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1. Introduction

Chromium is frequently encountered heavy metal in wastewaters 
due to its various industrial applications including textile dying, 
tanneries, metallurgy, metal electroplating and wood preserving 
[1, 2]. In the past, numerous studies including adsorption [3] coagu-
lation-sedimentation, chemical precipitation [4], biosorption [5], 
ion exchange [6], reverse osmosis [7], electrodialysis [8], ion ex-
change-assisted membrane [9, 10], and electrochemical [11] techni-
ques were conducted to combat heavy metals contamination issue. 
Recently, Polymer Inclusion Membranes (PIMs) process has been 
widely and successfully used for metal ion extraction, separation 
of inorganic species, biochemical and biomedical applications [12]. 
In extraction or separation based processes, a larger attention has 
been given to discover environmental friendly, portable and less 
toxic carrier or an organic solvents in the relevant literature. In 
last decades, anionic liquid (IL) based organic salts were accepted 
as potential molecules for extraction or separation purposes as 

an alternative chemical family, which can replace traditional ones 
[13]. The simplicity, easy scale-up operation, less energy con-
sumption, and environmental friendly characteristics proved liquid 
membranes a good alternate for heavy metals removal rather than 
conventional techniques. 

Modeling is a valuable approach to develop a relation between 
parameters and efficiency to optimize and control the process for 
efficient design and operation. The development of a mathematical 
model for PIMs based separation process is a difficult task due 
to the non-linear, differential and complicated process. Due to 
outstanding characteristics in processing the non-linear relation-
ships among variables in complex systems with reliable and robust 
results, Artificial Neural Networks (ANN) has been successfully 
employed in environmental engineering [14-17]. Another technique 
that integrates both neural networks and fuzzy logic principle has 
potential to capture the benefits of both in a single framework 
[18]. In the literature, the ANN model has been applied for evaluation 
of heavy metals removal through physic-chemical processes [19] 
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from drinking water and from wastewater treatment systems [20, 
21]. A comparative study of ANN to predict Cd removal efficiency 
of PIMs proved feed forward back-propagation and recurrent neural 
networks as best prediction models [22]. In other studies such 
as biosorption efficiency of Zea Mays for the removal of chromium 
from wastewater [23] and copper removal from aqueous solution 
by the ion-exchange process [24] was estimated by applying ANN 
modeling. The process optimization of Pb (II) and zinc (II) adsorption 
was studied by using ANN modeling techniques [25, 26]. ANN 
model was proposed to investigate copper removal from wastewater 
by adsorption on fungal biomass [27] and cadmium sorption by 
Shelled Moringa Oleifera Seed Powder from aqueous solution [28]. 
Moreover, ANN genetic algorithm and particle swarm optimization 
modeling was used for the prediction of copper removal from aque-
ous solutions by reduced graphene oxide-supported nanoscale 
zero-valent iron (nZVI/rGO) magnetic nanocomposites [29]. 

The Cr(VI) removal efficiency of PIMs cannot be determined 
by conventional mathematical techniques alone because of non-lin-
ear, differential and complicated process. Being a complicated proc-
ess, the exact specification of the separation conditions involved 
in the process may lead to unreliable results in the practical 
applications. To improve the performance of PIMs, estimation, 
optimization, and analysis of the operating parameters should be 
accomplished by modeling and simulation, as well as, through 
laboratory experiments. Moreover, efficiency of PIMs to remove 
Cr(VI) has not been studied previously by applying soft computing 
techniques. Therefore, ANN and Adaptive Neuro-Fuzzy Inference 
System (ANFIS) models were considered for the prediction of PIMs 
Cr(VI) removal efficiency from aqueous solutions. The goal of this 
study is to propose the best soft computing technique in prediction 
Cr(VI) removal efficiency of PIMs from aqueous solution, and to 
optimize the process by considering the effect of various operational 
parameters through sensitivity analysis (SA) to check the acceptable 
conformity and individual effectiveness of each operating 
parameter. 

