

BaNiSn₃-tipi Süperiletkenlerin Fiziksel Özelliklerinin Teorik İncelenmesi

Program Kodu: 1001

Proje No: 115F135

Proje Yürütücüsü: Prof. Dr. HÜSEYİN MURAT TÜTÜNCÜ

<u>Araştırmacı(lar):</u> Doç. Dr. Adil BAŞOĞLU

<u>Bursiyer(ler):</u> Doktora Öğrencisi Hüseyin Yasin Uzunok Yüksek Lisans Öğrencisi Elif İPSARA Yüksek Lisans Öğrencisi Enes ARSLAN

> Eylül 2017 ANKARA

ÖNSÖZ

Proje kapsamında, LaPtSi₃, LaPdSi₃, LaRhSi₃, LaIrSi₃ SrAuSi₃, CaIrSi₃ ve CaPtSi₃ gibi BaNiSn₃ -tipi bileşenlerin yapısal, elektronik ve süperiletkenlik özellikleri yoğunluk fonksiyonel teorisi kullanılarak detaylı bir şekilde incelenmiştir. Tüm bu özelliklerin incelenmesinde Yoğunluk Fonksiyonel Teorisi (DFT)'nin Genelleştirilmiş Gradyan Yaklaşımı (GGA) ve *ab-initio* düzlem dalga pseudopotansiyel metotları kullanıldı ve incelemelerde düzlem dalga ve pseudopotansiyel teorilerini temel alan QUANTUM ESPRESSO programı kullanıldı.

Perdew-Burke-Ernzerhof tarafından parametrize edilmiş GGA yaklaşımı kullanılarak değiş tokuş ve korelasyon etkileşimlerini incelemek için kullanıldı. Daha sonra lineer tepki metodu ile BaNiSn₃ -tipi kristallerinin titreşim özellikleri ve süperiletkenlik özellikleri incelendi. Yukarıdaki çalışmaları içeren ve 'BaNiSn₃-tipi Süperiletkenlerin Fiziksel Özelliklerinin Teorik İncelenmesi' konulu projemiz Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TÜBİTAK) tarafından 115F135 proje numarasıyla 24 Ay süre ile desteklenmiştir.

Proje Yürütücüsü: Prof. Dr. Hüseyin Murat TÜTÜNCÜ

İÇİNDEKİLER

İÇİNDEKİLER	iii
SİMGELER VE KISALTMALAR LİSTESİ	v
ŞEKİLLER LİSTESİ	vi
TABLOLAR LİSTESİ	ix
ÖZET	xii
ABSTRACT	xiii
BÖLÜM 1. GİRİŞ	1
BÖLÜM 2. LİTERATÜR ÖZETİ	3
BÖLÜM 3. MATERYAL VE YÖNTEM	7
3.1 Teori	7
3.1.1 Yoğunluk Fonksiyonel Teorisi	7
3.1.2 Kristalin Toplam Enerjisinin Hesaplanması	7
3.1.3 Örgü Sabitleri ve Hacim Modülünün Belirlenmesi	8
3.1.4 Elektronik Band Yapı Teorisi	9
3.1.5 Elektronik Band Yapısının Hesaplanması	10
3.1.6 <i>Ab initio</i> Örgü Dinamiği Teorisi	10
3.1.7 Fonon Spektrumu ve Durum Yoğunluğunun Hesaplanması	11
3.1.8 Süperiletkenlik Özellikleri İçin Kullanılan Teori	11
BÖLÜM 4. KONU ve KAPSAM	16
BÖLÜM 5. ANALİZ VE BULGULAR	23
5.1 SrAuSi ₃ Malzemesinin İncelenmesi	23
5.1.1 SrAuSi ₃ Malzemesinin Yapısal Özellikleri	23
5.1.2 SrAuSi ₃ Materyalinin Elektronik Yapısı	24
5.1.3 SrAuSi ₃ Malzemesinin Titreşim Özellikleri	25
5.1.4 SrAuSi ₃ Materyalinin Süperiletkenlik Özellikleri	28

5.2 CalrSi₃ Materyalinin İncelenmesi	29
5.2.1 CaIrSi₃ Materyalinin Yapısal Özellikleri	29
5.2.2 CaIrSi₃ Materyalinin Elektronik Özellikleri	30
5.2.3 CalrSi₃ Materyalinin Titreşim Özellikleri	32
5.2.4 CalrSi₃ Materyalinin Süperiletkenlik Özellikleri	34
5.3 LaPtSi₃ Malzemesinin Hesaplanmış Değerleri	36
5.3.1 LaPtSi₃ Malzemesinin Yapısal Özellikleri	36
5.3.2 LaPtSi₃ Malzemesinin Elektronik Yapısı	37
5.3.3 LaPtSi₃ Malzemesinin Titreşim Özellikleri	38
5.3.4 LaPtSi₃ Malzemesinin Süperiletkenlik Özellikleri	40
5.4 LaIrSi₃ Malzemesinin Hesaplanmış Değerleri	41
5.4.1 LaIrSi₃ Malzemesinin Yapısal Özellikleri	41
5.4.2 LaIrSi₃ Malzemesinin Elektronik Yapısı	42
5.4.3 LaIrSi₃ Malzemesinin Titreşim Özellikleri	44
5.4.4 LaIrSi₃ Malzemesinin Süperiletkenlik Özellikleri	45
5.5 LaRhSi₃ Malzemesinin Hesaplanmış Değerleri	47
5.5.1 LaRhSi₃ Malzemesinin Yapısal Özellikleri	47
5.5.2 LaRhSi₃ Malzemesinin Elektronik Yapısı	48
5.5.3 LaRhSi ₃ Malzemesinin Titreşim Özellikleri	50
5.5.4 LaRhSi ₃ Malzemesinin Süperiletkenlik Özellikleri	51
5.6 LaPdSi ₃ Malzemesinin Hesaplanmış Değerleri	52
5.6.1 LaPdSi₃ Malzemesinin Yapısal Özellikleri	52
5.6.2 LaPdSi₃ Malzemesinin Elektronik Yapısı	53
5.6.3 LaPdSi₃ Malzemesinin Titreşim Özellikleri	54
5.6.4 LaPdSi₃ Malzemesinin Süperiletkenlik Özellikleri	56
5.7 CaPtSi₃ Malzemesinin Hesaplanmış Değerleri	57
5.7.1 CaPtSi₃ Malzemesinin Yapısal Özellikleri	57
5.7.2 CaPtSi₃ Malzemesinin Elektronik Yapısı	57
5.7.3 CaPtSi₃ Malzemesinin Titreşim Özellikleri	60
5.7.4 CaPtSi₃ Malzemesinin Süperiletkenlik Özellikleri	62
BÖLÜM 6. TARTIŞMA	63

SİMGELER VE KISALTMALAR LİSTESİ

Å	: Angström
BCT	: Hacim Merkezli Tetragonal
BCS	: Bardeen-Cooper- Schrieffer
DFT	: Yoğunluk Fonksiyonel Teorisi
eV	: Elektron-Volt
GGA	: Genelleştirilmiş Gradyan Yaklaşımı
GPa	: GigaPascal
ħ	: İndirgenmiş Planck Sabiti (1.054571726×10 ⁻³⁴ j.s)
K	: Kelvin
LA	: Boyuna Akustik
LO	: Boyuna Optik
N(E _F)	: Fermi Seviyesi Elektronik Durum Yoğunluğu
\vec{q}	: Dalga Vektörü
Ry	: Rydberg
$\rho(r)$: Temel Hal Elektronik Yük Yoğunluğu
Θ_D	: Debye Sıcaklığı
ТА	: Enine Akustik
T _c	: Süperiletkenliğe Geçiş Sıcaklığı (Kritik Sıcaklık))
THz	: TeraHertz
ТО	: Enine Optik
SI	: Uluslararası Sistem
ω	: Açısal Frekans

ŞEKİLLER LİSTESİ

Şekil 2-1 LuNi ₂ B ₂ C süperiletkeni için Eliashberg fonksiyonunun ve elektron-fonon	
etkileşim parametresinin frekansla ile değişimleri	. 4
Şekil 3-1 (a) Dhcp La yapısı ve (b) bu yapı için enerji-hacim grafiği	. 9
Şekil 4-1 Hacim Merkezli Tetragonal BaNiSn ₃ kristal yapısının şematik gösterimi	17
Şekil 4-2 BeTe için (100) yönünde elde edilen valans bant dağılımı. Deneysel	
veriler karelerle gösterilmiştir.	18
Şekil 4-3 Taban merkezli ortorombik yapıya sahip olan süperiletken LaNiGa2 'nin	
elektronik durum yoğunluğu	20
Şekil 4-4 Heusler kristal yapıdaki YPd ₂ Sn'nin fonon spektrumu ve fonon durum	
yoğunluğu	22
Şekil 4-5 LuNi2B2C süperiletkeni için Eliashberg fonksiyonunun ve elektron-fonon	
etkileşim parametresinin frekansla ile değişimleri	22
Şekil 5-1 SrAuSi₃ için kristal yapının gösterimi	24
Şekil 5-2 SrAuSi₃ için elektronik band yapısı ve elektronik durum yoğunluğu	
grafikleri	25
Şekil 5-3 SrAuSi₃'ün bazı modların özuzanımlarının gösterilmesi	26
Şekil 5-4 SrAuSi ₃ malzemesi için fonon dağılım eğrileri(üstte) ve fonon durum	
yoğunluğunun(altta) gösterim	27
Şekil 5-5 SrAuSi ₃ için Eliashberg Spektral fonksiyonunun elektron-fonon etkileşim	
parametresi λ ile değişimi	28
Şekil 5-6 BaNiSn ₃ -tipi kristal yapıda CalrSi ₃ malzemesinin kristal yapısı.	
Görüldüğü gibi z-eksenine dik olan bir ayna düzlemi bulunmamaktadır.	
	30
Şekil 5-7 CalrSi ₃ için elektronik band yapısı grafikleri (a) SOE'li ve (b) SOE'siz	
olarak görülmektedir	31

Şekil 5-8 CalrSi $_3$ için SOE ile hesaplanmış elektronik durum yoğunluğu grafiği...... 32

Şekil 5-9 CalrSi3 de bazı modların özuzanımlarının gösterilmesi	33
Şekil 5-10 CalrSi₃ için (a) fonon dağılım eğrileri ve (b) fonon durum yoğunluğunun	
gösterimi	34
Şekil 5-11 CalrSi₃ için Eliashberg Spektral fonksiyonunun elektron-fonon etkileşim	
parametresi λ ile değişimi	35
Şekil 5-12 BaNiSn ₃ -tipi kristal yapıda LaPtSi ₃ malzemesinin kristal yapısı. z-	
eksenine dik olan bir ayna düzlemi bulunmamaktadır	36
Şekil 5-13 LaPtSi3 için (a) elektronik band yapısı ve (b) elektronik durum	
yoğunluğunun gösterimi	38
Şekil 5-14 LaPtSi₃'ün bazı modlarının özuzanımlarının gösterilmesi	39
Şekil 5-15 LaPtSi3 malzemesi için fonon dağılım eğrileri(üstte) ve fonon durum	
yoğunluğunun(altta) gösterim	40
Şekil 5-16 LaPtSi3 için Eliashberg Spektral fonksiyonunun elektron-fonon etkileşim	
parametresi λ ile değişimi	41
Şekil 5-17 LalrSi₃ malzemesi için kristal yapının gösterimi	42
Şekil 5-18 LaIrSi3 malzemesi için hesaplanan a) elektronik yapı ve b) elektronik	
durum yoğunluğu grafikleri	43
Şekil 5-19 LalrSi ₃ 'ün bazı modlarının özuzanımlarının gösterilmesi	45
Şekil 5-20 LaIrSi3 malzemesi için (a)fonon dağılım eğrileri ve (b)fonon durum	
yoğunluğunun gösterimi	46
Şekil 5-21 LalrSi3 malzemeleri için Eliashberg Spektral fonksiyonunun elektron-	
fonon etkileşim parametresi λ ile değişimi	47
Şekil 5-22 LaRhSi₃ için kristal yapının gösterimi	48
Şekil 5-23 LaRhSi₃ malzemesi için hesaplanan a) elektronik yapı ve b) elektronik	
durum yoğunluğu grafikleri	49
Şekil 5-24 LaRhSi3 malzemesi için (a)fonon dağılım eğrileri ve (b)fonon durum	
yoğunluğunun gösterimi	51
Şekil 5-25 LaRhSi3 malzemesi için Eliashberg Spektral fonksiyonunun elektron-	
fonon etkileşim parametresi λ ile değişimi	52
Şekil 5-26 LaRhSi₃ için kristal yapının gösterimi	53
Şekil 5-27 LaPdSi₃ malzemesi için hesaplanan a) elektronik yapı ve b) elektronik	
durum yoğunluğu grafikleri	54
Şekil 5-28 LaPdSi₃ malzemesi için (a)fonon dağılım eğrileri ve (b)fonon durum	

		yoğunluğunun gösterimi	56
Şekil 5	5-29	LaPdSi ₃ malzemesi için Eliashberg Spektral fonksiyonunun elektron-	
		fonon etkileşim parametresi λ ile değişimi	57
Şekil 5	5-30	CaPtSi₃ malzemesi için l4mm uzay grubunda kristal yapının gösterimi	58
Şekil 5	5-31	(a) CaPtSi₃ için yüksek simetri noktalarında elektronik band yapısının	
		gösterimi ve (b) kısmi elektronik durum yoğunluklarının gösterimi	59
Şekil 5	5-32	CaPtSi₃ malzemesinin bazı modlarının özvektörler ile gösterimi	60
Şekil 5	5-33	CaPtSi3 malzemesi için (a)fonon dağılım eğrileri ve (b)fonon durum	
		yoğunluğunun gösterimi	61
Şekil 5	5-34	CaPtSi ₃ malzemesi için Eliashberg Spektral fonksiyonunun elektron-	
		fonon etkileşim parametresi λ ile değişimi	62

TABLOLAR LİSTESİ

Tablo 3-1 Dhcp La'nın durgun özelliklerinin deneysel ve teorik sonuçlarla	l
karşılaştırılması	9
Tablo 3-2 Dhcp La için hesaplanan süperiletkenlik parametreleri	14
Tablo 4-1 Kübik spinel LiMn ₂ O ₄ materyalinin GGA metodu ile hesaplanmış örgü	I
parametresi (a), iç parametre (x) ve hacim modülü değerleri deneyse	
verilerle kıyaslanarak gösterilmiştir	17
Tablo 5-1 SrAuSi3 malzemesinin hesaplanan yapısal özellikleri ve daha öncek	i
mevcut deneysel ve teorik verilerle karşılaştırılması	23
Tablo 5-2 SrAuSi3 için titreşim modlarının frekansları, elektron-fonon etkileşim	1
poarametreleri ve yaptıkları aktif ışımalarının gösterimi. IR:infrared, R	1
Raman ışımalarını temsil etmektedir	27
Tablo 5-3 SrAuSi $_3$ malzemesi için elde edilmiş değerler; N(E _F), Fermi seviyesinde	;
durum yoğunluğunu; λ , elektron-fonon etkileşim parametresini; $\omega_{ m in}$	J
ortalama logaritmik frekansı; $ heta$ D, Debye sıcaklığını; T _c , süperiletkenliğe	;
geçiş sıcaklığını göstermektedir	28
Tablo 5-4 CalrSi3 malzemesi için hesaplanan yapısal değerlerin daha öncek	i
deneysel ve teorik verilerle kıyaslanması	29
Tablo 5-5 CalrSi3 için titreşim modlarının frekansları, elektron-fonon etkileşim	1
poarametreleri ve yaptıkları aktif ışımalarının gösterimi. IR:infrared, R	1
Raman ışımalarını temsil etmektedir	33
Tablo 5-6 CalrSi3 malzemesi için elde edilmiş değerler; N(EF), Fermi seviyesinde	;
durum yoğunluğunu; λ , elektron-fonon etkileşim parametresini; $\omega_{ ext{in}}$	ı
ortalama logaritmik frekansı; $ heta$ D, Debye sıcaklığını; T _c , süperiletkenliğe	;
geçiş sıcaklığını göstermektedir	35
Tablo 5-7 LaPtSi3 malzemesi için hesaplanmış değerlerin elde bulunan öncek	i
verilerle kıyaslanmış tablosu	37

Tablo 5-8 LaPtSi ₃ için titreşim modlarının frekansları (THz), elektron-fonon	
etkileşim parametrelerinin (λ) gösterimi	39
Tablo 5-9 LaPtSi ₃ malzemesi için elde edilmiş değerler; $N(E_F)$, Fermi seviyesinde	
durum yoğunluğunu; λ , elektron-fonon etkileşim parametresini; $\omega_{ ext{in}},$	
ortalama logaritmik frekansı; $ heta_D$, Debye sıcaklığını; T _c , süperiletkenliğe	
geçiş sıcaklığını göstermektedir	40
Tablo 5-9 LaPtSi₃ malzemesi için elde edilmiş değerler; N(EF), Fermi seviyesinde	
durum yoğunluğunu; λ , elektron-fonon etkileşim parametresini; $\omega_{ ext{in}},$	
ortalama logaritmik frekansı; θ⊳, Debye sıcaklığını; T₅, süperiletkenliğe	
geçiş sıcaklığını göstermektedir	41
Tablo 5-10 LalrSi ₃ malzemelerinin hesaplanan yapısal özellikleri ve daha önceki	
mevcut deneysel verilerle karşılaştırılması.	42
Tablo 5-11 LaIrSi ₃ malzemesi için titreşim modlarının frekansları (THz), elektron-	
fonon etkileşim parametrelerinin (λ) gösterimi	44
Tablo 5-12 LaIrSi₃ malzemesi için elde edilmiş değerler; N(E _F), Fermi seviyesinde	
durum yoğunluğunu; λ , elektron-fonon etkileşim parametresini; $\omega_{ ext{in}}$,	
ortalama logaritmik frekansı; $ heta_D$, Debye sıcaklığını; T _c , süperiletkenliğe	
geçiş sıcaklığını göstermektedir	46
Tablo 5-13 LaRhSi₃ malzemesinin hesaplanan yapısal özellikleri ve daha önceki	
mevcut deneysel verilerle karşılaştırılması	48
Tablo 5-14 LaRhSi ₃ için titreşim modlarının frekansları (THz), elektron-fonon	
etkileşim parametrelerinin (λ) gösterimi	50
Tablo 5-15 LaRhSi ₃ malzemesi için elde edilmiş değerler; N(E _F), Fermi	
seviyesinde durum yoğunluğunu; λ , elektron-fonon etkileşim	
parametresini; ω_{ln} , ortalama logaritmik frekansı; θ_D , Debye sıcaklığını;	
T _c , süperiletkenliğe geçiş sıcaklığını göstermektedir	52
Tablo 5-16 LaPdSi ₃ malzemesinin hesaplanan yapısal özellikleri ve daha önceki	
mevcut deneysel verilerle karşılaştırılması.	53
Tablo 5-17 LaPdSi ₃ için titreşim modlarının frekansları (THz), elektron-fonon	
etkileşim parametrelerinin (λ) gösterimi	55
Tablo 5-18 CaPtSi₃ malzemesinin hesaplanan yapısal özellikleri ve daha önceki	
mevcut deneysel verilerle karşılaştırılması.	58
Tablo 5-19 CaPtSi ₃ için titreşim modlarının frekansları (THz), elektron-fonon	

etkileşim parametrelerinin (λ) gösterimi	60
Tablo 5-20 CaPtSi $_3$ malzemesi için elde edilmiş değerler; N(E_F), Fermi seviyesinde	
durum yoğunluğunu; λ , elektron-fonon etkileşim parametresini; ω_{ln} ,	
ortalama logaritmik frekansı; $ heta_D$, Debye sıcaklığını; T $_c$, süperiletkenliğe	
geçiş sıcaklığını göstermektedir	62

ÖZET

Günümüzde alışageldik süperiletkenlerde kristal yapının tersinir simetrisi Cooper çiftlerinin biçimlenmesinde etkin rol oynar. Bu nedenle BaNiSn3-tipi c-ekseni boyunca tersinir simetrisi olmayan materyallerde süperiletkenliğin ortaya çıkmasıyla merkezi simetrik olmayan (noncentrosymmetric) süperiletkenler hem teorik hem de deneysel açıdan oldukça güncel bir konu olarak kabul görmektedir. Buna benzer sebeple Hacim Merkezli Tetragonal BaNiSn3 yapıda kristalleşen yeni merkezi simetrik olmayan (noncentrosymmetric) süperiletkenlerin keşfedilmesi için çok miktarda deneysel çalışma yapılmıştır. Bunun sonucunda LaPtSi₃, LaPdSi₃, LaRhSi₃, LaIrSi₃, SrAuSi₃, CaIrSi₃ ve CaPtSi₃ gibi BaNiSn₃ -tipi bileşenlerde süperiletkenlik gözlemlendi. Her ne kadar süperiletkenlik bu malzemeler için deneysel olarak gösterilmiş olsa da elektronik ve fonon özellikleri detaylı olarak incelenmemiştir Elektronlar malzemelerin elektriksel özelliklerinden sorumlu iken fononlar malzeme içerisindeki ses hızı ve sıcaklık değişimi için ne kadar ısı alması gerektiği gibi özellikleri belirler. İlave olarak fononlar ve elektronlar süperiletkenlik için çok önemlidir çünkü Bardeen-Cooper-Schrieffer'in BCS teorisinde açıklandığı gibi fononlar, Cooper çiftleri oluşturmasında etkin rol oynarlar

LaPtSi₃, LaPdSi₃, LaRhSi₃, LaIrSi₃, SrAuSi₃, CaIrSi₃ ve CaPtSi₃ gibi BaNiSn₃-tipi bileşenleri ilkprensip hesaplamaları ile yapısal ve elektronik olarak incelemenin faydalı olacağını düşünüyoruz. Bu materyallerin elektronik yapısını Fermi enerjisi yakınlarında incelenmiştir çünkü BCS teorisinde Cooper çiftlerinin Fermi seviyesine yakın elektronlarca biçimlendirildiği bilinmektedir. Bu sonuçların ışığında bu materyallerde fononların çalışılması için lineer tepki metodu uygulanmıştır. Bu BaNiSn₃-tipi bileşenlerde Fonon dağılım eğrileri ve durum yoğunlukları detaylı olarak incelenmiştir. Alan-merkezli fonon modlarının özuzanımları bu materyallerde analiz edilmiştir. Son olarak bu materyaller için Fermi seviyesinde durum yoğunlukları N(E_F), Eliashberg spektral fonksiyonu $\alpha^2 F(\omega)$,elektron-fonon etkileşim parametresi λ , elektronik özgül ısı sabiti (γ) ve süperiletkenlik geçiş sıcaklığı (T_c) gibi parametrelerin hesaplanması için elektron-fonon etkileşimlerinin *ab initio* hesaplamaları yapılmıştır. Bu hesaplanmış süperiletkenlik parametrelerini kullanarak bu materyallerde süperiletkenliğin kaynağı açıklanmıştır.

