easily, the 

FOSMC is used as a nonlinear controller to combine the 

flexibility of the fractional-order approach and the disturbance 

rejection characteristics of the integer-order sliding mode 

controller (IOSMC) to keep quadrotor on desired trajectory, as 

well as overcome parameter variations. In order to indicate the 

priority of the FOSMC, the IOSMC is also applied to 

quadrotor for the same references. The experimental results 

show that FOSMC is better than IOSMC in terms of error 

elimination and is good at dealing with parameter variations 

occurred while tracking the desired trajectory. 

 
 Index Terms—Fractional-order control; Sliding mode 

control; Unmanned systems; Quadrotor. 

I. INTRODUCTION 

The control of a quadrotor is quite difficult due to the 

complexity of the structure and the presence of four control 

inputs while having six degrees of freedom. Thus, this kind 

of systems are called “under-actuated systems”. In addition, 

since the quadrotor has a nonlinear structure, it needs to be 

analysed accurately to keep it in the defined mission or 

designed trajectory. In literature, some solutions and control 

algorithms are proposed to design and control a quadrotor. 

Cowling et al. [1] have dealt with trajectory planning and 

path following of a quadrotor by using a simple linear 

quadratic regulator (LQR) path following controller. The 

simulation results show that quadrotor that modelled in 

simulation tracks the optimal trajectories generated in real-

time. Basci [2] designed a fractional-order proportional-

integral (FOPI) controller to realize trajectory-tracking 

control of a quadrotor in real-time experiment. Also, the 

proposed controller is compared with the PI controller. The 

experimental results show that FOPI controller has better 

performance than PI controller in terms of reference 
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tracking and error elimination capability. Santos et al. [3] 

have designed a fuzzy logic controller to control a 

quadrotor. The simulation studies have indicated that the 

performance of the proposed controller is quite satisfactory 

in terms of stability, control, and reference tracking 

performance. Mian et al. [4] applied feedback linearization 

control strategy to a quadrotor for translational and 

rotational subsystems with a proportional-derivative (PD) 

controller and back stepping-based proportional–integral-

derivative (PID) nonlinear controller, respectively. The 

simulation results show that the proposed control algorithms 

are able to deal with nonlinearity of the system. Bouadi et 

al. [5] presented a hybrid control approach, which is a 

combination of sliding mode controller (SMC) and 

backstepping control methods. They controlled the 

Quadrotor for a desired trajectory and different physical 

events. The simulation results indicate that they obtained 

satisfactory performance from the proposed hybrid 

controller. Can and Basci [6] presented a study on a 

quadrotor using a nonlinear backstepping controller. The 

experimental results show that the proposed controller gives 

satisfactory performance in terms of providing a stable 

flight. Basci et al. [7] applied a continuous SMC controller 

to a quadrotor for trajectory tracking. The experimental 

results show that SMC is better in terms of disturbances, 

parameter variations, and error elimination capability 

compared to the classical PI controller.  

In this paper, a fractional-order sliding mode controller 

(FOSMC) is designed and applied to a quadrotor for 

trajectory tracking control. The experimental results show 

that the FOSMC is more robust to parameter uncertainty and 

better than SMC in terms of reference tracking, error 

percentages and gives fast response to the changes in the 

references. 

II. MATHEMATICAL MODEL OF QUADROTOR 

The quadrotor has six degrees of freedom in space [8]. 

From Fig. 1, which is used as an experimental setup for this 

paper, the inertia axis can be expressed as , ,x y zI e e e     
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and the body axis can be expressed as  1 2 3, , .B e e e  The 

position of quadrotor is denoted by  , , ,x y z


  linear 

velocity is denoted by  , , ,v x y z


  and angles are 

denoted by  , ,   


  [7]. The relationship between 

the vehicle body axis and the axis of inertia are represented 

by the rotation matrix BIR :  and the angular velocity is 

 , , .p q r


   

In this paper, we have used Parrot AR.Drone 2.0 

quadrotor as a low-cost experimental setup for validating 

our control algorithm. Our quadrotor has ARM Cortex A8 

1 GHz central processing unit (CPU), DDR2 128 MB 

memory, and also it has LINUX OS 2.6.32. The quadrotor 

has 4 brushless motor having 28500 rpm and 14.5 W. Its 

flight speed is 5 m/sec. 

