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ABSTRACT
Introduction: Magnetic resonance imaging (MRI) is the most important tool for diagnosis and follow-up in multiple sclerosis (MS). The discrimination 
of relapsing-remitting MS (RRMS) from secondary progressive MS (SPMS) is clinically difficult, and developing the proposal presented in this study 
would contribute to the process. Objective: This study aimed to ensure the automatic classification of healthy controls, RRMS, and SPMS by using 
MR spectroscopy and machine learning methods. Methods: MR spectroscopy (MRS) was performed on a total of 91 participants, distributed into 
healthy controls (n=30), RRMS (n=36), and SPMS (n=25). Firstly, MRS metabolites were identified using signal processing techniques. Secondly, 
feature extraction was performed based on MRS Spectra. N-acetylaspartate (NAA) was the most significant metabolite in differentiating MS 
types. Lastly, binary classifications (healthy controls-RRMS and RRMS-SPMS) were carried out according to features obtained by the Support 
Vector Machine algorithm. Results: RRMS cases were differentiated from healthy controls with 85% accuracy, 90.91% sensitivity, and 77.78% 
specificity. RRMS and SPMS were classified with 83.33% accuracy, 81.81% sensitivity, and 85.71% specificity. Conclusions: A combined analysis 
of MRS and computer-aided diagnosis may be useful as a complementary imaging technique to determine MS types.

Keywords: Multiple Sclerosis; Multiple Sclerosis, Relapsing-Remitting; Multiple Sclerosis, Chronic Progressive; Magnetic Resonance 
Spectroscopy; Machine Learning. 

RESUMO
Introdução: A ressonância magnética é a ferramenta mais importante para o diagnóstico e acompanhamento na EM. A transição da EM 
recorrente-remitente (EMRR) para a EM progressiva secundária (EMPS) é clinicamente difícil e seria importante desenvolver a proposta 
apresentada neste estudo a fim de contribuir com o processo. Objetivo: o objetivo deste estudo foi garantir a classificação automática de grupo 
controle saudável, EMRR e EMPS usando a RM com espectroscopia e métodos de aprendizado de máquina. Métodos: Os exames de RM com 
espectroscopia foram realizados em um total de 91 amostras com grupo controle saudável (n=30), EMRR (n=36) e EMPS (n=25). Em primeiro 
lugar, os metabólitos da RM com espectroscopia foram identificados usando técnicas de processamento de sinal. Em segundo lugar, a extração 
de recursos foi realizada a partir do MRS Spectra. O NAA foi determinado como o metabólito mais significativo na diferenciação dos tipos de MS. 
Por fim, as classificações binárias (Healthy Control Group-RRMS e RRMS-SPMS) foram realizadas de acordo com as características obtidas por 
meio do algoritmo Support Vector Machine. Resultados: Os casos de EMRR e do grupo de controle saudável foram diferenciados entre si com 85% 
de acerto, 90,91% de sensibilidade e 77,78% de especificidade, respectivamente. A EMRR e a EMPS foram classificadas com 83,33% de acurácia, 
81,81% de sensibilidade e 85,71% de especificidade, respectivamente. Conclusões: Uma análise combinada de RM com espectroscopia e 
abordagem de diagnóstico auxiliado por computador pode ser útil como uma técnica de imagem complementar na determinação dos tipos de EM.

Palavras-chave: Esclerose Múltipla; Esclerose Múltipla Recidivante-Remitente; Esclerose Múltipla Crônica Progressiva; Ressonância 
Magnética com espectroscopia; Aprendizado de Máquina.
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INTRODUCTION

Multiple sclerosis (MS) is an inflammatory autoimmune 
disorder of the central nervous system. In 2013, Lublin et al. 
reviewed MS phenotypes and classification from 1996. 
They  described MS phenotypes as: clinically isolated syn-
drome (CIS), relapsing-remitting multiple sclerosis (RRMS), 
and progressive multiple sclerosis (PMS). RRMS is charac-
terized as active or non-active. PMS, which can be primary 
progressive (PP) or secondary progressive (SP), has four 
possible sub-classifications considering the disability level1. 
Clinical symptoms and findings, cerebrospinal fluid (CSF) 
examinations, and magnetic resonance imaging (MRI) find-
ings have been used to diagnose MS2,3. In particular, the 
widespread use of MRI has revolutionized the diagnosis 
and monitoring of MS. 