Anahtar Kelimeler: BaNiSn₃ yapı, süperiletkenlik, elektronik yapı, fononlar, elektron-fonon etkileşimi, yoğunluk fonksiyonel teorisi

ABSTRACT

The inversion symmetry of a crystal structure plays an important role in the formation of Cooper pairs in conventional superconductors. Therefore, with the occurrence of superconductivity in BaNiSn₃ type materials, which lacks inversion symmetry along the c-axis, noncentrosymmetric superconductors have considered as a hot topic of current research from both experimental and theoretical points of view. Superconductivity has been discovered for several BaNiSn3 compounds such as LaPtSi₃, LaPdSi₃, LaRhSi₃, LaIrSi₃, SrAuSi₃, CaIrSi₃ and CaPtSi₃. Electrons are responsible for the electrical properties of materials, phonons determine such things as the speed of sound within a material and how much heat it takes to change its temperature. Phonons are essential in superconductivity because they play the role of bringing about the coupling between electrons to form Cooper pairs which are amenable for superconductivity, as explained in the Bardeen, Cooper, and Schrieffer (BCS) theory.

First-principles calculations for the structural and electronic properties of the LaPtSi₃, LaPdSi₃, LaRhSi₃, SrAuSi₃, CaIrSi₃ and CaPtSi₃ is calculated. We have analysed the electronic structure of these materials close to the Fermi level because Cooper pairs in the BCS theory can be formed by electrons which have energies close to the Fermi level. With the availability of these results, a linear response method has been applied to study phonons in these materials. Phonon dispersion curves and phonon density of states for these BaNiSn3 compounds is presented and discussed in detail. We have carried out *ab initio* calculations of electron-phonon interaction for this material in order to calculate their superconducting parameters such as the density of states at the Fermi level (N(E_F)), the Eliashberg spectral function($\alpha^2 F(\omega)$), the electron-phonon coupling parameter (T_c). Using the calculated superconducting parameters, we explained the origin of superconductivity in these materials.

Keywords: BaNiSn₃ structure, superconductivity, electronic structure, phonons, electron-phonon interaction, density functional theory.

BÖLÜM 1. GİRİŞ

Malzemeler akıma karşı göstermiş olduğu tepkilere göre iletken, yarıiletken ve yalıtkan olarak üç kısma ayrılmaktadır. Bazı metaller ve onların bazı bileşikleri yeteri kadar düşük sıcaklıklara soğutulduğu zaman akıma karşı direnç göstermediği gözlemlenmiştir. Bu durum "süperiletkenlik" olayı olarak isimlendirilmiştir. Süperiletkenlik olayı ilk olarak 1911 yılında Hollanda'lı fizikçi Heike Kamerlingh Onnes tarafından keşfedilmiştir. Kamerlingh Onnes yapmış olduğu çalışmada civayı sıvı helyum ortamında 4,2 K civarına kadar soğutmuştur ve bu sıcaklık yakınlarında civanın akıma karşı direnç göstermediğini gözlemlemiştir (Onnes 1911). Yani Kamerlingh Onnes civanın 4,2 K civarında süperiletkenlik durumuna geçtiğini gözlemlemiştir. Kamerlingh Onnes tarafından keşfedilmiş olan bu süperiletkenlik olayı sadece bilimsel açıdan değil teknolojik açıdan da çok önemlidir. Çünkü direnci olmayan elektrik kabloları ile akım, kayıpsız olarak istenilen her yere taşınılabilir. Ayrıca süperiletkenler ısı yaymadığı için daha küçük hacme sahip hızlı çalışabilen devreler yapılabilir. Bu olay telefon, bilgisayar, televizyon gibi teknolojik cihazların geliştirilmesinde önemli bir rol oynayabilir. Örneğin dünyanın en hızlı süper bilgisayarlarından birisi (Tanhe-2) Çin'liler tarafından süperiletken malzeme kullanılarak üretilmiştir. Süperiletkenliğin akıma karşı direnç göstermemesinin yanısıra diğer önemli bir özelliği de manyetik alanı dışarlamasıdır. 1933 yılında Walter Meissner ve Robert Ochsenfeld tarafından keşfedilen bu etki, manyetik alan içerisinde bulunan bir süperiletken malzeme süperiletkenlik geçiş sıcaklığının (T_c) altına kadar soğutulduğunda manyetik alan çizgilerini dışlaması olayıdır. Manyetik alanın bu şekilde dışarlanması olayı Meissner etkisi olarak bilinir (Meissner ve Ochsenfeld 1933). Meissner etkisinden faydalanılarak tasarlanan MAGLEV trenleri Japonya'nın Yamana şehrinde gerçekleştirilen deneme sürüşünde 603 km/h hıza ulaşmıştır. Ayrıca süperiletkenlerin önemli özelliklerinden faydalanılarak günlük hayatta kullanılan birçok cihaz tasarlanmıştır. Bu cihazlara MRI (manyetik rezonans görüntüleme) mıknatısları, NMR (nükleer manyetik rezonans) spektroskopisi, SQUID (süperiletken kuantum girişim cihazı) manyetometresi gibi kimyasal analitik cihazlar, motorlar, gemi iticileri ve soğutucu mıknatıslar örnek olarak verilebilir. Bu keşiflerden sonra süperiletkenliğin mekanizması ve yeni süperiletken malzeme bulmak için yapılan çalışmalar hızlanmıştır. Bu çalışmalar sonucunda yüzlerce süperiletkenlik gösteren malzeme keşfedilmiştir.

Süperiletkenlik olayının detaylarını araştırabilmek için 1935 yılında London(London ve London 1935), 1950 yılında ise Ginzberg tarafından iki önemli teori ortaya atılmıştır (Ginzburg 1950). 1957 yılında Bardeen, Cooper ve Schrieffer isimli üç bilim adamının soy isimlerinin baş harfleri ile adlandırılan BCS teorisi bu iki teoriye göre daha modern ve süperiletkenlik olayını daha iyi açıklamaktadır (Bardeen vd. 1957). 1972 yılında Bardeen, Cooper ve Schrieffer yapmış oldukları çalışmalar için Nobel Fizik ödülüne layık görülmüşlerdir. BCS teorisi göre süperiletkenlik olayı elektron-fonon etkileşmelerinden kaynaklanmaktadır. BCS teorisi 30 K sıcaklığının altında süperiletken olan malzemeler için geçerlidir.

Doğada bulunan BaNiSn₃–tipi kristallere benzer yapıda kristalleşen malzemelerden birçoğu süperiletkenlik özelliği göstermektedir. Bu iki kristal yapıya benzer olarak kristalleşen malzemeler yıllardır çok yoğun bir şekilde deneysel ve teorik olarak çalışılmaktadır. Bu projede bu yapıda kristalleşen LaPtSi₃, LaPdSi₃, LaRhSi₃, LaIrSi₃, SrAuSi₃, CaIrSi₃ ve malzemelerinin yapısal, elektronik, titreşim ve süperiletkenlik özellikleri Yoğunluk Fonksiyonel Teorisi kullanılarak teorik olarak incelenmiştir. Yazılım olarak ise Yoğunluk Fonksiyonel Teorisini temel alan özellikle elektronik yapı ve fonon hesapları gibi önemli çalışmalar yapılabilen "Quantum Espresso" programı kullanılmıştır (Giannozzi vd. 2009).

BÖLÜM 2. LİTERATÜR ÖZETİ

BaNiSn₃ kristal yapısı BaAl₄ kristal yapısının bir türevidir. Bu kristal yapının diğer türevleri ise ThCr₂Si₂ ve CaBe₂Ge₂ kristal yapılarıdır. Bu kristal yapıda kristalleşen malzemelerin süperiletkenlik özelliği göstermesi bu malzemeler üzerine ilgiyi gün geçtikçe arttırmıştır. ThCr₂Si₂ ve CaBe₂Ge₂ kristal yapılarından farklı olarak BaNiSn₃ kristal yapısı tersinir simetriye sahip değildir. Alışageldik süperiletkenlerde kristal yapının tersinir simetrisi Cooper çiftlerinin biçimlenmesinde etkin rol oynar. Bu nedenle BaNiSn₃ tipi C ekseni boyunca tersinir simetrisi olmayan materyallerde süperiletkenliğin incelenmesi hem deneysel açıdan hem de teorik açıdan oldukça ilgi çekici ve güncel bir konudur. CeTSi₃ (T= Co,Ru,Rh,Pd,Os,Ir ve Pt) ve CeTGe₃ (T=Fe,Co,Rh ve Ir) malzemeleri BaNiSn₃ kristal yapıya sahiptirler. Bunların içinde CeRhSi₃, CelrSi₃, CeCoGe₃ ve CelrGe₃ basınç altında süperiletkenlik özellikleri göstermektedir. 2004 yılında tersinir simetriye sahip olmayan CePt₃Si malzemesinin de süperiletkenlik özellik gösterdiği deneysel olarak bulundu(Pfleiderer 2009). Bu malzeme için süperiletkenliğe geçiş sıcaklığı 0,5 K ile 0,75 K arasındaydı. Fakat Sezyum içeren bu süperiletkenlerin büyük bir kısmı antiferromanyetik ve sadece basınç altında süperiletkenlik göstermekteydi. Son yıllarda Sezyum içermeyen ve atmosfer basıncında süperiletkenlik özelliği gösteren BaNiSn₃ kristal yapılı malzemeler bulundu. Bu süperiletkenler BaPtSi₃(Bauer vd. 2009), CalrSi₃(Eguchi vd. 2010; Eguchi vd. 2011; Eguchi vd. 2012; Singh vd. 2014), CaPtSi₃(Singh vd. 2014; Eguchi vd. 2011), SrAuSi₃(Isobe vd. 2014) ve LaPtSi₃(Kumar vd. 2010; Smidman vd. 2014) malzemeleridir.

Şekil 2-1 LuNi₂B₂C süperiletkeni için Eliashberg fonksiyonunun ve elektron-fonon etkileşim parametresinin frekansla ile değişimleri.

1984 yılında Lejay ve arkadaşları BaNiSn₃ (veya BaPtSn₃) kristal yapıdaki LalrSi₃, LaRhSi₃ malzemelerinin 1.9 K ile 2,7 K arasında süperiletkenlik özelliği gösterdiklerini deneysel olarak kanıtladı(Lejay vd. 1984). Günümüzde de La içeren BaNiSn₃ yapıdaki malzemeler üstüne deneysel ilgi devam etmektedir. Bunun nedeni hem yüzey merkezli kristal yapıda (fcc) ve çift hekzagonal sıkı-paket (dhcp) yapıda kristalleşen Lantanyumun her iki fazının da süperiletken olmasıdır(Balster ve Wittig 1975; Johnson ve Finnemore 1967). LaPdSi₃ üzerine yapılan öz ısı ölçümleri bu materyalin süperiletkenliğe geçiş sıcaklığının 2,6 K olduğunu gösterdi(Kitagawa vd. 1997). 2007 yılında LalrSi3'ün manyetik ve süperiletkenlik özellikleri deneysel olarak Okuda ve arkadaşları tarafından incelendi(Okuda vd. 2007). 2008 yılında LaRhSi₃ süperiletkeninin elektronik özellikleri deneysel olarak incelendi(Terashima vd. 2008). Anand ve arkadaşları müon spektroskopisi kullanarak LaRhSi₃ materyalinin süperiletkenlik sıcaklığını 2,16 K olarak buldu(Anand vd. 2011). 2014 yılında ısı sığası ölçümleri ile LalrSi₃ süperiletkeninin fiziksel özellikleri incelendi(Anand vd. 2014). 2014 yılında LaPdSi3 ve LaPtSi3 malzemeleri üzerine yapılan ısı sığası ölçümleri bu malzemelerin sırası ile 2,65 K ve 1,2 K' de süperiletken olduklarını gösterdi(Smidman vd. 2014). 2014 Aralık'ta yaptığımız araştırmalarda LalrSi₃, LaPtSi₃, LaPdSi₃ materyalleri üzerine yapılan araştırmalarda bu materyaller için herhangi bir teorik çalışmaya rastlanmamıştır. Fakat LaRhSi3 'ün elektronik yapısının 2008 yılında yerel yoğunluk yaklaşımı (LDA) ile çalışıldığı tespit edilmiştir(Terashima vd. 2008). Süperiletkenlikte elektronların oynadığı rolden dolayı bu malzemelerin elektronik özelliklerinin teorik olarak detaylı bir şekilde incelenmesi gereklidir.

2011 yılında BaNiSn₃ kristal yapıya sahip olan yeni süperiletken malzemeler keşfedildi(Eguchi vd. 2011). Bu süperiletkenler CalrSi₃ (T_c =3,6 K) ve CaPtSi₃ (T_c =2,3 K) malzemeleridir.2013

yılında CalrSi₃ materyalindeki süperiletkenlik de deneysel olarak incelendi(Eguchi vd. 2012). Bu çalışmada bu materyalin elektronik durum yoğunluğu x-ışınları fotoemisyon spektroskopisi ile incelendi. 2014 yılında CalrSi₃ ve CaPtSi₃ malzemelerin süperiletkenlik özellikleri müon spektroskopisi ile incelenerek daha önceki deneysel çalışmalara destek olundu(Singh vd. 2014). Bu malzemelerde süperiletkenliğin bulunması bazı teorik çalışmaların yapılmasına vesile olmuştur. 2010 yılında Bannikov ve arkadaşları genelleştirilmiş gradyan yaklaşımını kullanarak CalrSi₃ ve CaPtSi₃ malzemelerinin elektronik özelliklerini inceledi(Bannikov vd. 2010). Bu malzemelerin elektronik özellikleri Kaczkowski ve Jeziersky tarafından hem yerel yoğunluk yaklaşımı hem de genelleştirilmiş gradyan yaklaşımı kullanılarak incelendi(Kitagawa vd. 1997). Eguchi ve arkadaşları da yoğunluk fonksiyonel teorisini kullanarak CalrSi₃ materyalinin elektronik yapısını ve elektronik durum yoğunluğunu hesapladılar(Eguchi vd. 2012).

2014 yılında Isobe ve arkadaşları SrAuSi₃ materyalinin 1,54 K'de süperiletkenlik özelliği gösterdiğini deneysel olarak buldular(Isobe vd. 2014). Ayrıca bu çalışmada bu süperiletkenin elektronik bant yapısı ve elektronik durum yoğunluğu GGA kullanılarak teorik olarak da incelendi. Altın içeren bu malzemede süperiletkenlik özelliği gözlemlenmesi ilgi çekicidir çünkü iyi iletkenler süperiletkenlik özelliği göstermezler.

Sonuç olarak bu literatür araştırması göstermiştir ki BaNiSi₃ tipi kristal yapıdaki malzemeler süperiletkenlik özelliklerinden dolayı 1980'lerden günümüze kadar güncelliğini korumuştur. Fakat teorik çalışmalar deneysel çalışmaların yanında kısıtlı kalmıştır. Ayrıca incelenecek olan LaPtSi₃, LaPdSi₃, LaRhSi₃, LaIrSi₃, SrAuSi₃, CaIrSi₃ ve CaPtSi₃ malzemelerin hiçbirinde elektron-fonon etkileşim özellikleri Migdal-Eliashberg teorisi kullanılarak incelenmemiştir. Bu teori daha önce de belirttiğimiz gibi hem elektronlardan hem de fononlardan gelen katkıyı içerdiğinden elektron-fonon etkileşim parametresini elde etmek için en sağlıklı metottur. Yaptığımız araştırmada bu materyaller üzerine ne teorik ne de deneysel fonon çalışmasına rastlanmamıştır. Cooper çiftlerinin oluşumunda bir aktör elektron ise diğer aktör de fonondur. Bu yüzden hangi fonon modlarının süperiletkenliğe sebep olduğunun belirlemesi için fonon çalışmaları olmazsa olmazdır. Bu malzemelerde süperiletkenliğin kaynağının belirlenmesi için yapısal, elektronik, fonon ve elektron-fonon etkileşimi özelliklerinin incelenmesi temel ihtiyaçtır. Bu projede LaPtSi₃, LaPdSi₃, LaRhSi₃, LaIrSi₃, SrAuSi₃, CaIrSi₃ ve CaPtSi₃ kristallerinin yapısal, elektronik, titreşim özellikleri yoğunluk fonksiyonel teorisi kullanılarak detaylı bir şekilde incelenmiş ve bu malzemelerde süperiletkenliğin kaynağı elektronik ve titreşim

özellikler yardımı le detaylı bir şekilde açıklanmıştır. Teorik çalışmalarımız daha önceki deneysel verilerle kıyaslanarak kıyaslama yapılmıştır.

BÖLÜM 3. MATERYAL VE YÖNTEM

3.1 Teori

3.1.1 Yoğunluk Fonksiyonel Teorisi

Temeli yoğunluk fonksiyonel teorisine dayanan *ab initio* teorileri, kristallerin yapısal, elektronik ve dinamik özelliklerini araştırmak için ideal metotlardır. Bu metotların son yıllarda oldukça popüler olmalarının nedeni, hiçbir deneysel veriye ihtiyaç duymadan kullanılabilmeleridir. Yoğunluk fonksiyonel teorisinin temelleri 1960'lı yıllarda Hohenberg-Kohn (Hohenberg ve Kohn 1964) ve Kohn-Sham (Kohn ve Sham 1965) tarafından atılmıştır. Günümüzde bilgisayar sistemlerinin gelişmesi ve bu sayede bilgisayarların işlemleri çok daha hızlı bir şekilde yapabilmeleri, bu metotların önemini iyice artırmıştır. Şimdiye kadar bu metotlarla yapılan araştırmalar, deneysel sonuçlarla mükemmele varan uyumlar vermiştir. Bununla birlikte deneysel çalışma yapmanın çok zor olduğu kristallerin taban durum özellikleri de bu metotlarla belirlenerek, katıhal fiziğinin ve elektroniğin kullanımına sunulabilir. Şimdi yoğunluk fonksiyonel teorisinin uygulanışından kısaca bahsedelim.

3.1.2 Kristalin Toplam Enerjisinin Hesaplanması

Bu teoride taban durumu dalga fonksiyonu Ψ , elektronik yük yoğunluğuna bağlı olarak ifade edilir. Aynı şekilde sistemin toplam enerjisi $E_{top}(R_{\alpha})$ da elektronik yük yoğunluğunun (n(r,R_{\alpha})) bir fonksiyonu olur. Bu teoride kristalin toplam enerjisi,

$$E_{top}(R_{\alpha}) = \sum_{i}^{\text{val.el.}} \Psi_{i}^{*}(r, R_{\alpha}) \left(-\frac{\hbar^{2}}{2m} \nabla^{2}\right) \Psi_{i}(r, R_{\alpha}) + \sum_{i}^{\text{val.el.}} \Psi_{i}^{*}(r, R_{\alpha}) V^{PS} \Psi_{i}(r, R_{\alpha}) dr + \frac{e^{2}}{2} \int \frac{n(r, R_{\alpha}) n(r', R_{\alpha})}{|r - r'|} dr dr' + E_{XC}[n(r, R_{\alpha})] + \frac{e^{2}}{2} \sum_{\alpha \neq \beta} \frac{Z_{\alpha} Z_{\beta}}{|R_{\alpha} - R_{\beta}|}$$
(3.1)

şeklinde ifade edilir. Buradaki toplamlar değerlik elektronları üzerindendir. Çünkü kimyasal ve fiziksel özelliklerin belirlenmesine katkıda bulunan elektronlar bunlardır. r ve R_{α} sırasıyla

elektron ve iyon korlarının pozisyonlarını ifade eder. $n(r, R_{\alpha})$ ise temel hal elektronik yük yoğunluğudur.