 
Fig. 1.  The Parrot AR.Drone 2.0 and its axes [7], [9]. 

Besides, the whole dynamic equations of the vehicle can 

be written as given below [7], [10], [11]: 

 

,

,

,

(sin( )sin( )cos( ) cos( )sin( )) ,

(cos( )sin( )cos( ) sin( )sin( )) ,

cos( )cos( ) ,

sin( ) tan( ) cos( ) tan( ) ,

cos( ) sin( ) ,

sin( )sec( ) cos( )sec(

x

y

z

x

y

z

x v

y v

z v

T
v

m

T
v

m

T
v g

m

p q r

q r

q

    

    

 

    

  

   







 

 

 

  

 

 

1

2

3

) ,

,

,

,

y z r

x x x

z x r

y y y

x y

z z

r

I I I
p qr q

I I I

I I I
q pr q

I I I

I I
r qp

I I





























   
     
   

    
      

       


 
  
 

 (1) 

where “ zyxI ,, ” represents the diagonal inertia matrix of the 

quadrotor body frame in the X-Y-Z axis, 

4321    represents the waste cycles per minute 

in a counter-clockwise direction, causing the gyroscopic 

effect on the rotor, “ g ” is gravity, “ G ” is gyroscopic 

torque,  T
321    are torques, and “ T ” is the total thrust 

force generated by the rotor. Thus, the whole system model 

of a quadrotor with twelve state-space equations can be 

represented mathematically in (1) [11]. Also, the thrust force 

is given as follows 

 
4

1

,i
i

T f


   (2) 

where “ if ” is generated lift force by each .i  rotor and “ iw ” 

is the rotor angular velocity and can be written as in (3) 

 2.i if b  (3) 

The torque caused by gyroscopic effect can be given in 

(4) 
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Then, the expressions of the total torques can be written 

as follows: 
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where b  is thrust factor and d  is drift factor. Reference 

position and reference angles are defined as follows: 

 

( ) ( ), ( ), ( ) ,

( ) ( ), ( ), ( ) .

T
r r r r

T

r r r

t x t y t z t

t t t t



   

    


    

 (6) 

The error signals that occur while tracking the reference 

route can be defined as in (7) 

 , ,
T
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T

r rE          (7) 

Taking derivative of the both error signals, the following 

equations can be written: 

 1 1( ),rE A E B       1 1( ),rE A E B       (8) 

where 66
1

A  and 36
1

B  are defined as given 

below 
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In (10), the dynamic equations are derived depending on 

  and ,  while the outer loop and the inner loop are 

coupled via a cascaded structure [12]: 
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Therefore, we may consider the quadrotor’s structure as a 

coupled two linear subsystems. These two linear subsystems 

are connected to each other by means of a 

vector,   3
321 ,, 

T
  called as a virtual control 

vector to control the system in the cascade structure. After 

this definition, the cascaded system can be obtained by (11) 

in terms of   and  as in (11): 
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T
BeTf  is unifying term that 

provides the cascaded connection between the outer loop 

and inner loop subsystems [13]. Analysing the studies given 

in [11], [14], the virtual control signal  1 2 3, ,
T

     can 

be written as in (12): 
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III. CONTROLLER DESIGN 

The FOSMC algorithm of the system is presented in this 

section. The fractional-order calculation (FOC) is very 

attractive method to obtain more sensitive control 

achievement. The FOC can be represented with a 
p

ta D  

differentiator for a general fundamental operator. Here, the 

limits of the calculation are denoted by a  and ,t  

respectively. The FOC integral and differentiator are 

expressed as in (13) [15] 
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where p represents the fractional order. In this paper, to 

determine the ,a  ,t  and p parameters, trial and error method 

is used. To obtain the FOSMC, a second order system is 

defined as in (14) to obtain control algorithm, and its 

parameter error can be expressed as in (15) [16], [17]: 