Recent studies have emphasized that MR spectros-
copy (MRS) is a convenient alternative method to ana-
lyze MS, understand its pathogenesis, and determine its 
course4,5,6,7. Vingara et  al. calculated metabolic changes 
in MRS data obtained from RRMS and healthy control 
groups by statistical methods and declared that MRS 
data would be useful in clinical trials8. Kirov et al. char-
acterized and followed metabolic changes between the 
control group and early RRMS patients using MRS data9. 
Furthermore, N-acetylaspartate (NAA) peak decreases 
when an orientation from RRMS to SPMS occurs dur-
ing the course of the disease. NAA peaks were shortened 
when RRMS switched to SPMS during the MS course10,11. 
Pan  et  al. determined MRS metabolic values in RRMS, 
SPMS, and PPMS groups and calculated metabolic 
changes by statistical methods12. Narayana et  al. com-
pared metabolic values between PPMS and control groups 
using automatic analysis software13. Changes in NAA lev-
els outside MS brain lesions and inside spinal plaques 
were studied in benign versus non-benign MS, and the 
values obtained were compared with healthy controls14,15. 
Current literature mostly has data relevant to metabolite 
changes in MS; however, a few studies tried to simulta-
neously obtain an MS-diagnosis and a quantitative dis-
ease severity-prediction with the aid of MRS. The reason 
for this scarcity may be the difficulty in examining and 
interpreting MRS signals. Therefore, artificial intelligence 
and computer-aided diagnosis (CAD) are novel and effec-
tive methods that can contribute to overcoming the prob-
lems mentioned above16,17,18. To the best of our knowledge, 
very few studies have addressed the determination of MS 
types with the help of combined approaches, adopting 
both MRS and advanced machine learning algorithms. 
Ion-Margineanu et  al. classified CIS, RRMS, PPMS, and 
SPMS patients using machine learning algorithms trained 
on clinical data (e.g., patient age, disease duration, and 
Expanded Disability Status Scale – EDSS) combined with 
lesion loads and magnetic resonance metabolic features19.

This study examined the combination of MRS and a 
machine learning method for binary classification of healthy 
controls-RRMS and RRMS-SPMS. Moreover, we discussed 
the effectiveness of MRS in MS diagnosis.

METHODS

Patient population and imaging
MS data were obtained from 61 consecutive MS patients 

who voluntarily participated in this study, which was con-
ducted in the MS Clinic of the Neurology Department at the 
Bezmialem University Hospital between June and December 
2015, following the McDonald criteria (2010)20. In addition, a 
healthy control group was created with demographic char-
acteristics similar to those of the RRMS group. Two neu-
rologists with clinical experience in MS and blinded to each 
other confirmed the diagnosis of healthy controls, RRMS, 
and SPMS. Among 61 MS patients, 36 were diagnosed with 
RRMS and the remainder with SPMS. The healthy control 
group consisted of 30 participants with a similar age to that 
of the RRMS group and no statistically significant difference 
(p=0.18). Four patients, who had additional neurological 
disorders, were excluded from the patient group (migraine, 
brain tumor, etc.). Table 1 presents demographic and clinical 
features of the study population.

MRS was performed with a 1.5T Siemens Avanto® MRI 
scanner. MRS data were obtained from short echo time sin-
gle-voxel 1H spectroscopy (SE) signals in STEAM sequence, 
and the parameters used were: repetition time (TR)=2000 ms, 
echo time (TE)=32 ms, and spectral width (SW)=1000 Hz.