2. Materials and Methodology

2.1. Experimental Design and Data Preparation

The experimental details were published as a separate study [30, 
31]. The polymeric ionic membrane was prepared by using previous 
methods described in the literature [32, 33]. The Cr(VI) transport 
conditions were optimized by changing PIMs parameters; Cr(VI) 
transport time (the range is at 0-8 h), polymer membrane film 
thickness (the thickness range is in 25.17-151.24 μm), ionic liquid 
types as ion carrier (these are 1,3-dibutyl, 1,3-di hexyl, 1,3-di octyl, 
and 1,3-di decyl imidazolium bromide salts), carrier rate (the ranges 
is in 0-0.343, w/w), plasticizer type (2-nitrophenyl octyl ether; 
ONPOE, 2-nitrophenyl pentyl ether; 2-NPPE, bis(2-Ethylhexyl) adi-
pate; B2EHA, tris(2-Ethylhexyl) phosphate; TEHP), plasticizer rate 
(the ranges is in 0-0.3377, w/w) versus the constant concentration 
and composition of feed (its composition is 25 mg/L Cr(VI) in 0.5 
molL-1 H2SO4) and stripping (its composition is 2.0 molL-1 NaOH) 
phases, were investigated in previous experimental study [30, 31]. 
The experimental setup and its operation principle are presented 

in Fig. S1. The data was collected from an experimental study 
regarding the selective transport of Cr(VI) through PVDF-HFP based 
PIMs containing symmetric imidazolium bromide salts as a carrier. 
1,3-dibutyl, 1,3-di hexyl, 1,3-di octyl, and 1,3-di decyl imidazolium 
bromide salts substituted ionic liquids (ILs) synthesized and used 
in the production of PVDF-HFP based PIMs [30].

The experimental data for this study was obtained under different 
operating conditions such as time (ranges 0-8 h), film thickness 
of membrane (ranges 25.17-151.24 μm), carrier type range 1 to 
4 (1-butyl, 2-decyl, 3-hexyl, and 4-octyl) and carrier rate (ranges 
0-0.367 (w/w)), plasticizer type range 1 to 4 (1-TEHP, 2-NPPE, 
3-B2EHA, and 4-ONPOE) and plasticizer rate (ranges 0-0.338 (w/w)) 
were used as inputs and removal efficiency of Cr(VI) (ranges 
0.13-1.00 (C/C0)) was used as output variable. Dataset is preprocessed 
before giving to the input layer. Some experimental data of operating 
parameters such as extractant type and plasticizer type were con-
verted from characters to numerical data. Statistical information 
related to the data of each experiment is summarized in Table 1. 
The learning capacity of a model depends upon the size of training 
dataset as studied by [34]. Experimental data contained 460 rows 
was randomly divided into three groups for training (70%), validat-
ing (15%) and testing (15%) for both ANN and ANFIS. 

Table 1. Data Statistics of Model Variables (n = 460)

Variables Units
Data Statistics

xmin xmax xmean σ
Input layer   

Time h 0.00 8.00 4.000 2.832

Carrier type(1 to 4) - 1.00 4.00 2.826 1.167

Carrier rate w/w 0.00 0.34 0.215 0.0679

Film thickness μm 41.23 147.83 98.953 29.46

Plasticizer type (1 to 4) - 1.00 4.00 3.673 0.809

Plasticizer rate w/w 0.00 0.34 0.236 0.058

Output layer

 Removal efficiency C/C0 0.13 1.00 0.865 0.151

Xmin, Xmax, Xmean: minimum, maximum and mean values, σ: standard 
deviation

2.2. Prediction Models

ANN and ANFIS models are evaluated in this study for their potential 
to predict Cr(VI) removal efficiency of PIMs. These approaches 
described briefly in the next sections. Neurosolution 6.0 used for 
the training and optimization of the ANN model while MATLAB 
was used for ANFIS modeling.

2.2.1. ANN
ANN is a computational model based on the structure and functions 
of biological neural networks such as the human nervous system 
used for receiving, processing, and transmitting information regard-
ing computer science [35]. ANNs are digitized models of human 
brain computer programs designed to simulate the way in which 
human brain processes information [36]. Generally, development 
of an ANN model consists of the following steps: data collection, 
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analysis and pre-processing of the data, creation, and configuration 
of the network, training, and validation of the network and finally 
simulations and predictions with the validated network [37]. The 
structure of ANN is comprised of an input layer, an output layer 
and one or more hidden layers as represented in Fig. S2 [32]. 

The primary component of ANN is the neuron also called “node.” 
The inputs are represented by x1, x2… xn and the output by Y. 
Feedforward back propagation learning technique is used in ANN 
because this technique error is processed by two steps; first is 
a feed-forward step where output of any node is computed by 
propagating the input value given from the input nodes and second 
is a backward step in which connection weights are amended by 
using error criteria [38]. ANN modeling consists of two stages includ-
ing training and testing. Data modeling process divided into three 
parts mentioned as training, validation, and testing. In the first 
stage, the ANN model trained and validates on validation dataset 
in order to tune the algorithm parameters. During the testing phase, 
the proposed model used to test the performance of the trained 
network for unseen test data set.

