On classical n-absorbing submodules

Received: 4 October 2018 / Accepted: 2 April 2019 / Published online: 15 April 2019
© The Author(s) 2019

Abstract

Let R a commutative ring with identity and M be a unitary R-module. In this paper, we investigate some properties of n-absorbing submodules of M as a generalization of 2-absorbing submodules. We also define the classical n-absorbing submodule, a proper submodule N of an R-module M is called a classical n-absorbing submodule if whenever $a_{1} a_{2} \ldots a_{n+1} m \in N$ for $a_{1}, a_{2}, \ldots, a_{n+1} \in R$ and $m \in M$, there are n of a_{i} 's whose product with m is in N. Furthermore, we give some characterizations of n-absorbing and classical n-absorbing submodules under some conditions.

Mathematics Subject Classification 13C05 13C13 - 13C99

1 Introduction

Throughout this paper, we assume that all rings are commutative with $1 \neq 0$. Let R be a commutative ring. An ideal I of R is said to be proper if $I \neq R$. Let M a unitary module over R and N be a submodule of M. The residual of N by $M,\left(N:_{R} M\right)$ or simply $(N: M)$, denotes the ideal $\{r \in R: r M \subseteq N\}$. For any element x of M, the ideal $(N: x)$ is defined by $(N: x)=\{r \in R: r x \in N\}$. Let $a \in R$. Then, $N_{a}=\{x: x \in M$ and $a x \in N\}$ is a submodule of the R-module M. Let $m \in M$, a cyclic submodule that is generated by m is a submodule of M has the form $R m=\{r m: r \in R\}$. A proper submodule N of M is said to be irreducible if N is not an intersection of two submodules of M that properly contain it. The set of zero divisors of M, denoted by $Z d(M)$ is defined by $Z d(M)=\{r \in R:$ for some $x \in M$ and $x \neq 0, r x=0\}$. An R-module M is called a multiplication module if every submodule N of M has the form $I M$ for some ideal I of R. Prime ideals play a crucial role in ring theory, since they interfere with many branches of algebra and they represent an important role in understanding the structure of ring. A proper ideal I of a ring R is called a prime ideal if, whenever $a b \in I$ for $a, b \in R$, then $a \in I$ or $b \in I$. A proper submodule N of an R-module M is said to be a prime submodule if, whenever $a \in R, m \in M$, and $a m \in N$, then $m \in N$ or $a \in(N: M)$.

In [5], Badawi introduced a new generalization of prime ideals in a commutative ring R. He defined a nonzero proper ideal I of R to be a 2-absorbing ideal of R if, whenever $a, b, c \in R$ and $a b c \in I$, then $a b \in I$ or $a c \in I$ or $b c \in I$. The concept of 2-absorbing ideal has been transferred to modules. A proper submodule N of an R-module M is a 2-absorbing submodule of M [6] if, whenever $a b m \in N$ for $a, b \in R$ and $m \in M$, then $a m \in N$ or $b m \in N$ or $a b \in(N: M)$. The class of 2-absorbing submodules of modules was introduced as a generalization of the class of 2-absorbing ideals of rings. Then, many generalizations of 2-absorbing submodules were studied such as primary 2-absorbing [8], almost 2-absorbing [3], almost 2-absorbing primary [2], and classical 2-absorbing [9]. In this article, we investigate some properties of n-absorbing submodules of M as a generalization of 2-absorbing submodules. We also define the classical n-absorbing submodule.

[^0]Furthermore, we give some characterizations of n-absorbing and classical n-absorbing submodules under some conditions. In addition, we investigate the sufficient and necessary conditions for a submodule N to be classical n-absorbing submodule of M.

2 n-Absorbing submodules

The concept of 2-absorbing has been extended to n-absorbing in ideals and submodules, where n is any positive integer. In this section, we investigate some properties of n-absorbing submodules.

Definition 2.1 [1] A proper ideal I of a ring R is said to be an n-absorbing ideal if, whenever $a_{1} \ldots a_{n+1} \in I$ for $a_{1}, \ldots, a_{n+1} \in R$, then there are n of $a_{i}^{\prime} s$ whose product is in I.

Definition 2.2 [7] A proper submodule N of an R-module M is called an n-absorbing submodule if, whenever $a_{1} \ldots a_{n} m \in N$ for $a_{1}, \ldots, a_{n} \in R$ and $m \in M$, then either $a_{1} \ldots a_{n} \in(N: M)$ or there are $n-1$ of $a_{i}^{\prime} s$ whose product with m is in N.

Proposition 2.3 If N is an n-absorbing submodule of an R-module M, then $(N: m)$ is an n-absorbing ideal in R for all $m \in M-N$.