3.1.3 Örgü Sabitleri ve Hacim Modülünün Belirlenmesi

Bir kristalin toplam enerjisinin bulunması oldukça önemlidir. Çünkü toplam enerjinin bulunması ile materyalin fiziksel özelliklerinin tayini mümkün olur. Toplam enerjiyi hesaplamak için denge durumundaki örgü sabitlerinin tayin edilmesi gerekir. Örgü sabitlerinin belirlenebilmesi için öncelikle kristalin yapısı bilinmelidir. Şekil 3.1 (a)'da Lantanyum (La) kristalinin çift hekzagonal sıkı paketlenmiş yapısı (dhcp) gösterilmiştir. Bu kristalin örgüsünün hekzagonal olduğu açıktır. Bu kristal için *a* ve c olmak üzere iki örgü parametresi bulunmaktadır.

Bu kristal yapıda denge durumu örgü sabitlerini belirlemek için yukarıdaki enerji formülü kullanılarak farklı hacim değerlerine karşılık gelen enerjiler hesaplanır. Elde edilen sonuçlardan yararlanılarak, enerji-hacim grafiği çizilir. Bu grafikte enerjinin minimum olduğu yerde hacmin değeri belirlenir. Şekil 3.1 (b)'de dhcp La kristali için minimum enerjiyi gösteren grafik sunulmuştur.

Toplam enerji ve denge durumundaki örgü sabiti bulunduktan sonra aşağıda verilen Murnaghan eşitliklerinden (Murnaghan 1944),

$$P = \frac{B_0}{B_0'} \left[\left(\frac{\Omega_0}{\Omega} \right)^{B_0'} - 1 \right]$$
(3.2)

$$E = \frac{\Omega_0 B_0}{B_0'} \left[\frac{1}{B_0' - 1} \left(\frac{\Omega}{\Omega_0'} \right)^{B_0' - 1} + \frac{\Omega}{\Omega_0} \right] - \frac{\Omega_0 B_0}{B_0' - 1} + E(\Omega_0)$$
(3.3)

hacim modülü (B_0) ve onun basınca göre türevi hesaplanacaktır. Unutulmamalıdır ki hacim modülü bir kristalin dayanıklılığının bir ölçüsüdür. Hacim modülü hesaplanmadan hiçbir kristal teknolojik uygulamalarda verimli bir şekilde kullanılamaz.

Şekil 3-1 (a) Dhcp La yapısı ve (b) bu yapı için enerji-hacim grafiği.

La için hesaplanan statik özellikler Tablo 3.1'de sunulmuştur (Bağcı vd. 2010). Bu tabloda hesaplanan özellikler deneysel verilerle karşılaştırılmıştır (Syassen ve Holzapfel 1975; Kittel 2014). Hesaplanan α ve c değerleri deneysel değerlerden sırasıyla %2,8 ve %1,5 farklıdır. Hesaplanan hacim modülü de deneysel değer olan 24,3 GPa değeriyle uyum içindedir.

	α(Å)	c(Å)	<i>B₀</i> (GPa)	B'
GGA ^(Bağcı vd. 2010)	3,801	12,261	26,30	2,89
Deneysel ^{(Syassen ve} Holzapfel 1975)	3,773	12,081		
Deneysel ^(Kittel 2014)			24,3	

Tablo 3-1.Dhcp La'nın durgun özelliklerinin deneysel ve teorik sonuçlarla karşılaştırılması

3.1.4 Elektronik Band Yapı Teorisi

Yoğunluk fonksiyonel teorisine göre bir kristalin elektronik enerjisi:

$$E_{\rm el}[V_{\rm dis}, n] = T_0[n] + \int dr V_{\rm dis}(r) n(r) + \frac{e^2}{2} \int \int dr dr' \, \frac{n(r) \, n(r')}{|r - r'|} + E_{\rm dt}[n]$$
(3.4)

şeklindedir. Buradaki birinci terim $T_0(n)$, n(r) yoğunluklu birbirleriyle etkileşmeyen elektronlardan oluşan bir sistemin kinetik enerjisidir. İkinci terim, iyonların oluşturduğu potansiyelin toplam enerjiye katkısını ifade eder. Üçüncü terim, elektronların birbirleriyle etkileşmelerinin toplam enerjiye katkısıdır. Son terim $E_{dt}(n)$ ise, bağımsız elektron modeli için klasik olmayan çok cisim değiş tokuş etkileşimlerini ifade eder.

3.1.5 Elektronik Band Yapısının Hesaplanması

Denge durumundaki örgü sabitleri kullanılarak yukarıda verilen eşitlikten elektronik enerji (E_{el}) hesaplanacaktır. Toplam enerjinin hesaplanmasında elektronların maksimum kinetik enerjileri 60 Ry alınacak ve ters örgü uzayındaki toplamlar için 349 özel **k** değeri kullanılacaktır. Tüm çözümler GGA yaklaşımı altında yapılacak ve değiş-tokuş etkileşimi için Perdew-Burke-Ernzerhof(PBE) parametreleri hesaba katılacaktır (Perdew vd. 1996).

3.1.6 Ab initio Örgü Dinamiği Teorisi

Bu metotta kristaldeki elektron-iyon potansiyeli atomik yerdeğiştirmelere bağlı olan bir $\lambda = (\lambda_i)$ parametresi cinsinden ifade edilebilir (Srivastava 1990). Böylece elektronların temel hal enerjisinin bu parametreye göre türevi;

$$\frac{\partial E_{\lambda}}{\partial \lambda_{i}} = \int n_{\lambda}(r) \ \frac{\partial V_{\lambda}(r)}{\partial \lambda_{i}} \ dr$$
(3.5)

şeklinde ifade edilebilir. Burada $n_{\lambda}(r)$ elektron yoğunluk dağılımını ifade eder. Kullandığımız λ parametreleri, $u_{\alpha i}(R)$ ile ifade edilirse, sistemin kuvvet sabiti, atomik ve elektronik kuvvet sabitlerinin toplamı şeklinde aşağıdaki gibi yazılabilir.

$$\frac{\partial^2 E}{\partial u_{\alpha i}(R) \partial u_{\beta j}(R)} = \Phi_{\alpha i,\beta j}^{\text{iyon}}(R - R') + \Phi_{\alpha i,\beta j}^{\text{elektron}}(R - R')$$
(3.6)

İyonik kuvvet sabitleri aşağıda belirtilen iyonik enerjinin, yerdeğiştirmeye göre ikinci türevinden hesaplanabilir (Srivastava 1990).

$$E_{\rm iyon-iyon} = \sum_{i} \sum_{j} \frac{e^2 Z_i Z_j}{|R + \tau_i - R' - \tau_j|}$$
(3.7)

Elektronik kuvvet sabitleri ise iyon-elektron etkileşiminden oluşan potansiyellerle kısaca aşağıdaki şekilde ifade edilebilir.

$$\Phi_{\alpha i,\beta j}^{\text{elektron}}(R-R') = \int \left(\frac{\partial \mathbf{n}(r)}{\partial u_{\alpha i}(R)} \frac{\partial V_{\text{iyon}}(r)}{\partial u_{\beta j}(R)} + \mathbf{n}_0(r) \frac{\partial^2 V_{\text{iyon}}(r)}{\partial u_{\alpha i}(R) \partial u_{\beta j}(R)}\right) dr$$
(3.8)

Toplam kuvvet sabiti aşağıdaki gibi bir hareket denkleminde yerine konularak, hem iyonların titreşim vektörleri hem de titreşim enerjileri hesaplanır (Srivastava 1990).

$$M_{i}\ddot{u}_{i}(R) = -\sum_{R',j} \Phi_{\alpha\beta}^{\text{iyon+elektron}} \mathbf{u}_{\beta}(R')$$
(3.9)

3.1.7 Fonon Spektrumu ve Durum Yoğunluğunun Hesaplanması

Hacim fonon spektrumlarını elde etmek için 13 **q** noktası için dinamik matrisler hesaplanacaktır. Daha sonra ters örgü uzayında olan bu matrisler Fourier dönüşümleri ile normal uzaya taşınacaktır. Sonrasında hareket denklemi çözülerek 1. Brillouin bölgesinde simetri yönlerinde fonon eğrileri çizilecektir. Durum yoğunluğunun hesaplanması ise indirgenmis birinci Brillouin bölgesinin içinde alınan daha çok sayıda **q** vektörleri ile yapılacaktır.

3.1.8 Süperiletkenlik Özellikleri İçin Kullanılan Teori

Fonon durum yoğunluğu,

$$F(\omega) = \sum_{qj} \delta(\omega - \omega_{qj})$$
(3.10)

ile verilir. Burada ω_{qj} atomik yerdeğiştirmeler ile ilgili qj'inci fonon modudur. Elektron-fonon etkileşmeleri için matris elemanları (McMillan 1968; Allen 1972),

$$g_{(k+q)m;kn}^{qj} = \sqrt{\frac{\hbar}{2M\omega_{qj}}} \langle \Phi_{(k+q)m} | \boldsymbol{e}_{qj} \vec{\nabla} V^{\text{SCF}}(\boldsymbol{q}) | \Phi_{kn} \rangle$$
(3.11)

şeklindedir. Burada M atomik kütle ve $\bar{v}v^{SCF}(\mathbf{q})$, **q** dalga vektörlü bir fonondan kaynaklanan atomik yerdeğiştirmeye göre kararlı etkin potansiyelin türevidir.

Elektron-fonon matris elemanları ile

$$\gamma_{qj} = 2\pi\omega_{qj} \sum_{knm} \left| g_{(k+q)m;kn}^{qj} \right|^2 \delta(\varepsilon_{kn} - \varepsilon_F) \delta(\varepsilon_{(k+q)m} - \varepsilon_F)$$
(3.12)

eşitliğinden yararlanılarak γ_{qi} fonon çizgi genişliği hesaplanır.

 λ_{qi} fonon bağımlı elektron-fonon çiftlenimini daha hassas biçimde belirlemek için 24x24x24 **k** ağı ve 0,03 Ryd Gaussian genişliğini seçmek uygundur. Elektron-fonon çiftlenimi,

$$\lambda_{qj} = \frac{\gamma_{qj}}{\pi N(E_F)\omega_{qj}^2}$$
(3.13)

bağıntısından belirlenebilir. Burada N(E_F) Fermi seviyesinde elektronik durum yoğunluğudur. Elektron-fonon etkileşme parametresi ve fonon genişliği hesaplamalarında fonon spektrumlarında görülen beklenmedik durumlar etkili olmaktadır.

Elektron-fonon etkileşim parametresini elde etmek için elektron-fonon spektral fonksiyonu, fonon çizgi genişliği kullanılarak (McMillan 1968; Allen 1972),

$$\alpha^{2}F(\omega) = \frac{1}{2\pi N(E_{F})} \sum_{qj} \frac{\gamma_{qj}}{\hbar \omega_{qj}} \delta(\omega - \omega_{qj})$$
(3.14)

bağıntısından elde edilir. Ortalama elektron-fonon etkileşim parametresi ise (McMillan 1968; Allen 1972),

$$\lambda = 2 \int \frac{\alpha^2 F(\omega)}{\omega} d\omega$$
(3.15)

formülden elde edililir. Süperiletkenlik çalışmalarında anafikirlerden birisi elektron-fonon etkileşiminin gücünü tayin etmektir. Yukarıdaki formülle dhcp La için elektron-fonon etkileşimi parametresi 0,97 olarak bulunmuştur. Bu veri dhcp La'nın süperiletkenlik için bir aday olduğunu gösterir. λ parametresi hesaplandıktan sonra süperiletkenliğe geçiş sıcaklığı,

$$T_{c} = \frac{\omega_{ln}}{1,2} exp\left(-\frac{1,04(1+\lambda)}{\lambda - \mu^{*}(1+0,62\lambda)}\right)$$
(3.16)

eşitliğinden hesaplanabilir. Burada ω_{ln} , logaritmik ortalama fonon frekansı ve μ^* Coulomb itme sabitidir. Bu iki parametre aşağıdaki gibi hesaplanabilir.

$$\omega_{ln} = \exp(2\lambda^{-1} \int_0^\infty \frac{d\omega}{\omega} \alpha^2 F(\omega) \ln\omega)$$
(3.17)

$$\mu^* = \frac{0.20 N(E_F)}{(1 + N(E_F))} \tag{3.18}$$

Bu parametrelere ek olarak ortalama fonon frekansları,

$$\langle \omega \rangle = \frac{\int_0^\infty \omega^n \frac{\alpha^2 F(\omega)}{\omega} d\omega}{\int_0^\infty \frac{\alpha^2 F(\omega)}{\omega} d\omega}$$
(3.19)

formülüyle hesaplanır. < ω^n > değerleri kullanmış olduğumuz Quantum Espresso programı tarafından hesaplanmamaktadır. Programa müdahele edilerek bu değerin hesaplanması sağlanmıştır. Özellikle < ω^2 > değeri oldukça önemlidir çünkü bu değerin büyük olması elektronfonon etkileşimine negatif katkı yapmaktadır. Bu negatif etki aşağıdaki formülden

$$\lambda = \frac{\eta}{M\langle\omega^2\rangle} \tag{3.20}$$

açık bir şekilde görülebilir. Buna ek olarak ω²'nin ortalama değerini kullanarak Debye sıcaklığına geçiş yapmak mümkündür. Bu geçiş aşağıdaki formül kullanılarak kolay bir şekilde yapılabilir,

$$\theta_D^2 = 2.0 \left< \omega^2 \right> \tag{3.21}$$

T_c ve θ_D değerlerinin bilinmesiyle elektron çiftleri arasındaki çekici etkileşim potansiyeline geçiş yapılabilir.

$$N(E_F)V_P = \left(\ln\left(\frac{1.14\theta_D}{T_C}\right)\right)^{-1}$$
(3.22)

BCS teorisinde Cooper çiftlerinin ayrılması için gerekli olan boşluk enerjisi 2∆, T_c'ye aşağıdaki gibi bağlıdır.

$$2\Delta = 3.53 k_B T_C \tag{3.23}$$

Burada k_B , Boltzmann sabitidir. Elektron-fonon etkileşim parametresi, elektronik ısı sığası katsayısının hesaplanmasında kullanılabilir. Elektronik ısı sığası katsayısı (γ) da Quantum Espresso programı tarafından hesaplanamamaktadır. Yine bu programa müdahele edilerek bu katsayının hesaplanması sağlanmıştır. Bu katsayı aşağıdaki formülle verilir,

$$\gamma = \frac{1}{3}\pi^2 k_B^2 N(E_F)(1 + \lambda + \mu^*)$$
(3.24)

Örnek olarak dhcp La için hesaplanan süperiletkenlik parametreleri Tablo 3.2'de verilmiştir.

|--|

	μ^{*}	N(E _F)(Durum/eV)	λ	$\omega_{\text{in}}(K)$	<ω> (K)	(<\u03cb) ^{1/2}	T _c (K)
Dhcp La ^(Bağcı vd. 2010)	0,13	1,49	0,97	82	88	91	4,87
Deneysel (Rapp ve Sundqvist			0 85				5 05
1981)			0,00				0,00

Teorik olarak hesaplanan süperiletkenliğe geçiş sıcaklığı Tablo 3.2'den görüldüğü gibi deneysel değerden %3,6 oranında farklıdır. Bu iyi uyum bize kullandığımız teorinin ne kadar kayda değer olduğunu açık bir şekilde göstermektedir. Ayrıca Quantum Espresso programı elektron-fonon etkileşim parametresinin frekansa (ω) göre değişimini vermemektedir. Programa müdahele edilerek bu parametrenin frekansa göre değişimi hesaplanmıştır. Şekil 3.2'de LaNiGa₂ elektron-fonon spectral fonksiyonunun ve elektron-fonon etkileşim parametresinin gösterilmiştir (Tütüncü ve Srivastava 2014a).

Bu grafikten elde edilen sonuca göre frekansı 4 THz'den az olan fonon modları elektron-fonon etkileşim parametresine %85'lik bir katkı yapmaktadır. Bu büyük katkının nedeni $\lambda = \int \frac{\alpha^2 F(\omega)}{\omega} d\omega$ ifadesindeki ω^{-1} terimidir. Yukarıdaki grafikten LaNiGa₂ materyali için elektron-fonon etkileşim parametresi 0,695 olarak bulunmuştur. Bu parametre kullanılarak bu malzemenin süperiletkenlik sıcaklığı 1,90 K olarak tayin edilmiştir. Bu değer deneysel değer

(Zeng ve Lee 2002) olan 1,7 K'den yine %3,6 farklıdır. Kısacası kullandığımız yöntem süperiletkenlik özelliklerin hesaplanması için oldukça uygundur.

BÖLÜM 4. KONU ve KAPSAM

Kristallerin fiziksel özelliklerinin incelenmesi onların toplam enerjilerinin hesaplanması ile başlar. Çünkü hem elektronik hem de titreşim yapısı toplam enerjiden elde edilebilir. Yoğunluk Fonksiyonel Teorisi kristallerin davranışlarını tanımlayan Schrödinger denkleminin çözümünü elde etmek için en mükemmel yaklaşımdır. Bu yaklaşım hiç bir deneysel parametreye ihtiyaç duymadan Schrödinger dalga denkleminin çözümünü verir. Bu yaklaşımın ihtiyaç duyduğu parametre sadece kristalin örgüsü ve örgü parametreleridir. Son yıllarda bilgisayar teknolojisinin hızlı bir şekilde gelişmesi Yoğunluk Fonksiyonel Teorisi uygulamalarını ivmelendirmiştir. Bu projenin konusu BaNiSn₃ kristal yapıdaki malzemelerin yapısal, elektronik, titreşim, elektron-fonon etkileşimi ve süperiletkenlik özelliklerinin yoğunluk fonksiyonel teorisi ile detaylı bir şekilde incelenmesi ve bu malzemelerde süperiletkenliğn kaynağının belirlenmesidir.

Uzay grubu l4mm olan BaNiSn₃ kristali hacim merkezli tetragonal örgüye sahiptir. Bu kristal yapı Şekil 4-1'de şematik olarak gösterilmiştir. Bu kristal yapıda atomların Wyckoff konumları Ba 2a(0,0,0) Ni 2a(0,0,z_{Ni}), Sn1 2a (0,0,z_{Sn1}) ve Sn2 4b(0,0.5,z_{Sn2}) olarak verilir. Görüldüğü gibi bu kristal yapı iki tane örgü parametresi (a, c) ve üç tane iç parametre $(z_{Ni}, z_{Sn1}, z_{Sn2})$ ile kontrol edilmektedir. BaNiSn₃ kristal yapısı ilkel birim hücresinde beş atom (bir Baryum, bir Nikel ve üç Kalay) içermektedir. Yoğunluk Fonksiyonel Teorisi Kohn-Sham(Kohn ve Sham 1965) eşitliği çözülerek incelenecek olan LaPtSi₃, LaPdSi₃, LaRhSi₃, SrAuSi₃, CalrSi₃ ve CaPtSi₃ malzemelerinin enerji-hacim grafikleri hesaplanacak ve her bir malzemenin örgü parametreleri ve iç parametreleri tayin edilecektir. Yoğunluk Fonksiyonel Teorisini temel alan Genelleştirilmiş Gradyan Yaklaşımı(GGA) kristallerin örgü parametrelerini ve iç parametrelerini deneysel çalışmalarla oldukça iyi bir uyum içerisinde verebilmektedir. 2014 yılında yaptığımız bir çalışmada kübik spinel yapıdaki LiMn₂O₄ kristalinin fiziksel özelliklerini detaylı bir şekilde incelemiştir(Bagci vd. 2014). Bu çalışmanın nedeni bu kristalin Li-iyon pillerinde katot malzemesi olarak kullanılmasıdır. Tablo 4-1'de bu kristal için elde edilen örgü sabiti, iç parametre ve hacim modülü değerleri deneysel sonuçlarla birlikte verilmiştir. Teorik hesaplanan örgü sabiti (8.16 Å) deneysel örgü sabiti olan 8.25 Å'ten %1.0 farklıdır. Teorik olarak hesaplanan iç parametre (x) 0,2631 ise deneysel değer olan 0,2632 değerine

neredeyse eşittir. Bu sonuçlar Yoğunluk Fonksiyonel Teorisinin statik özelliklerinin incelenmesinde ne kadar başarılı olduğunun bir kanıtıdır.

