T.C. SAKARYA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

YATAY YÜKLÜ DÜŞEY KAZIKLARIN HESAP ESASLARI VE SONLU ELEMANLAR YÖNTEMİYLE MODELLENMESİ

YÜKSEK LİSANS TEZİ

İnş.Müh. Kubilay SAVAŞERİ

Enstitü Anabilim Dalı	:	İNŞAAT MÜHENDİSLİĞİ
Enstitü Bilim Dalı	:	GEOTEKNİK
Tez Danışmanı	:	Doç. Dr. Zeki GÜNDÜZ

T.C. SAKARYA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

YATAY YÜKLÜ DÜŞEY KAZIKLARIN HESAP ESASLARI VE SONLU ELEMANLAR YÖNTEMİYLE MODELLENMESİ

YÜKSEK LİSANS TEZİ

İnş.Müh. Kubilay SAVAŞERİ

Enstitü Anabilim Dalı : İNŞAAT MÜH.

Enstitü Bilim Dalı : GEOTEKNİK

Bu tez 18 / 09 /2006 tarihinde aşağıdaki jüri tarafından Oybirliği ile kabul edilmiştir.

Doç.Dr. Zeki GÜNDÜZProf. Dr. Hasan ARMANYrd. Doç. Dr. Seyhan FIRATJüri BaşkanıÜyeÜye

ÖNSÖZ

Kazıklar ve kazıklı temeller yüzyıllardan beri insanoğlu tarafından yapı yüklerinin zemine güvenle taşıtılamadığı durumlarda kullanılmaktadır. Kazıklar, düşey basınç, düşey çekme ve yatay yöndeki yükleri karşılamak amacıyla inşa edilmektedir. Son 50 yıl içinde tekil kazık ve kazık grupları üzerinde güvenilir tasarım yöntemleri geliştirmek için çok yoğun ve kapsamlı analitik ve deneysel çalışmalar yapılmıştır. Yapılan çok sayıdaki model ve gerçek deneylerden kazık zemin davranışının analizi açısından önemli bilgiler elde edilmiştir. Analitik çalışmalar, düşey yük altında kazık taşıma gücünün, yatay yük altında kazık yer değiştirmesinin tahmini, dinamik yükler altında kazığın reaksiyonu ve sürekli don etkisi altında kazık davranışının anlaşılmasına yöneliktir. Nümerik yöntemler sonlu farklar ve sonlu elemanlar tekniklerini ve uygulamalarını içermektedir. Yapılan çok sayıdaki model ve gerçek deneylerden de önemli bilgiler elde edilmiştir. Bunlardan elde edilen bilgiler farklı zemin türlerinde, farklı yükleme koşullarında ve farklı çevre koşullarında tasarım yöntemlerinin geliştirilmesine yardımcı olmaktadır. Bu calışmada kullanım alanı her gecen gün artan yatay yüklü kazıkların davranışlarının sonlu elemanlar yöntemi kullanılarak incelenmesi öngörülmüştür. Tez çalışması süresince emeği geçen başta tez danışmanım Doç. Dr. Zeki GÜNDÜZ'e, tez çalışmamda kullandığım Allpile programının Türkiye'ye getirilmesinde olağanüstü emek harcayan sayın Prof. Dr. Hasan ARMAN'a ve diğer Sakarya Üniversitesi İnşaat Mühendisliği Bölümü öğretim elemanlarına, araştırma görevlisi arkadaşlarıma ve benden desteğini esirgemeyen mesai arkadaşlarıma teşekkür ederim.

İstanbul 2006

İÇİNDEKİLER

ÖNSÖZ	ii
İÇİNDEKİLER	iii
ŞEKİLLER LİSTESİ	v
TABLOLAR LİSTESİ	vii
ÖZET	viii
SUMMARY	ix

BÖLÜM 1.

GİRİŞ	1
1.1. Kazık Temeller ve Kullanım Alanları	1
1.2. Tezin Amacı	2

BÖLÜM 2.

YATAY YÜKLÜ KAZIKLAR VE HESAP YÖNTEMLERİ	3
2.1. Tarihsel Gelişim ve Mevcut Yöntemler	3
2.1.1. Elastisite teorisi yöntemi	6
2.1.2. Sonlu elemanlar yöntemi	6
2.1.3. Yatak Katsayısı Yöntemi (Winkler metodu, P-Y analizi)	7
•	

BÖLÜM 3.

KOHEZYONSUZ ZEMİNLERDE YATAY YÜKLÜ KAZIKLARIN YATAK	16
KATSAYISI YÖNTEMİYLE ÇÖZÜMÜ	
3.1. Giriş	16
3.2. Serbest Başlı Kazıklar	18
3.3. Tutulu Başlı Kazıklar	27
3.4. Uzun Kazıklar	28
BÖLÜM 4.	

YATAY YÜKLÜ KAZIKLARDA DENEY SONUÇLARI İLE ANALİTİK		
SONUÇLARIN KARŞILAŞTIRILMASI	39	
4.1. Giriş	39	
4.2. Kazık Yatay Yükleme Deneyi ve Deney Sonuçları	40	
4.2.1. Fore Kazık İmalatı	41	
4.2.2. TP1 Test Kazığı İmalatı	42	
4.2.3. TP2 Test Kazığı İmalatı	42	
4.2.4. TP3 Test Kazığı İmalatı	43	
4.2.5. TP4 Test Kazığı İmalatı	43	
4.2.6. Kazık Yatay Yükleme Deneyinin Yapılması	43	
4.2.7. Kazık Bütünlük Deneyleri (Crosshole)	45	
4.3. Deney Sonuçlarının Bilgisayar Programları İle Karşılaştırılması	46	
4.3.1. SAP2000 İle Yatay Yüklü Kazık Analizi	46	
4.3.1.1. Programa sistemin Tanıtılması	47	
4.3.1.2. Analiz Sonuçlarının Değerlendirilmesi	53	
4.3.2. Allpile Programı İle Yatay Yüklü Kazık Analizi	56	
4.3.2.1. Programa sistemin Tanıtılması	58	
4.3.2.2. Analiz Sonuçlarının Değerlendirilmesi	64	
4.3.3. Plaxis Programı İle Yatay Yüklü Kazık Analizi	67	
4.3.3.1. Programa sistemin Tanıtılması	68	
4.3.3.2. Analiz Sonuçlarının Değerlendirilmesi	70	
BÖLÜM 5.		
SONUÇLAR ve ÖNERİLER	74	
	70	
	/ð 01	
	01 121	
UZGEÇMIŞ 13		

ŞEKİLLER LİSTESİ

Şekil 2.1 Yatay yüklü kazık ve zemin tepkisi (Poulous and Davis 1980)	4
Şekil 2.2 Winkler zemin modeli	7
Şekil 2.3 Yatak katsayısı yöntemine göre kazığa zemin tepkisi	7
Şekil 2.4 Zemin tepkisi - ötelenmesi (p-y) grafiği	8
Şekil 2.5 Normalize edilmiş k _h /k _{hmak} eğrileri (Mwindo 1992)	10
Şekil 2.6 k _h /k _{hmak} oranının Kesme Birim Deformasyonuyla değişimi	13
Şekil 2.7 P-Y Analizi-Broms Yöntemi Karşılaştırılması (Rachel 2003)	14
Şekil 3.1 Kazık çevre basıncı (a) yüklemeden önce (b)yüklemeden sonra	16
Şekil 3.2 Kohezyonsuz zeminde yatay yüklü bir kazık	17
Şekil 3.3 Serbest başlı (a) kısa ve (b) uzun kazık davranışı	17
Şekil 3.4 Kohezyonsuz zeminde serbest başlı kazık davranışı	18
Şekil 3.5 Ay Katsayısı için Eğri korelasyonu	22
Şekil 3.6 B _y Katsayısı için Eğri korelasyonu	22
Şekil 3.7 A _s Katsayısı için Eğri korelasyonu	23
Şekil 3.8 B _s Katsayısı için Eğri korelasyonu	23
Şekil 3.9 A _m Katsayısı için Eğri korelasyonu	24
Şekil 3.10 B _m Katsayısı için Eğri korelasyonu	24
Şekil 3.11 Av Katsayısı için Eğri korelasyonu	25
Şekil 3.12 B _v Katsayısı için Eğri korelasyonu	25
Şekil 3.13 A _p Katsayısı için Eğri korelasyonu	26
Şekil 3.14 B _p Katsayısı için Eğri korelasyonu	26
Şekil 3.15 Tutulu başlı kazık	27
Şekil 3.16 Yatay ötelenme – Kazık boyu ilişkisi	28
Şekil 3.17 P-y eğrisi çiziminde kullanılacak A katsayısı	31
Şekil 3.18 P-y eğrisi çiziminde kullanılacak B katsayısı	31
Şekil 3.19 Tipik p-y eğrisi	32
Şekil 4.1 Deney kazıkları ve sondaj yerleri koordinatları	40
Şekil 4.2 Reaksiyon kazıklarının test kazıkları çevresindeki yerleşimi	41
Şekil 4.3 Yatay yükleme deneyi sistem planı ve kesitleri	44
Şekil 4.4 SAP 2000 programı için hazırlanmış bilgisayar modeli	48
Şekil 4.5 Doğrusal elastik plastik davranış	49

Şekil 4.6 Düzeltilmiş yatay yatak katsayısı değerlerinin kazık boyunca	51
Dağılımı	
Şekil 4.7 SAP 2000 kazık modelinde, yüke bağlı kazık başındaki	
Deplasmanlar	53
Şekil 4.8 Kazık kafasında, SAP2000 programı yükleme-deplasman eğrisi	
İle deney yükleme-deplasman eğrisinin karşılaştırılması	54
Şekil 4.9 Allpile programı akış diyagramı	57
Şekil 4.10 Allpile programı kazık tipi seçim penceresi	58
Şekil 4.11 Allpile programı kazık zemin ilişkisini gösterir pencere	59
Şekil 4.12 Allpile programı kazık kesitine ait statik bilgilerin girildiği	60
Pencere	
Şekil 4.13 Allpile programında kazık yükleme bilgilerinin gösterildiği	61
Pencere	
Şekil 4.14 Allpile programında zemin özelliklerinin girildiği pencere	62
Şekil 4.15 Allpile kazık modelinde, yüke bağlı kazık başındaki	64
Deplasmanlar	
Şekil 4.16 Kazık kafasında, Allpile programı yükleme-deplasman eğrisi ile	65
Deney yükleme-deplasman eğrisinin karşılaştırılması	65
Şekil 4.17 Plaxis programı kazık-zemin modeli	68
Şekil 4.18 Plaxis programında kazık-zemin modelinin sonlu elemanlar ağına	
Çevrilmiş hali	68
Şekil 4.19 Plaxis programına yük aşamalarının tanıtılması	69
Şekil 4.20 Plaxis kazık modelinde, yüke bağlı kazık başındaki deplasmanlar	70
Şekil 4.21 Kazık kafasında, Plaxis programı yükleme-deplasman eğrisi ile	
Deney yükleme-deplasman eğrisinin karşılaştırılması	71
Şekil 4.22 Plaxis programında kazık kenarında görülen zemin örselenmesi	72

TABLOLAR LİSTESİ

Tablo 2.1	Kohezyonsuz zeminler için önerilen n _h değerleri	9
Tablo 2.2	a ve b sayıları (Mwindo 1992)	11
Tablo 2.3	k _{hmak} ve n _{hmak} değerleri (Prakash ve Kumar 1996)	12
Tablo 2.4	Yeraltı suyu düzeltme faktörleri	12
Tablo 2.5	P-Y Analizi -Broms Yöntemi Karşılaştırılması (Rachel 2003)	14
Tablo 3.1	A ve B katsayıları Reese – Matlock (1956)	20
Tablo 3.2	Zemin sıkılıklarına göre örnek problem için bulunan sonuçlar	35
Tablo 3.3	Zemin sıkılıklarına göre ikinci örnek problem için bulunan sonuçlar	38
Tablo 4.1	Model kazık için yatay yay sabitlerinin bulunması	52
Tablo 5.1	Örnek problem için değişik zemin sıkılıklarında taşınan yük, moment, kesme kuvveti'nin karşılaştırılması	75
Tablo 5.2	İkinci örnek problem için değişik zemin sıkılıklarında taşınan yük, moment, kesme kuvveti'nin karşılaştırılması	75

ÖZET

Anahtar Kelimeler : yatay yüklü kazıklar, sonlu elemanlar, yatak katsayısı yaklaşımı, kazık yatay yükleme deneyi

Kazıklar, esas olarak, yapı yüklerini zemin derin tabakalarına taşıtmak amacı ile kullanılan bir derin temel çeşididir. Zemin yüzüne yakın tabakalar, yapı yüklerini göçmeden veya aşır oturmalar yapmaksızın taşıyabilecek bir yüzeysel temel teşkiline elverişli değilse derin temel tercih edilir.

Önceleri, yaygın olarak düşey yük taşımada kullanılan kazıklar günümüzde yatay yüklerin taşınmasında da kullanılmaktadır. Yatay yük taşıyan kazıkların çözümü için iki farklı temel anlayış vardır. Bu temel anlayışlardan ilki; kazığın taşıyabileceği en büyük yatay yükü bulmayı esas alırken ikincisi kazıkta en büyük yanal ötelenmeye sebep olacak olan yanal kuvveti hesaplamaktır. İzin verilebilecek en büyük yatay ötelenmeye, taşınabilecek en büyük yatay yükten daha önce ulaşıldığı için ikinci anlayış daha gerçekçidir.

Günümüzde kazıkların yatay yükler altındaki davranışlarının analizi yapılırken kullanılan klasik diferansiyel denklemlerin yanında, gelişen teknoloji ile oluşan bilgisayar programları, bu tür problemlere daha hızlı ve detaylı çözümler getirebilmektedir. Ancak kullanıcı bir problemi bilgisayar programı ile analiz ederken, analiz için kullanacağı parametrelerin doğruluğuna emin olmalıdır. Aksi takdirde gerçekten uzak, farazi sonuçlarla karşılaşabileceğini dolayısıyla hesap sonucu değerlerle, gerçek değerler arasında ciddi farklılıklar çıkabileceği gerçeğini unutmamalıdır.

Bu tezde; Kohezyonsuz zeminler için kazık-zemin etkileşimi incelenmiş ve kazık çalışma prensipleri incelenip, kohezyonsuz zeminlerdeki yatay yüklü kazıklar hakkında yapılmış analiz, deney ve model testlerin sonuçlarından yararlanarak tekil kazıkların analizinde kullanılan mevcut katsayı ve faktörler yeni veriler yardımıyla geliştirilmiştir. Bunun yanında gerçekte yapılan bir yatay yükleme deneyi sonuçları ile bu deneyin yapıldığı bölgedeki zemin etüt raporlarından elde edilen zemin parametreleri kullanılarak deneyde kullanılan kazık üç adet değişik bilgisayar programi ile çözülüp gerçek değerlerle teorik değerler karşılaştırılmıştır.

THE ANALYSIS ESSENTIALS OF LATERALLY LOADED PILES AND MODELLING THEM WITH FINITE ELEMENT METHOT

SUMMARY

Key words: Laterally loaded piles, finite elements, subgrade reaction method, laterally loaded pile experiment.

Essentially piles are a kind of deep foundation which is used for transferring the structure loads safely to the deep ground layers. Deep foundation is preferred if the surface layers aren't suitable to carry the structure loads without collapsing or excessive settlements.

Although in general piles have been used prevalently only for axial loading, now it is possible to use them for lateral loading also. There are two main approaches to solve laterally loaded piles. The first one is; computing the ultimate lateral resistance and the second is; computing the lateral force that causes the maximum allowable deflection. The second approach is more realistic because pile reaches the maximum allowable deflection before the ultimate lateral resistance.

In addition to the classical differential equations methods that are used to compute the lateral loaded piles attitudes nowadays there are various computer programs. Although these programs solve the problems faster and give more accurate results, the program user must be sure with the parameters and data that he/she inputs. Other wise the results may be far from reality and mislead the user about the structure.

In this thesis; pile-soil interaction for cohesionless soils and pile working fundamentals had studied by the literature published about analysis, model tests and experiments made for laterally loaded piles in cohesionless soils. As a result of all studies factors and coefficients which are used in single pile and pile group analysis improved. Besides a laterally loaded pile experiment have done in a cohesionless soil. The results of this experiment, the soil research reports and the parameters of the region where the experiment has done used in three different computer programs (SAP 2000, Allpile, Plaxis) to compute and to compare with the theoretic results.

BÖLÜM 1. GİRİŞ

1.1. Kazık Temeller ve Kullanım Alanları

Yüksek katlı binalar ve köprü, rıhtım benzeri yapılar kendi ağırlıklarının ve maruz kaldıkları dış yüklerin büyüklüğü ile bu yükleri taşıyabilecek zemin tabakalarının derinlerde olması sebebiyle; daha gelişmiş, karmaşık ve derin temellere ihtiyaç duyarlar. Bu tip yapılar için, kazık temeller en önemli çözüm seçeneği olarak yıllar önce uygulanmaya başlamıştır.

Kazık temel uygulamasının uygun bir çözüm olabileceği durumlar şöyle sıralanabilir:

- 1- Yeterli taşıma gücüne sahip olan zemin tabakalarının derinde olması
- 2- Yüzeysel zemin tabakalarının yetersiz, çok değişken veya çok eğimli olması
- 3- Zemin oturmalarının kabul edilebilir değerden büyük olduğu veya binanın farklı oturmalara çok hassas olması
- 4- Büyük yatay ve/veya eğimli yüke maruz kalan yapılarda

Bu tip durumlarda projelendirilecek olan kazık temeller çeşitli tip ve büyüklükte olabilir. Kazık temel, ihtiyaca göre tek bir kazıktan oluşabildiği gibi daha fazla kazıkla da projelendirilebilir.

Başlarda kazık temeller sadece düşey yük taşımak için kullanılırken zamanla yapılan birçok araştırma ve uygulama, kazıkların yatay yükleri taşımada da kullanılabileceğini göstermiştir (Bowles 1988). Zaten büyük dikey yükler taşıyan temellerin bu yükler sebebiyle oluşacak yatay gerilmelere karşı da dayanıklı olması gerektiği açıktır. Günümüzde kazıklar hem yatay hem de düşey yüklerin taşınmasında kullanılmaktadır. Yatay yüklü kazıkların başlıca kullanım alanları olarak; rüzgar yükü alan yapılar, köprü ayakları, gemilerden kaynaklanan yanal yüklere maruz kalan limanlar, istinat duvarları, yamaçlarda stabilite uygulamaları sayılabilir.

1.2. Tezin Amacı

Yatay yük taşıyan kazıkların çözümü için iki farklı temel anlayış vardır. Bu temel anlayışlardan ilki, kazığın taşıyabileceği en büyük yatay yükü bulmayı ve bunu güvenlik katsayısı ile azaltmayı esas alırken ikincisi kazıkta en büyük yanal ötelenmeye sebep olacak olan yatay kuvveti hesaplamaktır.

Günümüzde yatay yüklü kazıkların analizi, bu konuya hizmet eden bilgisayar programlarının artışıyla daha pratik hale gelmiştir. Programların kullanıcı ara birimlerinin kolaylığı, çözümü kolaylaştırmasına rağmen, kullanıcının hassasiyeti ve tecrübesi çözüm sonuçlarının değerlendirilmesi aşamasında önem kazanmaktadır.

Yatay yüklü kazıkların analiz yöntemleri ve tekil kazık uygulamaları üzerine yoğunlaşan bu çalışmanın amaçlarını şöyle listeleyebiliriz:

- 1- Kohezyonsuz zeminlerde yatay yüklü kazıklar hakkında yapılmış analiz, deney ve model testlerin sonuçlarından yararlanarak tekil kazıkları Winkler Yöntemi kullanarak klasik yöntemlerle incelemek.
- 2- Bu inceleme sonucunda tekil kazıkların hesabında kullanılan katsayı ve faktörleri geliştirmek.
- 3- Yatay yükleme deneyi yapılmış bir test kazığında, deney esnasında kazık başında bulunan deplasmanların; bu deneyin yapıldığı zemin profilini Winkler yayları, sonlu farklar ve sonlu elemanlar yöntemlerini kullanıp bilgisayar programlarına tanıtarak, deney sonuçları ile analiz sonuçlarını karşılaştırmak.

BÖLÜM 2. YATAY YÜKLÜ KAZIKLAR ve HESAP YÖNTEMLERİ

2.1. Tarihsel Gelişim ve Mevcut Yöntemler

Yatay yüklü kazıkların geçmişi yaklaşık olarak 45-50 yıl öncesine Terzaghi'nin 1955 yılında yatay yüklemeler için, Winkler'in zemini birbirine sonsuz yakınlıktaki yaylarla temsil eden modelini kullanmasına kadar götürülebilmesine rağmen bu konudaki en önemli gelişmeler son 25-30 yıl içerisinde gerçekleşmiştir.

Yatay yüklü bir kazık hesabında aşağıda listelenen üç konuda çok dikkatli olunmalıdır:

- 1- Zemin kaldırabileceğinden daha fazla bir gerilmeye maruz kalmamalıdır
- 2- Kazık ötelenmeleri kabul edilebilir düzeyde kalmalıdır
- 3- Yapısal bütünlük garanti altına alınmalıdır

Yatay yük taşıyan kazıkların çözümü için iki farklı temel anlayış geliştirilmiştir:

- Kazığın taşıyabileceği en büyük yatay yükü bulmayı ve bunu güvenlik katsayısı ile azaltmayı esas almak
- 2- Kazıkta en büyük yanal ötelenmeye sebep olacak olan yatay kuvveti hesaplamaktır

İlk anlayışı esas alarak yatay yüklü kazık çözümleri öneren yöntemlerden en önemlileri; Brinch Hansen (1961) ve Broms (1964) yöntemleridir.

Brinch Hansen (1961) tarafından önerilen yöntem, zemin basıncına dayalı bir çözüm yöntemi olup daha ziyade kohezyonlu zeminler için elverişlidir. Dönme noktasının

(Şekil 2.1) tespiti deneme-yanılma çözümleri gerektirir (Yıldırım 2002).

Şekil 2.1 Yatay yüklü kazık ve zemin tepkisi (Poulous and Davis 1980)

Brinch Hansen (1961) tarafından önerilen yöntem, yatay yüklü kazığın çözümüne statik olarak yaklaşır ve yatay yükleme sonucunda oluşan aktif ve pasif bölgeler yardımıyla soruna çözüm arar. Kazığın taşıyabileceği en büyük yükü ve momenti aşağıdaki integral çözümlemesi ile bulur.

$$Qu = \int_{0}^{z_{\rm r}} p_u \, ddz - \int_{z}^{L} p_u \, ddz \qquad (2.1)$$

$$Mu = Qu e = -\int_{0}^{z_{r}} p_{u} dzdz - \int_{z}^{L} p_{u} dzdz$$
(2.2)

Burada

Qu: Taşınabilen en büyük yük,Mu: Taşınabilen en büyük moment,Z: Dönme noktası,Pu: En büyük zemin tepkisi dir.

Dönme noktası momentin sıfır olduğu nokta olarak tanımlanır ve bulunur. Dönme noktasının tespitinden sonra son taşıma gücü yatay dengeden hesaplanır.

Broms (1964) yöntemi de zemin basıncına dayalı olarak kazık nihai taşıma gücünü hesaplamaya çalışır. Zeminin tamamen kohezyonsuz veya tamamen kohezyonlu kabul edilmesi gerektiğinden yöntem tabakalı zeminlerde uygulanamaz bütün kazık uzunlukları için uygun olan yöntemin bu sebeple kısıtlı bir kullanım alanı vardır (Yıldırım 2002).

Broms (1964) kazıkları kısa (rijit) ve uzun (bükülebilir) olarak sınıflandırarak ayrı ayrı çözümlemiştir. Broms (1964) eşitliklerde kullanılan kazıkların uzun veya kısa oluşuna aşağıdaki Şekilde tanımlanan bükülebilirlik faktörleri yardımıyla karar vermektedir.

Kohezyonsuz zeminlerde
$$T = (EI / n_h)^{1/5}$$
 (2.3)

Kohezyonlu zeminlerde
$$\mathbf{R} = (EI / k_s B)^{1/4}$$
 (2.4)

Eşitliklerdeki

E: kazık elastisite modülü,

I: Kazık atalet momenti,

 n_h ve k_s : sırasıyla kohezyonsuz ve kohezyonlu zeminler için yatak katsayısıdır.

L kazık boyunun bu faktörlere oranına göre kazıklar aşağıdaki gibi gruplandırılabilir:

 $L/T \le 2$ ve $L/R \le 2$ ise kısa (rijit) $L/T \ge 4$ ve $L/R \ge 3,5$ ise uzun (bükülebilir)

Broms (1964) tarafından tanımlanan bu bükülebilirlik faktörleri ve gruplandırma sistematiği, ikinci anlayışı benimsemiş olan ve tezin de uygulama yöntemi olarak

seçtiği "Yatak Katsayısı Yöntemi" tarafından da aynen kabul edilmiş ve kullanılmıştır.Broms (1964) yöntemi çeşitli zemin türleri ve kazık boyları için değişik çözümler önermiştir.

İkinci anlayışı kabul edip buna göre çözüm öneren yöntemlerin başlıcaları şunlardır:

- 1- Elastisite Teorisi Yöntemi
- 2- Sonlu Elemanlar Yöntemi
- 3- Yatak Katsayısı Yöntemi (Winkler Metodu, p-y Analizi)

2.1.1. Elastisite teorisi yöntemi

Bu yaklaşımı, teoriyi, yatay yüklü kazıklar için etkin biçimde ilk kullanan Poulos (1971) olmuştur. Zemin; elastik bir süreklilik olarak tanımlandığı için bu yaklaşımla, boyut ve şekilleri ne olursa olsun her tür zemin içindeki kazıkların analizi yapılabilir, çözümlenebilir bir hal alır (Poulos 1980).

Yatay kuvvet ve moment etkisindeki kazıkların moment ve ötelenmelerinin saptanmasında elastik ortam yaklaşımı teorikte daha gerçekçidir. Zemin ötelenmesi (dolayısıyla kazık ötelenmesi) yatay yükler için Mindlin eşitliklerinden yararlanılarak hesaplanır.

Poulos ve Davis (1980) kazık başının durumuna, yükleme çeşitlerine, zemin çeşitlerine vb. şartlar için çeşitli eşitlikler geliştirmişlerdir.

2.1.2. Sonlu elemanlar yöntemi

Sonlu elemanlar yöntemi de elastisite teorisine dayalı olan nümerik bir çözümleme yöntemidir. Sonlu elemanlar yöntemi, zemini; üç boyutlu yarı elastik bir süreklilik olarak tanımlar. Sonlu elemanlar yöntemi daha çok; zeminin lineer olmayan davranışını hesaba katabildiği ve herhangi bir eksenel yük kombinasyonunun çözümüne olanak vermesi nedeniyle, üç boyutta veri hesapları için çok uzun zaman gerektirse de özellikle analiz ve araştırma amaçlı kullanımda kullanışlıdır.

2.1.3. Yatak Katsayısı Yöntemi (Winkler metodu, p-y analizi)

Yatak katsayısı yönteminin temeli, Winkler'in 1867 yılında önerdiği zemin modelidir. Winkler zemin modeline göre; Şekil 2.2'de de görüldüğü üzere, zemin; birbirine çok yakın sonsuz sayıda yayla temsil edilebilir. Yatay yüklü kazıklar zeminde duran kirişler gibi düşünülebilir (Şekil 2.3).

Şekil 2.2 Winkler zemin modeli

Şekil 2.3 Yatak katsayısı yöntemine göre kazığa zemin tepkisi

Winkler'in bu zemin modelini yatay yüklü kazıklar için ilk kullanan kişi Terzaghi'dir (1955). Bu yayların sıkışabilirlik katsayısı olan k_h aynı zamanda zemin modülü veya yatak katsayısı olarak adlandırılır ve bir noktadaki zemin tepkisi p'nin o noktada kazığın yer değiştirmesi y'ye oranı olarak tariflenir (Şekil 2.4). Formülü ise şöyledir :

$$k_{\rm h} = p / y$$
 (2.5)

Şekil 2.4 Zemin tepkisi - ötelenmesi (p-y) grafiği

Yatay yüklü kazıkların hesabında yatak katsayısı k_h 'ın doğru hesaplanması çok önemli olduğundan bu konuda birçok araştırma ve çalışma yapılmış ve öneriler sunulmuştur.