Calculation of the output node is based on a weighted sum 
of the input signals from the proceeding neuron, changed by the 
transfer function (Fig. S2). The learning potential of a neuron is 
based on weight adjustment in conformity to reduce the error. 
The number of neurons in the input and output layer depends 
upon the number of input and output parameters, respectively. 
Although, selection of the number of neurons in a hidden layer 
is case dependent and significant decision in ANN modeling, gen-
erally, trial and error technique is applied to identify the best 
ANN architecture [39].

2.2.2. ANFIS
ANFIS is a combination of two soft-computing methods, ANN and 
fuzzy logic rules “If-Then” [40]. Fuzzy logic can change the qual-
itative aspects of human knowledge and insights into the process 
of precise quantitative analysis. An adaptive network is an example 
of a feedforward neural network with multiple layers. Additionally, 
the adaptive network has the architecture characteristics that con-
sists of some adaptive nodes interconnected directly without any 
weight value between them. Each node in this network has different 
functions and tasks, and the output depends on the incoming signals 
and parameters that are available in the node. A learning rule 
that was used can affect the parameters in the node, and it can 
reduce the occurrence of errors at the output of the adaptive network 
[41]. FIS was built on the basic rules, where it consists of the 
selection of fuzzy logic rules “If-Then” as a function of the fuzzy 
set membership; and reasoning fuzzy inference techniques from 
basic rules to get the output. The basic rules can be constructed 
by an automatic generation or by an operator, where the searching 
rules are arranged by using input-output data numerically [42]. 

Jang et al. [40] conducted one of the first studies to develop 
architecture and a learning procedure for FIS by applying a neural 
network learning algorithm. Jang et al. [40] constructed a fuzzy 
set with if-then rules along with suitable membership functions 
(MFs) from the particular input-output pairs [40]. In ANFIS learning, 
membership function parameters are updated mainly by two techni-
ques: (1) backpropagation for all parameters and (2) a hybrid method 
performing backpropagation for the parameters related to the input 

membership and least-squares prediction for the parameters asso-
ciated with output MFs [42]. Initially, a crisp input converted 
through the input MFs and the associated parameters to fuzzy 
input. Then, the fuzzy input processed through fuzzy rules to 
produce fuzzy output. After that, the fuzzy output was converted 
through the output MFs and the associated parameters to a crisp 
output as shown in Fig. S3 [43]. 

ANFIS working principle described by Ismail [44]. Fig. S4 shows 
the diagrammatic representation of the ANFIS algorithm. For illus-
tration, supposed two inputs x and y and one output f in the FIS. 
Then the application of first-order Sugeno fuzzy model provided 
a typical rule set having two fuzzies if-then rules can articulate as:

Rule 1: If x is A1 and y is B1; then


  (1)

Rule 2: If x is A2 and y is B2; then 


  (2)

In above equations x and y are input variables to the node i, 
Ai, Bi are fuzzy sets which are characterized by convenient MFs 
and finally pi, qi, and ri are the consequent parameters described 
in previous studies [40, 45, 46]. 

The function of the ANFIS model expressed as:

Layer 1: In this layer, every node produces membership grades 
for input parameter and node output   described by,

    for   or  (3)


   

 for    (4)

In these equations x (or y) is the input to the node i; Ai (or 
Bi-2) is a line fuzzy linguistic-related to that node.   is this the 

grade of a fuzzy set, and it defines the degree to which the given 
input x (or y) satisfies the quantifier. Different MFs selected including 
triangular, Gaussian, generalized bell-shaped and trapezoidal-shaped 
functions.

Layer 2: This layer shows that every node fixed node labeled 
as G, whose output is the product of all incoming signals:

         (5)

Layer 3: The ith node of this layer, labeled as N, computes the 
normalized firing strength as,


 





    (6)

Layer 4: Every node i in this layer is an adaptive node with 
a node function,


  

 



 (7)
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Here wi is the output of layer 3, and {pi, qi, ri} is the parameter 
set of this node.

Layer 5: In this single layer node is a fixed node which calculates 
the overall output as the summation of all entering signals [42, 47].

