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1. Introduction

The surface theory is an indispensable research topic for scientists in the fields of differential
geometry, physics, engineering, and designation. One type of well-known surfaces is the ruled
surfaces which are obtained by the continuous movement of a line along the curve [1, 2]. Various
approaches have been put forward on ruled surfaces considering the characterizations, geometric and
algebraic properties of ruled the surfaces. Ruled surfaces have applications in a number of domains
including geometric modeling [5] or computer aided geometric designing [3, 4]. Further, the technical
advantages of ruled surfaces in the realization of free-form architecture and complex shapes can be
seen in [6]. Such as surfaces, the theory of curves is also an important research topic regarding
various disciplines. A lot of investigation has been done on the motion, evolution, and integrability of
curves. Moreover, the geometric characterizations for these integrable curves and the evolution of
inelastic plane curves have been studied widely [7–11]. Hasimoto [12] handled the motion of the
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vortex filament equation has been studied by and the time evolution of the curves has been obtained.
It also has been proved that the vortex filament equation (smoke ring) is equal to the nonlinear
Schrödinger equation. The motion of the curves is a predecessor part of soliton theory. The geometric
applications of Bäcklund and Darboux transformations between curves have been discussed in soliton
theory [12–14]. Many researchers have examined the surfaces obtained from these curves. For
instance, the evolution of translation surfaces has been studied by [15]. Additionally, by considering
the inextensible flows of curves, the developable surfaces and tangent developable surfaces have been
considered in [16–19] and the evolution of special ruled surfaces according to the Serret-Frenet frame
has been clarified in [20]. On the other hand, the Serret-Frenet frames are inadequate for studying
analytic space curves of which curvatures have discrete zero points since the principal normal and
binormal vectors may be discontinuous at zero points of the curvature. For the solution of this
problem, Sasai [21] has introduced an orthogonal frame and obtained a formula, which corresponds to
the Frenet-Serret equation. Recently, in Minkowski 3-space, the modified orthogonal frame with
non-zero curvature and torsion of a space curve has been described by Bukcu and Karacan [22].
Then, using this the modified orthogonal frame, spherical curves, Mannheim curves and some special
curves have been reconsidered [23–25]. In the light of recent events given above, the aim of this study
is to study the evolution of analytic space curve according to the modified orthogonal frame and the
geometric properties of special ruled surfaces generated by the motion of these curves.

2. Preliminaries

In Euclidean 3-space, Euclidean inner product is given by <, >= dx2
1 + dx2

2 + dx2
3 where

x = (x1, x2, x3) ∈ E3. The norm of a vector x ∈ E3 is ‖x‖ =
√
|< x, x >|. For any α curve, if

‖α′(s)‖ = 1, then α curve is unit speed curve in Euclidean space. The most well-known and used
Frenet frame on a curve plays an important role in differential geometry. Let α be a space curve with
respect to the arc-length s in Euclidean 3-space E3. t, n and b are tangent, principal normal and
binormal unit vectors at each point α(s) of a curve α, respectively. Then there exists an orthogonal
frame {t, n, b} which satisfies the Frenet-Serret equation

t′ = κn,
n′ = −κt + τb,
b′ = −τn

(2.1)

where κ is the curvature, τ is the torsion.
The fundamental theorem of regular curves states that if κ > 0 and τ are differentiable functions

then there exists a unit speed curve whose curvature and torsion are κ and τ, respectively [1]. However,
the principal normal and binormal vectors are discontinuous at zero points of the curvature in general
and the curvature is not always differentiable even if the curve is analytic. In that case, the formulation
of the Frenet frame of a space curve generally established causes ambiguity for an analytical space
curve at a point where the curvature vanishes, see Example 2.1.

This problem was considered by Hord [26] and Sasai [21, 27] for analytic space curves of which
the curvatures have discrete zero points. With a simple but convenient approach, an orthogonal frame
was introduced by Sasai [21]. Although this modified orthogonal frame seems like a Frenet frame
with scaled normal and binormal vectors, it allows to use a new formula corresponding to the Frenet-
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Serret equation for the aforementioned case and is also useful for investigating analytic curves with
singularities.