Eğer zemin tam elastik bir malzeme olsaydı k_h bütün zemin boyunca sabit olurdu ancak biz bunun böyle olmadığını biliyoruz. Terzaghi (1955)'ye göre normal konsolide ve kohezyonsuz zeminlerde yatak katsayısı derinlikle doğrusal olarak değişir, normal konsolide ve kohezyonsuz zeminler için

$$k_{\rm h} = n_{\rm h} x \tag{2.6}$$

ile hesaplanabilir. Burada

x: Zemin yüzeyinden itibaren derinlik,

nh: Yatak katsayısı değişim sabiti

olup değişik araştırmacılar tarafından değişik n_h değerleri önerilmiştir (Tablo 2.1).

Kumda Sıkılık	Gevşek (15-35)	Orta-Sıkı (35-65)	Sıkı (65-85)
Terzaghi (1955) kN/m ³	706-2092	2092-7063	7063-13855
Reese (1974) kuru kN/m ³	6785	24425	61065
Reese (1974) batık kN/m ³	5433	16300	33959
Das (1990) kuru kN/m ³	1800 -2200	5500 - 7000	15000 - 18000
Das (1990) batık kN/m ³	1000-1400	3500-4500	9000-12000

Tablo 2.1 Kohezyonsuz zeminler için önerilen n_h değerleri

Terzaghi'nin bu formülasyonu, kabulü yaygın olarak kullanılsa da Gill ve Demars (1970), Poulos ve Davis (1980), Matlock ve Reese (1960) gibi değişik araştırmacılar tarafından doğrusal olmayan, hiperbolik k_h eşitlikleri geliştirilmiştir.

Mwindo (1992) kumlu zeminlerde 22 yatay yükleme deneyi yaparak yatak katsayısı ile kesme birim deformasyonu arasında ampirik formüller geliştirmiştir (Şekil 2.5).

Yine bu deney sonuçlarına göre k_{hmak} değeri 1m de 0.002 birim deformasyon değerine ulaşıldığında elde edilmektedir ve k_h değeri için aşağıdaki eşitlik önerilmektedir :

$$k_{\rm h} / k_{\rm hmak} = a \gamma^{\rm -b} \tag{2.7}$$

Şekil 2.5 Normalize edilmiş k_h/k_{hmak} eğrileri (Mwindo 1992)

Şekilde görülen en uygun eğri $k_h / k_{hmak} = 0.052 \gamma^{-0.48}$ dir.

formülde kullanılan a ve b değerleri kazık cinsine bağlı olarak Tablo 2.2 de listelenmiştir. Kazık başı yüklemesinde; kesme birim deformasyonu γ , kazık başındaki ötelenme y ile ilişkilidir.

Kagawa ve Kraft (1980)' a göre kazık ötelenmesinin %70 inden fazlası kazık yarı çapının iki katı mesafedeki bölgede gerçekleşir ve bu sebepten kesme birim deformasyonundaki artış bu bölgedeki kazık-zemin ilişkisinden kaynaklanır.

Kazık Cinsi	Zemin	а	b
Absan	Orta-sıkı kum	0,12	-0,36
Alişap	Gevşek kum	0,009	-0,77
Çelik	Orta-sıkı kum	0,07	-0,43
H Şekilli –çelik	Orta-sıkı kum	0,05	-0,5
Çakma Kazık	Orta-sıkı kum	0,035	-0,54

Tablo 2.2 a ve b sayıları Mwindo(1992)

Eşitlik 2.7 de aynı birim deformasyon için (γ =sabit) Tablo 2.2 deki a,b sayıları uygun cins kazıklar için yazılırsa; k_h/ k_{hmak} oranının orta-sıkı kumdaki Ahşap kazıklarda en büyük olduğu diğer bir değişle bu durumda zemin tepkisinin (yay sıkışabilirlik katsayısı) en büyük değere diğer durumlara göre daha yakın olduğu görülmektedir.

Eşitlik 2.7 haricinde, Mwindo (1992) yaptığı bu deneylerle kesme birim deformasyonu γ ve y ötelenme değerleri arasında aşağıdaki eşitliği önermiştir:

$$\gamma = \frac{y(1+\upsilon)}{2,5B} \tag{2.8}$$

Burada;

B: kazık yarıçapı veya genişliği,

v: poission oranıdır.

Kum zeminler için poission oranını 0,35 olarak kabul ettiğimizde formül eşitlik 2.9 daki hali alır (Prakash ve Kumar 1996).

$$\gamma = \frac{y}{1,85B}$$
(2.9)

Mwindo (1992) da Terzaghi (1955) gibi kohezyonsuz zeminlerde herhangi bir noktadaki k_h değerini x derinlik olmak üzere $k_h = n_h x$ olarak açıklamıştır.

Tablo 2.3 ise x = 1m derinliği için k_h ' ın maksimum değerini ve $k_h = n_h x$ formülünden hareketle yine x = 1m için kumlu zeminde yer altı su seviyesi zemindeyken n_{hmak} değerini göstermektedir.

Zemin Cinsi	k _{hmak} (kN/m ²)	Derinlik (m)	n _{hmak} (kN/m ²)
Sıkı Kum	40000-80000	1	40000-80000
Orta-Sıkı Kum	21500-45500	1	21500-45500
Gevsek Kum	4050-10800	1	4050-10800

Tablo 2.3 k_{hmak} ve n_{hmak} değerleri Prakash ve Kumar (1996)

Eğer yeraltı su seviyesi zemin yüzeyinde değilse bu değerlerin Alizadeh ve Davisson (1970) ile Prakash ve Kumar (1996) tarafından önerilen ve Tablo 2.4 de gösterilen katsayılar yardımıyla düzeltilmesi gerekir.

Tablo 2.4 Yeraltı suyu düzeltme faktörleri

Gevşek Kum

Yeraltı suyunun yeri	Düzeltme faktörü						
Zemin yüzeyinde	1,00						
Zemin yüzeyinden 3,05-4,57m aşağıda	1,67						
Zemin yüzeyinden 4,57m veya daha fazla aşağıda	2,00						
0-3,05m arası düzeltme faktörleri için 1 ile 1,67 arasında derinlikle doğrusal							
tahminler yapılabilir							

Daha önce de belirtildiği gibi n_h ve k_h yeraltı suyu seviyesinden etkilenmektedir. Eğer su seviyesi zemin yüzeyinden daha aşağıdaysa nh ve kh kapilarite basıncına bağlı olarak artar (Alizadeh ve Davisson 1970).

Yine Alizadeh ve Davisson (1970)'a göre zemin profilinin üst kısmı (3,05 m-4,57 m arası) kazık hareketini belirlemektedir. Bu önerme ve yeraltı suyu etkisi düşünüldüğünde yer altı suyunun seviyesine bağlı olarak n_h ve k_h için şu önerileri yapmışlardır:

- Eğer test sırasında yeraltı su seviyesi 4,57m veya daha derinde ise yüzeydeki n_h değeri için bulunan değerin %50 si
- 2- Eğer yeraltı su seviyesi 3,05m 4,57 m arası ise bulunan değerin %60 ı
- 3- Eğer yeraltı su seviyesi 0 3,05m arasındaysa zemin yüzeyi için 1,
 3,05m için 0,6 katsayıları esas alınarak ilgili derinlik için yaklaşım yapılabilir.

Tüm bu düzeltmeler sırasında yeraltı suyu seviyesinin değişebileceği dikkate alınarak güvenli bölgede kalınacak şekilde düzeltme faktörlerinin uygulanması doğru olacaktır.

Şekil 2.6 kh/khmak oranının Kesme Birim Deformasyonuyla değişimi

Buraya kadar anlatılan iki anlayış özellikle kohezyonlu zeminler için karşılaştırıldığında, yatay yük taşıyan kazıklarda oluşan deformasyon ve yer değiştirme zeminin deformasyon ve yer değiştirmesine eşit olduğu için kazıklarda; nihai taşıma gücüne çoğunlukla daha sonra ulaşılır bu yüzden önemli olan nihai taşıma gücü değil en büyük deformasyondur. Bu sebeple yatay yük taşıyan kazıklar için önerilen yöntemlerden deformasyonu esas alarak çözüm öneren yöntemler (ikinci anlayış) daha gerçekçidir ve günümüzde yaygın olarak kullanılmaktadır.

Örneğin Chad M. Rachel (2003); Mustang adasına ait kum zemininde Reese (1974) tarafından yapılan deneyi, Broms yöntemi ve ikinci anlayış grubunda olan Yatak Katsayısı Yöntemi (Winkler Metodu, p-y analizi) ile tekrar analiz edip, aşağıdaki tabloda sunmuştur (Tablo 2.5).

Tablo 2.5 p-y Analizi - Broms Yöntemi Karşılaştırılması (Rachel 2003)

Yatay Kuvvet	Ötelenme Değ	elenme Değerleri (mm)					
kN	Ölçülen	p-y Analizi	Broms				
44	1,78	1,78	2,03				
89	5,33	5,33	4,06				
133	10,16	10,16	6,10				
178	15,75	15,75	8,13				
222	22,60	23,62	10,16				
267	30,22	31,24	12,20				

Tablo 2.5 de verilen değerlerle çizilen Şekil 2.7'den de anlaşıldığı üzere yatak katsayısı yöntemi zemini süreksiz bir yapı olarak kabul edip analiz yapsa da bu sonuca önemli bir etki yapmamakta ve daha gerçekçi sonuçlar elde edilmektedir.

Şekil 2.7 P-Y Analizi - Broms Yöntemi Karşılaştırılması (Rachel 2003)

Reese (1974) bunu; Matlock (1970)'in yaptığı deneyler sonucunda öne sürdüğü, bir noktadaki zemin tepkisini etkileyen en önemli etkenin sadece o noktadaki kazık ötelenmesi olduğu açıklamasına dayandırır.

Dolayısıyla zemin böyle noktasal olarak p-y eğrileri (yaylar, yay katsayıları) cinsinden ifade edilirse bütün zemin için geçerli yapı oluşturulmuş olur.

BÖLÜM 3. KOHEZYONSUZ ZEMİNLERDE YATAY YÜKLÜ KAZIKLARIN YATAK KATSAYISI YÖNTEMİYLE ÇÖZÜMÜ

3.1. Giriş

Yüksüz bir kazıkta üniform ve simetrik bir çevresel basınç varken (Şekil 3.1 (a)), bu kazığa bir Q yatay yükü etkidiğinde (Şekil 3.2) bu üniformluk bozulur.Yüksüz bir kazığa yatay bir yük uygulandığında kazık arkasındaki kuvvet azalırken kazık önündeki kuvvet artar (Reese 1974) (Şekil 3.1 (b)).

Şekil 3.1 Kazık çevre basıncı (a) yüklemeden önce (b) yüklemeden sonra

Şekil 3.2 Kohezyonsuz zeminde yatay yüklü bir kazık

Yatak katsayısı yöntemine göre kazıktaki deformasyon; kazığa, kazık başında etkiyen Qg ve Mg nedeniyle oluşur. Yöntemde çözümler kazık başının durumuna (serbest-tutulu) ve kazık boyuna göre (kısa-uzun) önerilmiştir (Şekil 3.3).

Şekil 3.3 Serbest başlı (a) kısa kazık davranışı (b) uzun kazık davranışı

3.2. Serbest Başlı Kazıklar

Daha öncede belirtildiği gibi yatak katsayısı yaklaşımı Winkler'in zemin modelinden yararlanarak; yatay yüklü kazığı elastik bir ortamdaki kiriş olarak çözümlemektedir, bu çözümlemeye göre zemin birbirine çok yakın yaylarla temsil edilir. Bu öngörü sonucunda kirişler için geçerli olan aşağıdaki eşitlik yatay yüklü kazıklar içinde geçerli olmaktadır. Serbest başlı kısa ve uzun kazık şekilleri Şekil 3.3 de gösterilmiştir.

$$EI\frac{d^4y}{dx^4} + p = 0 (3.1)$$

Yukarıdaki formülde

- E: Kazığın elastisite modülü,
- I: Atalet momentidir.

Bu formülde eşitliğin her iki tarafı EI ya bölünerek ve p yerine eşitlik 2.5 den yararlanarak $p = k_h$ y yazılırsa eşitlik 3.1 eşitlik aşağıdaki hale dönüşür.

$$\frac{d^4 y}{dx^4} + \frac{k_h y}{EI} = 0$$
(3.2)

Kohezyonsuz bir zeminde serbest başlı bir kazığın davranışı; kazıktaki ötelenme y, bu ötelenmenin derinlikle değişimi S yani S =dy/dx, oluşan moment M, kesme kuvveti V ve zeminin direnci p olmak üzere Şekil 3.4 deki gibidir.

Şekil 3.4 Kohezyonsuz zeminde serbest başlı kazık davranışı

Buradan hareketle,

A: yatay Qg yükü için ötelenme katsayısı,

B: Mg momenti için ötelenme katsayısı olmak üzere aşağıdaki eşitlikler bulunabilir.

$$y=A_{y}\frac{Qg\ T^{3}}{EI}+B_{y}\frac{Mg\ T^{2}}{EI}$$
(3.3)

$$S = A_s \frac{Qg T^2}{EI} + B_s \frac{Mg T}{EI}$$
(3.4)

$$M = A_m Qg T + B_m Qg$$
(3.5)

$$V = A_v Qg + B_v \frac{Mg}{T}$$
(3.6)

$$p = A_p \frac{Qg}{T} + B_p \frac{Mg}{T^2}$$
(3.7)

Formüllerde kullanılan T, ikinci bölümde de anlatılan Broms (1964) tarafından önerilmiş bükülebilirlik faktörüdür. Formülü ise kohezyonsuz zeminler için eşitlik 2.3 te de gösterildiği gibi $T = (EI / n_h)^{1/5}$ dir.

A ve B katsayıları; z = x / T olan derinlik katsayısına bağlı olarak Reese – Matlock (1956) tarafından verilmiştir ve Tablo 3.1 de listelenmiştir.

Z(M)	A_{Y}	B _Y	As	B _S	A _M	B _M	A _V	B _V	A _P	B _P
0,0	2,435	1,623	- 1,623	-1,75	0	1	1	0	0	0
0,2	2,112	1,293	- 1,603	-1,55	0,198	0,999	0,956	-0,028	- 0,422	- 0,259
0,4	1,796	1,003	- 1,545	- 1,351	0,379	0,987	0,84	-0,095	- 0,718	- 0,401
0,6	1,496	0,752	- 1,454	- 1,156	0,532	0,96	0,677	-0,181	- 0,897	- 0,451
0,8	1,216	0,540	- 1,335	- 0,968	0,649	0,914	0,489	-0,27	- 0,973	- 0,432
1,0	0,962	0,364	- 1,197	- 0,792	0,727	0,852	0,295	-0,35	- 0,962	- 0,364
1,2	0,738	0,223	- 1,047	- 0,629	0,767	0,775	0,109	-0,414	- 0,885	- 0,268
1,4	0,544	0,112	- 0,893	- 0,482	0,772	0,688	- 0,056	-0,456	- 0,761	- 0,157
1,6	0,381	0,029	- 0,741	- 0,354	0,746	0,594	- 0,193	-0,477	- 0,609	- 0,047
1,8	0,247	-0,030	- 0,596	- 0,245	0,696	0,498	- 0,298	-0,476	- 0,445	0,054
2,0	0,142	-0,070	- 0,464	- 0,155	0,628	0,404	- 0,371	-0,456	- 0,283	0,14
3,0	- 0,075	-0,089	0,04	0,057	0,225	0,059	- 0,349	-0,213	0,226	0,268
4,0	- 0,050	-0,028	0,052	0,049	0	- 0,042	- 0,106	0,017	0,201	0,112
≥5,0	- 0,009	0,000	0,025	0,011	- 0,033	- 0,026	0,013	0,029	0,046	- 0,002

Tablo 3.1 A ve B katsayıları (Reese – Matlock 1956)

Bu katsayılar için özellikle elektronik ortamlarda kullanmak amacıyla "Microsoft Excel" programı yardımıyla eğri korelasyonu yapılmış ve aşağıdaki sonuçlar elde edilmiştir. Bu eşitlikler kullanılırken Reese – Matlock (1956) tarafından z > 5 değerleri için z = 5 alındığı unutulmamalıdır.

$$A_{y} = -0,0003z^{6} + 0,0083z^{5} - 0,0768z^{4} + 0,2725z^{3}$$

$$- 0,0692z^{2} - 1,6068z + 2,4347$$
(3.8)

$$B_{y} = -0,0004z^{6} + 0,0078z^{5} - 0,0465z^{4} + 0,0549z^{3}$$

$$+ 0,4693z^{2} - 1,7438z + 1,6229$$
(3.9)

$$A_{s} = 0,0013z^{6} - 0,0166z^{5} + 0,0938z^{4} - 0,3585z^{3} + 0,783z^{2} - 0,0771z - 1,6206$$
(3.10)

$$B_{s} = -0,0004z^{6} + 0,003z^{5} + 0,0082z^{4} - 0,1069z^{3}$$

$$+ 0,0699z^{2} + 0,9845z - 1,7496$$
(3.11)

$$A_{\rm m} = 0,002z^6 - 0,0336z^5 + 0,2041z^4 - 0,4783z^3$$

$$+ 0,0349z2 + 0,9979z + 0,0002$$
(3.12)

$$B_{\rm m} = 0,0016z^6 - 0,0236z^5 + 0,1231z^4 - 0,2219z^3$$

$$- 0,0401z^2 + 0,0129z + 0,9998$$
(3.13)

$$A_{v} = -0,0001z^{6} + 0,0121z^{5} - 0,1611z^{4} + 0,7821z^{3}$$

$$- 1,3781z^{2} + 0,0401z + 0,999$$
(3.14)

$$B_{v} = -0,0018z^{6} + 0,0317z^{5} - 0,2227z^{4} + 0,7196z^{3}$$

$$- 0,8998z^{2} + 0,0231z - 0,0007$$
(3.15)

$$A_{p} = -0,0037z^{6} + 0,049z^{5} - 0,1915z^{4} - 0,0491z^{3}$$

$$+ 1,6879z^{2} - 2,4549z + 0,0008$$
(3.16)

$$B_{p} = -0,001z^{6} + 0,0063z^{5} + 0,0604z^{4} - 0,635z^{3}$$

$$+ 1,8542z^{2} - 1,6493z + 0,0006$$
(3.17)

Şekil 3.5 Ay Katsayısı için eğri korelasyonu

Şekil 3.6 B_y Katsayısı için eğri korelasyonu

Şekil 3.7 A_s Katsayısı için eğri korelasyonu

Şekil 3.8 B_s Katsayısı için eğri korelasyonu

Şekil 3.9 A_m Katsayısı için eğri korelasyonu

Şekil 3.10 B_m Katsayısı için eğri korelasyonu

Şekil 3.11 $\mbox{ A}_{v}$ Katsayısı için eğri korelasyonu

Şekil 3.12 B_v Katsayısı için eğri korelasyonu

Şekil 3.13 A_p Katsayısı için eğri korelasyonu

Şekil 3.14 B_p Katsayısı için eğri korelasyonu
3.3. Tutulu başlı kazıklar

Eğer kazık tutulu başlı ise kazık başında deformasyon olmayacağından S= 0 eşitliğinden zemin yüzeyi için β = -0,93 olan boyutsuz tutululuk faktörü β bulunur (Prakash 1962).

$$\frac{Mg}{Qg T} = \frac{-A_s}{B_s} = \beta$$
(3.18)

Şekil 3.15 Tutulu başlı kazık

3.18 eşitliğinden Mg değeri çekilir ve 3.3 eşitliğinde yerine koyulursa tutulu başlı kazıkta yatay ötelenme değeri için eşitlik 3.18 kullanılabilir.

y = (Ay - 0,93By)
$$\frac{Q T^3}{EI}$$
 (3.19)

 $(A_y - 0.93B_y)$ ifadesi Cy olarak ifade edilirse eşitlik 3.19, eşitlik 3.20 halini alır.

$$y = Cy \frac{Q T^3}{EI}$$
(3.20)

Eğer kazık başında tam bir tutululuk sağlanamazsa λ sağlanan tutululuk yüzdesi olmak üzere eşitlik 3.19 aşağıdaki şekilde kullanılmalıdır (Prakash ve Sharma 1990).

y =
$$(A_y - 0.93 \lambda B_y) \frac{Q T^3}{EI}$$
 (3.21)

3.4. Uzun kazıklar

Yatak katsayısı yaklaşımı çözüm önerileri; zeminin kohezyonlu olup olmadığına, kazık başının tutulu veya serbest olmasına, kazık çeşidine (kısa-uzun) göre geliştirilmiştir. Şimdiye kadar anlatılan çözümlemeler kısa kazıklar için geçerli olmakla beraber uzun kazıklarda da hemen hemen aynı mantıkla çözüm yapılır.

Yapılan araştırmalar göstermiştir ki uygulanan sabit bir yatay yük için kazık uzunluğunun artması yatay ötelenmeyi azaltmakta ve kazık boyu 5T yi geçtiğinde kazık uzun kazık gibi davranmaktadır

Şekil 3.16 Yatay ötelenme - kazık boyu ilişkisi

Yatak katsayısı yönteminin zemini Winkler'in zemin modeliyle açıkladığını, Winkler zemin modeli'nin tam olarak doğru olmadığını çünkü bu modelle yük-zemin tepkisi ilişkisini lineer kabul ettiğimizi ancak bunun gerçekte doğru olmadığını belirtmiştik, bu varsayım hatası p-y eğrileri analizi çalışmasıyla (Matlock 1970, Reese vd. 1974, Reese ve Welch 1975, Bhushan vd. 1979, Prakash ve Kumar 1996) giderilmiştir. Bu yöntem dışında temel mantık olarak p-y ile aynı olan ve yine Prakash ve Kumar (1996) tarafından önerilen çözüm sistematiği (analitik yöntem) mevcuttur (Arsoy 1996).

Prakash ve Kumar (1996) tarafından önerilen çözüm sistematiği de Mwindo (1992)'nun yaptığı deney sonuçlarına dayanmaktadır. Gerek p-y gerekse de analitik yöntem k_h için tahmini bir değer alması ve kısıtlı bir veriye dayanıyor olması sebebiyle dikkatli kullanılmalıdır.

Analitik yöntemin uygulama adımları şöyle açıklanabilir:

- 1- k_{hmak} değeri kumun göreli sıkılığına göre tahmin edilir (Tablo 2.3)
- 2- Zemin yüzeyi için bir ötelenme değeri tahmin edilir
- 3- Eşitlik 2.3 te kullanmak için n_h değeri aşağıdaki gibi tespit edilir
 - a- k_h / k_{hmak} oranı eşitlik 2.7 ten hesaplanır
 - b- k_{hmak} bu oranla bölünür ve 2. adımda kabul edilen ötelenme değeri için k_h hesaplanmış olur.
 - c- Son olarak bu k_h değerinin derinliğe bölünmesi (ilgili yöntemde derinlik 1m dir) bize n_h değerini verir.
- 4- 2. adımda tahmin edilen ötelenme değeri ve 3.adımda hesaplanan n_h değerleri için eşitlik 2.3 kullanılarak bükülebilirlik faktörü T hesaplanır.
- 5- Eşitlik 3.3, eşitlik 3.19, eşitlik 3.21 kullanılarak çözüme ulaşılır.

p-y analizinde ise kohezyonsuz zeminler için p-y eğrilerinin çizimi için Reese (1984) tarafından önerilen prosedür ise şöyledir.

- 1- Arazi ve laboratuvar deneyleriyle içsel sürtünme açısı ϕ ve birim hacim ağırlığı γ tespit edilir.
- 2- Zemin tepkisi hesabında kullanılmak üzere $\alpha = \phi/2$, $\beta = 45 + \phi/2$, $K_o = 0,4$ ve $K_a = \tan^2 (45 \frac{1}{2}\phi)$ hesaplanır

- 3- En büyük zemin tepkisi hesaplanır
 - a- zemin civarı için

$$P_{cr} = \gamma x \left[\frac{K_{o} x \tan \phi \sin \beta}{\tan(\beta - \phi)} + \frac{\tan \beta}{\tan(\beta - \phi)} (D + x \tan \beta \tan \alpha) \right] + K_{o} x \tan \beta (\tan \phi \sin \beta - \tan \alpha) K_{a} D$$

b- büyük derinlikler için

$$P_{cd} = K_a D \gamma x (\tan^8 \beta - 1) + K_o D \gamma \tan \phi \tan^4 \beta$$

eşitliklerde x derinlik, D kazık çapıdır.

- 4- P_{cr} = P_{cd} olan x derinliği bulunur, hesap yapılmak istenen x derinliği bu değerden büyükse P_{cd} küçükse P_{cr} kullanılır.
- 5- Yükün çevrimli veya statik olma durumuna göre Şekil 3.17 ve Şekil 3.18 den alınacak uygun A, B katsayıları ve seçilen derinliğe göre uygun Pc (P_{cr} veya P_{cd}) değeri ile ;

önce $y_u = 3D/80$ hesaplanır ve bu değer için P_u değeri $Pu = A P_c$ eşitliği ile bulunur ve Şekil 3.19 daki gibi işaretlenir (Şekil 3.19 da u).

sonra $y_m=D/60$ hesaplanır ve bu değer için P_m değeri $P_m = B P_c$ eşitliği ile bulunur ve Şekil 3.19 daki gibi işaretlenir (Şekil 3.19 da m). ve bu iki nokta bir doğru ile birleştirilir.

Şekil 3.17 p-y eğrisi çiziminde kullanılacak A katsayısı

Şekil 3.18 p-y eğrisi çiziminde kullanılacak B katsayısı

6- 5. adımda y_u ve y_m arasına çizilen doğrunun eğimi m aşağıdaki şekilde hesaplanır;

$$m = \frac{P_u - P_c}{y_u - y_c}$$

sonra zemine uygun bir n_h değeri seçilip, $n = \frac{P_m}{m y_m}$ ve $C = \frac{P_m}{(y_m)_n^{\frac{1}{n}}}$

hesaplanır ve bunlar yardımıyla y_k aşağıdaki gibi hesaplanır;

$$\mathbf{y}_{\mathbf{k}} = \left(\frac{C}{n_h x}\right)^{\frac{n}{(n-1)}}$$

bu y_k değeri $p = Cy^{1/n}$ de yerine koyularak ilgili zemin direnci bulunur.

7- Orijinden 6. adımla hesaplanan noktaya doğru çizilir ve 5. adımda ve 6.
 adımda çizilen doğrular parabolle birleştirilir.

Yatay ötelenme y

Şekil 3.19 Tipik p-y eğrisi

Bu noktada kazık gruplarına geçmeden önce örnek bir soru üzerinde sırasıyla gevşek, orta-sıkı, sıkı kumlu zemindeki bir kazık için üst sınır n_h değerlerini kullanarak taşınabilecek yükü, en büyük momenti ve kesme kuvvetini bularak bu zeminleri karşılaştıralım:

Örneğin 20 m uzunluğunda 500 mm çapındaki 200 GPa elastisite modülü olan bir kazığın sırasıyla gevşek, orta-sıkı, sıkı kumlu zemine çakılacağını varsayalım ve kazık başı ötelenmesi 7 mm olması halinde serbest başlı ve yarı tutulu başlı durumda taşınabilecek yükü, en büyük momenti ve kesme kuvvetini bulalım;

Bütün zemin türlerindeki ortak veriler:

 $I = \pi (0,5)^4 / 64 = 0,003 \text{ m}^4 \qquad EI = 0,6 \ 10^6 \text{ kN/m}^2 \text{ olarak hesaplanır.}$ En büyük Kesme kuvveti z=0 (bkz. Tablo 3.1) için bulunur ve Qg'ye eşittir dolayısıyla bulunan Qg ler aynı zamanda en büyük kesme kuvvetleri olacaktır.