     
∑


∑

∑ (8)

2.3. Performance Evaluation

In this study, three performance measures used to evaluate models 
predicted results. The Root Mean Square Error (RMSE); Coefficient 
of Determination (R2); and the Mean Absolute Error (MAE) are 
common techniques as performance measures for evaluation of 
models [48]. These techniques described below:

(1) The RMSE represents the error between model predictions 
and target values. It can be computed with Eq. (9) with 
a range from 0 to 1. Lower RMSE values are close to zero 
as preferable as there is no absolute criterion for a “good” 
value [49].

  




∑  
 

 
 

(9)

In this equation n represents the number of target values; and 
andare model predictions and their corresponding observed values, 
respectively.

(2) R2 has estimated through Eq. (10). This value range between 
0 and 1 (i.e., 0-100%) shows the percentage of variability 
between experimental data and model predictions. 

  





 ∑   
   

  ∑   
 

  × ∑   
 

  ∑   
 

 

∑   
    ∑   

  ∑   
  






(10)

(3) The MAE can be computed with Eq. (11) Moreover, its values 
can range from 0 to 1. Similar to RMSE, lower values of 
MAE indicate a good correlation between model predictions 
and experimental data [49].

  

∑  
 

 
  (11)

2.4. SA

SA was performed to identify the critical parameters and their 
degree of importance on the model outputs. SA is not only critical 
to model validation but also serves to guide future research efforts 
because it is a key to determine the more influential parameter 
in model development and providing information about the more 
sensitive parameters, which should be measured more accurately. 

In order to measure the sensitivity of parameters three different 
techniques including plus one by one, leave one out and percentage 
contribution employed manually in this study. Plus one by one 
technique is performed by considering the first parameter initially 

and then the continuous addition of the next parameter to confirm 
the best set of input parameter according to performance criteria. 
In leave one out technique, one input parameter removed in each 
run to demonstrate the individual contribution of that parameter. 
The leaving out of an essential parameter results in lower R2 and 
higher RMSE and MAE values indicating that the network is affected 
to a greater extent when that variable is excluded.

3. Results and Discussion

3.1. Pre-Assessment of Experimental Data

The experimental data were obtained by varying operating con-
ditions such as time; film thickness; carrier type and carrier rate; 
plasticizer type; and plasticizer rate of PVDF-based PIMs for Cr(VI) 
removal [31]. The ranges of experimental parameters (independent 
variables) were as follows, film thickness of membrane 41.23 to 
147.83 μm; time 0-8 h; carrier type 1-4 (1-butyl, 2-decyl, 3-hexyl, 
and 4-octyl imidazolium bromide salts) and carrier rate 0-0.343 
(w/w); plasticizer type 1-4 (1-TEHP, 2-NPPE, 3-B2EHA, and 
4-ONPOE); and plasticizer rate 0-0.3377 (w/w). Based on these 
ranges, the removal efficiency of Cr(VI) ranged as 0.13-1.00 (C/C0), 
which was the output variable. Statistical information related to 
the data of each experiment summarized in Table 1.

3.2. Modeling Results

3.2.1. Determination of a suitable ANN model
In this study, to determine the optimum number of neurons in 
the hidden layer different topologies were investigated with chang-
ing neurons from 3 to 45 in hidden layer. Each topology repeated 
three times, and RMSE used as an error function. ANN model 
provided the best results by the Levenberg-Marquardt algorithm 
as previously studied [50] and Sigmoid Axon transfer function. 
By using trial and error method, it was noted that (6-15-1) is the 
best topology in this study as represented in Fig. S5. The optimal 
structure of ANN for the best prediction of PIMs Cr(VI) removal 
efficiency was observed by considering 6 variable input layer; 15 
neurons in a hidden layer; and one variable output layer (6-15-1). 
Fig. 1 shows the proposed neural network architecture.

Fig. 1. Optimum structure of ANN model.
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3.2.2. Determination of a suitable ANFIS model
The final architecture of the ANFIS model was established by 
obtaining a minimum error, maximum R2, using gbellmf and gaussmf 
as best MFs. Table 2 presents the RMSE and R2 values of these 
ANFIS models. Gaussmf with 3 MFs was selected due to better 
performance. 

Table 2. Best Results of ANFIS Models

ANFIS structure Model performance

MFs N RMSE R2

gbellmf
2 2 2 2 2 2 0.0215 0.341

3 3 3 3 3 3 0.0093 0.863

gaussmf
2 2 2 2 2 2 0.0196 0.462

3 3 3 3 3 3 0.0092 0.867

MFs: membership function type, N: number of membership functions.