Let α be an analytic curve of which curvature has discrete zero points in Euclidean 3-space. Under
the assumption κ (s) of α is not identically zero, the elements of modified orthogonal frame are given
by

T = dα
ds , N = dT

ds , B = T ∧ N

where s is the arc-length parameter and T ∧ N is the vector product of T and N.
The relations between the Frenet frame {t, n, b} and modified orthogonal frame {T,N, B} at non-zero

points of κ are

T = t, N = κn, B = κb.

In the course of time, this orthogonal frame is called the modified orthogonal frame [22]. The modified
orthogonal frame {T,N, B} satisfies

〈T,T 〉 = 1, 〈N,N〉 = 〈B, B〉 = κ2, 〈T,N〉 = 〈T, B〉 = 〈N, B〉 = 0.

such that 〈, 〉 is the Euclidean inner product. From these equations, the differentiation formula for the
modified orthogonal frame {T,N, B} is given by

T ′ (s) = N (s) ,
N′ (s) = −κ2T (s) + κs

κ
N (s) + τB (s) ,

B′ (s) = −τN (s) + κs
κ

B (s) ,
(2.2)

where κs denotes the differentiation with respect to s and τ =
det(α′,α′′,α′′′)

κ2 is the torsion of α. Here, the
essential quantities κ2 and τ are analytic in [21, 22].
Example 2.1. Let us consider a curve given by the parametric equation

α (s) =

 1
√

2

s∫
0

cos
(
πt2
2

)
dt, 1

√
2

s∫
0

sin
(
πt2
2

)
dt, s

√
2


which is a helical curve over clothoid (Cornu spiral or Euler spiral) [2] and has various applications
in real life such as the highway, railway route design or roller coasters, etc. Here the components

s∫
0

cos
(
πt2
2

)
dt and

s∫
0

sin
(
πt2
2

)
dt are called Fresnel integrals. The elements of the Frenet trihedron of the

curve α are obtained as

t (s) =
(

1
√

2
cos

(
πs2

2

)
, 1
√

2
sin

(
πs2

2

)
, 1
√

2

)
,

n (s) =
(
− s
|s| sin

(
πs2

2

)
, s
|s| cos

(
πs2

2

)
, 0

)
,

b (s) =

(
− s
√

2|s|
cos

(
πs2

2

)
,− s
√

2|s|
sin

(
πs2

2

)
, s
√

2|s|

)
and the curvature is κ (s) =

π|s|
√

2
. Besides the curvature is not differentiable, the principal normal and

binormal vectors are discontinuous at s = 0 since n+ , n− and b+ , b− for n+ = lim
s→0+

n (s), n− =

lim
s→0−

n (s) and b+ = lim
s→0+

b (s), b− = lim
s→0−

b (s).
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Whenever the curvature is considered as a signed quantity κ (s) = ∓ πs
√

2
, the curve forms a symmetrical

double spiral, see Figure 1.
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Figure 1. Helical Curve over Clothoid.

To prevent the occurrence of two reverse oriented principal normal vectors and binormal vectors, it
is useful to refer to the modified orthogonal frame with unique elements

T (s) =

(
1
√

2
cos

(
πs2

2

)
,

1
√

2
sin

(
πs2

2

)
,

1
√

2

)
,

N (s) =

(
−
πs
√

2
sin

(
πs2

2

)
,
πs
√

2
cos

(
πs2

2

)
, 0

)
,

B (s) =

(
−
πs
2

cos
(
πs2

2

)
,−
πs
2

sin
(
πs2

2

)
,
πs
2

)
,

under the assumption that the curvature κ (s) of α is not zero. Here the essential quantities are obtained
as κ2 = π2 s2

2 and τ (s) = πs
√

2
.