Gevşek kum için çözüm :

$$n_h = 10800 \text{ kN/m}^3 (\text{bkz.Tablo 2.3})$$
 $T = (0.6 \ 10^6 \ / \ 10800 \)^{1/5} = 2.23 \text{ m}$

en büyük ötelenme kazık başında olacağı için z = 0 için $A_y = 2,435$ (bkz.Tablo 3.1)

$$y = A_y \frac{Qg T^3}{EI} + B_y \frac{Mg T^2}{EI} \quad (Moment olmadığından B_y \frac{Mg T^2}{EI} = 0)$$

$$0,007 = 2,435 \frac{Qg (2,23)^3}{0,6 \ 10^6} \Rightarrow Qg = 155 \text{ kN serbest başlı halde}$$

Yarı tutulu başlılık halinde ise $y = (A_y - 0,93 \lambda B_y) \frac{Q T^3}{EI}$

$$0,007 = 1,68 \frac{Qg (2,23)^3}{0,6 \ 10^6} \Rightarrow Qg = 225 \text{ kN yarı tutulu hal} (\lambda = 0,5)$$

Bu yükler için en büyük momentler ise

z =1,4 m için A_m=0,722
$$\Rightarrow$$
 M = A_m Qg T = 0,722 155 2,23 = 250 kNm
z =1,4 m için A_m=0,722 \Rightarrow M = A_m Qg T = 0,722 225 2,23 = 363 kNm

Orta-sıkı kum için çözüm :

$$n_h = 45500 \text{ kN/m}^3 (\text{bkz.Tablo 2.3})$$
 $T = (0.6 \ 10^6 \ / \ 45500)^{1/5} = 1.67 \text{ m}$

en büyük ötelenme kazık başında olacağı için

z = 0 için $A_y = 2,435$ (bkz.Tablo 3.1)

$$y = A_y \frac{Qg T^3}{EI} + B_y \frac{Mg T^2}{EI} \quad (\text{ Moment olmadiğindan } B_y \frac{Mg T^2}{EI} = 0)$$

$$0,007 = 2,435 \frac{Qg (1,67)^3}{0,6 \ 10^6} \Rightarrow Qg = 370 \text{ kN serbest başlı halde}$$

Yarı tutulu başlılık halinde ise $y = (A_y - 0,93 \lambda B_y) \frac{Q T^3}{EI}$

 $0,007 = 1,68 \frac{\text{Qg} (1,67)^3}{0,6 \ 10^6} \Rightarrow \text{Qg} = 537 \text{ kN} \text{ yarı tutulu hal } (\lambda = 0,5)$

Bu yükler için en büyük momentler ise

z =1,4 m için
$$A_m$$
=0,722 ⇒ M = A_m Qg T = 0,722 370 1,67 = 446 kNm
z =1,4 m için A_m =0,722 ⇒ M = A_m Qg T = 0,722 537 1,67 = 647 kNm

Sıkı kum için çözüm :

$$n_h = 80000 \text{ kN/m}^3 (\text{bkz.Tablo 2.3})$$
 $T = (0.6 \ 10^6 \ / \ 80000)^{1/5} = 1.49 \text{ m}$

en büyük ötelenme kazık başında olacağı için z = 0 için $A_y = 2,435$ (bkz.Tablo 3.1)

$$y = A_{y} \frac{Qg T^{3}}{EI} + B_{y} \frac{Mg T^{2}}{EI} \quad (\text{Moment olmadiğindan } B_{y} \frac{Mg T^{2}}{EI} = 0)$$

$$0,007 = 2,435 \frac{Qg (1,49)^{3}}{0,6 \ 10^{6}} \Rightarrow Qg = 521 \text{ kN serbest başlı halde}$$
Yarı tutulu başlılık halinde ise $y = (A_{y} - 0,93 \lambda B_{y}) \frac{Q T^{3}}{EI}$

$$0,007 = 1,68 \frac{Qg (1,49)^{3}}{0,6 \ 10^{6}} \Rightarrow Qg = 756 \text{ kN yarı tutulu hal} (\lambda = 0,5)$$

Bu yükler için en büyük momentler ise

z = 1,4 m için $A_m = 0,722 \Rightarrow M = A_m \text{ Qg T} = 0,722 521 1,49 = 560 \text{ kNm}$

$$z = 1,4 \text{ m}$$
 için $A_m = 0,722 \Rightarrow M = A_m \text{ Qg } T = 0,722 756 1,49 = 813 \text{ kNm}$

Tablo 3.2	Zemin	sıkılıklarına	göre	örnek	problem	icin	bulunan	sonuclar
			0			- 3		

ZEMİN	KAZIK BAŞININ DURUMU							
		Serbest Başlı			Tutulu Başlı	1		
	Qg (kN)	M _{mak} (kNm)	V _{mak} (kN)	Qg (kN)	M _{mak} (kNm)	V _{mak} (kN)		
Gevşek kum	155	250	155	225	363	225		
Orta-sıkı kum	370	446	370	537	647	537		
Sıkı kum	521	560	521	756	813	756		

Aynı soruda kazık çapını 700 mm yaparak diğer verileri sabit tutup gevşek, orta-sıkı, sıkı kum zeminler için soruyu yenilersek soru şu hali alır;

20 m uzunluğunda 700 mm çapındaki 200 GPa elastisite modülü olan bir kazığın sırasıyla gevşek, orta-sıkı, sıkı kumlu zemine çakılacağını varsayalım ve kazık başı

ötelenmesi 7 mm olması halinde serbest başlı ve yarı tutulu başlı durumda taşınabilecek yükü, en büyük momenti ve kesme kuvvetini bulalım

Bütün zemin türlerindeki ortak veriler:

 $I = \pi (0,7)^4 / 64 = 0,012 \text{ m}^4 \qquad EI = 2,4 \ 10^6 \text{ kN/m}^2 \text{ olarak hesaplanır.}$ En büyük Kesme kuvveti z=0 (bkz. Tablo 3.1) için bulunur ve Qg'ye eşittir dolayısıyla bulunan Qg ler aynı zamanda en büyük kesme kuvvetleri olacaktır.

Gevşek kum için çözüm :

$$n_h = 10800 \text{ kN/m}^3 (\text{bkz.Tablo 2.3})$$
 $T = (2,4 \ 10^6 \ / \ 10800 \)^{1/5} = 2,95 \text{ m}$

en büyük ötelenme kazık başında olacağı için z = 0 için $A_y = 2,435$ (bkz.Tablo 3.1)

$$y = A_y \frac{Qg T^3}{EI} + B_y \frac{Mg T^2}{EI} \quad (Moment olmadığından B_y \frac{Mg T^2}{EI} = 0)$$

$$0,007 = 2,435 \frac{Qg (2,95)^3}{2,4 10^6} \Rightarrow Qg = 269 \text{ kN serbest başlı halde}$$

Yarı tutulu başlılık halinde ise $y = (A_y - 0,93 \lambda B_y) \frac{Q T^3}{EI}$

$$0,007 = 1,68 \frac{Qg (2,95)^3}{2,4 10^6} \Rightarrow Qg = 390 \text{ kN yarı tutulu hal} (\lambda = 0,5)$$

Bu yükler için en büyük momentler ise

$$z = 1,4 \text{ m}$$
 için $A_m = 0,722 \Rightarrow M = A_m \text{ Qg T} = 0,722 269 2,95 = 572 \text{ kNm}$

$$z = 1,4 \text{ m}$$
 için $A_m = 0,722 \Rightarrow M = A_m \text{ Qg T} = 0,722 390 2,95 = 830 \text{ kNm}$

Orta-sıkı kum için çözüm :

$$n_h = 45500 \text{ kN/m}^3 (\text{bkz.Tablo 2.3})$$
 $T = (2,4 \ 10^6 \ / \ 45500)^{1/5} = 2,21 \text{ m}$

en büyük ötelenme kazık başında olacağı için z = 0 için $A_y = 2,435$ (bkz.Tablo 3.1)

$$y = A_{y} \frac{Qg T^{3}}{EI} + B_{y} \frac{Mg T^{2}}{EI} \quad (Moment olmadığından B_{y} \frac{Mg T^{2}}{EI} = 0)$$

$$0,007 = 2,435 \frac{Qg (2,21)^{3}}{2,4 10^{6}} \Rightarrow Qg = 639 \text{ kN serbest başlı halde}$$
Yarı tutulu başlılık halinde ise $y = (A_{y} - 0.93 \lambda B_{y}) \frac{Q T^{3}}{EI}$

$$0,007 = 1,68 \frac{Qg}{2,410^6} \Rightarrow Qg = 926 \text{ kN yarı tutulu hal } (\lambda = 0,5)$$

Bu yükler için en büyük momentler ise

z = 1,4 m için $A_m = 0,722 \Rightarrow M = A_m \text{ Qg T} = 0,722 639 2,21 = 1020 \text{ kNm}$ z = 1,4 m için $A_m = 0,722 \Rightarrow M = A_m \text{ Qg } T = 0,722 926 2,21 = 1478 \text{ kNm}$

Sıkı kum için çözüm :

$$n_h = 80000 \text{ kN/m}^3 (\text{bkz.Tablo 2.3})$$
 $T = (2,4 \ 10^6 / \ 80000)^{1/5} = 1,97 \text{ m}$

en büyük ötelenme kazık başında olacağı için z = 0 için $A_y = 2,435$ (bkz.Tablo 3.1)

$$y = A_y \frac{Qg T^3}{EI} + B_y \frac{Mg T^2}{EI} \quad (\text{ Moment olmadiğindan } B_y \frac{Mg T^2}{EI} = 0)$$
$$0,007 = 2,435 \frac{Qg (1,97)^3}{2,4 \ 10^6} \Rightarrow Qg = 902 \text{ kN serbest başlı halde}$$
Yarı tutulu başlılık halinde ise $y = (A_y - 0,93 \lambda B_y) \frac{Q T^3}{EI}$

EI

$$0,007 = 1,68 \frac{Qg (1,97)^3}{2,4 \ 10^6} \Rightarrow Qg = 1307 \text{ kN yarı tutulu hal } (\lambda = 0,5)$$

Bu yükler için en büyük momentler ise

z =1,4 m için A_m=0,722
$$\Rightarrow$$
 M = A_m Qg T = 0,722 902 1,97 = 1283 kNm
z =1,4 m için A_m=0,722 \Rightarrow M = A_m Qg T = 0,722 1307 1,97 = 1860 kNm

Tablo 3.3 Zemin sıkılıklarına göre ikinci örnek problem için bulunan sonuçlar

ZEMİN	KAZIK BAŞININ DURUMU							
		Serbest Başl	1		Tutulu Başlı	l		
	Qg (kN)	M _{mak} (kNm)	V _{mak} (kN)	Qg (kN)	M _{mak} (kNm)	V _{mak} (kN)		
Gevşek kum	269	572	269	390	830	390		
Orta-sıkı kum	639	1020	639	926	1478	926		
Sıkı kum	902	1283	902	1307	1860	1307		

BÖLÜM 4. YATAY YÜKLÜ KAZIKLARDA DENEY SONUÇLARI İLE ANALİTİK SONUÇLARIN KARŞILAŞTIRILMASI

4.1. Giriş

Günümüzde kullanılan birçok bilgisayar programı, imalat öncesi yapıyla ve yapının uygulanacağı bölgeyle alakalı bilgiler ışığında yapının gerçeğe yakın yapacağı davranışını bize izah edebilmektedir. Bu programlarla, yapıya ait malzeme özellikleri, çeşitliliği ve sınır şartları uygun yükleme kombinasyonları ile tanıtılarak yapının nihai davranışlarını görmek buna uygun kesitler seçebilmek mümkün olabilmektedir. Bu programların bir çoğu inşaat ve geoteknik mühendisliğinde yükleme, gerilme-şekil değiştirme, konsolidasyon, taşıma gücü, zemin dinamiği ve genel olarak dinamik davranış, malzeme çeşitliği olan (lineer, lineer olmayan izotropik, ortotropik, anizotropik v.s.) problemlerde kullanılabilmektedir. 70'li yıllardan itibaren sonlu elemanlar yöntemi gerek teorik gerekse uygulama alanlarında büyük gelişmeler göstermiştir.

Geoteknik mühendisliğinde karmaşık problemlerin çözümü için geleneksel kapalı form çözümleri kullanmak yerine sonlu elemanlar yönteminin kullanılması ile problemler daha rahat analiz edilebilmiş ve sistem içerisindeki zafiyetler daha net anlaşılabildiği için çözüm noktasında bölgesel tedbirler alınarak ekonomik çözümlere de gidilebilmiştir. Bu bölümün devamında ZETAŞ A.Ş. tarafından Ege Gaz A.Ş.' ye yapılan fore kazık yatay yükleme deneyinin sonuçlarını, 3 ayrı bilgisayar programı kullanarak deney sonuçları ile program sonuçlarının karşılaştırılmasına yönelik bir çalışma sunulacaktır.

4.2. Kazık Yatay Yükleme Deneyi ve Deney Sonuçları

Ege Gaz A.Ş.' ye ait Ali Ağa Tesislerinde inşa edilecek 140.000 m³ kapasiteli T103 tankı altına yapılacak temel sistemi projelendirilmesi öncesinde, yükleme deneyi kapsamında 4 adet (TP1,TP2,TP3,TP4) fore kazık imal edilmiştir. Kazıkların yatay ve düşey taşıma kapasitelerinin ve yapacakları maksimum ötelenmelerin ölçülebilmesi amacıyla, tankın oturacağı bölgede teşkil edilmiş 4 adet deney kazığından 2 tanesinde yatay ve düşey yükleme deneyi yapılmıştır. Şekil 4.1 de yerleştirilecek tankın konumuna göre deney kazıkların ve sondaj koordinatlarının aplikasyonu görülmektedir.

Şekil 4.1 Deney kazıkları ve sondaj yerleri koordinatları

Yükleme deneyleri yapılmadan önce TP1 test kazığı merkezinden 1.2m. güneyde 3/12 sondajı, TP3 test kazığı merkezinden 3m. Kuzey batıda 3/11 sondajları yapılmıştır. Bu sondajlara ait logları Ek-1 de sunulmuştur.

Zemin etüt raporuna göre T103 sahasında aşağıdaki birimler mevcuttur.

- 7.5 – 9.0 m. kalınlığında dolgu	N30=8-50
- 2.5 – 4.0 m. kalınlığında organik balçık (silt-kum)	N30=1-2 (dolgu öncesi) N30=4-16 (dolgu sonrası)

- 40m. den fazla kalınlıkta tüf kayaç (yaklaşık ilk 3metresi ayrışmış olup kil ara tabakalıdır. TCR-RQD değerleri düşük, yüksek derecede çatlaklıdır.)

Fore kazık çalışmalarının yapıldığı platform kotu +5.35 ile +6.25 kotları arasında değişmektedir. Buna bağlı olarak çalışma platformundan itibaren tüf katmanı derinlikleri TP1 için 11.60m., TP2 için 15.50m., TP3 için 15.50m., TP4 için 9.60m. olarak değişmektedir.

4.2.1. Fore Kazık İmalatları

Yükleme deneylerinin gerçekleştirildiği kazıklar 120cm. çapında olup bunlardan TP1 16.90m. boyunda, TP2 kazığı ise 20.65m. boyunda imal edilmiştir. Test kazıkları 4'er adet 65cm. çapında reaksiyon kazıkları ile birlikte imal edilmiştir. Şekil 4.2 de reaksiyon kazıklarının test kazıkları çevresindeki aplikasyonu görülmektedir.

Şekil 4.2 Reaksiyon kazıklarının test kazıkları çevresindeki yerleşimi

Bu kazıklar yatay yükleme testinde, yatay yükün temini için reaksiyon kazığı olarak kullanılmıştır. Reaksiyon kazıkları tüfe 5-6m. soketlenerek uygun mesnet şartlarını sağlaması öngörülmüştür. Diğer TP3 ve TP4 numaralı 120cm. çaplı fore kazıklar zemin koşulları ve imalat koşullarının belirlenmesi ve ayrıca yukarda belirtilen TP1 ve TP2 nolu deney kazıklarının deney esnasında göçmesi durumunda alternatif deney elemanı olması amacı ile imal edilmişlerdir.

4.2.2. TP1 Test Kazığı İmalatı

TP1 kazığı sahanın kuzeyinde tank temel alanı kenarında bulunmaktadır. Tüfe kadar muhafaza borusu sürülerek ilerlenmiştir. Yer altı suyu ile karşılaşılmamıştır. Delgi işlemi, dolgu zemin geçilerek 5.2m. tüf zemine kazığın soketlenmesi ile tamamlanmıştır. Foraj 2 saat sürmüş, devamında beton borusu ile beton dökümüne geçilmiştir. Tüf formasyonu içerisinde bazı derinliklerde kova (bucked) ile ilerlenmesi mümkün olmamıştır. Karotiyer ve auger kullanılarak delgiye devam edilmiştir. İmalat aşamasında, kuyu içinde herhangi bir sıvı (bentonit, su) kullanılmamıştır. Test ve reaksiyon kazıkları ile ilgili imalat raporları Ek-2'de sunulmuştur.

4.2.3. TP2 Test Kazığı İmalatı

TP2 kazığı sahanın batısında tank temeli alanı kenarında bulunmaktadır. Bu fore kazık, deniz-kara birleşiminde yapılmış olan anroşmanın kara tarafındaki kısmen bazalttan oluşmuş bir bölgede yer almaktadır. -6.15 kotu ile tüf katmanı üst kotu olan -10.35 kotları arasında tamamen bazalt bloklara foraj yapılmıştır. Bu bölgedeki kısmi bazalt çekirdeğinden ötürü muhafaza borusu sürülmesi ve bu blokların temizlenmesi foraj işlemini zorlaştırmıştır. Tüf formasyonu içerisinde bazı derinliklerde kova (bucked) ile ilerlenmesi mümkün olmamıştır. Karotiyer ve auger kullanılarak delgiye devam edilmiştir. İmalat aşamasında, kuyu içinde herhangi bir sıvı (bentonit, su) kullanılmamıştır.

4.2.4. TP3 Test Kazığı İmalatı

TP3 kazığı sahanın güneyinde tank temel alanı kenarında bulunmaktadır. Tüfe kadar muhafaza borusu sürülerek ilerlenmiştir. Yer altı suyu ile karşılaşılmamıştır. Delgi işlemi, dolgu zemin geçilerek 4.85m. tüf zemine kazığın soketlenmesi ile tamamlanmıştır. Forajın son 50cm. sinde tüf katmanı içerisinden su gelişi gözlenmiştir. Kuyu cidarında göçme veya tabanda çökel olmadığı anlaşıldıktan sonra ebton dökümüne geçilmiştir. Tüf formasyonu içerisinde bazı derinliklerde kova (bucked) ile ilerlenmesi mümkün olmamıştır. Karotiyer ve auger kullanılarak delgiye devam edilmiştir. İmalat aşamasında, kuyu içinde herhangi bir sıvı (bentonit, su) kullanılmamıştır.

4.2.5. TP4 Test Kazığı İmalatı

TP4 kazığı sahanın doğusunda tank temel alanı kenarında bulunmaktadır. Dolgu zemin geçilerek tüf katmanına girilmiş. Tüf katmanından su gelmesi münasebeti ile foraj ile birlikte kuyu taban kotunun 80.cm üst kotuna kadar muhafaza borusu sürülmeye devam edilmiştir. Tüf katmanından su akışı başlayarak, kuyu içinde 7-8m. ye kadar suyun yükseldiği gözlenmiştir. Delgi işlemi, dolgu zemin geçilerek 4.50m. tüf zemine kazığın soketlenmesi ile tamamlanmıştır. Foraj 2.5 saatte tamamlanarak beton borusu ile beton dökümüne geçilmiştir.

Bu foraj işleminde tüf formasyonunun sarı renkli ve sert tabakalı olduğu gözlenmiştir. Tüf formasyonu içerisinde bazı derinliklerde kova (bucked) ile ilerlenmesi mümkün olmamıştır. Karotiyer ve auger kullanılarak delgiye devam edilmiştir. İmalat aşamasında, kuyu içinde herhangi bir sıvı (bentonit, su) kullanılmamıştır.

4.2.6. Kazık Yatay Yükleme Deneyinin Yapılması

Yatay yükleme deneyi, bir önceki bölümlerde de izah edildiği üzere TP1 ve TP2 no'lu kazıklarda yapılmıştır. Deneylerde iki adet 65cm. çaplı reakiyon kazığı yatay yükün uygulanabilmesi amacıyla mesnet görevi görmüştür. Deney yükü 250 ton kapasiteli kriko ile uygulanmıştır. Kriko düzleminde kazık başlığı üzerinden, yükün

uygulandığı yüze paralel karşı yüzden, orta ve kenarlardan olmak üzere toplam üç noktadan yatay deplasmanlar ölçülmüştür. Yatay deplasmanların ölçüldüğü komşu dik kenarlardan başlıkta oluşabilecek eksantrik yükleme ile meydana gelebilecek dönme değerleri dördüncü bir komparatör ile kontrol amacıyla ölçülmüştür (Şekil 4.3, Şekil 4.4). Deneyin maksimum yükü (DVL, design verification load) 80 tondur. Yüke bağlı zaman deformasyon tabloları Ek-3' de sunulmuştur.

Şekil 4.3 Yatay yükleme deneyi sistem planı ve kesitleri

Yükleme deneyi esnasında imalat aşamalarını gösteren şantiye fotoğrafları Ek-4 de sunulmuştur.

4.2.7. Kazık Bütünlük Deneyleri (Crosshole)

Sahada uygulanan "Crosshole Sonic Logging" (CSL) yönteminde, paralel tüpler içerisine yerleştirilen sondalar vasıtası ile kazık betonuna ultrasonik atışlar göndererek, imalatı yapılan kazığın yapısal sürekliliği tayin edilebilir. Olası süreksizliklerin veya kusurların konum ve boyutları bulunabilir.

Test esnasında iki adet probe ("transmitter" ve "receiver") kazık içerisine, kazık imalatı esnasında yerleştirilen ve daha sonra içi su ile doldurulan horular içerisine bırakılarak kazık boyunca sabit hızla yukarı yönde çekilir. Çekilme esnasında "transmitter" probe tarafından sık aralıklar ile sonik dalgalar gönderilir. Beton içinde ilerleyen bu dalgalar "receiver" probe tarafından algılanır. Test sonrasında bu algılama zamanı (first arrival time—FAT) değerlerine ait grafikler, test cihazı ile verilen özel yazalım kullanılarak bilgisayar çıktısı olarak elde edilir.

Yapısal açıdan sağlıklı olan bir kazık (kazık betonu) içerisinde "FAT" değerleri tüm kazık boyunca sürekli olmalıdır. Üzerinde test yapılan kazık betonu içerisinde yapısal bir kusur olması durumunda (çatlak, boşluk vs.) söz konusu FAT değeri grafiklerde sonsuza ıraksamış olarak gösterilmektedir. Bunun anlamı "receiver-transmitter" arası iletim zamanının sonsuz olduğu, diğer bir deyişle yapısal kusur nedeni ile sonik dalgaların hiç iletilemediğidir.

Bu deney sonucunda elde edilen loglarda hiçbir dalga varış zamanında bir kusur görülmemiştir. Dolayısıyla "Multi Tube Sonic" testleri sonuçları dikkate alınarak üzerinde test yapılan tüm kazıkların yapısal açıdan sağlıklı olduğu, içerisinde boşluk, süreksizlik veya çatlak olmadığı kanaatine varılmıştır.

4.3. Deney Sonuçlarının Bilgisayar Programları İle Karşılaştırılması

Bu bölümde Bölüm 4.2.' de izah edilen TP-2 no'lu kazığa ait deney sonuçlarının bilgisayar sonuçları ile karşılaştırılmasına yönelik bir çalışma yapılacaktır. Deneyin yapıldığı bölgenin zemin etüt sonuçlarından istifade edilerek, zemin modeli bilgisayar programına girilip, kazık modellenerek deney esnasında yapılan yatay kuvvet değerleri, yatay yük olarak bilgisayar modeline etki ettirilecek ve çıkan sonuçlar deney sonuçları ile karşılaştırılacaktır.

Deney sonuçlarının bilgisayar sonuçları ile karşılaştırılması işleminde, SAP2000, Allpile ve Plaxis olmak üzere 3 farklı bilgisayar program kullanılacaktır. İlerdeki bölümlerde sırasıyla analiz için kullanılacak bilgisayar programları kısaca tanıtıldıktan sonra çözüm için hazırlanan model izah edilerek, her bir program için çözüm sonucu bulunan değerler deney sonucu çıkan değerler ile karşılaştırılacaktır.

4.3.1. SAP2000 İle Yatay Yüklü Kazık Analizi

SAP2000 Programı genel olarak üç boyutlu yapıların lineer, nonlineer, statik ve dinamik yükler altında çözümlenmesi ve boyutlandırılmasına yönelik olarak hazırlanmış, sonlu elemanlar yöntemiyle çalışan bir programdır.

SAP2000 bünyesinde; kuvvet ve deplasman yükü, prizmatik olmayan çubuk nesneleri, sadece çekmeye çalışan çaprazlar, art - germeli tendonlar, çok hassas kabuk nesneleri, Eigen ve Ritz modal analizi, simetrik olmayan yapılar için çok sayıda koordinat sistemleri, birçok farklı düğüm noktası şartı (bağımlılığı) atama seçeneği, bağımsız tanımlanmış sonlu nesne modellerinin birleştirilmesi, tam çiftli 6x6 yay rijitliği ve aynı işlemde birden çok dinamik analizin kombine edilebilmesi veya zarflanabilmesi, yük katarları analizi özellikleri, sonlu eleman tekniğinin tamamını, etkin frekans alanında analiz (hem düzgün doğrusal ve hem güç-spektral-yoğunluğu tipleri) ve zaman alanında analizi (time-history) seçenekleridir. Çok

Çubuk nesnelerinde, fiber mafsallarda, kablo (halat) davranışında, non-lineer kabuk elemanlarında ve geometrik nonlinearitede kullanılmak üzere (boşluklar (gap), kancalar (hook), izolatörler, damperler, çoklu-lineer plastik mafsallar gibi) lineer olmayan bağlantı nesneleri ile çoklu-lineer plastik mafsallar ekleyerek arttırabilir. Ayrıca malzeme ve geometrik etkilerden kaynaklanabilecek nonlineerlik özelliğini dikkate alan Statik hesap teknikleri (Statik Non-lineer Hesaplama) ki bunlar; Statik İtme Analizi, modal süperpozisyon ve doğrudan-entegrasyon yöntemi kullanılarak Zaman Alanında Hesaplama, burkulma analizi, frekans etki alanında hesaplama yapabilir.

4.3.1.1. Programa Sistemin Tanıtılması

SAP2000 programında modellenecek kazık elemanı, bu programa 120 cm. çapında bir betonarme çubuk elemanı olarak tanıtılmıştır. Zemin profili ise her katman için zemin etütlerinden elde edilen düşey yatak katsayılarının, winkler yöntemine göre modeldeki düğüm noktaları arası mesafeleri ile optimize edilerek, bu noktalara yatayda yaylar tanımlamak suretiyle gerçekleştirilmiştir (Şekil 4.4). İmalatta kullanılan kazıkların malzeme bilgileri; beton: BS30 (f_{cd} =20.000kN/m²), donatı: BÇIII (f_{yd} =365.000kN/m²) şeklindedir. Dolayısıyla programa çubuk elemanlarda kullanılacak malzeme cinsi girilirken aşağıdaki değerler dikkate alınmıştır.

