T.C SAKARYA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

KİLDE KAYMA DİRENCİ PARAMETRELERİNİN ÖLÇÜMÜNDE NUMUNE BOYUTLARININ ETKİSİ

YÜKSEK LİSANS TEZİ

İnş.Müh. Gülçin ŞENGÜL NOMALER

Enstitü Anabilim Dalı	:	İNŞAAT MÜH.
Enstitü Bilim Dalı	:	GEOTEKNİK
Tez Danışmanı	:	Doç. Dr. Zeki GÜNDÜZ

Mayıs 2006

T.C SAKARYA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

KİLDE KAYMA DİRENCİ PARAMETRELERİNİN ÖLÇÜMÜNDE NUMUNE BOYUTLARININ ETKİSİ

YÜKSEK LİSANS TEZİ

İnş.Müh. Gülçin ŞENGÜL NOMALER

Enstitü Anabilim Dalı : İNŞAAT MÜH.

Enstitü Bilim Dalı : GEOTEKNİK

Bu tez 14 / 06 /2006 tarihinde aşağıdaki jüri tarafından Oybirliği ile kabul edilmiştir.

Doç.Dr. Zeki GÜNDÜZ	Prof. Dr. Hasan ARMAN	Doç.Dr. Seyhan FIRAT
Jüri Başkanı	Üye	Üye

TEŞEKKÜR

SA.Ü. Fen Bilimleri Enstitüsü Geoteknik EBD Yüksek Lisans eğitimime büyük katkıda bulunan hocam Sayın Prof Dr. Akın Önalp'a, tezin hazırlanması aşamasında bana destek olan danışman hocam sayın Doç.Dr. Zeki GÜNDÜZ'e, eğitimim boyunca bilgi ve desteklerini esirgemeyen hocalarım Sayın Prof. Dr. Hasan Arman ile Sayın Yrd.Doç. Dr. Ersin Arel'e ve aileme teşekkürlerimi borç bilirim.

Ayrıca laboratuvar çalışmalarım esnasında yardımlarını gördüğüm, İnşaat Teknikeri Sayın Ali Çankaya'ya, Tekniker Sayın İsmail Canayakın ile Tek. Öğr. Sayın İbrahim Çakılcıoğlu'na da teşekkür ederim.

İÇİNDEKİLER

TEŞEKKÜR	ii
İÇİNDEKİLER	iii
SİMGELER VE KISALTMALAR LİSTESİ	vi
ŞEKİLLER LİSTESİ	ix
TABLOLAR LİSTESİ	xii
ÖZET	xiii
SUMMARY	xiv

BÖLÜM 1.

GİRİŞ	1
1.1. Çalışmanın Amacı	1
1.2. Zeminlerde Kayma Direnci Problemleri	4
1.3. Zeminlerde Kayma Direncinin Ölçümü	5

BÖLÜM 2.

KIRILMA KRİTERLERİ	8
2.1. Giriş	8
2.2. Kırılma Kriterlerinin Tanımı	14
2.3. Kırılmanın Türleri	15
2.3.1. Normal sıcaklıkta ve statik etki altında kırılma	15
2.3.2. Kırılma kriterleri	16
2.4. Zeminlerde Kırılma ve Yenilme	25
2.4.1. Yükleme özellikleri	27
2.5. Zeminlerde Yenilme Kriterleri	27
2.5.1. Mohr yenilme kriteri	28
2.6. Mohr-Coulomb Yenilme Kriteri	28
2.6.1. Yenilme durumu ve Mohr gerilme daireleri	30
2.6.2. Efektif gerilmeler ve kayma direnci	31

BÖLÜM 3.

ZEMİNLERİN KAYMA DİRENCİ VE KAYMA DİRENCİ	
PARAMETRELERİNİN ÖLÇÜMÜ	33
3.1. Giriş	33
3.2. İri Daneli Zeminlerin Kayma Direnci	35
3.2.1. Kumların kayma direnci	35
3.3. Killerin Kayma Direnci	38
3.3.1. Normal yüklenmiş kilin kayma direnci	39
3.3.2. Aşırı konsolide kilin kayma direnci	44
3.4. Zeminlerde Kayma Direncinin Ölçümü	46
3.5. Laboratuvar Deneyleri	48
3.5.1. Kesme kutusu deneyi	48
3.5.2. Serbest basınç deneyi	54
3.5.3. Üç eksenli basınç deneyi	56
3.5.4. Diğer laboratuvar deneyleri	64
3.6. Arazi Deneyleri	66

BÖLÜM 4.

DENEYSEL ÇALIŞMALAR	71
4.1. Giriş	71
4.2. Laboratuvar Çalışmaları	72
4.2.1. Numuneler üzerinde yapılan çalışmalar	72
4.2.2. "1" no'lu numune ile yapılan laboratuvar çalışmaları	73
4.2.3. "2" no'lu numune ile yapılan laboratuvar çalışmaları	75
4.2.4. "4" no'lu numune ile yapılan laboratuvar çalışmaları	76
4.2.5. "8" no'lu numune ile yapılan laboratuvar çalışmaları	77

BÖLÜM 5.

SONUÇLAR	78
5.1. Giriş	78
5.2. Üç Eksenli Basınç Deneyi Sonuçları	78
5.3. Kesme Kutusu Deney Sonuçları	84

BÖLÜM 6.	
TARTIŞMA VE ÖNERİLER	87
KAYNAKLAR	91
EKLER	93
ÖZGEÇMİŞ	182

SİMGELER VE KISALTMALAR LİSTESİ

А	: Numune kesit alanı
а	: Numune boyutu
A_0	: Numunenin başlangıç kesit alanı
A _c , A _i	: Numunenin düzeltilmiş kesit alanı
α	: Yenilme düzlemi eğimi
В	: Boşluk suyu basıncı katsayısı
BST	: Iowa kuyu kesme deneyi
c	: Kohezyon
c'	: Efektif gerilme cinsinden kohezyon
c _u	: Drenajsız kohezyon
c _{cu}	: Konsolidasyonlu-drenajsız kohezyon
c _{cd}	: Konsolidasyonlu-drenajlı kohezyon
С	: Kil
CU	: Konsolidasyonlu-Drenajsız
CD	: Konsolidasyonlu-Drenajlı
CPT	: Konik penetrasyon deneyi
D	: Dane çapı
δ	: Deplasman
δ_{h}	: Yatay deplasman
$\delta_{\rm v}$: Düşey deplasman
Δl	: Boy değişimi
ΔV	: Hacım değişimi
e	: Boşluk oranı
e_0	: Başlangıç boşluk oranı
e _{cr}	: Kritik boşluk oranı
ei	: Düzeltilmiş boşluk oranı
Е	: Elastisite modülü
3	: Birim şekil değiştirme

ε _B	: Kırılma gerilmesine tekabül eden birim uzama
$\epsilon_{\rm F}$: Akma gerilmesine tekabül eden birim uzama
ϵ_a, ϵ_z	: Eksenel birim boy kısalması
FVT	: Arazi kanatlı kesici deneyi
φ	: Kayma direnci açısı
φ'	: Efektif gerilme cinsinden kayma direnci açısı
ϕ_{u}	: Drenajsız kayma direnci açısı
φ _{cu}	: Konsolidasyonlu-drenajsız kayma direnci açısı
ϕ_{cd}	: Konsolidasyonlu-drenajlı kayma direnci açısı
G	: Kayma modülü, Lame parametresi
Gs	: Dane özgül ağırlığı
γ	: Açısal şekil değiştirme, birim hacım ağırlık
γ_k	: Kuru birim hacım ağırlık
I _p	: Plastisite indisi
K,k	: Sabit katsayı, geçirimlilik katsayısı, 200 nodan geçen %
KH	: Kuvvet halkası okuması
h	: Numune yüksekliği
L, 1	: Numune boyu, Efektif derinlik
n	: Düzlemin dış normali
N	: İç kuvvet, Cassagrande cihazında vuruş sayısı
NL	: Normal yüklenmiş kil
ν	: Poisson oranı
OC	: Aşırı konsolide kil
OCR	: Aşırı konsolidasyon oranı
Р	: Dış kuvvet, kesme kuvveti, hidrometrede % geçen
PMT	: Presiyometre
PP	: Cep penetrometresi
q_u	: Serbest basınç dayanımı
R	: Bileşke kuvvet, düzeltilmiş hidrometre okuması, çap
$ ho_{w}$: Suyun birim hacım ağırlığı
S	: Zeminin kayma direnci
$\mathbf{S}_{\mathbf{r}}$: Doygunluk derecesi
SFC	: İsveç düşen koni deneyi

SPC	: Burgulu plaka kompresometresi
SPT	: Standart penetrasyon deneyi
σ	: Gerilme
σ'	: Efektif gerilme
σ'_{c}	: Ön konsolidasyon basıncı
$\sigma_{f}, \sigma_{M}, \sigma'_{M}$: Tek eksenli gerilme halinde cismin mukavemet sınırı
σ_{N}	: Normal gerilme
t	: Kırılma düzlemine etkiyen gerilme
Т	: Kesme kuvveti
TV	: Torveyn
θ	: Kırılma düzleminin yatayla yaptığı açı
τ	: Kayma gerilmesi
$\tau_{\rm f}$: Kayma direnci
u	: Boşluk suyu basıncı
u _f	: Yenilme anındaki boşluk suyu basıncı
UU	: Konsolidasyonsuz-Drenajsız
V	: Numune hacmı
\mathbf{V}_0	: Başlangıçtaki hacım
Vs	: Dane hacmı
VST	: Kanatlı kesme deneyi
W	: Su muhtevası
Wn	: Doğal su muhtevası
Wopt	: Optimum su muhtevası
W	: Ağırlık
Ws	: Numunenin kuru ağırlığı
WL	: Likit limit
WP	: Plastik limit
V	: Numunenin hacmı
V_0	: Numunenin başlangıçtaki hacmı
V_i	: Düzeltilmiş hacım
Vs	: Dane hacmı

ŞEKİLLER LİSTESİ

Şekil 1.1.	Stabilite problemleri	4
Şekil 1.2.	Deformasyon problemlerine bir örnek	5
Şekil 2.1.	Bir cisme etkiyen kuvvetler sistemi	9
Şekil 2.2.	Normal kuvvet	9
Şekil 2.3.	Gerilmeler	11
Şekil 2.4.	D noktasının genel gerilme hali	11
Şekil 2.5.	Gevrek kırılma	13
Şekil 2.6.	Yumuşak çelikte gevrek kırılmadan sünek kırılmaya geçiş ve	
	sünek kırılma kesitine bir örnek	13
Şekil 2.7.	Kırılma kriterlerinin tanımı	14
Şekil 2.8.	Maksimum kayma gerilmesi kriterinde çok eksenli gerilme	
	halinde Mohr daireleri	16
Şekil 2.9.	Maksimum kayma gerilmesi kriterinin gösterimi ve Tresca	-
	altıgeni	17
Şekil 2.10.	Maksimum normal gerilme kriterinin gösterimi ve iki eksenli	
	gerilme halinde güvenli bölgenin sınırları	18
Şekil 2.11.	Coulomb kayma gerilmesi kriterine ait zarf doğruları	19
Şekil 2.12.	Coulomb kayma gerilmesi kriterinin gösterimi	20
Şekil 2.13.	Mohr genel kayma gerilmesi kriteri	20
Şekil 2.14.	Maksimum birim uzama kriteri	21
Şekil 2.15.	Toplam şekil değiştirme enerjisi kriteri	22
Şekil 2.16.	Biçim değiştirme enerjisi kriteri	23
Şekil 2.17.	Akma ve kırılma kriterlerinin deney sonucuyla	
	karşılaştırılması	24
Şekil 2.18.	Elasto-plastik model	26
Şekil 2.19.	Deformasyonla pekleşen/yumuşayan	26
Şekil 2.20.	Mohr yenilme kriteri	28

Şekil 2.21.	Mohr-Coulomb yenilme kriteri
Şekil 2.22.	Mohr gerilme daireleri ve yenilme zarfı
Şekil 2.23.	Yenilme durumunda asal gerilmeler arasındaki ilişki
Şekil 2.24.	Yenilme durumunu gösteren toplam ve efektif gerilme
	daireleri
Şekil 3.1.	Kumda yenilme zarfi
Şekil 3.2.	Kohezyonsuz zeminlerde "gerilme-şekil değiştirme", "hacım
	değişimi-şekil değiştirme" davranışları
Şekil 3.3.	Kritik boşluk oranı
Şekil 3.4.	%100 doygun killer için UU deneylerine ait Mohr yenilme
	daireleri ve yenilme zarfı
Şekil 3.5.	NL killerin kayma direnci
Şekil 3.6.	Tamamen konsolide olmuş kilde drenajlı deney
Şekil 3.7.	Aşırı konsolide kilde σ – ϵ –u eğrileri
Şekil 3.8.	Aşırı konsolide kilde CD deneyler sonucu elde edilen yenilme
	zarfi
Şekil 3.9.	Aşırı konsolide kilde CU koşulda yenilme zarfları
Şekil 3.10.	Kesme kutusu içindeki numune ve kesilme düzlemi
Şekil 3.11.	Kesme kutusu deneyi ekipmanı
Şekil 3.12.	Kesme kutusu ve numunenin kutuya konmadan önceki hali
Şekil 3.13.	Numunenin kesme kutusuna yerleştirilmiş hali
Şekil 3.14.	Kesme kutusunun deney sistemine yerleştirilmiş hali
Şekil 3.15.	İki zemin danesi arasındaki sürtünme hali
Şekil 3.16.	Gevşek ve sıkı kum numuneler için kesme kutusu deneyi
	sonuçları-1
Şekil 3.17.	Kumlarda kesme kutusu deney sonuçları-2
Şekil 3.18.	Serbest basınç deneyinde eğriler ve yenilme zarfı
Şekil 3.19.	Üç eksenli basınç deneyi düzeneğinin şematik görünümü
Şekil 3.20.	Üç eksenli basınç cihazına numunenin üzerine membran
	geçirilerek yerleştirilmiş hali
Şekil 3.21.	Üç eksenli basınç cihazında numunenin kesilmeye hazır hali
Şekil 3.22.	Üç eksenli basınç deneyi ile kırılmış bir numunenin şematik
	görünümü

Şekil 3.23.	Üç eksenli basınç deneyi ve kesme kutusu ile kırılmış
	numuneler
Şekil 3.24.	Üç eksenli basınç deneyi sonucunda elde edilen Mohr dairesi.
Şekil 3.25.	%100 doygun kilde UU deneyinden elde edilen yenilme zarfı.
Şekil 3.26.	Kısmen doygun kilde UU deneyinden elde edilen Mohr
	yenilme zarfı
Şekil 3.27.	(A) Yuğrulmuş ve sıkıştırılmış killer için, (B) örselenmemiş
	orta hassas kil için, (C) örselenmemiş çok hassas kil için tipik
	UU gerilme-birim deformasyon eğrileri
Şekil 3.28.	CU deneyinden elde edilen yenilme zarfı
Şekil 3.29.	CD deneyinden elde edilen yenilme zarfi
Şekil 4.1.	"1" no'lu numunenin 100 kPa hücre basıncı ve normal gerilme
	ile kesildikten sonraki görünümleri
Şekil 4.2.	"1" no'lu numunenin 200 kPa hücre basıncı ve normal gerilme
	ile kesildikten sonraki görünümleri
Şekil 4.3.	"2" no'lu numunenin 100 kPa hücre basıncı ve normal gerilme
	ile kesildikten sonraki görünümleri
Şekil 4.4.	"4" no'lu numunenin 100 kPa hücre basıncı ve normal gerilme
	ile kesildikten sonraki görünümleri
Şekil 5.1.	"1" no'lu numune gurubunda üç eksenli basınç deneyi
	sonuçları
Şekil 5.2.	"2" no'lu numune gurubunda üç eksenli basınç deneyi
	sonuçları
Şekil 5.3.	"4" no'lu numune gurubunda üç eksenli basınç deneyi
	sonuçları
Şekil 5.4.	"8" no'lu numune gurubunda üç eksenli basınç deneyi
	sonuçları
Şekil 5.5.	Optimum su muhtevası değerleri değiştirilen numune
	guruplarına ait üç eksenli basınç deneyi sonuçları
Şeklil 5.6.	Kesme kutusu deneyi sonuçları

TABLOLAR LİSTESİ

Tablo 2.1.	Kırılma-Yenilme kriterlerinin matematik ifadeleri	25
Tablo 3.1.	Kayma direnci açısının tipik değerleri	52
Tablo 3.2.	Killerin serbest basma dayanımına göre ayrımı	56
Tablo 3.3.	τ_f 'yi tanımlamada kullanıla laboratuar ve arazi deneyleri	68
Tablo 5.1.	Üç eksenli basınç deneyi sonuçları	83
Tablo 5.2.	Kesme kutusu deney sonuçları	86
Tablo 6.1.	"1" no'lu numunede üç eksenli basınç deneyi sonuçları	87
Tablo 6.2.	"2","4","8" no'lu numunelerde üç eksenli basınç deneyi	
	sonuçları	88
Tablo 6.3.	Deneylerin genel sonuçları	88
Tablo 6.4.	"2"ve"4" no'lu numunelerde değişik su muhtevasında	
	yapılan üç eksenli basınç deneyi sonuçları	89

KİLDE KAYMA DİRENCİ PARAMETRELERİNİN ÖLÇÜLMESİNDE NUMUNE BOYUTLARININ ETKİSİ

Gülçin ŞENGÜL NOMALER

ÖZET

Anahtar Kelimeler: Kil, kayma direnci, kayma direnci açısı, kohezyon, kesme kutusu, üç eksenli basınç.

Zeminlerin kayma direnci parametreleri, geoteknik mühendisliği ile ilgili projelendirme sırasında, oldukça önemli bir değere sahiptir. Zeminin kayma direnci, yenilmeye meydan vermeden karşı koyabileceği en büyük kayma gerilmesi olarak tanımlanır. Bir zeminde kayma direncinin belirlenebilmesi için kayma direnci parametreleri olan kayma direnci açısı (ϕ) ve kohezyon (c) değerlerinin arazi ya da laboratuvar deneyleriyle saptanması gereklidir.

Zeminlerde kayma direnci parametreleri olan kayma direnci açısı (ϕ) ve kohezyon (c) değerleri üzerinde; zeminin arazide yerindeki başlangıç durumunu yansıtan konsolidasyon basıncı, numuneye ait boşluk oranı, su muhtevası, suya doygunluk derecesi ve dane dağılımı etken faktörler olarak sayılabilir.

Killi zeminlerin kayma direnci parametreleri laboratuvarda genellikle üç eksenli basınç deneyi ile bulunmaktadır. Üç eksenli basınç deneyi, silindir şeklinde hazırlanan numuneler üzerinde gerçekleştirilir. Silindir şeklindeki numune boyutlarının, killi zeminlere ait kayma direnci parametrelerini etkileyip etkilemediğini incelemek amacıyla bu araştırma yapılmıştır.

Bu çalışmada, Sakarya İli sınırları içinde değişik mahallerden farklı plastisiteye sahip örselenmiş killi zemin örnekleri alınarak, laboratuvarda optimum su muhtevası ve proktor sıkılığında numuneler hazırlanmıştır. Numune boyutları R=3,50cm h=7,00cm silindirik, R=5,00cm h=10,00cm silindirik ve 6,00cmx6,00cmx2,00cm kare kesitli olarak seçilmiş ve bu numuneler üzerinde üç eksenli basınç ile kesme kutusu deneyleri uygulanmıştır.

Yapılan üç eksenli basınç deneyleri sonucunda, doygun olmayan CL kilde, büyük boyutlu numunede küçük boyutlu numuneye oranla kohezyon (c) değerinin düştüğü, kayma direnci açısı (ϕ) değerinin yükseldiği görülmüştür. Doygun ya da doyguna yakın olan CI ve CH killerde ise, boyutları büyük ve küçük numunelerde ölçülen kayma direnci parametrelerinde önemli bir fark tesbit edilmemiştir. Kesme kutusu deney sonuçları ise, tüm numunelerde üç eksenli basınç deneyi sonuçlarından çok farklı değerler vermiştir

DETERMINATION OF DIMENSION SIZE EFFECTS ON THE SHEAR STRENGTH OF CLAY

SUMMARY

Keywords: Clay, shear strength, internal angel of friction, cohesion, shear box, triaxial compression test.

Shear strength parameters of soils are very important values for geotechnical engineering projects. The shear strength of soil is the value that is stand against failure before shear failure. It is necessary to obtain the values of shear strength parameters as internal angle of friction (ϕ) and cohesion (c) by either in-situ or laboratory tests.

Consolidation pressure, void ratio, water content, degree of saturation and particle size distrubution can be considered as effective factors for shear strength parameters of soils.

The shear strength parametres can be determined in clayey soils by the triaxial compression test in laboratory. The triaxial compression test can be employed on the cylindrical samples. The aim of this study is to determine the dimension size effects on the shear strength of clay.

In this study, disturbed clay samples are taken from different regions of the Sakarya city. Also they have different plasticity, optimum water content and standart proctor compaction in laboratory. The dimension of the sample is R=5,00 cm h=7,00 cm in cylindrical, R=5,00 cm h=10,00 cm in cylindrical and a=6,00 cm h=2,00 cm in square prism. The triaxial compression test and shear box test are done on these samples.

In the triaxial compression test, R=5,00 cm h=10,00 cm in cylindrical sample (CL) have less saturated ratio gives less cohesion (c) and high internal angle of friction (ϕ) comparing to the R=3,50 cm h=7,00 cm in cylindrical sample (CL). According to the results, there is not much difference between small and large samples in terms of soil saturation. Also triaxial compression test results are completely different from shear box test results.

BÖLÜM 1. GİRİŞ

1.1. Çalışmanın Amacı

Zemin; bir bağlayıcı madde ile tamamen veya kısmen çimentolanmış değişik türden mineraller, organik artıklar, su ve hava karışımından oluşan bir gereç olarak tanımlanır [1]. Zemin, çeşitli inşaat mühendisliği projelerinde yapı malzemesi olarak kullanıldığı gibi, yapıların tabanını oluşturur. Bu nedenle inşaat mühendisleri yapıların projelendirilmesi sırasında, zeminin özellikleri konusunda (örneğin onun orijini, dayanımı, fiziksel özellikleri, geçirimliliği, sıkışabilirliği, kayma direnci ve taşıma kapasitesi gibi) yeterli bilgiye sahip olmalıdırlar.

Zemin mekaniği, zemin kitlelerinin iç ve dış kuvvetler altında statik ve dinamik dengelerini inceleyen bir mühendislik dalıdır. Zemin mekaniğindeki problemler, "gerilme problemleri" ve "deformasyon problemleri" olarak iki ana başlık altında toplanabilir.

Gerilme problemleri: Gerilme-stabilite problemlerinde, bir cisim almakta olduğu gerilmelere karşı yeterli dayanıma sahip değilse ezilir-kırılır-yıkılır [1]. Bu tür problemlerde, zeminin ani ve toptan yenilme olasılığı ve bunun zemin kitlelerinde ve/veya üzerlerinde yer alan yapıların güvenliğindeki etkisi araştırılır. Bu guruba giren problemler arasında; temellerin taşıma gücünün hesabı, şevlerin ve istinat yapılarının duraylılık hesapları sayılabilir.

Deformasyon problemleri: Elastik ve plastik şekil değiştirme problemlerinde ise, zeminler üzerinde yük uygulandığı zaman oluşan elastik (geri gelen) ve plastik (kalıcı) şekil değiştirmeler incelenir. Bu şekil değiştirmelerin, müsaade edilen sınırların altında kalmasının sağlanması gerekir. Aksi halde, yapının güvenliği tehlikeye girmese bile görünür bazı deformasyonlar ortaya çıkabilir.Deformasyon problemlerinde, zeminlerin gerilme - şekil değiştirme ve gerilme - oturma - zaman davranışlarının belirlenmesi ve uygulanacak yükler altında meydana gelmesi olası şekil değişikliklerinin hesaplanması gerekir. Bir binanın kuzey köşesinin güneyine göre birkaç cm fazla oturması, barajın kretinde onlarca cm düzeyinde düşey hareket, bir asfalt yolda görülen enine dalgalılık sıklıkla karşılaşılan deformasyon problemlerine örnektir.

Bu iki ana gurup problemin dışında, zeminler su geçirgenliği olan malzemeler oldukları için, zemin içinde su akımı ve bununla ilgili sorunlar zemin mekaniğinin önemli konularından biridir [2].

"Zeminlerde kayma direnci" bir gerilme-şekil değiştirme problemidir. Her iki koşulun incelenmesinde de, zemine ait kayma direncinin , bunun için de kayma direnci parametrelerinin bilinmesi gereklidir [1].

Zeminlerde yenilme meydana gelmesi için, olası bir kayma düzlemi boyunca kayma gerilmesinin aşılması gerekir. Bu düzlem, her zaman en büyük kayma gerilmesi düzlemi olmayabilir. Genel olarak yenilme, belli bir kayma düzlemi üzerine etkiyen normal ve kayma gerilmelerinin ortaklaşa etkisi sonucu ortaya çıkar. Zeminin kayma direnci ise, yenilmeye meydan vermeden karşı koyabileceği en büyük kayma gerilmesi olarak tanımlanır.

Kayma direncinin belirlenmesinde en önemli faktörler;

1-Zeminin arazide yüklenmeden önce yerindeki başlangıç durumunu yansıtan,

a)Konsolidasyon basıncı,

b)Boşluk oranı,

c)Su muhtevası,

d)Suya doygunluk derecesi,

2-Arazi yükleme türü ve hızı,

3-Arazi deney koşulları

olmaktadır [2].

Zeminlerde kayma direnci "c-kohezyon" ve " ϕ -kayma direnci açısı" gibi iki parametreyle ifade edilmektedir [1].

Kohezyonlu zeminlerin drenajsız kayma direnci hakkında ayrıntılı çalışmalar yapılmıştır. Bu konuda doğruluğu kabul edilen çalışmalar Bishop (1966), Rowe (1967), Ladd (1967), Bjerrum (1972,1973) tarafından sunulmuştur [3].

Bell (1915), çeşitli kohezyonlu zeminlerde bir seri kesme kutusu deneyi yapmış ve gevşek zeminlerde ¢'nin düşük değerler verdiğini göstermiştir. 1932'de Terzaghi, iki farklı laboratuarda doygun killer üzerinde çalışmıştır. Terzaghi, killerin drenajsız kayma direnci ile ilgili, UU ve CU deneyleri yapmıştır. Bu çalışmalara göre, doygun killerde boşluk suyu basıncı ölçülmediğinde $\phi=0$ olur. Skempton (1948), UU basınç deneyi üzerinde çalışmalar yapmıştır. Ayrıca 1920'de Terzaghi, efektif gerilme kavramını ortaya atmıştır. 1930 dolaylarında Cassagrande, basit kesme deneyinin dezavantajlarını ortadan kaldırmak amacıyla silindirik basınç deneyini geliştirecek çalışmalar yapmıştır.

Skempton ve Bishop (1954), kayma direncinin zeminin karşı koyduğu maksimum kayma gerilmesi olduğunu ispatlamıştır. Diğer taraftan Hvorslev (1960), kayma direncini yenilme yüzeyinde zeminin yenildiği andaki kayma gerilmesi olarak açıklamıştır. Lambe (1960), daneli zeminlerde kayma direnci mekanizmasını yorumlamıştır [4].

Zeminlerde kayma direnci parametreleri olan c ve ϕ ; zeminin cinsi, fiziksel özellikleri, zeminin üzerine yapılacak olan yapının inşa şekline göre arazi ya da laboratuar deneyleri ile tesbit edilir. Laboratuvar ortamında yapılan deneylerden kesme kutusu ve üç eksenli basınç deneyleri en yaygın olarak kullanılanlardır. Üç eksenli basınç deneyleri boyu çapının iki katı olan silindirik numuneler üzerinde yapılır. Kesme kutusu deneyi ise kare ya da daire kesitli numunelere uygulanır. Zemin üzerine yapılacak olan üst yapıların dizaynında önemli bir yeri olan kayma direncini bulmak için, kayma direnci parametrelerinin laboratuvarda tesbiti esnasında etken olan faktörler dikkatle incelenmelidir. Bu araştırmanın konusu olarak, numune boyutunun kayma direnci parametrelerinin ölçümüne etkisi seçilmiştir. Ve numune boyutunun üç eksenli basınç deneyinde c ve ϕ 'nin tesbitine etkisi yanında, aynı numunenin kesme kutusunda nasıl bir sonuç verdiği de incelenmiştir. Bunların yanında, c ve ϕ 'nin numunelerin su muhtevası, plastisite indisleri, dane çapı dağılımı gibi özellikleriyle bir değişim gösterip göstermediğine de bakılmıştır.

Yapılan araştırma esnasında, Sakarya İli sınırları dahilinde birbirine yakın olmamasına dikkat edilerek, muhtelif yerlerden örselenmiş zemin numuneleri alınmıştır. Alınan bu numuneler SA.Ü. Geoteknik Laboratuvarına getirilmiş ve tüm çalışmalar burada yapılmıştır. Zemin homojen bir yapıya sahip olmadığından, alınan numunelerin birbiriyle aynı yapıya sahip olmaları mümkün değildir. Bu çalışmada, killi zeminlerin kayma direncine yalnızca numune boyutunun etkisi araştırıldığından ve killi zeminler doğada değişik plastisite indisine sahip olduğundan, numunelerin plastisite indisleri ve boyutları dışında aynı fiziksel özelliklere sahip olması istenmiştir. Bu nedenle, zemin numunelerinin önce fiziksel özellikleri tesbit edilmiş, daha sonra 200 nolu elekten elenerek optimum su muhtevasında sıkıştırılarak laboratuvar ortamında değişik boyutlarda yeni numuneler hazırlanmıştır. Bu numuneler üzerinde kesme kutusu ve drenajsız-konsolidasyonsuz üç eksenli basınç deneyleri uygulanarak, numune boyutlarının kayma direnci parametrelerinin tesbitine etkisi yorumlanmıştır.

SA.Ü. Fen Bilimleri Enstitüsü Geoteknik EBD Yüksek Lisans Tezi olarak hazırlanan bu çalışmada, değişik plastisite indisine sahip killi zeminlerin kayma direnci parametrelerinin laboratuvarda ölçülmesinde, numune boyutlarının etkisi araştırılmıştır.

1.2. Zeminlerde Kayma Direnci Problemleri

Yüklenen bir temel altındaki zeminin taşıma gücünün yitirilmesi (Şekil 1.1.a), bir şevin kayması, bir dayanma duvarının öne kayarak devrilmesi (Şekil 1.1.b) vb,

Şekil 1.1. Stabilite problemleri

b) Dayanma duvarı göçmesi

stabilite problemlerine örnek olarak verilebilir. Stabilite problemlerinde, zemin kitlesinin kırılmasına neden olan yükün (basıncın), vb belirlenmesine çalışılır.

Deformasyon problemlerinde ise, zemin kitlesinin taşıma gücünü kaybetmesinden önceki durumu ile ilgilenilir. Bu durumlardaki yer değiştirme veya gerilmelerin belirlenmesi istenilir. Zeminin üzerine bir temelin, zeminin taşıma gücünü kaybetmeksizin yüklenmesi, deformasyon problemlerine bir örnek olarak verilebilir (Şekil 1.2.).

Şekil 1.2. Deformasyon problemlerine bir örnek

Stabilite problemlerinin çözümü, zeminin kayma direncini ifade eden parametreler kullanılarak yapılır. Zemin ortamı yüklendiği zaman, zemin kitlesinde gerilmeler oluşur. Zemin ortamında oluşan kayma gerilmeleri, zeminin kayma direncine ulaşıldığında, zemin kitlesinde yenilme meydana gelir. "Zeminin kayma direnci", dayanabileceği en büyük kayma gerilmesi olarak da tanımlanabilir. Diğer bir deyişle, kayma direnci; kırılma sırasında, kayma yüzeyi boyunca etkiyen kayma gerilmesidir [5].

1.3. Zeminlerde Kayma Direncinin Ölçümü

Bütün yapılar zemin üzerine, zemin içine, yapı malzemesi olarak zeminin kullanılmasıyla (kerpiç vb) yapıldığından, yapının yapıldığı zemin özelliklerinin sağlıklı ve güvenilir şekilde tesbiti önemlidir. Aşağıda, zeminin kayma direnci parametrelerinin tesbitinde kullanılan deneylerin başlıcaları sıralanmıştır.