3. Evolution of space curve with modified orthogonal frame

A curve α in Euclidean 3-space is a vector-valued function α (s, t) ∈ E3 where s is the arc-length
parameter and t is the time parameter, then the equation of the vortex filament (smoke ring equation)
is given by

αt = αs ∧ αss, (3.1)

where the subscripts indicate the partial differential. Let α be an analytic curve with curvature having
discrete zero points. To at non-zero points of the curve, the time evolution of the modified orthogonal
frame {T,N, B} can be written in matrix form as follows:

T
N
B


t

=


0 η β

−η κκt γ

−β −γ κκt




T
N
B

 (3.2)
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where α, β and γ are smooth functions. By considering the curvature κ of the curve α is not identically
zero and using the equations Tst = Tts,Nst = Nts, Bst = Bts, we obtain

ηs = τβ − κs
κ
η + κκt,

βs = γ − τη − κs
κ
β,

γs = τt − β.

(3.3)

We suppose that the velocity according to the curve α is given by

αt =
dα
dt

= aT + bN + cB. (3.4)

From equation αst = αts, we find the following equations

0 = as − bκ2,

η = a + bs + κs
κ

b − τc,
β = τb + cs + κs

κ
c

(3.5)

where a, b and c are the coefficients of the tangent, normal and binormal vectors of the velocity,
respectively. Substituting the Eq. (3.5) into the second Equation of (3.3), we get

γ =

(
τb + cs +

κs

κ
c
)

s
+ τ

(
a + bs +

κs

κ
b − τc

)
+
κs

κ

(
τb + cs +

κs

κ
c
)
. (3.6)

For a solution of smoke ring equation, the velocity vector is given by

αt = αs ∧ αss = B. (3.7)

Thus, from the Eqs. (3.4) and (3.7), we get

a = 0, b = 0, c = 1. (3.8)

Substituting the Eq. (3.8) into the Eqs. (3.5) and (3.6), we get

η = −τ,

β = κs
κ
,

γ = κss
κ
− τ2.

(3.9)

Thus, according to the modified orthogonal frame, the Eq. (3.9) represents the time evolution of the
curve and the motion of the curve

4. Properties of evolution of special ruled surfaces with modified orthogonal frame

In this section, we study the tangent, normal and binormal ruled surfaces using the modified
orthogonal frame along an analytic space curve. The parametric equation of the ruled surface is given
by

X (s, v) = α(s) + vl (s) ,

where α(s) is called the base curve and l(s) is the director curve. If the curves α(s) and l(s) move with
time t, then the equation of the ruled surface is as follows

X (s, v, t) = α(s, t) + vl (s, t) . (4.1)
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4.1. Tangent ruled surface

The ruled surface generated by the motion of the tangent vector T of a curve α is called the tangent
ruled surface and the equation of this surface is represented by

X (s, v, t) = α(s, t) + vT (s, t) . (4.2)

Example 4.1. Let us consider the helical curve over clothoid given in Example 2.1. Then the
parametric equation of tangent ruled surface is

ϕ (s, v) =

 1
√

2


s∫

0

cos
(
πt2

2

)
dt + v cos

(
πs2

2

) , 1
√

2


s∫

0

sin
(
πt2

2

)
dt + v sin

(
πs2

2

) , s + v
√

2

 ,
see Figure 2.

Figure 2. Tangent Ruled Surface.

The partial differentiations of the equations of the tangent ruled surface are

Xs (s, v, t) = T + vN,
Xv (s, v, t) = T,

(4.3)

By using the Eq. (4.3), we get the unit normal field of this surface as

U =
Xs ∧ Xv

‖Xs ∧ Xv‖
=
−B
κ
. (4.4)

The first fundamental form of the tangent ruled surface in Euclidean space is given by

I = 〈dX, dX〉 = 〈Xsds + Xvdv, Xsds + Xvdv〉 = Eds2 + 2Fdsdv + Gdv2
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where the coefficients of the first fundamental form are

E = 〈Xs, Xs〉 = 1 + vκ2,

F = 〈Xs, Xv〉 = 1,
G = 〈Xv, Xv〉 = 1.