Tablo 4-1. Kübik spinel LiMn₂O₄ materyalinin GGA metodu ile hesaplanmış örgü parametresi (a), iç parametre (x) ve hacim modülü değerleri deneysel verilerle kıyaslanarak gösterilmiştir.

	a (Å)	х	B(GPa)
GGA (Bagci vd. 2014)	8,16	0,2631	188
Deneysel (Sugiyamat vd. 1995)	8,23	-	200
Deneysel (Akimoto vd. 2001)	8,25	0,2632	-
Deneysel ^{(Muka} vd. 2011)	8,24	0,2621	-

Şekil 4-1 Hacim Merkezli Tetragonal BaNiSn3 kristal yapısının şematik gösterimi

Nikel içeren malzemelerde süperiletkenliğin incelenmesi günümüzün güncel konularından birisi olmuştur. Bunun nedeni nikelden dolayı süperiletkenlik durum yerine ferromanyetik taban durumunun beklenmesidir. Bu malzemelerde süperiletkenliğe nikelin katkısını belirlemek için elektronik durum yoğunluğu hesaplanmalıdır. Cooper çiftleri enerjisi Fermi enerjisine yakın elektronlar tarafından oluşturulduğundan Fermi seviyesindeki durum yoğunluğunun (N(E_F)) hesaplanması oldukça önemlidir. McMillan(McMillan 1968) ve Hopfield(Hopfield 1969) Fermi seviyesindeki durum yoğunluğu ile elektron-fonon parametresi arasındaki ilişkiyi aşağıdaki gibi ifade ettiler.

$$\lambda = \frac{N(E_F)\langle I^2 \rangle}{M\langle \omega^2 \rangle} \tag{1}$$

Bu eşitlikte "λ", elektron-fonon etkileşim parametresi; "I", elektron-fonon etkileşim matrisi ; "ω", fonon frekansı; M ise atomik kütledir. Bu formül açık bir şekilde göstermektedir ki Fermi seviyesindeki durum yoğunluğu elektron-fonon etkileşimi parametresine olumlu katkı yapmaktadır. Şekil 4-3'te Nikel içeren bir süperiletken LaNiGa₂'nin elektronik durum yoğunluğu(Tütüncü ve Srivastava 2014a) gösterilmiştir. Bu materyalde Fermi seviyesindeki durum yoğunluğuna ana katkıyı La 5d, Ga 4p ve Ni 3d elektronları yapmaktadır. Fermi seviyesindeki durum yoğunluğuna bu elektronik durumların yaptıkları katkı sırasıyla %33,%36 ve %20'dir. McMillan ve Hopfeld formülünden faydalanarak bu materyalin süperiletkenlik özelliklerinin bu elektronik durumlarda kuvvetli bir şekilde etkileneceğini söyleyebiliriz.

Şekil 4-2 BeTe için (100) yönünde elde edilen valans bant dağılımı. Deneysel veriler karelerle gösterilmiştir(Munoz vd. 1996).

BCS teorisine göre süperiletkenliğin kaynağı Cooper çifti olarak adlandırılan elektron çiftidir. Fonon alışverişi Cooper çiftlerini bir arada tutan etkendir. Bu yüzden malzemenin süperiletkenlik özellikleri titreşim özellikleri ile doğrudan ilişkilidir. Şekil 4-4'te Heusler kristal yapıya sahip YPd₂Sn süperiletkeninin fonon spektrumu ve fonon durum yoğunluğu gösterilmiştir(Tütüncü ve Srivastava 2014b). Fonon spektrumunda en ilgi çekici özellik düşük frekanslı akustik dalın Γ-K yönünde gösterdiği düşüştür. Genelde Brillouin bölgesi sınırına yaklaşırken akustik frekanslar düz bir dağılım göstermelerine rağmen bu materyalde akustik frekans negatif dispersiyon göstermektedir. NaCl kristal yapıdaki CrC ve NbC malzemeleri için de böyle bir dispersiyon gözlenmiş ve bu beklenmedik düşüşün elektron-fonon etkileşiminden kaynaklandığı tespit edilmiştir(Tütüncü vd. 2012).

Hangi atomik titreşimlerin Cooper çiftlerinin oluşumuna katkı yaptığının belirlenmesi için fonon durum yoğunluğunun da hesaplanması gerekmektedir. Şekil 4.4'teki fonon durum yoğunluğu grafiğine göre frekansı 2,7 THz' den az olan fonon modları Pd atomlarından büyük katkı içermektedir. Orta frekans bölgesinde (2,7-3,2 THz) Sn atomlarının titreşimleri oldukça etkili iken fonon boşluğunun üzerinde ise Y atomlarının titreşimleri oldukça etkilidir. Daha önce bahsettiğimiz gibi YPd₂Sn materyalinde en düşük enerjili akustik frekans beklenmedik davranışlar göstermektedir. Fonon durum yoğunluğu eğrimize göre bu frekans Pd atomlarının titreşiminden kaynaklanmaktadır. Kısacası bu materyalde Pd atomik titreşimleri elektronlarla kuvvetli bir şekilde etkileşmektedir.

Süperiletkenlik sıcaklığının hesaplanması için elektron-fonon etkileşimi parametresinin sağlıklı bir şekilde elde edilmesi gerekmektedir. Bazı gruplar elektron-fonon etkileşim parametresini McMillen-Hopfield parametresinden hesaplamaktadır. Bu hesaplama sürecinde kullanılan $N(E_{(F)})$ ve <l²> terimleri elektronik nicelikler olup fonon frekansları ve özdeğer vektörlerine gerek yoktur. Sadece < ω^2 > terimi fonon frekansı içermektedir. Bu değer ise Debye sıcaklığından ($\theta_D^2/2$) ve Debye sıcaklığı da;

$$\theta_D = \frac{h}{k_b} \left(\frac{3n\rho N_A}{4\pi M}\right)^{\frac{1}{3}} \vartheta_m \tag{2}$$

eşitliğinden elde edilir(Lazarević vd. 2013). Burada ϑ_m , sesin ortamdaki hızı; h, k_B ve N_A sırasıyla Planck, Boltzmann sabitleri ve Avogadro sayısı; ρ , kütlece yoğunluk; M, moleküler ağırlık ve n, birim hücredeki atom sayısıdır. Bu metotla hangi fonon modlarının elektronlarla etkileştiğini bulmak mümkün değildir. λ parametresinin hesaplanmasının en sağlıklı yolu Eliashberg spektral fonksiyonunun ($\alpha^2 F(\omega)$) hesaplanmasıdır. Bu fonksiyon α^2 ve $F(\omega)$ terimlerinden oluşur. α^2 elektron-fonon etkileşimi matris elementini içerirken, $F(\omega)$ fonon durum yoğunluğudur. Bu fonksiyonun integral elektron-fonon etkileşimi parametresini verir.

Şekil 4-3 Taban merkezli ortorombik yapıya sahip olan süperiletken LaNiGa₂ 'nin elektronik durum yoğunluğu(Tütüncü ve Srivastava 2014a).

$$\lambda = \int \frac{\alpha^2 F(\omega)}{\omega} \tag{3}$$

Bu metot hem elektronik hem de fononik katkıyı içerdiği için süperiletkenlik çalışmalarında daha sağlıklı sonuçlar verir. Hacim merkezli tetragonal kristal yapıya sahip LuNi₂B₂C 'nin 16 K civarında süperiletken olduğu 1994 yılında bulunmuştur(Siegrist vd. 1994). Günümüzde de bu malzeme üzerine çalışmalar devam etmektedir(Bergk vd. 2012; Lu vd. 2011; Weber vd. 2014). 1994 yılından itibaren bu malzeme üzerine sayısız deneysel ve teorik hesaplamalar yapılmasına rağmen Eliashberg spektral fonksiyonu hesaplanmamış ve süperiletkenliğin hangi fonon modlarından kaynaklandığı tespit edilememiştir. 1994 yılında Pickett ve Singh yapıtıkları Yoğunluk fonksiyonel çalışmasında bu malzemede Raman aktif olan A_{1g} fonon modunun güksek elektron-fonon etkileşimi parametresine sahip olduğunu belirterek süperiletkenliğin bu fonon modunun elektronlarla etkileşiminden kaynaklandığını belirttiler. Yine aynı yılda Mattheiss ve arkadaşları A_{1g} fonon modunun süperiletkenlikte ana rol oynadığını beyan ettiler(Mattheiss vd. 1994). Bu sonuçlar bizim için şaşırtıcıydı çünkü McMillan-Hopfield

eşitliğine göre yüksek frekanslı fonon modları elektron-fonon etkileşim parametresine düşürücü katkı yapacaklardır. Bundan yola çıkarak bu materyal için Eliashberg spektral fonksiyonunu ve toplam elektron-fonon etkileşim parametresinin frekansla değişimini hesapladık. Eliashberg spektral fonksiyonu dört kısma ayrılabilir. Birinci kısım 0 ile 9,5 THz; ikinci kısım 10 ile 15,7 THz; üçüncü kısım A_{1g} fonon modunu içermekte ve 24,3 ile 26,0 THz arasında bulunmaktadır. Dördüncü kısım ise 38,4 ile 39,6 THz arasında yer alır. Şekil 4-5'ten görüldüğü gibi birinci kısımda elektron-fonon etkileşim parametresi frekansla hızlı bir şekilde artmaktadır. Bu artış ikinci kısımda devam etmektedir. Birinci ve ikinci kısmının toplam değeri 0,82 olan Elektron-fonon etkileşimin parametresine katkıları %67 ve %28'dir. Sadece A_{1g} fonon modunun yer aldığı üçüncü kısmın katkısı ise %4,7 dir. Son kısmın katkısı ise sadece %0,3'tür. Görüldüğü gibi düşük frekanslı fonon modları elektronlarla daha kuvvetli bir şekilde etkileşmektedir. Dolayısıyla bu malzemedeki süperiletkenliğin kaynağı yüksek frekanslı A1g fonon modu değil, düşük frekanslı fonon modlarıdır. Daha önceki çalışmaların (Mattheiss vd. 1994; Pickett ve Singh 1994) yanılgıya düşmelerinin nedeni fonon spektrumunu ve Eliashberg spektral fonksiyonunu kullanmadan sadece Brillouin merkezi fonon modu ile süperiletkenliği açıklamaya çalışmalarıdır. Yaptığımız çalışmada A1g fonon dalının Brillouin merkezindeki frekansı 24,96 THz olarak bulunmuştur. Bu bulgu Raman değeri olan 25,87 THz ile uyum içerisindedir(Park vd. 1996).Fakat A1g fonon dalı için Brillouin merkezinde elektron-fonon etkileşim parametresi 0,3 olarak tespit edilmiştir. Ayrıca dalga vektörü arttıkça bu fonon modunun elektron-fonon etkileşim parametresinin hızı bir şekilde azaldığı da tespit edilmiştir. Grubumuz bu süperiletken için elektron-fonon etkileşim parametresini 0,82 olarak hesaplamıştır. Bu değer ısı sığası ölçümünden elde edilen 0,75 değeri ile uyum içerisindedir fakat Pickett ve Singh (Pickett ve Singh 1994) bu malzeme için elektron-fonon etkileşim parametresini 2,6 olarak hesaplamış ve bu büyük parametrenin A1g fonon modundan kaynaklandığını belirtmiştir. Grubumuzun DFT çalışması bunun doğru olmadığının kanıtıdır. Calışmamız şunu göstermektedir ki BCS tipi süperiletkenlerde süperiletkenlik özellikleri üzerine yapılan çalışmalarda tüm elektronik spektrum, tüm fonon spektrumu ve elektron-fonon etkileşimini temsil eden Elishberg spektral fonksiyonu mutlaka hesaplanmalıdır. Sadece Brillouin merkezi fonon modlar veya elektronik spektrum ile hesaplanan elektron-fonon etkileşimi çalışmalarında hata payı yüksek olabilir. Süperiletkenliğe geçiş sıcaklığı T_c, Allen-Dynes formülünden;

$$T_{c} = \frac{\omega_{ln}}{1,2} exp\left(-\frac{1,04(1+\lambda)}{\lambda - \mu^{*}(1+0,62\lambda)}\right)$$
(4)

şeklinde hesaplanabilir(Weber 1973; McMillan 1968; Allen 1972). ω_{ln} , logaritmik ortalama frekans da Eliashberg spektral fonksiyonu;

$$\omega_{ln} = \exp(2\lambda^{-1} \int_0^\omega \frac{d\omega}{d} \alpha^2 F(\omega) \ln\omega)$$
(5)

ile elde edilir. Süperiletkenlik sıcaklığı formülündeki μ* Coulomb etkileşim parametresi olup 0,1 ile 0,16 arasında değerler almaktadır(Weber 1973; McMillan 1968; Allen 1972). Logaritmik ortalama frekans LuNi₂B₂C için 315 K olarak bulunmuştur. Bu değer ve μ*=0,1 değeri kullanıldığında bu materyal için süperiletkenliğe geçiş sıcaklığı 15,94 K olarak belirlenmiştir. Bu değer deneysel değer olan 16 K ile uyum içerisindedir(Siegrist vd. 1994).

Şekil 4-4 Heusler kristal yapıdaki YPd₂Sn'nin fonon spektrumu ve fonon durum yoğunluğu(Tütüncü ve Srivastava 2014b).

Şekil 4-5 LuNi₂B₂C süperiletkeni için Eliashberg fonksiyonunun ve elektron-fonon etkileşim parametresinin frekansla ile değişimleri(Tutuncu vd. 2015).

BÖLÜM 5. ANALİZ VE BULGULAR

Bu proje çalışmasında önerilmiş olan SrAuSi₃, LaPtSi₃, LaPdSi₃, LaRhSi₃, LaIrSi₃, CaIrSi₃ ve CaPtSi₃ kristallerinin yapısal, elektronik ve süperiletkenlik özellikleri yoğunluk fonksiyonel teorisiyle detaylı bir şekilde incelenmiştir. Elde edilen bulgular bu bölümde anlatılacaktır.

5.1 SrAuSi₃ Malzemesinin İncelenmesi

5.1.1 SrAuSi₃ Malzemesinin Yapısal Özellikleri

Cisim merkezli tetragonal BaNiSn₃ yapıda I4mm (no:107) uzay grubuna sahip olan SrAuSi₃ malzemesinin kristal yapısı Şekil 5-1.'de görülmektedir Birim hücredeki dört adet eşdeğer olmayan kristal konum belirlenmiştir. Bunlar Sr, Au, Si1 ve Si2 olarak gösterilmiştir. Bu konumların atomik pozisyonları Sr(2a) (0,0,0), Au(2a) (0,0,*z*_{Au}), Si1 (2a) (0,0,*z*_{si1}), Si2 (4b) (0,1/2,*z*_{Si2}), (1/2,0,*z*_{Si2}). Burada "z" ile belirtilenler iç parametreleri ifade etmektedir. SrAuSi₃ Au atomu 4 bazal Si2 ve bir apikal Si1 atomu ile sarılıdır. Burada Au-Si1 bağı 2.543 Å ve Au-Si2 bağı 2.550 Å olarak hesaplanmıştır. Bu değerler deneysel değerler olan sırasıyla 2.493 Å ve 2.543 Å ile uyum içerisindedir(Isobe vd. 2014). Si1-Si2 arasındaki bağ uzunluğu 2.529 Å olarak hesaplanmıştır. Bu değer Elmas yapıdaki Si bağ uzunluğu olan 2.352 Å değerinden daha büyük olduğundan SrAuSi₃ malzemesinin Si atomları arasındaki bağ, elmas yapısına kıyasla daha zayıftır sonucu çıkarılabilir.

Tablo 5-1.	SrAuSi₃ malz	emesinin he	saplanan y	apısal ö	zellikleri ve	e daha	önceki	mevcut	deneysel	ve teorik
verilerle ka	arşılaştırılmas	l.								

SrAuSi₃	a(Å)	c(Å)	V(Å ³)	B(GPa)	В'	Z _{Au}	Z _{Si1}	Z _{Si2}
Bu Çalışma	4.75	10.136	101.506	81.70	4.68	0.632	0.378	0.257
Deneysel (Isobe vd. 2014)	4.409	9.947	96.681	-	-	0.629	0.378	0.258
GGA ^(Shu vd. 2015)	4.405	9.929	96.331	91.5	4.59			

Şekil 5-1 SrAuSi3 için kristal yapının gösterimi

5.1.2 SrAuSi₃ Materyalinin Elektronik Yapısı

Elektronik yapı ve elektronik durum yoğunluğu hesaplamaları sonucunda elde edilen grafik Şekil 5-2.'de görülmektedir. SrAuSi₃'ün elektronik yapısına bakıldığında en az bir elektronik bandın Fermi seviyesini kestiği rahatlıkla görülmektedir. Buradan malzemenin metalik özellik gösterdiğini söyleyebiliriz. Burada valans bandı besleyen bölgeler olarak belirlediğimiz kısımlar şöyledir; Birinci kısım -11.90'dan -9.50 eV'ye; ikinci kısım -9.50'dan -6.60 eV'ye; üçüncü kısım-6.60'dan -5.0 eV'ye kadar; dördüncü kısım -5.00'dan -3.0 eV'ye ve beşinci kısım -3.0'den Fermi seviyesine kadardır. Birinci kısıma en büyük katkı Si (1,2) s ve p durumlarından gelirken bu kısma küçük miktarda Sr 5p ve Au 6p durumlarından da katkı gelmektedir. İkinci kısımda ise katkı Si(1,2) s ve p orbitalleri ile Au 5d orbitalinden kaynaklanırken Sr 4d orbitalinden de küçük bir miktar katkı mevcuttur. Üçüncü kısım Au 5d ve Si(1,2) p durumlarının hibritleşmesi ile oluşmuştur. Dördüncü kısım da Au-Si (1,2) hibritleşmesi ile oluşmuştur. Son olarak beşinci kısma en büyük katkı Si(1,2) p durumundan gelirken Au 5d, 6p ve Sr 4d'den gelen küçük miktarda katkı da görülmektedir. Burada Sr atomlarında gelen büyük bir katkının görülmemesinin temel nedeni Sr atomlarının Sr⁺² olarak davranması ve Au-Si bloklarıyla iyonik etkileşim altında bulunmasıdır.

Fermi seviyesine katkı yapan elektronların bulunmasının önemi BCS teorisinden bilinmektedir. SrAuSi₃ için Fermi seviyesindeki durum yoğunluğu ($N(E_F)$) değeri spin-orbit etkileşimi (SOE) olmaksızın 1.41 durum/eV olarak hesaplanmıştır. Bu değer daha önceki GGA değeri olan 1.30 durum/eV'den birazcık büyüktür(Isobe vd. 2014). Bunun nedeninin bizim kullandığımız

optimize edilmiş parametrelere karşılık onların deneysel verilerle hesaplama yapmalarına bağlı olduğunu düşünmekteyiz. Burada SrAuSi₃ için en önemli yapısal özellik şüphesiz tersinir simetriye sahip olmamasıdır. Elektron korelasyonlarının etkin olması nedeniyle hesaplamalar yapılırken spin-orbit etkileşiminin de katılmasında fayda olduğu düşünülerek tam-rölativisttik ultrasoft pseudopetansiyeller kullanarak hesaplamalar yapıldı. Bunun sonucunda (N(E_F)) değeri 1.39 durum/eV olarak hesaplanmıştır. Bu değer SOE olmadan hesaplanan 1.41 durum/eV değerine oldukça yakındır. Bu kıyaslamadan SOE'nin SrAuSi₃ için Fermi seviyesi yakınlarında ihmal edilebilir seviyelerde bulunduğu söylenebilir. (N(E_F)) değerine atomlardan gelen katkıları sırasıyla Sr, Au,Si1,Si2 için %12, %18, %25 ve %45 olarak hesaplanmıştır. Özel olarak Si(1,2)'nin p orbitallerinden (N(E_F))'e gelen katkı %60 olarak hesaplanmıştır. Bu da bize süperiletkenliğe neden olan elektronların büyük miktarda Si atomlarının p orbitalinden kaynaklandığını göstermektedir. Fermi seviyesinin üstünde ise Sr 4d ve Si(1,2) p durumlarının katkısı gözlemlenmektedir.

Şekil 5-2 SrAuSi3 için elektronik band yapısı ve elektronik durum yoğunluğu grafikleri.

5.1.3 SrAuSi₃ Malzemesinin Titreşim Özellikleri

Titreşim özellikleri tam bir elektron-fonon etkileşim parametresinin hesaplanabilmesi için ölçülmesi gereken en önemli özelliklerden birisidir. Malzemenin grup numarası C_{4v} olarak belirlenmiştir. Malzeme için optik fonon modları;

 $\Gamma_{optik} = 4E + 3A_1 + B_2$

olarak belirlendi. Bu modlardan B ve A tek, E ise çift dejenere modlarını ifade etmektedir. A ve B modları Z-ekseni boyunca titreşime sahiplerken E modları x-y düzlemi boyunca titreşmektedirler. Frekanslar ve alan-merkezli fonon modlarının elektron-fonon parametreleri ile kıyaslanmış halleri Tablo 5-2'de yer almaktadır. Burada SOE'nin katkısı tamamen ihmal edilebilir seviyededir. Ayrıca ikinci en büyük E, B₁ ve en büyük A₁ fonon modlarının elektronfonon etkileşim parametresine katkısı diğer modlara kıyasla oldukça belirgindir. Bu modların özuzanımları Şekil 5-3'te gösterilmiştir.

Şekil 5-3 SrAuSi3'ün bazı modların özuzanımlarının gösterilmesi

Tablo 5-2'den de görüldüğü gibi SOE'li ve SOE'siz hesaplamalar arasında neredeyse hiç fark görülmemektedir. En yüksek λ katkılı modlara bakıldığında Si atomlarının bariz titreşimleri dikket çekmektedir. Buradan Si1 ve Si2 atomlarının yüksek elektron-fonon etkileşimi meydana getirdikleri sonucuna varabiliriz.

Hesaplanmış fonon dağılım eğrileri ve fonon durum yoğunluğu Şekil 5-4'te görülmektedir. SrAuSi₃ için 12 adet olan optik mod olmasına karşın $Z - \Gamma$ yönünde yozlaşmalardan dolayı bu sayı 10'a düşmektedir. Fonon durum yoğunluğuna bakıldığında (Şekil 5-4(b)) 2.0 THz'den düşük frekanslarda en büyük katkı Si atomlarından kaynaklanmaktadır. Bu düşük frekanslarda ağır bir atom olan Au'nun katkısının büyük olması beklense de Au atomu en büyük katkıyı 2.0-2.7 THz arasında gerçekleştirmekte ve 3.5 THz'den daha büyük frekanslarda ihmal edilebilir katkılar yapmaktadır. Bu olayın açıklaması olarak Au atomunun diğer atomlarla yaptığı zayıf bağlar gösterilebilir. Fonon dağılımı güçlü bir Si1-Si2 atomlarının p orbitali etkileşmesini

göstermektedir ki bu da malzeme için süperiletkenlik özelliğine neden olan atomların Si atomları olduğunun bir ispatıdır.