1-Laboratuvar deneyleri:

a)Serbest basınç deneyi

Silindirik bir zemin numunesinin yalnızca eksenel doğrultuda yüklemeye tabi tutulmasıyla gerçekleştirilir. Eksenel yük artışları altında numunede meydana gelen boy kısalması ölçülür. Deney sırasında numunenin drenaj koşulları kontrol edilmediği için, hızlı yükleme yapılarak zeminin drenajsız kayma direncinin elde edildiği kabul edilmektedir. Yalnızca killi zeminler için kullanılan bir deneydir.

b)Kesme kutusu deneyi

Kesme kutusu deneyinde zemin numunesi önceden belirlenmiş, numunenin ortasından geçen yatay bir düzlem boyunca yenilmeye zorlanır. Belirli bir normal gerilme altında, uygulanan kesme kuvveti ile meydana gelen yatay yer değiştirmeler ölçülür. Numune üzerine uygulanan normal gerilme ile zemin numunesinin konsolide olması mümkün olmaktadır. Uygulamada kesme kutusu deneyi daha çok kumların kayma direncini saptamak için kullanılır.

c)Üç eksenli basınç deneyi

Üç eksenli basınç deneyinde, silindirik bir zemin numunesi bir hücre içine yerleştirilir ve hücreye basınç uygulanır. Deneyin birinci aşaması, zemin numunesi üzerine arazide yüklenmeden önce etkiyen gerilmelerin hücre basıncı vasıtası ile uygulanmasıdır. Bu aşamada drenaja izin verilirse, numune konsolide edilebilmektedir. İkinci aşamada ise eksenel basınç uygulanır. Bu aşama drenajlı veya drenajsız olarak yapılabilir [2].

Diğer laboratuvar deneyleri:

d)Basit-doğru kesme

e)Kanatlı kesici

f)Düzlem deformasyon

g)Hücrede içi boş silindir kesme ve burulma

h)Gerçek üç eksenli kesme

i)Halka kesme

j)Kama kesme

2-Arazi deneyleri:

a)Arazi kanatlı kesici deneyi (FVT)

Kanatlı kesicinin zeminin içine itilerek çevrilmesiyle uygulanır. Bu deneyle drenajsız kayma direnci ölçülür. Yumuşak killer ve siltli killerde hızlı sonuç verir.

b)Sondaj kuyusu kesme aleti (BST)

Çakıllı zeminler dışında tüm ortamlarda kayma direncini doğrudan ölçen bir alettir. c)Konik penetrometreler (CPT) Konik penetrometreler ile yapılan deneyler, zemine sabit hızla itilen bir ucun gördüğü direncin ölçülmesi esasına dayanır. Penetrometrelerin çeşitli tipleri vardır [1].

BÖLÜM 2. KIRILMA KRİTERLERİ

2.1. Giriş

Kırılma konusu, özellikle son yıllarda kuramsal ve deneysel olarak üzerinde en çok çalışılan mühendislik dallarından biri olmuştur. Kırılma, kararlı ve kararsız çatlak ilerlemelerinin koşullarını inceleyen geniş bir bilim dalıdır. Bu denli geniş bir bilim dalı, ilgi alanı birbirinden çok farklı olan makina, inşaat ve metalurji mühendisliğinin uygulamaları içine etkin bir biçimde yayılmıştır. Konuya böyle kapsamlı açıdan bakıldığında, "kırılma" en genel haliyle, cisimlerin gerilme altında iki veya daha fazla parçaya ayrılması olarak tanımlanabilir [6]. Cisimlerin kırılması bir mukavemet problemidir.

Mukavemet, mühendislikte kullanılan taşıyıcı sistemlerin dış kuvvetlere ve bunların sebep olduğu iç kuvvetlere dayanıp dayanmayacağını araştırır [7]. Mukavemette, çubuk adı verilen ve iki boyutu üçüncü boyutuna göre çok küçük olan, özel geometrik yapıya sahip şekil değiştiren cisimler söz konusudur [8].

Cisimlerin kırılması probleminin çözülmesinde ilk adım, dış kuvvetlere maruz cisimlerdeki iç kuvvetlerin incelenmesidir.

Çubuk şeklindeki bir cisme etkiyen kuvvetler, "iç kuvvetler" ve "dış kuvvetler" olmak üzere sınıflandırılabilir. Dış kuvvetler, ağırlık kuvvetleri, rüzgar ve deprem kuvvetleri, bağ kuvvetleri gibi cisme dıştan etkiyen kuvvetlerdir. İç kuvvetler ise,cismin parçaları arasındaki etki ve tepkilerdir (Şekil 2.1.).

Dış kuvvetlerin etkisi altında dengede bulunan bir cisim hayalen ikiye ayrıldığında, parçaların da dengede bulunması için ayırma yüzeylerine bir takım iç tesirlerin konulması gerekir (Şekil 2.1.). Kesit üzerinde yayılı olan bu iç kuvvetlerin kesitin

ağırlık merkezine indirgenmesiyle elde edilen kuvvet ve momente "kesit tesirleri" denir.

Şekil 2.1. Bir cisme etkiyen kuvvetler sistemi

Çubuk şeklindeki cisimlerin kesitlerinde normal kuvvet, kesme kuvveti, eğilme ve burulma momentleri genellikle birlikte bulunurlar. Bazı özel hallerde ise, bunlardan yalnız bir tanesi tesir edebilir. Kesit tesirlerinden yalnız bir tanesinin bulunduğu özel hallerin her birine "basit mukavemet halleri", birkaçının birlikte bulunduğu hallere de "bileşik mukavemet halleri" denir [7].

Bir cismin kesitindeki kesit tesirlerine örnek olarak; alanı A, boyu l_0 olan bir çubuk üzerinde normal kuvvet etkisi Şekil 2.2.'de gösterilerek incelenmiştir.

Şekil 2.2. Normal kuvvet

Kesit alanı A, boyu l_0 olan bir çubuk, B noktasından bağlanıp C serbest ucundan P kuvveti ile çekilirse, çubuk boyunun δ kadar uzadığı ölçülebilir (Şekil 2.2.a). P kuvveti δ yer değiştirmesinin nedenidir. Aslında asıl neden, N iç kuvvetidir. N iç kuvveti Şekil 2.2.b'deki serbest cisim diyagramından P=N olarak bulunur. Ancak diğer zorlama hallerinde iç kuvvet-dış kuvvet ilişkisi bu kadar basit değildir. Neden-sonuç ilişkisini bulmak için, P dış kuvveti sıfırdan başlanarak yavaş yavaş arttırılırken, her P değerine karşı gelen δ boy değiştirmesi ölçülür. N iç kuvvetine karşı gelen büyüklük σ ile gösterilir ve

$$\sigma = N/A \tag{2.1}$$

birim alana gelen kuvvet "gerilme" olarak tanımlanır. δ boy değişimine karşı gelen birim boy değiştirme

$$\varepsilon = \delta/l_0$$
 (2.2)

olarak tanımlanır ve "birim şekil değiştirme" adını alır.

Ancak, cisimleri zorlayan dış kuvvetler ve cismin geometrisi her zaman normal kuvvet halinde olduğu gibi basit olmayabilir. Bu takdirde, kesit hesabı yapılırken gerilmenin özelliklerini daha ayrıntılı bilmek gerekir. Bir noktada tek başına gerilmeden söz etmek bir anlam taşımaz. Bir noktadaki gerilme, bu noktadan geçen düzlemin tanımlanması ile anlam kazanır. Bir noktadan sonsuz sayıda düzlem geçtiğine göre, bir noktada sonsuz sayıda gerilme değeri bulunabilir ve bu değerler arasında belli bir ilişki bulunur. Bir noktadan geçen herhangi bir düzlemdeki gerilmeleri hesaplamak için önceden bilinmesi gereken verilere " o noktanın gerilme durumu" denir. "Eksenel gerilme" hali ise, bir noktadan geçen bir düzlemdeki gerilmenin verilmesiyle tanımlanmış olur.

Bir noktadan geçen düşey düzlem yerine, düşeyle θ açısı yapan düzlemdeki gerilmeler bulunmak istendiğinde; P kuvveti daha büyük alana etkiyeceği için θ açısı ile tanımlanan eğik düzleme etkiyen |t|=t gerilmesi küçülecektir. t gerilme vektörü düzlem normali ve düzlem içindeki bileşenlerine ayrıldığında, düzleme dik bileşene "normal gerilme" denir ve σ ile gösterilir. σ normal gerilmesi, etki ettiği düzlemin dış normali doğrultusunda ise "çekme gerilmesi" adını alır ve (+) işareti ile gösterilir. Eğer normal gerilme düzleme doğru yönelmiş ise "basınç gerilmesi" adını alır ve işareti ile gösterilir.

"t" gerilme vektörünün düzlem içi bileşenine ise "kayma gerilmesi" denir ve τ ile gösterilir (Şekil 2.3.).

Şekil 2.3. Gerilmeler

"t" gerilme vektörünün yüzeyin normali ile çakıştığında $\tau=0$ olduğu haldeki σ gerilmesine "asal normal gerilme" denir [9].

Şekil 2.1'de ele alınan cisimden D noktası civarında, kenar uzunlukları dx, dy, dz olan elemanter bir prizma ayrıldığı düşünülürse; D noktasının genel gerilme hali için 9 bileşen bulunur (Şekil 2.4.) ve bu bileşenlerin teşkil ettiği matrise "gerilme tansörü" adı verilir.

$$\begin{vmatrix} \sigma_{x} & \tau_{xy} & \tau_{xz} \\ \tau_{yx} & \sigma_{y} & \tau_{yz} \\ \tau_{zx} & \tau_{zy} & \sigma_{z} \end{vmatrix}$$
(2.3)

Şekil 2.4. D noktasının genel gerilme hali

Gerilme tansörünün bazı terimlerinin özel hallerde sıfır olabileceği düşünülerek, gerilme halleri üçe ayrılır;

Bir eksenli gerilme hali ($\sigma_x = \sigma_y = \tau_{xy} = \tau_{xz} = \tau_{yz} = 0$) İki eksenli (düzlem) gerilme hali ($\sigma_z = \tau_{xz} = \tau_{yz} = 0$) Üç eksenli (genel) gerilme hali [7].

Çubuk şeklindeki cisimlerin gerilme-şekil değiştirme davranışları incelendiğinde, iki farklı tür ortaya çıkar. "Sünek cisimler"; kırılmadan önce büyük şekil değiştirme gösteren, çekme ve basınçta özellikleri aynı olan cisimlerdir. Örneğin çelik. "Gevrek cisimler"; akma sınırları olmayan, kırılmadan önce büyük şekil değiştirme göstermeyen, çekme ve basınçta belirgin farklılıklar gösteren cisimlerdir. Örneğin beton, taş, font.

Bir cisme etkiyen kuvvetler belirli bir değere erişince, cisim tehlikeli duruma geçer. Tehlikeli durum; sünek cisimler için akmanın başlaması, gevrek cisimler için ise kırılma veya ezilme gibi olayların meydana gelmesidir [10].

Kırılma türlerini sınıflamak için çeşitli yöntemler vardır. Bunların en önemlisi, kırılmanın mekaniği ile ilgili olan ve uygulanan yükler ile bu yüklerin kırılma sırasında iç yapıdaki etkilerini önemseyerek yapılan sınıflamadır. Bu yönteme örnek olarak, gevrek kırılma, sünek kırılma, sürünme kırılması ve yorulma kırılmaları gösterilebilir.

Bir cismin üzerine gelen zorlama şekli, yani gerilme ve şekil değişimi ile ortam koşulları, oluşacak kırılmanın türünü belirler. Çeşitli dış etkilere karşın ancak pek az cisimde bir tek kırılma türü görülebilir. Aynı cisimde birden fazla kırılma türünü görmek mümkündür. Özellikle endüstriyel uygulamalarda kırılma türü kırılma mekaniği yönünden; kırılma sırasında iç yapıda olan değişikliklerden, çatlağın yapıda ilerleyiş şeklinden ve kırılan kesit görünümünden ayrı ayrı değerlendirilebilir. Ancak, cismin kırılma öncesi durumu ve kırılmaya neden olan kuvvetin etkime koşullarına göre kırılma türleri, gevrek ve sünek kırılma olarak iki şekilde incelenebilir.

Gevrek Kırılma: Cismin, yok sayılabilecek kadar az ya da hiç kalıcı şekil

değişikliği oluşturmadan kırılmasıdır. Çatlak ilerlemesi çok hızlı olup bu ilerleme, çevre yüzey enerjisi ile oluşmaktadır. Diğer bir deyimle, çatlak oluştuktan sonra ilerlemesi için sürekli dış gerilime ihtiyaç yoktur.

Şekil 2.5. Gevrek kırılma

Birçok durumda gevrek olarak kırılan cisimlerde, sadece kırılmış yüzey civarında çok az oranda şekil değişikliği oluştuğundan, kırılan yüzeyin görünümü parlak ve düzgündür. Şekil 2.5.'de gevrek cismin kırılması ve kırılma halindeki gerilme-şekil değiştirme grafiği görülmektedir.

Sünek Kırılma: Kırılmadan önce cisimde kalıcı şekil değişikliği oluşursa, bu tür kırılma sünek kırılmadır. Kalıcı şekil değişikliklerinin miktarı, kırılma sonrasında malzemedeki kesit azalması veya gerilme yönünde oluşan boy uzaması ölçülerek saptanabilir. Kırılma, kalıcı şekil değişikliği oluşturabilecek gerilme ile doğru orantılı olup, yavaş oluşmaktadır. Kırılma sonucu kırılma yüzeylerinin görünümü liflidir [6]. Şekil 2.6.'da sünek cismin kırılma gerçekleştikten sonraki kesiti ve sünek cisim olan yumuşak çelik çubukta gevrek kırılmadan sünek kırılmaya geçiş halindeki gerilmeşekil değiştirme grafiği görülmektedir [11].

Şekil 2.6. Yumuşak çelikte gevrek kırılmadan sünek kırılmaya geçiş ve sünek kırılma kesitine bir örnek

Tekrarlı zorlamalar altında cismin mukavemeti azalır ve cismin sahip olduğu mukavemetin çok altındaki tekrarlı gerilmeler kırılma oluşturabilir. Buna neden olan, yorulma olayıdır. Yorulma kırılması gevrek türde olduğundan, nerede ne zaman olacağını kestirmek zordur. Özetle; kuvvetin zamanla sık değişmesi halinde, belirli bir kuvvet tekrarından sonra cismin kırılmasına "yorulma kırılması" denir.

Cismin kırılması veya mukavemetini kaybetmesi, cismin tahrip olarak parçalara ayrılması ve bu suretle maruz kalacağı yükleri emniyetle kaldırma kabiliyetini tamamen kaybetmesi demektir. Bir kırılma kriteri, "cismin tahmin edilen kırılma tutumuna karşı standart hüküm verebilmesi" olarak tanımlanabilir.

Cisimlerin kuvvetler tesiri altında ne gibi sebeplerin tesiri ile kırıldığını araştıran bilim adamları, bir çok deneyin sonucunda bazı kriterler ileri sürmüşlerdir. Bu kriterlere, "Kırılma Kriterleri" veya "Kırılma Teorileri" veya "Kırılma Hipotezleri" adı verilir [6].

2.2. Kırılma Kriterlerinin Tanımı

Cisimlerin tek eksenli veya basit kayma gerilmeleri altındaki davranışı "basit mukavemet halleri" olarak isimlendirilebilir ve uygun şekilde seçilmiş bir gerilmeşekil değiştirme diyagramı üzerinde izlenebilir [12]. Ancak uygulamada kesit tesirleri bir arada bulunur. Eğer şekil değiştirmeler küçükse, süperpozisyon geçerlidir. Yani her basit hal için gerilmeler ve şekil değiştirmeler ayrı ayrı hesaplanır ve bileşik hale ait sonuç, basit hale ait gerilme ve şekil değiştirmelerin toplamı olarak bulunabilir.

Bileşik mukavemet hallerinde önemli bir problem, boyutlandırma ya da kesit kontroludur. Basit mukavemet hallerinde, bir noktada sadece basit kayma ya da tek eksenli gerilme bulunabilir. Bu durumda, tek gerilmenin belli bir değerden küçük olmasını sağlamak, cismin sağlamlığı için yeterlidir. Halbuki çok eksenli gerilme halinde, en büyük gerilmenin yine aynı σ_M (tek eksenli gerilmedeki mukavemet sınırı) gibi bir değerden küçük olmasını istemek yeterli olmayabilir.

Şekil 2.7. Kırılma kriterlerinin tanımı

Bir örnek olarak; küp şeklinde kesilmiş iki taş parçası tek doğrultuda basınca maruz bırakıldığında, σ_1 basıncı σ_M gibi bir değere ulaştığı zaman kırılacaktır. Halbuki aynı taş, $\sigma_1=\sigma_2=\sigma_3>\sigma_M$ gibi hidrostatik basınca maruz kaldığında kırılmaz (Şekil 2.7.). O halde, malzemenin kırılacağı noktayı bulmak için σ_1 , σ_2 , σ_3 değerlerinin her birini göz önüne almak gerekir. Bu değerlerin çok çeşitli kombinezonları için deney yaparak sonuç elde etmek mümkün değildir. Bunun yerine, malzemenin tek eksenli gerilmedeki mukavemet sınırı σ_M bulunur ve bu σ_M değeri ile, çok eksenli gerilme halinde σ_1 , σ_2 , σ_3 'ün hangi değere ulaştığı zaman kırılacağı tesbit edilmeye çalışılır. σ_M ile σ_1 , σ_2 , σ_3 arasındaki ilişki $\sigma_M=f(\sigma_1, \sigma_2, \sigma_3)$ eşitliğini sağladığı zaman, malzeme kırılma sınırına ulaşmış olacaktır.

Günümüze kadar yapılan bilimsel çalışmalar sonucu, bu fonksiyonun şekli için birçok kriter ortaya atılmıştır. Her malzemenin iç yapısında malzemeden malzemeye görülen farklılık nedeniyle, yukarıdaki fonksiyonun şekli de değişir. Dolayısıyla, ortaya atılmış birçok kırılma kriterleri bazı malzemeler için iyi sonuç verdiği halde, diğer tip bir malzeme için tatminkar sonuç verememektedir [9].

2.3. Kırılmanın Türleri

Sıcaklık derecesi esas alındığında; 1-Normal sıcaklıkta kırılma, 2-Yüksek sıcaklıkta kırılma. Etki eden kuvvet çeşidi ele alındığında; 1-Statik etki altında kırılma, 2-Dinamik etki altında kırılma [6].

2.3.1. Normal sıcaklıkta ve statik etki altında kırılma

Kuvvetlerin yavaş etki ederek, şiddetlerini yavaş yavaş arttırmaları halinde meydana gelen kırılmadır. Bu kırılmayı açıklamak için ileri sürülen kırılma kriterleri esas olarak üç grupta toplanabilir.

1-Gerilme Kriterleri:

Bu tip kriterlerde kırılmaya sebep olan esas unsur gerilme olarak alınır ve

Bu tip kriterlerde kırılmaya sebep olan esas unsur gerilme olarak alınır ve gerilmelerden biri sınır değerine ulaşınca veya gerilmeler arasında belirli bir bağlantı sağlanınca kırılma olayının meydana geldiği kabul edilir.

a)Maksimum kayma gerilmesi kriteri (Tresca)

b)Maksimum normal gerilme kriteri (Rankine)

c)Coulomb kayma gerilmesi kriteri

d)Mohr genel kayma gerilmesi kriter

2-Şekil Değişimi Kriterleri:

Bu kriterler kırılmanın, maksimum birim uzama veya maksimum açı değişimi belirli bir sınıra ulaştığında meydana geldiğini kabul ederler. St.Venant, Poncelet, Mariotte tarafından ortaya atılan bu kriterlerin bugün için kullanılma sahaları çok sınırlıdır.

a)Maksimum birim uzama kriteri (Saint Venant)

b)Maksimum açı değişimi kriteri

3-Enerji Kriterleri:

Enerji kriterleri, cismin akma veya kırılma durumuna gelmesinde esas rolü şekil değiştirme enerjisinin oynadığını kabul ederler.

a)Toplam şekil değiştirme enerjisi kriteri (Beltrami)

b)Biçim değiştirme enerjisi kriteri (von Mises) [6,7,10].

2.3.2. Kırılma kriterleri

Maksimum Kayma Gerilmesi Kriteri (Tresca Kriteri): Bu kritere göre; çok eksenli gerilme halinde bir kesitte oluşan en büyük kayma gerilmesi, tek eksenli gerilme halindeki kayma gerilmesine eşit olduğunda, cismin kırılma durumuna eriştiği kabul edilir.

Şekil 2.8. Maksimum kayma gerilmesi kriterinde çok eksenli gerilme halinde Mohr daireleri

Bu kriter,

$$(\sigma_1 - \sigma_3)/2 = \sigma_M/2 \longrightarrow \sigma_1 - \sigma_3 = \sigma_M$$
 (2.4)

şeklinde ifade edilir. Bu kriter, cismin kırılma durumuna geçmesinde en büyük ve en küçük gerilmeyi göz önüne almakta, ortanca gerilmeyi göz önüne almamaktadır. Çekme ve basınçta mukavemetleri aynı olan cisimlerde başarılı bir şekilde uygulanan bu kriter, akma şartı olarak da plastisite teorisinde önemli rol oynar.

Şekil 2.8.'de görüldüğü gibi, çok eksenli gerilme haline ait Mohr daireleri σ_M ile belirlenen iki doğru arasında kaldığı zaman, cisim kırılma durumunda değildir. Teğet hali limit durumu göstermektedir. Cisme $\sigma_1 = \sigma_2 = \sigma_3 = \sigma_0$ gibi hidrostatik basınç veya çekme gerilmesi ilave edildiğinde, Mohr dairesi σ ekseni üzerinde bir nokta şeklinde görüleceğinden, maddesel davranışta hiçbir değişiklik meydana gelmez yani kırılma gerçekleşmez.

Şekil 2.9. Maksimum kayma gerilmesi kriterinin gösterimi ve Tresca altıgeni

Bu kriter σ_1 , σ_2 ve σ_3 eksen takımında sınır yüzeyi altı köşeli ve iki ucundan açık, ekseni koordinat eksenleri ile eşit açılar yapan prizmatik bir yüzey ile gösterilir (Şekil 2.9.a). Bu yüzeyin σ_1 ve σ_2 düzlemi ile arakesitine "Tresca altıgeni" denir ve bu altıgen Şekil 2.9.b' de görülmektedir [10].

Maksimum kayma gerilmesi kriteri, çekme ve basınçta aynı özelliği gösteren sünek cisimlerde iyi sonuçlar verir. Buna karşılık gevrek cisimlerde bu kriterle tatmin edici sonuçlar elde edilemez [7].

Maksimum Normal Gerilme Kriteri (Rankine Kriteri): Bu kriter, kırılma durumuna geçmede etken neden olarak en büyük normal gerilmeyi göz önüne alır. Dolayısıyla karşılaştırma koşulu,

$$\sigma_{\rm M} = \sigma_1$$
 (2.5)

olur. En eski kriter olan bu kriterde ortanca ve en küçük gerilme göz önüne alınmamaktadır. Gevrek cisimde, çekme tipi gerilme bulunması halinde iyi sonuçlar vermektedir.

Bir cisme hidrostatik basınç uygulandığında, yani $\sigma_1 = \sigma_2 = \sigma_3 = \sigma_0$ olduğunda, cismin mukavemetini kaybettirmek mümkün olmamaktadır. (Hidrostatik basınç hali, mukavemet kriterlerinin belirli ölçüde güvenilirliğini kontrol etmede kullanılır.) Bu kriter, hidrostatik basınçta kırılma durumunu vermez. Çünkü bu kritere göre, hidrostatik basınçta uygulanan σ_0 gerilmesi σ_M 'i geçtiği takdirde cismin kırılma durumuna gelmiş olması gerekir. Oysa hidrostatik basınç hali ile cisim hiçbir zaman kırılma durumuna getirilemez.

Şekil 2.10. Maksimum normal gerilme kriterinin gösterimi ve iki eksenli gerilme halinde güvenli bölgenin sınırları

Bu kriterin belirlediği sınır yüzey σ_1 , σ_2 ve , σ_3 eksen takımında Şekil 2.10.b'de gösterilen küp ile ifade edilir. Şekilde σ_M ve , σ'_M ile gösterilen gerilmeler, cismin tek eksenli gerilme halindeki çekme ve basınç mukavemetleridir. Verilen σ_1 , σ_2 ve , σ_3 asal gerilmelerine karşı gelen nokta, Şekil 2.10.b'de görülen kübün içinde ise, cisim için kırılma durumu söz konusu değildir. Kübün yüzeyleri ise, kırılma durumunun sınırlarını göstermektedir. Şekil 2.10.a'da iki eksenli gerilme halinde, güvenli bölgenin sınırları görülmektedir [10].

Bu kriter, basitliği bakımından bazı özel gerilme halleri için birçok ülke şartnamelerinde kabul edilmiş olmasına rağmen; basit kayma, hidrostatik basınç gibi durumlarda doğru sonuçlar vermez [7].

Coulomb Kayma Gerilmesi Kriteri: Çekmede ve basınçta birbirinden farklı σ_M ve σ'_M gibi iki güvenlik gerilmesine sahip gevrek malzemeler için kullanılır. Bu kriterde ortadaki gerilme etkili değildir.Kırılma durumuna geçme şartı,

$$\sigma_1/\sigma_M + \sigma_3/\sigma'_M = 1 \tag{2.6}$$

olarak ifade edilir (Şekil 2.11.).

Şekil 2.11. Coulomb kayma gerilmesi kriterine ait zarf doğruları

Burada σ_M ve σ'_M sıra ile malzemeye ait tek eksenli gerilme halindeki çekme ve basınç sınır gerilmelidir. Gerilmeler işaretleri ile yerlerine konulacaktır.

Bu kritere ait sınır yüzeyi σ_1 , σ_2 ve σ_3 eksen takımında bir tarafı açık altı yüzeyli piramit ile gösterilir (Şekil 2.12.a). Bu yüzeyin σ_1 , σ_2 düzlemi ile arakesiti Şekil 2.12.b'de görülmektedir.

Maksimum kayma gerilmesi kriterinin, çekme ve basınçta farklı sınır mukavemeti olan malzemelerdeki eksiğini Coulomb kriteri giderir. Gerçeklere daha çok uyan sonuçlar verir [9,10].

Şekil 2.12. Coulomb kayma gerilmesi kriterinin gösterimi

Mohr Genel Kayma Gerilmesi Kriteri: Bu kriter, en büyük kayma gerilmesi kriterinin daha da genelleştirilmesidir. Bu kritere göre, tek eksenli gerilme mukavemetlerine ait Mohr dairelerinin zarfı doğrular olmayıp, Şekil 2.13.'de görüldüğü gibi deneyle elde edilecek bir eğri olmaktadır. Mohr dairesinin bu eğriye teğet olması halinde kırılma durumuna gelinmektedir.

Şekil 2.13. Mohr genel kayma gerilmesi kriteri

Mohr kırılma kriterine göre katı cismin içindeki kırılma,

$$\mathbf{f}_{(\sigma)} = \tau \tag{2.7}$$

gibi bir bağlantının sağlanması ile meydana gelir. Burada $f(\sigma)$ ifadesi, her malzemenin cinsine göre belirlenmesi gereken bir fonksiyondur [10].

Maksimum Birim Uzama Kriteri (Saint-Venant Kriteri): Bu kritere göre, kuvvetler etkisi altında bulunan bir cismin içinde meydana gelen en büyük birim uzamanın yani ε_{max} ın sınırlı bir miktara erişmesi ile iç çözülme veya kırılma başlar. Basit bir çekme deneyi yapılacak olursa, ε_{max} ın ne gibi sabit bir değere erişmesi ile; sünek malzemede "akma", gevrek malzemede "kırılma"olduğu tayin edilebilir. ε birim uzamasının bu sınır değerleri ε_F (akma gerilmesine tekabül eden birim uzama) ve $\varepsilon_{\rm B}$ (kırılma gerilmesine tekabül eden birim uzama) dir.

Buna göre,

sünek cisimde $\varepsilon_{max} = \varepsilon_F$ (2.8)

gevrek cisimde $\varepsilon_{max} = \varepsilon_B$ (2.9)

olduğunda, akma veya kırılma başlayacaktır.

 ε_1 , ε_2 , ε_3 asal birim uzamaları σ_1 , σ_2 , σ_3 asal gerilmeleri cinsinden ifade edilecek olursa,

$$\varepsilon_1 = \frac{\sigma_1}{E} - \frac{\nu(\sigma_2 + \sigma_3)}{E} \qquad \varepsilon_2 = \frac{\sigma_2}{E} - \frac{\nu(\sigma_1 + \sigma_3)}{E} \qquad \varepsilon_3 = \frac{\sigma_3}{E} - \frac{\nu(\sigma_1 + \sigma_2)}{E} \qquad (2.10)$$

bulunur. Gerilme halini belirten σ_1 , σ_2 asal gerilmeleri bir koordinat eksen takımındaki nokta koordinat ile belirtilirse, maksimum birim uzama teorisinin gösterdiği kırılma hallerine karşılık gelen noktaların geometrik yeri, Şekil 2.14'te görülen çevreyi verir [6].

Şekil 2.14. Maksimum birim uzama kriteri

MAKSİMUM AÇI DEĞİŞİMİ KRİTERİ

Bu kritere göre kırılma, cisimde oluşan maksimum açı değişiminin sınırlı bir miktara ulaşması ile yani
$$\gamma_{\max} = \gamma_{FM} \tag{2.11}$$

olması ile başlar. Bu kriter esas itibari ile maksimum kayma gerilmesi kriteri ile aynı özelliklere sahiptir [6].

Toplam Şekil Değiştirme Enerjisi Kriteri: Bu kritere göre; üç eksenli gerilme halindeki toplam şekil değiştirme enerjisi, tek eksenli sınır gerilme halindeki toplam şekil değiştirme enerjisine eşit olduğu zaman, cisim kırılma durumuna geçer. Yani cisimde şekil değiştirme enerjisi belirli bir sınır değere ulaştığında, sünek cisimde akma, gevrek cisimde ise kırılma olayı başlar.

$$\frac{1}{2}E \left[\sigma_{1}^{2}+\sigma_{2}^{2}+\sigma_{3}^{2}-2\nu(\sigma_{1}\sigma_{2}+\sigma_{2}\sigma_{3}+\sigma_{1}\sigma_{3})\right] = \frac{1}{2}E\sigma_{M}^{2}$$
(2.12)

$$\sigma_1^2 + \sigma_2^2 + \sigma_3^2 - 2\nu(\sigma_1\sigma_2 + \sigma_2\sigma_3 + \sigma_1\sigma_3)] = \sigma_M^2$$
(2.13)

Yukarıda verilen ifade σ_1 , σ_2 ve σ_3 eksen takımında bir elipsoid gösterir. Elipsoidin kapalı bir yüzey olması nedeniyle, bu kriter hidrostatik basınç uygulanması halinde bir sonuç vermez. Düzlem gerilme hali için, (2.13) ifadesi bir elips gösterir (Şekil 2.15.) [10].

Şekil 2.15. Toplam şekil değiştirme enerjisi kriteri

Biçim Değiştirme Enerjisi Kriteri (Von Mises Kriteri): Bu kriter, kırılma durumuna geçmede karşılaştırma kriteri olarak, biçim değiştirme enerjisini göz önüne alır. Bir cisimde akma veya kırılma, biçim değiştirme enerjisinin belirli bir sınır değere ulaşması halinde meydana gelir. Tek eksenli gerilme ile karşılaştırma yapıldığında,

veya

$$\frac{1}{6}G \left[\sigma_{1}^{2} + \sigma_{2}^{2} + \sigma_{3}^{2} - (\sigma_{1}\sigma_{2} + \sigma_{2}\sigma_{3} + \sigma_{1}\sigma_{3})\right] = \frac{1}{6}G\sigma_{M}^{2}$$
(2.14)

$$\sigma_1^2 + \sigma_2^2 + \sigma_3^2 - (\sigma_1 \sigma_2 + \sigma_2 \sigma_3 + \sigma_1 \sigma_3) = \sigma_M^2$$
(2.15)

elde edilir. Bu kriterin sınır yüzeyi, σ_1 , σ_2 ve σ_3 eksen takımında bir silindirdir (Şekil 16.a). Düzlem gerilme halinde σ_1 , σ_2 düzleminde (2.15) bağıntısı bir elipsi gösterir (Şekil 16.b).

Bu kriter, hidrostatik basınç uygulanması halinde doğru sonuç verir ve plastisite teorisinde geniş ölçüde kullanılmaktadır [10].

Şekil 2.16. Biçim değiştirme enerjisi kriteri

Kriterlerin Karşılaştırılması ve Diğer Kriterler: Kırılma kriterlerinin karşılaştırılması için aynı tip cismin göz önüne alınması ve bu aynı tip cisimde çeşitli kırılma kriterlerinin verdikleri sonuçların karşılaştırılması en mantıklı yoldur [6].

a) σ_1 , σ_2 asal normal gerilmeleri aynı işaretli (ikisi de çekme veya basınç) ise: Maksimum normal gerilme ve maksimum kayma gerilmesi kriterleri aynı sonuçları verirler. Toplam şekil değiştirme ve biçim değiştirme enerjisi kriterleri ise, yukarıda adı geçen kriterlere yakın sonuçlar verirler. Buna karşılık maksimum birim uzama kriteri ile oldukça farklı sonuçlar elde edilir.

b) σ_1 , σ_2 asal normal gerilmeleri zıt işaretli (biri çekme diğeri basınç) ise:Bu durumda maksimum kayma gerilmesi, toplam şekil değiştirme enerjisi ve biçim değiştirme enerjisi kriterleri birbirlerine yakın sonuçlar verir. Buna karşılık maksimum normal gerilme kriteri ile oldukça farklı sonuçlar elde edilir. Pratikte sünek cisim için en çok maksimum kayma gerilmesi veya biçim değiştirme enerjisi kriterlerinin, gevrek cisim için ise Mohr kayma gerilmesi kriterinin kullanıldığı söylenebilir [7].