Anatomical images included sagittal, axial, and coronal 
FLAIR sequences. FLAIR MR images (9000/109/1 – TR/TE/
number of excitations [NEX]) were obtained with a 5 mm 
thick section (axial, sagittal, and coronal). Figure 1 shows a 
sample voxel placement for RRMS and SPMS lesions.

For an automatic specification of MS types via sin-
gle-voxel spectroscopy, a CAD system was designed, con-
sisting of four different basic steps described in Figure 2. 
Data acquisition, signal processing, feature extraction, and 

Control group RRMS SPMS

Number of 
subjects 30 (w:18, m:12) 36 (w:24, m:12) 25 (w:16, m:9)

Age* 37.3±9.87 34.2±8.85 48.1±8.84

Disease 
duration (y)* ---- 2.33±2.08 10.51±6.32

EDSS+ ---- 1 (0-3.5) 4 (2.5-7.5)

Table 1. Demographic and clinical features of the study 
population.

RRMS: relapsing-remitting multiple sclerosis; SPMS: secondary progressive 
multiple sclerosis; EDSS: Expanded Disability Status Scale; w: women; m: 
men; y: years. *Values are expressed as mean±standard deviation. +Values 
are expressed as median (min-max) values.
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Figure 1. Sample voxel placement

Figure 2. Process steps and algorithms of the study.

classification stages comprised the different sub-processing 
steps. All experimental studies were performed with a laptop 
working on a Windows 7 operating system, 4-core 2.4 GHz 
i7 processor, and 16 GB memory. The TARQUIN (Version 
4.3.6) and MATLAB (Version R2010b) programs were used in 
all experiments.

Statistical analysis
This study used the SPSS (Version:20.0) software for all 

statistical data analysis. Concentrations of NAA, choline 
(Cho), creatine (Cr), and myo-inositol (MI) metabolites clini-
cally collected from healthy control and MS groups and rates 
of these metabolites were statistically analyzed. Statistical 
significance was set as p<0.05. Data were compared to a nor-
mal distribution using the Kolmogorov–Smirnov test and 
histograms. Normally distributed data were analyzed with 

Student’s t-test, and non-normally distributed data were 
assessed with the Mann-Whitney U-test. In addition, a box-
plot was used to show metabolites and their rates using the 
OriginPro software (Version 9.3).

Single-voxel spectroscopy processing
Single-voxel spectroscopy (SVS) data were obtained 

from Siemens .rda files. SVS raw data were analyzed with 
the TARQUIN software. TARQUIN is an accurate and robust 
algorithm for assessing and quantifying single-voxel MRS 
analysis in the time domain21. TARQUIN has some pre-pro-
cessing and fitting modules for quantifying MRS metabo-
lites. Eddy current correction using Klose’s method22, water 
removal by Hankel singular value decomposition (HSVD), 
phase correction, automatic referencing, basis-set simu-
lation, signal model, and constraint fitting were applied by 
TARQUIN for pre-processing and quantitation of either the 
time or frequency domain. Time-domain signals were trans-
formed into frequency-domain ones using Fourier transform 
for the actual quantification. The main metabolites of inter-
est area ranging from 5.5 to 9.0 ppm in this study.19,23,24. 

Conventional MRI and SVS data were examined by two 
radiology experts with at least 10 years of experience in the 
field. All SVS data were reviewed for quality and assessed 
with quality control (QC) criteria. Following the experts’ 
opinion, SVS spectra of insufficient quality were not included 
in the final data set. In addition, all SVS data reached the 
TARQUIN quality control values for two parameters – full-
width half-maximum (FWHM) and signal-to-noise (SNR) 
ratio. The FWHM obtained from TARQUIN was ≤0.15 ppm. 
The SNR obtained from TARQUIN was >519,24.