Tablo 5-2 SrAuSi₃ için titreşim modlarının frekansları, elektron-fonon etkileşim poarametreleri ve yaptıkları aktif ışımalarının gösterimi. IR:infrared, R: Raman ışımalarını temsil etmektedir.

Mod	E	A ₁	E	A ₁	E	B ₂	E	A ₁
SOE'li Frekans	2.92	3.16	4.07	6.40	8.03	8.06	8.47	10.48
SOE'siz Frekans	2.94	3.15	4.10	6.38	7.99	8.01	8.49	10.42
SOE'li λ	0.032	0.055	0037	0.040	0.026	0.140	0.061	0.205
SOE'siz λ	0.030	0.050	0.033	0.037	0.025	0.130	0.060	0.198
Aktif Işıma	IR+R	IR+R	IR+R	IR+R	IR+R	R	IR+R	IR+R

Şekil 5-4 SrAuSi₃ malzemesi için fonon dağılım eğrileri(üstte) ve fonon durum yoğunluğunun(altta) gösterim

5.1.4 SrAuSi₃ Materyalinin Süperiletkenlik Özellikleri

Süperiletkenlik incelemeleri için elektron-fonon etkileşim parametresi λ 'nın hesabını yapmak için $\mu^* = 0.12$ alınarak Denklem 3.15'te verilen eşitlik kullanıldı. Buna göre elde edilen sonuçlar Tablo-5.3.'te sunulmuştur. Şekil 5-5'te de Eliashberg Spektral fonksiyonunun elektron-fonon etkileşim parametresi λ ile nasıl değiştiğini gösteren grafik görülmektedir.

Tablo 5-3. SrAuSi₃ malzemesi için elde edilmiş değerler; N(E_F), Fermi seviyesinde durum yoğunluğunu; λ , elektronfonon etkileşim parametresini; ω_{ln} , ortalama logaritmik frekansı; θ_D , Debye sıcaklığını; T_c, süperiletkenliğe geçiş sıcaklığını göstermektedir.

	N(E _F) (durum/eV)	λ	ω _{in} (K)	Θ _D (K)	T _c (K)
Bu Çalışma	1,41	0,47	235,81	294,76	1,47
Deneysel(Isobe vd. 2014)					1,54

Elektron-fonon etkileşim parametresinin hesaplanmasından sonra Eliashberg spektral fonksiyonu kullanıldı ve elde edilen dağılımlar Şekil 5.5'de gösterildi. Buna göre elektron-fonon etkileşim parametresine 2,8 THz'den küçük frekanslardan gelen katkı %29 iken 2,8-3,5 THz arasında katkı %1 kadardır. 3,5 THz'den büyük frekanslardan gelen katkı ise yaklaşık %70 kadar olduğu görülmüştür. Bu yüksek frekans bölgesindeki titreşimlerin çoğunun Si atomu kaynaklı olması nedeniyle süperieltkenliğe en büyük katkının yine Si atomlarından ve yüksek frekans bölgesinden geldiği rahatlıkla söylenebilir.

Şekil 5-5 SrAuSi₃ için Eliashberg Spektral fonksiyonunun elektron-fonon etkileşim parametresi λ ile değişimi

5.2 CalrSi₃ Materyalinin İncelenmesi

5.2.1 CalrSi₃ Materyalinin Yapısal Özellikleri

Cisim merkezli tetragonal BaNiSn₃ yapıda I4mm (no:107) uzay grubuna sahip olan CalrSi₃ malzemesinin kristal yapısı Şekil 5-6'da görülmektedir Birim hücredeki dört adet eşdeğer olmayan kristal konum belirlenmiştir. Bunlar Ca, Ir, Si1 ve Si2 olarak gösterilmiştir. Bu konumların atomik pozisyonları Ca(2a) (0,0,0), Ir(2a) (0,0, z_{Ir}), Si1 (2a) (0,0, z_{si1}), Si2 (4b) (0,1/2, z_{Si2}), (1/2,0, z_{Si2}). Burada "z" ile belirtilenler iç parametreleri ifade etmektedir. Bu durumda CalrSi₃ malzemesi iki örgü parametresi (*a* ve *c*) ve üç adet içsel parametre (z_{Ir} , z_{si1} , z_{Si2}) ile tanımlanabilir. Burada bu değerler minimum toplam enerji ve birbirini yok eden kuvvetler yardımı ile hesaplanmıştır. Elde edilen değerler SOE dâhilken ve dahil değilken kıyaslanarak daha önceki mevcut deneysel ve teorik verilerle karşılaştırılmış ve sonuçlar Tablo 5-4'te sunulmuştur.

CalrSi₃	a(Å)	c(Å)	V(Å ³)	Zır	Zsi1	Z _{Si2}	B(GPa)	В'
Bu Çalışma(SOE'li)	4.213	9.918	88.019	0.6473	0.4093	0.2594	108.3	4.22
Bu Çalışma(SOE'siz)	4.215	9.915	88.076	0.6455	0.4073	0.2579	108.0	4.34
GGA(Bannikov vd. 2010)	4.160	10.164	87.947	0.6416	0.4096	0.2589		
GGA(Kaczkowski ve Jezierski 2011)	4.214	9.909	87.981	0.6469	0.4082	0.2595		
LDA(Kaczkowski ve Jezierski 2011)	4.159	9.779	84.575	0.6469	0.4087	0.2593		
Deneysel(Eguchi vd. 2011)	4.183	9.872	86.368	0.6467	0.4098	0.2589		
Deneysel(Singh vd. 2014)	4.196	9.871	86.896					

Tablo 5-4. CalrSi₃ malzemesi için hesaplanan yapısal değerlerin daha önceki deneysel ve teorik verilerle kıyaslanması

Tablodan da görüleceği üzere bulmuş olduğumuz değerler, deneysel verilerle oldukça iyi uyum içerisindedir. Bu da kullanmış olduğumuz metodun bu malzemenin araştırılması için ideal bir seçim olduğunu göstermektedir. Her Ir atomu 4 bazal Si2 ve bir apikal Si1 atomu ile sarılıdır. Burada SOE ile Ir-Si1 bağı 2.360 Å ve Ir-Si2 bağı 2.382 Å olarak hesaplanmıştır. Bu değerler Ir ve Si atomlarının kovalent bağ uzunlukları olan sırasıyla 1.41 Å ve 1.11 Å değerlerinin toplamı 2.52 Å 'den daha küçüktür. Bu da bize Ir v Si atomları arasında güçlü bir kovalent etkileşim olduğunu göstermektedir. Her bir Si1 atomuna dört adet Si2 atomu eşlik etmekte ve aralarındaki bağ mesafesi 2.591 Å olarak hesaplanmıştır. Bu değer elmas-yapı Si için 2.352 Å

olup incelediğimiz CalrSi₃ malzemesinin Si atomları arasındaki bağ, elmas yapısına kıyasla daha zayıftır sonucu çıkarılabilir.

Şekil 5-6 BaNiSn₃-tipi kristal yapıda CalrSi₃ malzemesinin kristal yapısı. Görüldüğü gibi z-eksenine dik olan bir ayna düzlemi bulunmamaktadır.

5.2.2 CalrSi₃ Materyalinin Elektronik Özellikleri

Hesaplanmış elektronik-band yapısının görünümü Şekil 5-7.'de görülmektedir. Şekilde hem SOE dahilken hem de hariçken grafikler oluşturulmuştur. Sonuçlar daha önceki teorik verilerle iyi bir uyum göstermektedir(Bannikov vd. 2010; Kaczkowski ve Jezierski 2011). Hem SOE'li hem de SOE'siz hesaplamalar CalrSİ₃ malzemesinin metalik yapısını öngörmektedir. Yüksek simetri noktalarından $\Gamma - G1$, G1 - Z, $\Gamma - X$, $P - \Gamma$, $\Gamma - N$, N - P, P - Z yönlerinde giderken en az bir adet band Fermi seviyesini kesmiştir. Buna karşılık $, Z - \Gamma$ ve, X - P yönlerinde valans ve iletkenlik bandı birbirlerinden tamamen ayrıdır.

Elektronik band yapısından da görüldüğü gibi SOE altında elektronik bandlarda yarılmalar görülmektedir fakat bu yarılmalar 200 meV'den fazla olmamaları nedeniyle ihmal edilebilir düzeyde oldukları görülmektedir. Bu da spin-singlet durumların spin-triplet durumlara kıyasla baskın olduğunun ilk kanıtıdır. Elektronik yapının atomik kökeninin incelenmesi için CalrSi₃ malzemesinin elektronik durum yoğunlukları da hesaplanmıştır(Şekil 5-8). Şekil 5-8.'ten de görüldüğü gibi Ir 5d ve Si3p orbitalinden Fermi seviyesine oldukça yüksek bir katkı gelmektedir. Ca 3d orbitali diğerlerine kıyasla daha az katkı sağlamaktadır. Çünkü burada Ca atomu Ca⁺² şeklinde kalarak etkileşime girmemektedir. -5.9 eV'den düşük enerjilerde katkı daha çok Si(1,2) elektronik durumlarından meydana gelmiştir. -5.9eV ile -1.6 eV arasındaki katkı en fazla

Ir 5d ve Si1 3p ve Si2 3p orbitallerinin hibritleşmesi ile oluşmuştur. Bu da Ir ve Si atomları arasındaki kovalent etkileşimi göz önüne sermektedir. Buradan da görüldüğü gibi malzeme iyonik, kovalent ve metalik bağların hepsini barındırmaktadır. SOE ile hesaplanan Fermi seviyesindeki durum yoğunluğu (N(E_F)) 1.94 durum/eV değeri daha önce hesaplanan GGA değeri 1.98 durum/eV ile uyum içerisindedir. SOE'siz hesaplanan N(E_F) değeri 1.91 durum/eV olup SOE'li değerden çok az miktarda farklıdır. Bu da SOE etkileşiminin ihmal edilebileceğine diğer bir kanıttır. SOE ile hesaplanmış N(E_F) değerinin %13'ü Ca 3d, %21'i Ir 5d, %12'si Ir 6p, %19'u Si1 3p ve %27'si Si2 3p orbitallerinden kaynaklanmaktadır. Buradan görüldüğü üzere Si1 ve Si2 atomlarının 3p orbitallerinden kaynaklı bir süperiletkenlik olduğu anlaşılmıştır.

Şekil 5-7 CalrSi₃ için elektronik band yapısı grafikleri (a) SOE'li ve (b) SOE'siz olarak görülmektedir.

Şekil 5-8 CalrSi3 için SOE ile hesaplanmış elektronik durum yoğunluğu grafiği.

5.2.3 CalrSi₃ Materyalinin Titreşim Özellikleri

Malzemenin grup numarası C_{4v} olarak belirlenmiştir. Malzeme için optik fonon modları;

$$\Gamma_{optik} = 4E + 3A_1 + B_1$$

olarak belirlendi. Bu modlardan B ve A tek, E ise çift dejenere modlarını ifade etmektedir. A ve B modları Z-ekseni boyunca titreşime sahiplerken E modları x-y düzlemi boyunca titreşmektedirler. Frekanslar ve alan-merkezli fonon modlarının elektron-fonon parametreleri ile kıyaslanmış halleri Tablo 5-5'te yer almaktadır. Burada SOE'nin katkısı tamamen ihmal edilebilir seviyededir. Ayrıca ikinci en büyük E, B₁ ve en büyük A₁ fonon modlarının elektronfonon parametresine katkısı diğer modlara kıyasla oldukça belirgindir. Bu modların özuzanımları Şekil 5-9'da gösterilmiştir.

Tablo 5-5 CalrSi3 icin titresim modlarının frekansları, elektron-fonon etkilesim poarametreleri ve yaptıkları aktif

ışımalarının gösterimi. IR:infrared, R: Raman ışımalarını temsil etmektedir.

Mod	E	A ₁	E	E	B ₁	A ₁	A ₁	E
SOE'li Frekans	4.08	4.99	5.05	7.50	7.57	9.36	10.84	11.24
SOE'siz Frekans	4.11	4.98	5.05	7.45	7.71	9.39	10.87	11.19
SOE'li λ	0.044	0.070	0.104	0.068	0.153	0.080	0.150	0.021
SOE'siz λ	0.042	0.076	0.108	0.070	0.154	0.086	0.160	0.022
Aktif Işıma	IR+R	IR+R	IR+R	IR+R	R	IR+R	IR+R	IR+R

Tablo 5-5'ten de görüldüğü gibi SOE'li ve SOE'siz hesaplamalar arasında neredeyse hiç fark görülmemektedir. En yüksek λ katkılı modlara bakıldığında Si atomlarının bariz titreşimleri dikkat çekmektedir. Buradan Si1 ve Si2 atomlarının yüksek elektron-fonon etkileşimi meydana getirdikleri sonucuna varabiliriz.

CalrSi₃ malzemesinin elektron-fonon etkileşimini daha iyi anlamak için tam fonon dağılım eğrilerine bakmakta fayda vardır. Şekil 12(a) 'da fonon eğrilerinin dağılımı görülmektedir. 12 adet olan optik mod olmasına karşın $Z - \Gamma$ yönünde yozlaşmalardan dolayı bu sayı 10'a düşmektedir. Fonon durum yoğunluğuna bakıldığında (Şekil 12(b)) 4.3 THz'den düşük frekanslarda en büyük katkı Si atomlarından kaynaklanmaktadır. Ca atomu ise en büyük

katkıyı 4.3-5.2 THz arasında gerçekleştirmekte ve 6.3 THz'den daha büyük frekanslarda ihmal edilebilir katkılar yapmaktadır. Bu olayın açıklaması olarak Ca atomunun diğer atomlarla yaptığı zayıf bağlar gösterilebilir. Fonon dağılımı güçlü bir Si1-Si2 atomlarının p orbitali etkileşmesini göstermektedir ki bu da malzeme için süperiletkenlik özelliğine neden olan atomların Si atomları olduğunu göstermektedir.

Şekil 5-10 CalrSi3 için (a) fonon dağılım eğrileri ve (b) fonon durum yoğunluğunun gösterimi

5.2.4 CalrSi₃ Materyalinin Süperiletkenlik Özellikleri

Süperiletkenlik incelemeleri için elektron-fonon etkileşim parametresi λ'nın hesabını yapmak için Denklem 3.15'te verilen eşitlik kullanıldı. Bu hesaba göre CalrSi₃ malzemesi için elde ettiğimiz elektron-fonon etkileşim parametresi değeri 0,58 olarak bulunmuştur. Bu parametre zayıf bir elektron-fonon etkileşim değeridir

Şekil 5-11 CalrSi₃ için Eliashberg Spektral fonksiyonunun elektron-fonon etkileşim parametresi λ ile değişimi

Süperiletkenliğe geçiş sıcaklığının hesaplanması için Denklem 3.14'ten yararlanılarak Eliashberg spektral fonksiyonu hesaplanır. Denklem 3.14 ve Denklem 3.15'ten faydalanılarak Denklem 3.17'de verilmiş olan logaritmik ortalama fonon frekansı elde edilir. Bu hesaplama yapıldıktan sonra Allen-Dynes denklemi ile süperiletkenliğe geçiş sıcaklığı bulunabilir. Bulunan değerler ve daha önceki çalışmalar ile kıyaslanmaları Tablo 5.6'da verilmiştir. Tablo 5.6'dan görüldüğü gibi hesaplamalarımızla elde ettiğimiz teorik T_c değeri ile deneysel T_c değeri arasında çok iyi bir uyum vardır.

Elektron-fonon parametresinin hesaplanmasından sonra Eliashberg spektral fonksiyonu kullandık ve elde ettiğimiz dağılımları Şekil 5.11'de gösterdik. Buna göre elektron-fonon etkileşim parametresine en büyük katkı düşük frekanslı modlardan gelmekte olduğu bariz bir biçimde görülmektedir.

Tablo 5-6. CalrSi₃ malzemesi için elde edilmiş değerler; N(E_F), Fermi seviyesinde durum yoğunluğunu; λ , elektronfonon etkileşim parametresini; ω_{ln} , ortalama logaritmik frekansı; θ_D , Debye sıcaklığını; T_c, süperiletkenliğe geçiş sıcaklığını göstermektedir.

	N(E _F) (durum/eV)	λ	γ	ω _{ln} (K)	Θ _D (K)	T₀(K)
Bu Çalışma	1,94	0,58	7,2	229,14	286,4	3,20
Deneysel (Eguchi vd. 2012)		0,56	6,6			3,30
Deneysel (Frandsen vd. 2015)						3,55
GGA (^{Bannikov vd. 2010)}	1,98					

5.3 LaPtSi₃ Malzemesinin Hesaplanmış Değerleri

5.3.1 LaPtSi₃ Malzemesinin Yapısal Özellikleri

Cisim merkezli tetragonal BaNiSn₃ yapıda I4mm (no:107) uzay grubuna sahip olan LaPtSi₃ malzemesinin kristal yapısı Şekil 5-12'de görülmektedir. Birim hücredeki dört adet eşdeğer olmayan kristal konum belirlenmiştir. Bunlar La, Pt, Si1 ve Si2 olarak gösterilmiştir. Bu konumların atomik pozisyonları La(2a) (0,0,0), Pt(2a) (0,0, z_{Pt}), Si1 (2a) (0,0, z_{si1}), Si2 (4b) (0,1/2, z_{si2}), (1/2,0, z_{si2}). Burada "z" ile belirtilenler iç parametreleri ifade ettiğini daha önce de belirtmiştik. Ve bu durumda LaPtSi₃ malzemesi iki örgü parametresi (*a* ve *c*) ve üç adet içsel parametre (z_{Ir} , z_{si1} , z_{Si2}) ile tanımlanabilir. Elde edilen değerler SOE dahilken daha önceki mevcut deneysel ve teorik verilerle karşılaştırılmış ve sonuçlar Tablo 5-7'de sunulmuştur.

Her Pt atomu 4 bazal Si2 ve bir apikal Si1 atomu ile sarılıdır. Burada SOE ile Pt-Si1 bağı 2.4412 Å ve Pt-Si2 bağı 2.3600 Å olarak hesaplanmıştır. Bu değerler Pt ve Si atomlarının kovalent bağ uzunlukları toplamı olan 2.470 Å 'dan daha küçüktür. Bu da bize Pt ve Si atomları arasında güçlü bir kovalent etkileşim olduğunu göstermektedir. Her bir Si1 atomuna dört adet Si2 atomu eşlik etmekte ve aralarındaki bağ mesafesi 2.544 Å olarak hesaplanmıştır. Bu değer elmas-yapı Si için 2.352 Å olup incelediğimiz LaPtSi₃ malzemesinin Si atomları arasındaki bağ mesafesi 2.441 Å ve Pt-Si2 arası mesafe 2.360 Å olarak hesaplanmıştır.

Şekil 5-12 BaNiSn₃ -tipi kristal yapıda LaPtSi₃ malzemesinin kristal yapısı. z-eksenine dik olan bir ayna düzlemi bulunmamaktadır.

LaPtSi₃	a(Å)	c(Å)	V(Å ³)	Z _{Pt}	Z_{Si1}	Z_{Si2}	B(GPa)	B'
Bu Çalışma	4.3763	9.6716	95.63	0.6473	0.3950	0.2610	117.1	3.51
Deneysel ^(Smidman vd. 2014)	4.3474	9.6368	91.07					

Tablo 5-7 LaPtSi₃ malzemesi için hesaplanmış değerlerin elde bulunan önceki verilerle kıyaslanmış tablosu.

5.3.2 LaPtSi₃ Malzemesinin Elektronik Yapısı

LaPtSi₃ malzemesinin elektronik band yapısı Şekil 5-13(a).'da SOE'li ve SOE'siz olarak verilmiştir. SOE mevcut iken yüksek simetri noktalarında ayrışmalar her türlü kristal yapıda zaten gözlemlenmektedir. Buna karşılık yüksek simetri noktaları arasında seyahat ederken tersinir simetrinin kırıldığı yöne dik yönlerde Antisimetrik SOE (ASOE) etkin olur. Bu da iki-kat yozlaşmaları kaldırarak bandda ayrışmaların olmasına neden olur.

Malzeme için Γ – Z yönü simetrinin kırıldığı yönde olduğu için ASOE etkilememiş ve bu yönde ayrışma olmamıştır. Diğer yönlerde oluşan ayrışmalar çok küçük (5-200meV arası) olmaları nedeniyle ihmal edilebilir düzeydedirler ve bu da sistemin klasik süperiletkenlik gösterdiğinin kanıtlarından ilkidir. Elektronik durum yoğunluğuna bakıldığında (Şekil 5-13(b)) görüldüğü gibi -6.5 eV'den düşük enerjilerde katkı daha çok Si(1,2) elektronik durumlarından meydana gelmiştir. -6.5 eV ile -3.0 eV arasındaki enerji bandları en fazla Pt d ve Si(1,2) p orbitallerinin hibritleşmesi ile oluşmuştur. Bu da Pt ve Si atomları arasındaki kovalent etkileşimi göz önüne sermektedir. Buradan da görüldüğü gibi malzeme iyonik, kovalent ve metalik bağların tamamı mevcuttur. Fermi seviyesine katkılar göz önüne alındığında % 23 La atomu, %20 Pt atomu, %18 Si1 atomu ve %39 Si2 atomunun katkısı vardır. Fermi seviyesindeki durum yoğunluğu (N(E_F)) SOE'li olarak 1.50 durum/eV olarak hesaplanırken SOE'siz 1.51 durum/eV olarak hesaplanmıştır.