Şekil 2.17. Akma ve kırılma kriterlerinin deney sonucuyla karşılaştırılması

Yukarıda anlatılan kriterler geliştirilirken, cismin basınç ve çekmede aynı özelliğe sahip olduğu kabul edildi. Halbuki kayalar, dökme demir, beton ve toprakların özelliklerinde, uygulanan gerilmenin işaretine bağlı olarak büyük farklılıklar görülmektedir. Deney ile kriter arasında daha iyi bir uyum sağlamak için ilk defa 1885 yılında C.Duguet tarafından yapılan değişiklikle, bazı cisimlerin iki eksenli basınca maruz kalmaları halinde mukavemetlerinin yüksek olacağı gösterilmiştir.

A.A. Griffith, mikroskobik çatlaklarda yüzey enerjisi fikrini ortaya atarak, kırılıp yıkılma konusunda çekmenin basınca göre daha ciddi bir sorun teşkil ettiğini görmüştür. Bu kritere göre, eğer mevcut şekil değiştirme enerjisi geri dönüş (azalış)hızı çatlak yüzey enerjisi artımından büyükse, çatlak hızlı bir şekilde yayılacaktır. Orijinal Griffith kavramı G.R. Irwin tarafından büyük çapta geliştirilmiştir.

Kendi adıyla bilinen gerilme dairesini teşkil eden Otto Mohr, cismin kırılmasını tahmin edici diğer bir yaklaşım teklif etmiştir. Önce bir basit çekme, bir basit kayma ve bir de basit basınç deneyleri yapılır. Elde edilen bu deney sonuçlarıyla bağımlı Mohr dairelerinin zarfı olan eğri bulunur ve buna ''kırılma zarfı'' adı verilir. Bu zarfa teğet olarak olan daireler, değme noktasındaki kırılmanın şartlarını verir. Bu yaklaşım tarzı, zemin mekaniğinde iyi uygulama yeri bulmaktadır [12]. Tablo 2.1.'de kırılma kriterlerinin bazılarının matematik ifadeleri verilmiştir.

Tablo 2.1.Kırılma-Yenilme kriterlerinin matematik ifadeleri [1]	
---	--

TEORİ	MATEMATİK İFADESİ
Tresca-Coulomb	σ_1 - σ_3 =2 k_1
Geliştirilmiş Tresca	$(\sigma_1 - \sigma_3) = k_2(\sigma_1 + \sigma_2 + \sigma_3)$
Von Mises	$(\sigma_1 - \sigma_3)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_1 - \sigma_2)^2 = 2k$
Geliştirilmiş von Mises	$(\sigma_1 - \sigma_3)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_1 - \sigma_2)^2 = 2\kappa_4^2(\sigma_1 + \sigma_2 + \sigma_3)^2$
Mohr-Coulomb	$(\sigma_1 - \sigma_3) = k_5^2(\sigma_1 + \sigma_3)$
Griffith	$\sigma_1 = \sigma_1(\sigma_1 + 3\sigma_3 < 0)$
(GEVREK)	$(\sigma_1 - \sigma_3)^2 = 8k_6 (\sigma_1 + 3\sigma_3 > 0)$

2.4. Zeminlerde Kırılma ve Yenilme

Malzeme bilimi açısından jeolojik oluşumlar gevrek ve sünek olarak iki farklı gurupta toplanabilir.

Volkanik kökenli, yani kristal yapısı uygun olan bazalt, granit hatta breş gibi kayaçlar tek ya da çok eksenli gerilme aldıklarında yüksek deformasyon modülleri gösterirler. Bir başka deyişle, gerilme artışları altında oldukça küçük birim boy değiştirmeler meydana getirirler. Gerilmeler yükseltilerek belirli bir limite ulaşıldığında, dökme demir hatta cam gibi aniden kırılır, parçalanır, kopar veya dağılırlar. Bu tür malzemelerde davranışın büyük ölçüde elastik olduğu, kopma ya da kırılmanın aniden ve belirgin biçimde gerçekleştiği gözlemlenir. Bu guruba giren malzemeler gevrek olarak nitelendirilir (Şekil 2.5.).

Yumuşak çeliğin Şekil 2.6.'da görülen σ – ε eğrisinde, orantılılık limiti aşıldıktan sonra gerilme yeterince arttırılacak olursa, σ_M gibi bir limitte gerilme artışı sürmediği halde ε değerinin aşırı büyüdüğü görülecektir. Bu gerilmeye yenilme gerilmesi veya plastikleşme limiti denmekte, bu noktadan sonra malzemenin elastik değil plastik davrandığı ve kopmanın her an oluşabileceği kabul edilmektedir. Çelik gibi rijitplastik malzemeler elasto-plastik modelle incelenebilmektedir. Süneklik de plastisite gösteren cisimlere özgü davranıştır.

Şekil 2.18. Elasto-plastik model

Zeminler elastik olmadıkları gibi, elasto-plastik modele de (Şekil 2.18.) pek uyum göstermeyen jeolojik malzemelerdir. Killer başta olmak üzere, birçok zemin türünde yenilme gerilmesinin tanımlanması dahi oldukça zordur.

Şekil 2.19. Deformasyonla pekleşen/yumuşayan

Şekil 2.19.'da zeminlerde ölçülmüş gerilme-birim kısalma eğrileri görülmektedir. Burada, şekil değiştirme sonucu pekleşen ve şekil değiştirme sonucu yumuşayan zeminlerin farklı karakteri kolayca ayırt edilebilir. Sıkıştırılarak hazırlanmış killi zeminler ve gevşek kumlar pekleşen gurubun, hassas killer ve sıkı kumlar da yumuşayan gurubun tipik örnekleridir. Yumuşak ve yumuşayan killerde de yenilmeyi belirleyen doruk noktası kesin olarak belirlenemediğinden, laboratuvarlarda %20 gibi bir ε değerine karşılık olan gerilme değeri numunenin dayanımı olarak kabul edilir [1].

Zeminlerde gözlenen yenilme türü, zeminin cinsine ve bazı fiziksel-bünyesel

özelliklerine (su muhtevası gibi) bağlı olmakla beraber; genellikle zeminin yenilmesi yani taşıma gücünü kaybetmesi, müsaade edilebilir şekil değiştirme seviyelerinin aşılması olarak tanımlanır [2]. Tüm bu bulgular, günümüze kadar zeminlerin dayanımının Mohr-Coulomb gibi yarı ampirik kriterlerle açıklanması uygulamasını getirmiştir [1].

2.4.1. Yükleme Özellikleri

Zeminin kayma direncinin aşılması için etkiyen yükler farklı özellikler taşır. Statik ve tekdüze (monoton) yüklemede, gerilme sıfır ya da belirli bir düzeyden başlayarak değişmez veya değişen hızda yükselir. Oysa birçok yük, tekrarlı ve geri dönüşlüdür. Örneğin trafik, makine yükleri gibi. Öte yandan depremde olduğu gibi genliği ve frekansı değişen geçici yüklemeler de zemin ortamında çok farklı etkiler yapmaktadır [1].

Bu tez araştırması boyunca, statik ve tekdüze (monoton) yükleme konumunda çalışılmıştır.

2.5. Zeminlerde Yenilme Kriterleri

Kayma direncinin ilk incelemesi Coulomb tarafından yapılmış ve zeminin kayma direncinin tek parametre ile temsil edilmesi ilkesi getirilmiştir. Daha sonra bir matematikçi olan Mohr, Coulomb'un yaklaşımından çok farklı bir formülasyon oluşturmuştur. Her iki kriterin göz önüne almadığı efektif gerilme ilkesi Terzaghi tarafından geliştirilince, konu esasta bu üç araştırmacının çalışmalarının bileşimi olarak geoteknikte uygulama bulmuştur.

Coulomb, incelediği killi zeminlerin kayma direncini "kohezyon" adı verilen tek

parametre "c" ile göstermiştir. Gerçekte kohezyon, moleküler bağ içeren malzemelerin fiziksel / mekanik bir özelliğidir. Zemin gibi hava, su ve danelerden oluşan ayrık sistemde kohezyon kavramı hatalı bir görüş olduğu halde, getirdiği kolaylıklar nedeniyle günümüzde de kullanılmaktadır.

Gerçek kohezyon, jeolojik malzemelerde sadece bir çimentolayıcı maddenin zemin

matrisine girmesi ile belirebilir. Bunun dışında tek istisna, aşırı konsolide killerde kısıtlı bir değer taşıyan kohezyon değeridir. Kayma direnci parametresi olarak kullanılan "c" kohezyon değerinin, zeminlerin fiziksel/mekanik bir özelliği olmadığı bilinmelidir [1].

2.5.1. Mohr yenilme kriteri

Zemin kitlesinin içindeki ani yenilme hakkında Mohr (1900) tarafından geliştirilen teoriye göre; zeminin yenilme sebebi yalnız başına max normal ya da kayma gerilmesinin biri olmayıp, normal gerilme ve kayma gerilmesinin kritik birleşmesidir.

Mohr yenilme kriteri zeminin kayma direncinin (s/τ_f) tarifini, belirli bir düzlemde normal gerilme σ 'ya bağlı olarak beliren kayma gerilmesi τ 'nun, zeminin karşılayabileceği bir maksimum değer τ_f 'ye erişmesi olarak yapmıştır.

$$s = \tau_f = f(\sigma_f) \tag{2.16}$$

 σ değiştirilerek, τ_{f} 'in değerleri deneysel olarak bulunabilir (Şekil 2.20.).

Şekil 2.20. Mohr yenilme kriteri

Zeminin özellikleri nedeniyle, bir noktadan geçen düzlemlerde kayma direnci farklıdır. Bir düzlem boyunca kayma direnci, τ_f 'in o düzlem boyunca

alabileceği maksimum değerdir. Bir noktadaki kayma direnci ise, o noktadan geçen sonsuz sayıda düzlemlerden en zayıfının direncidir [1].

2.6. Mohr-Coulomb Yenilme Kriteri

Zeminler için, yenilmeye yol açan normal ve kayma gerilmelerinin ortak etkisini göz önüne alan birçok kriter geliştirilmiştir. Bunlar içinde en basit olanı ve uygulamada

yaygın olarak kullanılanı Mohr-Coulomb yenilme kriteri olmaktadır.

Buna göre, zeminin kayma direnci (birlikte yenilmeye yol açan normal ve kayma gerilmelerinin sınır değerleri) Şekil 2.21.a'da görüldüğü gibi eğrisel bir çizgidir.

Şekil 2.21.'de normal gerilmeler yatay eksende, kayma gerilmeleri düşey eksende gösterilmektedir. "Yenilme zarfi" olarak nitelendirilen eğrinin altında kalan gerilme durumları için yenilme ortaya çıkmazken, bu zarfa ulaşıldığı anda zeminde yenilme meydana gelmektedir. Bu zarfın üzerinde yer alan gerilme durumlarının mümkün olmadığı açıktır. Genel olarak yenilme zarfı bir eğri ile temsil edilmekle beraber, zemin mekaniği problemlerinin çoğunda bu eğri Şekil 2.21.b'de görüldüğü gibi yaklaşık bir doğru olarak kabul edilmektedir.

Şekil 2.21. Mohr-Coulomb yenilme kriteri

Bu doğrunun düşey ekseni kestiği nokta "c" ve yatay ile yaptığı açı "\ophi" ile gösterilirse, kayma direncini veren bağıntı (doğrunun denklemi)

$$t = c + \sigma \tan \phi$$
 (2.17)

şeklinde yazılabilir. Burada "c" ve " ϕ " kayma mukavemeti parametreleri olarak nitelendirilen iki katsayıdır. σ ise, yenilme yüzeyine etkiyen normal gerilmedir [2].

Bir başka deyişle; Mohr kriterinin zaman içinde Coulomb'un yatay bağıntısı ile birleştirilerek, τ ekseninde "kohezyon" olarak nitelendirilen bir ordinat değeri "c" ile, daneler arasında normal gerilme düzeyine bağlı olarak uyanan bir eğimli " ϕ " doğrusundan oluşmuş bir özel bağıntıya dönüşmesidir. Bu bağıntı, Terzaghi'den önce geliştirildiği için, sadece toplam gerilme türünden ifade edilmiştir. "c" ve " ϕ " bu koşullarda zeminin gerçek mekanik parametreleri olmayıp, matematiksel ifadenin gereğidir [1].

2.6.1. Yenilme durumu ve Mohr gerilme daireleri

Mohr gerilme dairesi ile Mohr-Coulomb yenilme zarfı aynı şekil üzerinde gösterilirse, uygulanan yüklerin yol açtığı gerilme durumunun yenilmeye yol açıp açmayacağını açık olarak görmek mümkündür. Şekil 2.22.'de değişik gerilme durumlarını temsil eden üç Mohr gerilme dairesi gösterilmiştir.

Şekil 2.22. Mohr gerilme daireleri ve yenilme zarfı

A ve B gerilme daireleri yenilme zarfının altında kaldığı için, yenilme meydana gelmeyecektir. Buna karşılık C dairesi yenilme zarfına değdiği için, bu gerilme durumuna yol açan σ_3 ve σ_1 asal gerilmeleri yenilme meydana gelmesine sebep olacaktır.

Mohr-Coulomb yenilme zarfi, yenilmeye yol açan bütün gerilme durumlarını

sınırlamakta olup, bu durumları gösteren gerilme daireleri yenilme zarfına teğet olmaktadır. Yenilme zarfı doğrusunun denklemi, zeminin kayma direncini vermektedir. Gerilme dairesinin yenilme zarfına teğet olduğu noktadan çizilen doğru ise yenilme düzlemi eğimini yani en büyük asal gerilme düzlemi ile yaptığı açıyı vermektedir. Bu açının α =45+ ϕ /2 olduğu kolaylıkla görülebilir [2].

Zeminin yenildiği anda,

 $\sigma_1 = \sigma_3 \tan^2 (45 + \phi/2) + 2c \tan (45 + \phi/2)$ (2.18)

yazılabilir. Yenilme zarfının gerilme dairesine teğet olduğu durumda tanımlanan gerilmelerin max kayma gerilmesine karşılık olmadığı kolayca görülmektedir (Şekil 2.23.) [1].

Şekil 2.23. Yenilme durumunda asal gerilmeler arasındaki ilişki

2.6.2. Efektif gerilmeler ve kayma direnci

Doygun zeminlerde herhangi bir noktadaki toplam gerilme (σ), o noktadaki efektif gerilme (σ ') ve boşluk suyu basıncının (u) toplamından ibarettir.

$$\sigma = \sigma' + u \tag{2.19}$$

Şekil 2.24. Yenilme durumunu gösteren toplam ve efektif gerilme daireleri

Birçok arazi yükleme durumunun analizinde zeminin kayma direncini efektif gerilmeler cinsinden ifade etmek daha gerçekçi olmaktadır. Mohr-Coulomb göçme kriterine göre kayma direncini veren bağıntı, efektif gerilmeler cinsinden

$$\tau = c' + (\sigma - u) \tan \phi = c' + \sigma' + \tan \phi \qquad (2.20)$$

şeklinde yazılabilir.

Şekil 2.24.'te u_f ,boşluk suyu basıncının yenilme anındaki değeri olup, toplam ve efektif gerilme dairelerinin çapları birbirine eşittir. Efektif gerilme dairesi, toplam gerilme dairesine göre normal gerilme ekseni boyunca u_f kadar sola (veya negatif boşluk suyu basıncı oluşması durumunda sağa) doğru kaydırılarak çizilmektedir [2].

BÖLÜM 3. ZEMİNLERİN KAYMA DİRENCİ VE KAYMA DİRENCİ PARAMETRELERİNİN ÖLÇÜMÜ

3.1. Giriş

Zemin tabakaları içinde, gerek kendi ağırlıklarından (jeolojik gerilmeler) gerekse zemin yüzünde uygulanan yüklerden dolayı oluşan gerilmeler, zeminin şekil değiştirmesine yol açar. Zeminde meydana gelen bu şekil değiştirmelerin çoğu kalıcı olup gerilme seviyesi ile doğru oranda artmazlar ve zamana bağlı olarak gelişirler. Diğer bütün cisimlerde olduğu gibi, zeminler üzerine uygulanan yüklerin yol açtığı gerilmeler belirli sınır değerleri aştığı zaman zeminde yenilme meydana gelir. Bir başka deyişle, zemin taşıma gücünü kaybeder. Zeminin taşıma gücünü kaybetmeden karşı koyabileceği en büyük kayma gerilmesi ise, zeminin kayma direncidir [2].

Zeminlerin kayma direnci, geoteknik mühendisliğinin en önemli konusunu teşkil eder. Sığ veya derin temellerin taşıma kapasitesi, şev stabilitesi, istinad duvarı dizaynı ve dolaylı olarak yol kaplaması dizaynı, şev içindeki dayanma yapısı arkasındaki temel veya kaplama zeminin kayma direncinden etkilenmektedir. Yapı ve şevler, maksimum yükleme şartlarında yüklendikleri zaman, duraylı ve göçmeye karşı sağlam kalabilmelidirler. Bundan dolayı bu yapıların dizaynında kullanılan metodlar, zeminin nihai veya sınır kayma direncinin tanımlanmasını gerektirir [11].

Kayma direncinin saptanmasında en önemli unsur, arazide geçerli olacak yükleme ve drenaj koşullarının göz önüne alınması olmaktadır. Bu açıdan, kohezyonsuz kumlu zeminler ile killi zeminlerin birbirinden oldukça farklı davranış göstermekte olduğu bilinmektedir. Bu nedenle, kumların ve killerin kayma dirençlerinin ayrı ayrı incelenmesi gerekmektedir [2].

Zeminlerin kayma direnci parametrelerini tesbit etmek üzere laboratuvarda yapılan

deneyler başlıca üç gurupta toplanır.

1- Drenajsız Deneyler (UU): Deney oldukça hızlı yapıldığı için, bunlara "hızlı" deneyler de denir. Bu deneylerde numunenin yüklenmesi ve kesilmesi sırasında drenaja müsaade edilmez. Deney sırasında boşluk suyu basıncı ölçülebilir. Kayma direnci parametreleri toplam veya boşluk suyu basıncı ölçülmüşse efektif gerilmeler cinsinden ifade edilir.

2- Konsolidasyonlu-Drenajsız Deneyler (CU): Bu deneylerde önce, numune tayin edilen gerilmeler altında konsolide edilir. Konsolidasyon sona erdikten sonra, numune drenaja izin verilmeden (hızlı) kesilir. Kesme sırasında boşluk suyu basınçları ölçülerek, kayma direnci parametreleri efektif gerilmeler cinsinden ifade edilir.

3- Drenajlı Deneyler (CD): Bu deneylerde, yükleme ve kesme sırasında drenaja izin verilir. Konsolidasyon sona erdikten sonra, numune boşluk suyu basıncı oluşmasına izin verilmeksizin "yavaş" olarak kesilir. Böylece efektif kayma direnci parametreleri deney sonunda doğrudan tayin edilmiş olur.

Laboratuvarda yapılan deneyler, zeminlerin arazideki gerçek yenilme şartlarını laboratuar ortamında teşkil edecek nitelikte olmalıdır. Bu nedenle yapılacak deneyin tipi, incelenecek problemin karakterine bağlı olarak seçilir.

1-Temeller altındaki killi zeminler genellikle öyle bir hızla yüklenirler ki, üst yapı tamamlandığı anda drenaj henüz olmamıştır. Yapı yükü nedeniyle oluşan boşluk suyu basıncının dağılması uzun zaman alır. Bu durumda, drenajsız deney tercih edilir. Zemin basınçları ve geçici yarmalardaki şev stabilitesi hakkında tahminlerde bulunmak için de drenajsız deneylerden faydalanılır.

2-İnşa hızı sebebiyle yüksek boşluk suyu basınçlarının oluştuğu toprak barajların projelendirilmesinde, boşluk suyu basınçlarının ölçüldüğü drenajsız deneyleri yapmak doğru olur. Mevcut bir toprak barajda su seviyesinin çabuk indirilmesi, konsolide olmuş zeminin gerilme durumunda ani bir değişiklik yaparak bölgesel yenilmelere yol açabilir. Böyle durumlarda stabilitenin CU deneyleri ile incelenmesi uygun olur.

3-Şevler ve istinat duvarları üzerinde toprak basınçları ile ilgili uzun süreli stabilite

problemleri genellikle drenajlı deneylere ihtiyaç gösterirler. Drenajlı deneylerde suya doygun killer dahi gözle görülebilir \u0349 değeri verirler.

4-Kumlu zeminler son derece geçirgen oldukları için, en hızlı yüklemelerde dahi boşluk suyu basıncı oluşmaz. Bu yüzden kumlu zeminlerin kayma direnci parametreleri genellikle drenajlı deneylerle bulunur [13].

3.2. İri Daneli Zeminlerin Kayma Direnci

İri daneli ya da kohezyonsuz olarak nitelendirilen kumlar, çakıllar ve bunların siltle karışımlarında en belirgin özellik, sistemde yer çekimi yani kitle kuvvetlerinin hakim olmasıdır. Oysa killerde danelerin mikroskobik boyutta olması, hakim kuvvetin dane yüzeyleri ve suyun varlığından kaynaklanmasını, kitle kuvvetlerinin ikinci derecede etkin olması sonucunu getirir. Bu farklardan dolayı, bundan sonra sadece kumlar olarak anılacak iri daneli zeminlerde sürtünme birinci derecede etkin olmaktadır [1].

3.2.1. Kumların kayma direnci

Zeminlerin kayma direncinin hesaplanmasında kullanılan

$$\tau_{f} = c + \sigma \tan \phi$$
 (3.1)

Mohr-Coulomb bağıntısı; kumlarda c parametresi sıfır değerini aldığı için,

$$\tau_{f} = \sigma \tan \phi$$
 (3.2)

şeklini alır (Şekil 3.1.).

Şekil 3.1. Kumda yenilme zarfı

Ayrıca, arazide statik yüklemeler altında, kumlarda drenajlı koşulların geçerli olduğunu kabul etmek gerçekçi bir yaklaşım olmaktadır. Bu durumda, yükleme

sırasında boşluk suyu rahatlıkla zeminden dışarı çıkabilmekte ve boşluk suyu basınçlarında herhangi bir değişiklik meydana gelmemektedir. Dolayısıyla, kumların arazi yüklemeleri altında davranışı incelenirken, drenajlı (veya efektif) kayma direnci açısının bulunması yeterli olmaktadır. Kayma direnci açısının değeri ise laboratuarda kesme kutusu veya üç eksenli basınç deneyleri kullanılarak veya arazi deneyi sonuçlarından korelasyon yolu ile elde edilebilir [2].

Kumlarda kayma direnci açısını "\ophi" etkileyen başlıca özellikler aşağıdaki gibi sıralanabilir.

1-Kumun sıkılık derecesi: Yoğunluk arttıkça, boşluk oranı azaldıkça \u00f6'nin değeri artar.

2-Dane çapı dağılımı: İyi derecelenmiş zeminler, uniform kumlara göre daha yüksek
 φ değerine sahiptirler.

3-Dane biçimi: Köşeli danelerden oluşan iri daneli zeminlerin kayma direnci açısı, yuvarlak danelilerden biraz daha yüksek olmaktadır.

4-Danelerin mineral yapısı: Daneler arası sürtünme özelliğini etkilemekle beraber, çoğu tabii kumlar için oldukça dar bir aralıkta değiştiği kabul edilebilir.

5-Su etkisi: Daneli zeminin kuru veya su altında olması ϕ değerini çok az etkilemektedir.

Bazı özel durumlarda, kumların kayma direnci açısı arazi tabakalarının çökelme koşulları ve eğer varsa çimentolanma derecesinden de büyük oranda etkilenebilmektedir [2].

Önceleri sadece killere özgü olduğu düşünülen aşırı konsolidasyon olayının kumlarda da etkin olduğu bulunduğundan, OCR nin kumların kayma direncini yükselten bir etken olduğu hatırlanmalıdır [1].

İri daneli zeminlerin gerilme-şekil değiştirme davranışı üzerinde etkili olan faktörlerin en önemlileri, sıkılık derecesi ve çevre basıncının şiddeti olmaktadır. Bu nedenle herhangi bir kum zeminde ϕ açısının deneysel olarak saptanmasında dikkat edilmesi gereken en önemli unsur, deney numunesi ile arazi sıkılığının aynı olmasının sağlanmasıdır. Sıkılık derecesine bağlı olarak, iri daneli zeminlerin kayma

direnci açısı geniş bir aralık içinde değişmektedir. Sıkılık derecesi arttıkça, kayma gerilmeleri altında danelerin birbirine göre hareketi zorlaşmakta (kilitlenme etkisi) ve zeminin basınç altında hacım genişlemesi göstermesi sonucu enerji kayıpları ortaya çıkmaktadır. Bu nedenlerden dolayı zeminin kaymaya karşı direnci artmaktadır.İri daneli zeminlerde, gerilme-şekil değiştirme davranışı üzerinde etkili olan faktörlerin en önemlileri, sıkılık derecesi ve çevre basıncının şiddetidir. Şekil 3.2.'de aynı kumdan gevşek ve sıkı konumda hazırlanmış iki numune üzerinde aynı hücre basıncı altında yapılan üç eksenli basınç deneyleri sonuçları gösterilmiştir.

Şekil 3.2. Kohezyonsuz zeminlerde "gerilme-şekil değiştirme", "hacım değişimi-şekil değiştirme" davranışları [2]

Kayma gerilmeleri altında, gevşek kumlarda hacım daralması, sıkı kumlarda hacım genişlemesi meydana gelmekte; belli bir şekil değiştirme seviyesine ulaşıldıktan sonra hacım sabit kalmaktadır. Bu durumda, kumun "kritik boşluk oranı"na ulaştığı kabul edilmektedir (Şekil 3.3.) [2].

Şekil 3.3. Kritik boşluk oranı

Aynı sıkılıkta hazırlanmış kum numuneleri, farklı çevre (hücre) basınçları altında üç eksenli basınç deneyine tabi tutulduğunda; yüksek çevre basıncı altında daha büyük hacım değişimi meydana geldiği, buna karşılık eksenel şekil değiştirme direncinin arttığı gözlenmektedir. Kumların kritik boşluk oranı da, çevre basıncı arttıkça azalmaktadır.

Kumlarda statik yüklemeler altında serbest drenaj durumunun geçerli olduğu kabul edilmektedir. Buna karşılık, suya doygun ince kum tabakalarının arazide deprem titreşimlerinin etkisi altında kalması durumunda, zemin suyunun dışarı çıkmaya fırsat bulamaması sonucu, boşluk suyu basınçlarında artışlar meydana gelebilmektedir. Kumun başlangıç sıkılık derecesi ile deprem titreşimlerinin şiddetine ve süresine bağlı olarak, boşluk suyu basınçları artmakta ve gevşek kumlarda çevre basıncına eşit hale gelmesi durumunda, kum tabakası mukavemetini tamamen kaybedebilmektedir. Zemin mekaniğinde bu duruma "sıvılaşma" adı verilir [2].

Kumların drenajsız kayma direnci konusu literatürde tartışmalı görüşler toplamaktadır. Zira bulunması istenen kayma direnci açısı, drenajlı koşullarda zaten kolayca ölçülebilen bir parametredir. Kum, kritik çevre basıncında denenmediği takdirde, drenaj koşulundan bağımsız olarak önemli hacım değişimleri göstereceğinden, doygun bir kumun UU veya CU koşullarında denenmesinin anlamsız olacağı da öne sürülür. Ancak gevşek kumların sıvılaşması, atık barajlarının akması gibi problemler drenajsız koşulları yansıttığından, bu problemlerle ilgili olarak deneyin drenajsız yapılması gerektiği görüşü de vardır [1].

3.3. Killerin Kayma Direnci

Killerin kayma direncinin arazide oluşacak koşullar altında geçerli olacak şekilde saptanması, kumlara göre daha karmaşık ve zor bir problemdir. Arazideki bir kil tabakasının suya doygunluk derecesi, başlangıç gerilme durumu ve gerilme tarihçesi ile kayma gerilmelerinin oluşması sırasında geçerli yükleme ve drenaj koşulları, zeminin kayma direncini önemli ölçüde etkilemektedir [2].

Kayma direnci konusunda, kumlarla killeri ayıran en belirgin özelliklerin, ortamın geçirimliliği ve jeolojik etkenlerin killerde daha ağır basması olduğu söylenebilir.

Gevşek kumlarla normal yüklenmiş killer ve sıkı kumlarla aşırı konsolide killerin gerilme - şekil değiştirme - boşluk suyu basıncı - hacım değişimi (σ – ϵ –u- Δv) bağıntılarında paralellik ve kritik durumda tam benzerlik bulunmaktadır.

Killerin kayma direnci aşağıdaki özelliklere bağlıdır;

1-Efektif gerilme düzeyi,

2-Kilin plastisitesi,

3-Çimentolanma,

4-Danelerarası çekme veya itme,

5-Su muhtevası,

6-Kesilme hızı,

7-Ortamın anizotropluğu,

8-Gevreklik,

9-Numunenin kalitesi,

10-Ölçüm tekniği.

Yapılan çalışmalar ve elde edilen sonuçlar, killerin davranışının daha açıklıkla tanımlanabilmesi için bu zeminlerin jeolojik kökenleri doğrultusunda üç ana gurup altında incelenmesinin yararlı olacağını göstermiştir.

1-Normal yüklenmiş (NL) yani tamamen konsolide olmuş,

2-Önceden yüklenmiş (OC) yani aşırı konsolide olmuş,

3-Fisürlü aşırı konsolide.

Konsolide olmamış yani oluşumu tamamlanmadığı için özkütlesi altında boşluk suyu basınçları henüz sönmemiş ortamlar, temel zemini olarak kullanılamayacaklarından burada anlatılmamıştır [1].

3.3.1. Normal yüklenmiş kilin kayma direnci

Oluşumundan bu yana bugün almakta olduğu efektif gerilmeden daha fazla gerilme almamış olan killere "normal yüklenmiş kil" denir ve NL simgesi ile gösterilir. Normal yüklenmiş killer, günlük dilde "balçık" olarak anılan çökellerdir. Su muhtevasının yüksekliğinin doğal sonucu olarak yüksek boşluk oranı gösteren bu killere "yumuşak kil" de denmektedir.

Killerde kayma direncinin ölçümü, kolaylığı ve gereken sürenin kısalığı nedeniyle laboratuvarda yapılagelmiştir. Laboratuvar deneyleri, yüklemenin özelliği ve drenajın kontrolu ile olabilidiğince gerçekçi yapılmaya çalışılmaktadır. Laboratuarda tüm kontrolların en kolay sağlandığı deney, üç eksenli basınç deneyidir. Bu deney, değişik konsolidasyon ve drenaj koşullarında yumuşak killere kolaylıkla uygulanabilmektedir.

Arazideki bir kil tabakasının uygulanan dış yük altında konsolidasyona uğramadan ve hızlı olara yüklenmesi durumunda, kayma direnci parametreleri konsolidasyonsuz- drenajsız (UU) deneyler ile bulunabilmektedir. Bu probleme örnek olarak bir dolgunun NL killer üzerine çok hızlı inşa edilmesi, bir barajın yüksek plastisiteli çekirdeğinin hızla yükseltilmesi ya da yumuşak kil üzerine oturtulan bir temelin aşırı hızlı yüklenmesi verilebilir [2].

Yumuşak killerde en önemli sorunlardan biri, çok hızlı yapılan yüklemenin getirdiği kritik durumlardır. Bu durumda, hızla artan gerilmeler sonucu kilde ani yükselen boşluk suyu basınçları sistem sistem dışına çıkamadan zemin kayma gerilmeleri aldığından, ani yenilmeler gündeme gelebilir. Bu gibi problemlerde, analizlerin sadece toplam gerilmelerle yapılması gerçekçi olmaktadır [1].

Şekil 3.4. %100 doygun killer için UU deneylerine ait Mohr kırılma daireleri ve kırılma zarfı

Konsolidasyonsuz-drenajsız üç eksenli basınç deneyinde, drenaj vanaları daha başlangıçta kapalı vaziyette iken, numune üç eksenli deney hücresine yerleştirilir. Daha sonra numune drenajsız şartlarda kesilir. Numunenin yenilmesi kısa sürede gerçekleşecek şekilde yükleme yapılır ve bu deneyde genellikle boşluk suyu basıncı ölçülmez. Bu deney, bir toplam gerilme deneyidir ve elde edilen dayanım da toplam gerilmeler cinsindendir.