Betonarme betonu birim hacim ağırlığı	:	25 kN/m^3
Betonarme betonu elastisite modülü (Ec)	:	31.800.000 kN/m ³
Poisson Oranı	:	0.2
Beton basınç dayanımı (fc')	:	20.000 kN/m ²
Çekme donatısı dayanımı (fy)	:	365.000 kN/m ²
Kayma donatısı dayanımı (fys)	:	365.000 kN/m ²
Beton kayma hesap dayanımı (fcs)	:	20.000 kN/m ²

Şekil 4.4 SAP 2000 programı için hazırlanmış bilgisayar modeli

Sistemde yatay ötelenmeleri belirleyecek olan yatay yay katsayıları bulunurken, Winklerin 1867 yılında önerdiği zemin modelinin, Terzaghi (1955) tarafından kazıklara uyarlanmış halinden faydalanılmıştır. Yatay yük taşıyan bir kazık ötelenirken kendisini taşıyan zemine yüklenecektir. Yukarda da izah edildiği gibi bu etkileşimi ifade edebilmek için zemin; kazık boyunca belirli aralıklarla yerleştirilen ve uygulanan yükü sıkışarak üstlenen yaylarla temsil edilir. Bu yayların zemini temsilinde iki önemli husus bulunmaktadır. Birincisi yay sertliğinin (rijitliğinin) derinliğe göre değişmesi, ikincisi ise belli bir derinlikteki yayın sertliğinin ötelenme ile değişmesidir. Yukarda anlatılan davranış aşağıdaki genel ifade ile gösterilebilir.

$$p = k(z,y) y$$
 (4.1)

Bu durumları temsil eden eğrilere p-y eğrileri adı verilir. Şekil 4.5 de doğrusal elastik plastik davranışı temsil eden yay elemanlarının yer aldığı durum gösterilmektedir. Bu durum, özellikle granüler zeminler ve yumuşak killi-siltli zeminlerin davranışını temsil etmek için çokça kullanılan bir modeldir.

Şekil 4.5 Doğrusal elastik plastik davranış

. Şekil 4.5 de gösterilen kazıkta, bir yayın bulunduğu düğüm noktası elemanına p yanal basıncının uygulandığı düşünülerek (4.1) denklemi yatak katsayısının derinlikle değişimini de içermek üzere şu şekilde yazılabilir.

$$\mathbf{p} = \mathbf{k}_0 \, \mathbf{z}^n \, \mathbf{y} \tag{4.2}$$

veya k(z,y) nin değişimi şekil 4.5 deki ilişkiden hareket edilerek şu şekilde yazılabilir.

$$ky = k_0 z^{0.5}$$
 (4.3)

Yukarıdaki formülde

- ky: Derinliğe bağlı olarak değişen yatay yatak katsayısı.
- k_o: Düşey yatak katsayısı.
- z : Yayın uygulanacağı noktanın kazık başlığına mesafesinin toplam kazık boyuna oranıdır (L'/L).

Yukarıdaki bağıntıdan hareketle bu formülü çalışmamızda uygularsak şekil 4.6 da Ky sütunu altında görülen eğri elde edilir. Parabolik bir eğri olarak beliren bu eğriyi, alan yöntemi kullanarak düğüm noktalarına dağıtmak oldukça zordur. Dolayısıyla derinliğe bağlı olarak her bir düğüm noktasındaki yatay yatak katsayısını bulabilmek için, (4.3) formülünden elde edilen değerlerin işlenmiş olduğu şekil 4.6 da görülen alanları basite indirgeyerek KH sütunu altındaki grafiği elde edebiliriz. Bunun sonucunda yatay yatak katsayı değerlerinin kazık üzerindeki dağılımı, Terzaghi'nin (1955) önerdiği şekilde, derinlikle artan yay değerleri olarak zemin-kazık modeline dağıtılmış olur.

Şekil 4.6 Düzeltilmiş yatay yatak katsayısı değerlerinin kazık boyunca dağılımı

Yukarıda izah ettiğimiz düşey yatak katsayısı değerlerinin, yatay yatak katsayılarına çevrilerek, yatay yay sabitlerinin bulunması işlemi Tablo 4.1 de detaylı olarak izah edilmiştir. Tabloda Ko değerleri, her bir katman için zemin etütlerinden elde edilen düşey yatak katsayısı değeri, Ky değerleri, kazığın; Winkler yay modeline göre (4.3) formülünden elde edilen ve parabolik bir eğri olarak beliren yatay yatak katsayısı değerleri, kazık-zemin modelinde bir noktaya gelen yatay yay sabiti değerleridir. Kh değerleri, kazık-zemin modelinde bir noktaya gelen yatay yay sabiti değerleridir (Şekil 4.7). Program için düğüm noktalarına gelen yay sabitleri (K'); basitleştirilmiş yatay yay katsayısının (Kh), kazık modelinin iki düğüm noktası arasındaki mesafesi (1m.) ve kazık çapı (1.2m.) ile çarpılarak, X-Z düzleminde çözülen kazık modeline, kN/m biriminde girilmiş yatay yay sabiti değerleridir.

Nalita	L	Z	Ko	Ky	$\mathbf{K}_{\mathbf{h}}$	K
Nokia		L/\sum_{L}		$K_0.z^{0.5}$	$\left(K_{y_1}+K_{y_2}\right)$	$(K_{h1} + K_{h2}).D.\Delta h$
110					2	2
	(m)	L/tL	(kN/m^3)	(kN/m^3)	(kN/m^3)	(kN/m)
1	21	1	360000	360000,0	355662,0	213397,2
2	20	0,952	360000	351324,0	346876,2	421522,9
3	19	0,905	360000	342428,3	337861,8	410842,8
4	18	0,857	360000	333295,2	328600,0	399877,1
5	17	0,810	360000	323904,7	319070,0	388602,0
6	16	0,762	360000 2000	1746 314234	1720,2	192474,1
7	15	0,714	2000	1690,3	1661,7	2029,1
8	14	0,667	2000	1633,0	1603,3	1959,0
9	13	0,619	2000	1573,6	1542,7	1887,6
10	12	0,571	2000	1511,9	1480,0	1813,6
11	11	0,524	2000 130000	94087 1448	91898,0	56026,8
12	10	0,476	130000	89708,5	87406,7	107582,8
13	9	0,429	130000	85105,0	82671,4	102046,9
14	8	0,381	130000	80237,7	77646,6	96190,8
15	7	0,333	130000	75055,5	72271,7	89951,0
16	6	0,286	130000	69487,9	66460,7	83239,5
17	5	0,238	130000	63433,5	60085,1	75927,5
18	4	0,190	130000	56736,7	52936,0	67812,7
19	3	0,143	130000	49135,4	44627,1	58537,9
20	2	0,095	130000	40118,9	34243,6	47322,4
21	1	0,048	130000	28368,3	14184,2	20546,2
22						8510,5

Tablo 4.1 Model kazık için yatay yay sabitlerinin bulunması

4.3.1.2. Analiz Sonuçlarının Değerlendirilmesi

Yatay yükleme deneyi esnasında kazık başlığına Ek-3 verilen zaman aralıklarında uygulanan 10, 20, 30, 40, 50, 60, 68, 72 ve 80 tonluk yatay kuvvetler, bilgisayar programındaki kazık modelinin 22 no'lu düğüm noktasına etki ettirilip kazık üst başlığındaki deformasyonlar ölçülmüştür. Şekil 4.7 de SAP 2000 programında etki ettirilen bu yüklere karşılık 22 no'lu düğüm noktasındaki (kazık kafası) deformasyonlarının değerleri görülmektedir. Bu değerler, ayrıca uygulanan tüm yükler için, SAP2000 modelinde bulunan bütün düğüm noktalarının deplasmanını gösterir program çıkış dosyası olarak Ek-5 de verilmiştir.

Şekil 4.7 SAP 2000 kazık modelinde, yüke bağlı kazık başındaki deplasmanlar

Analiz sonuçlarından elde edilen, yüke bağlı olarak kazık kafasındaki deplasmanları gösteren eğri ile deney sonucu elde edilen yükleme-deplasman eğrilerinin çakıştırılmış hali şekil 4.8 da verilmiştir.

Şekil 4.8 Kazık kafasında, SAP2000 programı yükleme-deplasman eğrisi ile deney yükleme-deplasman eğrisinin karşılaştırılması.

Şekilde de görüldüğü gibi SAP2000 programında, yüke bağlı olarak değişen deplasman değerleri ile gerçek deplasman değerleri arasında yükleme şiddetinin artımıyla çoğalan deplasman farklılıkları vardır. Deney esnasında ilk yükleme olan 10t. luk yatay yükleme sonucunda okunan ilk değer 0.13 cm. SAP 2000 de bulunan 0.133 cm. değeri ile aynıdır. Deneyin devamında, bahsedilen 10t. luk yatay yükleme sisteme 20 dakika boyunca uygulanmış mukabilinde deplasman değeri 0.18 cm. ye kadar çıkmıştır. Deneyin devamında sırasıyla uygulanan diğer yüklere bağlı olarak deplasman miktarları da SAP 2000 programında bulunan değerlerden her yükleme aşaması için artan oranda fazla çıkmıştır. Yatay yükleme deneyi yapılırken her yükleme sonrası kazık 10 dakika ile 1 saat arasında değişen sabit yüke maruz bırakılmıştır. Sisteme yükleme yapıldıktan sonra diğer yükleme geçilirken yük boşaltması yapılmayıp her bir yük bir sonra gelen yüke ilave edilerek uygulanmıştır.

Karşılaştırma esnasında oluşan deplasman farklılıklarının muhtemel sebeplerini aşağıdaki gibi açıklayabiliriz.

- 1- Zeminin homojen ve izotrop olmayışı. Ancak winkler yaylarının tespiti yapılırken zemin her bir katman için homojen ve izotrop özellikte kabul edilmiştir.
- 2- Bilgisayar modelinde kazık için tanımlanan malzeme bilgileri ile, deney kazığının malzeme değerleri arasında oluşabilecek farklılıklar. Bundan oluşabilecek deplasman farklılıkları girilen yay değerlerinin rijitliği dikkate alındığında ihmal edilebilir düzeydedir, ancak konu edilen deplasman farklılıklarının boyutları da küçük olduğundan malzeme değerleri arasında olması muhtemel farklılıklar da dikkate alınmalıdır.
- Deney kazığının döküm esnasında derinliğe bağlı olarak kesit özelliklerinin değişebilmesi.
- 4- Deney esnasında, uygulanan yatay yüklemelerden sonra, kazıkta yük boşaltılması yapılmadan sisteme sürekli tekrarlı yüklerin uygulanılması. SAP 2000 kazık modeline yükler uygulanırken bir sonraki yüklemenin bir önceki yüklemeyle bir ilişkisi yoktur. Yani bir önceki yüklemeden oluşan kalıcı deformasyonlar buna bağlı olabilecek yay değerlerindeki küçülmeler bir sonraki yük bilgisinde tanımlanmamıştır. Ancak deney sonunda yatay yükün tamamıyla boşaltılmasıyla kazık kafasında ortalama 1.83 cm.lik kalıcı deformasyon ölçülmüştür. Bu deformasyon miktarı, deney esnasında 80t. luk yatay yük değerinin oluşturduğu 4.25cm. lik deformasyon miktarından çıkarıldığında oluşan son yük-deformasyon eğrisinin, modeldeki deplasman eğrisine daha da yaklaştığını görebiliriz.
- 5- Yaşlanma etkisinin hesaplarda ihmal edilmesi. Bilgisayar programıyla çözülen modeldeki deplasman değerleri ani sehim değerleridir. Ancak deney yaklaşık 5 saatte yapılmıştır. Modelde verilen mesnetlerin elastik oluşu, yaşlanma değerlerinin de dikkate alınmasını gerektirebilir.
- 6- Kazık başlığının bulunduğu bölgede zeminin örselenmesi. Kazığın imalatı esnasında veya yatay yüklemelerin yapılmaya başlanmasıyla kazık başlığının bulunduğu bölgedeki zemin profilinde mutlaka bir örselenme olur. Bu örselenmeden ötürü de zemin bu bölgede (zemin üzerinden itibaren ilk 50 cm ila 1m. arası) yatay ve düşey taşıyıcılığını kaybeder veya bu taşıyıcılık oldukça azalır. Karşılaştırmamızda çıkan deplasman farklılıklarının oluşmasındaki en

önemli sebep olarak bunu verebiliriz. Dolayısıyla özellikle zemin profilinin ilk 50cm.sindeki yay değerlerini sıfırlayarak veya azaltarak kazık modelinin oluşturulması gerçeğe çok yakın sonuçlar verecektir.

Yukarıda izah edilen sebeplerin varlığına rağmen, bu çalışmada program sonucu deplasmanlar ile gerçek deplasmanlar arasındaki farklılıklar sistemin dizaynını etkileyebilecek farklılıklar değildir. Hesaplamalarda yapı zemin ilişkisi için kullanılan güvenlik sayılarının büyüklükleri dikkate alındığında neredeyse analiz sonucunda gerçeğe çok yakın değerlerin bulunduğu görülmüştür. Deplasmanların derinliğe bağlı olarak azalması da bu farklılıkların ihmal edilebileceğini göstermektedir. Burada dikkat edilmesi gereken nokta, deplasmanları ve reaksiyonları direkt etkilemesi bakımından zemin profilinin çok dikkatli olarak sisteme tanıtılması gerekliliğidir. Dolayısıyla bu da ancak sonuçlarına güvenilir zemin etütleri ile teşkil edilebilmektedir.

4.3.2. Allpile Programı İle Yatay Yüklü Kazık Analizi

Allpile programı her türlü tekil ve gurup kazıkların, değişik zemin profillerinde ve ön görülecek değişik yükleme seçeneklerine göre yatay ve düşey analizlerini yapılabilen kazık-zemin arasındaki ilişkiye göre sonlu farklar yöntemiyle çalışan, statik analiz programıdır. Sadece kazık analizi için geliştirilmiş olan bu program; COM624 adlı, kazıkların yatay deplasmanlarının ve statik analiz sonuçlarının bulunması amacıyla Texas Üniversitesi tarafından FHWA(Federal Highway Administration-America) için geliştirilmiş, p-y eğrileri yöntemiyle çalışan bilgisayar programının analiz motorunu kullanır. Dolayısıyla Allpile programı kapsamında COM624 programı içinde veri transferine imkan veren bir alt bölüm bulunmaktadır.

Kullanıcıya, zemin profili, kazık türü ve kazık statik özellikleri, yükleme şekilleri gibi kazık çözümü için gerekli olan bilgileri, kolaylıkla girmesini sağlayan bir menü sistemi sunulmuştur. Allpile programı yatay yüklü kazık hesabı yaparken aşağıdaki lineer olmayan diferansiyel denklemi referans alır.

$$EI\frac{d^{4}y}{dz^{4}} + Q \frac{d^{2}y}{dz^{2}} - R - P_{q} = 0$$
(4.4)

Yukarıdaki formülde

Q: Kazık üzerine gelen eksenel yük.

y: Kazığın derinliğe bağlı olarak yaptığı yatay ötelenme niktarı.

z : Kazık başlık bölgesinden itibaren derinlik

R: Zemin gerilmesinin kazık birim uzunluğundaki değeri.

E: Kazık elastisite modülü

I : Kazık atalet momenti

P_q: Kazık boyunca uygulanan yatay yayılı yük miktarı.

Programın çalışma esnasında kullandığı akış diyagramı şekil 4.9 da verilmiştir.

Şekil 4.9 Allpile programı akış diyagramı

4.3.2.1. Programa Sistemin Tanıtılması

Programa sistemin tanıtılması, bilgisayar programının ön gördüğü altı adet pencereye bilgi girişi yapılarak gerçekleştirilmektedir. Bunlardan birinci pencere olan ve kazık tipinin seçildiği pencerede (şekil 4.10), program kullanıcıya, 12 adet kazık tipinden birisinin seçilebileceği zengin bir kazık kütüphanesi sunmuştur.

Şekil 4.10 Allpile programı kazık tipi seçim penceresi

Deneylerde kullanılan kazık tipimiz 120cm. çapında fore kazıktır. Dolayısıyla bu kazık türü programda ikinci satırda yeren alan, genişliği 61cm. den büyük yerinde dökme kazıklar sınıfına girmektedir. Ayrıca bu pencereden analizin İngiliz birimlerine göre veya metrik birimlere göre yapılmasına olanak veren bir bölüm vardır. Herhangi bir birimde devam ederken, çalışma aşamasında diğer birime geçilirse program otomatik olarak birimler arası çevrim işlemini gerçekleştirir.

İkinci pencerede, kazık zemin ilişkisi ve kazığın zemin içinde konumlandırılmasına imkan veren bilgileri girilebilir (şekil 4.11).

Şekil 4.11 Allpile programı kazık zemin ilişkisini gösterir pencere

Burada;

P: Kazık üzerindeki yatay yük

Q: Kazık üzerindeki düşey yük

M: Kazık üzerindeki moment değeri

L: Kazığın derinliği,

H: kazık başlığının zemin üstünden itibaren yüksekliği (örneğimizde bu değer sıfırdır.)

As: zemin profilindeki yüzey eğrilik değeri.

Ab: kazık alt başlığının kazık ekseniyle yaptığı açı.

Kazık modelimizde kullanılan değerler şekil 4.11 de görülmektedir.

Üçüncü pencerede kullanıcı, kullanacağı kazığa ait statik kesitleri oluşturabilir ve isterse kazığın derinliği boyunca bu kazığa değişik kesitler tanımlayabilir (şekil 4.12).

File Edit Ru	ın Setup Help							
<u>B</u>	🔝 🚹 Verti	cal 者 Lat	eral K	Sample:	List of Samp	le: (E-Englis	h, M-Metric)	•
A. Pile Type	B. Pile Profile C. Pile P	roperties D	. Load and G	roup E. Soi	I Properties	F. Advance	d Page	
1. Pile Prope	rty Table (Zp - Pile	e Depth, from	pile top to be	eginning of ea	ach section)	Tota	I Pile Length=	=21-m
Zp-m	Pile Data Input	Width-cm	A'-cm2	Percm	l'-cm4	E -MP	W-kN/m	At-cm2
0	Concrete (rough)	120	11309.7	377.0	10178760.0	20683	26.012	11309.7
21	Pile Tip	120	11309.7	377.0	10178760.0	20683	26.012	11309.7
	Click to Open 💌							
	Click to Open	\searrow						
	Click to Open							
	Click to Open							
	Click to Open			Pe	encereler	e		
	Click to Open			t1k	clayarak sit bilgil	yeni eri		
	Click to Open			gi	rilebilir.			
	Click to Open							

Şekil 4.12 Allpile programı kazık kesitine ait statik bilgilerin girildiği pencere

Burada;

Zp: Zemin yüzeyinden itibaren derinliğe bağlı olarak kazık uzunluğu boyunca kazık kesitindeki değişikliklerin girilebileceği kazık boyu.

Pile Data: kazık bilgi girişi için kullanılan sütundur. Bu sütunun altında kazık tipinin ve malzeme değerlerinin otomatik olarak oluşturulmasına imkan veren pencereleri açan düğmeler bulunmaktadır.

Width (genişlik) : kare kazıklarda kazık genişliğinin, dairesel kazıklarda kazık çapının girilmesine imkan veren sütundur.

A' : Efektif kazık alanıdır.

Per : azık çevresini uzunluğudur.

- I': Kazığa ait atalet momentidir.
- E : Kazığa ait elastisite modülüdür.
- W : kazığın bir metresinin ağırlığıdır.

At: Kazık toplam alanıdır. (boşluklu kazıklarda At ve A' değerleri farklılıklar gösterir)

Örneğimizde kullandığımız kazık modelinde, derinlikle kazık kesiti değişmemektedir. Dolayısıyla kazığa ait bilgiler zemin üstünden itibaren kazık altına kadar aynı statik kesitlere sahiptir. Kazık modelimiz için kullanılan değerler şekil 4.12 de görülmektedir.

Dördüncü pencerede program, kullanıcıya kazığa; kazık başlığında oluşan reaksiyonların durumuna göre yük girebilmesi için altı ayrı yöntem sunar. Bununla beraber aynı pencere içinde çözülecek kazığın tekil kazık, gurup kazık, kule temeli olması durumuna göre değişiklik gösteren analiz seçenekleri sunar (şekil 4.13).

Şekil 4.13 Allpile programında kazık yükleme bilgilerinin gösterildiği pencere

Kazık üzerine yayılı yük girilebilmesine olanak sağlayan düğme. Bizim kazık modelimiz, tekil kazık sınıfına girip, serbest başlı ve sadece yatay ötelenmeye maruz bırakılmıştır (2 no'lu pencere). Seçilen pencereye uygun olarak beliren yükleme değerlerinden, Q (yatay yük) değerine sırasıyla 10, 20, 30, 40, 50, 60, 68, 72 ve 80 tonluk yükler yüklenerek oluşan model kazık başlığındaki deplasmanlar ölçülecektir.

Beşinci pencerede kullanıcı, kazık hesabı yapacağı zemin katmanlarının jeolojik özelliklerini ve zemine ait yeraltı su seviyesini girebilir (şekil 4.14).

Pile Type B Soil Property epth, from gro ach layer)	Image: Constraint of the second se	Lateral Lateral D. Load a 2. Water Tab layer is require	nd Group Ie (An ad ad at wat	Sample: Lis DE. Soil Pro Iditional Sertable)	operties F. / 3 (0	E-English, M Advanced Pa Sulface Eler Iptional input	-Metric) ge vation)	
Zs-m	Soil Data Input	G-kN/m3	Phi	C-kN/m2	k-MN/m3	e50 or Dr	Nspt	Туре
0	👯 Sand/Gravel	18.0	25.0	0.0	130.0	1	30	4
11	EE Soft Clay	20	0	24	2	1	10	1
16	🎸 Weak Rock	21.0	40	0	360	1	50	5
	Click to Open							
	Click to Open							
	Click to Open							
	Click to Open							
	Click to Open							
	Click to Open							
	Click to Open							

Şekil 4.14 Allpile programında zemin özelliklerinin girildiği pencere

Bu pencere yardımıyla kullanıcı, modelinde 10 adet farklı katman kullanılabilir.

Burada;

Gwt: yer altı suyunun zemin üst kotundan derinliğidir. Eğer yer altı suyu kazık alt kotundan aşağıdaysa bu bölümü doldurmaya gerek yoktur.
Zs: Zemin katmanlarının başlangıç kotunun girildiği sütundur. Katman zemin üst kotundan itibaren başlangıç kotları yazılarak zemin profili programa tanıtılmış olunur.

Soil Data (zemin bilgileri): zemin tipinin girilmesine imkan veren bölümdür. Düğmenin seçilmesi ile birlikte içinde standart zemin tiplerinin bulunduğu bir pencere açılır. Kullanıcı eğer modelleyeceği zeminle ilgili detaylı bilgiye sahip değilse bu pencere yardımıyla, yaklaşık zemin değerlerini seçebilir. Seçtiği zemin modeline ait zemin parametreleri şekil 4.15 de görülen, 3 ile 9. sütunlara otomatik olan işlenir.

Phi : Kayma direnç açısı.

C : Zemine ait kohezyon değeri.

K : Zemin yatak katsayısı

e₅₀ ve Dr: Eğer zemin silt, kil veya kaya ise e₅₀ değeri zeminin, p-y eğrisinde %50 deformasyonuna karşılık gelen gerilme değeridir. Dr ise kumlu zeminlerde zemin relatif sıkılığını gösterir değerdir. Sadece bilgi amaçlı olarak verilir, analizlerde kullanılmaz.

Nspt : Standart penetrasyon deneyi sonucu. (Programda bu değer 76.2 cm.den bırakılan 623 N. Ağırlığındaki bir tokmağın, zemine 305mm. girebilmesi için gereken vuruş sayısıdır.)

bu pencerede kazık modelimiz için kullanılan değerler şekil 4.14 de görülmektedir.

Altıncı pencerede kullanıcı, kazık hesabında kullanacağı standart parametrelerde değişiklik yapabilir. Kazıkta çevre sürtünmesiyle veya negatif sürtünmeyle oluşan tesirleri arttırıp azaltabilir yaptığı yüklemeleri belli oranlarda arttırıp azaltabilir veya kazığın yapacağı maksimum deplasmanları sınırlandırabilir.

4.3.2.2. Analiz Sonuçlarının Değerlendirilmesi

Yatay yükleme deneyi esnasında kazık başlığına Ek-3 de verilen zaman aralıklarında uygulanan 10, 20, 30, 40, 50, 60, 68, 72 ve 80 tonluk yatay kuvvetler, bilgisayar programındaki kazık modeline bölüm 4.3.2.1 de izah edildiği gibi etki ettirilip kazık üst başlığındaki deformasyonlar ölçülmüştür. Şekil 4.15 da Allpile programına ait yukarıdaki yüklemelere bağlı olarak kazık başındaki deplasman miktarları görülmektedir. Programa ait her bir yükleme için oluşan analiz sonuçları Ek-6 da verilmiştir.

Şekil 4.15 Allpile kazık modelinde, yüke bağlı kazık başındaki deplasmanlar

Analiz sonuçlarından elde edilen, yüke bağlı olarak kazık kafasındaki deplasmanları gösteren eğri ile deney sonucu elde edilen yükleme-deplasman eğrilerinin çakıştırılmış hali şekil 4.16 de verilmiştir.

Şekil 4.16 Kazık kafasında, Allpile programı yükleme-deplasman eğrisi ile deney yükleme-deplasman eğrisinin karşılaştırılması.

Şekilde 4.16 de görüldüğü gibi Allpile programında, yüke bağlı olarak değişen deplasman değerleri ile gerçek deplasman değerleri arasında oldukça küçük farklılıklar vardır. Deneyin ilk aşaması olan 10t. luk yatay yükleme sonucunda okunan ilk değer 0.13 cm. Allpile programında bulunan 0.08 cm. değeri neredeyse aynıdır. Deneyin devamında yapılan diğer yüklemelere bağlı olarak oluşan deplasmanlarda ise SAP2000 modelinde bulunan değerlerden gerçeğe daha yakın değerler bulunmuştur. Bunun başlıca sebebi olarak zemin-kazık ilişkisinin sonlu farklar yöntemiyle sisteme tanıtarak, yay katsayıların yanında zemin özelliklerinin de hesaba katılması faktörünü söyleyebiliriz. Özellikle birinci yüklemeden sonra gelen yüklemelerde gerçek ile teori arasında yaklaşık 0.5-0.6 cm. civarındaki deplasman farklılıkları diğer tüm yüklemeler için bozulmamıştır. Karşılaştırma esnasında oluşan deplasman farklılıklarının muhtemel sebeplerini aşağıdaki gibi açıklayabiliriz.

- Zeminin homojen ve izotrop olmayışı. Ancak Allpile modeline zemin özellikleri girilirken, zemin her bir katman için homojen ve izotrop özellikte kabul edilmiştir.
- 2- Bilgisayar modelinde kazık için tanımlanan malzeme bilgileri ile, deney kazığının malzeme değerleri arasında oluşabilecek farklılıklar.
- 3- Deney esnasında, uygulanan yatay yüklemelerden sonra, kazıkta yük boşaltması yapılmadan sisteme sürekli tekrarlı yüklerin uygulanması. Allplie programında da, SAP 2000 kazık modelinde olduğu gibi yükler uygulanırken bir sonraki yüklemenin bir önceki yüklemeyle bir alakası yoktur. Yani bir önceki yüklemeden oluşan kalıcı deformasyonlar buna bağlı olabilecek zemin parametrelerindeki değişmeler dikkate alınmamıştır.
- 4- Yaşlanma etkisinin hesaplarda ihmal edilmesi. Bilgisayar programıyla çözülen modeldeki deplasman değerleri ani sehim değerleridir. Ancak deney yaklaşık 5 saatte yapılmıştır. Modelde verilen mesnetlerin elastik oluşu, yaşlanma değerlerinin de dikkate alınmasını gerektirebilir.
- 5- Kazık başlığının bulunduğu bölgede zeminin örselenmesi. Kazığın imalatı esnasında kazık başlığının bulunduğu bölgedeki zemin profilinde mutlaka bir örselenme olur. Bu örselenmeden ötürü de zemin bu bölgede (zemin üzerinden itibaren ilk 50 cm ila 1m. arası) yatay ve düşey taşıyıcılığını kaybeder veya bu taşıyıcılık oldukça azalır. Karşılaştırmamızda çıkan deplasman farklılıklarının oluşmasındaki en önemli sebep olarak bunu verebiliriz.