MRS spectra and metabolite changes in healthy con-
trols and RRMS and SPMS patients were identified with 
the help of these procedures. Figure 3 shows sample MR 
images and MRS spectra of healthy controls and RRMS and 
SPMS patients.
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Feature extraction/selection
SVS comprises 1024 data points in the TARQUIN soft-

ware. In this step, SVS data features were extracted, and 
the most representative ones were determined. The current 
study used the peak integration (PI) method of MATLAB to 
obtain significant features25. The PI method calculates peak 
values of the most important metabolites, such as NAA, 
Cho, Cr, and MI, and the area under these peaks for each 
selected metabolite resonance. Fifteen ranges were used for 
short TE spectra, which were integrated into a window of 
0.15 ppm around the expected chemical shift of the main 
resonance of the metabolites26. These values were used as 
classification input.

Classification
The feature vectors obtained in the feature extraction 

step were used to classify healthy controls-RRMS and RRMS-
SPMS. Feature standardization was carried out for each clas-
sification task. Four-fold cross-validation was used in the fea-
ture standardization step. In this method, feature sets of each 
patient were randomly divided into four parts – one used for 
the test and the remaining three for training. This  process 
was repeated until each of the four folds was used as the 
testing set. This procedure was repeated until all feature sets 
from all patients were tested.

We also used a Support Vector Machine (SVM), which is fre-
quently adopted in fields such as image processing, statistics, 
and machine learning. This method can classify two or more 
classes of linear or non-linear data. It counts with optimiza-
tion techniques, which attempt to find the optimal separat-
ing plane between the two classes. The SVM algorithm classi-
fies the features that cannot be separated linearly with kernel 
functions. Linear, radial basis, polynomial, and gaussian kernel 
functions are commonly used27,28. This study used the quadratic 
kernel function. Quadratic kernel function is a popular form of 
polynomial kernel function. Polynomial kernel functions whose 
“d” value is 1 receive the name of linear kernel function; when 
this value is 2, they are named quadratic kernel function29. 
Determining hyperparameters is critical to the performance of 
quadratic kernel functions. This study adopted grid-search and 
k-fold cross-validation methods to find optimal hyperparame-
ter tuning (C, γ, r, and d). In the hyperparameter optimization 
process via grid-search with cross-validation, all results were 
observed for combinations of all values in a determined inter-
val, and the best combination was chosen for the hyperparam-
eter group. In the grid-search method, C (2-10, 2-9, ..., 21), γ (2-10, 2-9, 
..., 21), r (2-10, 2-9, ..., 21), and d (0, 1, 2, 3, 4, 5) intervals were chosen 
for hyperparameter tuning. Class imbalance is a common prob-
lem in machine learning algorithms. Thus, we set the class_
weight parameter to ‘balanced’ to adjust for class imbalance.

Figure 3. MR images and MRS signals of healthy controls and RRMS and SPMS patients.
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RESULTS

In this study, SVS data obtained from 30 healthy controls 
and 36 RRMS and 25 SPMS patients were used as datasets. 
First, we assessed the detectability of MS types according to 
metabolite changes by performing a basic statistical analysis 
of the dataset. Based on the analysis, the mean levels of NAA 
peaks were 5.93±2.92, 9.24±2.01, and 7.70±2.85 in healthy 
controls, RRMS patients, and SPMS patients, respectively. 
These values may reflect a decreasing trend in NAA peak in 
progressive forms of MS. In healthy controls, the mean level 
of Cr and Cho metabolites were 2.93±1.75 and 2.83±1.86, 
respectively. The mean levels of the Cr and Cho metabolites 
were 5.88±1.41 and 5.89±1.42, respectively, in RRMS patients 
and 4.93±1.95 and 4.93±2.11, respectively, in SPMS patients.

Figure 4 shows a box-plot with the statistical details of 
the dataset used in the study. As seen in Figure 4, metabolite 
ranges are closer in the RRMS and SPMS groups. Therefore, 
differentiating MS types with the help of basic statistical 
methods is difficult.