Arazide aynı mahalden alınan tamamen doygun kil örneklerinin boşluk oranlara birbiriyle eşit olup, konsolidasyona izin verilmediğinden, aynı kayma direncine sahiptirler. Bu nedenle Şekil 3.4.'te görüldüğü gibi, kırılmadaki Mohr dairelerinin tümü aynı çapta ve kırılma zarfi da yatay olacaktır.

Tamamen doygun killerde uygulanan UU deneyi, kayma direncini toplam gerilmeler cinsinden verir ve Mohr yenilme zarfının eğimi $\phi=0$ olur. Bu zarfın τ eksenini kestiği yerdeki değer, toplam gerilmeye göre kayma direnci parametresi c'yi verir. Veya $\tau_f=c$ dir. Burada τ_f , drenajsız kayma direncini ifade eder. Unutulmaması gereken önemli bir husus, yenilme zarfının yatay çıkmasının zeminin özelliğinin bir göstergesi olmayıp, büyük ölçüde UU deneyin doygun numuneye uyguladığı koşulların sonucudur [1,11].

Diğer bir anlatımla dayanımın drenajsız koşullarda ölçümü, laboratuara getirilen numunelerin hücreye konduktan sonra bir çevre basıncıma tabi tutulması ve boşluk suyuna hiç hareket olanağı sağlamadan uygulanacak düşey yükle hızla kesilmesiyle gerçekleşir. Doygun kilde boşluk suyu basıncı katsayısı B=1 olduğundan, u= σ_3 olur. NL kilde kırılma dairelerinin çaplarının aynı olması gerekir. Yumuşak kilin drenajsız kayma direnci, toplam gerilmelere göre yatay bir kırılma zarfi ve,

$$s_u = \tau_{max} = c \tag{3.3}$$

ifadesiyle gösterilebilir [1].

Yumuşak kilin drenajsız kayma direnci, arazide artan efektif gerilmeyle yükselmektedir. Yapılan araştırmalar, dayanımın gerçekten de plastisiteye bağlı olarak yükseldiğini göstermiştir.

$$c_u/\sigma_0 = 0,11+0,037 I_p = 0,45 W_L [1]$$
 (3.4)

Arazideki kil tabakasının konsolide olduktan sonra drenajsız yüklemeye tabi olacağı durumlarda, örneğin jeolojik zaman içinde dengeye gelmiş bir yamaca oturtulacak

dolguda veya bir dolgu tabakası altında konsolide olduktan sonra üzerine ikinci bir dolgu tabakasının yüklendiği zeminlerde; kayma direncinin konsolidasyonlu – drenajsız (CU) deneylerle saptanması mümkündür. Böyle durumlar için geçerli yaklaşım, efektif gerilme analizidir.

CU deneyinde, numune önce arazi koşullarına benzer bir çevre basıncında konsolide edilmekte, yani boşluk suyu basınçlarının sıfıra sönmesi ya da su muhtevasının belirli bir düzeye inmesine izin verilmektedir. Sonra drenaj muslukları kapanarak kesme aşamasına geçilir. Numunede doygunluk derecesinin %100 den düşük olduğu durumlarda ölçülen boşluk suyu basınçları önemli hatalar içereceğinden, ölçümün 500 kPa veya üstünde geri basınçla yapılması gerekmektedir.

CU deneyinde ölçülen maksimum kesme gerilmesi tesbit edilip, bu değerler toplam ve efektif gerilmelerle Mohr diyagramında gösterildiğinde; yumuşak killerde kayma direncinin toplam gerilme türünden,

$$s = \tau_f = c_{cu} + \sigma \tan \phi$$
 (3.5)

efektif gerilme türünden,

$$s = \tau_f = c_{cu} + \sigma \tan \phi' \tag{3.6}$$

şeklinde çıktığı görülür [1,11]. Şekil 3.5.'te NL killerin kayma direncine ait grafikler gösterilmiştir.

Şekil 3.5. NL Killerin kayma direnci

Killerin kayma direnci ile fiziksel özellikleri arasında bir bağıntının olup olmadığı, birçok araştırmacı tarafından incelenen bir konudur. Efektif kayma direnci açısı ¢' için, efektif gerilme, plastisite indisi, sıvılık indisi, NL kilin yaşı gibi değişkenler arasında en güvenilir bağıntının

$$\sin \phi' = 0.814 \cdot 0.234 \log I_p$$
 (3.7)

olduğu birçok kez kanıtlanmıştır. Öte yandan, eldeki bilgilerin toplanmasıyla yapılan analizde, kilin kayma direnci ile efektif gerilme arasındaki ilişkinin plastisite indisinden bağımsız olduğu yolunda da ikna edici bulgular vardır [1].

Arazideki kil tabakasının, konsolidasyonunu tamamlamasından sonra, drenajlı durumda (çok yavaş olarak ve boşluk suyu basınç artışlarına meydan vermeden) yüklenmesi söz konusu olan durumlarda ise, kayma mukavemetinin konsolidasyonlu drenajlı yani CD deneyleri ile saptanması gerekir [11]. CD deneyde, numune hacmı konsolidasyon ve kesme aşamasında sürekli ve duyarlı olarak ölçülmelidir. Deney sonucunda tek kırılma zarfı bulunacak ve,

$$s = \tau_f = c_{cd} + \sigma \tan \phi' \tag{3.8}$$

denklemi geçerli olacaktır. Şekil 3.6.'da CD deney sonuçları görülmektedir.

Şekil 3.6. Tamamen konsolide olmuş kilde drenajlı deney

Yumuşak killerin yenilme zarfının orijinden geçmesi, yani kumlara benzer bir efektif gerilme zarfı göstermesi, bu tür için drenajlı deneyleri cazip kılmaktadır. Ancak yüksek plastisiteli bir numunede CD deneyin süresi birkaç haftayı bulabilir.

Yumuşak kilde bir CU deneyde ölçülen ϕ'_{cu} değeri ile bir CD deneyde ölçülen ϕ'_{cd} açıları arasında bir fark yoktur.

Arazide CD kesme problemine örnekler:

- 1-Tabakalar halinde yavaş yükselen dolgu altında yumuşak kilin kayma direnci.
- 2-Sürekli sızıntı kuvvetleri etkisindeki kil çekirdeğin kayma direnci.
- 3-Kilde kazı veya doğal yamaçta drenajlı kayma direnci [1].

3.3.2. Aşırı konsolide kilin kayma direnci

Aşırı konsolide killer arazide krem, sarı, bej, açık kahve bazen de kızıl kahve renklerinden tanınırlar. Kural olmasa da birçoğu CH sınıfına girmektedir. Bu killer geçmişlerinde bugün sahip oldukları efektif gerilmeden daha fazlasını almış olup, hemen hiçbir zaman %100 doygunlukta bulunmazlar. Kazılarda serbest kaldıklarında, önemli şişme gösterirler. Tek eksenli basma dayanımı katı-sert sınıfta beliren bu killerin yüksek taşıyıcı nitelikleri yanında, önemli sorunlar yaratma potansiyeli de vardır.

Aşırı konsolide killerin kayma direncinin ölçümünde UU ve serbest basma deneyleri, normal yüklenmiş killerdeki başarıyla uygulanamamaktadır. Bu nedenle OC killerde kayma direncinin CU ve CD tipte üç eksenli basınç deneyi ile veya problemin özelliğine bağlı olarak kesme kutusunda ölçümü önerilmektedir. Ayrıca, numune içinde varlığı olası fisür ve çatlakların yeterince temsil edilebilmesi için, numune boyutlarının olabildiğince büyük seçilmesi gerekir.

Aşırı konsolide kilde CU deneyde bulunan σ – ε_z eğrilerinde NL killerde izlenmeyen kesin bir doruktan geçilmekte ve bu doruğa da artan OCR değerlerine bağlı olarak oldukça düşük ε_z değerlerinde ulaşılmaktadır (gevreklik) (Şekil 3.7.). Aynı zamanda, dorukta beliren dirençle kalıcı direnç arasında önemli bir fark belirir. Ayrıca kesme sırasında, hacım artışı eğilimi sonucu ölçülen boşluk suyu basınçlarının yükselme değil, çevre basıncının altına bile inecek kadar düşüş göstermesi önemli bir özelliktir. Boşluk suyu basınçlarının negatife inmesini önlemek için, üç eksenli hücre kesme deneylerine yüksekçe bir geri basınçtan (500 kPa) başlanması yararlı olmaktadır.

Şekil 3.7. Aşırı konsolide kilde σ - ϵ -u eğrileri

Aşırı konsolide kilin kayma direnci denklemi, genellikle orijinden geçmeyen bir doğru olarak gösterilir.

$$s = \tau_f = \mathbf{C'_{cd}} + \sigma' \tan \phi'_{cd}$$
(3.9)

Şekil 3.7.'de aşırı konsolide killerde CU deneylerde elde edilen eğriler gösterilmiştir. Burada ölçülen boşluk suyu basıncı düşüşleri nedeniyle, aşırı konsolidasyon basıncının altındaki çevre basınçlarında efektif gerilme daireleri, toplam gerilme dairelerinin soluna değil sağına kaçmakta ve $\phi' < \phi$ durumu doğmaktadır.

Şekil 3.8. Aşırı konsolide kilde CD deneyler sonucu elde edilen kırılma zarfı

Ancak $\sigma_3 < \sigma'_c$ düzeyine gelindiğinde, NL killerde olduğu gibi daireler bu kez sağa kayar (Şekil 3.6.). Bu kaymanın limitin toplam gerilmelerde yaklaşık $2\sigma'_c$ olduğu söylenebilir. Şekil 3.8.'de aşırı konsolide kilde CD deneyler sonucu, Şekil 3.9.'da ise CU deneyler sonucu elde edilen kırılma zarfı görülmektedir.

Şekil 3.9. Aşırı konsolide kilde CU koşulda kırılma zarfları

Kayma direnci parametrelerinin hatalı ölçümünden kaçınmak için, deneyi probleme özgü gerilme kademelerinde yaparak, bu iki doğrulu kırılma zarfının doğru ayağını kullanmak en uygun yaklaşım olarak önerilir. Bu durumda CU koşullarda bir aşırı konsolide kilin kayma direnci denklemi efektif gerilme türünden,

$$s=c'+\sigma'\tan\phi' \quad (\sigma_3 < \sigma'_c)$$
 (3.10)

$$s=\sigma' \tan \phi' \quad (\sigma_3 > \sigma'_c)$$
 (3.11)

biçiminde yazmak uygun olabilir. Toplam gerilme zarfının ise,

$$s = \tau_f = c + \sigma \tan \phi$$
 (3.12)

şeklinde yazılması önerilir. Toplam gerilmelerle ölçülen kohezyon, her durumda efektif gerilmelere göre tariflenen kohezyon değerinden daha büyük çıkmalıdır [1].

3.4. Zeminlerde Kayma Direncinin Ölçümü

Malzeme biliminde dayanımın ölçümü tek eksenli deneylerle başlamıştır. Laboratuvarda çekme, basma ve eğilme kuvvetlerinin uygulanmasıyla, malzemeler için mekanik parametreler kolayca belirlenebilir. Zeminlerde ise mühendislik özelliklerinin deneysel olarak saptanmasında en önemli kural, deney koşulları ile arazi koşulları arasında mümkün olabilecek en yüksek benzerliği sağlamak olmalıdır. Gerilme-şekil değiştirme davranışının ve kayma direncinin belirlenmesinde en önemli faktörler;

1-Zeminin arazide yüklenmeden önce yerindeki başlangıç durumunu yansıtan,

a)Konsolidasyon basıncı

b)Boşluk oranı

c)Su muhtevası

d)Suya doygunluk derecesi

2-Arazi yükleme türü ve hızı

3-Arazi drenaj koşulları

olmaktadır. Yükleme hızı ile drenaj koşullarını bir arada düşünmek gerekir. Kısa süreli stabilite problemlerinde (örneğin inşaat veya kazı sırasında) drenajsız koşullar geçerli olurken, uzun süreli stabilitenin incelenmesinde drenajlı durumun göz önüne alınması gerekir. Birçok problemde ise, hem drenajsız hem de drenajlı durumu göz önüne almak gerekmektedir.

Yukarıda sıralanan faktörler (başlangıç durumu ile yükleme ve drenaj koşulları) zeminlerin kayma direncini büyük oranda etkilediği için, kullanılan deneysel yöntemlerde bu faktörlerin kontrol edilmesine ve arazide geçerli olacağı öngörülen koşullar ile uyumlu olmalarının sağlanmasına dikkat etmek gerekir. Uygulamada birbirinden çok farklı koşullar ile karşılaşıldığı ve bunların hepsini tek bir deney yöntemi ile kontrol etmek mümkün olmadığı için, zeminlerin kayma direncini belirlemekte kullanılan birçok laboratuvar ve arazi deney yöntemleri geliştirilmiştir [1,2].

Zeminler basit deneylere tabi tutulduklarında bilinen özellikleri nedeniyle, bulunan parametrelerin doğal durumdakilerden çok farklı çıkabileceği bilinmektedir. Bunun nedenleri şöyle sıralanabilir:

1-Araziden numune alma işlemleri sırasında örselenme,

2-Zeminde mevcut doğal gerilmelerin numune alma sonucu sıfıra düşürülmesi,

3-Laboratuvarda boşluk suyu basınçlarının tümüyle değişebilmesi,

4-Deneyde uygulanan gerilmelerin yerindekilerle aynı olmaması,

5-Numune boyutu ile gerçekte yüklenen zemin kitlesinin hacım farkı,

6-Zemindeki süreksizliklerin kısıtlı örnek boyutu nedeniyle laboratuvara yansıtılamaması,

7-Deneyde oluşturulan gerilme izinin gerçek problemde belirenden farklı olması.

Oysa Coulomb'la başlayarak birçok laboratuvar deneyi, laboratuvarda bulunan parametrelerin doğal durumdakilerden çok farklı çıkmasına yol açan sebepler dikkate alınmadan geliştirilmiştir. Bu nedenle 1970'lerden başlayarak, laboratuvar deneylerinin taşıdığı ağırlığın giderek arazi deneylerine yüklendiği görülmektedir [1].

3.5. Laboratuvar Deneyleri

Arazide bir yapı temeli veya toprak dolgu altında kalacak veya herhangi bir başka yüklemeye maruz kalacak zemin tabakalarının gerilme-şekil değiştirme davranışlarını ve kayma dirençlerini belirlemek için, bu tabakalardan numune almak ve bunları laboratuvarda deneye tabi tutmak amacı ile birçok deneysel yöntem geliştirilmiştir [2].

Zeminlerin kayma direncinin laboratuvarda belirlenmesinde yaygın olarak kullanılan deneyler;

- 1-Kesme kutusu (direkt kesme) deneyi,
- 2-Serbest basınç deneyi,
- 3-Üç eksenli basınç deneyi,
- 4-Vane (kanatlı sonda) deneyi.

Serbest basınç ve vane (kanatlı sonda) deneyleri kohezyonlu ve suya doygun zeminler için, kesme kutusu (direkt kesme) ve üç eksenli basınç deneyleri kohezyonlu ve kohezyonsuz zeminler için uygun olan deneylerdir [14].

3.5.1. Kesme kutusu deneyi

Bu deney, kayma direnci parametrelerinin ölçümünde kullanılmış ilk metoddur. Laboratuvarda kohezyonlu ya da kohezyonsuz zeminlerin kayma dirençlerini belirlemek için kullanılan bir deneydir.

Şematik görünümü Şekil 3.10.'da ve fotoğrafı Şekil 3.11.'de görülen kesme kutusu deney ekipmanı, basit olarak numunenin içine konduğu bir metal kesme kutusundan ibarettir.

Şekil 3.10. Kesme kutusu içindeki numune ve kesilme düzlemi

Bu kesme kutusu kare veya daire kesitli olabilirse de, TS 1900 de kenar boyutu 60 mm büyüklüğünde ve en fazla 25 mm yüksekliğinde numune alabilecek, birbirine vidalanabilir iki parçalı paslanmaz çelik veya pirinçten yapılmış kutu olarak tarif edilir. Numune kenar boyutu 60 mm olan kare biçiminde, yüksekliği ise 20 mm veya fazla olmalıdır.

Şekil 3.11. Kesme kutusu deneyi ekipmanı

Kare veya daire kesitli örnek, üstteki kapaktan metal kesme kutusunun içine yerleştirilir ve zeminin arazide almakta olduğu gerilmeler dolayında bir normal gerilme ile başlayarak, konsolidasyon yüküne eşdeğer normal yüke tabi tutulur. Konsolidasyon tamamlandıktan sonra, uygulanan kesme kuvveti ile gereken hızda kesilir. Bu sırada alınan ölçümler yatay hareket, düşey hareketler ve kesme kuvvetidir.

Şekil 3.12. Kesme kutusu ve numunenin kutuya konmadan önceki hali

Kare veya daire kesitli örnek, üstteki kapaktan metal kesme kutusunun içine yerleştirilir (Şekil 3.12., Şekil 3.13., Şekil 3.14.) ve zeminin arazide almakta olduğu gerilmeler dolayında bir normal gerilme ile başlayarak, konsolidasyon yüküne eşdeğer normal yüke tabi tutulur. Konsolidasyon tamamlandıktan sonra, uygulanan kesme kuvveti ile gereken hızda kesilir. Bu sırada alınan ölçümler yatay hareket, düşey hareketler ve kesme kuvvetidir.Kesme kutusu deneyinin uygulama şartları ve deney sonuçlarının değerlendirilmesi TS 1900/Nisan 1987 standardında ayrıntılarıyla yer almıştır.

Şekil 3.13. Numunenin kesme kutusuna yerleştirilmiş hali

Şekil 3.14. Kesme kutusunun deney sistemine yerleştirilmiş hali

Şekil 3.15. İki zemin danesi arasındaki sürtünme hali

Kayma gerilmesi τ , aşağıdaki eşitlik ile elde edilir:

$$\tau = P/A \tag{3.13}$$

Burada P kayma kuvvetini, A ise numunede kaymanın meydana geldiği alanı göstermektedir. Aynı alandaki normal gerilme ise,

$$\sigma_n = N/A \tag{3.14}$$

eşitliği ile elde edilir. Burada N normal kuvveti göstermektedir. Numunenin kayma dayanımına erişildiğinde, α açısı maksimum değerine ulaşmaktadır. İşte α nın bu maksimum değerine içsel sürtünme açısı veya kayma direnci açısı ϕ adı verilir (Şekil 3.15.). Çeşitli zemin cinsleri için kayma direnci açısının tipik değerleri Tablo 3.1.'de verilmiştir.

Tablo 3.1.	Kayma	direnci	açısının	tipik	değerl	eri
				· F		

Zemin Türü	φ (⁰)
Sıkı, iyi derecelenmiş, iri kum	37-60
Sıkı, üniform derecelenmiş ince kum	33-45
Gevşek kuru kum	28-34
Gevşek silt veya siltli kum	20-22
Sıkı silt veya siltli kum	25-30

Kayma gerilmesi τ , kayma deplasmanlarının δ bir fonksiyonu olarak çizilirse, kohezyonsuz zeminler için genellikle Şekil 3.16.a'da görüldüğü gibi iki tane tipik eğri ile karşılaşılır. Numunenin sıkı olması durumunda ya da danelerin keskin köşeleri varsa, eğri başlangıç kısmında oldukça lineer olup daha sonra belli bir maksimum noktaya ulaşır. Bu noktadan sonraki deplasmanlar oldukça düşüktür ve kayma gerilmelerinde bir miktar azalma görülür. Bunu takiben yenilme meydana gelir. Eğrinin maksimum noktasında, danelerin birbirine kenetlenmesi yenilmiştir. Bu noktadan sonra ölçülen, yuvarlanma sürtünmesidir. Numunenin sıkı olmaması halinde ise, kayma direnci-deformasyon eğrisi parabolik olarak artarak sıkı numune için elde edilmiş olan eğrinin maksimum noktasından sonraki kısmına doğru yaklaşır.

Şekil 3.16. Gevşek ve sıkı kum numuneler için kesme kutusu deneyi sonuçları-1

Birden fazla numune üzerinde yapılan deneylerden elde edilen τ_{max} maksimum kayma gerilmeleri ile σ_n normal gerilmeler arasındaki ilişkiyi gösteren eğri çizilebilir (Şekil 3.16.b). Bu doğrunun yatayla yaptığı açı, ϕ kayma direnci açısına eşittir. Ayrıca, doğrunun düşey ekseni kestiği noktadaki kayma direncinin değeri de c numunenin görünür kohezyonuna eşittir. (Görünür kohezyon: Zemin daneleri çevresinde bulunan su filmi aracılığıyla danelere uygulanan yüzey geriliminden doğan kılcal gerilme.) Bu değer, kohezyonsuz zeminler için sıfırdır.

Üç eksenli basınç deneyine göre kesme kutusu deneyinin iki belirgin üstünlüğü vardır. Bunlardan birincisi, deneyin yapılması ve aletlerin kullanımı daha kolaydır. İkincisi ise, deney kısa zamanda yapılarak sonuçlar erken alınabilir. Ayrıca, numune çapının 500mm ye kadar büyültülebilmesi, fisürlü killerin kayma direnci ölçümünde deneye önemli bir avantaj sağlar. Buna karşın deneyin sakıncalı yanları;

1-Zorlanan kayma yüzeyi ile varsa, mevcut en zayıf kayma yüzeyinin çakışmama olasılığının yüksek olması,

2-Kesme hareketi kısıtlı olduğundan, zeminin kalıcı direncinin ölçülmesi için kutunun deneyin durdurulmasıyla geri alınma zorunluluğu bazı sorunlar yaratabilir.
3-Numune ne denli hızlı kesilirse kesilsin, drenaj tümüyle önlenemeyeceğinden, gerçek CU deneyi gerçekleştirilemez.

4-Deneyde beliren gerilme koşulları incelendiğinde de bazı tereddütler doğmaktadır.

Şekil 3.17.'de değişik sıkılıktaki kum numunelerine ait kesme kutusu deney sonuçları gösterilmiştir.

Şekil 3.17. Kumlarda kesme kutusu deney sonuçları-2

Deneye uzun yıllar yöneltilen eleştirilerin bir diğeri, kesme düzleminde gerilmelerin uniform olmadığı, bu nedenle ölçülen kayma direncinin gerçeğe uymadığı idi. Ancak, yeni araştırmalar bunun doğru olmadığını gösterdiğinden, bu basit ve ucuz deney tüm zemin laboratuvarlarında kum ve killer için standart uygulama bulmaktadır [1,2,11,14,15].

3.5.2. Serbest basınç deneyi

Serbest basınç deneyi ilk ortaya atıldığı yıllarda, zeminlerin kayma direncinin çok hızlı bir şekilde elde ediliyor olmasından dolayı geniş bir kabul ve kullanım alanı bulmuştur. Yapılan bir serbest basınç deneyi sonucunda elde edilen Mohr dairesinden zemine ait kayma direnci kolaylıkla hesaplanabilir. Bir numunenin tek eksende basınç uygulanarak kırılması, dayanımın en basit yoldan ölçümüdür. Zeminlerin çekme dayanımı sıfır olduğundan, çekme gerilmelerinin uygulaması söz konusu olmaz. Öte yandan bu deneyin koşulu, zeminin kendini desteksiz tutacak kadar dayanıma sahip olmasıdır. Bu nedenle serbest basınç deneyi kumlarda uygulanamaz, kumlu zeminlerde de uygulanması önerilmez. Serbest basınç deneyi, özel bir UU deneyi olarak görülebilir.

Yükseklik/Çap oranı 2 olan silindir numune, uzun ekseni boyunca hızla yüklenirken boy kısalmaları ölçülür. Deney drenajsız olduğundan hacım sabit kalacak, böylece numunenin kesit alanı deney boyunca

$$A = \frac{A_0}{1 - \varepsilon_z} \tag{3.15}$$

ifadesiyle artacaktır. Kırılma sağlandığında zeminin serbest basınç dayanımı

$$q_u = \sigma_{1max} = 2c = P_{max} / A \tag{3.16}$$

olarak tariflenmektedir. Burada A_0 numunenin deney başındaki kesit alanı, ε_z eksenel birim boy kısalması, A deneyin herhangi bir aşamasındaki kesit alanı, c zeminin τ eksenindeki kayma direnci (veya kohezyonu), P_{max} ise numunenin dayandığı en büyük yük veya bir doruk elde edilemediğinde %20 lik ε_z 'ye karşılık yük olarak tarif edilmiştir.

Şekil 3.18. Serbest basınç deneyinde eğriler ve yenilme zarfı

Şekil 3.18.'de serbest basınç deneyinde gerilme-şekil değiştirme eğrileri ile kırılma zarfı, Tablo 3.2.'de ise killi zeminlerin q_u değerine değerine göre sınıflandırılması gösterilmektedir. Deneyin ideal uygulaması NL killerdedir. Serbest basınç deneyinin uygulama şartları ve deney sonuçlarının değerlendirilmesi TS 1900/Nisan 1987 standardında ayrıntılarıyla yer almaktadır).

KIVAM	q _u (kPa)
Çok yumuşak	<25
Yumuşak	25-49
Orta katı	50-96
Katı	97-192
Çok katı	193-383
Sert	>384

Tablo 3.2. Killerin serbest basma dayanımına göre ayrımı

Bu deneyle ölçülen bir diğer özellik, kilin yuğrulma sonucu direncinde beliren düşüştür. Yapısı hassas olan killer örselenmemiş durumda yüksekçe dayanım gösterirken, su muhtevası değiştirilmeden yuğrulur ve tekrar sıkıştırılırsa, direncin belirgin ölçüde düşük bir düzeye indiği görülür. Bu düşüşün ölçütü "Hassaslık Derecesi" dir.

Zemin Mekaniğindeki gelişmelerle birlikte serbest basınç deneyinin, zemine ait kayma direncini güvenilir bir biçimde vermeyeceği anlaşılmıştır. Bunun sebeplerinden bazıları aşağıda özetlenmiştir:

1-Serbest basınç deneyinde kullanılacak olan numune doğal şartlarda belli bir çevre basıncına maruzken, deney sırasında bu basınç sıfır olmaktadır.

2-Deney süresi boyunca numune içindeki koşulların (doygunluk derecesi, boşluk suyu basıncı vb) kontrol altına alınması mümkün olmamaktadır.

3-Numunenin alt ve üst uçları deney aletince tutulmakta ve serbestçe genişlemesine izin verilmemektedir [1,14].

3.5.3. Üç eksenli basınç deneyi

Kısaca ''üç eksenli'' olarak bilinen üç eksenli basınç deneyi, doğa koşullarına kabaca benzer gerilmeler sağlaması ve getirdiği ek ölçüm olanakları nedeniyle, 1930' lardan bu yana zemin laboratuvarlarında en çok uygulanan deney özelliğini taşımaktadır.

Zemin Mekaniğinde yarı sonsuz ortam olarak dikkate alındığı zaman, zemin kitlesinin herhangi bir derinliğinden bir zemin numunesinin çıkarılması halinde, numune üzerinde bulunan yatay ve düşey gerilmeler kaldırılmış olmaktadır. Laboratuvarda deneye tabi tutulacak numuneler üzerinde mümkün olduğunca arazi koşullarının sağlanmasına gayret gösterilir. Üç eksenli basınç deneyi ile arazi koşullarına uygun yatay ve düşey gerilmeler numune üzerine uygulanabilmektedir. Ayrıca numuneler değişik yatay ve düşey gerilmeler altında kesilebilmektedir.

Şekil 3.19. Üç eksenli basınç deneyi düzeneğinin şematik görünümü

Üç eksenli basınç deneyi, gelişmiş bir kayma direnci deneyi olup, kohezyonlu veya kohezyonsuz zeminler ve drenajlı veya drenajsız koşullar için uygundur. Deney için silindirik zemin numuneleri kullanılıp, numunelerde boy/çap oranı 2/1 dir. Tipik örnek boyutları 76 mm/38 mm, 100 mm/50 mm vb dir. Kohezyonlu zeminlerden alınmış örselenmemiş veya daneli zeminlerden hazırlanan silindirik örneğin üzerine, çevreden su girmesini önlemek üzere ince bir lastik kılıf geçirilir. Drenaj koşullarını kontrol etmek için, zemin numunesinin alt ve üstüne birer geçirimli taş yerleştirilir.Hücreye su gönderilerek, sabit bir hücre basıncı σ_3 uygulanır. Hücre basıncı sabit tutulurken; sabit bir hızda, düşey bir hareket vasıtasıyla, sıfırdan başlayıp gittikçe artan bir düşey yük uygulanarak zemin örneği kırılır.
Uygulanan düşey yük, yük halkası vb ile ölçülür. Zemin örneğinin eksenel boy kısalması, bir deformasyon saatı vb ile ölçülür. Şekil 3.19.'da üç eksenli basınç deney düzeneğinin şematik görünümü, Şekil 3.20. ve Şekil 3.21.'de ise deney esnasında deney cihazı ve numune fotoğrafları yer almaktadır.

Şekil 3.20. Üç eksenli basınç cihazına numunenin üzerine membran geçirilerek yerleştirilmiş hali

Şekil 3.21. Üç eksenli basınç cihazında numunenin kesilmeye hazır hali

Üç eksenli basınç deneyinin uygulama şartları ve deney sonuçlarının değerlendirilmesi TS 1900/Nisan 1987 standardında ayrıntılarıyla yer almaktadır.

Şekil 3.22.'de üç eksenli deney ile kırılmış bir numune şematik olarak, Şekil 3.23.'te ise deney sonu kırılmış numuneler fotoğraf olarak gösterilmektedir.

Şekil 3.22.'de görülen a-a kırılma düzlemi, yatayla θ kadar bir açı yapmaktadır. θ açısı, zeminin kayma direnci açısına bağlı olarak

$$\theta = 45 + \frac{\phi}{2} \tag{3.17}$$

şeklinde yazılabilir.

Şekil 3.22. Üç eksenli basınç deneyi ile kırılmış bir numunenin şematik görünümü

Şekil 3.23. Üç eksenli basınç deneyi ve kesme kutusu ile kırılmış numuneler

Numune üzerine uygulanan deviatör gerilmenin (σ_1 – σ_3) arttırılması ile, düşey doğrultudaki asal gerilme çevre basıncından farklı olmaktadır. Numunenin kırılması (kesilmesi) anındaki düşey doğrultudaki asal gerilmenin değeri

$$\sigma_1 = \sigma_3 + \Delta \sigma_{\max} \tag{3.18}$$

olur.

Şekil 3.24. Üç eksenli basınç deneyi sonucunda elde edilen Mohr dairesi

Yapılan bir üç eksenli basınç deneyi sonucunda, numunenin gerilme durumu Şekil 3.24.'teki Mohr dairesi üzerinde görülmektedir. Mohr dairesinin yenilme zarfına teğet olması durumunda yenilme meydana gelir.

Deneyde en az üç numune üzerinde üç farklı hücre basıncı altında kırılarak, $\sigma-\tau$ eksen takımında Mohr dairesi çizilir. Elde edilen üç tane Mohr dairesine teğet olacak şekilde bir eğri (veya doğru) çizilir. Çizilen bu eğri, "Coulomb yenilme zarfı" olarak adlandırılır. Eğrinin yatayla yaptığı açı "kayma direnci açısı" olarak adlandırılır. Eğrinin τ eksenini kestiği nokta ise, zemine ait "c" değerini verir.

Üç eksenli basınç deneyinin amacı, zeminin kayma direncinin belirlenmesidir. Kayma direnci parametrelerinin (c ve ϕ) üç eksenli basınç deneyi ile elde edilmesinden sonra, Coulomb kayma direnci bağıntısı

$$\tau = c + \sigma_n \tan \phi \tag{3.19}$$

kullanılarak, zeminin kayma direnci belirlenir.

Ancak, kayma direnci parametrelerinin değerleri yapılan üç eksenli basınç

deneyindeki konsolidasyon ve drenaj koşullarına bağlıdır. Bu koşullara bağlı olarak, üç çeşit üç eksenli basınç deneyi yapılabilmektedir. Uygulanacak deneyin tipi, arazideki koşullara bağlı olarak seçilir.

Konsolidasyonsuz-Drenajsız Deney (UU deneyi): Bu deneyde, çevre (hücre) basıncı uygulandıktan hemen sonra deviatör gerilme arttırılarak numunenin kesilmesi sağlanır. Deviatör gerilmenin hızlı bir şekilde uygulanması ile, deney süresince numunedeki suyun drenajına müsaade edilmez.

Bu deneyin doygun haldeki kil numunelerle yapılması halinde, kayma direnci açısı (ϕ =0) daima sıfır olur. Deney sonunda, zeminin drenajsız kayma direnci (c_u) elde edilir.

Şekil 3.25. , Şekil 3.26. ve Şekil 3.27.'de UU deney sonuçları görülmektedir.