Yukarıda izah edilen sebeplerin varlığına rağmen, bir önceki çalışmada da olduğu gibi, bu çalışmada program sonucu deplasmanlar ile gerçek deplasmanlar arasındaki farklılıklar sistemin dizaynını etkileyebilecek farklılıklar değildir. Zemin çalışmalarında yapı zemin ilişkisi için kullanılan güvenlik sayılarının büyüklükleri dikkate alındığında neredeyse analiz sonucunda gerçeğe çok yakın değerlerin bulunduğu görülmüştür. Deplasmanların derinliğe bağlı olarak azalması da bu farklılıkların ihmal edilebileceğini göstermektedir. Burada dikkat edilmesi gereken nokta, deplasmanları ve reaksiyonları direkt etkilemesi bakımından zemin profilinin çok dikkatli olarak sisteme tanıtılması gerekliliğidir. Bu çalışmada, analitik sonuçların deney sonuçlarına yakın çıkmasında zemin etüt raporları doğruluğunu kabul ettirmiştir.

4.3.3. Plaxis Programı İle Yatay Yüklü Kazık Analizi

Plaxis programı, sonlu elemanlar yöntemiyle çalışan, geoteknik mühendisliğinde stabilite ve deformasyonla alakalı tüm problemleri çözebilmek amacıyla hazırlanmış bir paket programdır. Bir imalatın başlangıcından bitimine kadar ki aşamalarda, yapılan kazılar, iksalar, ankrajlamalar vb. sistemin duraylılığını sağlayacak veya bozacak bütün imalat aşamaları programa girilebilir. Bu aşamalardaki yapı zemin ilişkileri görülebilir ve bunlara daha imalata başlamadan önce nasıl müdahale edilebileceği konusunda bir fikir edinilebilir.

Programa bilgi girişi yapılırken, programın iki boyutta çalıştığı unutulmamalıdır. Dolayısıyla analiz sonucu bulunan değerler, analizi yapılacak elemanın veya zeminin bir metresinde oluşan değerlerdir. Bu program kullanılarak zeminin karakteristik özellikleri beş ayrı şekilde tanımlanabilir. Bunlar; zeminin lineer elastik davranışına göre, mohr coulomb yöntemine göre, sert zemin olmasına göre, yumuşak zemin olmasına göre veya kullanıcının kendisinin tanımladığı zemin parametrelerine göre farklı karakteristikte sayısız zemin modeli oluşturulabilir.

Program hesap aşamasında yer altı suyu durumunu da dikkate alır. Yer altı suyunun imalat aşamasında çekilmesi, oluşan konsolidasyonlarla zeminin alacağı son durumlar program tarafından hesap edilebilir.

Bu program kullanılarak sisteme deprem yüklemeleri yapılabilir, dolayısıyla deprem esnasındaki yapı-zemin etkileşimleri incelenebilir. Program plastik hesap yapabildiğinden ötürü analiz aşamaları da yükleme şekline göre aşama aşama incelenilebilir. Yukarıdaki bölümlerde de izah edildiği gibi, kullandığımız test kazığına deney aşamasında uygulanılan yükler modelde de aşama aşama yüklenecektir. Bu sayede deneydekine benzer bir yükleme şekli gerçekleştirilecek zemin kazık arasındaki yüke bağlı değişen davranışların gerçeğe daha yakın incelenmesi sağlanmış olacaktır.

4.3.3.1.Programa Sistemin Tanıtılması

Zemin modeli ve model içinde bulunan yapı elemanları sisteme grafik ortamda tanıtıldıktan sonra (şekil 4.17) program bu modeli otomatik olarak sonlu elemanlar ağına çevirir (şekil 4.18).

Şekil 4.17 Plaxis programı kazık-zemin modeli

Şekil 4.18 Plaxis programında kazık-zemin modelinin sonlu elemanlar ağına çevrilmiş hali

Kullanıcı, kazık çevresine tanımlayacağı ilave düğüm noktaları ile bu bölgeyi daha fazla sonlu eleman ağına bölüp, kazık-zemin ilişkisini daha hassas olarak hesaplayabilir. Plaxis için oluşturulan modelde, diğer modellerde de olduğu gibi zemin bilgileri, yapılan zemin etüt sonuçlarından faydalanılarak programa girilmiştir. Şekil 4.17 de görülen ve A,B,C bölgeleri Mohr-Coulomb modeli kullanılarak, kazık ise programa "beam" (kiriş) elemanı kullanılarak tanıtılmıştır. Programda kazık kafasına "A" yükü olarak görülen 800 kN'luk yükleme yapılmıştır. Bu yüklemeyi aşamalara ayırmak amacıyla programın ilerleyen bölümünde bulunan hesaplama modülü kullanılmıştır. Hesaplama modülünde bulunan "multiplier" (çarpan) penceresinde her bir yüklemenin nihai yüklemeye oranı girilerek sisteme yükleme aşamaları belirlenmiş olur. Örneğin deney kazığında birinci yükleme olarak 100 kN luk yatay yük değeri, birinci aşama olarak programa girilirken; nihai yük değeri 800 kN olduğu için 100/800 oranında Σ -Mload A değeri olarak programa tanımlanmış olur (Şekil 4.19). Dolayısıyla nihai yük olan 800 kN luk yatay yükün çarpanıda 1 dir.

Şekil 4.19 Plaxis programına yük aşamalarının tanıtılması.

4.3.3.2. Analiz Sonuçlarının Değerlendirilmesi

Yatay yükleme deneyi esnasında kazık başlığına Ek-3 de verilen zaman aralıklarında uygulanan 10, 20, 30, 40, 50, 60, 68, 72 ve 80 tonluk yatay kuvvetler, bilgisayar programındaki kazık modeline bölüm 4.3.3.1 de izah edildiği gibi etki ettirilip kazık üst başlığındaki deformasyonlar ölçülmüştür. Şekil 4.20 de Allpile programına ait yukarıdaki yüklemelere bağlı olarak kazık başındaki deplasman miktarları görülmektedir. Programa ait her bir yükleme için oluşan analiz sonuçları Ek-7 de verilmiştir.

Şekil 4.20 Plaxis kazık modelinde, yüke bağlı kazık başındaki deplasmanlar

Analiz sonuçlarından elde edilen, yüke bağlı olarak kazık kafasındaki deplasmanları gösteren eğri ile deney sonucu elde edilen yükleme-deplasman eğrilerinin çakıştırılmış hali şekil 4.21 de verilmiştir.

Şekil 4.21 Kazık kafasında, Plaxis programı yükleme-deplasman eğrisi ile deney yükleme-deplasman eğrisinin karşılaştırılması.

Şekilde 4.21 de görüldüğü gibi Plaxis programında, yüke bağlı olarak değişen deplasman değerleri ile gerçek deplasman değerleri nerdeyse aynıdır. Deneyin ilk aşaması olan 100 kN. luk yatay yükleme sonucunda okunan nihai değer 0.18 cm., Plaxis programında bulunan 0.20 cm. değeri ile, deneyin son aşamasında uygulanan 800 kN. luk yatay yükleme sonucunda okunan 4.25 cm., Plaxis programında bulunan 4.45 cm. değeri ile aynıdır denebilir. Deneyde yapılan diğer yüklemelere bağlı olarak oluşan deplasmanlarda da gerçeğe yakın değerler okunmuştur. Bunun başlıca sebebi olarak, Allpile programında da olduğu gibi, Plaxis programında da zemin parametrelerini tanımlarken kullanılan Mohr-Coulmb parametreleri ile zemin profilinin sisteme daha hassas olarak tanıtılabilmesini söyleyebiliriz. Bunun haricinde programda zemin parametrelerinin, derinlikle değişmesine yönelik artış oranlarının girildiği, gelişmiş zemin parametre girişi bölümü de bulunmaktadır.

Programda zemin-kazık arasındaki ilişki "interface" isimli bir parametre ile tanıtılmaktadır. Bu parametre değerlerinde, değişiklikler yapılarak kazık zemin ilişkisi gerçeğe yakın olarak programa tarif edilebilir. Ayrıca bu program sonlu elemanlar yöntemi kullanarak analiz yaptığından dolayı kazık çevresindeki sonlu elemanlar ağına yeni düğüm noktaları eklenerek kazık çevresindeki analiz hassaslaştırılabilir. Nitekim bizim örneğimizde, şekil 4.18 de görüldüğü üzere standart sonlu elemanlar ağı kazık çevresinde daha küçük ve daha sık hale getirilmiştir. Bu ağın sıklığına göre kazık çevresindeki gerilme ve deplasmanlar da küçük oranlarda değişmektedir. Örneğimizde kazık çevresinde sık ağ oluşturmadan önce 800 kN yatay yüklemesi sonucu ölçülen deplasman değeri 3.95 cm. mertebesindeyken, sonlu elemanlar ağı sıklaştırıldıktan sonra ölçülen değer 4.45cm. çıkmıştır. Bilindiği üzere bu değer Allpile modelinde 3.15cm., SAP2000 modelinde ise 1.07 cm. idi. Daha evvelde izah ettiğimiz gibi Plaxis programına yükleme değerleri aşama aşama girilebilir. Dolayısıyla program, bir sonraki yüklemede bir önceki yükleme sonucu oluşan deplasmanları da dikkate alarak nihai deplasmanları oluşturur. Buda sisteme yükleme yaparken oluşan kalıcı deformasyonlarında dikkate alındığı anlamına gelmektedir. Kullanıcı bu programda, yükleme aşamaları arasındaki duraklama zamanlarını da tanımlayabilir.

Plaxis programında dikkat çeken bir diğer önemli özellik ise kazıkta deplasman oluşurken, kazık kafası çevresinde zeminde örselenmeden oluşan deformasyon bozukluklarını da dikkate almasıdır (şekil 4.22).

Şekil 4.22 Plaxis programında kazık kenarında görülen zemin örselenmesi.

Bir önceki örneklerde izah edilen ve kazığın deplasmanını etkilemesi muhtemel en önemli sebep olarak gösterilen zemindeki örselenme durumu, diğer programlarda dikkate alınmamıştır. Ancak SAP2000 programında bütün bilgiler kullanıcının insiyatifiyle girildiğinden dolayı, kullanıcı kazık kafasına tanımladığı ilk yay değerini hesap sonucu bulduğu yay değerinden daha küçük tutarak veya kazığın ilk 20cm. ile 50cm. sinde herhangi bir yay tanımlaması yapmayarak bu sorunu aşabileceği ifade edilmişti.

Plaxis programında diğer programlarda da olduğu gibi kullanıcı, uygulamanın yapıldığı bölgeye ait zemin profiline hakim olmak zorundadır.

BÖLÜM 5. SONUÇLAR ve ÖNERİLER

Bu çalışma sonucunda varılan sonuçları maddeler halinde sıralamak gerekirse ;

- 1- Yatay yüklü kazıklar konusu 50-55 yıl öncesine Terzaghi'nin 1955 yılında yatay yüklü kazıklar için "Winkler Zemin Modeli"ni kullanmasına kadar götürülebilse de bu konu üzerinde son 25-30 yıldır daha verimli çalışmalar yapılmıştır.
- 2- Yatay yüklü kazıkların çözümlenmesinde taşınabilecek en büyük yükü ve izin verilebilecek kazık yatay ötelenmesini esas alarak çözüm öneren yöntemler mevcuttur. Bu yöntemlerden ikincisi yani izin verilebilecek en büyük yatay ötelenmeyi esas alan yöntemler, izin verilebilecek en büyük yatay ötelenmeye, taşınabilecek en büyük yatay yükten daha önce ulaşıldığı için daha gerçekçidir.
- 3- Sınır k_h değerleri için gevşek, orta-sıkı, sıkı kum zeminlerin örnek bir problemle (bkz. Sayfa 32-37) karşılaştırması sonucu elde edilen sonuçlar şöyledir:
 Aynı tip kazık için değişen zemin sıkılıklarında inceleme yapıldığında gevşek kum için; gerek serbest başlı gerekse de tutulu başlı durumdaki yük, moment ve kesme kuvvetleri baz alınıp 1 kabul edilirse aşağıdaki tablo elde edilebilir:

ZEMİN		KAZ	IK BAŞI	NIN DURU	JMU	
		Serbest Başlı		r	Tutulu Başl	1
	Qg (kN)	M _{mak} (kNm)	V _{mak} (kN)	Qg (kN)	M _{mak} (kNm)	V _{mak} (kN)
Gevşek kum	1	1	1	1	1	1
Orta-sıkı kum	2,39	1,78	2,39	2,39	1,78	2,39
Sıkı kum	3,36	2,24	3,36	3,36	2,24	3,36

 Tablo 5.1
 Örnek problem için değişik zemin sıkılıklarında taşınan yük, moment, kesme kuvveti'nin karşılaştırılması

- Aynı soru için bu kez sadece kazık çapı büyültüldüğünde ve yine değişen zemin sıkılıkları için inceleme yapıldığında gevşek kum için; gerek serbest

başlı gerekse de tutulu başlı durumdaki yük, moment ve kesme kuvvetleri baz alıp 1 kabul edilirse aşağıdaki tablo elde edilebilir:

ZEMİN		KA	ZIK BAŞIN	NIN DURU	MU	
		Serbest Başl	1	r	Futulu Başlı	1
	Qg (kN)	M _{mak} (kNm)	V _{mak} (kN)	Qg (kN)	M _{mak} (kNm)	V _{mak} (kN)
Gevşek kum	1	1	1	1	1	1
Orta-sıkı kum	2,37	1,78	2,37	2,37	1,78	2,37
Sıkı kum	3,35	2,24	3,35	3,35	2,24	3,35

 Tablo 5.2
 İkinci örnek problem için değişik zemin sıkılıklarında taşınan yük, moment, kesme kuvveti'nin karşılaştırılması

- Örnek problem için oluşturulan iki tablo incelendiğinde

- a) Her iki kazık çapı büyüklüğü ve kazık başı durumu içinde, zeminin; gevşek kum yerine orta sıkı kum olması taşınabilecek yükü yaklaşık 2,4 katına, gevşek kum yerine sıkı kum olması ise 3,4 katına çıkarmıştır.
- b) Kazık çapındaki %40 lık bir artışın zeminin gevşek kum yerine sıkı kum olmasına eşit bir etki yaptığı görülür.
- c) Kazık başının serbest başlı yerine yarı tutulu olması %45 oranında fazla bir yük taşınmasını sağlamıştır.
- 4- Kazıklı sistemlerin analizi için son yıllarda geliştirilmiş bilgisayar programları, kullanıcıya analiz esnasında hem kolaylık sağlamakta, hemde hassas çözümleri elde etme konusunda faydalı olmaktadır. Ancak kullanıcı, kazık analizleri sonucunda çıkan verileri yorumlayacak tecrübe ve bilgiye sahip olmalıdır. Aksi takdirde, genellikle özellikli yapılarda ihtiyaç duyulan kazıklı temellerin yanlış projelendirilmesi ve imalatı, üst yapının tahmin edilen davranışlarının dışında davranışlar göstermesine sebep olacaktır. Bu da tamir edilemez, edilse dahi büyük maddi sorunlara sebebiyet verecek sonuçlar doğurabilir.

Yapılan araştırmalar, gelişen bilgisayar teknolojisi, konunun daha iyi aydınlatılması için olanak vermesine rağmen bu konuda çalışan mühendislerin hesaplamalarda her zaman güvenli bölgede kalacak şekilde çalışmaları son derecede önemlidir.

- 5- Mühendis bir problemi bilgisayar programı ile çözerken, seçtiği programın özellikle çözmek istediği probleme doğrudan cevap verecek bir program olmasına özen göstermelidir. Kullanıcının problemi programa kolay tanıtabilmesi, bilgi girişi veya sonuçların incelenmesi aşamasında olması muhtemel hataları azaltmış olur.
- 6- 4. bölümde detaylı olarak ifade edildiği gibi, bir kazık hesabı yapılırken, kazığın uygulanacağı zemine ait parametrelerin çok iyi bilinmesi gerekmektedir. Kazığın yatay ötelenme miktarını belirleyen yatak katsayısının yanında, zeminin diğer parametrelerinin de kazığın yatay deplasmanlarını etkileyebileceği unutulmamalıdır.
- 7- Winkler yayları kullanılarak yapılan yatay yüklü kazık hesaplarında, yay katsayıları hesaplanırken, zemin üstünde kazık imalatı esnasında oluşan örselenmeler dikkate alınmalıdır. Yaptığımız çalışmada, zemin yüzeyinden 50-75 cm. lerde zeminin yatay tutuculuğunun sıfırlanması veya yatay kazık sabitinin azaltılması ile kullanıcının gerçeğe daha yakın sonuçlar bulabileceği görülmüştür.
- 8- 7. maddede ifade edilen mesele, sonlu farklar veya sonlu elemanlar yöntemleriyle çözüm yaparken de dikkate alınmalıdır. Eğer kullanıcı kullandığı programda, yapmış olduğu yüklemeyle beraber kazık üst başlığı çevresinde, zeminde örselenmeler görüyorsa, imalat aşamasında oluşan ve veya sistemi zora sokmayacak başka bir örselenme durumunu göz ardı edebilir. Ancak her halükarda yukarıda da izah ettiğimiz gibi kazık projelendirmesi yapan mühendislerin, bu tür sorunlarla karşılaşmamaları için belli bir güvenlik sayısı ile çalışması gerekmektedir.

9- Sonlu elemanlar yöntemiyle zemin profili tanımlanarak yapılan analizde, kazık çevresindeki zemin hareketlerini daha iyi anlayabilmek amacıyla, kazık çevresindeki sonlu elemanlar ağına yeni düğüm noktaları eklenerek, analiz hassaslaştırılabilir. Bu ağın sıklığına göre kazık çevresindeki gerilme ve deplasmanlar da küçük oranlarda değişmektedir. Nitekim Plaxis programıyla sonlu elemanlar yöntemi kullanılarak yapılan analizde, kazık çevresindeki sonlu eleman ağı arttırılmadan önce bulunan yatay deplasman değeri, All pile programı ile bulunan deplasman değeri ile neredeyse aynı çıkmıştır. Kazık çevresindeki sonlu eleman ağının sayısı arttırıldıktan sonra çözüm gerçeğe daha çok yaklaşmıştır.

KAYNAKLAR

[1] Toğrol, E., "Kazıklı Temeller .", s.70, Birsen Yayınevi, İstanbul, 2002

[2] Yıldırım, S., Özaydın K., "Derin temeller zemin mekaniği ve temel mühendisliği5. Ulusal kon.", s.234, ODTÜ, Ankara, 1994

[3] Adachi, T., Kimura, M., and Kobayashi, H., "Behavior of laterally loaded pile groups in dense sand." Intl. Conf. Centrifuge 94, Singapore, p. 509-514.,1994.

[4] Alizadeh, M., and Davisson, M. T., "Lateral load test on piles - Arkansas RiverProject." ASCE J. of Geotechnical Engineering, Vol 96, SM5, p. 1583-1603, 1970.

[5] Arsoy, S., "Non-Lineer prediction of pile Group Deflections under Lateral loads in sand" University of Missouri – Rolla, p. 122, Theesis, 1996.

[6] Arsoy, S., Prakash, S., "Evaluating group action of piles under lateral loads in sand." International Conference on Soil Mechanics and Geotechnical Engineering, İstanbul 27-31 August 2001, A.A. Balkenor Publishers, p.835-837.,2001.

[7] Broms, B. B., "Lateral resistance of piles in cohesionless soils." ASCE Journal of the Soil Mechanics and Foundation Division Proceedings (JSMFD), 90 (SM3), p. 123-156,1964.

[8] Brown, D. A., Morrison, C., and Reese, L. C., "Lateral load behaviour of pile group in sand." ASCE Journal of Geotechnical Engineering, 114(11), 1261-1276.,1988.

[9] Chen, L. T., Poulos, H. G., and Hull, T. S., "Model tests on pile groups subjected to lateral soil movement." Research Report No. R729, Univ. of Sydney, Dept. of CE., 1996

[10] Feagin, L. B., "Lateral pile-loading tests." Transactions, ASCE, Vol. 102, p. 236-254, 1937.

[11] Franke, E., " Group action between vertical piles under horizontal loads. " W.F.

Van Impe, ed., A.A. Balkema, Rotterdam, The Netherlands, p. 83 - 93., 1988.

[12] Gandhi, S. R., and Selvam, S., "Group effect on driven piles under lateral load." ASCE Journal of Geotechnical and Geoenvironmental Engineering, 123 (8), p. 702-709., 1997.

[13] Gill, H. L. and Demars, K. R., "Displacement of Laterally Loaded Structures in Nonlinearly Responsive Soil." Technical Report R-670, U.S. Naval Civil Engineering Laboratory, California., 1970.

[14] Hansen, B., "The ultimate resistance of rigid piles against transversal forces." Bulletin No. 12, Danish Geotechnical Institute, Copenhagen., 1961.

[15] Hetenyi, M., "Beams on Elastic Foundation", University of Michigan Press, Ann Arbor, Michigan, 1942.

[16] Kagawa, T.,Kraft, L.M. "Lateral Load-Deflection Relations of Piles Subjected to Dynamic Loadings" Soils and Foundations, Japanese Society of Soil Mechanics and Foundation Engineering,vol 20, december 1980, p. 19-34, 1980

[17] Kotthaus, M., Grundhoff, T., and Jessberger, H. L., "Single piles and pile rows subjected to static and dynamic lateral load." Centrifuge 94, editors: Leung, Lee and Tan, Balkema, Rotterdam, The Netherlands, p. 497-502.,1994.

[18] Lieng, J. T., "A model for group behavior of laterally loaded piles." Offshore Technology Conference, Houston, TX, p. 377-394., 1989.

[19] Matlock, H., and Reese, L. C., "Generalized solutions for laterally loaded piles." ASCE Journal of Soil Mechanics and Foundations Division, 86 (SM5), p.63-91.,1960.

[20] McVay, M., Casper, R., and Shang, T., "Lateral response of three-row groups in loose to dense sands at 3D and 5D pile spacing." ASCE Journal of Geotechnical Engineering, 121(5), p. 436-441.,1995

[21] Mokwa,L.R."Investigation of the Resistance of Pile Caps to Lateral Loading" Virginia Polytechnic Instute and State University, p. 383, Thesis, 1999

[22] Morrison, C., and Reese, L. C., "A lateral-load test of full-scale pile group in sand." GR86-1, FHWA, Washington D.C., 1986.

[23] Poulos, H. G., and Davis, E. H., "Pile Foundation Analysis and Design", John Wiley and Sons, New York., 1980.

[24] Rachel, C. M., "An Investigation And Comparison Of Accepted Design Methodolog iesFor The Analysis Of Laterally Loaded Foundations." University of New Orleans, p. 142, Thesis, 2003.

[25] Ruesta, P. F., and Townsend, F. C., "Evaluation of laterally loaded pile group."ASCE Journal of Geotechnical and Geoenvironmental Engineering, 123(12), p. 1153-1174.,1997.

[26] Terzaghi, K., "Evaluation of coefficient of subgrade reaction." Geotechnique, 5(4), p.297-326.,1955.

[27] Sarsby, R. W., "The behavior of model pile groups subjected to lateral loads." 38th Canadian Geotechnical Conference, Theory and Practice in FoundationEngineering, Bolton, England, 1985.

[28] Shamsher, P., and Sanjeev, K. "Nonlinear Lateral pile Deflection Prediction in sands." ASCE Journal of Geotechnical Engineering, February 1996, p 130-138.,1996.

[29] Shibata, T., Yashima, A., and Kimura, M., "Model tests and analyses of laterallyloaded pile groups." Soils and Foundations, 29(1), p 31-44.,1989.

[30] O'Neill, M. W., "Group action in offshore piles." Proc. Specialty Conference on Geotechnical Eng. in Offshore Practice, ASCE, Houston, TX, 25-64.,1983.

[31] Yıldırım, S., "Zemin İncelemesi ve Temel Tasarımı.", s.465, Birsen Yayınevi, İstanbul, 2002

[32] Sarı, D., "Kohezyonsuz zeminlerde yatay yüklü kazıkların ve kazık gruplarının incelenmesi.", s.32, Yüksek lisans tezi Sakarya Üniversitesi, Sakarya, 2005

[33] Zetaş Zemin Teknolojisi A.Ş., "Egegaz A.Ş. Aliağa Terminal Tank T-103 kazık yükleme deneyi" Yatay yükleme deneyi raporu, İzmir