Buradan da görüldüğü gibi SOE ihmal edilebilir bir düzeydedir. $N(E_F)$ 'ye gelen katkılar atomların orbitalleri bazında incelendiğinde Si (1,2) 3p orbitalinin katkısı %50 olarak hesaplanmıştır. Bu hesaplamalar Si atomunun malzemenin süperiletkenlik özelliklerinde oldukça önemli bir yer tuttuğunun kanıtıdır.

5.3.3 LaPtSi₃ Malzemesinin Titreşim Özellikleri

BaNiSn₃ yapıdaki LaPtSi₃ malzemeleri için I4/mm uzay grubunda bulunan Hacim-Merkezli Tetragonal yapıda alan-merkezi fonon modları indirgenemez gösterimde

$$\Gamma = 4E + 3A_1 + B_1$$

olarak belirlenmiştir. Malzemelerin grup numarası C_{4v} olup A_1 ve B_1 modlar tekil mod iken E modları ikili dejenereleri temsil eder. A ve B modları z-ekseni boyunca titreşime sahiplerken E modları x-y ekseni boyunca titreşmektedirler. Frekanslar ve alan-merkezli fonon modlarının elektron-fonon etkileşim parametreleri ile kıyaslanmış halleri Tablo 5-8'de yer almaktadır. Ayrıca en düşük A_1 , B_1 ve en büyük A_1 fonon modlarının elektron-fonon parametresine katkısı diğer modlara kıyasla oldukça belirgindir. Bu modların özuzanımları Şekil 5-15'te gösterilmiştir.

Tablo 5.8'den en yüksek λ katkılı modlara bakıldığında Si atomlarının bariz titreşimleri dikket çekmektedir. Buradan Si1 ve Si2 atomlarının yüksek elektron-fonon etkileşimi meydana getirdikleri sonucuna varabiliriz.

LaPtSi₃	E	A ₁	E	A ₁	B ₁	E	E	A ₁
Frekans	2,76	3,36	4,38	7,84	8,34	8,63	9,92	11,21
λ	0,08	0,07	0,06	0,03	0,11	0,05	0,02	0,11

LaPtSi₃ için hesaplanmış fonon dağılım eğrileri ve fonon durum yoğunluğu Şekil 5-15'te görülmektedir. Herhangi bir negatif fonon modunun olmaması BaNiSn₃ yapıda kararlı olduğunu göstermektedir. LaPtSi₃ için 12 adet olan optik mod olmasına karşın $Z - \Gamma$ yönünde yozlaşmalardan dolayı bu sayı 10'a düşmektedir. Fonon dağılımında 6,8 THz'in hemen hemen üstünde 0,2 THz'lik bir adet yasak bölge göze çarpmaktadır. Spektrumun frekansı ise 11.7 THz'e kadar uzanmaktadır. Parçalı durum yoğunluğu, Si bazlı titreşimlerin tüm spektrum boyunca oldukça fazla dağılım gösterdiğine işaret etmektedir. Bunun nedeni Si atomlarının daha düşük kütleye sahip olmalarıdır. Buna karşılık büyük kütleli La ve Pt atomlarının titreşimleri 3,9 THz'in üstünde neredeyse kaybolmaktadır.

Şekil 5-15 LaPtSi₃ malzemesi için fonon dağılım eğrileri(üstte) ve fonon durum yoğunluğunun(altta) gösterim

5.3.4 LaPtSi₃ Malzemesinin Süperiletkenlik Özellikleri

Şekil 5-17'de LaPtSi₃ için, Eliashberg Spektral fonksiyonunun elektron-fonon etkileşim parametresi λ ile nasıl değiştiğini gösteren grafik görülmektedir. Şekilden de görüleceği üzere elektron-fonon parametresine en büyük katkı düşük frekanslardan gelmektedir. Tablo 5-9'da ise hesaplanmış süperiletkenlik değerlerinin daha önceki sonuçlar ile kıyaslanması görülmektedir. Buna göre hesaplamalarımız, öneki veriler ile iyi bir uyum içerisindedir.

Tablo 5-9 LaPtSi₃ malzemesi için elde edilmiş değerler; N(EF), Fermi seviyesinde	durum yoğunluğunu; λ, elektron-
fonon etkileşim parametresini; ω_{In} , ortalama logaritmik frekansı; θ_D , Debye sıca	klığını; T _c , süperiletkenliğe geçiş
sıcaklığını göstermektedir.	

	N(E _F)(Durum/eV)	λ	$\omega_{ln}(K)$	$\gamma\left(\frac{mJ}{mol.K^2}\right)$	$T_c(K)$
LaPtSi₃(SOE'li)	1,50	0,488	213,94	5,2	1,39
LaPtSi₃(SOE'siz)	1,51	0,487			
Deneysel ^{(Smidman} vd. 2014)				4,4	1,52

Şekil 5-16 LaPtSi3 için Eliashberg Spektral fonksiyonunun elektron-fonon etkileşim parametresi λ ile değişimi

Tablo 5-10 LaPtSi₃ malzemesi için elde edilmiş değerler; N(EF), Fermi seviyesinde durum yoğunluğunu; λ, elektronfonon etkileşim parametresini; ωln, ortalama logaritmik frekansı; θ_D, Debye sıcaklığını; Tc, süperiletkenliğe geçiş sıcaklığını göstermektedir.

	N(E _F)(Durum/eV)	λ	$\omega_{ln}(K)$	$\gamma\left(\frac{mJ}{mol.K^2}\right)$	$T_c(K)$
LaPtSi₃(SOE'li)	1,50	0,488	213,94	5,2	1,39
LaPtSi₃(SOE'siz)	1,51	0,487			
Deneysel(Smidman vd. 2014)				4,4	1,52

Görüldüğü gibi hesaplamalarımızla bulduğumuz teorik T_c değeri ile deneysel T_c değerleri arasında oldukça iyi bir uyum söz konusudur.

5.4 LalrSi₃ Malzemesinin Hesaplanmış Değerleri

5.4.1 LalrSi₃ Malzemesinin Yapısal Özellikleri

Cisim merkezli tetragonal BaNiSn₃ yapıda l4mm (no:107) uzay grubuna sahip olan LaIrSi₃ malzemesinin kristal yapısı Şekil 5-17'de görülmektedir Birim hücredeki dört adet eşdeğer olmayan kristal konum belirlenmiştir. Bunlar La, Ir, Si1 ve Si2 olarak gösterilmiştir. Bu konumların atomik pozisyonları La(2a) (0,0,0), Ir(2a) (0,0, z_{Ir}), Si1 (2a) (0,0, z_{si1}), Si2 (4b) (0,1/2, z_{Si2}), (1/2,0, z_{Si2}). Burada "z" ile belirtilenler iç parametreleri ifade etmektedir. LaIrSi₃ malzemelerine Ir geçiş metali atomları dört bazal Si2 ve bir apikal Si1 atomu ile sarılıdır. Toplam enerji hesaplamaları sonucunda elde ettiğimiz yapısal değerler ve daha önceki mevcut sonuçlar Tablo 5-10'da verilmiştir. Buna göre yapılan hesaplamalarla deneysel veriler

kıyaslandığında uyumun oldukça iyi olduğu görülmektedir. Bu da kullandığımız yöntemin yapısal özellik hesaplaması için ideal olduğunu göstermektedir.

Şekil 5-17. LalrSi3 malzemesi için kristal yapının gösterimi

Tablo 5-11 LalrSi₃ malzemelerinin hesaplanan yapısal özellikleri ve daha önceki mevcut deneysel verilerle karşılaştırılması.

	a(Å)	c(Å)	V(Å ³)	Zır	Z _{Si1}	Z _{Si2}
LalrSi₃	4.302	9.882	91.43	0.6542	0.4109	0.2625
Deneysel (Anand vd. 2014)	4.278	9.831	89.98	0.6554	0.4110	0.2624

5.4.2 LalrSi₃ Malzemesinin Elektronik Yapısı

Şekil 5-18'de LalrSi₃ malzemesinin hesaplanmış elektronik yapıları görülmektedir. Burada görülen yapı daha önceki teorik hesaplamalar ile uyum içerisindedir (Terashima vd. 2008; Okuda vd. 2007; Winiarski ve Samsel-Czekała 2015). LalrSi₃ malzemesinin Ir atom kütlesinin daha büyük olması nedeniyle SOE daha fazla bant ayrışmalarına neden olmuştur. X-P yönü dışında tüm yönlerde iyi bir dağılım göstererek üç boyutlu metal yapı gösterseler de X-P doğrultusunda iletkenlik ve valans bantları birbirlerinden oldukça iyi bir biçimde ayrılmıştır. SOE göz önüne alındığında LalrSi₃ için Fermi seviyesinin hemen üstünde Γ noktasında 0,3 eV'lik bir ayrılma görülmektedir. Elektrik alanın gradyan dağılımı bu ayrışmaya neden olmaktadır. *Z* – Γ ve *X* – *P* yönlerinde ASOE kaynaklı ayrışma ise yine daha önce belirttiğimiz simetrinin kırılma eksenine dik olmadıklarından gözlemlenmemektedir. LalrSi₃, G1-Z doğrultusunda hemen Fermi seviyesinin üstünde 0,35 eV olarak dikey ayrışmanın en büyük değeri görülmektedir.

Şekil 5-18 LalrSi₃ malzemesi için hesaplanan a) elektronik yapı ve b) elektronik durum yoğunluğu grafikleri.

Şekil 5-18.b'de LalrSi₃ için elektronik durum yoğunlukları görülmektedir. Toplam durum yoğunluğu değerleri daha önceki verilerle uyum içerisindendir(Terashima vd. 2008; Okuda vd. 2007; Winiarski ve Samsel-Czekała 2015). LalrSi₃.için -6,0 ve -3,0 eV civarında genel olarak Ir atomunun 5d durumlarının baskın olduğu görülmektedir. Buna karşılık La atomunun valans banda katkısı Fermi civarı hariç bir hayli küçüktür. Bu sonuç La atomunun elektronegatifliği nedeniyle elektronlarını IrSi₅ kısmına vererek katyon oluşturduğu için beklenen bir durumdur. Bu sebeple La ve IrSi₅ arasında iyonik bir etkileşim bulunmaktadır. Fermi seviyesi etrafında Ir ve Si atomlarının katkılarının benzerlik göstermesi, bu iki atom arasında güçlü bir kovalent bağ oluşturup hibritleştiklerinin kanıtıdır. Valans özelliklerinin incelenmesi LalrSi₃'te kovalent ve iyonik bantların mevcut olduğunu göstermiştir. Her ne kadar Si(1,2) atomları Fermi seviyesi yakınlarında baskın olsa da diğer atomlardan da Fermi seviyesine ve hemen üstüne katkılar gelmektedir. Bu da La'nin +3 seviyesine yükseltgenmediğini gösterir. N(E_F) değerleri ise SOE'li

olarak 1,47 Durum/eV iken SOE'siz olarak 1,57 Durum/eV olarak hesaplanmıştır. SOE'nin en büyük olduğu LalrSi₃ için dahi bu sonuçlar SOE hesaplamalarının ihmal edilebilir seviyede olduğunu göstermektedir.

LalrSi₃ için N(E_F) değerine atomlardan gelen katkıları sırasıyla La, Ir ve Si(1,2) için %18, %32, %50 olarak hesaplanmıştır. Özel olarak Si2 3p'den %23, Ir 5d'den %21, Si1 3p'den %20, La 5d'den %17 ve Ir 6p'den %10 katkı gelmektedir. Diğer iki malzeme için de (LaPdSi₃ ve LaRhSi₃) benzer sonuçlar elde edilmiştir. LaPdSi₃ ve LaRhSi₃ için se N(E_F) değerleri sırasıyla SOE etkin iken 1,49 Durum/eV ve 1,78 Durum/eV, SOE etkin değilken 1,50 Durum/eV ve 1,76 Durum/eV olarak hesaplanmıştır.

5.4.3 LalrSi₃ Malzemesinin Titreşim Özellikleri

BaNiSn₃ yapıdaki LaIrSi₃ malzemeleri için I4/mm uzay grubunda bulunan Hacim-merkezli Tetragonal yapıda alan-merkezi fonon modları indirgenemez gösterimde

$$\Gamma = 4E + 3A_1 + B_1$$

olarak belirlenmiştir. Malzemelerin grup numarası C_{4v} olup A_1 ve B_1 modlar tekil mod iken E modları ikili dejenereleri temsil eder. A ve B modları z-ekseni boyunca titreşime sahiplerken E modları x-y ekseni boyunca titreşmektedirler. Frekanslar ve alan-merkezli fonon modlarının elektron-fonon etkileşim parametreleri ile kıyaslanmış halleri Tablo 5.11'de yer almaktadır. Tablo 2'den en yüksek λ katkılı modlara bakıldığında Si atomlarının bariz titreşimleri dikkat çekmektedir. Buradan Si1 ve Si2 atomlarının yüksek elektron-fonon etkileşimi meydana getirdikleri sonucuna varabiliriz. Ayrıca en düşük A_1 , B_1 ve en büyük A_1 fonon modlarının elektron-fonon parametresine katkısı diğer modlara kıyasla oldukça belirgindir. Bu modların özuzanımları Şekil 5.19'da gösterilmiştir.

Tablo 5-12 LalrSi₃ malzemesi için titreşim modlarının frekansları (THz), elektron-fonon etkileşim parametrelerinin (λ) gösterimi.

LalrSi₃	E	A ₁	E	E	B ₁	A ₁	E	A ₁
Frekans	3,35	3,88	4,63	8,05	8,46	8,95	11,03	11,06
λ	0,09	0,11	0,06	0,08	0,14	0,04	0,02	0,12

LalrSi₃ için hesaplanmış fonon dağılım eğrileri ve fonon durum yoğunluğu ise Şekil 5.20'de görülmektedir. Üç akustik ve beş optik mod ilk frekans bölgesinde yer alır. Bu modlar birbirlerine oldukça girmiş haldedir. İkinci ve üçüncü bölgelerdeki modlar daha az dağılım gösterir. Bu iki bölge birbirlerinde 0,2 THz gibi çok dar bir aralıkla ayrılmıştır. Dördüncü bölge ise 10,2 THz den 12,7 THz'ye kadar uzanmaktadır. Bu son bölgede üç adet dağılım gösteren optik mod mevcuttur. Şekil 7.(b)'de görülen kısmi fonon durum yoğunluğu bize Si1 ve Si2 atomlarının tür spektrum boyunca dağılım gösterdiğine işaret eder. Daha ağır olan La ve Ir atomlarının titreşimleri ise 4,7 THz'den sonra yok olmaktadır. Özellikle 4,7 THz ve 6,4 THz frekansları arasında sadece Si2 atomlarının katkısı göze batmaktadır. Yüksek frekanslarda ise Si1 ve Si2 atomları birlikte titreşmeye devam etmektedirler.

5.4.4 LalrSi₃ Malzemesinin Süperiletkenlik Özellikleri

LalrSi₃ için hesaplanmış parametreler Tablo 5.12'de, Eliashberg spektral fonksiyonunun λ 'ya göre değişimini gösteren grafik ise 5.21'de görülmektedir. Şekil 5.21'den görüleceği üzere elektron-fonon parametresine en büyük katkı düşük frekanslardan gelmektedir. LalrSi₃ malzemesinde Ir atomlarının elektron-fonon etkileşmesinde etkin bir rol oynadığını göstermektedir.

Tablo 5-13 LaIrSi₃ malzemesi için elde edilmiş değerler; N(E_F), Fermi seviyesinde durum yoğunluğunu; λ, elektronfonon etkileşim parametresini; ω_{In}, ortalama logaritmik frekansı; θ_D, Debye sıcaklığını; T_c, süperiletkenliğe geçiş sıcaklığını göstermektedir.

	N(E _F)(Durum/eV)	λ	$\omega_{ln}(K)$	$\gamma\left(\frac{mJ}{mol.K^2}\right)$	$T_c(K)$
LalrSi₃(SOE'li)	1,47	0,39	253,2	4,85	0,89
LalrSi ₃ (SOE'siz)	1,58	0,42	255,2	5,28	1,24
Deneysel ^{(Okuda} vd. 2007)				4,50	0,77

Şekil 5-20 LalrSi₃ malzemesi için (a)fonon dağılım eğrileri ve (b)fonon durum yoğunluğunun gösterimi

Şekil 5-21 LalrSi3 malzemeleri için Eliashberg Spektral fonksiyonunun elektron-fonon etkileşim parametresi λ ile değişimi

5.5 LaRhSi₃ Malzemesinin Hesaplanmış Değerleri

5.5.1 LaRhSi₃ Malzemesinin Yapısal Özellikleri

Cisim merkezli tetragonal BaNiSn₃ yapıda I4mm (no:107) uzay grubuna sahip olan LaRhSi₃ malzemelesinin kristal yapısı Şekil 5.22'de görülmektedir Birim hücredeki dört adet eşdeğer olmayan kristal konum belirlenmiştir. Bunlar La, Rh, Si1 ve Si2 olarak gösterilmiştir. Bu konumların atomik pozisyonları La(2a) (0,0,0), Rh(2a) (0,0,*z*_{Rh}), Si1 (2a) (0,0,*z*_{si1}), Si2 (4b) (0,1/2,*z*_{Si2}), (1/2,0,*z*_{Si2}). Burada "z" ile belirtilenler iç parametreleri ifade etmektedir. LaRhSi₃ malzemelerinde Rh geçiş metali atomları dört bazal Si2 ve bir apikal Si1 atomu ile sarılıdır. Toplam enerji hesaplamaları sonucunda elde ettiğimiz yapısal değerler ve daha önceki mevcut sonuçlar Tablo 5.13'te verilmiştir. Buna göre yapılan hesaplamalarla deneysel veriler kıyaslandığında uyumun oldukça iyi olduğu görülmektedir. Bu da kullandığımız yöntemin yapısal özellik hesaplaması için ideal olduğunu göstermektedir.

Şekil 5-22 LaRhSi3 için kristal yapının gösterimi

Tablo 5-14 LaRhSi3 malzemesinin hesaplanan yapısal özellikleri ve daha önceki mevcut deneysel verilerle karşılaştırılması.

	a(Å)	c(Å)	V(Å ³)	Z_{Rh}	Z _{Si1}	Z _{Si2}
LaRhSi₃	4.310	9.878	91.75	0.6559	0.4137	0.2643
Deneysel ^(Terashima vd. 2008)	4.269	9.829	89.58	0.6577	0.4135	0.2650

5.5.2 LaRhSi₃ Malzemesinin Elektronik Yapısı

Şekil 5.23'te LaRhSi₃ malzemelerinin hesaplanmış elektronik yapıları görülmektedir. Burada görülen yapılar daha önceki teorik hesaplamalar ile uyum içerisindedir (Terashima vd. 2008; Okuda vd. 2007; Winiarski ve Samsel-Czekała 2015). Üç malzemenin de elektronik yapısı benzerlikler göstermektedir. X-P yönü dışında tüm yönlerde iyi bir dağılım göstererek üç boyutlu metal yapı gösterseler de X-P doğrultusunda iletkenlik ve valans bantları birbirlerinden oldukça iyi bir biçimde ayrılmıştır. SOE göz önüne alındığında Fermi seviyesinin hemen üstünde Γ noktasında bir ayrışma görülmektedir. Elektrik alanın gradyan dağılımı bu ayrışmaya neden olmaktadır. $Z - \Gamma$ ve X - P yönlerinde ASOE kaynaklı ayrışma ise yine daha önce belirttiğimiz simetrinin kırılma eksenine dik olmadıklarından gözlemlenmemektedir. G1-Z doğrultusunda hemen Fermi seviyesinin üstünde dikey ayrışmanın en büyük olduğu değeri görülmektedir. Bu değer 0.1eV kadar bile değildir.

Şekil 5-23 LaRhSi3 malzemesi için hesaplanan a) elektronik yapı ve b) elektronik durum yoğunluğu grafikleri

LaRhSi₃ için N(E_F) değerine atomlardan gelen katkılarının büyüklük sıralaması sırasıyla Si(1,2), Rh ve La olarak bulunmuştur. En büyük katkı, Si2 3p orbitalinden gelmektedir. Buna karşılık La atomunun valans banda katkısı Fermi civarı hariç bir hayli küçüktür. Bu sonuç La atomunun elektronegatifliği nedeniyle elektronlarını RhSi₅ kısmına vererek katyon oluşturduğu için beklenen bir durumdur. Bu sebeple La ve RhSi₅ arasında iyonik bir etkileşim bulunmaktadır. Fermi seviyesi etrafında Rh ve Si atomlarının katkılarının benzerlik göstermesi, bu iki atom arasında güçlü bir kovalent bağ oluşturup hibritleştiklerinin kanıtıdır. Valans özelliklerinin incelenmesi LaRhSi₃'te kovalent ve iyonik bantların mevcut olduğunu göstermiştir. Her ne kadar Si(1,2) atomları Fermi seviyesi yakınlarında baskın olsa da diğer atomlardan da Fermi seviyesine ve hemen üstüne katkılar gelmektedir. Bu da La'nin +3 seviyesine yükseltgenmediğini gösterir. N(E_F) değeri SOE dahilken 1,78 Durum/eV, SOE etkin değilken 1,76 Durum/eV olarak hesaplanmıştır.