Şekil 3.25. %100 Doygun kilde UU deneyinden elde edilen yenilme zarfi

Şekil 3.26. Kısmen doygun kilde UU deneyinden elde edilen Mohr yenilme zarfı

Şekil 3.27. (A) Yuğrulmuş ve sıkıştırılmış killer için, (B) örselenmemiş orta hassas kil için, (C) örselenmemiş çok hassas kil için tipik UU gerilme-birim deformasyon eğrileri

Konsolidasyonlu-Drenajsız Deney (CU deneyi): Numunenin deney hücresine yerleştirilmesinden sonra hücre basıncı uygulanır. Uygulanan çevre (hücre) basıncı altında, numune içine boşluk suyu basıncının sönümlenmesine kadar yani numune uygulanan gerilme altında konsolidasyonunu tamamlayana kadar beklenir. Numune içinde bulunan suların drenajına müsaade edilir. Drenaj tamamlandıktan sonra, deviatör gerilme UU deneyindeki gibi hızla arttırılarak numune kesilir. Deviatör gerilmenin arttırılması sırasında yani deney boyunca numunenin drenajına müsaade edilmez. Deney sonunda, zemine ait görünür kohezyon (c_{cu}) ve kayma direnci açısı (ϕ_{cu}) elde edilir (Şekil 3.28.).

Şekil 3.28. CU deneyinden elde edilen yenilme zarfı

Konsolidasyonlu-Drenajlı Deney (CD deneyi): CU deneyindeki gibi, bilinen bir çevre basıncında, hücre içerisinde numunenin konsolidasyonu tamamlanır. Deviatör gerilme çok yavaş bir biçimde arttırılarak, herhangi bir boşluk suyu basıncı oluşmayacak biçimde, numune çok düşük bir hızda kesilir. Deney sonunda, zemine ait efektif kohezyon c_{cd} ve efektif kayma direnci açısı ϕ_{cd} elde edilir (Şekil 3.29.).

Şekil 3.29. CD deneyinden elde edilen yenilme zarfı

Üç eksenli basınç deneyinin deneyinin en önemli özellikleri, boşluk suyu kontrol edilebilmesi ve ölçülebilmesi, ayrıca konsolidasyon ve kesme aşamalarında hacım değişikliğinin yeterli doğrulukta ölçülebilmesidir. Aldığı en önemli eleştiri ise, numunede eşit olmayan birim kısalmaların oluşmasıdır. Ayrıca, deneyde ölçülen kayma direnci açılarının kesme kutusunda ölçülenden 3⁰'ye kadar düşük bulunmaktadır [1,2,5,11,14,16].

3.5.4. Diğer laboratuvar deneyleri

Zeminlerin kayma direncini laboratuvarda deneysel olarak saptamak için, yukarıdaki bölümlerde anlatılanların yanında birçok başka deney yöntemleri geliştirilmiştir. Bunların başlıcalarından aşağıda kısaca bahsedilecektir.

Basit Doğru Kesme Deneyi: Kesme kutusunda numunenin deney aletinin yapısı nedeniyle belirli tek düzlemden kesilmesi sakıncasını gidermek amacıyla, üst üste dizilmiş metal halkaların içine yerleştirilen silindir biçimli numunenin öne itilmesi yoluyla kesilmesi 1940'larda gündeme gelmiştir. Daha sonra halkaların yerini bir kauçuk kılıfla kaplanmış tel sargılı gömlek almıştır. Böylece numunede K_0 koşulları, değişmez kesit ve uniform gerilme dağılımı sağlanmaktadır. Numunenin çevresinde; İsveç modelinde üst üste dizilen ince çelik halkalar, Norveç modelinde kauçuk kılıfın içinde tel sargı, Cambridge modelinde ise rijit plaklar kullanılmaktadır. Bu deney, statik ve dinamik yüklerle yapılabilmesi ve kayma düzlemi kenarlarında olası gerilme yığılmalarını önlemesi nedeniyle rağbet görmektedir.

Kanatlı Kesici Deneyi: Arazi deneyi olarak uygulanan bu deneyden elde edilen başarı, laboratuarda da uygulanmasını sağlamıştır. Laboratuvarda drenajsız koşullarda ölçüm, iki biçimde yapılmaktadır. Torvane olarak adlandırılan el kesicisi ile, özellikle örselenmemiş numuneleri içeren tüplerin açılması veya arazide zeminin kazılmasını izleyerek yerinde gerçekleştirilir. Daha duyarlı ölçüm, D/H oranı 0,5 olan 1 cm çaplı kesicinin numuneye üstten batırılmasından sonra, milin hız kontrollu bir motorla döndürülmesi ile yapılır. Yumuşak killer ve siltli killerde güvenilir sonuçlar verdiği söylenebilir. Aşırı konsolide killerde, fisürlerin varlığı nedeniyle, uygulaması tartışılır olmaktadır. Kumlu zeminlerde ise uygulanamaz.

Düzlem Deformasyon Deneyi: Birçok zemin probleminde, gerilmelerin düzlem birim şekil değiştirme koşullarını oluşturduğu görülür. Uzun dayanma yapıları, şerit ve sürekli temeller hatta barajlar bunun ilginç örnekleridir. Düzlem birim şekil değiştirme (zorlanma) problemlerinde, zeminin göstereceği kayma direncinin ölçümü için özel deney geliştirilmiştir. Burada, orta asal gerilme ekseninde $\varepsilon_y =0$ tutularak düzlem birim kısalma koşulları sağlanmaktadır. Yapılan ölçümlerde, bu deneyin verdiği kayma direnci açısı ϕ nin değerleri hücre kesme deneyinden 2-8 derece yüksek çıktığından, kumlar gibi iç sürtünmesi yüksek zeminlerde uygulaması önem kazanmaktadır.

Hücrede İçi Boş Silindir Kesme Deneyi: 1930'larda geliştirilen üç eksenli hücre kesme deneyine yöneltilen en geçerli eleştirilerden biri, orta asal gerilme σ_2 'nin büyük ve küçük asal gerilmelerden bağımsız olarak değiştirilememesi idi. Bunu önlemek ve orta asal gerilmenin kayma direncine etkisini anlamak için, içi boş silindir hücre kesme deneyi geliştirilmiştir. Numune içte ve dışta iki kauçuk kılıfla korunmakta olup dış ve içteki hücre sıvı basıncı birbirinden bağımsız kontrol edilir.

Eksenel gerilme pistonla uygulanabildiği gibi, istendiği takdirde başlığa burulma da uygulanabilir. Yapılmış kısıtlı araştırmalardan, kumlarda ve killerde ölçülen kayma direnci açısının, hücre kesme deneyinin verdiğinden büyük çıktığı görülmüştür. Aletin dinamik yüklemeye de elverişli olması, bu deneyin araştırma amaçları yanında, ölçüm için de yararlı olacağını göstermektedir.

Gerçek Üç Eksenli Kesme Deneyi: σ_1 , σ_2 , σ_3 'ün bağımsız olarak değiştirilebildiği ilk güvenilir deney, küp biçimli ve 10 cm boyutta 1967'de yapılmıştır. Bu alanda yapılan diğer çalışmaların 1970'lerde İngiltere'de yoğunlaştığı görülmektedir. Gerilme uygulaması ve ölçümlerin önceden planlanan biçimde bilgisayar kontrollu yapılabildiği günümüzde dahi bu tür deney, maliyet ve yapım zorluğu nedeniyle ancak özel araştırmalarda kullanılmaktadır. Son yıllarda yapılan çalışmalar, zeminin kayma direnci parametrelerinin daha önce yapıldığı gibi %20'ye varan birim kısalmalar yerine %2'nin altındaki değerlerde ölçümünün daha gerçekçi olacağının göstermektedir. Bu durumda, gerçek üç eksenli deneylerin uygulanabilirliği artacaktır.

Düşen Koni Deneyi: Bu deneyde, standart boyutlarda ve ağırlıkta metal bir koni, sabit bir yükseklikten zemin numunesi üzerine düşürülmekte; zeminin drenajsız kayma direncinin koninin ağırlığı ile doğru, koninin zemin içine batma miktarının karesi ile ters orantılı olduğu kabul edilmektedir. Aletin kalibrasyon tablolarından, zemin içine batma miktarından zeminin drenajsız kayma direnci elde edilir. Bu deneyin, yalnızca yumuşak normal konsolide killerde güvenilir sonuç verdiği kabul edilmektedir [1,2,11].

3.6. Arazi Deneyleri

Laboratuvar deneylerinin olumsuz yönlerinin ortadan kaldırılması ve gerçekçi basma dayanımı parametreleri ölçme amacıyla, çeşitli arazi deneyleri geliştirilmiştir. Numune alma işlemleri; konsolide olmamış veya genç NL killer ve kumlu zeminlerde zeminin tüm özelliklerini değiştirirken, yüksek dirençli OC killerde numunelerin tüpten çıkartılması esnasında serbest kalan doğal gerilmeler zeminin tamamen parçalanması sonucunu doğurmaktadır. Aynı zamanda, her iki kil grubunda boşluk suyu basınçları geri gelmez şekilde değişmektedir. Bu nedenle son yıllarda arazi deneyleri giderek artan ilgi görmektedir.

Son yıllarda yapılan araştırmalar sonucu geniş uygulama alanı bulan arazi deneyleri; plaka taşıma, vidalı plaka, kanatlı kesici, yassı dilatometre, presiyometre ve piyezometreli konik sonda olarak özetlenebilir. Ancak son zamanlarda, çevre geotekniğindeki gelişmelere de bağlı olarak, kayma direnci parametreleri ile birlikte diğer özellikleri ölçen yeni yöntemlerin geliştiği izlenmektedir. Bu bölümde yalnızca kayma direncini doğrudan ölçen deneylerin tanıtımı yapılacaktır.

Arazi Kanatlı Kesici Deneyi (FVT): Numune almanın çok zor olduğu yumuşak killer ve siltli killerde hızlı sonuç veren bu deney İskandinav ülkelerinde geliştirilmiştir. Boy/çap oranı 2 olan kanatlı kesici, deneyin yapılacağı derinliğe kılıfı içinde itilir ve kılıftan çıkarıldıktan 5 dakika sonra, yüzeyde çubuğuna uygulanan burulma ile dakikada 12⁰ den hızlı olmamak üzere çevrilir. Buradan drenajsız kayma direnci ölçüldükten sonra, istenirse kesici 25 kez daha döndürülerek çevredeki kilin yuğrulması sağlandıktan sonra bu kez yuğrulmuş direnç ölçülür.

Sondaj Kuyusu Kesme Aleti (BST): Çakıllı zeminler dışında tüm ortamlarda kayma direncini doğrudan ölçen bu aletin çelik çeneleri, sondaj kuyusunda istenen derinliğe indirildikten sonra uygulanan basınçla genleştirilerek tesbit edilmekte, sonra kesme kuvveti alete yüzeyden uygulanan çekme ile tatbik edilmektedir. Siltlerde uygulanması en uygun olan bu deneyin aldığı eleştiri, kesme koşullarının drenajlı ya da drenajsız olduğu hakkında kesin bir yorum yapılamamasıdır.

Konik Penetrometreler (CPT): Penetrometre sözcüğü, ortama itilen sert bir cismin gördüğü direnci ölçen alet için kullanılmıştır. 1940'larda geliştirildiği Hollanda'da, 60^0 uçlu ve 10cm^2 kesitli çelik penetrometre zemine 2 cm/s itilen bu alet bu ülkenin adını almıştır. Bu deney, kum ve siltlerde en iyi sonucu verir. Ancak günümüzde, çakıllar ve bloklu zeminler dışında her tür zeminde uygulanmaktadır.

Konik sonda hidrolik olarak sürekli itilirken, dışarıdan okuman uç direnci q_c ile kumun taşıma gücü ölçülür ve buradan kayma direnci açısına geçilir. Geliştirilen

ikinci modelde, penetrometre zemine itilirken, uç direnci yanında arttırılmış gövde yüzey alanı boyunca sürtünme/yapışma da toplam direnç olarak ölçülür. Sonraki modellerde ise, sadece uç itilerek aradaki farktan çevre sürtünmesi bulunmuştur. Bu penetrometrede numune alınamadığından, direnci ölçülen zeminin türü, uç direnci/çevre sürtünmesi oranından (f_s) tahmin edilmektedir. Elektronik teknolojisindeki gelişmeler, 1970'lerde penetrometre ölçümlerinin de bu yoldan yapılabilmesi kolaylığını getirmiştir.

1990'lı yıllarda konik penetrometre teknolojisi önemli atılımlar yapmıştır. Bunun nedeni, bu yolla zeminin birçok özelliğinin deneyi yapanın katkısı olmadan elektronik/akustik olarak ölçülebilmesinden kaynaklanmıştır. Günümüzde bir yörede sadece birkaç sondaj yaptıktan sonra, buradan gelen deney sonuçlarını kılavuz değer kullanarak, CPT okumaları ile YASS'de dahil, zemin hakkında çok iyi bir fikir edinme olanağı doğmuş bulunmaktadır [1].

Tablo 3.3.'de zeminin kayma direncini tanımlamada kullanılan laboratuvar ve arazi deneyleri açıklamalarıyla birlikte verilmiştir.

NO	DENEY	KULLA-	EN İYİ	AÇIKLAMALAR	KISITLAMALAR
		NIM	KULLANIM		
1	Torveyn (TV)	Laboratuvar Arazi	Çok yumuşak killerden katı killere	Elle kullanılır. Kalibre edilmiş yayı vardır. Çabuktur. Tüp örnekleri veya araştırma çukuru	Çakıl, fisür vs. içermeyen kohezyonlu zeminler. Zeminin sadece yüzeye yakın küçük bir
				yan yüzeylerinde kullanılır. Test edilen numune görülür.	miktarı test edilebilir.τ _f için sadece kaba bir kalibrasyon yapılabilir
2	Cep penet- rometresi (PP)	Laboratuvar Arazi	Çok yumuşak killerden katı killere	Serbest basınç dayanımı için yayın kalibre edilmesi durumu hariç, yukarıdaki ile aynıdır. $(2\tau_f)$	Yukarıdaki ile aynı.

Tablo 3.3. $\tau_f \cdot yi$ tanımlamada kullanılan laboratuvar ve arazi deneyleri [11]

3	Kanatlı kesme deneyi (VST)	Laboratuvar Arazi	Yumuşak killerden katı killere	Laboratuvar ve arazi için değişik boy ve konfigürasyonlar mevcuttur. Arazi tipleri için yükseklik/çap oranı (H/D)=2, lab. tipleri için (H/D)=1 dir. Sadece laboratuvar örneği görülür.	τ_f yi olduğundan büyük bulabilir. Kanatlı kesicinin kum tabakası, blok vs ye rastlaması veya aletin çok çabuk döndürülmesi halinde hatalı okumalar.
4	İsveç düşen koni deneyi (SFC)	Arazi	Çok yumuşak ve yumuşak killer	Çabuktur. Test edilen numune görülür. Tüp örnekleri üzerinde kullanılır. τ_f koni açısına ve kütleye bağlıdır.	Yumuşak, hassas killerde $ au_f$ ile iyi bir korelasyon hariç yukarıdaki ile aynı
5	Standart penetrasyon deneyi (SPT)	Arazi	Granüler zeminler	Standart bir ayrık kaşık 0,76m den düşen 63,5kglık bir çekiç ile zemine sürülür. Numune alıcıyı zemine 30cm çakmak için gerekli darbe sayısına "standart penetrasyon direnci" veya "darbe sayısı-N" denir. Örselenmiş numuneler alınır.	Kohezyonlu zeminlerde τ _f ile çok kaba korelasyon.
6	Konik penetrasyon deneyi (CPT)	Arazi	Çok kaba daneli Zeminler hariç tüm zeminler	Kesit alanı 10cm^2 olan 69^0 açılık bir konik prob zemine dakikada 1-2m hızla sürülür. Uçtaki direnç q _c ve yan yüzeydeki sürtünme f _s ya mekanik veya elektrik olarak kaydedilir.	Bloklar problem olabilir. Yumuşak killer için lokal korelasyon gerektirir.

Tablo 3.3. (Devam) τ_{f} yi tanımlamada kullanılan laboratuvar ve arazi deneyleri [11]

7	Presiyometre (PMT)	Arazi	Tüm zeminler	Silindirik bir prob sondaj kuyusuna (kendi deliğini açan tür de olabilir)yerleştirilir. Kuyu çeperine giderek artan yatay basınç uygulanır.	P_t ve τ_f arasında korelasyon gerektirir.
8	Burgulu pla- ka kompre- sometresi (SPC)	Arazi	Çok kaba daneli zeminler hariç tüm zeminler	Plaka arzu edilen deliğe burgulanır. Hidrolik basınç artan şekilde uygulanır ve oturma kayde dilir. Zeminin taşıma kapasitesine ulaşılana kadar devam edilir.	Çoğunlukla granüler zeminlerin sıkışabilirliğinin araştırılmasında kullanılır. Schwab (1976) plastik İsveç killerinde burgulu plaka ile kanatlı kesme deneyi arasında iyi bir uyum olduğunu gözlemiştir.
9	Iowa kuyu kesme dene- yi (BST)	Arazi	(siltli) Lös zeminler	Alet kuyu içine indirilir ve kuyu çeperine karşı şişirilir (σ_n). Sonra tüm ekipman yukarı doğru çekilirken maksimum yük ölçülür (τ_f). Aşamalı deney sonuçları CD deneylerinin Mohr diyagramını çizmek için kullanılır. σ_n aralığı yaklaşık30 ile 100 kPa arasındadır.	%10 dan daha fazla çakıl içeren veya göçen kumlarda kullanılamaz. Kesme sırasındaki belirsiz drenaj şartları yorumlama işlemini zorlaştırır. (Deney bir CD,CU yoksa ikisi arası bir deney mi?)

BÖLÜM 4. DENEYSEL ÇALIŞMALAR

4.1. Giriş

Zeminlerde kayma direnci parametrelerine ait değerler, zemin üzerine yapılacak olan yapıların projelendirilmesi esnasında önemli bir yere sahip olup, bu parametrelerin arazi ya da laboratuvar deneyleri sonucu doğru olarak ölçülmesi zemin mekaniğinin önde gelen konularından birisidir. Zeminlerde kayma direnci parametreleri olan c ve ϕ 'nin üzerinde etkili olduğu düşünülen faktörlerin arasında numuneye ait su muhtevası, boşluk oranı, doygunluk yüzdesi, dane çapı dağılımı, plastisitesi, boyutu, yapılan deneyin cinsi sayılabilir. Kohezyonlu zeminlerdeki inşaat mühendisliği uygulamalarında geniş bir uygulama alanı bulan, zeminlerin drenajsız kayma dayanımını etkileyen faktörlerin arasında bulunan numune boyutunun incelenmesi amacıyla bu araştırma yapılmıştır. Öncelikle numune boyutunun c ve ϕ 'nin tayinindeki etkisi incelenmiş, daha sonra üç eksenli basınç deneyi sonuçlarıyla kesme kutusu deneyi sonuçları karşılaştırılmış, en son olarak da numune fiziksel özelliklerinin c ve ϕ değerleri üzerinde azaltıcı ya da çoğaltıcı bir etkisi olup olmadığına bakılmıştır.

Bu çalışmanın esas konusu olan üç eksenli basınç deneylerinde ve deney sonucu bulunan kayma direnci parametrelerini sonucu karşılaştırma amacıyla yapılan kesme kutusu deneylerinde, Sakarya ilinin çeşitli yörelerinden alınan değişik fiziksel özelliklere sahip kil numuneleri kullanılmış olup; deneylerin tümü SA.Ü. Geoteknik Laboratuvarında yapılmıştır.

Toplam sekiz ayrı mahalden örselenmiş numune alınmış ve bunların üzerinde yapılan ön deneyler sonucunda, numunelerin fiziksel özellikleri tanımlanmıştır (Ek A). Bu numunelerden fiziksel özellikleri örneğin plastisiteleri birbirinden farklı olanları seçilmiş olup, 1, 2, 4 ve 8 no'lu numuneler üzerinde çalışmalara devam edilmiştir.

Laboratuvarda yapılacak çalışmalar özetlenecek olursa; fiziksel özellikleri belirlenen numuneler 200 no'lu elekten elendikten sonra zemin sıkıştırma deneyi yapılarak optimum su muhtevası tesbit edilmiştir. Laboratuvar ortamında, optimum su muhtevasında ve standart proktor sıkılığında silindir ve kare numuneler hazırlanarak bu numuneler üzerinde kesme kutusu ve üç eksenli basınç deneyleri yapılmıştır.

4.2. Laboratuvvar Çalışmaları

4.2.1. Numuneler üzerinde yapılan çalışmalar

Numune alınacak alanlar seçilirken, İlimizde halen yapımına devam edilen inşaat alanları olmasına özen gösterilmiştir. Seçilen bölgelerden yaklaşık 30 kg ağırlığında örselenmiş numune alınarak laboratuvara getirilmiştir.

Laboratuvara getirilen numunenin içinden bir miktar ayrılarak 105 ^oC ısı sağlayan etüvde kurutulmuş ve buradan laboratuvar ortamındaki su muhtevası tesbit edilmiştir. Daha sonra etüvde kurutulan bu numune 10 ve 40 no'lu eleklerden elenerek üzerinde TS1900/Nisan1987 standardına uygun olarak özgül ağırlık, hidrometre, Cassagrande ve plastik limit tayini deneyleri yapılmıştır. Bu deneylerin sonucunda numuneye ait fiziksel özellikler tesbit edilmiştir.

Fiziksel özellikleri tesbit edilerek üzerinde diğer deneylerin yapılmasına karar verilmiş olan numunenin tümü 105 ^oC ısı sağlayan etüvde kurutulmuş ve 200 nolu elekten elenerek yaklaşık 20 kg ağırlığında 200 no'lu elek altı numune elde edilmiştir. Bu numune üzerinde hidrometre deneyi tekrarlanmış ve TS1900/Nisan1987 standardına uygun standart zemin sıkıştırma deneyi yapılmıştır. Buradan 200 no'lu elek altı numunenin dane çapı dağılımı ve maksimum kuru birim hacım ağırlığa karşılık gelen optimum su muhtevası tesbit edilmiştir.

Daha sonra 200 no'lu elek altı malzeme tekrar 105 ^oC ısı sağlayan etüvde kurutularak verilecek olan suyun homojen dağılımını sağlamak amacıyla 200 no'lu elekten elenmiş ve optimum su muhtevasında, standart proktor sıkılığında numune hazırlanmıştır. Üç eksenli basınç deneyi için çap/yükseklik=1/2 olan iki ayrı boyutlu numune gurubu ile çalışmaya karar verilmiştir. Bunun için 3'er adet 3,50 cm çapında

7,00 cm yüksekliğinde , 3'er adet 5,00 cm çapında 10,00 cm yüksekliğinde silindirik numuneler ve kesme kutusu deneyi için ise 6,00x6,00=36,00 cm² alanında 2 cm yüksekliğinde 3'er adet kare kesitli numuneler laboratuvar ortamında hazırlanmış olan numune kütlesinin içinden alınmıştır. Bu numuneler üzerinde üç eksenli basınç ve kesme kutusu deneyleri yapılmıştır.

4.2.2. "1" no'lu numune ile yapılan laboratuvar çalışmaları

İlk numune, Sakarya ili Erenler mevkii İstikbal Mobilya inşaat sahasından alınmıştır. Laboratuara getirilen örselenmiş numunede öncelikle TS1900/Nisan1987 standardında özgül ağırlık, likit limit, plastik limit ve hidrometre metodu ile dane çapı dağılımının bulunması deneyleri yapılmıştır.

 $G_s=2,66$ $W_L=\%34,19$ $W_P=\%22,34$ $I_P=\%11,85$ Elde edilen verilere göre "1" no'lu numune TS1500/Aralık2000 standardında CL (düşük plastisiteli kil) olarak tanımlanmıştır.

Numunenin tanımlanmasını sağlayan deneyler yapıldıktan sonra, numunenin tümü $105 \, {}^{0}\text{C}$ etüvde kurutularak 200 no'lu elekten elenmiştir. Bu elenen numune üzerinde yeniden hidrometre metodu ile dane dağılımı ve zemin sıkıştırma deneyleri TS1900/Nisan1987 standardına uygun olarak yapılmıştır. Zemin sıkıştırma deneyi sonucunda w_{opt}= %21,01 olarak hesaplanmıştır.

200 no'lu elekten elenmiş olan numuneye %21,01 oranında su verilerek zemin sıkıştırma deneyi tekrarlanmış ve bu sıkıştırılmış toplam numunenin içinden 3'er adet 3,50 cm çapında 7,00 cm yüksekliğinde silindirik numune, 3'er adet 5,00 cm çapında 10,00 cm yüksekliğinde silindirik numune ve kesme kutusu için 3'er adet 6,00 x6,00 =36,00 cm² alanında 2,00 cm yüksekliğinde kare kesitli numune alınmıştır.

Optimum su muhtevasında ve standart proktor sıkılığında laboratuvar ortamında hazırlanmış olan bu numunelere 100 kPa, 200 kPa ve 300 kPa hücre basınçlarında üç eksenli basınç ve 100 kPa, 200 kPa ve 300 kPa normal gerilmelerde kesme kutusu deneyleri (TS1900/Nisan1987) uygulanarak, numune boyutundaki değişimin kayma direnci parametrelerine etkisi incelenmiştir (Ek B).

Şekil 4.1. "1" no'lu numunenin 100 kPa hücre basıncı ve normal gerilme ile kesildikten sonraki görünümleri

Şekil 4.2. "1" no'lu numunenin 200 kPa hücre basıncı ve normal gerilme ile kesildikten sonraki görünümleri

Şekil 4.1. ve Şekil 4.2.'de "1" no'lu numune gurubundan alınan örneklerin deney sonu fotoğrafları görülmektedir.

4.2.3. "2" no'lu numune ile yapılan laboratuvar çalışmaları

Sakarya ili Güneşler beldesi Köprübaşı mevkiinden alınan "2" no'lu numunede, TS1900/Nisan1987 standardında deneyler yapıldıktan sonra aşağıdaki sonuçlar elde edilmiştir.

 $G_S=2,60$ $W_L=\% 48,50$ $W_P=\%26,49$ $I_P=\%22,01$ Bu verilere göre "2" no'lu numune, TS1500/Aralık 2000 standardında CI (orta plastisiteli kil) olarak tanımlanmıştır. Yapılan zemin sıkıştırma deneyi sonucunda $w_{opt}=\% 27,75$ olarak bulunmuştur.

Şekil 4.3. "2" no'lu numunenin 100 kPa hücre basıncı ve normal gerilme ile kesildikten sonraki Görünümü

Optimum su muhtevasında, standart proktor sıkılığında 3'er adet 3,50 cm çapında 7,00 cm yüksekliğinde silindirik numune, 3'er adet 5,00 cm çapında 10,00 cm yüksekliğinde silindirik numune ve kesme kutusu için 3'er adet 6,00 x6,00 =32,00 cm² alanında 2,00 cm boyutlarında kare kesitli numune hazırlanmıştır.

Sonuçlar üzerinde daha net bilgiler edinmek ve su muhtevasının c ve ϕ değerleri üzerindeki etkisini görebilmek için aynı numuneye w_{opt} değerinden düşük su muhtevası (%22,90) uygulanarak üç eksenli basınç deneyleri tekrarlanmıştır (EK C).

Şekil 4.3.'de "2" no'lu numune gurubundan alınan örneklerin deney sonu fotoğrafları görülmektedir.

4.2.4 "4" no'lu numune ile yapılan laboratuvar çalışmaları

Numunelerin ilk seçim sırasında 4 üncü olan numune Sakarya ili Geyve ilçesinden alınmıştır.

 $G_s=2,67$ $W_L=\%45,50$ $W_P=\%21,98$ $I_P=\%23,52$ CI (orta plastisiteli kil) (TS1500/Aralık 2000)

 w_{opt} = %22,90 ile w=%27,75 su muhtevaları ve standart proktor sıkılığında numuneler hazırlanarak kesme deneyleri uygulanmıştır (EK D). Şekil 4.4.'de "4" no'lu numune gurubundan alınan örneklerin deney sonu fotoğrafları görülmektedir.

Şekil 4.4. "4" nolu numunenin 100 kPa hücre basıncı ve normal gerilme ile kesildikten sonraki görünümü

"2" no'lu numune ile "4" no'lu numunelerin plastisite indisi değerleri birbirine yakın olup her ikisi de TS1500/Aralık 2000 standardına göre CI olarak tanımlanmıştırlar. Ancak bu iki numunede "c" değerleri optimum su muhtevasında birbirinden çok farklı çıktığı için su muhtevasının c ve ϕ değerleri üzerindeki etkisi olabilceği düşünülmüş ve aynı numuneye w_{opt} değerinden yüksek su muhtevası (%27,75) uygulanarak üç eksenli basınç deneyleri tekrarlanmıştır (EK D).

4.2.5. "8" no'lu numune ile laboratuvarda yapılan çalışmalar

Arada çeşitli numuneleri tanımlayıcı deneylerin yapılmasının ardından, Sakarya ili Beşköprü mahallesinden alınan ve ilk seçimde 8 inci sırada olan numune ile çalışmaya devam edilmeye, numunenin TS1500/Aralık2000 standardına göre CH (yüksek plastisiteli kil) olması nedeniyle karar verilmiştir.

 $G_s=2,61$ $W_L=\%56,50$ $W_P=\%24,62$ $I_P=\%3$ CH (yüksek plastisiteli kil) (TS1500/Aralık2000)

 w_{opt} = %27,88 su muhtevası ve standart proktor sıkılığında numuneler hazırlanarak kesme deneyleri uygulanmıştır (EK E).

BÖLÜM 5. SONUÇLAR

5.1. Giriş

Bu çalışma içinde Sakarya ili sınırları içinden alınmış örselenmiş kil numunelerinin, laboratuvar ortamında optimum su muhtevası ve standart proktor sıkılığında hazırlanmış olanlarının boyutlarının, drenajsız kayma direnci parametrelerine etkisi araştırılmıştır.

Ayrıca, aynı numunelere kesme kutusu deneyi uygulandığında, kayma direnci parametrelerinin hangi değerleri aldığı incelenmiştir.

Numunelerin dane çapı dağılımının, plastisite indisinin, su muhtevasının, doygunluk derecesinin, likit limit ve plastik limit değerlerinin sonuçlar üzerinde bir etkisi olup olmadığı da değerlendirilmiştir.

5.2. Üç Eksenli Basınç Deneyi Sonuçları

Laboratuar ortamında optimum su muhtevası ve standart proktor sıkılığında hazırlanmış olan farklı boyuttaki numuneler üzerinde 100 kPa, 200 kPa, 300 kPa hücre basıncında konsolidasyonsuz-drenajsız üç eksenli basınç deneyleri yapılmıştır.

"1" no'lu numune gurubunda (Şekil 5.1): R=3,50 cm h=7,00 cm boyutlu numunede $c_{1(A,B,C)}=120$ kPa, $\phi_{1(A,B,C)}=19^{0}$ R=5,00 cm h=10,00 cm boyutlu numunede $c_{1(D,E,F)}=60$ kPa, $\phi_{1(D,E,F)}=30^{0}$

"2" no'lu numune gurubunda (Şekil 5.2): R=3,50 cm h=7,00 cm boyutlu numunede $c_{2(A,B,C)}=40,50$ kPa, $\phi_{2(A,B,C)}=0$ R=5,00 cm h=10,00 cm boyutlu numunede $c_{2(D,E,F)}=52,50$ kPa, $\phi_{2(D,E,F)}=0$

1(D,E,F) NO'LU NUMUNE GURUBUNDA UU DENEYİ

(b)

Şekil 5.1. "1" no'lu numune gurubunda üç eksenli basınç deneyi sonuçları

(a) Şekil 5.2. "2" no'lu numune gurubunda üç eksenli basınç deneyi sonuçları

2(D,E,F) NO'LU NUMUNEDE UU DENEYİ

(b)

"4" no'lu numune gurubunda (Şekil 5.3.):

R=3,50 cm h=7,00 cm boyutlu numunede $c_{4(A,B,C)}=180$ kPa, $\phi_{4(A,B,C)}=0$ R=5,00 cm h=10,00 cm boyutlu numunede $c_{4(D,E,F)}=190$ kPa, $\phi_{4(D,E,F)}=0$

4(A,B,C) NO'LU NUMUNE GURUBUNDA UU DENEYİ

(b)

Şekil 5.3. "4" no'lu numune gurubunda üç eksenli basınç deneyi sonuçları

"8" no'lu numune gurubunda (Şekil 5.4.): R=3,50 cm h=7,00 cm boyutlu numunede $c_{8(A,B,C)}=55$ kPa, $\phi_{8(A,B,C)}=0$ R=5,00 cm h=10,00cm boyutlu numunede $c_{8(D,E,F)}=62,50$ kPa, $\phi_{8(D,E,F)}=0$

olarak kayma direnci parametrelerine ait değerler tesbit edilmiştir.