[34] Birand, A., "Kazıklı Temeller", s193-195, Teknik Yayın Evi, Ankara, 2001

EKLER

EK-1

Tp-1, Tp-2 Deney Kazıklarına Ait Sondaj Logları

Ek 1-A

Image: Project Adil EGE GAZ A.S. Bastarajio Tanhi Yeni ALAGA Bits Tanhi EGE TEMEL Kotu Z Sondor SONDA/CILLIK SAN. VE TIC. Kotu Z Sondor J.TD. STI. Borning Grant TUNCER Sondor J.TD. STI. Borning Proje Mühendisi Jerring LTD. STI. Borning Proje Mühendisi Santive Mühendisi LTD. STI. Borning Proje Mühendisi Borning LTD. STI. Borning Borning Borning Borning Marking Borning Borning Borning Borning Marking Borning Borning Borning Borning Marking Borning Borning Borning Borning Borning Marking Borning Borning Borning Borning Borning Borning Marking Borning Borning Borning Borning Borning Borning Borning Borning Borning Bo	Imzas:	3/11 Yeraltı suyu ölçüm Tarihi Derinliği 14.00 m Tanımlama
Number Datus tarrini Bili IZMIR Makina Tipi Rotary EGE TEMEL Kodu Z Sondor Osman TUNCER SONDAJCLIK Koordinati Y 170,675 Logu Hazirayan Jee YM Semin CAKIC SANN VE TIC. Koordinati Y 170,675 Logu Hazirayan Jee YM Semin CAKIC LTD, STL Derinidi 4000 m Proje Mühendisi Proje Mühendisi Domm Bigu on deneyi Su denevi Vane Denerif Stardar Peretrasyon Deneyi Kaya nitelikderi Bigu on deneyi Gov deneyi Gov denevi Gov denevi Bigu on deneyi Stardar Peretrasyon Deneyi Kaya nitelikderi Bigu on deneyi Gov denevi Gov denevi Gov denevi Bigu on denevi Stardar Peretrasyon Denevi Figu on denevi Stardar Peretrasyon Denevi Figu on denevi Stardar Peretrasyon Denevi Figu on denevi Figu on denevi Figu on denevi Figu on denevi Figu on denevi Figu on denevi Figu on denevi Figu on denevi Figu on denevi Figu on denevi Figu on denevi Figu	Imzası Imzası Jik Kresit	Yeraltı suyu ölçüm Tanhi Derinliği 14.00 m Tanımlama
EGE TEMEL Kotu Z Sondár Osman Tun Cer SONDAJCILIK SONDAJCILIK Koordinati X Ø/10.625 Logu Hazriayan Jeo YM. Semin CAXC SAN, VE TLC, Deriniláj V 1/203 Santive Michendisi Jeo YM. Semin CAXC LTD, STL. Deriniláj 40.00 m Proje Mühendisi Jeo YM. Semin CAXC Mumar 80 mar 1/10.01 m Proje Mühendisi Jeo YM. Semin CAXC Mumar 80 mar 1/10.01 m Vane Deneyi Standart Peretrssyon Deneyi Kaya intellideri 110.511. 10.02 m Darne sansi Vistor Semin Caxic Vane Deneyi Standart Peretrssyon Deneyi Kaya intellideri 111.52.42 m 10.02 m 10.02 m Darne sansi Vistor Semin Caxic Vistor Semin Caxic Vistor Semin Caxic 111.52.52.52 m 10.02 m 10.02 m 10.02 m Vane Deneyi Standart Peretrssyon Deneyi Kaya intellideri Vistor Semin Caxic 111.52.52.52 m 10.02 m 10.02 m 10.02 m Vistor Semin Caxic Vistor Semin Caxic Vistor Semin Caxic Vistor Semin C	Imzasi	Yeraltı suyu ölçüm Tarihi Deriniliği 14,00 m Tanımlama
SONDAUCLUK SAN. VET IC. Koordinati Y X B7D, 625 (1203) Logu Haziriayan Santye Mühendisi Jee Y.M. Semin ÇAXIC LTD. STI. Derinilâji 40000 m Proje Mühendisi Verter Mühendisi LTD. STI. Derinilâji 40000 m Proje Mühendisi Vare Deneyi Sandart Penetrasyon Deneyi Kaya nitelikkeri Ling frage riji se y deneyi Vare Deneyi Sandart Penetrasyon Deneyi Kaya nitelikkeri Using frage riji se y deneyi Vare Deneyi Sandart Penetrasyon Deneyi Kaya nitelikkeri Using frage riji se y deneyi Vare Deneyi Sandart Penetrasyon Deneyi Kaya nitelikkeri Using frage riji se y deneyi riji se y deneyi Vare Deneyi Sandart Penetrasyon Deneyi Kaya nitelikkeri (u) riji se y deneyi riji se y deneyi riji se y deneyi Vare Deneyi Kaya nitelikkeri (u) riji se y deneyi riji se y deneyi riji se y deneyi Kaya nitelikkeri Yiji se y deneyi (u) riji se y deneyi riji se y deneyi riji se y deneyi riji se y deneyi riji se y deneyi		Tanhi Deriniiği 14,00 m Tanımlama
SAN, VE TIC. I Y 112.0-5 Spantive Muhendisi LTD. STL. Dernifigi 40000 m Prole Mühendisi LTD. STL. Bernifigi 40000 m Prole Mühendisi LTD. STL. Bernifigi 40000 m Prole Mühendisi LTD. STL. Bernifigi 4000 m Prole Mühendisi Linus Fab. Instrument Stanzart Perktrasyon Deneyi Kaya nitelikkeri Linus Fab. Instrument Vare Deneyi Stanzart Perktrasyon Deneyi Kaya nitelikkeri Linus Fab. Instrument Ge User Beneyi Vare Deneyi Stanzart Perktrasyon Deneyi Kaya nitelikkeri Linus Fab. Instrument Ge User Beneyi Eastrument Fab. Instrument Fab. Instrument Fab. Instrument Fab. Instrument (Linus Ge User Beneyi Ge User Beneyi Fab. Instrument Fab. Instrument Fab. Instrument Fab. Instrument Fab. Instrument Fab. Instrument Fab. Instrument Fab. Instrument Fab. Instrument Fab. Instrument Fab. Instrument Fab. Instrument <td>do do do do do do do do do do do do do d</td> <td>Tarihi Deriniliği 14,00 m Tanımlama</td>	do do do do do do do do do do do do do d	Tarihi Deriniliği 14,00 m Tanımlama
Construction Description <thdescription< th=""> <thdescription< th=""></thdescription<></thdescription<>	200 000 000 000 000 000 000 000 000 000	Tanımlama
Orum Eugeno nervy su denevi Vane Deneyi Stanzar Peretrasyon Deneyi Kaya ntelikderi uniu	400 400 400 Jeolojik Kesit	Tanımlama
IIIIk (nn) me(m) app./kestle	1000 1000 1000 1000 1000 1000 1000 100	Tanımlama
Image: Second	400 400 400 400 400 400 400 400 400 400	Tanımlama
A A Fix A A Fix A A Fix A A Fix A A Fix A A A A A A A A A A A A A A A A A A A	APP APP APP APP APP APP APP APP APP APP	i animiama
[특준증용성 <mark>위 위 있고고</mark> 등 등 등 등 등 등 공 이 한 등	Jeolojik Jeolojik	
TST0FALSTEL AT 10 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1
	9 9-9-9-9-9-9-9-9-	
	000000	10 10 10 10
	1.4 4 4 4 4 4	
	0.0.0.0.0	
	737272872	
	6-6-6-6-6	
	0.0.0.0.0	
	22222	
3/02/6 m	6-6:6-6-6-	
	0.0.0.0.0	
	767676772	
	0.0.0.0.0	
	000000	DOLGU
	7.7.7.7.7	0.CO-13.15 m
	0.0.0.00	
	0.0.0.0.0	
	7272723.72	
┝╧┪║╎┣╾╁╾┼╍╁╍┼╍┼╍┼╍┾╍╊╌┼╍╾╊ ╴┟╸╪╍╞╼╊╍╝ ┅╍╌╍╼╼┉┨╶╿╶╎╶╎╴╎	2-2-2-2-2-2-	1
	0.0.0.0.0	
	7.7.7.7.7.	
	0.0.0.000	
	4-4-4-4-4	
┝┷┪║╴╊ ╺┼┥┝┪┥┥┥┥┥╋╗┙╸┪╸╸┥<u>┥</u>╪╪┿┥╸╶┈╸┥ ║║║║	7 <u>89.79</u> .9	
┆╠ _╈ ╎╏┆╎╞┽┽┼┼┿┫╎╶╏╴ <u>╞╧┾┿</u> ┱╴╴╴╏╎╎╎╏╴	0.0.0.00	
	222.2.2.2	
	2.7.7.7.7	
	0.0.0.0.0	
	22222	
	7.7.7.7.7	
	0.0.0.0.00	
	2.2.2.2.2.2	1
	7.7.7.7.7	
┢╧┫╽║ <mark>╞╍┝╍┝╼┠╾┝╸┝╸┝╸┝╶┝┥┝┑┥┑╍╌╸╼┣╍┝╍┝╍┝</mark> ╸┥┥╽╽╽╽	10.0.0.00 A-A:A-A-A-	
1270-1315 m	0.0.0.0.0	
	0,0,0,0,0	
	No. No. State	SILTLI KUM
	S	Gri renkli,
┝╧┫║╽┊ ┉┝┉╎┉╠╍╠╍╎╍╎┥┧┍┝┈╏╶╴╴╸<u>┥╌╫┉┝</u>╶╽╻╸╸╸╸╸ ┫╴╎╎╎╎		bitki kökleri içerikli
15 c0-15 07 m	14.4.4.4.4.4.	13.15-14.70 m
	222222	TÜF (Cox ayrismis devaziosi
	222222	gn renxiñ 14 70-15 40 m
	1999999	
	222222	
	222.223	TÜF
	122222	(Beyaz renkli, aşını çatlakti
	1222222	certuroksitlu
	222222	15.40-19 C0 m
	200000	
	1222222	
	222222	TLF (yer yer saisifiye)
	0.00000	19 00-19 60 m
(LUGEON) (RCD) (W)	in the state	(# m)
<1 Geoinmsiz 0-25 Cok Zavif W-1 Taze-avrismzmis	Masif Az catlaklukiz	(k)
5-25 Geginintii 50-75 Cita W-3 Cita derecede avrismis 3-10	Kirikli	tanto -
>25 Cok Gedinmii 75-90 Ivi W-4 Cok avrismis 10-20	Cok catlakli-k	Irikli

EK 1-B

6		2	Pr	oie	Adı	1		TEC	EC	SAZ	A.S.	TEMEL :	SO	ND IBa	AJ	KI	IYU LO	GU	T						Sayfa 2
6			Ye	ri				AL	IAC	A		· · · · · · · · · · · · ·		Bit	is T	arih			t						3/11
EGE 1	E	NEL	K	otu			Z	14	MIR 					Ma So	akin Indë	a Tip kr	м		Ro	tary	TI	INC	ER		
OND	we we	TIC	K	ordi	nat	1	X	F		-				Lo	gu l	Hazı	layan		Jeo	Y.M.	Sen	nıh Ç	AKICI	Imzası	Yeraltı suyu ölçüm
LTD	S	τι.	De	erinli	ġi		1.1.1	40	00	m.				Pr	oie i	Müh	endisi							<u> </u>	Dennligi 14.00 m
GC	india a carri	cinst		(%)	L	Luge	ond	dene	yi	SU	denevi	Vane Deneyi		Stan	dart	Pen	trasyon Der	neyi	Ка	ya n	telik	leri	5		
lerleine(m)	Su sevivesi	uyu çapı,kesici uç	uhafaza borusu	ondaj suyu rengi	asınç (kg/cm²)	5 dak. Kayıp (I)	5 dak. Kayıp (I)	oplam kayıp (I)	Geon	r kaybı (i/20 dak)	. (n/sn)		15 cm lçin	15 cm için	15 cm lçin 😰	cm toplami	GRAFİK		arot Yüzdesi(%)	aD (%)	atlak Sıklığı (m	rrişma derecesi	nék alınan seviyete	olojik Kesit	Tanımlama
03	-	¥	Z	(j)	8	-	5	F	Lu L	ŝ	×		¥.	-	i.	30			×	Ř	ů.	(A)	õ	9	
05.05.20							_												90 86						TÜF Aşırı çatlaklı, sarurası renkt 20.00-23.50 m
										583,0	1.96x10 ⁻⁴								95 90 100						
4									_			1							80	15				A A SACA A A AA AA A A AA AA A A AA AA	TÜF
- 06.05.2002		\vdash																0	75	7				A A A A A A A A A A A A A A A A A A A	yer yer siksifiye 23.50-28.00 m
8																			100						TUF (Çatlaklı, sanınsı renklı yer yer
2 4																			85	4					Silisifiye) 28 CC-29 CC m TÜF Çatlaklı, çatlak araları oksitli sarımsı renkli vacuna cilofua
- 07.05.200																			100 100	22 11					29.00-31.50 m
2		Н					\ddagger	+	1	╈				-					100	28			ſ	 	21.50-32.00 -
4									-										100	15					TŮF
												4 1 1 1 1					Normal Actions		80	38					Gri renkli, iri kristalli. az killeşmiş 32.00-38.60 m
08.05.2002			_																83	=					
8					+					-									85	13					
•																			8	36					TÜF Sanmsı katverengi 38.60-40.00 m
5	Geo Az Geo Col	GEC cinits Geci cinits cinits cicits	DN siz nmli li cinm	1)) 1)	N 0001-0	-25 5-50 0-75 5-90	ZON	Cok Z lavif Crta	avil.	(R	(00	i san ta afé	5. 2222	V-1 V-2 V-3 V-4		Taze- Az av Crta o Cok a	(W) avrismamis fismis terecede avi vrismis	rismis		er de		4763 1 -3 -10 0-20	57() 	Vasif Az catlaklı-kırı Kırıklı Dok catlaklı-kı Dok catlaklı-kı	

ЕК 1-С

ISV CL EGEG	EREN IENT AZA.S.	2		s	0			ETAS AIN TEKNOLOJISI A.S.		SOR	NDAJ HOL	E	5K 3	/12
PROJE AD	PROJEC	TN	AM	<u>т</u>				O BORLHOLE LC	9	DRI	LER	1		
SONDAJ YE	RI/BORING	10	CA		M · J	A1 12	GA		,			-		
KILOMETRE	/KILOMET	ER :	~	110	Sec. 1	1611	10/1	MUH. BOR DER (CASING DEPTH	(m) ·					~
SONDAJ DE	RINLIGI/BO	DRE	HO	LEC	DEPT	TH (m): 30.00	BAS, BIT, TARIHI/START-FINISH	DATE					
SONDAJ KO	TU/BOREH	IOLE	EE	LEV	ATIC	NI (m): 5.65	KOORDINAT/COORDINATE (N-S)	Y:					
YERALTI SU	YU/GROU	NDW	VAT	ER	(m) :	_ 12	2.00	KOORDINAT/COORDINATE (E-W) x:					
		St	tan	dart	Pen	etra	syon Deneyi		1	÷		30	ž	
រត្ត 🤅 👔 ត្	7	F	518	ņua		ene	tration (est			engl	E LI	8	8	
ndaj Denin ng Depth Imune Cin Imune Cin	tnevra Bo Run (m)	DA No	RB b. of	E Ŝ/ BL(AYIS DWS		grafik Graph	JEOTEKNIK TANIMLAMA GEOTECHNICAL DESCRIPTION	olit / Profile	milik / Stee	a / Weath	0 / Fractun	Core Rei	30D. %
Port No.	ž	0-15 cm	5-30 cm	30-45 cm	N	10	20 30 40 50	BEGOMI HON	Pro	Dayanii	Ayrism	Kirik %30	Karot %	
1 2 3 4 5 5 5 5 7 7 8	4.50	6	4	5	9			DOLGU Beton, lugla parçalari, killasi, andezit be bazelt bloklari içermektedir. 4.5-5.0 martasi kun ve çakit boyutlu malzeme gozlenmiştir.						
SPT2 5 1 SPT3	9.00 9.45 10.50	4	6 3	5	11 <u>-</u>			KUM Kahve-yesil renkli, gevsek-orta sikilikta, pek az ince çakil içerikli, ince taneli kum.	****					
						1	X!!							
2 SPT4 3 SPT5	12.00 12.50 12.48 12.95	9 :	13 30	18 40	31 70	 		TUF-KIL Kahve-yesli renkii, çok ayrismis, zayif dayanimildir. 17.1-17.4 m'ler arasi orta kati kivaminda kil banti gozlenmistir.	+ + + $+$ + + + + + + + + + + + + + + + + + + +					
KAROT					-		$\left[- \left[- \left[- \left[- \left[- \left[- \left[- \left[-$		- + + , + + , + + , + + , + + , + + , + +				12	12
KAROT	15.00				ŀ	+			+ + + + + + + + + + + + +			ŀ	92	35
ISI/JOB	1 1812			1 =	+		<u> </u>	ADI-SOYADI	<u></u>	IMZA	<u> </u>	-1-	TAR	IH
VADAN		/ sixl/		LE				NAME-SURNAME	SI	GNAT	JRE		DAT	E
OGGED BY	DRILLIN	J MU IG EՒ	NGI	NDP	R			E.GONCER						
KONTROL	SON	DAJ	SE	FI			0.000	MEKIM						
HECKED BY	DRILL	ING (CHI	FF				M.ENIM						

P.01

EK 1-D

	ISVE	REN		Τ	-					5	7 E T A C	8						
	EGEG/	ZA.S.					7	//		ZEI	MÎN TEKNOLOJÎSÎ A.Ş.		в	SON	DAJ HOLE		SK 3	/12
S	SAYFA/PA	GES : 27	2	1	S	ON	ID.	AJ	L	DG	SU / BOREHOLE LO	G		DRILL	OR ER			
PRO	JE ADI/	PROJEC	T N.	AMI	E:													
SON	IDAJ YER	I/BORING	LO	CAT	<u>rioi</u>	1:1	ALIA	GA			WILL BOD DED CARING DERT	d (m) :						
SON	IDAJ DER	INLIGI/BC	RE	HOL	EC	EPT	H (r	n):	30.00	0	BAS BIT TARIHI/START-FINISH	DATE:		. .				
SON	IDAJ KOT	U/BOREH	IOL	EEL	EV	ATIC	N (r	n) :	5.65		KOORDINAT/COORDINATE (N-S) y:						
YER	ALTI SUY	U/GROUI	NDN	AT	ER	(m) :	12	.00			KOORDINAT/COORDINATE (E-W) x:				.	1	T
				Star	idai	rd P	enet	ratio	n Te	st				46	Ð	06%	very	
Bile H	ype	Boyu]					lie l		Stren	ther	ture.	Reco	
Den	le T	n (m	No	RBE . of	E SA BLC	DWS	1	GF	RAFII	< ł		Pic		14 / S	Wea	Lac	De F	0
(epu	amu	Ru				2				<u> </u>	DESCRIPTION	ofil		limi	19	1/ 08	Ö	RO
N N	20	2	8	5	E			-				ā		neye	yrisn	× %	of %	
		1	12	5-30	7	N	10	20	30 4	0 50	1			ä	Ā	Kin	Kar	
		1	1		10			T	-	Т		+++++++++++++++++++++++++++++++++++++++	÷.				1	
17		16.50	1					1	1	1			+					1
	KAROT	3					\square	- †		T.		+++	+1				69	
18		1				1			1	1		[++++++++++++++++++++++++++++++++++++++	+]					
		18.00		8						+ -		+++++++++++++++++++++++++++++++++++++++	+				<u> </u>	<u> </u>
19	KAROTA										TUF	+	+				60	
	1				2			T	1	ĵ.	Gri-beyaz renkli, ayrismis, çatlakli, catlaklari kil dolguludur. Zavif	[++	+					
20	F	19.50		2				1	1	1	dayanimlidir. RQD kaya kalite tanimina	+ +	-					
	KAROTS							1	-	\top	ozelligindedir.	+ +	+				45	
21					. 1		Ĩ	Ē	1	i I	Yer yer oksidasyon zonlari	+	+					
F.		21.00						• +-		•	gozienniektedir.	+ +	+1					
22	KAROT6							-				ંત	1				47	
	1						1	T	1	ī.		+++	+					
23		22.50					1	1	1	1		+	+					
	KAROT7						+			1-		[++,	+1		- 1		38	8
74	1								i.	е. Г. –		+ +	4					
5. 7		24.00					-+		- -	-		+ +	+					****
25	KAROTS		- 1				1			t I		+	+				52	
<u> </u>	ŝ					ł	1	· -		-		[++.	-1					
26		25 60	- 1						1			- +			- 1			0
	KAROTS		- 1			-	T	-	77	-		++	"				44	
27	×				1		1	1	1 8			+ -	+					
-		27.00				t	-	+	1-1			[+ ⁺ -	+					
- 28	KAROT10						ł	1	1			+ +					32	
							 -	+				++						
29		28.50				- 1						[+,-	F					-
	KAROT11					Ť	Т	T		-1		+++	-		- Í		47	
30							-	l, F				+++						
		30.00	+	1	+	-+			d and	-1		1 1	-	+	+			
-										þ	(UYU SONU/BOREHOLE DEPTH (m) : 30.00							
-						- 1				ļ		1						
												1						
ISI	/ JOB	UNV	ANI	ידודי	LE	-			-		ADI-SOYADI		1	IMZA			TAR	Щ П
YA	PAN	SONDA	J ML	IHE	NDI	si							şιÇ	INA I L	KE.	-+-	DAT	5
LOGO	ED BY	DRILLIN	GE	NGI	NEE	R					E.GUNGER					-+		
CHEC	KED BY	DRILL	ING	CHI	EF						M.EKIM							

TOTAL P.02

EK-2

Test Ve Reaksiyon Kazıkları İle İlgili İmalat Raporları,

ZETAS zemin feknolojisi a.s.								· · · · ·									colluvium		tedrock		CONTRACT ADMINISTRATOR	
PROJECT T-103 RT - BP 01	Votes : Lining top Level 6.25	Working Platform Level 5.65	Drilling Length from The Lining Topl Level 17.50	Tuff level from The Lining Top Level 12.20		Pile Toe Level -11.25	Jrilling Lenght from The Working Platform 16.90	Reinforcement Top Level 6.25	Reinforcement Lenght 17.4	Vertical Lenght 22 ad. Φ 32	Tuff Level -5.95	Penetration into Tuff 5.30		Working Platform Level 5.65			Some levels of tuff formation can not be	penetrated by bucket	Drilling continued with core barrel and auger		MAIN CONTRACTOR	
ERMINALI PILE REPO	TP 1	1200	13:00	15:00	16.90	13.30	5.30				/ - 17.40	+ 6.25 / - 11.15		8	20.00		17:00	19.0	22.25		ACTOR	
EGEGAZ A.Ş. ALİAĞA T + 1200 mm DIA. BORED	1 Kazık No./Pile no.	2 Delgi Çapı/Dia. mm	3 Delgi Başlangıç (tarih/saat)/Boring start (date/time)	4 Delgi Bitiş (tarih/saat)/Boring finish (date/time)	5 Delai Derinliği/Boring depth m	6 Muhafaza Borusu Derinliği/Lining lenoth m	7 Tüfte (ayrışmış) Delgi Boyu /Penetration into Tuff m	8 Bentonit Kullanımı/Support fluid used	Donati/Reinforcement	9 Yerleştirme tarihi/Installation date	10 Ağırlık/Uzunluk /Weight/length 10 ka / m	11 Seviye (üst/alt)/Level (top/bottom)	Tremie	12 No./Ad.	13 Uzunluk /Length m	Beton/Concrete	14 Beton döküm tarihi/Date of concreting	15 Teorik hacim /Theoretical volume m3	16 Dökülen hacim/Factual volume m3	17 Numuneler/Samples	YUKLENICI/SUB-CONTR	

EK 2-A

ZETAS ZEMIN TEKNOLOJISIAS							-																	colluvian			bedrock			CONIKACI AUMINISIKAIOK		
PROJECT T-103 RT - BP 01	Notes : Lining top Level 5.95	Working Platform Level 5.35		Drilling Length from The Lining Top! Level 21.25		Tuff level from The Lining Top Level 16.10			Pile Toe Level -15.30		Drilling Lenght from The Working Platform 20.65		Reinforcement Top Level 5.95	Reinforcement Lenght 22.4	Vertical Lenght 22 ad.	2	Tuff Level -10.15	Penetration into Tuff 5.15		Working Platform Level 5.35				Some levels of tuff formation can not be		penetrated by bucket	Drilling continued with core barrel and augor		MATN CONTRACTOR	MALIN CONTRACTOR		
ERMÍNALÍ PILE REPO	TP 2	1200		00:60		17:30	20.65		18.00		5.15		1				/ 22.40	+ 5.35 / - 15.30						20:20	8	23.3	00 <i>C</i> E	00170	ATTOP			
EGEGAZ A.Ş. ALİAĞA T + 1200 mm DIA. BORED	1 Kazık No./Pile no.	2 Delgi Çapı/Dia. mm	Delgi Başlangıç (tarih/saat)/Boring	3 start (date/time)	Delgi Bitiş (tarih/saat)/Boring finish	4 (date/time)	5 Delgi Derinliği/Boring depth m	Muhafaza Borusu Derinliği/Lining	6 length m	Tüfte (ayrışmış) Delgi Boyu	7 /Penetration into Tuff m	Bentonit Kullanımı/Support fluid	8 used	Donati/Reinforcement	9 Yerlestirme tarihi/Installation date	Ağırlık/Uzunluk /Weight/length	10 kg/m	11 Seviye (üst/alt)/Level (top/bottom)	Tremie	12 No./Ad.	13 Uzunluk /Length m	Beton/Concrete	Beton döküm tarihi/Date of	14 concreting	Teorik hacim /Theoretical volume	15 m3	Dokulen hacim/Factual volume	17 Numuneler/Samples				

EK 2-B

ЕК 2-С

ZETAS	ZEMIN TEKNOLOJISI A.Ş.								all structures	W.	ining.					collusium			te drock		CONTRACT ADMINISTRATOR	
ROJECT T-103	tt - BP 01	otes : Lining top Level 6.4 Working Platform Level 5.8	illing Length from The Lining Topi Level 20.95	Tuff level from The Lining Top Level 16.10		Pile Toe Level -14.55	illing Lenght from The Working Platform 20.35	Deinforrement Ton Level 6.4	Reinforcement Lenght 20.25	Vertical Lenght 22 ad.	Tuff Level -9.70	Penetration into Tuff 4.85		Working Platform Level 5.80		and lovels of tuff formation can not be		enetrated by bucket	rilling continued with core barrel and auger		MAIN CONTRACTOR	
ERMİNALİ F	PILE REPOF	TP 3 II	18:00 D	17:00	20.35	16.00	5.00 Di		-		/ 20.25	+ 5.80 / - 14.55				10.35	COLT	23.0 p	26.00 D		NCTOR	
GEGAZ A.Ş. ALİAĞA TI	200 mm DIA. BORED	zik No./Pile no. Igi Çapı/Dia. mm	ligi Başlangıç (tarih/saat)/Boring art (date/time)	igi Bitiş (tarih/saat)/Boring finish ate/time)	ilgi Derinliği/Boring depth m	uhafaza Borusu Derinigi/Lining nqth m	ufte (ayrışmış) Delgi Boyu 'enetration into Tuff m	entonit Kullanım/Support fluid	onati/Reinforcement	erlestirme tarihi/Installation date	ğırlık/Uzunluk /Weight/length	eviye (üst/alt)/Level (top/bottom)	remie	o./Ad. moth m	eton/Concrete	eton döküm tarihi/Date of	sorik hacim /Theoretical volume	<u>ت</u>	ökülen hacim/Factual volume 13	umuneler/Samples	YÜKLENİCİ/SUB-CONTR	

Kazık No./Pile no. TP 4 Delgi Çapı/Dia. mm 1200 Delgi Bitiş (tarih/saat)/Boring finish 09: Delgi Bitiş (tarih/saat)/Boring finish 03: Delgi Bitiş (tarih/saat)/Boring finish 12:00 Delgi Bitiş (tarih/saat)/Boring finish 13: Delgi Derinliği/Boring depth m 14:10 Muhafaza Borusu Derinliği/Lining 13:30 Iength m 13:30 Iüfte (ayrışmiş) Delgi Boyu 13:30 /Penetration into Tuff m 4:50	Notes: Lining top Level 6.85 Working Platform Level 6.25 Working Platform Level 6.25 Drilling Length from The Lining Top! Level 14.70 Tuff level from The Lining Top Level 10.20 Plie Toe Level 10.20 Plie Toe Level 10.20 Plie Toe Level 10.20 Plie Toe Level 10.20 Prilling Length from The Working Platform 14.10 Plie Toe Level -7.85	alterium
Deloi Cap/Dia. mm 1200 Deloi Başlangıç (tarih/saat)/Boring 09: 09: start (date/time) 09: 09: Deloi Bitiş (tarih/saat)/Boring finish 09: 09: Deloi Deriniği/Boring depth 13: 12: Deloi Derinliği/Boring depth 14:10 14:10 Muhafaza Borusu Derinliği/Lining 13:30 13:30 Iength m 13:30 13:30 Itüfte (ayrışmış) Delgi Boyu 13:30 13:30	Working Platform Level 6.25 B Drilling Length from The Lining Topl Level 14.70 Tuff level from The Lining Top Level 10.20 Pile Toe Level -7.85 Drilling Lenght from The Working Platform 14.10 Reinforcement Top Level 6.85	allochainn
Deigi Başlangıç (tarin/saat)/Boring 09: Deigi Biş (tarin/saat)/Boring finish 03: Delgi Derinliği (tarin/saat)/Boring finish 12: Delgi Derinliği/Boring depth 12: Delgi Derinliği/Boring depth 13:30 Muhafaza Borusu Derinliği/Lining 13:30 Itufte (ayrışmış) Delgi Boyu 13:30 /Penetration into Tuff m	B Drilling Length from The Lining Topl Level 14.70 Tuff level from The Lining Top Level 10.20 Pile Toe Level -7.85 Drilling Lenght from The Working Platform 14.10 Reinforcement Top Level 6.85	allocotan
start (date/time) 09: belgi Bitis (tarih/saat)/Boring finish 12: (date/time) 12: Delgi Derinliği/Boring depth 13: Muhafaza Borusu Derinliği/Lining 13:30 length 13:30 Tüfte (ayrışmış) Delgi Boyu 13:30 /Penetration into Tuff 4.50	 Drilling Length from The Lining Top Level 14.70 Tuff level from The Lining Top Level 10.20 Pile Toe Level -7.85 Drilling Lenght from The Working Platform 14.10 Reinforcement Top Level 6.85 	allocianin
Corgu bing (date/fume) 12: Delgi Derinliği/Boring depth m 14.10 Muhafaza Borusu Derinliği/Lining 13.30 length m 13.30 Tüfte (ayrışmış) Delgi Boyu 4.50 /Penetration into Tuff m 4.50	Tuff level from The Lining Top Level 10.20 Pile Toe Level -7.85 Drilling Lenght from The Working Platform 14.10 Reinforcement Top Level 6.85	allocianian
Inders/Inderse 12:: Delgi Derinliğ/Boring depth m 14.10 Muhafaza Borusu Derinliğ/Lining 13.30 length m 13.30 Tüfte (ayrışmış) Delgi Boyu 13.30 /Penetration into Tuff m 4.50	Drilling Lenght from The Lining Top Level 10.20 Pile Toe Level -7.85 Drilling Lenght from The Working Platform 14.10 Reinforcement Top Level 6.85	allocium
Vegu permityrboung deput m 14.10 Muhafaza Borusu Dernligi/Lining 13.30 length m 13.30 Tufte (aynsmis) Delgi Boyu 4.50 /Penetration into Tuff m 4.50	Pile Toe Level -7.85 Drilling Lenght from The Working Platform 14.10 Reinforcement Top Level 6.85	altorium
Invitated borusu Demning/Lining 13.30 Inute (ayrismis) Delgi Boyu 4.50 /Penetration into Tuff m 4.50	Pile Toe Level -7.85 Drilling Lenght from The Working Platform 14.10 Reinforcement Top Level 6.85	altuvium
Tufte (ayrismis) Delgi Boyu Penetration into Tuff m 4.50	Pile 1 oe Level -7.85 Drilling Lenght from The Working Platform 14.10 Reinforcement Top Level 6.85	altovium
/Penetration into Tuff m 4.50	Drilling Lenght from The Working Platform 14.10 Reinforcement Top Level 6.85	allocium
	Reinforcement Top Level 6,85	altovium
Bentonit Kullanımı/Support fluid used	Doinforcement I anoth 14	alluvium
Donati/Reinforcement		alluvium
Yerlestirme tarihi/Installation date	Vertical Lender 22 ad (0.32)	
Ağırlık/Uzunluk /Weight/length		
kg / m / 14.0	Tuff Level -3.35	guing Iming
Seviye (üst/alt)/Level (top/bottom) + 6.85 / - 07.1	Penetration into Tuff 4.50	
Tremie		
No./Ad.	Working Platform Level 6.25	
Uzunluk /Length m		
Beton/Concrete	Tuff vellow coloured, partly hard laver	
Beton döküm tarihi/Date of		
concreting 15:	3 Some levels of tuff formation can not be	colluviun
Teorik hacim /Theoretical volume		
m3 15.6	penetrated by bucket	
Dökülen hacim/Factual volume		be drock
m3 18.50	Drilling continued with core barrel and auger	★
Numuneler/Samples		
TUKLENICI/SUB-CONTRACTOR	MAIN CONTRACTOR	CONTRACT ADMINISTRATOR