5.5.3 LaRhSi₃ Malzemesinin Titreşim Özellikleri

BaNiSn₃ yapıdaki LaRhSi₃ malzemesi için I4/mm uzay grubunda bulunan Hacim-merkezli Tetragonal yapıda alan-merkezi fonon modları indirgenemez gösterimde

$$\Gamma = 4E + 3A_1 + B_1$$

olarak belirlenmiştir. Malzemelerin grup numarası C_{4v} olup A_1 ve B_1 modlar tekil mod iken E modları ikili dejenereleri temsil eder. A ve B modları z-ekseni boyunca titreşime sahiplerken E modları x-y ekseni boyunca titreşmektedirler. Frekanslar ve alan-merkezli fonon modlarının elektron-fonon etkileşim parametreleri ile kıyaslanmış halleri Tablo 5.14'te yer almaktadır. Tablodan en yüksek λ katkılı modlara bakıldığında Si atomlarının bariz titreşimleri dikkat çekmektedir. Buradan Si1 ve Si2 atomlarının yüksek elektron-fonon etkileşimi meydana getirdikleri sonucuna varabiliriz.

Tablo 5-15 LaRhSi₃ için titreşim modlarının frekansları (THz), elektron-fonon etkileşim parametrelerinin (λ) gösterimi.

LaRhSi₃	E	A1	E	E	B1	A1	A ₁	E
Frekans	3,79	4,10	4,36	7,98	8,28	8,93	10,47	10,47
λ	0,08	0,14	0,08	0,07	0,16	0,05	0,19	0,03

LaRhSi₃ için hesaplanmış fonon dağılım ve kısmi fonon durum yoğunluğu grafikleri Şekil 5.24'te görülmektedir. Yüksek frekanslarda Si1 ve Si2 atomlarının baskınlığı göze çarpmaktadır. Şekil 5.24(a)'da görüldüğü gibi LaRhSi₃ malzemesi dört bölgeye ayrılmaktadır. En büyük olarak, Şekil 5.24(b)'den de görüleceği gibi, La atomunun titreşimleri 4,3 THz'den sonra yok olurken Rh atomundan yüksek frekanslara az da olsa katkı gelmesidir. Bu nedenle LaRhSi₃, LalrSi₃'ten 1 THz kadar düşük frekans olan 11,7 THz'ye kadar titreşim yapabilmektedir

Şekil 5-24 LaRhSi₃ malzemesi için (a)fonon dağılım eğrileri ve (b)fonon durum yoğunluğunun gösterimi

5.5.4 LaRhSi₃ Malzemesinin Süperiletkenlik Özellikleri

Tablo 5-15'te LaRhSi₃ malzemesi için hesaplanmış süperiletkenlik parametreleri görülmektedir. Şekil 5.25'te ise LaRhSi₃ için Eliashberg Spektral fonksiyonunun elektron-fonon etkileşim parametresi λ ile nasıl değiştiğini gösteren grafik görülmektedir. Şekilden de görüleceği üzere düşük frekanslı titreşimlerin elektron-fonon etkileşim parametresine katkıları diğer modlarınkine kıyasla daha fazladır.

Şekil 5-25 LaRhSi₃ malzemesi için Eliashberg Spektral fonksiyonunun elektron-fonon etkileşim parametresi λ ile değişimi

Tablo 5-16 LaRhSi₃ malzemesi için elde edilmiş değerler; N(EF), Fermi seviyesinde durum yoğunluğunu; λ , elektron-fonon etkileşim parametresini; ω ln, ortalama logaritmik frekansı; θ_D , Debye sıcaklığını; Tc, süperiletkenliğe geçiş sıcaklığını göstermektedir.

	N(E _F)(Durum/eV)	λ	$\omega_{ln}(K)$	$\gamma\left(\frac{mJ}{mol.K^2}\right)$	$T_c(K)$
LaRhSi₃(SOE'li)	1,78	0,49	230,2	6,23	2,56
LaRhSi₃(SOE'siz)	1,76	0,50	236,6	6,20	2,80
Deneysel (Anand vd. 2011)	1,70	0,49		6,04	2,16

5.6 LaPdSi₃ Malzemesinin Hesaplanmış Değerleri

5.6.1 LaPdSi₃ Malzemesinin Yapısal Özellikleri

Cisim merkezli tetragonal BaNiSn₃ yapıda I4mm (no:107) uzay grubuna sahip olan LaPdSi₃ malzemelesinin kristal yapısı Şekil 5.26'da görülmektedir Birim hücredeki dört adet eşdeğer olmayan kristal konum belirlenmiştir. Bunlar La, Pd, Si1 ve Si2 olarak gösterilmiştir. Bu konumların atomik pozisyonları La(2a) (0,0,0), Pd(2a) (0,0,*z*_{Pd}), Si1 (2a) (0,0,*z*_{si1}), Si2 (4b) (0,1/2,*z*_{Si2}), (1/2,0,*z*_{Si2}). Burada "z" ile belirtilenler iç parametreleri ifade etmektedir. LaPdSi₃ malzemelerine Pd geçiş metali atomları dört bazal Si2 ve bir apikal Si1 atomu ile sarılıdır. Toplam enerji hesaplamaları sonucunda elde ettiğimiz yapısal değerler ve daha önceki mevcut sonuçlar Tablo 5.16.'da verilmiştir. Buna göre yapılan hesaplamalarla deneysel veriler kıyaslandığında uyumun oldukça iyi olduğu görülmektedir. Bu da kullandığımız yöntemin yapısal özellik hesaplaması için ideal olduğunu göstermektedir.

Şekil 5-26 LaRhSi3 için kristal yapının gösterimi

Tablo 5-17 LaPdSi₃ malzemesinin hesaplanan yapısal özellikleri ve daha önceki mevcut deneysel verilerle karşılaştırılması.

	a(Å)	c(Å)	V(Å ³)	ZT	Z _{Si1}	Z _{Si2}
LaPdSi₃	4.375	9.677	92.61	0.6445	0.3915	0.2596
Deneysel ^{(Smidman vd.} 2014)	4.354	9.664	91.61			

5.6.2 LaPdSi₃ Malzemesinin Elektronik Yapısı

LaPdSi₃ malzemesi için hesaplanmış elektronik yapı ve elektronik durum yoğunluğu grafikleri Şekil 5.27.'de görülmektedir. LaPdSi₃'ün elektronik yapısına bakıldığında Fermi seviyesini kesen elektronik bantlar rahatlıkla görülmektedir. Buradan malzemenin metalik özellik gösterdiğini söyleyebiliriz. SOE ile hesaplanmış yapı, yüksek simetri noktaları arasında ayrılmalar göstermektedir. Sadece $Z - \Gamma$ yönünde ikili-dejenere modların ayrışmadığı görülmektedir. Bunun nedeni Antisimetrik SOE'nin (ASOE) sadece tersinir simetrinin kırıldığı doğrultuya dik yönlere etkimesidir. Şekil 5.27(a)'da hem SOE'li hem de SOE'siz hesaplamalar görülmektedir. Fermi seviyesi yakınlarında ASOE etkisi altında dikey ayrışma küçük olup ihmal edilebilir seviyededir. -6,5 eV'den daha düşük frekanslara ana katkı genel olarak Si(1,2) atomlarından kaynaklandığı Şekil 5.27(b)'den görülmektedir. Bu bölgeye La ve Pd'nin elektronik durumlarından az da olsa katkı gelmektedir. Bu bölgedeki bantların karmaşık özellik gösterdiğini söyleyebiliriz.

Şekil 5-27 LaPdSi₃ malzemesi için hesaplanan a) elektronik yapı ve b) elektronik durum yoğunluğu grafikleri

Valans bant kısmı tüm atomların katkılarını içermektedir. Ayrıca Fermi seviyesi yakınlarında $Z - \Gamma$ yönünde görülen kayda değer dağılım malzemenin elektronik olarak üç boyutlu bir karakter gösterdiğine işaret etmektedir. N(E_F)'ye en büyük katkı Si(1,2) atomlarından kaynaklanmaktadır. Bu katkı bize LaPdSi₃ malzemesi için süperiletkenliğe geçiş sıcaklığında Si atomlarının etkin rol oynadığını söylemektedir. LaPdSi₃ için ise N(E_F) değerleri SOE dahil edildiğinde 1,49 Durum/eV, SOE dahil edilmediğinde 1,50 Durum/eV olarak hesaplanmıştır. Buradan da anlaşılacağı üzere SOE'nin N(E_F) üzerine etkisi ihmal edilebilir seviyededir.

5.6.3 LaPdSi₃ Malzemesinin Titreşim Özellikleri

LaPdSi₃ malzemelesi için I4/mm uzay grubunda bulunan Hacim-merkezli Tetragonal yapıda alan-merkezi fonon modları indirgenemez gösterimde

$\Gamma = 4E + 3A_1 + B_1$

olarak belirlenmiştir. Malzemelerin grup numarası C_{4v} olup A_1 ve B_1 modlar tekil mod iken E modları ikili dejenereleri temsil eder. A ve B modları z-ekseni boyunca titreşime sahiplerken E modları x-y düzlemi boyunca titreşmektedirler. Frekanslar ve alan-merkezli fonon modlarının elektron-fonon etkileşim parametreleri ile kıyaslanmış halleri Tablo 5.17'de yer almaktadır. Ayrıca en düşük A_1 , B_1 ve en büyük A_1 fonon modlarının elektron-fonon parametresine katkısı diğer modlara kıyasla oldukça belirgindir.

Tablo 5-18 LaPdSi₃ için titreşim modlarının frekansları (THz), elektron-fonon etkileşim parametrelerinin (λ) gösterimi.

LaPdSi₃	E	A ₁	E	A ₁	B ₁	E	E	A ₁
Frekans	3,14	3,49	4,05	7,76	8,38	8,42	9,30	10,69
λ	0,11	0,20	0,12	0,09	0,23	0,08	0,08	0,32

LaPdSi₃ için hesaplanmış fonon dağılım ve kısmi fonon durum yoğunluğu grafikleri sırasıyla Şekil 5.28'de görülmektedir. Şekil 5.28(a)'da görüldüğü gibi LaPdSi₃ malzemesi iki bölgeye ayrılmaktadır. Bu iki bölge birbirlerinden 0,4 THz gibi çok küçük bir aralıkla ayrılmıştır. LaPdSi₃, LaRhSi₃'ten 1 THz kadar düşük frekans olan 10,7 THz'ye kadar titreşim yapabilmektedir Bunun sebebi LaPdSi₃'ün düşük hacmi veya Pd atomlarının Rh atomlarından daha ağır olmasına bağlanabilir. La atomu en ağır atom olarak 3,0 THz'den daha düşük frekanslarda baskınken diğer atomlardan da bu bölgeye katkı geldiği görülmektedir(Şekil 5.29(b)). Yüksek frekans bölgesinde beklendiği gibi hafif olan Si atomlarının titreşimleri görülmektedir. La atomundan bir katkı gelmezken Pd atomu az da olsa katkı sağlamaktadır.

5.6.4 LaPdSi₃ Malzemesinin Süperiletkenlik Özellikleri

Şekil 5.30'da LaPdSi3 için Eliashberg Spektral fonksiyonunun elektron-fonon etkileşim parametresi λ ile nasıl değiştiğini gösteren grafik görülmektedir. Şekilden de görüleceği üzere düşük frekanslı titreşimlerin elektron-fonon etkileşim parametresine katkıları diğer modlarınkine kıyasla daha fazladır.

Şekil 5-29 LaPdSi₃ malzemesi için Eliashberg Spektral fonksiyonunun elektron-fonon etkileşim parametresi λ ile değişimi

5.7 CaPtSi₃ Malzemesinin Hesaplanmış Değerleri

5.7.1 CaPtSi₃ Malzemesinin Yapısal Özellikleri

Cisim merkezli tetragonal BaNiSn₃ yapıda I4mm (no:107) uzay grubuna sahip olan CaPtSi₃ malzemelesinin kristal yapısı Şekil 5.30.'de görülmektedir Birim hücredeki dört adet eşdeğer olmayan kristal konum belirlenmiştir. Bunlar Ca, Pt, Si1 ve Si2 olarak gösterilmiştir. Bu konumların atomik pozisyonları Ca(2a) (0,0,0), Pt(2a) (0,0,*z*_{Pt}), Si1 (2a) (0,0,*z*_{si1}), Si2 (4b) (0,1/2,*z*_{Si2}), (1/2,0,*z*_{Si2}). Burada "z" ile belirtilenler iç parametreleri ifade etmektedir. CaPtSi₃ malzemelerinde Pt geçiş metali atomları Si atomları ile beş adet bağ yapmaktadır. Toplam enerji hesaplamaları sonucunda elde ettiğimiz yapısal değerler ve daha önceki mevcut sonuçlar Tablo 5.18.'de verilmiştir. Buna göre yapılan hesaplamalarla deneysel veriler kıyaslandığında uyumun oldukça iyi olduğu görülmektedir. Bu da kullandığımız yöntemin yapısal özellik hesaplaması için ideal olduğunu göstermektedir.

5.7.2 CaPtSi₃ Malzemesinin Elektronik Yapısı

CaPtSi₃ malzemesi için hesaplanmış elektronik yapı ve elektronik durum yoğunluğu grafikleri Şekil 5.31'de görülmektedir. CaPtSi₃'ün elektronik yapısına bakıldığında Fermi seviyesini kesen elektronik bantlar rahatlıkla görülmektedir. Buradan malzemenin metalik özellik gösterdiğini söyleyebiliriz. SOE ile hesaplanmış yapı, yüksek simetri noktaları arasında ayrılmalar göstermektedir. Sadece $Z - \Gamma$ ve X-P yönlerinde ikili-yozlaşmış modların ayrışmadığı görülmektedir. Bunun nedeni Antisimetrik SOE'nin (ASOE) sadece tersinir

simetrinin kırıldığı doğrultuya dik yönlere etkimesidir. Şekil 5.31(a)'da hem SOE'li hem de SOE'siz elektronik bant yapısı hesaplamaları görülmektedir.

CaPtSi ₃	a(Å)	c(Å)	V(Å ³)	Z _{Pt}	Z _{Si1}	Z _{Si2}	B(Gpa)
Bu Çalışma	4.260	9,830	89,20	0,641	0,398	0,259	103,2
GGA ^{(Bannikov} vd. 2010)	4,223	9,816	87,54	0,642	0,410	0,260	
LDA (Kaczkowski ve Jezierski 2011)	4,200	9,751	86,00	0,644	0,410	0,260	
Deneysel ^{(Eguchi vd.} 2011)	4,198	9,811	86,48	0,643	0,396	0,258	
Deneysel ^{(Singh vd.} 2014)	4,218	9,880	87,90				

Tablo 5-19 CaPtSi $_3$ malzemesinin hesaplanan yapısal özellikleri ve daha önceki mevcut deneysel verilerle karşılaştırılması.

Şekil 5-30 CaPtSi3 malzemesi için I4mm uzay grubunda kristal yapının gösterimi

Fermi seviyesi yakınlarında ASOE etkisi altında dikey ayrışma küçük olup ihmal edilebilir seviyededir. Bu bölgeye Si atomlarının yanısıra Ca ve Pt'nin elektronik durumlarından da katkı geldiği görülmektedir. Bu bölgedeki bantların karmaşık özellik gösterdiğini söyleyebiliriz.

Şekil 5-31 (a) CaPtSi₃ için yüksek simetri noktalarında elektronik band yapısının gösterimi ve (b) kısmi elektronik durum yoğunluklarının gösterimi

CaPtSi₃ malzemesi için N(E_F)'ye gelen katkılar büyüklük sırasıyla Si(2)'den 42%, Pt'den %26, Si1'den 21% ve Ca'dan 11% olarak hesaplanmıştır. Buradan da görüleceği gibi Si atomlarını katkısı oldukça büyük olup süperiletkenliğe neden olan en önemli faktör olarak alınabilirler. CaPtSi₃ için N(E_F) değerleri SOE dahil edildiğinde 1,44 Durum/eV, SOE dahil edilmediğinde 1,49 Durum/eV olarak hesaplanmıştır. Buradan da anlaşılacağı üzere SOE'nin N(E_F) üzerine etkisi ihmal edilebilir seviyededir.

5.7.3 CaPtSi₃ Malzemesinin Titreşim Özellikleri

CaPtSi₃ malzemelesi için I4/mm uzay grubunda bulunan Hacim-merkezli Tetragonal yapıda alan-merkezi fonon modları indirgenemez gösterimde

$$\Gamma = 4E + 3A_1 + B_1$$

olarak belirlenmiştir. Malzemelerin grup numarası C_{4v} olup A_1 ve B_1 modlar tekil mod iken E modları ikili dejenereleri temsil eder. A ve B modları z-ekseni boyunca titreşime sahiplerken E modları x-y ekseni boyunca titreşmektedirler. Frekanslar ve alan-merkezli fonon modlarının elektron-fonon etkileşim parametreleri ile kıyaslanmış halleri Tablo 5.19'da yer almaktadır. Ayrıca B₁ ve en büyük A₁ fonon modlarının elektron-fonon etkileşim parametresine katkısı diğer modlara kıyasla oldukça belirgindir. Bu modların özvektör ile gösterimleri Şekil 5.32'de gösterilmiştir.

Tablo 5-20 CaPtSi₃ için titreşim modlarının frekansları (THz), elektron-fonon etkileşim parametrelerinin (λ) gösterimi.

CaPtSi₃	E	A ₁	E	B ₁	E	A ₁	E	A ₁
Frekans	3,73	4,53	4,86	7,81	8,09	8,38	9,92	11,25
λ	0,050	0,029	0,032	0,126	0,050	0,020	0,019	0,096

Şekil 5-32 CaPtSi3 malzemesinin bazı modlarının özvektörler ile gösterimi

CaPtSi₃ için hesaplanmış fonon dağılım ve kısmi fonon durum yoğunluğu grafikleri sırasıyla Şekil 5.33'te görülmektedir. Şekil 5.33(a)'da görüldüğü gibi CaPtSi₃ malzemesi 0-6.6 THz ilki olmak üzere iki bölgeye ayrılmaktadır. Bu iki bölge birbirlerinden 0,3 THz gibi çok küçük bir aralıkla ayrılmıştır. Bu nedenle malzemenin fononik özellik gösterdiği söylenebilir. CaPtSi₃, 12,1 THz'ye kadar titreşim yapabilmektedir. 0 ile 3,9 THz arasın titreşimler güçlü Pt-Si bağı nedeniyle bu iki elementin hâkimiyeti altındadır. 3,9 ile 4,6 THz arası Ca atomlarınca ele geçirilmiştir. Bu bölgeye diğer atomlardan az da olsa katkı gelmektedir. 4,6 THz'nin üzerinde ise ağır Pt atomlarının titreşimleri neredeyse yok olmuştur. Spektrumun her bölgesinde mevcut olan Si atomlarının titreşimleri süperiletkenlikte etkin rol oynamalarını da sağlamıştır.

Şekil 5-33 CaPtSi₃ malzemesi için (a)fonon dağılım eğrileri ve (b)fonon durum yoğunluğunun gösterimi

5.7.4 CaPtSi₃ Malzemesinin Süperiletkenlik Özellikleri

Şekil 5.34'te CaPtSi₃ için Eliashberg Spektral fonksiyonunun elektron-fonon etkileşim parametresi λ ile nasıl değiştiğini gösteren grafik görülmektedir. Şekilden de görüleceği üzere düşük frekanslı titreşimlerin elektron-fonon etkileşim parametresine katkıları diğer modlarınkine kıyasla daha fazladır. Tablo 5-20'de ise CaPtSi₃ için hesaplanmış süperiletkenlik değerleri görülmektedir. Görüldüğü gibi tüm spektrum boyunca titreşen Si atomları nedeniyle elektron-fonon etkileşimine tüm modlardan neredeyse eşit seviyede katkı gelmektedir. Ayrıca hesaplanan değerler ile daha önceki veriler oldukçi iyi uyum içerisindedirler.

Tablo 5-21 CaPtSi₃ malzemesi için elde edilmiş değerler; N(E_F), Fermi seviyesinde durum yoğunluğunu; λ , elektronfonon etkileşim parametresini; ω_{In} , ortalama logaritmik frekansı; θ_D , Debye sıcaklığını; T_c, süperiletkenliğe geçiş sıcaklığını göstermektedir.