Second, the performance of the proposed CAD sys-
tem, which was developed to overcome the mentioned 
limitation in the differentiation of MS types, was evaluated 
according to accuracy (Acc), sensitivity (Sen), and specific-
ity (Spe) parameters. 

We used binary classification (healthy controls-RRMS 
and RRMS-SPMS) to differentiate MS types. In the first evalu-
ation, healthy controls and RRMS patients were categorized 
in binary classification. Forty-six SVS data randomly selected 
from the dataset were used for training, and the remaining 20 
were used for tests (70% training, 30% test). Table 2 presents 
the results obtained.

According to test results, 10 of the 11 patients diagnosed 
with RRMS and 7 of the 9 individuals considered healthy 

controls by neurologists were correctly classified by the pro-
posed CAD system. Acc, Sen, and Spe of the CAD system 
were 85%, 90.91%, and 77.78%, respectively. 

Furthermore, RRMS and SPMS patients were classified using 
the SVM method. Forty-tree MRS data were used for training, 
and the remaining 18 MRS data were used for testing. Table 3 
reports the test results of the RRMS and SPMS classification.

According to the experiments, 9 of the 11 patients diag-
nosed with RRMS and 6 of the 7 patients diagnosed with SPMS 
by neurologists were correctly classified by the proposed 
CAD system. Consequently, Acc of the system was 83.33%. 

The second evaluation used a k-fold (k=4) cross-valida-
tion technique30. In this method, the SVS dataset was ran-
domly divided into four parts – one used for the test and 
the remaining three for training. Tables 4 and 5 describe the 
binary classification results of the 4-fold cross-validation. 

The total performance of RRMS and healthy control clas-
sification was: Acc: 83.33±2.9%, Sen: 80.56±4.81%, and Spe: 
86.67±10.13%.

As shown in Table 5, the 4-fold cross-validation results of 
RRMS and SPMS were: Acc: 81.96±4.91%, Sen: 83.33±5.55%, 
and Spe: 80±5.15%.

Figure 4. Box-plots of metabolite levels in healthy controls and RRMS and SPMS patients.

Table 2. Assessment of the system performance success as 
a confusion matrix for the classification of RRMS cases and 
healthy controls.

Gold 
standard

Predicted
Total Results (%)

RRMS Control

RRMS 10 1 11
Accuracy: 85

Sensitivity: 90.91
Specificity: 77.78

Control 2 7 9

Total 12 8 20

RRMS: relapsing-remitting multiple sclerosis.
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examined the usability of MRS in MS and identified MS 
types using machine learning approaches. The literature 
has few studies addressing MS detection and classification 
based on machine learning and MRS data19. For example, 
Vingara et al. distinguished MRS data from RRMS and con-
trol groups with an accuracy of 86% using advanced statis-
tics8. In contrast to their methodology, we applied machine 
learning algorithms instead of statistical methods, which 
allowed us to differentiate between healthy controls, RRMS 
patients, and SPMS patients. To the best of our knowl-
edge, our study is the first to demonstrate the possibility of 
automatic differentiation between healthy controls, RRMS 
cases, and SPMS cases with high accuracy and machine 
learning methods.

According to our results, we can affirm that SVS associ-
ated with machine learning approaches has the potential to 
contribute further to identifying MS types. Differentiating 
between healthy controls, RRMS cases, and SPMS cases is 
clinically important since the type of MS determines the 
treatment strategy. If the RRMS-SPMS differentiation occurs 
at a very early stage, the treatment algorithm can be orga-
nized accordingly36.