EK 2-D

WE ZETAS	Versen zemin men en en e										all constraints	W.	atomi				·····			bucktow.X		İŞVEREN		
K KAZIK YÜK. VE ARAZİ TESTLERİ	LAT RAPORU - BP 01	lotlar : Muh. Borusu üst Kotu : 6,65	Çalışma Platformu kotu : 5,65	Muh. Üst kotundan delgi derinliği : 19,70	Muh.'dan tüf (ayrışmış) derinliği : 13,00		Kazık uç kotu : -13,05	Çalışma Platformundan delgi derinliği : 18,7	Donati kafesi üst kotu : 6,65	Donati kafesi boyu : 19,4	Boyuna donati : 12 ad.	Tüf kotu : -6,35	Tüfte yapılan delgi boyu : 6,7		Çalışma platformu kotu + 5.65 alınmıştır.		-3 m. den sonra mevcut taşlı dolgu nedeniyle delgi uzun	ürdü ve muh. Borusu indirmek sıkıntılı oldu.	üfte bazı derinliklerde bucketle ilerlemek mümkün	Imadı.Karotiyer ve auger kullanarak delgi devam ettirildi.		KONTROL		A AND AND AND AND AND AND AND AND AND AN
TER. STATİ	KAZIK İMA	TP 1/3	650	15:00	00:60	18,70	13,50	6,70				/ - 19.40	+ 6.65 / - 12.75		ω	20,00	2	10:35 51	6,2 T	o 00'6				 2
EGEGAZ A.Ş. ALİAĞA	650 mm ÇAPLI FORE	(azık No.	Delgi Çapı	Delgi Başlangıç (tarih/saat)	Delgi Bitiş (tarih/saat)	Delgi Derinliği m	Auhafaza Borusu Derinliği m	Tüfte (ayrışmış) Delgi Boyu m	3entonit Kullanımı	Jonati	rerleştirme tarihi	Ağırlık/Uzunluk kg / m	seviye (üst/alt)	Tremie	Vo. Ad.	Jzunluk m	Beton	Seton döküm tarihi	Teorik hacim m3	Dökülen hacım m3	Numuneler	YÜKLENİCİ		
	- O -	I	2	3	4	5	6	7	8		6	10	11		12	13		14	15	16	17			

ЕК 2-Е

TETAS	Zanata zewin teknolojisi A.Ş.									1	ultuv iten:	M.	(ming				and the second second second second second second second second second second second second second second second			Teatrock		IŞVEREN	
K KAZIK YÜK. VE ARAZİ TESTLERİ	LAT RAPORU - BP 01	lotlar : Muh. Borusu üst Kotu : 6,65	Çalışma Platformu kotu : 5,65	Muh. Üst kotundan delgi derinliği : 19,80	Muh.'dan tüf (ayrışmış) derinliği : 13,00		Kazık uç kotu : -13,15	Çalışma Platformundan delgi derinliği : 18,8	Donati kafesi üst kotu : 6,65	Donatı kafesi boyu : 19,4	Boyuna donati : 12 ad.	Tüf kotu : -6,35	Tüfte yapılan delgi boyu : 6,8		Çalışma platformu kotu + 5.65 alınmıştır.		-3 m. den sonra mevcut taşlı dolgu nedeniyle delgi uzun	ürdü ve muh. Borusu indirmek sıkıntılı oldu.	üfte bazı derinliklerde bucketle ilerlemek mümkün	ılmadı.Karotiyer ve auger kullanarak delgi devam ettirildi.		KONTROL	
TER. STATİ	KAZIK İMA	TP 1 / 4	650	18:30	06:30	18,80	13,50	6,80				/ - 19.40	+ 6.65 / - 12.75		8	20,00	2	11:30 S	6,2 T	8,50			
EGEGAZ A.Ş. ALİAĞA	650 mm ÇAPLI FORE	Kazik No.	Delgi Çapı	Delgi Başlangıç (tarih/saat)	Delgi Bitiş (tarih/saat)	Delgi Derinliği m	Muhafaza Borusu Derinliği m	Tüfte (ayrışmış) Delgi Boyu m	Bentonit Kullanımı	Donati	Yerleştirme tarihi	Ağırlık/Uzunluk kg / m	Seviye (üst/alt)	Tremie	No. Ad.	Uzunluk m	Beton	Beton döküm tarihi	Teorik hacim m3	Dökülen hacım m3	Numuneler	YÜKLENİCİ	
	•	-	2	e E	4	5	6	7	8		6	10	11		12	13		14	15	16	17		

EK 2-F

ZET S C **I**SVEREN Buckrock olmadı. Karotiyer ve auger kullanarak delgi devam ettirildi. Taşlı bölgelerdeki yıkıntı ve genişlemeler nedeniyle 11 m3 istenen EGEGAZ A.Ş. ALİAĞA TER. STATİK KAZIK YÜK. VE ARAZİ TESTLERİ Tüfte bazı derinliklerde bucketle ilerlemek mümkün Çalışma Platformundan delgi derinliği : 22.30 m. 2-3 m. den sonra mevcut taşlı dolgu nedeniyle delgi uzun Muh. Üst kotundan delgi derinliği : 23.30 m. Muh.'dan tüf (ayrışmış) derinliği : 16.50 m. Çalışma platformu kotu + 5.35 alınmıştır. sürdü ve muh. Borusu indirmek sıkıntılı oldu. Tüfte yapılan delgi boyu : 6.80 m. KONTROL beton yetmedi ve ilave 2 m3 daha beton istendi. Calışma Platformu kotu : + 5.35 Notlar: Muh. Borusu üst Kotu : + 6.35 Donati kafesi üst kotu : + 6.35 Donati kafesi boyu : 22.40 m. Boyuna donati : 12 ad. Φ 32 • 650 mm ÇAPLI FORE KAZIK İMALAT RAPORU - BP 01 Kazık uç kotu : - 16.95 Tüf kotu :- 10.15 16:00 10:15 12:15 + 6.35 / - 16.05 / 22.40 TP 2/2 16,50 23,00 13,00 22,30 6,8 7,4 650 10 ε ε ε kg / m шЗ шш YÜKLENİCİ шЗ ε Ad. Tüfte (ayrışmış) Delgi Boyu Delgi Başlangıç (tarih/saat) Muhafaza Borusu Derinliği Delgi Bitiş (tarih/saat) Beton döküm tarihi Bentonit Kullanımı Yerleştirme tarihi Ağırlık/Uzunluk Dökülen hacım Seviye (üst/alt) Delgi Derinliği Teorik hacim Numuneler Delgi Çapı Kazık No. Tremie Uzunluk Donati Beton Šo. 15 14 16 2 13 17 4 9 2 8 σ 11 12 N Ś r

EK 2-G

G50 mm ÇAPLI FORE KAZIK İMALAT RAPORU - BP 01 Kato Kuzi - K.53 Kato Ku Tazi V Nordar: Mul. Borna lost (kuz: + 6.55 Beige Besiong: (anti/seat) 1003 Degl Besiong: (anti/seat) Nordar: 1 Degl Besiong: (anti/seat) 1003 Degl Besiong: (anti/seat) 1003 Degl Besiong: (anti/seat) 1003 Degl Besiong: (anti/seat) 1003 Degl Besiong: (anti/seat) 1003 Degl Besiong: (anti/seat) 1003 Degl Besiong: (anti/seat) 1003 Degl Besiong: (anti/seat) 1003 Degl Besiong: (anti/seat) 1003 Degl Besiong: (anti/seat) 100 Degl Besiong: (anti/seat) 100 Besion bernigig: 16.50 m. Nu'dan ut' (qwrsma) decingig: 15.20 m. Degl Besiong: (anti/seat) 100 Besion bernigig: 16.50 m. East us (kuz: -16.55 Calisma Patromunden degi decingig: 15.20 m. Dorata leftel boyu : 2.24 m. Dental kelle boyu : 0.015 Turk polan decingig: 16.20 m. Dental kelle boyu : 5.015 Besion (anti) : 2.24 m. Dental kelle boyu : 0.015 Turk polan decingig: 16.20 m. Dental kelle boyu : 0.015 Turk polan decingig: 16.20 m. Deflection 33.23 m. Berton <t< th=""><th>1</th><th>EGEGAZ A.Ş. ALİAĞA</th><th>TER. STAT</th><th>İK KAZIK YÜK. VE ARAZİ TESTLERİ</th><th></th><th><u> </u></th></t<>	1	EGEGAZ A.Ş. ALİAĞA	TER. STAT	İK KAZIK YÜK. VE ARAZİ TESTLERİ		<u> </u>
airk (lo) The //i Montar: <th>•</th> <th>550 mm ÇAPLI FORE</th> <th>KAZIK İM</th> <th>ALAT RAPORU - BP 01</th> <th></th> <th></th>	•	550 mm ÇAPLI FORE	KAZIK İM	ALAT RAPORU - BP 01		
Red Calisme Platformul kou: + 5.35 Ruh, Gáz kourindia tági (zentrijsaci) 23.00 Ruh, Gáz kourindia tági (zentrijsaci) 23.00 Ruh, Gáz kourindia tági (zentrijsaci) 23.00 Ruh, Gáz kourindia tági (zentrijsaci) 21.90 Ruh, Gáz kourindia tági (zentrijsaci) 21.90 Rak ug kou: - 16.55 Kazk ug kou: - 16.55 Ruh dár túl komm 56.90 Ruh dár tági kouri z 4.0 Dorat kafesi lost kou: - 16.55 Ruh dár tági kouri z 4.0 Dorat kafesi lost kou: - 16.55 Ruh dár kouri z 4.0 Dorat kafesi lost kou: - 16.55 Ruh dár kouri z 4.0 Dorat kafesi lost kou: - 16.55 Ruh dár kouri z 4.0 Dorat kafesi lost kou: - 16.55 Ruh dár kouri z 4.0 Dorat kafesi lost kou: - 16.55 Ruh dár kouri z 4.0 Dorat kafesi lost kou: - 16.55 Ruh dár kouri z 4.0 Dorat kafesi lost kou: - 5.35 Dorat kafesi lost kou: - 10.15 Tut kouri - 10.15 Ruh dár vou 10.15 Tut kouri - 10.15 Ruh dár vou 10.15 Tut kouri - 10.15 Ruh dár vou 20.16 Tut kouri - 10.15 Ruh dár vou 20.15 Tut kouri - 10.15 Ruh dár vou 20.15 Tut kouri - 10.15 Ruh dár vou 20.15 Tut kouri - 5.35 Ruh dár vou 20.15 Tut kouri - 5.35 <th>×</th> <th>(azık No.</th> <th>TP 2 / 3</th> <th>Notlar: Muh. Borusu üst Kotu : + 6.35</th> <th></th> <th></th>	×	(azık No.	TP 2 / 3	Notlar: Muh. Borusu üst Kotu : + 6.35		
Beigl Basisner (tarrit/sast) Isoo Muh. tan tit (synsms) deningi : 16.50 m. Beigl Basisner (tarrit/sast) 10.05 Muh. tan tit (synsms) deningi : 16.50 m. Muh. tan tit (synsms) beigl Boyu 10.53 Kazk vg kotu :- 16.55 Muh. tan tit (synsms) beigl Boyu 16.50 m. Muh. tan tit (synsms) beigl Boyu 16.50 m. Muh. tan tit (synsms) beigl Boyu 16.50 m. Muh. tan tit (synsms) beigl Boyu 16.50 m. Muh. tan tit (synsms) beigl Boyu 16.50 m. Muh. tan tit (synsms) beigl Boyu 16.50 m. Muh. tan tit (synsms) beigl Boyu 12.50 m. Muh. tan tit (synsms) beigl Boyu 12.2.40 m. Dornak tartei tath Boyua const 1: 2 at 0 a. Muk. tan tit 23 m. Ketter in tartin Boyua const 1: 2 at 0 a. Muk. tan tit 23 m. tartis Muk. tan tit 23 m. tartis Muk. tan tit 23 m. tartis Muk. tan tit 23 m. tartis Muk. tartis 23 m. tartis Muk. tartis 23 m. tartis Muk. tartis 23 m. tartis Muk. tartis 23 m. tartis Muk. tartis 23 m. tartis Muk. tartis 23 m. tartis Muk. tartis 23 m. tartis Muk. tartis Muk.	ω	belgi Çapı mm	650	Çalışma Platformu kotu : + 5.35		
Muh. dan tur (eynsma) Muh. dan tur (eynsma) Muh. dan tur (eynsma) Muh. dan tur (eynsma) eleji Detnidij m 21,90 Kazk uz (kolu - 16.55 Galsma Platformundan delgi denhigi: 21.90 m. Unelazioali m 5,4 Calsma Platformundan delgi denhigi: 21.90 m. Denah kafesi tak tur + 6.35 Galsma Platformundan delgi denhigi: 21.90 m. Denah kafesi tak tur + 6.35 Calsma Platformundan delgi denhigi: 21.90 m. Retron Kullamin 6,4 1/22.40 m. Denah kafesi tak tur + 6.35 Calsma Platformundan delgi denhigi: 21.90 m. Retron Kullamin kou i 1/22.40 m. Denah kafesi tak tur + 6.35 Calsma Platformundan delgi denhigi: 21.90 m. Retron Kullamin kou i 1/22.40 m. Denah kafesi tak tur + 6.35 Diatiki tak tur + 6.35 Retron tak and in tio Calsma platformu kotu + 5.35 a immsytr. Diatiki tak tur + 10.15 Tuft kou i - 10.15 Retron minikin 11,00 Calsma platformu kotu + 5.35 a immsytr. Diatiki tak tur + 6.37 Retron minikin 11,00 Calsma platformu kotu + 5.35 a immsytr. Diatiki tak tur + 10.15 Retron minikin 11,00 Calsma platformu kotu + 5.35 a immsytr. Diatikareti kur +	5	belgi Başlangıç (tarih/saat)	15:00	Muh. Üst kotundan delgi derinliği : 22.90 m.		
Begil Derintigit m 21.90 Kark ur, kotu: -16.55 Outlatera Borusu Demilgit m 6.4 Interfer (anymus) Belgi Boyu 6.4 Retron Kuflamm 6.4 Retron Kuflamm 6.4 Retron Kuflamm 6.4 Retron Kuflamm 6.4 Boyuna dondu: 12.40 m. Boyuna dondu: 12.40 m. Donati katesi biyu: 22.40 m. Boyuna dondu: 12.40 m. Boyuna dondu: 12.40 m. Boyuna dondu: 12.40 m. Calisma Platformukk Kark u (stata) Tit kotu : - 10.15 Tit kotu : - 10.15 Tit kotu : - 10.15 Tit kotu : - 10.15 Tut kotu : - 23.00 Boyuna dondu: 12.40 m. Pointik m Zolatima platformu kotu + 5.35 alimmistur. Zunluk m Zolutik 23 m. den soma mevcut taşi dojgu racun Reton 23.3 m. den soma mevcut taşi dojgu racun Reton 23.3 m. den soma mevcut taşi dojgu racun Reton 23.3 m. den soma mevcut taşi dojgu racun Reton 23.3 m. den soma mevcut taşi dojgu racun Reton 23.3 m. den soma mevcut taşi dojgu racun Reton 23.3 m. den soma mevcut taşi dojgu racun Reton 33.11000 Reton 33.11000 Reton 33.11000 <td></td> <td>Delgi Bitiş (tarih/saat)</td> <td>10:45</td> <td>Muh.'dan tüf (ayrışmış) derinliği : 16.50 m.</td> <td></td> <td></td>		Delgi Bitiş (tarih/saat)	10:45	Muh.'dan tüf (ayrışmış) derinliği : 16.50 m.		
durblezza Borneur Derinikji m 16.50 Kazk vc kotu : - 16.55 rüfe (avrsmns) Delej Boyu m 6.4 Calisma Patformurvian delej derinikji : 21.90 m. eretorin Kullemim 6.4 Donati kafesi losy u.m. 6.4 Donati kafesi losy u.m. 6.4 Donati kafesi losy u.m. 6.3 Oriestime tarlin 12.40 m. Donati kafesi losy u.m. 12. at 2.9.3 Sons ma kafesi losy u.m. 2.40 m. Boyna donati : 2.4.0 m. Boyna donati i i i i i i i i i i i i i i i i i i	5	Delgi Derinliği m	21,90			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-	Auhafaza Borusu Derinliği m	16,50	Kazık uç kotu : - 16.55		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1-	Tüfte (ayrışmış) Delgi Boyu m	6,4	Çalışma Platformundan delgi derinliği : 21.90 m.		
Donati kafesi boyu: 22-40 m. Donati kafesi boyu: 22-40 m. Reispirme tarihi Boyuna donati: 12 ad. 4: 32 Mink/Uzunluk Izza.40 Reispirme tarihi Boyuna donati: 12 ad. 4: 32 Servire (taskrati) kg/m Servire (taskrati) rdif kolu: - 10.15 Tifk kolu: - 10.15 Tifk kolu: - 10.15 Zervire (taskrati) - 4: 5.35 Unit - 3.00 Usi - 2.300 Danuk - 3.00 Danuk - 3.00 Danuk - 3.31 Stindu antihi - 3.31 Donati kanoti oldu - 3.31 Danua mistir. - 2.3 m. den soma mercut tagli dolgu nedeniyle delgi uzun Dokkillen hacim - 3.31 Dokkillen hacim - 3.31 Dokkillen hacim - 3.31 Vununeler - 10.00 Vununeler - 11.00 Vununeler - 11.00		3entonit Kullanımı		Donatı kafesi üst kotu : + 6.35		
Revelation Boyuna donati: 12 ad. 4: 32. Boyuna donati: 12 ad. 4: 32. Kählk/Uzunluk kg/m /22.40 Sevive (uskrati) kg/m /22.40 Sevive (uskrati) kg/m /22.40 Sevive (uskrati) kg/m /22.40 Sevive (uskrati) kg/m /22.40 Vir kotu: - 10.15 Tufte yapilan deligi boyu: 6.40 m. No. Ad. uo No. Ad. uo Volunk (m 23.30 Calisma platformu kotu + 5.35 alitmiştu: Vunuk 23.30. Zelisma platformu kotu + 5.35 alitmiştu: Vunuk 23.3		Donati		Donati kafesi boyu : 22.40 m.		
Ağırlık/Uzuntuk kg/m 723 -40 Türk kotu := 10.15 Sevive (üst/alti) $+ 6.35$ / - 16.05 Türk vapılan delgi boyu : 6.40 m. Sevive (üst/alti) $+ 6.35$ / - 16.05 Türk vapılan delgi boyu : 6.40 m. Tremie Turik vapılan delgi boyu : 6.40 m. Türk vapılan delgi boyu : 6.40 m. No. Ad. 10 Calışma platformu kotu + 5.35 alımıştır. Uzunluk m 23.300 2-3 m. den soma mevcut taşlı dolgu nedeniyle delgi uzun Beton 13:15 şindü ve muh. Borusu indirmek slınıtılı Alıı. Dörklühen hacim 3 13.100 pimadı. Kanotiyer ve auger kultanarak delgi devam ettil Numuneler Numuneler Numuneler Nık.kanotiyer ve auger kultanarak delgi devam ettil		Yerleştirme tarihi		Boyuna donatı : 12 ad. ¢ 32	···	
Service (tist/alt) 46.33/-16.05 Tritte yapilan delgi boyu : 6.40 m. Tremie Add 10 No- Add 10 No- Add 10 Otzmuluk 23.00 Beton 2-3 m. den somra mevcut taşlı dolgu nedenlyle delgi uzun Beton 2-3 m. den somra mevcut taşlı dolgu nedenlyle delgi uzun Beton 2-3 m. den somra mevcut taşlı dolgu nedenlyle delgi uzun Dökülten hacim 13:15 Sürdü ve mul. Borusı indirmek siknihi oldu. Teolik hacim 11.00 Olmadı.Karotiyer ve auger kutlanarak delgi devam etti Numuneler Numuneler VÜKLENİCI KONTROL	-	Ağırlık/Uzunluk kg / m	/ 22.40	Tüf kotu :- 10.15		
Tremie Tremie No. Ad. 10 Uzunluk m 23,00 Uzunluk m 23,00 Uzunluk m 23,00 Beton 2-3 m. den sonra mevcut taşlı dolgu nedeniyle delgi uzun Beton 13:15 sürdü ve muh. Borusu indirmek skuntlı oldu. Eleon döküm tarihi 13:15 sürdü ve muh. Borusu indirmek skuntlı oldu. Deküm tarihi 13:10 olimadı.Karotiyer ve auger kullanarak delgi devam etti. Numuneler Numuneler Nutrusi		Seviye (üst/alt)	+ 6.35 / - 16.05	Tüfte yapılan delgi boyu : 6.40 m.	10000	
No. Ad. 10 Ozunluk m 23,00 Uzunluk m 23,00 Uzunluk m 23,00 Beton 2-3 m. den sonra mevcut tagl dolgu nedeniyle delgi uzun Beton döküm tarihi 13:15 Sürdü ve muh. Borusu indimek skuhl loldu. Teorik hacim m3 7,3 11,00 Oktülen hacim m3 11,00 olmadı.Karotiyer ve auger kullanarak delgi devam etti Numuneler Numuneler VİKLENİCI KONTROL		Tremie				
Uzunluk m 23,00 Beton 2-3 m. den sonra mevcut taşlı dolgu nedeniyle delgi uzun Beton 13:15 Sürdü ve muh. Borusu indirmek sıkıntlı oldu. Teorik hacim m3 11.000 oltmadı. Karotiyer ve auger kuılanarak delgi devam etti Numuneler Numuneler		No. Ad.	10	Çalışma platformu kotu + 5.35 alınmıştır.		
Beton 2-3 m. den sonra mevcut taşlı dolgu nedeniyle delgi uzun Beton dökim tarthi 13.15 sürdü ve muh. Borusu indirmek sıkıntlı oldu. Teorik hacim m3 7,3 Triffe bazı derinliklerde bucketle ilerlemek mimktin Dökülen hacim m3 11,00 olimadı.Karotiyer ve auger kullanarak delgi devam etti Numuneler vüktenici konstrol	-	Uzuntuk m	23,00			
Beton döküm tarihi 13:15 sürdü ve muh. Borusu indirmek sıkıntlı oldu. Teorik hacim m3 7,3 Türke bazı derinliklerde bucketle ilerlemek mümktin Dökülen hacim m3 11,00 olmadı.Karotiyer ve auger kullanarak delgi devam etti Numuneler vüktenict nadu.Karotiyer ve auger kullanarak delgi devam etti		Beton		2-3 m. den sonra mevcut taşlı dolgu nedeniyle delgi uzun	·····	
Teorik hacim m3 7,3 Trifte bazı derinliklerde bucketle lierlemek mümkün Dökülen hacim m3 11,00 olmadı.Karotiyer ve auger kullanarak delgi devam etti Numuneler Numuneler isversi		Beton döküm tarihi	13:15	sürdü ve muh. Borusu indirmek sıkıntılı oldu.		
Dökülen hacim m3 11,00 olmadı.Karotiyer ve auger kullanarak delgi devam etti Numuneler VÜMLENICİ YÜKLENICİ İSVEREN		Teorik hacim m3	7,3	Tüfte bazı derinliklerde bucketle ilerlemek mümkün		
Numuneler VÜKLENICİ VÜKLENICİ İŞVEREN		Dökülen hacim m3	11,00	olmadı.Karotiyer ve auger kullanarak delgi devam etti	Ruthwick	
YÜKLENICİ KONTROL İŞVEREN		Numuneler				
YÜKLENICI KONTROL	1 S					.
	<u> </u>	YÜKLENİCİ		KONTROL	İŞVEREN	35
			1			
	-					

ЕК 2-Н

ZET C Munk ISVEREN ···... 5 <u>____</u> . . . odluvium Ix drawly. olmadı.Karotiyer ve auger kullanarak delgi devam etti EGEGAZ A.Ş. ALİAĞA TER. STATİK KAZIK YÜK. VE ARAZİ TESTLERİ Tüfte bazı derinliklerde bucketle ilerlemek mümkün Çalışma Platformundan delgi derinliği : 22.20 m. 2-3 m. den sonra mevcut taşlı dolgu nedeniyle delgi uzun Muh. Üst kotundan delgi derinliği : 23.20 m. Muh.'dan tüf (ayrışmış) derinliği : 17.00 m. Çalışma platformu kotu + 5.35 alınmıştır. sürdü ve muh. Borusu indirmek sıkıntılı oldu. Tüfte yapılan delgi boyu : 6.20 m. Çalışma Platformu kotu : + 5.35 Notlar: Muh. Borustu üst Kotu : + 6.35 Donatı kafesi üst kotu : + 6.35 KONTROL Donatı kafesi boyu : 22.40 m. Boyuna donati : 16 ad. Φ 32 Kazık uç kotu : - 16.85 Tüf kotu :- 10.65 13:00 18:30 10:30 + 6.35 / - 16.05 / 22.40 TP 2/4 22,20 16,50 23,00 11,00 7,37 650 9 6,2 ε ш Ε kg / m m3 m3 mm YÜKLENİCİ Ε Ad. Tüfte (ayrışmış) Delgi Boyu Delgi Başlangıç (tarih/saat) Muhafaza Borusu Derinliği Delgi Bitiş (tarih/saat) Beton döküm tarihi Bentonit Kullanımı Yerleştirme tarihi Ağırlık/Uzunluk Seviye (üst/alt) Dökülen hacim Delgi Derinliği Teorik hacim Numuneler Delgi Çapı Kazık No. Uzunluk Tremie Donati Beton No. 10 15 16 17 S Q 8 σ 11 12 13 14 4 m ~