Proof For $m \in M-N,(N: m)$ is a proper ideal of R. Assume that $a_{1} \ldots a_{n+1} \in(N: m)$ for $a_{1}, \ldots, a_{n+1} \in R$. Then, $a_{1} \ldots a_{n+1} m=a_{1} \ldots a_{n}\left(a_{n+1} m\right) \in N$. Since N is an n-absorbing submodule, then $a_{1} \ldots a_{n} \in(N$: $M) \subseteq(N: m)$ or there are $n-1$ of the $a_{i}^{\prime} s, 1 \leq i \leq n$ whose product with $a_{n+1} m$ in N, the latter case means that there are $n-1$ of the $a_{i}^{\prime} s, 1 \leq i \leq n$ whose product with a_{n+1} belongs to $(N: m)$. Thus, $(N: m)$ is an n-absorbing ideal in R.
Proposition 2.4 [4] Let M an R-module and N be a proper submodule of M. Then, $Z d(M / N)=$ $\bigcup_{x \in M-N}(N: x)$.

Proposition 2.5 Let N be an n-absorbing submodule of M. If the set of all zero divisors of $M / N, Z d(M / N)$, forms an ideal in R, then it is an n-absorbing ideal of R.

Proof Let $a_{1} \ldots a_{n+1} \in Z d(M / N)$ for $a_{1}, \ldots, a_{n+1} \in R$, and then, by Proposition $2.4, a_{1} \ldots a_{n+1} \in(N$: m^{\prime}) for some $m^{\prime} \in M-N$. Since N is an n-absorbing submodule, then ($N: m^{\prime}$) is an n-absorbing ideal of R. Therefore, there are n of $a_{i}^{\prime} s$ whose product belongs to ($N: m^{\prime}$), and hence, there are n of $a_{i}^{\prime} s$ whose product belongs to $Z d(M / N)$.

Remark 2.6 The set of all zero divisors may not be an ideal. For example, consider the \mathbb{Z}-module $M=\mathbb{Z}_{6}$, we have $2,3 \in Z d(M)$ but $2+3 \notin Z d(M)$.

The following theorem characterizes n-absorbing submodule in terms of submodules.
Theorem 2.7 Let N be a submodule of an R-module M. The following are equivalent:
(1) N is an n-absorbing submodule.
(2) For $a_{1}, \ldots, a_{n} \in R$, such that $a_{1} \ldots a_{n} \notin(N: M), \quad N_{a_{1} \ldots a_{n}}=\bigcup_{i=1}^{n} N_{\hat{a}_{i}}$, where $\hat{a}_{i}=$ $a_{1} \ldots a_{i-1} a_{i+1} \ldots a_{n}$.

Proof (1) \Rightarrow (2) Let $m \in N_{a_{1} \ldots a_{n}}$ and assume that $a_{1} \ldots a_{n} \notin(N: M)$, and then, $a_{1} \ldots a_{n} m \in N$. Since N is an n-absorbing submodule, then there are $n-1$ of $a_{i}^{\prime} s, 1 \leq i \leq n$, such that $\hat{a}_{i} m \in N$, $\hat{a}_{i}=a_{1} \ldots a_{i-1} a_{i+1} \ldots a_{n}$, and hence, $m \in N_{\hat{a}_{i}}$. For the other containment, let $m \in \bigcup_{i=1}^{n} N_{\hat{a}_{i}}$, then $\hat{a}_{j} m \in N$ for some $j \in\{1, \ldots, n\}$, then $a_{j} \hat{a}_{j} m=a_{1} \ldots a_{n} m \in N$, so $m \in N_{a_{1} \ldots a_{n}}$.
$(2) \Leftarrow(1)$ Let $a_{1}, \ldots, a_{n} \in R$ and $m \in M$ such that $a_{1} \ldots a_{n} m \in N$. Assume that $a_{1} \ldots a_{n} \notin$ $(N: M)$, then $m \in N_{a_{1} \ldots a_{n}}=\bigcup_{i=1}^{n} N_{\hat{a}_{i}}$ then $m \in N_{\hat{a}_{j}}$ for some $j \in\{1, \ldots, n\}$, implies that $\hat{a}_{j} m=a_{1} \ldots a_{j-1} a_{j+1} \ldots a_{n} m \in N$. Thus, N is an n-absorbing submodule.

The following example shows that if N is not an n-absorbing submodule of M, then the second statement in the previous theorem does not hold.

Example 2.8 Take $n=2$. Let $M=\mathbb{Z}$ be a module over itself, and let $N=8 \mathbb{Z}, N$ is not a 2 -absorbing submodule of M and $N_{2.2}=2 \mathbb{Z} \neq N_{2}=4 \mathbb{Z}$.