 ( ) ( ) ( ) ,mx t bx t kx t u    (14) 

 ( ) ( ) ( ).reft x t x t    (15) 

The errors of the system along the x, y, and h axes can be 

written as given below 

 

1

2

3

( ) ( ) ( ),

( ) ( ) ( ),

( ) ( ) ( ).

r m

r m

r m

t x t x t

t y t y t

t h t h t







 


 
  

 (16) 

Then, using vx  transformation, the system can be 

rewritten as a first-order system as given below [17]: 
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Taking into account of (18), the system can be rewritten 

as a state-space form 

 ( , ) ,f x t Bu      (19) 

where 

























v

x

m

b

m

ktxf
10

),(  and 















m

B 1
0

. Besides, the 

sliding surface can be denoted as in (20) [16]–[19] 

  : ( , ) 0 .s x x t   (20) 

From (20), the sliding function can be expressed as in 

(21) 

 ( ) ( ) ( ),refC x x C t x         (21) 

where C is the design parameter of the system. Taking time 

derivative of (21) and the help of (19), (22) can be obtained 

 ( ) ( ( , ) ).
p p

t tD D t C f x t Bu       (22) 

Then, 0,   the equivalent control )( equu   is found: 

 ( ) ( ( , ) ) 0,
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p p
t t equ u
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 ( ) ( ( , )).
p

eq tCBu D t C f x t    (24) 

While the system on the sliding surface, the equivalent 

control is used. However, to reach this phase, the system 

must be controlled by another control phase to drive the 

6



ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 26, NO. 4, 2020 

system to the sliding surface. Thus, the control signal named 

as reaching signal can be derived by means of a positive 

definite Lyapunov function that can be selected as in (25) 

[19] 

 
1

0.
2

TV     (25) 

In (26), the differentiation of (25) with respect to time is 

given 

 .
pT
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A solution 0),( tx  will be stable if time derivative of 

the Lyapunov function is expressed as [18], [19] 

 0,TV Q     (27) 

where Q  is a positive definite matrix. Therefore, as seen 

from (27), the derivative of (25) will be negative with 

respect to time and the stability of the system is ensured 

[18]. Moreover, (26) and (27) are equalled to each other, 

then lead to 

 0.
pT T
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For (28), a solution can be written as in (29) 

 ( ) 0.
pT
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Moreover, the time derivative of the   is given below 

 ( ) ( ( , ) ) 0.
p
tD t C f x t Bu Q       (30) 

Using (24), (30) can be rewritten as 

 0.eqCBu CBu Q    (31) 

From (31) and the result of the short algebra, the control 

signal can be obtained as in (32) 

 ,equ u K   (32) 

where 1( ) .K CB Q  While calculating the ,equ  due to a 

well-known disaffect called “chattering”, we prefer to 

design (32) with a low-pass filter that is the average of the 

sum of the all equivalent control signals in the system to 

overcome this unwanted effects. With this method, the 

control signal can be rewritten as given below 

 ,equ u u K    (33) 

where u  represents the sum of the high frequency part of 

the u [16]–[19]. 
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1

,
1
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 and then (33) can be 

rewritten as in (34) 
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To obtain more robust control strategy,   can be 

determined as in (35) 

 .
p
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Finally, substituting (35) into (34), the general control 

signal form is achieved as in (36) 
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When (36) is rewritten as a position control signal of the 

quadrotor, the control signal equations can be obtained as 

seen in (37), (38), and (39) to realize the outer loop control 

of the system along the x, y, and h axes:  

  1 1 1 1 1
1
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  3 3 3 3 3
1
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1

p
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s
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
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
 (39) 

where 1 2, ,K K and 3K are the multiplier coefficients of the 

control signals. Also, the control block diagram of the 

quadrotor is given in Fig. 2. 

 
Fig. 2.  The control block diagram of the system [7]. 

IV. THE EXPERIMENTAL RESULTS 

In this part of the paper, the experimental results of both 

controllers are given for two different reference routes. First, 

 

the inclined circle route has been applied to the system to 

indicate the tracking performances in the x, y, and h axes for 

the FOSMC and the IOSMC as seen in Fig. 3 and Fig. 4, 
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respectively.  