EK 2-I

EK 2-J

ЕК 2-К
EK-3

Kazık Yatay Yükleme Deneyine Ait Yükleme Deplasman Eğrileri

ЕК 3-А

774 Z	ET	AS'	E	GE-GA	ZA.Ş.	- ALİ	AĞA T	ESIS	SLERİ/PL	ANT Tarih/I	Date		-
Sector 253 NIN TEKNOLOJISI A.S.			YATAY	YÜKLE	ME DE	VEYI/LA	TERA	L LOAD TE	ST İşvere	n/Employer	EGE	GAZ	
Yer/Location EGE GAZ T103		Testn	ю.	TP2					Müher	dis/Engineer	D.KC	ÇAK	
Sure/Durat	ion 5:00	Sa./Ho.	Kazik	Pile no.	TP2	10				Yükler	ici/Contractor	ZEI	raş
TUK/LOad	80	ton	Kotu/Level +5,35		•	•							
za nercek/re	man/un	kademe/	yus	(/load	dia	al-gauge	e okuma	lari/re	ortalama/	toplam deplasma total displacamer	t, spl.rate,	aiger	other
al	test	stage	ton	kg/cm²	1	2	3	4	average	mm	mm/hr	1	2
13:50	00:00	00:00	0	0	0	0	0		0.00		-	25.00	
13:50	00:00	00:00	10	32.28	0.14	0.14	0.11		0.13			25.00	
13:55	00:05	00:05	10		0.17	0.17	0.14		0,16		-	25.00	
14:05	00:15	00:10	10		0.22	0.19	0.15		0.19			25.00	
14.10	00.20	00.20	20	CA EC	0.21	0.10	0.15		0.10			25.00	
14.10	00.20	00.00	20	04.00	0.40	0.40	0.30		0.42			25.00	
14.15	00.20	00:00	20		0.57	0.40	0.43	0.00	0.47		-	25.00	
14:30	00:40	00:20	20		0.53	0.40	0.43		0.40			25.00	
14:30	00:40	00:00	30	92 36	1.02	0.45	0.89		0.40			25.00	
14:35	00:45	00:05	30	02.00	1.02	1.05	0.00		1.03			25.00	
14:40	00:50	00:10	30		1 12	1.08	0.97		1.06		-	25.00	
14:50	01:00	00:20	30		1.15	1.09	0.99		1.08			24.98	
14:50	01:00	00:00	40	123.15	1.55	1.48	1.34		1.46			24.98	
14:55	01:05	00:05	40		1.61	1.54	1.4		1.52			24.99	
15:00	01:10	00:10	40		1.61	1.54	1.4		1.52			25.00	
15:10	01:20	00:20	40		1.62	1.55	1.42		1.53			25.02	
15:10	01:20	00:00	50	148.81	2.04	1.96	1.78		1.93			25.02	
15:15	01:25	00:05	50		2.1	2.01	1.84		1.98			25.02	
15:20	01:30	00:10	50		2.14	2.05	1.86		2.02			25.02	
15:30	01:40	00:20	50		2.16	2.07	1.9		2.04			25.02	
15:30	01:40	00:00	60	176.84	2.55	2.45	2.24		2.41			25.02	
15:35	01:45	00:05	60		2.66	2.55	2.32		2.51			25.02	
15:40	01:50	00:10	60		2.69	2.57	2.34		2.53			25.02	5303
15:50	02:00	00:20	60		2.71	2.6	2.47		2.59			25.04	
15:50	02:00	00:00	68	200	3.03	2.91	2.67		2.87			25.04	
15:55	02:05	00:05	68		3.14	3.01	2.75		2.97			25.05	
16:00	02:10	00:10	68		3.16	3.03	2.78		2.99			25.06	
16:10	02:20	00:20	68		3.19	3.05	2.8		3.01			25.07	
16:10	02:20	00:00	72	212	3.38	3.25	2.99		3.21			25.08	
16:15	02:25	00:05	72		3.49	3.33	3.06		3.29			25.07	
16:20	02:30	00:10	72		3.5	3.35	3.07		3.31			25.08	
16:30	02:40	00:20	72		3.54	3.37	3.1		3.34			25.08	
16:30	02:40	00:00	76	224.27	3.73	3.58	3.29		3.53			25.08	
16:35	02:45	00:05	76		3.82	3.65	3.36		3.61			25.09	
16:40	02:50	00:10	76	-	3.84	3.67	3.37		3,63		+ -	25.09	
16:50	03:00	00:20	/6	000 07	3.85	3.68	3.39		3,64			25.10	
10:50	03:00	00:00	00	230.07	4.04	3.85	3.56		3.82		-	25.10	
10:05	03:05	00:05	00		4.11	3.94	3.62		3.69	1.1 A 1.1 A		25.10	
17.45	03.10	00.15	00		4.14	3.90	3.07		104			25.17	
17.15	03:45	00.25	00		4.24	4.11	3.10		4.04			25.22	
17.50	04.00	01.00	00		4.32	4.19	3.06		4.11			25.23	
17:50	04:00	00.00	00	176.84	4 33	4.16	3.84		4.11		-	25.23	
17:55	04:05	00:00	60	170.04	4.33	416	3.82		4.10			25.23	
18:00	04.10	00.10	60		4.32	416	3.82		4.10			25,25	
18:00	04:10	00:00	40	123.15	3.88	3.74	3.46		3.69			25.23	
18:05	04:15	00:05	40	1	3.86	3.72	3.44		3.67			25.21	
18:10	04:20	00:10	40		3,86	3.71	3.43		3.67			25.21	
18:10	04:20	00:00	20	64.56	3.16	3.01	2.76		2.98			25.20	
18:15	04:25	00:05	20		3.11	2.98	2.74		2.94			25.20	
18:20	04:30	00:10	20		3.1	2.96	2.72		2.93			25.20	
18.20	04:30	00:00	0	0	2.6	1.5	1.4		1.83			25.20	
18:35	04:45	00:15	0	0	2.3	1.26	1.14		1.57			25.20	
18:50	05:00	00:30	0	0	2.27	1.22	1.1		1.53			25.20	

1/1

egegazTP2YATAYTEST-DataGrafilder/yatay-TP2 -ORIJ

100

TP2 YATAY YÜKLEME DENEYİ / LATERAL LOAD TEST

EK-4

Yükleme Deneyi Esnasında İmalat Aşamalarını Gösteren Şantiye Fotoğrafları

EK 4-A

EK 4-B

ЕК 4-С

EK 4-D

ЕК 4-Е

EK 4-F

EK-5

SAP2000 Programı Analiz Sonuçları

Table: Joint Displacements

Joint	OutputCase	CaseType	U1	U2	U3	R1	R2	R3
Text	Text	Text	cm	cm	cm	Radians	Radians	Radians
1	110	LinStatic	-0,000527	0,000000	0,000000	0,000000	1,933E-06	0,000000
1	120	LinStatic	-0,001053	0,000000	0,000000	0,000000	3,865E-06	0,000000
1	130	LinStatic	-0,001580	0,000000	0,000000	0,000000	5,798E-06	0,000000
1	140	LinStatic	-0,002106	0,000000	0,000000	0,000000	7,730E-06	0,000000
1	150	LinStatic	-0,002633	0,000000	0,000000	0,000000	9,663E-06	0,000000
1	168	LinStatic	-0,003581	0,000000	0,000000	0,000000	0,000013	0,000000
1	172	LinStatic	-0,003792	0,000000	0,000000	0,000000	0,000014	0,000000
1	176	LinStatic	-0,004002	0,000000	0,000000	0,000000	0,000015	0,000000
1	180	LinStatic	-0,004213	0,000000	0,000000	0,000000	0,000015	0,000000
2	110	LinStatic	-0,000336	0,000000	0,000000	0,000000	2,106E-06	0,000000
2	120	LinStatic	-0,000672	0,000000	0,000000	0,000000	4,212E-06	0,000000
2	130	LinStatic	-0,001008	0,000000	0,000000	0,000000	6,319E-06	0,000000
2	140	LinStatic	-0,001344	0,000000	0,000000	0,000000	8,425E-06	0,000000
2	150	LinStatic	-0,001679	0,000000	0,000000	0,000000	0,000011	0,000000
2	168	LinStatic	-0,002284	0,000000	0,000000	0,000000	0,000014	0,000000
2	172	LinStatic	-0,002418	0,000000	0,000000	0,000000	0,000015	0,000000
2	176	LinStatic	-0,002553	0,000000	0,000000	0,000000	0,000016	0,000000
2	180	LinStatic	-0,002687	0,000000	0,000000	0,000000	0,000017	0,000000
3	110	LinStatic	-0,000114	0,000000	0,000000	0,000000	2,846E-06	0,000000
3	120	LinStatic	-0,000227	0,000000	0,000000	0,000000	5,691E-06	0,000000
3	130	LinStatic	-0,000341	0,000000	0,000000	0,000000	8,537E-06	0,000000
3	140	LinStatic	-0,000455	0,000000	0,000000	0,000000	0,000011	0,000000
3	150	LinStatic	-0,000568	0,000000	0,000000	0,000000	0,000014	0,000000
3	168	LinStatic	-0,000773	0,000000	0,000000	0,000000	0,000019	0,000000
3	172	LinStatic	-0,000818	0,000000	0,000000	0,000000	0,000020	0,000000
3	176	LinStatic	-0,000864	0,000000	0,000000	0,000000	0,000022	0,000000
3	180	LinStatic	-0,000909	0,000000	0,000000	0,000000	0,000023	0,000000
4	110	LinStatic	0,000221	0,000000	0,000000	0,000000	4,442E-06	0,000000
4	120	LinStatic	0,000441	0,000000	0,000000	0,000000	8,884E-06	0,000000
4	130	LinStatic	0,000662	0,000000	0,000000	0,000000	0,000013	0,000000
4	140	LinStatic	0,000883	0,000000	0,000000	0,000000	0,000018	0,000000
4	150	LinStatic	0,001103	0,000000	0,000000	0,000000	0,000022	0,000000
4	168	LinStatic	0,001501	0,000000	0,000000	0,000000	0,000030	0,000000
4	172	LinStatic	0,001589	0,000000	0,000000	0,000000	0,000032	0,000000
4	176	LinStatic	0,001677	0,000000	0,000000	0,000000	0,000034	0,000000
4	180	LinStatic	0,001765	0,000000	0,000000	0,000000	0,000036	0,000000
5	110	LinStatic	0,000763	0,000000	0,000000	0,000000	6,831E-06	0,000000
5	120	LinStatic	0,001526	0,000000	0,000000	0,000000	0,000014	0,000000
5	130	LinStatic	0,002289	0,000000	0,000000	0,000000	0,000020	0,000000
5	140	LinStatic	0,003052	0,000000	0,000000	0,000000	0,000027	0,000000
5	150	LinStatic	0,003815	0,000000	0,000000	0,000000	0,000034	0,000000
5	168	LinStatic	0,005189	0,000000	0,000000	0,000000	0,000046	0,000000
5	172	LinStatic	0,005494	0,000000	0,000000	0,000000	0,000049	0,000000
5	176	LinStatic	0,005799	0,000000	0,000000	0,000000	0,000052	0,000000
5	180	LinStatic	0,006105	0,000000	0,000000	0,000000	0,000055	0,000000
6	110	LinStatic	0,001584	0,000000	0,000000	0,000000	9,417E-06	0,000000
6	120	LinStatic	0,003168	0,000000	0,000000	0,000000	0,000019	0,000000
6	130	LinStatic	0,004752	0,000000	0,000000	0,000000	0,000028	0,000000
6	140	LinStatic	0,006336	0,000000	0,000000	0,000000	0,000038	0,000000
6	150	LinStatic	0,007919	0,000000	0,000000	0,000000	0,000047	0,000000
6	168	LinStatic	0,010770	0,000000	0,000000	0,000000	0,000064	0,000000
6	172	LinStatic	0,011404	0,000000	0,000000	0,000000	0,000068	0,000000
6	176	LinStatic	0,012037	0,000000	0,000000	0,000000	0,000072	0,000000
6	180	LinStatic	0,012671	0,000000	0,000000	0,000000	0,000075	0,000000
7	110	LinStatic	0,002657	0,000000	0,000000	0,000000	0,000011	0,000000

Joint	OutputCase	CaseType	U1	U2	U3	R 1	R2	R3
Text	Text	Text	cm	cm	cm	Radians	Radians	Radians
7	120	LinStatic	0,005315	0,000000	0,000000	0,000000	0,000023	0,000000
7	130	LinStatic	0,007972	0,000000	0,000000	0,000000	0,000034	0,000000
7	140	LinStatic	0,010629	0,000000	0,000000	0,000000	0,000045	0,000000
7	150	LinStatic	0,013286	0,000000	0,000000	0,000000	0,000056	0,000000
7	168	LinStatic	0,018070	0,000000	0,000000	0,000000	0,000077	0,000000
7	172	LinStatic	0,019132	0,000000	0,000000	0,000000	0,000081	0,000000
7	176	LinStatic	0,020195	0,000000	0,000000	0,000000	0,000086	0,000000
7	180	LinStatic	0,021258	0,000000	0,000000	0,000000	0,000090	0,000000
8	110	LinStatic	0,003856	0,000000	0,000000	0,000000	0,000012	0,000000
8	120	LinStatic	0,007713	0,000000	0,000000	0,000000	0,000024	0,000000
8	130	LinStatic	0,011569	0,000000	0,000000	0,000000	0,000036	0,000000
8	140	LinStatic	0,015425	0,000000	0,000000	0,000000	0,000048	0,000000
8	150	LinStatic	0,019282	0,000000	0,000000	0,000000	0,000060	0,000000
8	168	LinStatic	0,026223	0,000000	0,000000	0,000000	0,000081	0,000000
8	172	LinStatic	0,027766	0,000000	0,000000	0,000000	0,000086	0,000000
8	176	LinStatic	0,029308	0,000000	0,000000	0,000000	0,000091	0,000000
8	180	LinStatic	0,030851	0,000000	0,000000	0,000000	0,000095	0,000000
9	110	LinStatic	0,005059	0,000000	0,000000	0,000000	0,000011	0,000000
9	120	LinStatic	0,010118	0,000000	0,000000	0,000000	0,000023	0,000000
9	130	LinStatic	0,015178	0,000000	0,000000	0,000000	0,000034	0,000000
9	140	LinStatic	0,020237	0,000000	0,000000	0,000000	0,000045	0,000000
9	150	LinStatic	0,025296	0,000000	0,000000	0,000000	0,000057	0,000000
9	168	LinStatic	0,034403	0,000000	0,000000	0,000000	0,000077	0,000000
9	172	LinStatic	0,036426	0,000000	0,000000	0,000000	0,000082	0,000000
9	176	LinStatic	0,038450	0,000000	0,000000	0,000000	0,000086	0,000000
9	180	LinStatic	0,040474	0,000000	0,000000	0,000000	0,000091	0,000000
10	110	LinStatic	0,006142	0,000000	0,000000	0,000000	9,495E-06	0,000000
10	120	LinStatic	0,012284	0,000000	0,000000	0,000000	0,000019	0,000000
10	130	LinStatic	0,018426	0,000000	0,000000	0,000000	0,000028	0,000000
10	140	LinStatic	0,024567	0,000000	0,000000	0,000000	0,000038	0,000000
10	150	LinStatic	0,030709	0,000000	0,000000	0,000000	0,000047	0,000000
10	168	LinStatic	0,041765	0,000000	0,000000	0,000000	0,000065	0,000000
10	172	LinStatic	0,044221	0,000000	0,000000	0,000000	0,000068	0,000000
10	176	LinStatic	0,046678	0,000000	0,000000	0,000000	0,000072	0,000000
10	180	LinStatic	0,049135	0,000000	0,000000	0,000000	0,000076	0,000000
11	110	LinStatic	0,006977	0,000000	0,000000	0,000000	6,366E-06	0,000000
11	120	LinStatic	0,013954	0,000000	0,000000	0,000000	0,000013	0,000000
11	130	LinStatic	0,020931	0,000000	0,000000	0,000000	0,000019	0,000000
11	140	LinStatic	0,027909	0,000000	0,000000	0,000000	0,000025	0,000000
11	150	LinStatic	0,034886	0,000000	0,000000	0,000000	0,000032	0,000000
11	168	LinStatic	0,047445	0,000000	0,000000	0,000000	0,000043	0,000000
11	172	LinStatic	0,050235	0,000000	0,000000	0,000000	0,000046	0,000000
11	176	LinStatic	0,053026	0,000000	0,000000	0,000000	0,000048	0,000000
11	180	LinStatic	0,055817	0,000000	0,000000	0,000000	0,000051	0,000000
12	110	LinStatic	0,007443	0,000000	0,000000	0,000000	1,328E-06	0,000000
12	120	LinStatic	0,014886	0,000000	0,000000	0,000000	2,656E-06	0,000000
12	130	LinStatic	0,022329	0,000000	0,000000	0,000000	3,983E-06	0,000000
12	140	LinStatic	0,029772	0,000000	0,000000	0,000000	5,311E-06	0,000000
12	150	LinStatic	0,037215	0,000000	0,000000	0,000000	6,639E-06	0,000000
12	168	LinStatic	0,050613	0,000000	0,000000	0,000000	9,029E-06	0,000000
12	172	LinStatic	0,053590	0,000000	0,000000	0,000000	9,560E-06	0,000000
12	176	LinStatic	0,056568	0,000000	0,000000	0,000000	0,000010	0,000000
12	180	LinStatic	0,059545	0,000000	0,000000	0,000000	0,000011	0,000000
13	110	LinStatic	0,007298	0,000000	0,000000	0,000000	-7,461E-06	0,000000
13	120	LinStatic	0,014595	0,000000	0,000000	0,000000	-0,000015	0,000000
13	130	LinStatic	0,021893	0,000000	0,000000	0,000000	-0,000022	0,000000
13	140	LinStatic	0,029191	0,000000	0,000000	0,000000	-0,000030	0,000000
13	150	LinStatic	0,036488	0,000000	0,000000	0,000000	-0,000037	0,000000
13	168	LinStatic	0,049624	0,000000	0,000000	0,000000	-0,000051	0,000000

Joint	OutputCase	CaseType	U 1	U2	U3	R1	R2	R3
Text	Text	Text	cm	cm	cm	Radians	Radians	Radians
13	172	LinStatic	0,052543	0,000000	0,000000	0,000000	-0,000054	0,000000
13	176	LinStatic	0,055462	0,000000	0,000000	0,000000	-0,000057	0,000000
13	180	LinStatic	0,058382	0,000000	0,000000	0,000000	-0,000060	0,000000
14	110	LinStatic	0,006041	0,000000	0,000000	0,000000	-0,000022	0,000000
14	120	LinStatic	0,012082	0,000000	0,000000	0,000000	-0,000045	0,000000
14	130	LinStatic	0,018123	0,000000	0,000000	0,000000	-0,000067	0,000000
14	140	LinStatic	0,024164	0,000000	0,000000	0,000000	-0,000090	0,000000
14	150	LinStatic	0,030205	0,000000	0,000000	0,000000	-0,000112	0,000000
14	168	LinStatic	0,041078	0,000000	0,000000	0,000000	-0,000152	0,000000
14	172	LinStatic	0,043495	0,000000	0,000000	0,000000	-0,000161	0,000000
14	176	LinStatic	0,045911	0,000000	0,000000	0,000000	-0,000170	0,000000
14	180	LinStatic	0,048328	0,000000	0,000000	0,000000	-0,000179	0,000000
15	110	LinStatic	0,002940	0,000000	0,000000	0,000000	-0,000045	0,000000
15	120	LinStatic	0,005881	0,000000	0,000000	0,000000	-0,000091	0,000000
15	130	LinStatic	0,008821	0,000000	0,000000	0,000000	-0,000136	0,000000
15	140	LinStatic	0,011761	0,000000	0,000000	0,000000	-0,000182	0,000000
15	150	LinStatic	0,014702	0,000000	0,000000	0,000000	-0,000227	0,000000
15	168	LinStatic	0,019994	0,000000	0,000000	0,000000	-0,000309	0,000000
15	172	LinStatic	0,021171	0,000000	0,000000	0,000000	-0,000328	0,000000
15	176	LinStatic	0,022347	0,000000	0,000000	0,000000	-0,000346	0,000000
15	180	LinStatic	0,023523	0,000000	0,000000	0,000000	-0,000364	0,000000
16	110	LinStatic	-0,002920	0,000000	0,000000	0,000000	-0,000078	0,000000
16	120	LinStatic	-0,005839	0,000000	0,000000	0,000000	-0,000156	0,000000
16	130	LinStatic	-0,008759	0,000000	0,000000	0,000000	-0,000234	0,000000
16	140	LinStatic	-0,011678	0,000000	0,000000	0,000000	-0,000312	0,000000
16	150	LinStatic	-0,014598	0,000000	0,000000	0,000000	-0,000391	0,000000
16	168	LinStatic	-0,019853	0,000000	0,000000	0,000000	-0,000531	0,000000
10	172	LinStatic	-0,021021	0,000000	0,000000	0,000000	-0,000562	0,000000
10	170	LinStatic	-0,022109	0,000000	0,000000	0,000000	-0,000594	0,000000
17	110	LinStatic	-0,023337	0,000000	0,000000	0,000000	-0,000025	0,000000
17	120	LinStatic	-0.025081	0,000000	0,000000	0,000000	-0.000240	0,000000
17	130	LinStatic	-0.037621	0.000000	0.000000	0.000000	-0.000361	0.000000
17	140	LinStatic	-0.050161	0.000000	0.000000	0.000000	-0.000481	0.000000
17	150	LinStatic	-0.062702	0.000000	0.000000	0.000000	-0.000601	0.000000
17	168	LinStatic	-0.085274	0.000000	0.000000	0.000000	-0.000818	0.000000
17	172	LinStatic	-0,090290	0,000000	0,000000	0,000000	-0,000866	0,000000
17	176	LinStatic	-0,095307	0,000000	0,000000	0,000000	-0,000914	0,000000
17	180	LinStatic	-0,100323	0,000000	0,000000	0,000000	-0,000962	0,000000
18	110	LinStatic	-0,026853	0,000000	0,000000	0,000000	-0,000170	0,000000
18	120	LinStatic	-0,053706	0,000000	0,000000	0,000000	-0,000340	0,000000
18	130	LinStatic	-0,080559	0,000000	0,000000	0,000000	-0,000510	0,000000
18	140	LinStatic	-0,107412	0,000000	0,000000	0,000000	-0,000680	0,000000
18	150	LinStatic	-0,134265	0,000000	0,000000	0,000000	-0,000850	0,000000
18	168	LinStatic	-0,182600	0,000000	0,000000	0,000000	-0,001156	0,000000
18	172	LinStatic	-0,193341	0,000000	0,000000	0,000000	-0,001224	0,000000
18	176	LinStatic	-0,204083	0,000000	0,000000	0,000000	-0,001292	0,000000
18	180	LinStatic	-0,214824	0,000000	0,000000	0,000000	-0,001360	0,000000
19	110	LinStatic	-0,046498	0,000000	0,000000	0,000000	-0,000223	0,000000
19	120	LinStatic	-0,092996	0,000000	0,000000	0,000000	-0,000446	0,000000
19	130	LinStatic	-0,139494	0,000000	0,000000	0,000000	-0,000670	0,000000
19	140	LinStatic	-0,185992	0,000000	0,000000	0,000000	-0,000893	0,000000
19	150	LinStatic	-0,232490	0,000000	0,000000	0,000000	-0,001116	0,000000
19	168		-0,316186	0,000000	0,000000	0,000000	-0,001518	0,000000
19	1/2		-0,334/85	0,000000	0,000000	0,000000		0,000000
19	0/1 120	Linotatic	-U,303384 -0 371092				-0,001697	
20	100	LinStatic	-0,071554	0,000000	0,000000	0,000000	-0,001700	0,000000
20	120	LinStatic	-0.143108	0.000000	0.000000	0.000000	-0.000546	0.000000

1	1	0	

Joint	OutputCase	CaseType	U1	U2	U3	R1	R2	R3
Text	Text	Text	cm	cm	cm	Radians	Radians	Radians
20	130	LinStatic	-0,214661	0,000000	0,000000	0,000000	-0,000818	0,000000
20	140	LinStatic	-0,286215	0,000000	0,000000	0,000000	-0,001091	0,000000
20	150	LinStatic	-0,357769	0,000000	0,000000	0,000000	-0,001364	0,000000
20	168	LinStatic	-0,486566	0,000000	0,000000	0,000000	-0,001855	0,000000
20	172	LinStatic	-0,515187	0,000000	0,000000	0,000000	-0,001964	0,000000
20	176	LinStatic	-0,543809	0,000000	0,000000	0,000000	-0,002073	0,000000
20	180	LinStatic	-0,572430	0,000000	0,000000	0,000000	-0,002183	0,000000
21	110	LinStatic	-0,101253	0,000000	0,000000	0,000000	-0,000309	0,000000
21	120	LinStatic	-0,202506	0,000000	0,000000	0,000000	-0,000619	0,000000
21	130	LinStatic	-0,303759	0,000000	0,000000	0,000000	-0,000928	0,000000
21	140	LinStatic	-0,405012	0,000000	0,000000	0,000000	-0,001237	0,000000
21	150	LinStatic	-0,506265	0,000000	0,000000	0,000000	-0,001547	0,000000
21	168	LinStatic	-0,688520	0,000000	0,000000	0,000000	-0,002104	0,000000
21	172	LinStatic	-0,729021	0,000000	0,000000	0,000000	-0,002227	0,000000
21	176	LinStatic	-0,769522	0,000000	0,000000	0,000000	-0,002351	0,000000
21	180	LinStatic	-0,810023	0,000000	0,000000	0,000000	-0,002475	0,000000
22	110	LinStatic	-0,133756	0,000000	0,000000	0,000000	-0,000323	0,000000
22	120	LinStatic	-0,267513	0,000000	0,000000	0,000000	-0,000646	0,000000
22	130	LinStatic	-0,401269	0,000000	0,000000	0,000000	-0,000969	0,000000
22	140	LinStatic	-0,535026	0,000000	0,000000	0,000000	-0,001292	0,000000
22	150	LinStatic	-0,668782	0,000000	0,000000	0,000000	-0,001615	0,000000
22	168	LinStatic	-0,909544	0,000000	0,000000	0,000000	-0,002197	0,000000
22	172	LinStatic	-0,963047	0,000000	0,000000	0,000000	-0,002326	0,000000
22	176	LinStatic	-1,016549	0,000000	0,000000	0,000000	-0,002455	0,000000
22	180	LinStatic	-1,070052	0,000000	0,000000	0,000000	-0,002584	0,000000

EK-6

Allpile Programı Analiz Sonuçları

PILE DEFLECTION & FORCE vs DEPTH Single Pile, Khead=2, Kbc=1

Dilara Mühendislik

PILE DEFLECTION & FORCE vs DEPTH Single Pile, Khead=2, Kbc=1

Dilara Mühendislik

Q=760 kN.

PILE DEFLECTION & FORCE vs DEPTH Single Pile, Khead=2, Kbc=1

Dilara Mühendislik

PILE DEFLECTION & FORCE vs DEPTH Single Pile, Khead=2, Kbc=1

Dilara Mühendislik

Q=680 kN.

PILE DEFLECTION & FORCE vs DEPTH Single Pile, Khead=2, Kbc=1

Dilara Mühendislik

Q=600 kN.

PILE DEFLECTION & FORCE vs DEPTH Single Pile, Khead=2, Kbc=1

Dilara Mühendislik

PILE DEFLECTION & FORCE vs DEPTH Single Pile, Khead=2, Kbc=1

Dilara Mühendislik

Q=400 kN

PILE DEFLECTION & FORCE vs DEPTH Single Pile, Khead=2, Kbc=1

Dilara Mühendislik

Q=300 kN

PILE DEFLECTION & FORCE vs DEPTH Single Pile, Khead=2, Kbc=1

Dilara Mühendislik

Q=200 kN

PILE DEFLECTION & FORCE vs DEPTH Single Pile, Khead=2, Kbc=1

Dilara Mühendislik

Q=100 kN

EK-7

Plaxis Programı Analiz Sonuçları

Horizontal displacements Extreme horizontal displacement 2,07*10⁻³ m

Horizontal displacements Extreme horizontal displacement 6,26*10⁻³ m

Horizontal displacements Extreme horizontal displacement 11,33*10⁻³ m

125

Horizontal displacements Extreme horizontal displacement 16,21*10⁻³ m

Horizontal displacements Extreme horizontal displacement 21,68*10⁻³ m

127

Horizontal displacements Extreme horizontal displacement 28,47*10⁻³ m

Horizontal displacements Extreme horizontal displacement 37,54*10⁻³ m

Horizontal displacements Extreme horizontal displacement 44,46*10⁻³ m

ÖZGEÇMİŞ

Kubilay SAVAŞERİ, 15.01.1973 yılında Konya'da doğdu. İlk öğrenimini İstanbul Beylerbeyi İlkokulunda, orta öğrenimini Beylerbeyi Lisesinde tamamladı. 1991 yılında İ.T.Ü. Sakarya Mühendislik fakültesine girdi. 1995 yılında üniversiteden mezun oldu. Halen bir inşaat firmasında üst yapı mühendisi olarak çalışmaktadır. Evli ve bir çocuk babasıdır.