Now, we give a necessary and sufficient condition for capability of reducing (by 1) the index of the residual ($N: M$) of the proper submodule N of M.

Theorem 2.9 Let N be an n-absorbing submodule of an R-module M. Then, $(N: M)$ is an ($n-1$)-absorbing ideal of R if and only if $(N: m)$ is an $(n-1)$-absorbing ideal of R for all $m \in M-N$.

Proof (\Rightarrow) Let $a_{1}, \ldots, a_{n} \in R, m \in M-N$ and $a_{1} \ldots a_{n} \in(N: m)$. Then, $a_{1} \ldots a_{n} m \in N$. Since N is an n-absorbing submodule of M, then $a_{1} \ldots a_{n} \in(N: M)$ or there are $n-1$ of the $a_{i}^{\prime} s$ whose product with m is in N. If $a_{1} \ldots a_{n} \in(N: M)$, then, by assumption, there are $n-1$ of the $a_{i}^{\prime} s, 1 \leq i \leq n$, whose product belongs to $(N: M)$, and hence, there are $n-1$ of the $a_{i}^{\prime} s, 1 \leq i \leq n$, whose product belongs to $(N: m)$. In the other case, if there are $n-1$ of the $a_{i}^{\prime} s$ whose product with m is in N, and hence, there are $n-1$ of the $a_{i}^{\prime} s, 1 \leq i \leq n$, whose product belongs to ($N: m$) and we are done.
(\Leftarrow) Suppose that $a_{1} \ldots a_{n} \in(N: M)$ for some $a_{1}, \ldots, a_{n} \in R$ and assume that, for every $i, 1 \leq i \leq n$, there exists $m_{i} \in M$, such that $\hat{a}_{i} m_{i} \notin N$, where $\hat{a}_{i}=a_{1} \ldots a_{i-1} a_{i+1} \ldots a_{n}$. By $a_{1} \ldots a_{n} m_{i} \in N$, it follows that $\hat{a}_{j} m_{i} \in N$, where $j \neq i$ and $\hat{a}_{j}=a_{1} \ldots a_{j-1} a_{j+1} \ldots a_{n}$, since $\left(N: m_{i}\right)$ is $(n-1)$-absorbing ideal. If $\sum_{i=1}^{n} m_{i} \in N$, then $\hat{a}_{j} m_{j} \in N$, since $\hat{a}_{j} m_{i} \in N, \forall i \neq j$, which is a contradiction. Thus, $\sum_{i=1}^{n} m_{i} \notin N$. Now, by $a_{1} \ldots a_{n} \sum_{i=1}^{n} m_{i} \in N$, we have $a_{1} \ldots a_{n} \in\left(N: \sum_{i=1}^{n} m_{i}\right)$, and then, there are $n-1$ of the $a_{i}^{\prime} s$ whose product is in $\left(N: \sum_{i=1}^{n} m_{i}\right)$, and hence, there are $n-1$ of the $a_{i}^{\prime} s$ whose product with $\sum_{i=1}^{n} m_{i}$ belongs to N, and then, we must have $\hat{a}_{k} m_{k} \in N$, for some $k \in\{1, \ldots, n\}$, which is a contradiction. Thus, there are $n-1$ of the $a_{i}^{\prime} s$ whose product with M is contained in N. Therefore, $(N: M)$ is $(n-1)$-absorbing ideal of R.

Proposition 2.10 Let N be an n-absorbing submodule of an R-module $M, y \in M$, and $a_{1}, \ldots, a_{n} \in R$. If $a_{1} \ldots a_{n} \notin(N: M)$, then

$$
\left(N: a_{1} \ldots a_{n} y\right)=\bigcup_{i=1}^{n}\left(N: \hat{a}_{i} y\right)
$$

where $\hat{a}_{i}=a_{1} \ldots a_{i-1} a_{i+1} \ldots a_{n}$.
Proof Let $r \in\left(N: a_{1} \ldots a_{n} y\right)$, and then, $r a_{1} \ldots a_{n} y=a_{1} \ldots a_{n}(r y) \in N$. Since N is an n-absorbing submodule and $a_{1} \ldots a_{n} \notin(N: M)$, then $\hat{a}_{i}(r y) \in N$, where $\hat{a}_{i}=a_{1} \ldots a_{i-1} a_{i+1} \ldots a_{n}$, for some i, and hence, $r \in\left(N: \hat{a}_{i} y\right)$. For the reverse inclusion, let $r \in \bigcup_{i=1}^{n}\left(N: \hat{a}_{i} y\right)$, and then, $r \in\left(N: \hat{a}_{j} y\right)$ for some $j \in\{1, \ldots, n\}$. Then, $r a_{j} \hat{a}_{j} y=r a_{1} \ldots a_{n} y \in N$ implies $r \in\left(N: a_{1} \ldots a_{n} y\right)$.