(4.5)

From Eq. (4.3), the second derivatives are found and given as

Xss (s, v, t) = −vκ2T +
(
1 + v κs

κ

)
N + vτB,

Xsv (s, v, t) = N,
Xvv (s, v, t) = 0.

(4.6)

The second fundamental form of the normal surface is given by

II = 〈dX, dU〉 = − 〈dX, dU〉 = 〈Xsds + Xvdv,Usds + Uvdv〉 = eds2 + 2 f dsdv + gdt2

where the coefficients of the second fundamental form are

e = 〈Xss,U〉 = −vτκ,
f = 〈Xsv,U〉 = 0,
g = 〈Xvv,U〉 = 0.

(4.7)

Corollary 4.1. The Gaussian and mean the curvatures of the tangent ruled surface X = X (s, v, t) are

K = 0, (4.8)

H =
−τ

2vκ
, (4.9)

respectively.

Proof. From the Eqs. (4.5) and (4.7), we easily obtain the Gaussian curvature and the mean curvature,
respectively, as follows

K =
eg− f 2

EG−F2 = 0,

H = 1
2

Eg−2F f +Ge
EG−F2 = −τ

2vκ

From the Eqs. (4.8) and (4.9) the followings are obvious. �

Corollary 4.2.

i. The tangent ruled surface is developable.
ii. The tangent ruled surface is minimal surface if τ = 0.
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4.2. Normal ruled surface

The ruled surface generated by the motion of the normal vector N of the curve α is called the normal
ruled surface and the equation of this surface is

X (s, v, t) = α(s, t) + vN (s, t) . (4.10)

Example 4.2. If we take the curve given in Example 2.1, then the parametric equations of normal ruled
surfaces generated by normal vectors of Frenet frame and modified orthogonal frame are

ϕ1 (s, v) =

 1
√

2

s∫
0

cos
(
πt2

2

)
dt − v

s
|s|

sin
(
πs2

2

)
,

1
√

2

s∫
0

sin
(
πt2

2

)
dt + v

s
|s|

cos
(
πs2

2

)
,

s
√

2


and

ϕ2 (s, v) =

 1
√

2


s∫

0

cos
(
πt2

2

)
dt − vπs sin

(
πs2

2

) , 1
√

2


s∫

0

sin
(
πt2

2

)
dt + vπs cos

(
πs2

2

) , s
√

2

 ,
respectively. The first normal ruled surface is generated by the normal vector of Frenet frame and it is
discontinuous at s = 0 and the second one is generated by the normal vector of the modified orthogonal
frame, see Figure 3.

(a) ϕ1 (s, v) = α (s) + vn (s) (b) ϕ2 (s, v) = α (s) + vN (s)

Figure 3. Normal Ruled Surfaces.

The derivatives of the normal ruled surface with respect to s and v are

Xs (s, v, t) = (1 − vκ2)T + v κs
κ

N + vτB,
Xv (s, v, t) = N,

(4.11)

respectively. Using Eq. (4.11), we get the unit normal field of this surface is found as

U =
Xs ∧ Xv

‖Xs ∧ Xv‖
=
−vτT + (1 − vκ2)B√
(1 − vκ2)2κ2 + (vτ)2

. (4.12)

The first fundamental form of the normal ruled surface in Euclidean space is given by
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I = 〈dX, dX〉 = 〈Xsds + Xvdv, Xsds + Xvdv〉 = Eds2 + 2Fdsdv + Gdv2

where the coefficients of the first fundamental form are

E = 〈Xs, Xs〉 =
(
1 − vκ2

)2
+ v2κs

2 + v2τ2κ2,

F = 〈Xs, Xv〉 = vκsκ,

G = 〈Xv, Xv〉 = κ2.

(4.13)

From Eq. (4.11), the second derivative is found as

Xss (s, v, t) = −3vκκsT +
(
1 − vκ2 + v κss

κ
− vτ2

)
N +

(
vτs + 2vτ κs

κ

)
B,

Xsv (s, v, t) = −κ2T + κs
κ

N + τB,
Xvv (s, v, t) = 0.