Corroborating other studies5,6, we also found that the 
most determining metabolite in distinguishing MS types is 
NAA. Abd El-Rahman et al. have stated that RRMS and SPMS 
patients can be identified with the help of MRS; however, they 
did not use the computer-aided machine learning method. 
The same study detected a significant decrease in MS plaques 
and NAA and Cr peaks among SPMS patients. At the same 
time, the Cho peak showed no significant changes11. Similarly, 
a study presented by Aboul-Enein reported decreases in NAA, 
Cho, and Cr peaks in parallel with increasing disease severity10. 
In our study, the most significant change was observed in the 
NAA peak. Certain decreases were found in Cho and Cr peaks, 
but in contrast to the studies mentioned above, the levels of 
NAA/Cr and NAA/Cho ratios showed no significant differ-
ences. Furthermore, MI peak levels decreased with the prog-
ress of the disease.

Some limitations of our study and areas for future 
research should be mentioned. The most important factor 
that determined the success of our approach is the train-
ing dataset. If the MRS dataset is enriched with healthy con-
trol, RRMS, and SPMS samples, the success of our method 
increases due to better learning of MS cases. Another limita-
tion of the study was obtaining MRS data from a single MR 
scanner. In future studies, the proposed CAD can be evalu-
ated with MRS data collected from different MR scanners. 
Moreover, a future study is planned in which RRMS, SPMS, 
and PPMS will be compared separately with sufficient num-
bers of patients in each group. Also, a new feature extraction 
method can be proposed for MRS data.

In conclusion, we have investigated the ability of SVS 
associated with a machine learning approach in differentiat-
ing between healthy controls, RRMS cases, and SPMS cases. 

Table 4. Four-fold cross-validation results for the 
classification of RRMS cases and healthy controls.

Gold 
standard

Predicted
Total Results (%)

RRMS Control

RRMS 29 7 36 Accuracy: 83.33±2.9
Sensitivity: 
80.56±4.81
Specificity: 

86.67±10.13

Control 4 26 30

Total 33 3 66

RRMS: relapsing-remitting multiple sclerosis.

RRMS: relapsing-remitting multiple sclerosis; SPMS: secondary progressive 
multiple sclerosis.

Table 5. Four-fold cross-validation results for the 
classification of RRMS and SPMS

Gold 
standard

Predicted
Total Results (%)

RRMS SPMS

RRMS 30 6 36 Accuracy: 81.96±4.91
Sensitivity: 
83.33±5.55

Specificity: 80±5.15

SPMS 5 20 25

Total 35 26 61

Table 3. Assessment of the system performance success as a 
confusion matrix for the classification of RRMS and SPMS.

Gold 
standard

Predicted
Total Results (%)

RRMS SPMS

RRMS 9 2 11
Accuracy: 83.33

Sensitivity: 81.81
Specificity: 85.71

SPMS 1 6 7

Total 10 8 18

RRMS: relapsing-remitting multiple sclerosis; SPMS: secondary progressive 
multiple sclerosis.

DISCUSSION

The literature has emphasized that MRS may be used as 
a complementary imaging technique in the follow-up and 
for understanding the disease mechanisms4,7. Moreover, the 
NAA metabolite should be taken into consideration when 
determining MS types. Other metabolites do not demon-
strate any significant change regarding disease classifica-
tion5,6. Many studies have analyzed the changes in metab-
olite levels to diagnose MS. However, MRS is still not a 
preferred imaging technique for MS diagnosis. This fail-
ure may be related to many reasons, such as the difficulty 
of conventional radiologists in analyzing and interpreting 
MRS signals, the lack of precise imaging standardization, 
and the inability to achieve the intended specificity and 
sensitivity in clinical practice31.

CAD approaches based on MRS are generally recom-
mended to detect tumors, determine tumor grades, and dif-
ferentiate tumors from other brain lesions32,33,34,35. Our study 
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We found that healthy controls-RRMS and RRMS-SPMS can 
be used with a moderate degree of sensitivity and specific-
ity. In future works, novel CAD approaches combined with 
MRS might provide supportive means for MRI to diagnose 
and classify different MS types.
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