In the following two propositions, we study the absorbing property under the homomorphism and localization.

Proposition 2.11 Let $f: M \rightarrow M^{\prime}$ be an epimorphism of R-modules.
(1) If N^{\prime} is an n-absorbing submodule of M^{\prime}, then $f^{-1}\left(N^{\prime}\right)$ is an n-absorbing submodule of M.
(2) If N is an n-absorbing submodule of M containing $\operatorname{ker}(f)$, then $f(N)$ is an n-absorbing submodule of M^{\prime}.

Proof (1) Let $a_{1}, \ldots, a_{n} \in R$ and $m \in M$, such that $a_{1} \ldots a_{n} m \in f^{-1}\left(N^{\prime}\right)$ then $a_{1} \ldots a_{n} f(m) \in N^{\prime}$, but N^{\prime} is n-absorbing submodule of M^{\prime}, so $a_{1} \ldots a_{n} \in\left(N^{\prime}: M^{\prime}\right)$ or $\hat{a}_{i} f(m) \in N^{\prime}$, where $\hat{a}_{i}=a_{1} \ldots a_{i-1} a_{i+1} \ldots a_{n}$. If $a_{1} \ldots a_{n} \in\left(N^{\prime}: M^{\prime}\right)$, then $a_{1} \ldots a_{n} M^{\prime} \subseteq N^{\prime}$, then $a_{1} \ldots a_{n} M \subseteq f^{-1}\left(N^{\prime}\right)$, so $a_{1} \ldots a_{n} \in\left(f^{-1}\left(N^{\prime}\right): M\right)$. If $\hat{a}_{i} f(m) \in N^{\prime}$, then $f\left(\hat{a}_{i} m\right) \in N^{\prime}$ so $\hat{a}_{i} m \in f^{-1}\left(N^{\prime}\right)$. Thus, $f^{-1}\left(N^{\prime}\right)$ is an n-absorbing submodule of M.
(2) Let $a_{1}, \ldots, a_{n} \in R, m^{\prime} \in M^{\prime}$, and $a_{1} \ldots a_{n} m^{\prime} \in f(N)$. Then, there exists $t \in N$, such that $a_{1} \ldots a_{n} m^{\prime}=$ $f(t)$. Since f is an epimorphism therefore for some $m \in M$, we have $f(m)=m^{\prime}$. Thus, $a_{1} \ldots a_{n} f(m)=f(t)$. This implies that $f\left(a_{1} \ldots a_{n} m-t\right)=0$, so $a_{1} \ldots a_{n} m-t \in \operatorname{ker}(f) \subseteq N$. Thus, $a_{1} \ldots a_{n} m \in N$. Now, since N is an n-absorbing, therefore, $\hat{a}_{i} m \in N$ or $a_{1} \ldots a_{n} \in(N: M)$. Thus, $\hat{a}_{i} m^{\prime} \in f(N)$ or $a_{1} \ldots a_{n} \in\left(f(N): M^{\prime}\right)$. Hence, $f(N)$ is an n-absorbing submodule of M^{\prime}.

Proposition 2.12 Let S be a multiplicatively closed subset of R and $S^{-1} M$ be the module of fraction of M. Then, the following statements hold.
(1) If N is an n-absorbing submodule of M, then $S^{-1} N$ is an n-absorbing submodule of $S^{-1} M$.
(2) If $S^{-1} N$ is an n-absorbing submodule of $S^{-1} M$ such that $\operatorname{Zd}(M / N) \cap S=\phi$, then N is an n-absorbing submodule of M.