3.2.3. Prediction Results and Discussion
The ANN and ANFIS model predictions evaluated based on RMSE, 
MAE and R2 values (Table 3). RMSE and R2 values provided in-
formation on general error ranges, while MAE value estimated 
the distribution of errors between model predictions and target 
values [51]. The good fit between measured and predicted values 
is improbable to occur, would have RMSE = 0 and R2 = 1 [52].

Table 3. Proposed ANN and ANFIS Models Performance Criteria

Model Data
Performance criteria

RMSE MAE R2

ANN Train 0.00499 0.00313 0.969

Validation 0.00618 0.00294 0.948

Test 0.00556 0.00163 0.973

ANFIS Train 0.00716 0.00448 0.931

Validation/checking 0.00783 0.00437 0.895

Test 0.00924 0.00493 0.867

3.3. Comparison of ANN and ANFIS Results

Fig. 2 compares experimental data and predicted results of ANN 
and ANFIS models. This comparison depicts that ANN predictions 
are close to the experimentally measured results; thus, ANN pre-
dictions are relatively better than ANFIS model results. The con-
sistency between the ANN predictions and experimentally meas-
ured results for various cases increased the reliability of the proposed 
ANN model for the prediction of PIMs Cr(VI) removal efficiency. 
Collectively, the results indicate that a well-trained ANN model 
can be used to predict removal efficiency without any empirical 
study that acquires much time and high experimental cost. 

The proposed ANN and ANFIS models were assessed by compar-
ing predicted results with experimental results through an in-
dependent set of data as presented in Fig. 3. It shows that dots 
observed well distributed around X = Y line in a narrow area 
in the case of ANN model followed by ANFIS. The value of coefficient 
of determination was R2 = 0.973 for the line plotted using ex-
perimental and predicted data (testing data) for ANN and R2 = 
0.867 for ANFIS model, indicated the reliability of the ANN model. 

Fig. 2. Comparison of the measured, ANN and ANFIS predicted results 
of testing dataset.

a

b

Fig. 3. Comparison of experimental and predicted results of ANN and 
ANFIS testing dataset.

3.4. SA

In SA proposed ANN model results were used. Plus one by one; 
leave one out, and percentage contribution techniques were em-
ployed, and the results presented in Tables S1, S2, and S3, 
respectively. SA demonstrated that four operating parameters in-
cluding carrier type; time; film thickness; and plasticizer type are 
more important than carrier rate and plasticizer rate. 
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a

b

Fig. 4. Sensitivity analysis of testing data by using leave one out approach 
(a) removal efficiency while time; carrier type; and carrier rate 
left out (b) film thickness; plasticizer rate; and plasticizer type 
left out one by one.

The study of plus one by one technique does not indicate clearly 
which parameter is more influential, although it is giving a direction 
about best data set. Results of this approach as described in Table 
S1 indicated that a-b-c-d set gave values of R2 up to 80%. The 
leave-one-out approach provided similar results as plus one by 
one technique. Leave-one-out technique confirmed that there are 
four major influencing parameters namely carrier type; time; film 
thickness; and plasticizer type as depicted in Table S2. 

Moreover, percentage contribution analysis supported the results 
obtained by the other two methods. This analysis provided further 
support that carrier type; time; film thickness along with plasticizer 
type are significant operating parameters than carrier rate and plasti-
cizer rate as presented in Table S3. Fig. 4(a) and (b), compares 
measured (experimental) versus predicted removal efficiency that 
computed by using leave one out approach. According to data 
provided in Table S1, S2 and S3 and graphical presentation in 
Fig. 4(a) and (b), carrier rate and plasticizer rate have no significant 
effect on PIMs Cr(VI) removal efficiency.

4. Conclusions

The ANN model successfully traced the non-linear behavior of 

Cr(VI) removal efficiency versus the time; film thickness; plasticizer 
type and rate; carrier type and rate of PIMs with low relative percent-
age error. The predictive capability of the ANN model (R2 = 0.973) 
was better when compared with ANFIS (R2 = 0.867) model. Hence, 
the proposed ANN model has confirmed to be an adequate inter-
polation tool to predict Cr(VI) removal efficiency of PIMs as com-
pared to the ANFIS model. However, investigation of ANFIS model 
also demonstrates that fuzzy network modeling offers a strong poten-
tial to predict PIMs removal efficiency of Cr(VI) at an optimum 
level. SA proved that carrier type; time; film thickness; and plasti-
cizer type were significant operating parameters having 33.61%, 
26.85%, 21.07% and 8.917% contributions, respectively.
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