(4.14)

The second fundamental form of the normal surface is given by

II = 〈dX, dU〉 = − 〈dX, dU〉 = 〈Xsds + Xvdv,Usds + Uvdv〉 = eds2 + 2 f dsdv + gdt2

where the coefficients of the second fundamental form are

e = 〈Xss,U〉 =
vκ(3vτκs+(1−vκ2)(κτs+2τκs))√

(κ(1−vκ2))2
+(vτ)2

,

f = 〈Xsv,U〉 =
κ2τ(1+v−vκ2)√

(κ(1−vκ2))2
+(vτ)2

,

g = 〈Xvv,U〉 = 0.

(4.15)

Corollary 4.3. The Gaussian and mean the curvatures of a normal ruled surface X = X (s, v, t) are

K =
−τ2κ2

(
1 + v − vκ2

)2((
κ
(
1 − vκ2))2

+ (vτ)2
) ((

1 − vκ2)2
+ (vτκ)2

) , (4.16)

H =
vκ

(
vτκs +

(
1 − vκ2

)
κτs

)
2
((
κ
(
1 − vκ2))2

+ (vτ)2
) 1

2
((

1 − vκ2)2
+ (vτκ)2

) , (4.17)

respectively.

Proof. From the Eqs. (4.13) and (4.15), we easily obtain the Gaussian curvature and the mean curvature
respectively as follows

K =
eg− f 2

EG−F2 =
−τ2κ2(1+v−vκ2)2(

(κ(1−vκ2))2
+(vτ)2

)(
(1−vκ2)2

+(vτκ)2
) ,

H = 1
2

Eg−2F f +Ge
EG−F2 =

vκ(vτκs+(1−vκ2)κτs)
2
(
(κ(1−vκ2))2

+(vτ)2
) 1

2
(
(1−vκ2)2

+(vτκ)2
) .

From the Eqs. (4.16) and (4.17), the following result is obvious. �

Corollary 4.4. The normal ruled surface is developable iff τ = 0 and minimal iff
vτκs +

(
1 − vκ2

)
κτs = 0.
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4.3. Binormal ruled surface

The ruled surface generated by the motion of the binormal vector B of the curve α is called the
binormal ruled surface and the equation of this surface is

X (s, v, t) = α(s, t) + vB (s, t) . (4.18)

Example 4.3. The parametric equations of binormal ruled surfaces generated by binormal vectors of
Frenet frame and modified orthogonal frame the curve given in Example 2.1 are

ϕ3 (s, v) =

 1
√

2


s∫

0

cos
(
πt2

2

)
dt − v

s
|s|

cos
(
πs2

2

) , 1
√

2


s∫

0

sin
(
πt2

2

)
dt − v

s
|s|

cos
(
πs2

2

) , 1
√

2

(
s + v

s
|s|

)
and

ϕ4 (s, v) =

 1
√

2

s∫
0

cos
(
πt2

2

)
dt − v

πs
2

cos
(
πs2

2

)
,

1
√

2

s∫
0

sin
(
πt2

2

)
dt − v

πs
2

sin
(
πs2

2

)
,

s
√

2

(
1 +

vπ
√

2

) ,
respectively. The first surface (generated by binormal vector of Frenet frame) is discontinuous at s = 0
and the second one is generated by binormal vector of modified orthogonal frame, see Figure 4.

(a) ϕ3 (s, v) = α (s) + vb (s) (b) ϕ4 (s, v) = α (s) + vB (s)

Figure 4. Binormal Ruled Surfaces.