Proof (1) Assume that $a_{1}, \ldots, a_{n} \in R, s_{1}, \ldots, s_{n}, l \in S, m \in M$ and $\frac{a_{1} \ldots a_{n} m}{s_{1} \ldots s_{n} l} \in S^{-1} N$. Then, there exists $s^{\prime} \in S$, such that $s^{\prime} a_{1} \ldots a_{n} m=a_{1} \ldots a_{n}\left(s^{\prime} m\right) \in N$. By assumption, N is an n-absorbing submodule of M, and thus, $a_{1} \ldots a_{n} \in(N: M)$ or $\hat{a}_{i} s^{\prime} m \in N$, where $\hat{a}_{i}=a_{1} \ldots a_{i-1} a_{i+1} \ldots a_{n}$ for some $1 \leq i \leq n$. If $\hat{a}_{i} s^{\prime} m \in N$, then $\frac{\hat{a}_{i} s^{\prime} m}{s_{1} \ldots s_{i-1} s_{i+1} \ldots s_{n} s^{\prime} l}=\frac{\hat{a}_{i} m}{\hat{s}_{i} l} \in S^{-1} N$, and if $a_{1} \ldots a_{n} \in(N: M)$, then $\frac{a_{1} \ldots a_{n}}{s_{1} \ldots s_{n}} \in S^{-1}(N: M) \subseteq$ ($S^{-1} N: S^{-1} M$). Therefore, $S^{-1} N$ is an n-absorbing submodule of $S^{-1} M$.
(2) Let $a_{1}, \ldots, a_{n} \in R$ and $m \in M$ be such that $a_{1} \ldots a_{n} m \in N$. Then, $\frac{a_{1} \ldots a_{n} m}{1} \in S^{-1} N$. Since $S^{-1} N$ is an n-absorbing submodule of $S^{-1} M$, either $\frac{a_{1} \ldots a_{n}}{1} \in\left(S^{-1} N:{ }_{S^{-1} R} S^{-1} M\right)$ or $\frac{\hat{a}_{i} m}{1} \in S^{-1} N$, where $\hat{a}_{i}=$ $a_{1} \ldots a_{i-1} a_{a+1} . . a_{n}$ for some $1 \leq i \leq n$. Therefore, there exists $s \in S$, such that $\hat{a}_{i} m \in N$. This implies $\hat{a}_{i} m \in N$, since $S \cap Z d(M / N)=\bar{\phi}$. Now, consider the case when $\frac{a_{1} \ldots a_{n}}{1} \in\left(S^{-1} N:_{S^{-1} R} S^{-1} M\right)$, then $a_{1} \ldots a_{n} S^{-1} M \subseteq S^{-1} N$. Now, we have to show $a_{1} \ldots a_{n} M \subseteq N$. Assume that $m^{\prime} \in M$, and then, $\frac{a_{1} \ldots a_{n} m^{\prime}}{1} \in$ $a_{1} \ldots a_{n} S^{-1} M \subseteq S^{-1} N$, so there exists $t \in S$, such that $t a_{1} \ldots a_{n} m \in N$. Since $S \cap Z d(M / N)=\phi$, then $a_{1} \ldots a_{n} m^{\prime} \in N$, and therefore, $a_{1} \ldots a_{n} M \subseteq N$. Hence, N is an n-absorbing submodule of M.

3 Classical \boldsymbol{n}-absorbing submodules

In this section, we introduce and study the concept of classical n-absorbing submodules as a generalization of n-absorbing submodules.

Definition 3.1 A proper submodule N of an R-module M is called a classical n-absorbing submodule if, whenever $a_{1} a_{2} \ldots a_{n+1} m \in N$ for $a_{1}, a_{2}, \ldots, a_{n+1} \in R$ and $m \in M$, there are n of a_{i} 's whose product with m is in N.

Example 3.2 (1) Let $R=\mathbb{Z}$ and $M=R \times R$. The submodule $N=\{(k, k): k \in R\}$ is a classical n-absorbing submodule of M.
(2) Let $R=\mathbb{Z}$ and $M=\mathbb{Z}_{3} \oplus \mathbb{Q} \oplus \mathbb{Z}$. Take $n=2$, the submodule $N=\overline{0} \oplus\{0\} \oplus \mathbb{Z}$ is a classical 2-absorbing submodule of M. To see this, let $a, b, c, z \in \mathbb{Z}, w \in \mathbb{Q}$ and $\bar{x} \in \mathbb{Z}_{3}$ such that $a b c(\bar{x}, w, z) \in N$. Hence, $\overline{a b c x}=\overline{0}$ and $a b c w=0$. If $a b c z \neq 0$, then $w=0$. We have $3 \mid a b c x$, then $3 \mid a b$ or $3 \mid c x$, if $3 \mid a b$, then $a b(\bar{x}, w, z)=(\overline{a b x}, 0, a b z)=(0,0, a b z) \in N$. Similarly if $3 \mid c x$, then $c(\bar{x}, w, z)=(\overline{c x}, 0, c z)=$ $(0,0, c z) \in N$. Now, if $a b c z=0$, then one of a, b, c, z is zero; first, we take one of the scalars which is zero, say a, then $a(\bar{x}, w, z)=(\overline{0}, 0,0) \in N$, and hence $a b(\bar{x}, w, z) \in N$. if $a, b, c \neq 0$ and $z=0$, since $a b c w=0$, then $w=0$ (this was a previous case). If $a, b, c \neq 0, z=0$ and $w \neq 0$, then $a b c w \neq 0$ so $a b c(\bar{x}, w, z) \notin N$, a contradiction. Thus, N is a classical 2-absorbing submodule of M.