-0.5 0 0.5 1 1.5 2 2.5

-2
-1

0
1

2
0

0.5

1

1.5

2

 

X (m) 
Y (m) 

 

H
 (

m
) 

Reference

Measured

 
(a) 

  

0 10 20 30 40 50 60
-1

0

1

2

3

Time (s)

X
 (

m
)

 

 

Reference

Measured

0 10 20 30 40 50 60
-1.5

-1

0

1
1.5

Time (s)

Y
 (

m
)

 

 

Reference

Measured

0 10 20 30 40 50 60
0

1

2

3

Time (s)

H
 (

m
)

 

 

Reference

Measured

 
(b) 

0 10 20 30 40 50 60
-15

0

15

Time (s)

 3
 (

D
e
g
)

 

 

Reference

Measured

0 10 20 30 40 50 60
-10

0

10

Time (s)

 1
 (

D
e
g
)

 

 

Reference

Measured

0 10 20 30 40 50 60
-10

0

10

Time (s)

 2
 (

D
e
g
)

 

 

Reference

Measured

 
(c) 

Fig. 3.   The 3D oblique circle route tracking result for FOSMC (a), the 

oblique circle route tracking results throughout x, y and h axes for FOSMC 
(b), and the generated virtual control signals by FOSMC under oblique 

circle route (c).  
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Fig. 4.  The 3D oblique circle route tracking result for IOSMC (a), the 

oblique circle route tracking results throughout x, y and h axes for IOSMC 

(b), and the generated virtual control signals by IOSMC under oblique 
circle route (c). 

The FOSMC has better rise and settling time 

performances with less overshoot for h axis when it is 

compared with the IOSMC as seen in Fig. 3(b). In addition, 

from the Fig. 4(b), the IOSMC has more deviations through 

the x and y axes, whereas the FOSMC has less delay time 

and better tracking performances. Although, the IOSMC has 

lower amplitude control signals that are needed for inner 

loop to generate suitable Euler angles, the FOSMC has 

shown better performance to eliminate the tracking errors 

and be able to keep the quadrotor on the desired way than 

the IOSMC. 

In Fig. 5 and Fig. 6, the zigzag reference route results of 

both controllers have been presented.  
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Fig. 5.  The 3D zigzag route tracking result for FOSMC (a), the zigzag 

route tracking results throughout x, y and h axes for FOSMC (b), and the 

generated virtual control signals by FOSMC under zigzag route (c). 
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Fig. 6.  The 3D zigzag route tracking result for IOSMC (a), the zigzag route 

tracking results throughout x, y and h axes for IOSMC (b), and the 
generated virtual control signals by IOSMC under zigzag route (c). 

The zigzag route has sudden changes between x and y-

axes, thus it is important to show the controllers’ responses 

against to these changes. In Fig. 5(a), although the FOSMC 

has bigger overshoot for h axis than the IOSMC, the IOSMC 

has more deviations especially along the y-axes as seen in 

Fig 6(b). However, both controllers have missed some part 

of the reference route, the FOSMC has better performance 

in terms of error elimination, keeping the quadrotor on the 

route, and having less chattering level for generated control 

signals. 

V. CONCLUSIONS 

In this paper, the FOSMC has been designed and applied 

to the quadrotor to indicate its fractional behaviour against 

to disturbances, such as sensor noises, contrary wind effect,  

as well as robustness to parameter variations and trajectory 

tracking performance. Also, to compare the FOSMC, the 

IOSMC has been implemented on the quadrotor for the 

same routes to control of this unstable system. The 

experimental results show that the FOSMC has less 

trajectory tracking error with small deviations while tracking 

the inclined circle and zigzag routes, whereas the IOSMC 

has more tracking error, as well as having more 

overshoot/undershoot. Also, the FOSMC has less delay time 

and produced lower amplitude control signals that is very 

suitable for the inner loop to produce needed Euler angles 

for the system. Moreover, the control signals produced by 

the both controllers have nearly the same chattering level 

when compared their trajectory tracking performances. 
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