The tangent vectors for the binormal ruled surface are

Xs (s, v, t) = T − vτN + v κs
κ

B,
Xv (s, v, t) = B,

(4.19)
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where the subscripts s and v represent partial derivatives of the binormal ruled surface. Using Eq.
(4.19), we get the unit normal field of this surface is found as

U =
Xs ∧ Xv

‖Xs ∧ Xv‖
=
−vτT − N√
κ2 + (vτ)2

. (4.20)

The first fundamental form of the normal ruled surface in Euclidean space is given by

I = 〈dX, dX〉 = 〈Xsds + Xvdv, Xsds + Xvdv〉 = Eds2 + 2Fdsdv + Gdv2

where the coefficients of the first fundamental form are
E = 〈Xs, Xs〉 = 1 + v2τ2κ2 + v2κs

2,

F = 〈Xs, Xv〉 = vκsκ,

G = 〈Xv, Xv〉 = κ2.

(4.21)

From the Eq. (4.19), the second derivative is found and given as

Xss (s, v, t) =
(
vτκ2

)
T +

(
1 − vτs − 2vτ κs

κ

)
N +

(
−vτ2 + v κss

κ

)
B,

Xsv (s, v, t) = −τN + κs
κ

B,
Xvv (s, v, t) = 0.

(4.22)

The second fundamental form of the normal surface is given by

II = 〈dX, dU〉 = − 〈dX, dU〉 = 〈Xsds + Xvdv,Usds + Uvdv〉 = eds2 + 2 f dsdv + gdt2

where the coefficients of the second fundamental form are

e = 〈Xss,U〉 =
κ2(−v2τ2−1+vτs+2vτ κs

κ )
√
κ2+(vτ)2

,

f = 〈Xsv,U〉 = κ2τ√
κ2+(vτ)2

,

g = 〈Xvv,U〉 = 0.

(4.23)

Corollary 4.5. For the binormal ruled surface X = X (s, v, t) the Gaussian and mean the curvatures are

K = −
τ2(

κ2 + (vτ)2
) (

1 + (vτκ)2
) , (4.24)

H =
κ2

(
vτs − (vτ)2

− 1
)

2
(
κ2 + (vτ)2

) 1
2
(
1 + (vτκ)2

) , (4.25)

respectively.

Proof. From the Eqs. (4.21) and (4.23), we easily obtain the Gaussian curvature and the mean curvature
respectively as follows

K =
eg− f 2

EG−F2 = − τ2

(κ2+(vτ)2)(1+(vτκ)2) ,

H = 1
2

Eg−2F f +Ge
EG−F2 =

κ2(vτs−(vτ)2−1)
2(κ2+(vτ)2)

1
2 (1+(vτκ)2)

.

�

Corollary 4.6. From the Eqs. (4.16) and (4.17), the normal ruled surface is developable iff τ = 0 and
minimal iff vτs − (vτ)2

− 1 = 0.
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14. C. Rogers, W. K. Schief, Bäcklund and Darboux Transformations, In: Geometry and Modern
Applications in Soliton Theory, Cambridge University Press, 2002.

15. H. N. Abd-Ellah, Evolution of translation surfaces in Euclidean 3-space, Appl. Math. Inform.
Sci., 9 (2015), 661–668.

16. R. A. Hussien, S. G. Mohamed, Generated surfaces via inextensible flows of curves in R3, J. Appl.
Math., 1 (2016), 6178961.

17. D. Y. Kwon, F. C. Park, Inextensible flows of curves and developable surfaces, Appl. Math. Lett.,
18 (2005), 1156–1162.

18. O. G. Yıldız, S. Ersoy, M. A. Masal, Note on inextensible flows of curves on oriented surface,
Cubo, 16 (2014), 11–19.

AIMS Mathematics Volume 5, Issue 3, 2027–2039.



2039

19. K. Nakayama, M. Wadati, The motion of surfaces, J. Phys. Soc. JPN, 62 (1993), 1895–1901.

20. R. A. Hussien, T. Youssef, Evolution of special ruled surfaces via the evolution of their directrices
in Euclidean 3-Space E3, Appl. Math. Inform. Sci., 10 (2016), 1949–1956.

21. T. Sasai, The fundamental theorem of analytic space curves And apparent singularities of
Fuchsian differential equations, Tohoku Math. J., 36 (1984), 17–24.
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