Proposition 3.3 Let N be a proper submodule of an R-module M.

(i) If N is an n-absorbing submodule of M, then N is a classical n-absorbing submodule of M.
(ii) If N is an n-absorbing submodule of M and $(N: M)$ is an $(n-1)$-absorbing ideal of R, then N is a classical $(n-1)$-absorbing submodule of M.

Proof (i) Assume that N is an n-absorbing submodule of M. Let $a_{1}, a_{2}, \ldots, a_{n+1} \in R$ and $m \in M$, such that $a_{1} a_{2} \ldots a_{n} a_{n+1} m=a_{1} a_{2} \ldots a_{n}\left(a_{n+1} m\right) \in N$. Then, either there are $n-1$ of a_{i} 's whose product with $a_{n+1} m$ is in N or $a_{1} a_{2} \ldots a_{n} \in(N: M)$. The first case leads us to the claim. In the second case, we have that $a_{1} a_{2} \ldots a_{n} m \in N$. Consequently, N is a classical n-absorbing submodule.
(ii) Assume that N is an n-absorbing submodule of M and $(N: M)$ is an $(n-1)$-absorbing ideal of R. Let $a_{1} a_{2} \ldots a_{n} m \in N$ for some $a_{1}, a_{2}, \ldots, a_{n} \in R$ and $m \in M$, such that there are no $n-1$ of a_{i} 's whose product with m is in N. Then, $a_{1} a_{2} \ldots a_{n} \in(N: M)$, and so, there are $n-1$ of a_{i} 's whose product is in $(N: M)$, which is a contradiction. Hence, N is a classical $(n-1)$-absorbing submodule of M.

Remark 3.4 The following example shows that the converse of Proposition 3.3(i) is not true. Take $n=2$, and let $R=\mathbb{Z}$ and $M=\mathbb{Z}_{3} \oplus \mathbb{Z}_{5} \oplus \mathbb{Z}$. The zero submodule of M is a classical 2-absorbing submodule, but is not 2 -absorbing, since $3.5(1,1,0)=(0,0,0)$, but $3(1,1,0) \neq(0,0,0), 5(1,1,0) \neq(0,0,0)$, and $3.5 \notin\left(0: \mathbb{Z}_{3} \oplus \mathbb{Z}_{5} \oplus \mathbb{Z}\right)=0$.

The following theorem characterizes classical n-absorbing submodule in terms of n-absorbing ideals.
Theorem 3.5 Let M an R-module and N be a proper submodule of M. Then, the followings are equivalent:
(i) N is a classical n-absorbing submodule of M.

(ii) $(N: m)$ is a n-absorbing ideal of R for every $m \in M-N$.

Proof $(i) \Rightarrow(i i)$ Assume that N is a classical n-absorbing submodule. ($N: m$) is a proper ideal, since $m \in M-N$. Let $a_{1} a_{2} \ldots a_{n+1} \in(N: m)$ for some $a_{1}, a_{2}, \ldots, a_{n+1} \in R$. Since N is a classical n-absorbing submodule and $a_{1} a_{2} \ldots a_{n+1} m \in N$, then there are n of a_{i} 's whose product with m is in N, and hence, there are n of a_{i} 's whose product is in $(N: m)$. Thus, $(N: m)$ is n-absorbing ideal.
(ii) $\Leftarrow(i)$ Assume that $(N: m)$ is a n-absorbing ideal of R for every $m \in M-N$. let $a_{1}, a_{2}, \ldots, a_{n+1} \in R$ and $m \in M$ with $a_{1} a_{2} \ldots a_{n+1} m \in N$. If $m \in N$, we are done. Assume that $m \notin N$, since $(N: m)$ is a n-absorbing ideal and $a_{1} a_{2} \ldots a_{n+1} \in(N: m)$, then there are n of a_{i} 's whose product is in $(N: m)$, and hence, there are n of a_{i} 's whose product with m is in N. Therefore, N is a classical n-absorbing submodule of M.

Theorem 3.6 Let M a cyclic R-module and N be a submodule of M. If N is a classical n-absorbing submodule, then N is an n-absorbing submodule of M.