8(D,E,F) NO'LU NUMUNE GURUBUNDA UU DENEYİ

(b)

Şekil 5.4. "8" no'lu numune gurubunda üç eksenli basınç deneyi sonuçları

Şekil 5.1., Şekil 5.2., Şekil 5.3. ve Şekil 5.4.'te kayma direnci parametrelerini tesbit için yapılan deney sonuçlarına göre oluşturulan grafikler sunulmuştur.

"2" no'lu numunede I_p=%22,01 "4" no'lu numunede I_p=%23,52 olup, her iki numune de TS1500/Aralık2000 standardında CI olarak tanımlandığı halde; R=3,50 cm h=7,00 cm boyutlu numunelerde c_{2(A,B,C)}=40,50 kPa c_{4(A,B,C)}=180 kPa olarak bulununca ki aynı fark diğer boyuttaki numunelerde de görülmüştür , bu farkın nereden geldiğini araştırmak için her iki numuneye ait optimum su muhtevası

değerleri değiştirilerek deneyler tekrarlanmıştır.

$$c_{2(J,K,L)}=100 \text{ kPa}, \phi_{2(J,K,L)}=0$$

R=3,50 cm h=7,00 cm boyutlu yüksek değerli su muhtevasındaki 4 no'lu numunede

$$c_{4(J,K,L)} = 50 \text{ kPa}, \quad \phi_{4(J,K,L)} = 0$$

değerleri elde edilmiştir (Şekil 5.5.).

4(J,K,L) NO'LU NUMUNE GURUBUNDA UU DENEYİ

(b)

Şekil 5.5.'te görüldüğü üzere plastisite indisleri birbirlerine yakın olan numunelerin optimum su muhtevası değerlerinde değişikliğe gidildiğinde, "\ophi" kayma direnci açısı değerinin aynı kaldığı ancak "c" kohezyon değerinin düşük su muhtevası değerinde arttığı tesbit edilmiştir. Tablo 5.1.'de dört adet numune gurubu üzerinde yapılan üç eksenli basınç deneyi sonucunda bulunan "c" ve "\ophi" değerleri toplu halde sunulmuştur.

NUMUNE GURUP NO		NUMUNE NO	ZEMİN SINIFI TS1500	NUMUNE BOYUTU (cm) (Rxh)	DOYGUNLUK DERECESİ S _r (%)	SU MUHTEVASI w (%)	σ ₃ (kPa)	σ ₁ (kPa)	c (kPa)	ф (⁰)
	А		CL	3,58x7,00	88,58	18,04	100	501		
	В		CL	3,50x6,80	90,68	18,12	200	783	120	19
1	С		CL	3,60x7,00	88,44	18,14	300	988		
	D		CL	5,00x10,00	72,83	18,84	100	513		
	Е		CL	5,00x10,00	80,31	18,55	200	832	60	30
	F		CL	5,00x10,00	74,48	18,38	300	1074		
	А		CI	3,50x6,92	93,94	31,18	100	186		
	В		CI	3,59x7,16	87,50	31,06	200	281	40,5	0
	С		CI	3,60x7,30	84,12	30,97	300	364		
	D		CI	5,10x10,40	90,81	31,01	100	203		
2	Е		CI	5,10x10,10	93,08	30,67	200	301	52,5	0
	F		CI	5,00x10,00	91,86	30,71	300	402		
	J		CI	3,60x7,15	97,25	26,50	100	320		
	K		CI	3,50x7,24	99,47	26,55	200	429	100	0
	L		CI	3,60x7,20	94,48	26,88	300	458		
	А		CI	3,50x7,20	97,41	24,33	100	437		
	В		CI	3,50x6,87	100,00	24,44	200	537	180	0
	С		CI	3,50x6,89	94,39	24,39	300	680		
	D		CI	5,10x10,00	93,14	23,92	100	447		
4	Е		CI	5,00x9,48	95,00	23,84	200	601	190	0
	F		CI	5,00x9,32	90,96	23,79	300	685		
	J		CI	3,57x7,30	99,59	29,17	100	191		
	K		CI	3,60x7,20	94,17	27,74	200	308	50	0
	L		CI	3,60x7,20	95,90	28,34	300	406		
	А		СН	3,58x7,40	100,00	33,33	100	213		
8	В		СН	3,55x7,34	100,00	33,58	200	318	55	0
	С		СН	3,50x7,10	100,00	33,20	300	442		

Tablo 5.1.	(Devam)	Üç eksenl	i basınç o	deneyi sonuç	ları
------------	---------	-----------	------------	--------------	------

	D	СН	5,04x10,40	100,00	33,41	100	248		
8	Е	СН	5,00x10,00	96,77	32,95	200	331	62,5	0
	F	СН	5,00x10,00	95,62	32,84	300	452		

Yapılan üç eksenli basınç deneyleri sonucunda, doygun olmayan CL kilde; numune boyutu büyüdükçe kohezyon değerinin düştüğü, kayma direnci açısının değerinin yükseldiği görülmüştür.

Doygun ya da doyguna yakın olan CI ve CH killerde ise, boyutları büyük ve küçük numunelerde ölçülen kayma direnci parametrelerinde önemli bir fark tesbit edilmemiştir.

5.3. Kesme Kutusu Deney Sonuçları

Laboratuvar ortamında optimum su muhtevası ve standart proktor sıkılığında hazırlanan numuneler üzerinde 100 kPa, 200 kPa, 300 kPa normal gerilmeler altında kesme kutusu deneyleri yapılmıştır.

Yapılan kesme kutusu deneyleri sonucunda,

"1" no'lu numune gurubunda	$c_{1(G,H,I)}=0,$	$\phi_{1(G,H,I)}=32^{0}$
"2" no'lu numune gurubunda	$c_{2(G,H,I)}=0,$	$\phi_{2(G,H,I)}=23^{0}$
"4" no'lu numune gurubunda	c _{4(G,H,I)} =0,	$\phi_{4(G,H,I)}=28^{0}$
"8" no'lu numune gurubunda	c _{8(G,H,I)} =0,	φ _{8(G,H,I)} =24 ⁰

değerleri elde edilmiştir (Şekil 5.6.). Bu değerlerin üç eksenli basınç deneyi ile elde edilen değerlerden tamamen farklı oldukları görülmüştür.

Şekil 5.6.'da kayma direnci parametrelerini kesme kutusu deneyi ile tesbit edilmesi halinde çizilen grafikler; tablo 5.2.' de ise, dört adet numune gurubu üzerinde yapılan kesme kutusu deneyi sonucu bulunan kohezyon "c" ve kayma direnci açısı " ϕ " değerleri toplu halde sunulmuştur.

1(G,H,I) NO'LU NUMUNE GURUBUNDA KESME KUTUSU DENEYİ (a)

2(G,H,I) NO'LU NUMUNE GURUBUNDA KESME KUTUSU DENEYİ (b)

Şekil 5.6. Kesme kutusu deneyi sonuçları

8(G,H,I) NO'LU NUMUNE GURUBUNDA KESME KUTUSU DENEYİ (d)

Şekil 5.6. (Devam) Kesme ku	utusu deneyi sonuçlar	1
-----------------------------	-----------------------	---

Tablo 5.2. Kesme kutusu deney sonuçlar
--

NUMUNE	GURUF NO	NUMUNE NO	ZEMİN SINIFI TS1500	NUMUNE BOYUTU (cm) (axaxh)	DOYGUNLUK DERECESİ S _r (%)	SU MUHTEVASI w (%)	σ _n (kPa)	τ _{max} (kPa)	c (kPa)	ф (⁰)
	G		CL	6,0x6,0x2,0	65,94	16,57	100	63		
1	Н		CL	6,0x6,0x2,0	56,43	15,83	200	119	0	32
	Ι		CL	6,0x6,0x2,0	69,75	15,60	300	205		
	G		CI	6,0x6,0x2,0	78,48	27,90	100	36		
2	Н		CI	6,0x6,0x2,0	83,74	27,95	200	71	0	23
	Ι		CI	6,0x6,0x2,0	86,30	30,43	300	121		
	G		CI	6,0x6,0x2,0	69,39	21,29	100	60		
4	Н		CI	6,0x6,0x2,0	74,58	21,09	200	104	0	28
	Ι		CI	6,0x6,0x2,0	77,22	21,57	300	121		
	G		СН	6,0x6,0x2,0	73,82	27,26	100	63		
8	Н		СН	6,0x6,0x2,0	84,35	27,33	200	75	0	21
	Ι		СН	6,0x6,0x2,0	82,49	28,45	300	116		

BÖLÜM 6. TARTIŞMA VE ÖNERİLER

Zeminlerde drenajsız kayma direnci parametreleri birçok geoteknik problemin çözümünde gerekli olmaktadır. Bu problemlerin arasında sığ ve derin temellerin hızlı yükleme durumundaki taşıma gücü, şevlerin stabilitesi ve dayanma duvarlarının stabilitesi sayılabilir. Drenajsız kayma direnci parametrelerinin laboratuvarda ölçümü için başlıca iki farklı deney düzeneği geliştirilmiştir. Bunlar kesme kutusu deneyi ve üç eksenli basınç deneyi düzenekleridir. Laboratuarda sınırlı sayıda hazırlanan numuneler üzerinde yapılan deneylerle bu tez hazırlanmıştır. Numune hazırlaması oldukça fazla zaman aldığından, deney sayısı sınırlı tutulmuştur.

Bu tez çalışmasında yapılan üç eksenli basınç deneyleri sonucunda TS1500/Aralık2000 standardında CL olarak tanımlanan ve doygun olmayan "1" no'lu numunede doygunluk derecesi küçük olduğu için kayma direnci açısı belirmiştir. Bu numunede numune boyutu büyüdükçe "c" değerinin düştüğü, " ϕ " değerinin yükseldiği; yani numune boyutunun kayma direnci parametrelerine etkisinin olduğu görülmüştür. (Tablo 6.1.)

	ZEMİN	DOYGUNLUK			
	SINIFI	DERECESİ	SU MUHTEVASI	c(kPa)	φ
NUMUNE NO	TS1500	S _r (%)	w (%)		(⁰)
1(A,B,C)*	CL	88,58-90,68-88,44	18,04-18,12-18,14	120	19
1(D,E,F)**	CL	72,83-80,31-74,48	18,84-18,55-18,38	60	30

Tablo 6.1. "1" no'lu numunede üç eksenli basınç deneyi sonuçları

*Küçük boyutlu numune **Büyük boyutlu numune

Doygun ya da doyguna yakın olan CI ve CH killerde ise, boyutları büyük ve küçük numunelerde ölçülen kayma direnci parametrelerinde önemli bir fark tesbit edilmemiştir. Deney sonuçlarından görüldüğü üzere kohezyon değerleri birbirine çok yakın, kayma direnci açıları ise belirmemiştir (Tablo 6.2.).

	ZEMİN	DOYGUNLUK			φ
NUMUNE	SINIFI	DERECESİ	SU MUHTEVASI	с	$\begin{pmatrix} 0 \end{pmatrix}$
NO	TS1500	S _r (%)	w (%)	(kPa)	()
2(A,B,C)*	CI	93,94-87,50-84,12	31,18-31,06-30,97	40,50	0
2(D,E,F)**	CI	90,81-93,08-91,86	31,01-30,67-30,71	52,50	0
4(A,B,C)*	CI	97,41-100,00-94,39	24,33-24,44-24,39	180,00	0
4(D,E,F)**	CI	93,14-95,00-90,96	23,92-23,84-23,79	190,00	0
8(A,B,C)*	СН	100,00	33,33-33,58-33,20	55,00	0
8(D,E,F)**	СН	100,00-96,77-95,62	33,41-32,95-32,84	62,50	0

Tablo 6.2. "2", "4", "8" no'lu numunelerde üç eksenli basınç deneyi sonuçları

*Küçük boyutlu numune

**Büyük boyutlu numune

Tablo 6.3.'de ise, killi zemin numuneleri üzerinde yapılan üç eksenli basınç ve kesme kutusu deney sonuçları toplu halde verilmiştir.

NUMUNE GURUP NO	NUMUNE SINIFI TS 1500	NUMUNE NO	UYGULANAN DENEYİN ADI	c (kPa)	φ (⁰)
1	CL	1(A,B,C)	Üç eksenli	120	19
		1(D,E,F)	Üç eksenli	60	30
		1(G,H,I)	Kesme kutusu	0	32
2	CI	2(A,B,C)	Üç eksenli	40,50	0
		2(D,E,F)	Üç eksenli	52,50	0
		2(G,H,I)	Kesme kutusu	0	23
		4(A,B,C)	Üç eksenli	180	0
4	CI	4(D,E,F)	Üç eksenli	190	0
		4(G,H,I)	Kesme kutusu	0	28
		8(A,B,C)	Üç eksenli	55	0
8	СН	8(D,E,F)	Üç eksenli	62,50	0
		8(G,H,I)	Kesme kutusu	0	21

Kesme kutusu deney sonuçlarında, üç eksenli basınç deney sonuçlarının aksine tüm numunelerde kohezyon sıfır bulunmuş olup, buna karşılık kayma direnci açısı çeşitli değerler vermiştir. Bu farklılığın sebebi ise, her iki deneyin sınır şartlarının farklı oluşu şeklinde açıklanabilir.

Kesme kutusu deneyi esnasında zemin numunesine uygulanan yatay kuvvetten dolayı, numunenin alt ve üst yüzeylerinde kayma gerilmeleri oluşmakta fakat kenar yüzlere tamamlayıcı kayma gerilmeleri uygulanamamaktadır. Bu da numuneye etkiyen gerilme ve numunede oluşan şekil değiştirme dağılımlarının uniform olmamasına yol açar. Numune boyunca birim kayma değişimlerinin uniform olmaması, büyük birim kayma değerlerinde, şekil değiştirmelerin en zayıf olan kesitte yoğunlaşmasına neden olur.

Üç eksenli basınç deney cihazında ise, şekil değiştirme ve gerilme dağılımları kesme kutusu deneyine göre daha uniform bir dağılım gösterir [17].

Su muhtevaları değiştirilerek üç eksenli basınç deneyi uygulanan numunelerde, su muhtevası arttıkça "c" kohezyon değerinin azaldığı görülmüştür (Tablo 6.4.).

Tablo 6.4. "2" ve "4" no'lu numunelerde değişik su muhtevasında yapılan üç eksenli basınç deneyi sonuçları

	ZEMİN	SU MUHTEVASI		
NUMUNE NO	SINIFI	w (%)		
	TS1500		c (kPa)	φ (⁰)
2(A,B,C)*	CI	31,18-31,06-30,97	40,50	0
2(J,K,L)**	CI	26,50-26,55-26,88	100,00	0
4(A,B,C)*	CI	24,33-24,44-24,39	180,00	0
4(J,K,L)**	CI	29,17-27,74-28,34	50,00	0

*Optimum su muhtevasında küçük numune **Değişik su muhtevasında küçük numune

Yine yapılan deney sonuçlarına göre, numunelerde doygunluk derecesi arttıkça kayma direnci açısı değerinin sıfıra yaklaştığı görülmüştür. Numunelerin dane çapı dağılımının, plastisite indisinin, likit limit ve plastik limit değerlerinin yüzdesinin kayma direnci parametreleri üzerindeki etkisi yapılan deney sonuçlarının azlığı nedeniyle incelenememiştir.

Geçmişte yapılan çeşitli çalışmalar, küçük boyuttaki numunelerin arazideki kayma direncinden daha büyük bir değere sahip olduğunu göstermiştir [3].

Az sayıda yapılan deney sonuçları bir arada değerlendirildiğinde; laboratuarda kayma direnci parametrelerinin drenajsız- konsolidasyonsuz üç eksenli basınç deneyi ile ölçümünde, doygun duruma yakın numunelerde çap/yükseklik=1/2 oranına dikkat etmek kaydıyla, numune boyutunun fazla etkili olmadığı görülmüştür. Doygun olmayan numunelerde ise, küçük numune boyutlarında kohezyon değerlerinin büyük boyutlu numunelerinkinden daha yüksek, kayma direnci açısının ise daha düşük olduğu tesbit edilmiştir.

Killer üzerinde az sayıda yapılan deney sonuçlarında, kesme kutusu deneyleri ile killerin sahip olduğu kohezyon değerinin belirmediği görülmüştür. Killerin kohezyon değerinin belirlenmesinde, üç eksenli basınç deneyinin yapılmasının gerektiği sonucu ortaya çıkmaktadır. Ancak bu sonucun daha çok sayıda yapılacak deneylerle doğrulanması gerekeceği açıktır.

KAYNAKLAR

- [1] ÖNALP,A., "Geoteknik Bilgisi I", Birsen Yayınevi Ltd.Şti., İstanbul, 2002.
- [2] ÖZAYDIN,K., "Zemin Mekaniği", Meya Matbaacılık ve Yayıncılık Ltd.Şti., İstanbul, 1989.
- [3] TEZER, B.A., "Effect Of Specimen Size on Undrained Shear Strength of Stiff Fissured Ankara Clay", A Master's Thesis, ODTÜ, 1984.
- [4] EURFUR,C., "Laboratory and Field Evaluations of undrained shear strength of Bonneville Clay", Ph.D.Dissertation, Utah State University, 2004.
- [5] UZUNER, B.A., "Çözümlü Problemlerle Temel Zemin Mekaniği", Teknik Yayınevi, Ankara, 1996.
- [6] <u>http://www.odevsitesi.com</u>
- [7] ÖZTÜRK,Z.A., ÇAĞDAŞ,S., "Mukavemet, Teori ve Problemler", Murat Ders Yayınları, İstanbul, 1981.
- [8] DEMİRAY, H., "Mukavemet", Çağlayan Kitabevi, İstanbul, 1997.
- [9] AKÖZ,Y.A., ERATLI,N., "Statik-Mukavemet", Beta Basım Yayım Dağıtım A.Ş.", İstanbul, 2000.
- [10] BAKİOĞLU,M., KADIOĞLU,N., ENGİN,H., "Mukavemet Problemleri, Cilt 1", Beta Basım Yayım Dağıtım A.Ş.", İstanbul, 1998.
- [11] HOLTZ,R.D., KOVACS,W.D., "Geoteknik Mühendisliğine Giriş", Gazi Beta Basım Yayım Dağıtım A.Ş.", İstanbul, 1998.
- [12] POPOV,E.P., "Mukavemet, Katı Cisimlerin Mekaniğine Giriş", Çağlayan Kitabevi, İstanbul.

- [13] ÖZÜDOĞRU,K., TAN,O., AKSOY,İ.H., "Çözümlü Problemlerle Zemin Mekaniği", Birsen Yayınevi, İstanbul, 1996.
- [14] AYTEKİN, M., "Deneysel Zemin Mekaniği", Teknik Yayınevi, Ankara, 2004.
- [15] DAS,B.M., "Advanced Soil Mechanics", Mc.Graw-Hill-International Edition, Singapore, 1983.
- [16] TS1900/Nisan1987, "İnşaat Mühendisliğinde Zemin Deneyleri", Ankara.
- [17] NALBANTOĞLU,Z., "Üç Eksenli Basınç, Basit Kesme ve Kesme Kutusu Deney Yöntemleri İle Bulunan Kayma Mukavemetinin Karşılaştırılması", Yüksek Lisans Tezi, İTÜ, 1988.

EKLER
Ek.A SEKİZ ADET NUMUNEYE AİT FİZİKSEL ÖZELLİKLER

Tablo A.1. 1 NO'LU NUMUNEDE ÖZGÜL AĞIRLIK TAYİNİ

Numunenin geldiği yer: Erer	Deneyi yapan: Gülçin ŞENGÜL					
inşaatı	NOMALER					
Sondaj no:				Deney tari	hi: 06/12/2	005
Numune no:				İş no:		
Derinlik (metre): 0,50-1,00				Açıklama:		
Numunenin tanımı:						
ŞİŞE NO				1		
ŞİŞE AĞIRLIĞI	W1		g	37,93		
ŞİŞE+NUMUNE AĞ.	W2		g	54,73		
ŞİŞE+NUMUNE+SU AĞ.	W3		g	149,36		
ŞİŞE+SU AĞIRLIĞI	W4		g	138,88		
NUMUNE AĞIRLIĞI	W2-W1	(1)	g	16,8		
ŞİŞEYİ DOLDURAN SU A	Ğ.W4-W1		g	100,95		
ZEMİNE EKLENEN SU AĞ	5. W3-W2		g	94,63		
NUMUNE HACMI	(W4-W1)-(W3-W2	2) (2)	6,32		
ZEMİN DANELERİNİN Öz	GÜL AĞIR	LIĞI	(1/2)	2,66		

Tablo A.3. 3 NO'LU NUMUNEDE ÖZGÜL AĞIRLIK TAYİNİ

Numunenin geldiği yer: Sero	Deneyi yapan: Gülçin ŞENGÜL					
mevkii	NOMALER					
Sondaj no:				Deney tari	hi: 06/12/2	005
Numune no:				İş no:		
Derinlik (metre): 0,50-1,00				Açıklama:		
Numunenin tanımı:						
ŞİŞE NO				3	1	
ŞİŞE AĞIRLIĞI	W1		g	38,02	38	
ŞİŞE+NUMUNE AĞ.	W2		g	55	45,9	
ŞİŞE+NUMUNE+SU AĞ.	W3		g	149,4	143,95	
ŞİŞE+SU AĞIRLIĞI	W4		g	138,81	138,96	
NUMUNE AĞIRLIĞI	W2-W1	(1)	g	16,98	7,9	
ŞİŞEYİ DOLDURAN SU A	Ğ.W4-W1		g	100,79	100,96	
ZEMÎNE EKLENEN SU AG	94,4	98,05				
NUMUNE HACMI	2) (2)	6,39	2,91			
ZEMİN DANELERİNİN ÖZ	ZGÜL AĞIF	RLIĞI	(1/2)	2,66	2,71	2,69

Tablo A.5. 5 NO'LU NUMUNEDE ÖZGÜL AĞIRLIK TAYİNİ

Numunenin geldiği yer: Can	Deneyi yapan: Gülçin ŞENGÜL					
				NOMALE	R	
Sondaj no:	Deney tari	ihi: 23/02/2	006			
Numune no:				İş no:		
Derinlik (metre): 0,50-2,00 r	nt			Açıklama:		
Numunenin tanımı:						
ŞİŞE NO				3		
ŞİŞE AĞIRLIĞI	W1		g	38,01		
ŞİŞE+NUMUNE AĞ.	W2		g	51,51		
ŞİŞE+NUMUNE+SU AĞ.	W3		g	147,5		
ŞİŞE+SU AĞIRLIĞI	W4		g	138,82		
NUMUNE AĞIRLIĞI	W2-W1	(1)	g	13,5		
ŞİŞEYİ DOLDURAN SU A	Ğ.W4-W1		g	100,81		
ZEMÎNE EKLENEN SU AG	Ğ. W3-W2		g	95,99		
NUMUNE HACMI	(W4-W1)-(W3-W	2) (2)	4,82		
ZEMİN DANELERİNİN ÖZ	ZGÜL AĞIR	RLIĞI	(1/2)	2,798		

Tablo A.2. 2 NO'LU NUMUNEDE ÖZGÜL AĞIRLIK TAYİNİ

Numunenin geldiği yer: Güneşler-Köprübaşı mevkii	Deneyi yapan: Gülçin ŞENGÜL		
	NOMALER		
Sondaj no:	Deney tarihi: 06/12/2005		
Numune no:	İş no:		
Derinlik (metre): 0,50-1,00	Açıklama:		
Numunenin tanımı:			
ŞİŞE NO	2		
ŞİŞE AĞIRLIĞI W1 g	37,37		
ŞİŞE+NUMUNE AĞ. W2 g	55,57		
ŞİŞE+NUMUNE+SU AĞ. W3 g	148,63		
ŞİŞE+SU AĞIRLIĞI W4 g	137,42		
NUMUNE AĞIRLIĞI W2-W1 (1) g	18,2		
ŞİŞEYİ DOLDURAN SU AĞ.W4-W1 g	100,05		
ZEMİNE EKLENEN SU AĞ. W3-W2 g	93,06		
NUMUNE HACMI (W4-W1)-(W3-W2) (2)	6,99		
ZEMİN DANELERİNİN ÖZGÜL AĞIRLIĞI (1/2)	2,6		

Tablo A.4. 4 NO'LU NUMUNEDE ÖZGÜL AĞIRLIK TAYİNİ

Numunenin geldiği yer: Geyve ilçesi			Deneyi yapan: Gülçin ŞENGÜL			
				NOMALER		
Sondaj no:				Deney tar	ihi: 06/12/	2005
Numune no:				İş no:		
Derinlik (metre):				Açıklama		
Numunenin tanımı:						
ŞİŞE NO				4		
ŞİŞE AĞIRLIĞI	W1		g	37,99		
ŞİŞE+NUMUNE AĞ.	W2		g	51,93		
ŞİŞE+NUMUNE+SU AĞ.	W3		g	147,62		
ŞİŞE+SU AĞIRLIĞI	W4		g	138,91		
NUMUNE AĞIRLIĞI	W2-W1	(1)	g	13,94		
ŞİŞEYİ DOLDURAN SU A	Ğ.W4-W1		g	100,92		
ZEMÎNE EKLENEN SU A	Ğ. W3-W2		g	95,69		
NUMUNE HACMI	(W4-W1)-(W3-W2) (2)	5,23		
ZEMİN DANELERİNİN Ö.	ZGÜL AĞIR	LIĞI	(1/2)	2,67		

Tablo A.6. 8 NO'LU NUMUNEDE ÖZGÜL AĞIRLIK TAYİNİ

Numunenin geldiği yer: Toyo	Numunenin geldiği yer: Toyota evleri altı- Beşköprü				Deneyi yapan: Gülçin ŞENGÜL		
				NOMALER			
Sondaj no:	Sondaj no:					2006	
Numune no:				İş no:			
Derinlik (metre): 0,50-2,00 m	ıt			Açıklama			
Numunenin tanımı:							
ŞİŞE NO				1			
ŞİŞE AĞIRLIĞI	W1		g	37,93			
ŞİŞE+NUMUNE AĞ.	W2		g	49,68			
ŞİŞE+NUMUNE+SU AĞ.	W3		g	146,04			
ŞİŞE+SU AĞIRLIĞI	W4		g	138,8			
NUMUNE AĞIRLIĞI	W2-W1	(1)	g	11,75			
ŞİŞEYİ DOLDURAN SU AĞ	Ğ.W4-W1		g	100,87			
ZEMİNE EKLENEN SU AĞ	. W3-W2		g	96,36			
NUMUNE HACMI	4,51						
ZEMİN DANELERİNİN ÖZ	GÜL AĞIF	RLIĞI	(1/2)	2,61			

Tablo A.7. 1 NO'LU NUMUNEDE LİKİT LİMİT VE PLASTİK LİMİT TAYİNİ

PROJE								
ÖRNEĞİN ALINDIĞ	I YER	Erenler mevkii İstikbal Mobilya						
		inşaat saha	nşaat sahası					
ÖRNEĞÎN TANIMI		Örselenmis	Örselenmiş					
DENEY ÖZELLİĞİ		Cassagrand	de, etüvde					
SONDAJ NO		DENEYİ	YAPAN:	Gülçin ŞEN	IGÜL			
		NOMALER						
DERİNLİK	0,50-1mt	TARÎH: 20.09.2005						
Deney	wn			WL		Wp		
Kap no	556	306	309	368	366	372		
Vuruş sayısı, N		39	25	21	15			
Kap+örnek ağ.(g)	239.96	45.64	40.36	43.89	43.03	36.54		
Kap+ku.ör.ağ. (g)	219.7	40.37	36.25	38.82	38.11	34.4		
Kap ağırlığı (g)	47.80	23.64	24.23	24.54	24.52	24.82		
Kuru ör.ağ.Ws (g)	171.9	16.73 12;02 14.28 13.59						
Su ağırlığı Ww (g)	20.26	5;27	4;11	5;07	4;92	2;14		
Su içeriği w (%)	11,79%	31,50%	34,19%	35,50%	36,20%	22,34%		

Tablo A.8.2 NO'LU NUMUNEDE LİKİT LİMİT VEPLASTİK LİMİT LİMİT TAYİNİ

PROJE							
ÖRNEĞİN ALINDIC	Güneşler-Köprübaşı mevkii						
ÖRNEĞÎN TANIMI		Örselenmiş					
DENEY ÖZELLİĞİ		Cassagrande, etüvde					
SONDAJ NO		DENEYİ YAPAN: Gülçin ŞENGÜL NOMALER					
DERİNLİK	0,50-1mt	TARİH: 15.03.2006					
Deney	wn	WL					
Kap no	243	328	352	317	354	347	
Vuruş sayısı, N		32	23	20	18		
Kap+örnek ağ.(g)	669,4	40,09	40,26	42,03	44,75	25,23	
Kap+ku.ör.ağ. (g)	596,71	33,61	33,74	35,08	38,12	24,03	
Kap ağırlığı (g)	286,85	20,18	20,34	20,98	24,94	19,5	
Kuru ör.ağ.Ws (g)	309,86	13,43 13,4 14,1 13,18					
Su ağırlığı Ww (g)	72,69	6,48	6,52	6,95	6,63	1,2	
Su içeriği w (%)	23,46%	48,25%	48,65%	49,29%	50,30%	26,49%	

Ip=34,19-22,34=11,85

Tablo A.9. **3 NO'LU NUMUNEDE LİKİT LİMİT VE** PLASTİK LİMİT TAYİNİ

PROJE							
ÖRNEĞÎN ALINDIĞ	I YER	Serdivan SA.Ü. Kampus çıkışı mevkii					
ÖRNEĞÎN TANIMI		Örselenmi	ş				
DENEY ÖZELLİĞİ		Cassagrande, etüvde					
SONDAJ NO		DENEYÎ YAPAN: Gülçin ŞENGÛL NOMALER					
DERİNLİK	0,50-1mt	TARİH:	TARÎH: 20.10.2005				
Deney	wn		WL				
Kap no	257		310	370	380	343	
Vuruş sayısı, N	T		31	30	20		
Kap+örnek ağ.(g)	797,58		43,54	36,97	42,48	26,82	
Kap+ku.ör.ağ. (g)	751,32		37,83	32,67	36,88	25,55	
Kap ağırlığı (g)	281,03		20,84 19,95 21,2				
Kuru ör.ağ.Ws (g)	470,29		5,22				
Su ağırlığı Ww (g)	46,26		5,71	4,3	5,6	1,27	
Su iceriği w (%)	9 84%		33,61%	33.81%	35,71%	24.33%	

Ip=34,50-24,33=10,17

Ip=48,50-26,49=22,01

Tab+J59lo . 4 NO'LU NUMUNEDE LİKİT LİMİT VE PLASTIK LİMİT TAYİNİ

PROJE							
ÖRNEĞİN ALINDIČ	H YER	Geyve ilçesi					
ÖRNEĞÎN TANIMI		Örselenmi	ş				
DENEY ÖZELLİĞİ		Cassagran	de, etüvde				
SONDAJ NO		DENEYÎ YAPAN: Gülçin ŞENGÜL NOMALER					
DERÎNLÎK		TARİH: 02.03.2006					
Deney	wn			WL		Wp	
Kap no	745	315	328	341	312	370	
Vuruş sayısı, N		29	24	22	16		
Kap+örnek ağ.(g)	260,45	41,84	40,24	39,1	43,43	27,33	
Kap+ku.ör.ağ. (g)	234,45	35,34	33,98	33,43	36,6	26	
Kap ağırlığı (g)	55,48	20,76	20,18	21,12	22,36	19,95	
Kuru ör.ağ.Ws (g)	178,97	14,58	13,8	12,31	14,24	6,05	
Su ağırlığı Ww (g)	26	6,5	6,26	5,67	6,83	1,33	
Su iceriği w (%)	14,53%	44,58%	45,36%	46,06%	47,96%	21,98%	

Ip=45,50-21,98=23,52

Tablo A.11. 5 NO'LU NUMUNEDE LİKİT LİMİT VE PLASTİK LİMİT TAYİNİ

PROJE								
ÖRNEĞİN ALINDIĞ	Camili mahallesi							
ÖRNEĞÎN TANIMI		Örselenmis	ş					
DENEY ÖZELLİĞİ		Cassagrand	de, etüvde					
SONDAJ NO		DENEYİ NOMALE	DENEYÎ YAPAN: Gülçin ŞENGÛL NOMALER					
DERİNLİK	0,5-2mt	TARÎH:		02.03.2006				
Deney	wn			WL		Wp		
Kap no	705	319	346	313	315	345		
Vuruş sayısı, N		30	28	19	16			
Kap+örnek ağ.(g)	566,42	41,05	37,98	45,27	42,35	31,81		
Kap+ku.ör.ağ. (g)	490,48	36,41	32,81	38,96	35,71	30,4		
Kap ağırlığı (g)	69,62	25,05	20,39	24,56	20,76	24,36		
Kuru ör.ağ.Ws (g)	420,86	11,36 12,42 14,4 14,95						
Su ağırlığı Ww (g)	75,94	4,64	5,17	6,31	6,64	1,41		
Su içeriği w (%)	18,04%	40,85%	41,46%	43,82%	44,41%	23,34%		

Tablo A.12. 6 NO'LU NUMUNEDE LİKİT LİMİT PLASTİK LİMİT TAYİNİ

PROJE								
ÖRNEĞİN ALINDIÖ	Ada Tıp arkası Aydemirler inş.							
ÖRNEĞÎN TANIMI	Örselenmi	ş						
DENEY ÖZELLİĞİ		Cassagrande, etüvde						
SONDAJ NO		DENEYÎ YAPAN: Gülçin ŞENGÛL NOMALER						
DERİNLİK	0,5-2mt	TARİH: 13.03.2006						
Deney	wn	WL WF						
Kap no		349	374	370	368	319		
Vuruş sayısı, N		35	29	21	16			
Kap+örnek ağ.(g)		45,84	44,85	46,09	51,4	34,62		
Kap+ku.ör.ağ. (g)		40,37	39,11	38,77	43,55	33,06		
Kap ağırlığı (g)		25,65	24,74	19,95	24,54	25,05		
Kuru ör.ağ.Ws (g)		14,72 14,37 18,82 19,01						
Su ağırlığı Ww (g)		5,47	5,47 5,74 7,32 7,85					
Su içeriği w (%)		37,16%	39,94%	38,89%	41,29%	19,47%		

Ip=42,00-23,34=18,66

Tablo A.13. 7 NO'LU NUMUNEDE LİKİT LİMİT VE PLASTİK LİMİT TAYİNİ

PROJE								
ÖRNEĞÎN ALINDIĞ	I YER	Güneşler-f	ìrın					
ÖRNEĞİN TANIMI		Örselenmi	ş					
DENEY ÖZELLİĞİ		Cassagrand	de, etüvde					
SONDAJ NO		DENEYI NOMALE	DENEYİ YAPAN: Gülçin ŞENGÜL NOMALER					
DERINLİK	0,5-2mt	TARİH:	TARİH: 10.03.2006					
Deney	wn			WL		Wp		
Kap no	800	368	319	374				
Vuruş sayısı, N		40	38	26	14			
Kap+örnek ağ.(g)	663,52	43,41	47,68	46,06	42,76	29,72		
Kap+ku.ör.ağ. (g)	544,79	38,69	42,02	40,67	36,38	28,88		
Kap ağırlığı (g)	63,64	24,54	24,54 25,05 25,65 19,95					
Kuru ör.ağ.Ws (g)	481,15	14,15	14,15 16,97 15,02 16,43					
Su ağırlığı Ww (g)	118,73	4,72	5,66	5,39	6,38	0,84		
Su iceriği w (%)	24,67%	33,35%	33,35%	35,88%	38,83%	20.28%		

Ip=35,00-20,28=14,72

Ip=39,50-19,47=20,03

Tablo A.14. 8 NO'LU NUMUNEDE LİKİT LİMİT VE PLASTİK LİMİT TAYİNİ

PROJE										
ÖRNEĞİN ALINDIC	JI YER	Toyota evl	Toyota evleri altı-Beşköprü							
ÖRNEĞİN TANIMI		Örselenmi	ş							
DENEY ÖZELLİĞİ		Cassagran	de, etüvde							
SONDAJ NO		DENEYÎ YAPAN: Gülçin ŞENGÛL NOMALER								
DERÍNLÍK	0,5-2mt	TARÎH: 15.03.2006								
Deney	wn			WL		Wp				
Kap no	807	324	366	305	358	357				
Vuruş sayısı, N		40	31	22	17					
Kap+örnek ağ.(g)	253,22	36,23	50,32	39,73	44,8	30,41				
Kap+ku.ör.ağ. (g)	205,84	31,08	41,16	32,69	37,26	29,11				
Kap ağırlığı (g)	62,58	8 21,51 24,52 20,48 24,56 23,								
Kuru ör.ağ.Ws (g)	143,26	5 9,57 16,64 12,21 12,7 5,								
Su ağırlığı Ww (g)	47,38	5,15 9,16 7,04 7,54								
Su içeriği w (%)	33,07%	53,81%	55,04%	57,65%	59,37%	24,62%				

Ip=56,50-24,62=31,88

Ip 60

Şekil A.10.M26 2 NO'LU NUMUNENİN PLASTİSİTE KARTINDAKİ YERİ

Şekil A.12.