	N(E _F)(Durum/eV)	λ	$\omega_{\rm ln}({\sf K})$	$\gamma\left(\frac{mJ}{mol.K^2}\right)$	$T_c(K)$
CaPtSi₃(SOE'li)	1,44	0,49	239	4,9	2,4
CaPtSi₃(SOE'siz)	1,49	0,51	234	5,2	2,5
Deneysel (Eguchi vd. 2011)		0,49		4,0	2,3

Şekil 5-34 CaPtSi₃ malzemesi için Eliashberg Spektral fonksiyonunun elektron-fonon etkileşim parametresi λ ile değişimi

BÖLÜM 6. TARTIŞMA

Bu proje calışmasında BaNiSn₃ yapıda kristalleşen LaPtSi₃, LaPdSi₃, LaRhSi₃, LaIrSi₃, SrAuSi₃, CalrSi₃ ve CaPtSi₃ malzemelerinin yapısal ve elektronik özellikleri DFT'nin GGA ve düzlem dalga pseudopotansiyel metotları kullanılarak incelendi. İncelemelerde düzlem dalga ve pseudopotansiyel teorilerini baz alan QUANTUM ESPRESSO (Giannozzi vd. 2009) programı kullanılırken; Perdew-Burke-Ernzerhof tarafından parametrize edilmiş GGA (Meissner ve Ochsenfeld 1933) yaklaşımı kullanılarak değiş- tokuş ve korelasyon etkileşimlerini incelemek için kullanılmıştır. Bu proje kapsamında incelenmiş olan tüm malzemeler için yapısal hesaplamalar sonucunda elde edilen yapısal değerler daha önceki deneysel ve teorik değerler ile karşılaştırıldı. Yapısal hesaplamalarımız sonucu elde ettiğimiz sonuçlar teorik ve deneysel sonuçlarla genel olarak çok iyi bir uyum göstermektedir. Bu durum bize kullandığımız metodun ideal olduğunu göstermektedir. Elektronik yapı incelemelerinde proje kapsamında incelenmiş olan malzemelerin enerji bandlarının c-ekseni boyunca dağılımları göz önüne alınarak iki boyutludan çok üç boyutlu karakter gösterdikleri söylenebilir. Projeninin devamında lineer tepki metodu ile bu proje kapsamında incelenmiş olan kristallerin titreşim özellikleri incelendi. Bu projenin ana amacı çalışılan süperiletkenlerde, süperiletkenliğin kaynağının belirlenmesidir. Bu nedenle bu projede çalışılan LaPtSi₃, LaPdSi₃, LaRhSi₃, LaIrSi₃, SrAuSi₃, CaIrSi₃ ve CaPtSi₃ kristallerinin elektron-fonon etkileşimi detaylı bir şekilde incelendi ve süperiletkenlik parametreleri Fermi seviyesindeki durum yoğunluğu (N(E_F)), Eliashberg spektral fonksiyonu ($\alpha^2 F(\omega)$), elektron-fonon etkileşme parametresi (λ) ve elektronik özgül ısı katsayısı (y) tayin edildi. Bu parametrelerden yararlanılarak projede incelenmiş olan malzemelerin süperiletkenlik geçiş sıcaklıkları (T_c) belirlendi. Süperiletkenlik için elde edilen sonuçlar, mevcut deneysel sonuçlarla karşılaştırıldı. Çalışılan malzemeler için bulunmuş olan süperiletkenlik geçiş sıcaklıkları da daha önce yapılmış olan deneysel calışmalarla çok iyi uyumludur. Bu proje kapsamında incelenmiş olan bütün malzemeler için elektron-fonon etkileşiminin önemli bir rol oynadığı kesindir. Bu da, her ne kadar merkezi simetrik yapı eksik olsa da süperiletkenliğin kaynağının Cooper çiftleri arasındaki fonon etkileşimi olduğu gözlemlenmiştir. Bu da d-kabuğuna sahip bu merkezi simetrik olmayan malzemelerin klasik bağlamda bir süperiletkenlik gösterdiği anlamına gelmektedir.

Kaynaklar:

- Akimoto, J., Takahashi, Y., Gotoh, Y., Mizuta, S. 2001. "Single crystal growth of the spinel-type LiMn₂O₄", *Journal of crystal growth*, 229, 405-408.
- Allen, P. B. 1972. "Neutron spectroscopy of superconductors", *Physical Review B*, 6, 2577.
- Anand, V., Britz, D., Bhattacharyya, A., Adroja, D., Hillier, A., Strydom, A., Kockelmann, W., Rainford, B., McEwen, K. 2014. "Physical properties of noncentrosymmetric superconductor LaIrSi₃: A µSR study", *Physical Review B*, 90, 014513.
- Anand, V., Hillier, A., Adroja, D., Strydom, A., Michor, H., McEwen, K., Rainford, B. 2011. "Specific heat and μSR study on the noncentrosymmetric superconductor LaRhSi₃", *Physical Review B*, 83, 064522.
- Bagci, S., Tütüncü, H., Duman, S., Bulut, E., Özacar, M., Srivastava, G. 2014. "Physical properties of the cubic spinel LiMn₂O₄", *Journal of Physics and Chemistry of Solids*, 75, 463-469.
- Bağcı, S., Tütüncü, H., Duman, S., Srivastava, G. 2010. "Phonons and superconductivity in fcc and dhcp lanthanum", *Physical Review B*, 81, 144507.
- Balster, H., Wittig, J. 1975. "Pressure-induced lattice instability in fcc lanthanum at low temperature", *Journal of Low Temperature Physics*, 21, 377-414.
- Bannikov, V., Shein, I. R., Ivanovskii, A. L. 2010. "Structural and electronic properties and the fermi surface of the new non-centrosymmetric superconductors: 3.6 K CalrSi₃ and 2.3 K CaPtSi₃", *JETP letters*, 92, 343-347.
- Bardeen, J., Cooper, L. N., Schrieffer, J. R. 1957. "Microscopic theory of superconductivity", *Physical Review*, 106, 162-164.
- Bauer, E., Khan, R., Michor, H., Royanian, E., Grytsiv, A., Melnychenko-Koblyuk, N., Rogl, P., Reith, D., Podloucky, R., Scheidt, E.-W. 2009. "BaPtSi₃: A noncentrosymmetric BCSlike superconductor", *Physical Review B*, 80, 064504.
- Bergk, B., Drechsler, S., Canfield, P., Wosnitza, J. 2012. "Detailed study of the de Haas-van Alphen effect in the Shubnikov state of LuNi₂B₂C", *The European Physical Journal B-Condensed Matter and Complex Systems*, 85, 1-8.
- Eguchi, G., Peets, D., Kriener, M., Maeno, Y., Nishibori, E., Kumazawa, Y., Banno, K., Maki, S., Sawa, H. 2011. "Crystallographic and superconducting properties of the fully gapped noncentrosymmetric 5 d-electron superconductors CaMSi₃(M= Ir, Pt)", *Physical Review B*, 83, 024512.

- Eguchi, G., Peets, D., Kriener, M., Maki, S., Nishibori, E., Sawa, H., Maeno, Y. 2010. "Superconducting properties of noncentrosymmetric CalrSi₃", *Physica C: Superconductivity and its applications,* 470, S762-S763.
- Eguchi, G., Wadati, H., Sugiyama, T., Ikenaga, E., Yonezawa, S., Maeno, Y. 2012. "Large spinorbit splitting and weakly anisotropic superconductivity revealed with single-crystalline noncentrosymmetric CalrSi₃", *Physical Review B*, 86, 184510.
- Frandsen, B. A., Cheung, S. C., Goko, T., Liu, L., Medina, T., Munsie, T. S., Luke, G. M., Baker, P. J., Eguchi, G., Yonezawa, S. 2015. "Superconducting properties of noncentrosymmetric superconductor CalrSi₃ investigated by muon spin relaxation and rotation", *Physical Review B*, 91, 014511.
- Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G. L., Cococcioni, M., Dabo, I. 2009. "QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials", *Journal of physics: Condensed matter*, 21, 395502.
- Ginzburg, V. 1950. "On the theory of superconductivity", Zh. eksper. teor. Fiz., 20, 1064-1082.
- Hohenberg, P., Kohn, W. 1964. "Inhomogeneous Electron Gas", Phys. Rev B., 136, 864-871.
- Hopfield, J. 1969. "Angular momentum and transition-metal superconductivity", *Physical Review*, 186, 443.
- Isobe, M., Yoshida, H., Kimoto, K., Arai, M., Takayama-Muromachi, E. 2014. "SrAuSi₃: A noncentrosymmetric superconductor", *Chemistry of Materials*, 26, 2155-2165.
- Johnson, D., Finnemore, D. 1967. "Law of Corresponding States for fcc and dhcp La", *Physical Review*, 158, 376.
- Kaczkowski, J., Jezierski, A. 2011. "First-principle study on electronic and structural properties of newly discovered superconductors: CalrSi₃ and CaPtSi₃", *Journal of Alloys and Compounds*, 509, 6142-6145.
- Kitagawa, J., Muro, Y., Takeda, N., Ishikawa, M. 1997. "Low-temperature magnetic properties of several compounds in Ce-Pd-X (X= Si, Ge and AI) ternary systems", *Journal of the Physical Society of Japan*, 66, 2163-2174.
- Kittel, C. 2014. 'Katı Hal Fiziğine Giriş', Çev: Önengüt, G., Önengüt, D., Sekizinci baskıdan çeviri. Palme Yayınları.
- Kohn, W., Sham, L. J. 1965. "Self-consistent equations including exchange and correlation effects", *Physical review*, 140, A1133.

Kumar, N., Dhar, S., Thamizhavel, A., Bonville, P., Manfrinetti, P. 2010. "Magnetic properties of

EuPtSi₃ single crystals", *Physical Review B*, 81, 144414.

- Lazarević, Z., Jovalekić, Č., Milutinović, A., Sekulić, D., Slankamenac, M., Romčević, M., Romčević, N. 2013. "Study of NiFe₂O₄ and ZnFe₂O₄ spinel ferrites prepared by soft mechanochemical synthesis", *Ferroelectrics*, 448, 1-11.
- Lejay, P., Higashi, I., Chevalier, B., Etourneau, J., Hagenmuller, P. 1984. "Crystal structure of new superconducting materials LaIrSi₃ and LaRhSi₃. Structural relation between LaRh₂Si₂, La₂Rh₃Si₅ and LaRhSi₃", *Materials Research Bulletin*, 19, 115-123.
- London, F., London, H. 1935. "The Electromagnetic Equations of the Supraconductor", *Proceedings of the Royal Society of London. Series A Mathematical and Physical Sciences*, 149, 71-88.
- Lu, X., Park, W., Yeo, S., Oh, K.-H., Lee, S.-I., Bud'ko, S., Canfield, P., Greene, L. 2011. "Superconducting order parameter in nonmagnetic borocarbides RNi₂B₂C(R= Y, Lu) probed by point-contact Andreev reflection spectroscopy", *Physical Review B*, 83, 104519.
- Mattheiss, L., Siegrist, T., Cava, R. 1994. "Superconductivity in the LnNi₂B₂C intermetallics via boron A_{1g} phonons", *Solid state communications*, 91, 587-590.
- McMillan, W. 1968. "Transition temperature of strong-coupled superconductors", *Physical Review*, 167, 331.
- Meissner, W., Ochsenfeld, R. 1933. "Ein neuer Effekt bei Eintritt der Supraleitfähigkeit", *Die Naturwissenschaften*, 21, 787-788.
- Mukai, K., Sugiyama, J., Kamazawa, K., Ikedo, Y., Andreica, D., Amato, A. 2011. "Magnetic properties of the chemically delithiated Li_xMn₂O₄ with 0.07≤ x≤ 1", *Journal of Solid State Chemistry*, 184, 1096-1104.
- Munoz, A., Rodriguez-Hernandez, P., Mujica, A. 1996. "Ground-state properties and highpressure phase of beryllium chalcogenides BeSe, BeTe, and BeS", *Physical Review B*, 54, 11861.
- Murnaghan, F. 1944. "The compressibility of media under extreme pressures", *Proceedings of the National Academy of Sciences*, 30, 244-247.
- Okuda, Y., Miyauchi, Y., Ida, Y., Takeda, Y., Tonohiro, C., Oduchi, Y., Yamada, T., Duc Dung, N., D. Matsuda, T., Haga, Y. 2007. "Magnetic and superconducting properties of LaIrSi₃ and CeIrSi₃ with the non-centrosymmetric crystal structure", *Journal of the Physical Society of Japan*, 76, 044708.
- Onnes, H. K. 1911. Further experiments with liquid helium. In *Proceedings of the KNAW*, 1910-1911.

- Park, H. J., Shin, H. S., Lee, H. G., Yang, I. S., Lee, W. C., Cho, B. K., Canfield, P. C., Johnston, D. C. 1996. "Raman modes of RNi₂B₂C (R=Lu, Ho, Y) single crystals", *Physical Review B* - Condensed Matter and Materials Physics, 53, 2237-2240.
- Perdew, J. P., Burke, K., Ernzerhof, M. 1996. "Generalized gradient approximation made simple", *Physical review letters*, 77, 3865.
- Pfleiderer, C. 2009. "Superconducting phases of f-electron compounds", *Reviews of Modern Physics*, 81, 1551.
- Pickett, W. E., Singh, D. J. 1994. "LuNi₂B₂C: A novel Ni-based strong-coupling superconductor", *Physical review letters*, 72, 3702.
- Rapp, Ö., Sundqvist, B. 1981. "Pressure dependence of the electron-phonon interaction and the normal-state resistivity", *Physical Review B*, 24, 144.
- Shu, C., Long, J., Li, S., Yang, W. 2015. "Theoretical investigation of the mechanical and thermodynamics properties of the noncentrosymmetric superconductor SrAuSi₃", *Journal of Alloys and Compounds*, 650, 553-557.
- Siegrist, T., Zandbergen, H., Cava, R., Krajewski, J., Peck, W. 1994. "The crystal structure of superconducting LuNi₂B₂C and the related phase LuNiBC", *Nature*, 367, 254-256.
- Singh, R., Hillier, A., Chowdhury, D., Barker, J., Paul, D. M., Lees, M. R., Balakrishnan, G. 2014. "Probing the superconducting ground state of the noncentrosymmetric superconductors CaTSi₃ (T= Ir, Pt) using muon-spin relaxation and rotation", *Physical Review B*, 90, 104504.
- Smidman, M., Hillier, A. D., Adroja, D., Lees, M. R., Anand, V., Singh, R., Smith, R., Paul, D., Balakrishnan, G. 2014. "Investigations of the superconducting states of noncentrosymmetric LaPdSi₃ and LaPtSi₃", *Physical Review B*, 89, 094509.

Srivastava, G. P. 1990. The Physics of Phonons. Adam Hilger, Bristol.

- Sugiyamat, J., Tamura, T., Yamauchi, H. 1995. "Elastic/anelastic behaviour during the phase transition in spinel LiMn₂O₄", *Journal of Physics: Condensed Matter*, **7**, 9755.
- Syassen, K., Holzapfel, W. 1975. "Compression of lanthanum to 120 kbar", *Solid State Communications*, 16, 533-536.
- Terashima, T., Kimata, M., Uji, S., Sugawara, T., Kimura, N., Aoki, H., Harima, H. 2008. "Fermi surface in LaRhSi₃ and CeRhSi₃", *Physical Review B*, 78, 205107.
- Tutuncu, H. M., Uzunok, H. Y., Karaca, E., Srivastava, G. P., Ozer, S., Ugur, S. 2015. "Ab initio investigation of BCS-type superconductivity in LuNi₂B₂C-type superconductors",

Physical Review B, 92, 054510

- Tütüncü, H., Bağcı, S., Srivastava, G., Akbulut, A. 2012. "Electrons, phonons and superconductivity in rocksalt and tungsten–carbide phases of CrC", *Journal of Physics: Condensed Matter*, 24, 455704.
- Tütüncü, H., Srivastava, G. 2014a. "Origin of superconductivity in layered centrosymmetric LaNiGa₂", *Applied Physics Letters*, 104, 022603.
- Tütüncü, H., Srivastava, G. 2014b. "Phonon anomalies and superconductivity in the Heusler compound YPd₂Sn", *Journal of Applied Physics*, 116, 013907.
- Weber, F., Pintschovius, L., Reichardt, W., Heid, R., Bohnen, K.-P., Kreyssig, A., Reznik, D., Hradil, K. 2014. "Phonons and electron-phonon coupling in YNi₂B₂C", *Physical Review B*, 89, 104503.
- Weber, W. 1973. "Phonon anomalies in strongly coupled superconductors", *Physical Review B*, 8, 5093.
- Winiarski, M., Samsel-Czekała, M. 2015. "Electronic structure of non-centrosymmetric superconductor LaPdSi₃ and its reference compound LaPdGe 3", *Intermetallics*, 56, 44-47.
- Zeng, N., Lee, W. 2002. "Superconductivity in the Ni-based ternary compound LaNiGa₂", *Physical Review B*, 66, 092503.

TÜBİTAK PROJE ÖZET BİLGİ FORMU

Proje Yürütücüsü:	Prof. Dr. HÜSEYİN MURAT TÜTÜNCÜ
Proje No:	115F135
Proje Başlığı:	BaNiSn3-Tipi Süperiletkenlerin Fiziksel Özelliklerinin Teorik İncelenmesi
Proje Türü:	1001 - Araştırma
Proje Süresi:	24
Araştırmacılar:	ADİL BAŞOĞLU
Danışmanlar:	
Projenin Yürütüldüğü Kuruluş ve Adresi:	SAKARYA Ü. BİYOMEDİKAL, MANYETİK VE YARIİLETKEN MALZEMELER UYGULAMA VE ARAŞTIRMA MERKEZİ
Projenin Başlangıç ve Bitiş Tarihleri:	01/10/2015 - 01/10/2017
Onaylanan Bütçe:	189060.0
Harcanan Bütçe:	148089.81
Öz:	Günümüzde alışageldik süperiletkenlerde kristal yapının tersinir simetrisi Cooper çiftlerinin biçimlenmesinde etkin rol oynar. Bu nedenle BaNiSn3-tipi c-ekseni boyunca tersinir simetrisi olmayan materyallerde süperiletkenliğin ortaya çıkmasıyla merkezi simetrik olmayan (noncentrosymmetric) süperiletkenler hem teorik hem de deneysel açıdan oldukça güncel bir konu olarak kabul görmektedir. Buna benzer sebeple Hacim Merkezli Tetragonal BaNiSn3 yapıda kristalleşen yeni merkezi simetrik olmayan (noncentrosymmetric) süperiletkenlerin keşfedilmesi için çok miktarda deneysel çalışma yapılmıştır. Bunun sonucunda LaPtSi3, LaPdSi3, LaRSi3, LaIrSi3, SrAuSi3, CaIrSi3 ve CaPtSi3 gibi BaNiSn3 -tipi bileşenlerde süperiletkenlik gözlemlendi. Her ne kadar süperiletkenlik bu malzemeler için deneysel olarak gösterilmiş olsa da elektronik ve fonon özellikleri detaylı olarak incelenmemiştir Elektronlar malzemelerin elektriksel özelliklerinden sorumlu iken fononlar malzeme içerisindeki ses hızı ve sıcaklık değişimi için ne kadar ısı alması gerektiği gibi özellikleri belirler. İlave olarak fononlar ve elektronlar süperiletkenlik için çok önemlidir çünkü Bardeen-Cooper-Schrieffer?in BCS teorisinde açıklandığı gibi fononlar, Cooper çiftleri oluşturmasında etkin rol oynarlar. LaPtSi3, LaPdSi3, LaRSi3, SaAuSi3, CaIrSi3 ve CaPtSi3 gibi BaNiSn3-tipi bileşenleri ilk-prensip hesaplamaları ile yapısal ve elektronik olarak incelemenin faydalı olacağını düşünüyoruz. Bu materyallerin elektronik yapısını Fermi enerjisi yakınlarında incelenmiştir çünkü BCS teorisinde Cooper çiftlerinin Fermi seviyesine yakın elektronlarca biçimlendirildiği bilinmektedir. Bu sonuçların ışığında bu materyallerde fonon dağılım eğrileri ve durum yoğunlukları detaylı olarak incelenmiştir. Alan-merkezli fonon modlarının özuzanımları bu materyallerde analiz edilmiştir. Son olarak bu materyaller çin Fermi seviyesinde durum yoğunlukları N(EF), Eliashberg spektral fonksiyonu ?2F(?),elektron-fonon etkileşim parametresi ?, elektronik özgül ısı sabiti (?)
Anahtar Kelimeler:	BaNiSn3 yapı, süperiletkenlik, elektronik yapı, fononlar, elektron-fonon etkileşimi
Fikri Ürün Bildirim Formu Sunuldu Mu?:	Hayır

Projeden Yapılan Yayınlar	1- Theoretical investigation of superconductivity in SrAuSi3 and SrAu2Si2 (Makale - Indeksli
	Makale).
	2- The effect of spin orbit interaction for superconductivity in the noncentrosymmetric
	superconductor CalrSi3 (Makale - İndeksli Makale),
	3- The effect of spin orbit interaction in noncentrosymmetric superconductors LaPt3Si and
	LaPtSi3 (Bildiri - Uluslararası Bildiri - Sözlü Sunum),
	4- Theoretical investigation of noncentrosymmetric superconductors SrAuSi3 and CalrSi3
	(Bildiri - Uluslararası Bildiri - Sözlü Sunum),
	5- The effect of spin orbit interaction in noncentrosymmetric superconductors LaPt3Si and
	LaPtSi3 (Bildiri - Uluslararası Bildiri - Sözlü Sunum),
	6- The influence of spin orbit interaction on phonons and superconductivity in the
	noncentrosymmetric superconductors LaPt3Si and LaPtSi3 (Makale - İndeksli Makale),
	7- An Ab-initio Study Of Superconductivity In The Noncentrosymmetric Srptge3 And Captsi3
	Materials (Bildiri - Uluslararası Bildiri - Sözlü Sunum),

~