Proof Let $M=R m$ for some $m \in M$. Suppose that $a_{1} a_{2} \ldots a_{n} x \in N$ for some $a_{1}, a_{2}, \ldots, a_{n} \in R$ and $x \in M$. Then, there exists an element $a_{n+1} \in R$, such that $x=a_{n+1} m$. Therefore, $a_{1} a_{2} \ldots a_{n} x=a_{1} a_{2} \ldots a_{n} a_{n+1} m \in$ N, and since N is a classical n-absorbing submodule, then there are n of a_{i} 's whose product with m is in N. Since M is cyclic, $(N: m)=(N: M)$; hence, there are n of a_{i} 's whose product with m is in N or $a_{1} a_{2} \ldots a_{n} \in(N: M)$. Thus, N is an n-absorbing submodule of M.
Now, in the following two corollaries, we characterize the classical n-absorbing submodules in terms of n-absorbing submodules and n-absorbing ideal.

Corollary 3.7 Let M a cyclic R-module and N be a submodule of M. Then, the followings are equivalent:
(i) N is a classical n-absorbing submodule of M.
(ii) N is an n-absorbing submodule of M.

Corollary 3.8 Let M a cyclic multiplication R-module and N be a submodule of M. Then, the followings are equivalent:
(i) N is a classical n-absorbing submodule of M.
(ii) $(N: M)$ is an n-absorbing ideal of R.

Proof Directly by Corollary 3.7 and Proposition 2.4 in [7].
Here, in the next theorem, we investigate a submodule to be classical n-absorbing under some conditions.
Theorem 3.9 Let M an R-module and N be a proper irreducible submodule of M, such that $N_{r}=N_{r^{n}}$ for all $r \in R$, and then, N is a classical n-absorbing submodule of M.

Proof Let $r_{1}, r_{2}, \ldots, r_{n+1} \in R$ and $m \in N$ with $r_{1} r_{2} \ldots r_{n+1} m \in N$, and assume that N is not a classical n-absorbing submodule of M, and so, there are no n of a_{i} 's whose product with m is in N. We have $N \subseteq$ $\bigcap_{i=1}^{n}\left(N+R \hat{r}_{i} m\right)$, where $\hat{r}_{i}=r_{1} r_{2} \ldots r_{i-1} r_{i+1} \ldots r_{n}$. Let $x \in \bigcap_{i=1}^{n}\left(N+R \hat{r}_{i} m\right)$, then $x=x_{1}+s_{1} \hat{r}_{n} m=$ $x_{2}+s_{2} \hat{r}_{n-1} m=\cdots=x_{n}+s_{n} \hat{r}_{1} m$ where $x_{i} \in N$ and $s_{i} \in R$ for every i, then $r_{1}^{n-1} x=r_{1}^{n-1} x_{1}+s_{1} r_{1}^{n-1} \hat{r}_{n} m=$ $r_{1}^{n-1} x_{2}+s_{2} r_{1}^{n-1} \hat{r}_{n-1} m=\cdots=r_{1}^{n-1} x_{n}+s_{n} r_{1}^{n-1} \hat{r}_{1} m$, since $r_{1}{ }^{n-1} x_{n}, s_{n} r_{1}{ }^{n-1} \hat{r}_{1} m \in N$, so $s_{1} r_{1}{ }^{n-1} \hat{r}_{n} m \in N$ which implies that $s_{1}\left(r_{2} r_{3} \ldots r_{n-1}\right) m \in N_{r_{1} n}$, but $N_{r_{1} n}=N_{r_{1}}$, and hence, $s_{1} \hat{r}_{n} m \in N$, and so, $x \in N$. Therefore, $\bigcap_{i=1}^{n}\left(N+R \hat{r}_{i} m\right) \subseteq N$; consequently, $\bigcap_{i=1}^{n}\left(N+R \hat{r}_{i} m\right)=N$, a contradiction, because N is an irreducible. Hence, N is a classical n-absorbing submodule of M.
Theorem 3.10 Let M an R-module and N be a classical n-absorbing submodule of M, such that $(N: y)$ is a prime ideal of R for $y \in M-N$. For $x \in M$, if $(N: x)-\bigcup_{x_{i} \in M-N}\left(N: x_{i}\right) \neq \phi$, then $N=$ $(N+R x) \cap \bigcap_{x_{i} \in M-N}\left(N+R x_{i}\right)$.
Proof Suppose that N is a classical n-absorbing submodule of M. Let $a_{1} a_{2} \ldots a_{n} \in(N: x)-\bigcup_{x_{i} \in M-N}(N$: x_{i}), where $a_{1}, a_{2}, \ldots, a_{n} \in R$, then $a_{1} a_{2} \ldots a_{n} x \in N$ and $a_{1} a_{2} \ldots a_{n} x_{i} \notin N$ for every $x_{i} \in M-N$. It is Clear that $N \subseteq(N+R x) \cap \bigcap_{x_{i} \in M-N}\left(N+R x_{i}\right)$. For the reverse inclusion, let $n \in(N+R x) \cap$ $\bigcap_{x_{i} \in M-N}\left(N+R x_{i}\right)$, then $n=n^{\prime}+r^{\prime} x=n_{i}+r_{i} x_{i}$ for every $x_{i} \in M-N$, where $n^{\prime}, n_{i} \in N$ and $r^{\prime}, r_{i} \in R$. Now, $a_{1} a_{2} \ldots a_{n} n=a_{1} a_{2} \ldots a_{n} n^{\prime}+a_{1} a_{2} \ldots a_{n} r^{\prime} x=a_{1} a_{2} \ldots a_{n} n_{i}+a_{1} a_{2} \ldots a_{n} r_{i} x_{i}$ and $a_{1} a_{2} \ldots a_{n} r^{\prime} x, a_{1} a_{2} \ldots a_{n} n^{\prime}, a_{1} a_{2} \ldots a_{n} n_{i} \in N$, so $a_{1} a_{2} \ldots a_{n} r_{i} x_{i} \in N$. Since N is a classical n-absorbing submodule and $a_{1} a_{2} \ldots a_{n} x_{i} \notin N$, then there are $n-1$ of a_{i} 's whose product with $r_{i} x_{i}$ is in N. Hence, there are