4 NO'LU NUMUNENİN PLASTİSİTE KARTINDAKİ YERİ

Ip 60

Şekil A.17. Araziden alınan numunelerin plastisite kartındaki yerleri

Şekil A.18. Kayma direnci parametrelerinin tesbiti için laboratuar çalışmalarında kullanılan numunelerin plastisite kartındaki yerleri

Tablo A.15 1 NO'LU NUMUNEDE DANE ÇAPI DAĞILIMININ BULUNMASI HİDROMETRE METODU

							,				%Px
			hidrometre	düzeltilmiş	\$			efektif		geçen	200 nolu
		süre	okuması	hidrometre	;		sabit	derinlik	dane	numune	elekten
tarih	saat	dak.	151H tipi		SIC	aklık	katsayı	cm	çapı	yüzdesi	geçen/100
				R			K	L	D	%P	%k
04.10.2005	9;59	0,5	1.020	1;0205	25	С	0,01286	10,8	0,0598	65	56
		1	1.016	1;0165	25	С	0,01286	11,9	0,0444	53	46
		2	1.015	1;0155	25	С	0,01286	12,2	0,0318	50	43
		4	1.014	1;0145	25	С	0,01286	12,4	0,0226	46	40
		8	1.013	1;0135	25	С	0,01286	12,7	0,0162	43	37
		15	1.011	1;0115	25	С	0,01286	13,2	0,0121	37	32
		30	1;010	1;0105	25	С	0,01286	13,5	0,0086	34	29
		60	1.009	1;0095	25	С	0,01286	13,8	0,0062	30	26
		120	1;0085	1;0090	25	С	0,01286	13,9	0,0044	29	25
		240	1.008	1;0085	25	С	0,01286	14	0,0031	27	23
05.10.2005		1440	1:0065	1:0070	25	С	0,01286	14,4	0,0013	22	19

DENEY TARİHİ: 04-05/10/2005 DENEYİ YAPAN: Gülçin ŞENGÜL NOMALER NUMUNENİN ALINDIĞI YER: E5 üzeri İstikbal Mobilya inşaatı

Dane özgül ağırlığı 2,66 Sıvı özgül ağırlığı 1,00

Tablo A.16

KURU ELEME METODU

DENEY TARİHİ : 07/10/2005 DENEYİ YAPAN: Gülçin ŞENGÜL NOMALER NUMUNENİN ALINDIĞI YER: E5 üzerilstikbal Mobilya İnş.

TOPLAM	TOPLAM AĞIRLIK : 50,28 g										
D	KALAN	KALAN	GEÇEN	GEÇEN							
	AĞIRLIK	YÜZDE	AĞIRLIK	YÜZDE							
mm	g	%	g	%							
50.00	-	-	-	-							
31.50	-	-	-	-							
16.00	-	-	-	-							
8.00	-	-	-	-							
4.00	-	-	50.28	100							
2.00	0.02	-	50.26	100							
0.850	0.14	2	50.12	99							
0.425	0.21	2	49.91	99							
0.212	0.75	9	49.16	98							
0.147	1;25	14	47.91	95							
0.074	4;89	57	43.02	86							
PAN	43.02		-								
TOPLAM	50.28		50.28								

Tablo A.17

1 NO'LU NUMUNEDE (200 NOLU ELEK ALTI) DANE ÇAPI DAĞILIMININ BULUNMASI HİDROMETRE METODU

NUMUNEN	IN ALI	NDIGI	JIGI I EK. ES üzeli istikoal Mooliya ilişaat salası								
										%Px	
			hidrometre	düzeltilmiş			efektif		geçen	200 nolu	
		süre	okuması	hidrometre		sabit	derinlik	dane	numune	elekten	
tarih	saat	dak.	151H tipi		sıcaklık	katsayı	cm	çapı	yüzdesi	geçen/100	
				R		K	L	D	%P	%k	
21.12.2005	12;30	0,5	1.031	1;0315	25 C	0.01286	7,95	0,0513	103	103	
		1	1.029	1;0295	25 C	0.01286	8,5	0,0375	96	96	
		2	1.027	1;0275	25 C	0.01286	9,05	0,0274	90	90	
		4	1;0255	1;026	25 C	0.01286	9,4	0,0197	85	85	
		8	1;0235	1;024	25 C	0.01286	10	0,0144	78	78	
		15	1.022	1;0225	25 C	0.01286	10,35	0,0107	73	73	
		30	1;020	1;0205	25 C	0.01286	10,85	0,0077	67	67	
		60	1.018	1;0185	25 C	0.01286	11,4	0,0056	60	60	
		120	1;0165	1;017	25 C	0.01286	11,8	0,004	55	55	
		240	1;015	1;0155	25 C	0.01286	12,2	0,0029	51	51	
22.12.2005		1440	1;012	1;0125	25 C	0.01286	13	0,0012	39	39	

DENEY TARİHİ: 21-22/12/2005 DENEYİ YAPAN: Gülçin ŞENGÜL NOMALER NUMUNENİN ALINDIĞI YER: E5 üzeri İstikbal Mobilya insaat sahası

Dane özgül ağırlığı 2,66 Sıvı özgül ağırlığı 1,00

Tablo A.18 2 NO'LU NUMUNEDE DANE ÇAPI DAĞILIMININ BULUNMASI HİDROMETRE METODU

NUMUNENIN ALINDIGI YER: Güneşler-Köprübaşı mevkii											
											%Px
			hidrometre	düzeltilmiş	\$			efektif		geçen	200 nolu
		süre	okuması	hidrometre	;		sabit	derinlik	dane	numune	elekten
tarih	saat	dakika	151H tipi		SIC	aklık	katsayı	cm	çapı	yüzdesi	geçen/100
				R			K	L	D	%P	%k
11.11.2005	11;05	0,5	1.024	1;0245	25	С	0.01306	9,8	0,0578	97	93
		1	1.023	1;0235	25	С	0.01306	10,1	0,0415	93	89
		2	1.022	1;0225	25	С	0.01306	10,3	0,0296	89	85
		4	1.020	1;0205	25	С	0.01306	10,8	0,0215	81	78
		8	1.019	1;0195	25	С	0.01306	11,1	0,0154	77	74
		15	1.017	1;0175	25	С	0.01306	11,6	0,0115	70	67
		30	1;016	1;0165	25	С	0.01306	11,9	0,0082	66	63
		60	1.015	1;0155	25	С	0.01306	12,2	0,0059	62	60
		120	1.013	1;0135	25	С	0.01306	12,7	0,0042	54	52
		240	1.012	1;0125	25	С	0.01306	13.0	0,003	50	48
12.11.2005		1440	1.009	1;0095	25	C	0.01306	13,8	0,0013	38	36

DENEY TARİHİ: 11-12/11/2005 DENEYİ YAPAN: Gülçin ŞENGÜL NOMALER

Dane özgül ağırlığı 2,60 Sıvı özgül ağırlığı 1,00

Tablo A.19

KURU ELEME METODU

DENEY TARİHİ : 12/11/2005 DENEYİ YAPAN: Gülçin ŞENGÜL NOMALER NUMUNENİN ALINDIĞI YER: Güneşler-Köprübaşı mevkii

TOPLAM AGIRLIK : 40,76 g										
D	KALAN	KALAN	GEÇEN	GEÇEN						
	AĞIRLIK	YÜZDE	AĞIRLIK	YÜZDE						
mm	g	%	g	%						
50.00	-	-	-	-						
31.50	-	-	-	-						
16.00	-	-	-	-						
8.00	-	-	-	-						
4.00	-	-	40.76	100						
2.00	0.06	3	40.7	100						
0.850	0.31	18	40.39	99						
0.425	0.52	30	39.87	98						
0.212	0.19	10	39.68	97						
0.147	0;11	6	39.57	97						
0.074	0;5	28	39.07	96						
PAN	39.07		-							
TOPLAM	40.76		40.76							

Tablo A.20

2 NO'LU NUMUNEDE (200 NOLU ELEK ALTI) DANE ÇAPI DAĞILIMININ BULUNMASI HİDROMETRE METODU

											%Px
			hidrometre	düzeltilmiş	,			efektif		geçen	200 nolu
		süre	okuması	hidrometre	;		sabit	derinlik	dane	numune	elekten
tarih	saat	dakika	151H tipi		SIC	aklık	katsayı	cm	çapı	yüzdesi	geçen/10
				R			K	L	D	%P	%k
06.12.2005	11;13	0,5	1.025	1;0255	25	С	0.01306	9,5	0,0569	98	98
		1	1.023	1;0235	25	С	0.01306	10,1	0,0415	90	90
		2	1.022	1;0225	25	С	0.01306	10,3	0,034	86	86
		4	1.020	1;0205	25	С	0.01306	10,8	0,0215	79	79
		8	1.018	1;0185	25	С	0.01306	11,4	0,0156	71	71
		15	1;0175	1.018	25	С	0.01306	11,5	0,0114	69	69
		30	1;0165	1,017	25	С	0.01306	11,8	0,0082	65	65
		60	1;0145	1;015	25	С	0.01306	12,3	0,0059	58	58
		120	1.013	1;0135	25	С	0.01306	12,7	0,0042	52	52
		240	1.011	1;0115	25	С	0.01306	13,2	0,0031	44	44
07.12.2005		1440	1.009	1:0095	25	С	0.01306	13,8	0,0013	36	36

DENEYİ YAPAN: Gülçin ŞENGÜL NOMALER NUMUNENİN ALINDIĞI YER: Günesler-Köprübası mevkii

Dane özgül ağırlığı 2,60 Sıvı özgül ağırlığı 1,00

Tablo A.213 NO'LU NUMUNEDE DANE ÇAPI DAĞILIMININ BULUNMASIHİDROMETRE METODU

nomentari		TIDIOI	I LIC. Delu	ivun bri.o.	ixumpus ç	ikişi ine vi				
										%Px
			hidrometre	düzeltilmiş			efektif		geçen	200 nolu
		süre	okuması	hidrometre		sabit	derinlik	dane	numune	elekten
tarih	saat	dakika	151H tipi		sıcaklık	katsayı	cm	çapı	yüzdesi	geçen/100
				R		K	L	D	%P	%k
11.11.2005	11;16	0,5	1.025	1;0255		0.01267	9,5	0,0553	90	77
		1	1.023	1;0235		0.01267	10;1	0,0403	83	71
		2	1.022	1;0225		0.01267	10,3	0,0288	80	68
		4	1.020	1;0205		0.01267	10,8	0,0209	72	61
		8	1.018	1;0185	24,5C	0.01267	11;4	0,0152	65	55
		15	1.017	1;0175		0.01267	11,6	0,0112	62	53
		30	1;016	1;0165	24,5C	0.01267	11,9	0,008	58	49
		60	1.014	1;0145		0.01267	12,4	0,0058	51	43
		120	1.012	1;0125	24,5C	0.01267	13.0	0,0042	44	37
		240	1.010	1;0105	24,6C	0.01267	13,5	0,003	37	31
12.11.2005		1440	1.006	1;0065	24,2C	0.01267	14;5	0,0013	23	20

DENEY TARİHİ: 11-12/11/2005 DENEYİ YAPAN: Gülçin ŞENGÜL NOMALER NUMUNENİN ALINDIĞI YER: Serdivan-SA.Ü. Kampus çıkışı mevkii

Dane özgül ağırlığı 2,69 Sıvı özgül ağırlığı 1,00

Tablo A.22

KURU ELEME METODU

DENEY TARİHİ : 12/11/2005 DENEYİ YAPAN: Gülçin ŞENGÜL NOMALER NUMUNENİN ALINDIĞI YER: Serdivan-SA.Ü. Kampus çıkışı mevkii

TOPLAM	AĞIRLIK	: 44,64	g	
D	KALAN	KALAN	GEÇEN	GEÇEN
	AĞIRLIK	YÜZDE	AĞIRLIK	YÜZDE
mm	g	%	g	%
50.00	-	-	-	-
31.50	-	-	-	-
16.00	-	-	-	-
8.00	-	-	-	-
4.00	-	-	44.64	100
2.00	0	-	44.64	100
0.850	0.40	6	44.24	99
0.425	1;66	25	44.58	99
0.212	1;61	24	40.97	- 98
0.147	0.74	11	40.23	95
0.074	2;13	32	38.1	86
PAN	38.1		-	
TOPLAM	44.64		44.64	

Tablo A.23 4 NO'LU NUMUNEDE DANE ÇAPI DAĞILIMININ BULUNMASI HİDROMETRE METODU

NUMUNEN	NUMUNENIN ALINDIGI YER: Geyve ilçesi										
											%Px
			hidrometre	düzeltilmiş				efektif		geçen	200 nolu
		süre	okuması	hidrometre			sabit	derinlik	dane	numune	elekten
tarih	saat	dakika	151H tipi		SIC	aklık	katsayı	cm	çapı	yüzdesi	geçen/100
				R			K	L	D	%P	%k
11.11.2005	11;37	0,5	1.025	1;0255	25	С	0,01286	9,5	0,0561	89	80
		1	1.024	1;0245	25	С	0,01286	9,8	0,0403	86	77
		2	1.023	1;0235	25	С	0,01286	10,1	0,0289	82	74
		4	1.022	1;0225	25	С	0,01286	10,3	0,0206	79	71
		8	1.021	1;0215	25	С	0,01286	10,6	0,0148	75	68
		15	1.020	1;0205	25	С	0,01286	10,8	0,0109	72	65
		30	1;017	1;0175	25	С	0,01286	11,6	0,008	61	55
		60	1.016	1;0165	25	C	0,01286	11,9	0,0057	58	52
		120	1.015	1;0155	25	С	0,01286	12,2	0,0041	54	49
		240	1.014	1;0145	25	С	0,01286	12,4	0,0029	51	46
12.11.2005		1440	1.011	1;0115	25	С	0,01286	13,2	0,0012	40	36

DENEY TARİHİ: 11-12/11/2005 DENEYİ YAPAN: Gülçin ŞENGÜL NOMALER

Dane özgül ağırlığı 2,67 Sıvı özgül ağırlığı 1,00

Tablo A.24

KURU ELEME METODU

DENEY TARİHİ : 12/11/2005 DENEYİ YAPAN: Gülçin ŞENGÜL NOMALER NUMUNENİN ALINDIĞI YER: Geyve ilçesi

TOPLAM	TOPLAM AĞIRLIK : 45,66 g										
D	KALAN	KALAN	GEÇEN	GEÇEN							
	AĞIRLIK	YÜZDE	AĞIRLIK	YÜZDE							
mm	g	%	đđ	%							
50.00	-	-	-	-							
31.50	-	-	-	-							
16.00	-	-	-	-							
8.00	-	-	-	-							
4.00	-	-	45.66	100							
2.00	0.06	1	45.60	100							
0.850	0.23	5	45.37	99							
0.425	0.77	15	44.60	98							
0.212	0.96	19	43.64	96							
0.147	0.59	12	43.05	94							
0.074	2;19	44	40.86	90							
PAN	40.86		-								
TOPLAM	45.66		45.66								

Tablo A.25

4 NO'LU NUMUNEDE (200 NOLU ELEK ALTI) DANE ÇAPI DAĞILIMININ BULUNMASI HİDROMETRE METODU

NUMUNEN	IN ALI	NDIGI	YER: Geyv	/e iiçesi							
											%Px
			hidrometre	düzeltilmiş	3			efektif		geçen	200 nolu
		süre	okuması	hidrometre			sabit	derinlik	dane	numune	elekten
tarih	saat	dakika	151H tipi		sıcak	lık	katsayı	cm	çapı	yüzdesi	geçen/100
				R			K	L	D	%P	%k
23.03.2006	11;35	0,5	1.032	1;0325	25 C	0	0,01286	7,7	0,0505	106	106
		1	1.031	1;0315	25 C	0	0,01286	7,95	0,0363	103	103
		2	1.030	1;0305	25 C		0,01286	8,25	0,0261	100	100
		4	1;028	1;0285	25 C	2	0,01286	8,75	0.0190	93	93
		8	1.027	1;0275	25 C	0	0,01286	9,05	0,0137	90	90
		15	1;0255	1;026	25 C	5	0,01286	9,4	0,0102	85	85
		30	1;024	1;0245	25 C	5	0,01286	9,85	0,0074	80	80
		60	1;0215	1;022	25 C	5	0,01286	10,5	0,0054	72	72
		120	1;0195	1;020	25 C		0,01286	11	0,0039	65	65
		240	1;018	1;0185	25 C	5	0,01286	11,4	0,0028	60	60
24.03.2006		1440	1;0145	1,015	25 C	2	0,01286	12,3	0,0012	49	49

DENEY TARİHİ: 23-24/03/2005 DENEYİ YAPAN: Gülçin ŞENGÜL NOMALER NUMUNENİN ALINDIĞI YER: Gevve ilcesi

Dane özgül ağırlığı 2,67 Sıvı özgül ağırlığı 1,00

Tablo A.265 NO'LU NUMUNEDE DANE ÇAPI DAĞILIMININ BULUNMASIHİDROMETRE METODU

DENEY TARİHİ: 23-24/02/2006 DENEYİ YAPAN: Gülçin ŞENGÜL NOMALER NUMUNENİN ALINDIĞI YER: Camili mahallesi

											%Px
			hidrometre	düzeltilmiş	\$			efektif		geçen	200 nolu
		süre	okuması	hidrometre	;		sabit	derinlik	dane	numune	elekten
tarih	saat	dakika	151H tipi		SIC	aklık	katsayı	cm	çapı	yüzdesi	geçen/100
				R			K	L	D	%P	%k
23.02.2006	12;10	0,5	1.029	1;0295	25	С	0,01232	8,5	0,0507	91	83
		1	1.028	1;0285	25	С	0,01232	8,75	0,0364	88	80
		2	1.027	1;0275	25	С	0,01232	9,05	0,0262	85	77
		4	1.026	1;0265	25	С	0,01232	9,3	0,0188	82	75
		8	1.024	1;0245	25	С	0,01232	9,85	0,0137	76	69
		15	1;0225	1;0230	25	С	0,01232	10,2	0,0102	71	65
		30	1;0205	1;0210	25	С	0,01232	10,7	0,0074	65	59
		60	1.018	1;0185	25	С	0,01232	11,4	0,0054	57	52
		120	1.016	1;0165	25	С	0,01232	11,95	0,0039	51	46
		240	1;0135	1;0140	25	С	0,01232	12,6	0,0028	43	39
24.02.2006		1440	1;0105	1;0110	25	С	0,01232	13,4	0,0012	22	20

Dane özgül ağırlığı 2,80 Sıvı özgül ağırlığı 1,00

Tablo A.27

KURU ELEME METODU

DENEY TARİHİ : 27/02/2006 DENEYİ YAPAN: Gülçin ŞENGÜL NOMALER NUMUNENİN ALINDIĞI YER: Camili mahallesi

TOPLAM	AĞIRLIK	:	50.24	
-	-		,	
D	KALAN	KALAN	GEÇEN	GEÇEN
	AĞIRLIK	YÜZDE	AĞIRLIK	YÜZDE
mm	g	%	g	%
50.00	-	-	-	-
31.50	-	-	-	
16.00	-	-	-	
8.00	-	-	-	-
4.00	-	-	50,24	100
2.00	0,27	6	49,97	99
0.850	1,35	28	48,62	97
0.425	0,81	17	47,81	95
0.212	0,72	15	47,09	94
0.147	0;44	9	46,65	93
0.074	1;17	24	45,48	91
PAN	45,48		-	
TOPLAM	50,24		50,24	

Tablo A.28 8 NO'LU NUMUNEDE DANE ÇAPI DAĞILIMININ BULUNMASI HİDROMETRE METODU

NUMUNEN	IN ALI	NDIGI	TEK. TOYC	na evien al	u- Б	eşkop	Iu				
											%Px
			hidrometre	düzeltilmiş				efektif		geçen	200 nolu
		süre	okuması	hidrometre			sabit	derinlik	dane	numune	elekten
tarih	saat	dakika	151H tipi		SIC	aklık	katsayı	cm	çapı	yüzdesi	geçen/100
				R			K	L	D	%P	%k
23.02.2006	11;12	0,5	1.029	1;0295	25	С	0,01306	8,5	0,0538	102	95
		1	1;0285	1;029	25	С	0,01306	8,6	0,0383	100	93
		2	1.028	1;0285	25	С	0,01306	8,75	0,0273	99	92
		4	1.027	1;0275	25	С	0,01306	9,05	0,0196	95	88
		8	1;0265	1;027	25	С	0,01306	9,2	0.0140	94	87
		15	1;026	1;0265	25	С	0,01306	9,3	0,0103	92	86
		30	1;025	1;0255	25	С	0,01306	9,55	0,0074	88	82
		60	1.024	1;0245	25	С	0,01306	9,85	0,0053	85	79
		120	1;0225	1;023	25	С	0,01306	10,2	0,0038	80	74
		240	1;021	1;0215	25	С	0,01306	10,6	0,0027	74	69
24.02.2006		1440	1;019	1;0195	25	С	0,01306	11,15	0,0011	68	63

DENEY TARİHİ: 23-24/02/2006 DENEYİ YAPAN: Gülçin ŞENGÜL NOMALER

Dane özgül ağırlığı 2,61 Sıvı özgül ağırlığı 1,00

Tablo A.29

KURU ELEME METODU

DENEY TARİHİ : 27/03/2006 DENEYİ YAPAN: Gülçin ŞENGÜL NOMALER NUMUNENİN ALINDIĞI YER: Toyota evleri altı-Beşköprü

TOPLAM	AGIRLIK	:	46,9	
D	KALAN	KALAN	GEÇEN	GEÇEN
	AĞIRLIK	YÜZDE	AĞIRLIK	YÜZDE
mm	g	%	g	%
50.00	-	-	-	-
31.50	-	-	-	-
16.00	-	-	-	-
8.00	-	-	-	-
4.00	-	-	46,9	100
2.00	0,13	4	46,77	100
0.850	0,17	5	46,6	- 99
0.425	0,35	11	46,25	99
0.212	0,61	19	45,64	97
0.147	0;55	17	45,09	96
0.074	1;42	44	43,67	93
PAN	43,67			
TOPLAM	46,9		46,9	

Tablo A.30

8NO'LU NUMUNEDE (200 NOLU ELEK ALTI) DANE ÇAPI DAĞILIMININ BULUNMASI HİDROMETRE METODU

NUMUNEIN	IN ALI	NDIGI	1 E.K. 1090	na evien ai	и-везкорі	u				
										%Px
			hidrometre	düzeltilmiş			efektif		geçen	200 nolu
		süre	okuması	hidrometre		sabit	derinlik	dane	numune	elekten
tarih	saat	dakika	151H tipi		sıcaklık	katsayı	cm	çapı	yüzdesi	geçen/100
				R		K	L	D	%P	%k
23.03.2006	11;12	0,5	1.029	1;0295	25 C	0,01306	8;50	0,0538	98	98
		1	1;0285	1.029	25 C	0,01306	8,6	0,0383	96	96
		2	1.028	1;0285	25 C	0,01306	8,75	0,0273	94	94
		4	1.027	1;0275	25 C	0,01306	9,05	0,0196	91	91
		8	1;0265	1.027	25 C	0,01306	9,2	0.0140	89	89
		15	1.026	1;0265	25 C	0,01306	9,3	0,0103	88	88
		30	1.025	1;0255	25 C	0,01306	9,55	0,0074	84	84
		60	1.024	1;0245	25 C	0,01306	9,85	0,0053	81	81
		120	1;0225	1.023	25 C	0,01306	10,2	0,0038	76	76
		240	1.021	1;0215	25 C	0,01306	10,6	0,0027	71	71
24.03.2006		1440	1.019	1;0195	25 C	0,01306	11,15	0,0011	64	64

DENEYİ YAPAN: Gülçin ŞENGÜL NOMALER NUMUNENİN ALINDIĞI YER: Toyota evleri altı-Beşköprü

Dane özgül ağırlığı 2,61 Sıvı özgül ağırlığı 1,00

Şekil A.21

2 NO'LU NUMUNEDE DANE ÇAPI DAĞILIMI

Şekil A.22 2 NO'LU NUMUNEDE (200 NOLU ELEK ALTI) DANE ÇAPI DAĞILIMI

KİL		SİLT			KUM			ÇAKIL			
	İnce	Orta	İri	İnce	Orta	İri	İnce	Orta	İri		

100

KİL SİLT KUM ÇAKIL

4 NO'LU NUMUNEDE (200 NOLU ELEK ALTI) DANE ÇAPI DAĞILIMI

 KİL
 SİLT
 KUM
 ÇAKIL

 İnce
 Orta
 İri
 İnce
 Orta
 İri

5 NO'LU NUMUNEDE DANE ÇAPI DAĞILIMI

DANE BOYUTU (mm)

KİL	SİLT	KUM	ÇAKIL

İnce	Orta	İri	İnce	Orta	İri	İnce	Orta	İri

```
Şekil A.27
```

8 NO'LU NUMUNEDE DANE ÇAPI DAĞILIMI

DANE BOYUTU (mm)

KİL	SİLT				KUM		ÇAKIL		
	İnce	Orta	İri	İnce	Orta	İri	İnce	Orta	İri

Şekil A.28 8 NO'LU NUMUNEDE (200 NOLU ELEK ALTI) DANE ÇAPI DAĞILIMI

DANE BOYUTU (mm)

1 NOLU NUMUNE

4 NOLU NUMUNE

2 NOLU NUMUNE

8 NOLU NUMUNE

Şekil A.30 LABORATUAR NUMUNELERİNİN HAZIRLANMASINDA KULLANILAN ZEMİNLERE AİT DANE ÇAPI DAĞILIMI

NOT: Laboratuarda hazırlanan numunelerde 200 no'lu elek altına geçen zeminler kullanılmıştır.