$n-1$ of a_{i} 's whose product with r_{i} is in ($N: x_{i}$). If $x_{i} \in N$, then $r_{i} x_{i} \in N$, and so $n=n_{i}+r_{i} x_{i} \in N$. Assume that $x_{i} \notin N$, so, by hypothesis, $\left(N: x_{i}\right)$ is a prime, and hence, either there are $n-1$ of a_{i} ’s whose product is in $\left(N: x_{i}\right)$ or $r_{i} \in\left(N: x_{i}\right)$. From the first case, we have $a_{1} a_{2} \ldots a_{n} x_{i} \in N$ which is a contradiction. Therefore, $r_{i} \in\left(N: x_{i}\right)$, and hence, $r_{i} x_{i} \in N$. Thus, we have $n=n_{i}+r_{i} x_{i} \in N$, so $(N+R x) \cap \bigcap \bigcap_{x_{i} \in M-N}\left(N+R x_{i}\right) \subseteq N$. Hence, $N=(N+R x) \cap \bigcap_{x_{i} \in M-N}\left(N+R x_{i}\right)$.
Corollary 3.11 Let M an R-module and N be a classical n-absorbing submodule of M, such that $(N: y)$ is a prime ideal of R for $y \in M-N$. For $x \in M-N$, if $(N: x)-\bigcup_{x_{i} \in M-N}\left(N: x_{i}\right) \neq \phi$, then N is not irreducible.

Proof By Theorem 3.10, $N=(N+R x) \cap \bigcap_{x_{i} \in M-N}\left(N+R x_{i}\right)$. Since $x \in M-N$, we have $N \subset(N+R x)$ and $N \subset \bigcap_{x_{i} \in M-N}\left(N+R x_{i}\right)$. Thus, N is not irreducible.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http:// creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Anderson, D.F.; Badawi, A.: On n-Absorbing Ideal of Commutative Rings. Commun. Algebra 39, 1646-1672 (2011)
2. Ashour, A.E.; Al-Ashker, M.M.; Naji, O.A.: On almost 2-absorbing primary sub-modules. IUG J. Nat. Stud. (2017)
3. Ashour, A.E.; Al-Ashker, M.M.; Naji, O.A.: Some results on almost 2-absorbing sub-modules. J. Al Azhar Univ.-Gaza (Nat. Sci.) 18, 1-13 (2016)
4. Azizi, A.: On prime and weakly prime submodules. Vietnam J. Math. 36(3), 315-325 (2008)
5. Badawi, A.: On 2-absorbing ideals of commutative rings. Bull. Aust. Math. Soc. 75, 417-429 (2007)
6. Darani, A.; Soheilnia, F.: 2-Absorbing and weakly 2-absorbing submodules. Thai J. Math. 9(3), 577-584 (2011)
7. Darani, A.; Soheilnia, F.: On n-absorbing submodules. Math. Commun. 17, 547-557 (2012)
8. Dubey, M.; Aggarwal, P.: On 2-absorbing primary submodules of modules over commutative rings. Asian-Eur. J. Math. 8(4), 335-351 (2015)
9. Mostafanasab, H.; Tekir, U.; Oral, K.: Classical 2-absorbing submodules of modules over commutative rings. Eur. J. Pure Math. 8(3), 417-430 (2015)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

[^0]: O. A. Naji (\triangle)

 Department of Mathematics, Sakarya University, Sakarya, Turkey
 E-mail: onaji14@gmail.com