Ek.B 1 NO'LU NUMUNEYE AİT DENEYSEL ÇALIŞMALAR

PROJE						
ÖRNEĞİN ALINDIĞI YER		ERENI SAHAS	LER MEV I	. İSTİKI	BAL MO	B. İNŞ.
ÖRNEĞİN TANIMI		ÖRSEL	ENMİŞ			
ÖRNEK NO		DENE	ΥΪ ΥΑΡΑ	AN .	G.Ş.NC	MALER
DERİNLİK		0,5-1 mt	DANE	ÖZ AĞI	RLIK 2	2,66
TARİH		28.11.	2005			
		KALII	BIN İÇ H	ACMI	942,5 ci	m ³
DENEY NO		1	2	3	4	5
KALIP+TABAN+ZEMİN AĞIRLIĞI	I (gr)	9540	9750	9835	9755	9775
KALIP+TABAN AĞIRLIĞI	(gr)	8000	8000	8000	8000	8000
SIKIŞTIRILMIŞ ZEMİN AĞIRLIĞI	(gr)	1540	1750	1835	1755	1775
YAŞ BİRİM HACIM AĞIRLIĞI	(kN/m^3)	16,03	18,22	19,1	18,27	18,48
KAP NO		784	774	779	732	716
KAP AĞIRLIĞI	(gr)	55,08	56,43	54,1	54,9	60,1
KAP+YAŞ ÖRNEK AĞIRLIĞI	(gr)	120,18	161,72	165,66	159,28	151,44
KAP+KURU ÖRNEK AĞIRLIĞI	(gr)	113,63	146,31	146,29	137	129,67
SU MUHTEVASI	(%)	11,19	17,15	21,01	27,14	31,29
KURU BİRİM HACIM AĞIRLIK	(kN/m^3)	14,42	15,55	15,78	14,37	14,08

Tablo B.1. 1 NO'LU NUMUNEDE ZEMİN SIKIŞTIRMA DENEYİ

Şekil B.1. 1 no'lu numunede $w_{opt} \ tayini$

Tablo B.2. "1/A" NO'LU NUMUNEDE KAYMA DİRENCİ PARAMETRELERİNİN DRENAJSIZ KONSOLİDASYONSUZ ÜÇ EKSENLİ BASINÇ DENEYİ İLE BULUNMASI

Proje adı		Kuvvet halkası no		: 4693
Numunenin geldiği yer:Erenler mev	kii İstikbal Mobilya inş.	Kuvvet halka katsayısı	: 2,1211	
Sondaj no Numune no: 1/2	A	Yükleme hızı		:0,8 mm/dak
Numunenin alındığı derinlik	:0,5-1 mt	Çevre basıncı		: 100 kPA
Numunenin tanımı		Deformasyon saatinin has	ssaslığı	: 0,01 mm
Numune çapı	: 3,58 cm	Başlangıç su içeriği		
Numune yüksekliği	: 7,0 cm	Başlangıç enkesit alanı	Ao	$:\pi x1.79x1,79=10,06 \text{ cm}2$
Numunenin doğal ağırlığı	: 141,63 g	Başlangıç hacmı	Vo	:10,06x7,0 = 70,42cm3
Numunenin kuru ağırlığı	: 119,98 g	Özgül ağırlık	Gs	: 2,66
Su içeriği	: % 18,04			
Sr (141,63-119,98)/(70,42-45,98)	: % 88,58			

Başlangıç boşluk oranı

: Vo-Vs/Vs=0,53

eo

Danelerin hacmı V : Ws/Gsxp w= 119,98/2,66x0,981 Vs : 45,98 cm3

KUVVET	BASINÇ	BOY	BİRİM	DÜZELTİLMİŞ	DEVİATÖR
HALKASI	KUVVETİ	KISALMASI	BOY KISALMASI	ENKESİT ALANI	GERİLME
OKUMASI	(Kn)	(0,01mm has.)(mm))	(cm2)	(kPa)
KH	P=KHx2,1211	Δl	εz =∆l/lo	Ac=Ao/1-εz	σ=P/Ac
0	0	0	0	10,06	0
16	33,938	10	0,0014	10,07	34
30	63,633	25	0,0036	10,1	63
45	95,45	50	0,0071	10,14	94
55	116,661	75	0,0107	10,17	115
65	137,872	100	0,0143	10,21	135
84	178,172	150	0,0214	10,28	173
98	207,868	200	0,0286	10,36	201
135	286,349	300	0,0429	10,51	272
161	341,497	400	0,0571	10,67	320
181	383,919	500	0,0714	10,83	354
192	407,251	600	0,0857	11	370
197	417,857	700	0,1	11,18	374
210	445,431	800	0,1143	11,36	392
218	462,4	900	0,1286	11,54	401
209	443,31	1000	0,1429	11,74	378
195	413,615	1100	0,1571	11,93	347
203	430,583	1200	0,1714	12,14	355
206	436,947	1300	0,1857	12,35	354
201	426,341	1400	0,2	12,58	339

Tablo B.3. "1/B" NO'LU NUMUNEDE KAYMA DİRENCİ PARAMETRELERİNİN DRENAJSIZ KONSOLİDASYONSUZ ÜÇ EKSENLİ BASINÇ DENEYİ İLE BULUNMASI

Proje adı			Kuvvet halkası no		: 4693
Numunenin geldiği yer:Erenler mevkii İstikbal Mobilya inş.			Kuvvet halka katsayısı		: 2,1211
Sondaj no	Numune no: 1/B		Yükleme hızı		:0,8 mm/dak
Numunenin alındığı	derinlik	:0,5-1 mt	Çevre basıncı		: 200 kPA
Numunenin tanımı			Deformasyon saatının has	ssaslığı	: 0,01 mm
Numune çapı		: 3,50 cm	Başlangıç su içeriği		
Numune yüksekliği		: 6,80 cm	Başlangıç enkesit alanı	Ao	$:\pi x1.75x1,75=9,62 \text{ cm}2$
Numunenin doğal ağ	ğırlığı	: 132,54 g	Başlangıç hacmı	Vo	:9,62x6,80 = 65,42cm3
Numunenin kuru ağı	rlığı	: 112,21 g	Özgül ağırlık	Gs	: 2,66
Su içeriği	-	: % 18,12			
Sr (132,54-112,21)/((65,42-43,00)	:% 90,68			
Danelerin hacmı V	: Ws/Gsxp w=112,	21/2,66x0,981	Başlangıç boşluk oranı	eo	: Vo-Vs/Vs= 0,52

:43,00 cm3

KUVVET	BASINÇ	BOY	BİRİM	DÜZELTİLMİŞ	DEVİATÖR
HALKASI	KUVVETİ	KISALMASI	BOY KISALMASI	ENKESİT ALANI	GERİLME
OKUMASI	(Kn)	(0,01mm has.)(mm))	(cm2)	(kPa)
KH	P=KHx2,1211	Δl	εz =∆l/lo	Ac=Ao/1-εz	σ=P/Ac
0	0	0	0	9,62	0
25	53,028	10	0,0015	9,63	55
45	95,45	25	0,0037	9,66	99
68	144,235	50	0,0074	9,69	149
89	188,778	75	0,011	9,73	194
104	220,594	100	0,0147	9,76	226
127	269,38	150	0,0221	9,84	274
147	311,802	200	0,0294	9,91	315
184	390,282	300	0,0441	10,06	388
213	451,794	400	0,0588	10,22	442
239	506,943	500	0,0735	10,38	488
257	545,123	600	0,0882	10,55	517
268	568,455	700	0,1029	10,72	530
285	604,514	800	0,1176	10,9	555
305	646,936	900	0,1324	11,09	583
303	642,693	1000	0,1471	11,28	570
292	619,361	1100	0,1618	11,48	540
294	623,603	1200	0,1765	11,68	534
302	640,572	1300	0,1912	11,89	539
305	646,936	1400	0,2059	12,11	534

Tablo B.4. ''1/C'' NO'LU NUMUNEDE KAYMA DİRENCİ PARAMETRELERİNİN DRENAJSIZ KONSOLİDASYONSUZ ÜÇ EKSENLİ BASINÇ DENEYİ İLE BULUNMASI

Proje adı			Kuvvet halkası no		: 4693
Numunenin geldiği yer:Erenler mevkii İstikbal Mobilya inş.			Kuvvet halka katsayısı	Kuvvet halka katsayısı	
Sondaj no	Numune no: 1/C		Yükleme hızı		:0,8 mm/dak
Numunenin alındığı	ı derinlik	:0,5-1 mt	Çevre basıncı		: 300 kPA
Numunenin tanımı			Deformasyon saatinin has	ssaslığı	: 0,01 mm
Numune çapı		: 3,60 cm	Başlangıç su içeriği		
Numune yüksekliği		: 7,0 cm	Başlangıç enkesit alanı	Ao	$\pi x1.80x1,80=10,17 cm2$
Numunenin doğal a	ğırlığı	: 142,94 g	Başlangıç hacmı	Vo	:10,17x7,0 = 71,19 cm3
Numunenin kuru ağ	urlığı	: 120,99 g	Özgül ağırlık	Gs	: 2,66
Su içeriği	-	: % 18,14	• •		
Sr (142,94-120,99)/	(71,19-46,37)	: % 88,44			
Danelerin hacmı	v: Ws/Gsxp w= 120	,99/2,66x0,981	Başlangıç boşluk oranı	eo	: Vo-Vs/Vs= 0,54

Danelerin hacmı $V: Ws/Gsx\rho w= 120,99/2,66x0,981$:46,37 cm3

KUVVET	BASINÇ	BOY	BİRİM	DÜZELTİLMİŞ	DEVİATÖR
HALKASI	KUVVETİ	KISALMASI	BOY KISALMASI	ENKESİT ALANI	GERİLME
OKUMASI	(Kn)	(0,01mm has.)(mm))	(cm2)	(kPa)
KH	P=KHx2,1211	Δl	εz =∆l/lo	Ac=Ao/1-εz	σ=P/Ac
0	0	0	0	10,17	0
25	53,028	10	0,0014	10,18	52
54	114,539	25	0,0036	10,21	112
70	148,477	50	0,0071	10,24	145
112	237,563	75	0,0107	10,28	231
130	275,743	100	0,0143	10,32	267
160	339,376	150	0,0214	10,39	327
194	411,493	200	0,0286	10,47	393
230	487,853	300	0,0429	10,63	459
267	566,334	400	0,0571	10,79	525
295	625,725	500	0,0714	10,95	571
324	687,236	600	0,0857	11,12	618
347	736,022	700	0,1	11,3	651
364	772,08	800	0,1143	11,48	673
378	801,776	900	0,1286	11,67	687
385	816,624	1000	0,1429	11,87	688
386	818,745	1100	0,1571	12,07	678
383	812,381	1200	0,1714	12,27	662
383	812,381	1300	0,1857	12,49	650
385	816,624	1400	0,2	12,71	643

Şekil B.2. "1" (A,B,C) no'lu numune gurubunda UU deneyi

Şekil B.3. ''1'' (A,B,C) no'lu numune gurubunda gerilme-şekil değiştirme ilişkisi

Tablo B.5. "1/D" NO'LU NUMUNEDE KAYMA DİRENCİ PARAMETRELERİNİN DRENAJSIZ KONSOLİDASYONSUZ ÜÇ EKSENLİ BASINÇ DENEYİ İLE BULUNMASI

Proje adı		Kuvvet halkası no		: 4693
Numunenin geldiği yer:Ere	enler mevkii İstikbal Mobilya inş.	Kuvvet halka katsayısı		: 2,1211
Sondaj no Numu	ine no: 1/D	Yükleme hızı		:0,8 mm/dak
Numunenin alındığı derinli	ik :0,5-1 mt	Çevre basıncı		: 100 kPA
Numunenin tanımı		Deformasyon saatının has	ssaslığı	: 0,01 mm
Numune çapı	: 5,0 cm	Başlangıç su içeriği		
Numune yüksekliği	:10,0 cm	Başlangıç enkesit alanı	Ao	$:\pi x2,50x2,50=19,63 \text{ cm}2$
Numunenin doğal ağırlığı	: 363,39 g	Başlangıç hacmı	Vo	:19,63x10,0 =196,30cm3
Numunenin kuru ağırlığı	: 305,77 g	Özgül ağırlık	Gs	: 2,66
Su içeriği	: % 18,84			
Sr (363,39-305,77)/(196,30)-117,18) : % 72,83			
Danelerin hacmı V: Ws/0 : 117,	Gsxp w= 305,77/2,66x0,98 18 cm3	Başlangıç boşluk oranı	eo	: Vo-Vs/Vs= 0,68

KUVVET	BASINÇ	BOY	BİRİM	DÜZELTİLMİŞ	DEVİATÖR
HALKASI	KUVVETİ	KISALMASI	BOY KISALMASI	ENKESİT ALANI	GERİLME
OKUMASI	(Kn)	(0,01mm has.)(mm))	(cm2)	(kPa)
KH	P=KHx2,1211	Δl	εz =Δl/lo	Ac=Ao/1-εz	σ=P/Ac
0	0	0	0	19,63	0
9	19,09	10	0,001	19,65	10
11	23,332	25	0,0025	19,68	12
13	27,574	50	0,005	19,73	14
22	46,664	75	0,0075	19,78	24
58	123,024	100	0,01	19,83	62
107	226,958	150	0,015	19,93	114
148	313,923	200	0,02	20,03	157
220	466,642	300	0,03	20,24	231
275	583,303	400	0,04	20,45	285
322	682,994	500	0,05	20,66	331
364	772,08	600	0,06	20,88	370
395	837,835	700	0,07	21,11	397
415	880,257	800	0,08	21,34	412
420	890,862	900	0,09	21,57	413
398	844,198	1000	0,1	21,81	387
409	867,53	1100	0,11	22,06	393
415	880,257	1200	0,12	22,31	395
416	882,378	1300	0,13	22,56	391
414	878,135	1400	0,14	22,83	385
428	907,831	1500	0,15	23,09	393
433	918,436	1600	0,16	23,37	393
442	937,526	1700	0,17	23,65	396
452	958,737	1800	0,18	23,94	400
457	969,343	1900	0,19	24,23	400
461	977,827	2000	0,2	24,54	398

Tablo B.6. "1/E" NO'LU NUMUNEDE KAYMA DİRENCİ PARAMETRELERİNİN DRENAJSIZ KONSOLİDASYONSUZ ÜÇ EKSENLİ BASINÇ DENEYİ İLE BULUNMASI

Proje adı			Kuvvet halkası no		: 4693
Numunenin geldiği ye	er:Erenler mevkii İs	stikbal Mobilya inş.	Kuvvet halka katsayısı		: 2,1211
Sondaj no N	Numune no: 1/E		Yükleme hızı		:0,8 mm/dak
Numunenin alındığı d	lerinlik	:0,5-1 mt	Çevre basıncı		: 200 kPA
Numunenin tanımı			Deformasyon saatinin has	saslığı	: 0,01 mm
Numune çapı		: 5,0 cm	Başlangıç su içeriği		
Numune yüksekliği		: 10,0 cm	Başlangıç enkesit alanı	Ao	$:\pi x2,50x2,50=19,63 \text{ cm}2$
Numunenin doğal ağı	rlığı	: 378,90 g	Başlangıç hacmı	Vo	:19,63x10,00 =196,30cm3
Numunenin kuru ağır	lığı	: 319,62 g	Özgül ağırlık	Gs	: 2,66
Su içeriği	-	: % 18,55			
Sr (378,90-319,62)/(1	96,30-122,49)	: %80,31			
Danelerin hacmı V:	Ws/Gsxp w= 319,	62/2,66x0,981	Başlangıç boşluk oranı	eo	: Vo-Vs/Vs= 0,60

: 122,49 cm3

Başlangıç boşluk oranı

KUVVET	BASINÇ	BOY	BİRİM	DÜZELTİLMİŞ	DEVÍATÖR
HALKASI	KUVVETİ	KISALMASI	BOY KISALMASI	ENKESİT ALANI	GERİLME
OKUMASI	(Kn)	(0,01mm has.)(mm))	(cm2)	(kPa)
KH	P=KHx2,1211	Δl	εz =∆l/lo	Ac=Ao/1-ez	σ=P/Ac
0	0	0	0	19,63	0
7	14,848	10	0,001	19,65	8
7	14,848	25	0,0025	19,68	8
7	14,848	50	0,005	19,73	8
7	14,848	75	0,0075	19,78	8
8	16,969	100	0,01	19,83	9
60	127,266	150	0,015	19,93	64
104	220,594	200	0,02	20,03	110
162	343,618	300	0,03	20,24	170
228	483,611	400	0,04	20,45	236
295	625,725	500	0,05	20,66	303
372	789,049	600	0,06	20,88	378
423	897,225	700	0,07	21,11	425
472	1001,159	800	0,08	21,34	469
527	1117,82	900	0,09	21,57	518
572	1213,269	1000	0,1	21,81	556
605	1283,266	1100	0,11	22,06	582
627	1329,93	1200	0,12	22,31	596
651	1380,836	1300	0,13	22,56	612
676	1433,864	1400	0,14	22,83	628
688	1459,317	1500	0,15	23,09	632
689	1461,438	1600	0,16	23,37	625
678	1438,106	1700	0,17	23,65	608
676	1433,864	1800	0,18	23,94	599
683	1448,711	1900	0,19	24,23	598
684	1450,832	2000	0,2	24,54	591

Tablo B.7. "1/F" NO'LU NUMUNEDE KAYMA DİRENCİ PARAMETRELERİNİN DRENAJSIZ KONSOLİDASYONSUZ ÜÇ EKSENLİ BASINÇ DENEYİ İLE BULUNMASI

Proje adı		Kuvvet halkası no		: 4693
Numunenin geldiği yer:Ere	Kuvvet halka katsayısı		: 2,1211	
Sondaj no Numu	ne no: 1/F	Yükleme hızı		:0,8 mm/dak
Numunenin alındığı derinli	k :0,5-1 mt	Çevre basıncı		: 300 kPA
Numunenin tanımı		Deformasyon saatının ha	ssaslığı	: 0,01 mm
Numune çapı	: 5,00 cm	Başlangıç su içeriği		
Numune yüksekliği	: 10,0 cm	Başlangıç enkesit alanı	Ao	$\pi x5,00x5,00= 19,63 \text{ cm}^2$
Numunenin doğal ağırlığı	: 368,86 g	Başlangıç hacmı	Vo	:19,63x10,00 =196,30 cm3
Numunenin kuru ağırlığı	: 311,59 g	Özgül ağırlık	Gs	: 2,66
Su içeriği	: % 18,38			
Sr (368,86-311,59)/(196,30	-119,41) : % 74,48			

Danelerin hacmı V: Ws/Gsxp w= 311,59/2,66x0,981 : 119,41 cm3 Başlangıç boşluk oranı eo

: Vo-Vs/Vs= 0,64

KUVVET	BASINÇ	BOY	BİRİM	DÜZELTİLMİŞ	DEVIATÖR
HALKASI	KUVVETİ	KISALMASI	BOY KISALMASI	ENKESİT ALANI	GERİLME
OKUMASI	(Kn)	(0,01mm has.)(mm))	(cm2)	(kPa)
KH	P=KHx2,1211	Δl	εz =∆l/lo	Ac=Ao/1-ez	σ=P/Ac
0	0	0	0	19,63	0
4	8,484	10	0,001	19,65	4
12	25,453	25	0,0025	19,68	13
24	50,906	50	0,005	19,73	26
38	80,602	75	0,0075	19,78	41
105	222,716	100	0,01	19,83	112
190	403,009	150	0,015	19,93	202
261	553,607	200	0,02	20,03	276
395	837,835	300	0,03	20,24	414
491	1041,46	400	0,04	20,45	509
567	1202,664	500	0,05	20,66	582
623	1321,445	600	0,06	20,88	633
667	1414,774	700	0,07	21,11	670
695	1474,165	800	0,08	21,34	691
726	1539,919	900	0,09	21,57	714
771	1635,368	1000	0,1	21,81	750
797	1690,517	1100	0,11	22,06	766
814	1726,575	1200	0,12	22,31	774
812	1722,333	1300	0,13	22,56	763
810	1718,091	1400	0,14	22,83	753
801	1699,001	1500	0,15	23,09	736
807	1711,728	1600	0,16	23,37	732
812	1722,333	1700	0,17	23,65	728
812	1722,333	1800	0,18	23,94	719
822	1743,544	1900	0,19	24,23	720
837	1775,361	2000	0,2	24,54	723

Şekil B.4. ''1''(D,E,F) no'lu numune gurubunda UU deneyi

Şekil B.5. ''1''(D,E,F) no'lu numune gurubunda gerilme-şekil değiştirme ilişkisi

PROJE	OJE ADI NUMUNENİN ALINDIĞI YER :Erenler mevkii İstikbal mobilya inşaat sahası											
KESME	E KUTUSU	UZUNLUĞI	1:6,0 cm	GENİŞLİĞİ:	6,0 cm	DERİNLİĞİ: 2,	0 cm	Ao=36,00cm	2	Vo=72,00cm3		
HALKA	+ZEMİN:3	13,113 g	DENEY SONU	1:140,091 g		KURU ZEMİN	J:113,481 g HALKA NO		IO:3 HALKA		ALKA AĞIRLIĞI:180,83 g	
DÜŞEY	YÜK:4500	+3000+10*2	2850=36000 g			ILK OKUMA:	2500	SON OKUMA: 2166 KESME HIZI: 0,5 mm/dal			ZI: 0,5 mm/dak	
KUVVE	ET HALKA	NO:13352	KUVVET HAI	KASI KATS	AYISI	:2,9873		DÜŞEY DEI	FORMASYON S	SAATİ KAT	SAYISI: 0,002	
NUMUI	NE NO: 1/G	ſ						•				
GEÇEN	YATAY	YATAY	DÜZELTİLMİŞ	KUVVET	KESME	KAYMA	NORMAL	DÜŞEY	DÜŞEY	DÜZEL-	BOŞLUK	
SÜRE	DEFORM.	DEPLAS-	ENKESİT	HALKASI	KUVVETİ	GERİLMESİ	GERİLME	DEFORM.	DEPLASMAN	TİLMİŞ	ORANI	
		MAN	ALANI	OKUMASI				OKUMASI		HACIM		
			6*(6-δh)		KH*2,9873	P/Ac			(2500-D.D.O.)	Ac*2-δv	Vi-Vs/Vs	
									*0,002/10		Vs=Ws/pw*Gs	
dakika		δh (cm)	Ac(cm2)	КН	P (Kn)	$\tau(kN/m2-kPa)$	σ(kN/m2-kPa)		δv (cm)	Vi(cm3)	ei (%)	
0	0.0	0	36.000	0	0	0	100	2500	0	72.000	0,654	
1	0,5	0,0008	35,995	38	113,517	32	100	2480	0,004	71,846	0,651	
2	1.0	0,0017	35.990	58	173,263	48	100	2458	0,008	71,692	0,647	
3	1,5	0,0027	35,984	69	206,124	57	100	2445	0,011	71,572	0,644	
4	2.0	0,0033	35.980	75	224,048	62	100	2431	0,014	71,456	0,642	
5	2,5	0,0042	35,975	76	227,035	63	100	2412	0,018	71,303	0,638	
6	3.0	0.0050	35.970	77	230,022	64	100	2392	0,022	71,149	0,635	
7	3,5	0,0058	35,965	78	233,009	65	100	2372	0,026	70,995	0,631	
8	4.0	0,0067	35.960	79	235,997	66	100	2356	0,029	70,877	0,628	
9	4,5	0,0075	35,955	78	233,009	65	100	2341	0,032	70,759	0,626	
10	5.0	0,0083	35.950	77	230,022	64	100	2327	0,035	70,642	0,623	
11	5,5	0,0092	35,945	76	227,035	63	100	2312	0,038	70,524	0,62	
12	6.0	0.0100	35.940	76	227,035	63	100	2300	0.040	70,442	0,618	
13	6,5	0,0108	35,935	76	227,035	63	100	2286	0,043	70,325	0,616	
14	7.0	0,0117	35.930	76	227,035	63	100	2274	0,045	70,243	0,614	
15	7,5	0,0125	35,925	76	227,035	63	100	2261	0,048	70,126	0,611	
16	8.0	0,0133	35.920	76	227,035	63	100	2248	0.050	70,044	0,609	
17	8,5	0,0142	35,915	76	227,035	63	100	2237	0,053	69,927	0,607	
18												
19												
20												

Tablo B.8. "1/G" NO'LU NUMUNEDE KAYMA DİRENCİNİN KESME KUTUSUNDA ÖLÇÜLMESİ

PROJE	ADI			NUMUNEN	İN ALINDIĞ	I YER	:Erenler mevkii	İstikbal mobil	ya inşaat sahası			
KESME	E KUTUSU	UZUNLUĞI	1:6,0 cm	GENİŞLİĞİ:	6,0 cm	DERİNLİĞİ: 2,	0 cm	Ao=36,00cm	2	Vo=72,00cm3		
HALKA	+ZEMİN:2	91,036 g	DENEY SONU	1:133,000 g		KURU ZEMİN	:108,487 g	HALKA NO:1 HAI		HALKA A	IALKA AĞIRLIĞI:165,38 g	
DÜŞEY	YÜK:4500	+6000+10*6	6150=72000 g			ILK OKUMA:	2500	SON OKUMA: 2016 K		KESME H	KESME HIZI: 0,5 mm/dak	
KUVVI	ET HALKA	NO:13352	KUVVET HAI	KASI KATS	AYISI	:2,9873		DÜŞEY DEI	FORMASYON S	SAATİ KAT	SAYISI: 0,002	
NUMU	NE NO: 1/H	[•				
GEÇEN	YATAY	YATAY	DÜZELTİLMİŞ	KUVVET	KESME	KAYMA	NORMAL	DÜŞEY	DÜŞEY	DÜZEL-	BOŞLUK	
SÜRE	DEFORM.	DEPLAS-	ENKESİT	HALKASI	KUVVETİ	GERİLMESİ	GERİLME	DEFORM.	DEPLASMAN	TİLMİŞ	ORANI	
		MAN	ALANI	OKUMASI				OKUMASI		HACIM		
			6*(6-δh)		KH*2,9873	P/Ac			(2500-D.D.O.)	Ac*2-δv	Vi-Vs/Vs	
									*0,002/10		Vs=Ws/pw*Gs	
dakika		δh (cm)	Ac(cm2)	KH	P (Kn)	τ (kN/m2-kPa)	σ (kN/m2-kPa)		δv (cm)	Vi(cm3)	ei (%)	
0	0.0	0	36.000	0	0	0	200	2500	0	72.000	0.732	
1	0,5	0,0008	35,995	44	131,441	37	200	2482	0,004	71,846	0,728	
2	1.0	0,0017	35.990	68	203,136	56	200	2452	0.010	71.620	0,723	
3	1,5	0,0027	35,984	88	262,882	73	200	2432	0,014	71,464	0,719	
4	2.0	0,0033	35.980	100	298.730	83	200	2420	0,016	71,384	0,717	
5	2,5	0,0042	35,975	110	328,603	91	200	2406	0,019	71,267	0,714	
6	3.0	0.0050	35.970	116	346,527	96	200	2392	0,022	71,149	0.711	
7	3,5	0,0058	35,965	122	364,451	101	200	2373	0,025	71,031	0,709	
8	4.0	0,0067	35.960	125	373,413	104	200	2353	0,029	70,877	0,705	
9	4,5	0,0075	35,955	129	385,362	107	200	2320	0,036	70,616	0,699	
10	5.0	0,0083	35.950	133	397,311	111	200	2315	0,037	70.570	0,697	
11	5,5	0,0092	35,945	136	406,273	113	200	2295	0,041	70,416	0,694	
12	6.0	0.0100	35.940	139	415,235	116	200	2278	0,044	70.299	0,691	
13	6,5	0,0108	35,935	141	421,209	117	200	2263	0,047	70.181	0,688	
14	7.0	0,0117	35.930	143	427,184	119	200	2248	0.050	70,064	0,685	
15	7,5	0,0125	35,925	143	427,184	119	200	2233	0,053	69,946	0,682	
16	8.0	0,0133	35.920	143	427,184	119	200	2220	0,056	69,829	0,68	
17	8,5	0,0142	35,915	143	427,184	119	200	2207	0,059	69,711	0,677	
18	9.0	0.0150	35.910	143	427,184	119	200	2192	0,062	69,594	0,674	
19	9,5	0,0158	35.905	143	427,184	119	200	2180	0,064	69,512	0,672	
20												

Tablo B.9. "1/H" NO'LU NUMUNEDE KAYMA DİRENCİNİN KESME KUTUSUNDA ÖLÇÜLMESİ

PROJE ADI NUMUNENİN				İN ALINDIĞ	I YER	:Erenler mevkii İstikbal mobilya inşaat sahası					
KESME	E KUTUSU	UZUNLUĞ	1:6,0 cm	GENİŞLİĞİ:	6,0 cm	DERİNLİĞİ: 2,	0 cm	Ao=36,00cm	2	Vo=72,00cm3	
HALKA	+ZEMİN:3	24,774 g	DENEY SONU	:142,144 g		KURU ZEMİN:	118,659 g	HALKA NO	:2	HALKA A	ĞIRLIĞI:187,61
DÜŞEY	YÜK:4500	+9000+10*9	9450=108000 g			İLK OKUMA: 2	2500	SON OKUMA: 1846 KESME HIZI: 0,5 mm/dak			
KUVVE	ET HALKA	NO:13352	KUVVET HAL	KASI KATS	AYISI	:2,9873		DÜŞEY DEI	FORMASYON S	SAATİ KAT	SAYISI: 0,002
NUMUI	NE NO:1/I		•					•			
GEÇEN	YATAY	YATAY	DÜZELTİLMİŞ	KUVVET	KESME	KAYMA	NORMAL	DÜŞEY	DÜŞEY	DÜZEL-	BOŞLUK
SÜRE	DEFORM.	DEPLAS-	ENKESİT	HALKASI	KUVVETİ	GERİLMESİ	GERİLME	DEFORM.	DEPLASMAN	TİLMİŞ	ORANI
		MAN	ALANI	OKUMASI				OKUMASI		HACIM	
		kes.h1z1/600	6*(6-δh)		KH*2,9873	P/Ac			(2500-D.D.O).	Ac*2-δv	Vi-Vs/Vs
									*0,002/10		Vs=Ws/pw*Gs
dakika		δh (cm)	Ac(cm2)	КН	P (Kn)	τ (kN/m2-kPa)	σ(kN/m2-kPa)		δv (cm)	Vi(cm3)	ei (%)
0	0.0	0	36.000	0	0	0	300	2500	0	72.000	0,582
1	0,5	0,0008	35,995	69	206,124	57	300	2487	0,003	71,882	0,579
2	1.0	0,0017	35.990	112	334,578	93	300	2467	0,007	71.728	0,576
3	1,5	0,0027	35,984	148	442.120	123	300	2464	0,007	71,716	0,576
4	2.0	0,0033	35.980	177	528.752	147	300	2464	0,007	71,708	0,576
5	2,5	0,0042	35,975	200	597.460	166	300	2460	0,008	71,662	0,575
6	3.0	0.0050	35.970	215	642.270	179	300	2439	0,012	71,508	0,571
7	3,5	0,0058	35,965	225	672,143	187	300	2428	0,014	71,427	0,569
8	4.0	0,0067	35.960	231	690,066	192	300	2409	0,018	71,273	0,566
9	4,5	0,0075	35,955	236	705,003	196	300	2396	0,021	71,155	0,563
10	5.0	0,0083	35.950	241	719,939	200	300	2384	0,023	71.073	0,562
11	5,5	0,0092	35,945	245	731,889	204	300	2372	0,026	70,955	0,559
12	6.0	0.0100	35.940	247	737,863	205	300	2361	0,028	70.874	0,557
13	6,5	0,0108	35,935	244	728,901	203	300	2349	0.030	70.792	0,555
14	7.0	0,0117	35.930	240	716,952	200	300	2335	0,033	70.674	0,553
15	7,5	0,0125	35,925	238	710,977	198	300	2320	0,036	70.557	0.550
16	8.0	0,0133	35.920	237	707.990	197	300	2305	0,039	70.439	0,548
17	8,5	0,0142	35,915	235	702,016	195	300	2292	0,042	70.322	0,545
18	9.0	0.0150	35.910	233	696,041	194	300	2279	0,044	70.240	0,543
19											
20											

Tablo B.10. "1/I" NO'LU NUMUNEDE KAYMA DİRENCİNİN KESME KUTUSUNDA ÖLÇÜLMESİ

Şekil B.6. ''1''(G,H,I) <u>no'lu</u> numune gurubunda kesme kutusu deneyi

Şekil B.7. ''1'' (G,H,I) no'lu numune gurubunda kesme kutusu deneyinde yatay <u>deplasman</u>-düşey <u>deplasman</u> ilişkisi

Şekil B.8. "1"(G,H,I) no'lu numune gurubunda kesme kutusu deneyinde kayma gerilmesi- yatay deplasman ilişkisi

Ek.C 2 NO'LU NUMUNEYE AİT DENEYSEL ÇALIŞMALAR

PROJE							
ÖRNEĞİN ALINDIĞI YER		GÜNEŞ	LER-KÖ	PRÜBAS	ŞI MEVK	Ϊİ	
ÖRNEĞİN TANIMI		ÖRSELENMİŞ					
ÖRNEK NO		DENEYİ YAPAN G.Ş.NOMALER					
DERİNLİK	0,5-1 mt	DANE	ÖZ AĞI	RLIK 2	2,60		
TARİH			2005				
			BIN İÇ H	ACMI	942,5 ci	m ³	
DENEY NO		1	2	3	4	5	
KALIP+TABAN+ZEMİN AĞIRLIĞI	(gr)	9410	9515	9635	9725	9730	
KALIP+TABAN AĞIRLIĞI	(gr)	8000	8000	8000	8000	8000	
SIKIŞTIRILMIŞ ZEMİN AĞIRLIĞI	(gr)	1410	1515	1635	1725	1730	
YAŞ BİRİM HACIM AĞIRLIĞI	(kN/m^3)	14,68	15,77	17,02	17,96	18,01	
KAP NO		794	780	514	754	600	
KAP AĞIRLIĞI	(gr)	54,29	53,96	51,27	68,35	293,93	
KAP+YAŞ ÖRNEK AĞIRLIĞI	(gr)	123,88	151,01	152,67	192,61	466,66	
KAP+KURU ÖRNEK AĞIRLIĞI	(gr)	115,97	136,14	133,9	165,62	423,5	
SU MUHTEVASI	(%)	12,82	18,09	22,72	27,75	33,31	
KURU BİRİM HACIM AĞIRLIK	(kN/m^3)	13,01	13,35	13,88	14,06	13,51	

Tablo C.1. 2 NO'LU NUMUNEDE ZEMİN SIKIŞTIRMA DENEYİ

Şekil C.1. 2 no'lu numunede w_{opt} tayini

Tablo C.2. "2/A" NO'LU NUMUNEDE KAYMA DİRENCİ PARAMETRELERİNİN DRENAJSIZ KONSOLİDASYONSUZ ÜÇ EKSENLİ BASINÇ DENEYİ İLE BULUNMASI

roje adı		Kuvvet halkası no		: 4693
Numunenin geldiği yer: Güneşler-Kö	prübaşı mevkii	Kuvvet halka katsayısı	: 2,1211	
Sondaj no Numune no: 2/A	A	Yükleme hızı		:0,8 mm/dak
Numunenin alındığı derinlik	:0,5-1 mt	Çevre basıncı		: 100 kPA
Numunenin tanımı		Deformasyon saatının hassaslığı		: 0,01 mm
Numune çapı	: 3,50 cm	Başlangıç su içeriği		
Numune yüksekliği	: 6,92 cm	Başlangıç enkesit alanı	Ao	$:\pi x1.75x1,75=9,62 \text{ cm}2$
Numunenin doğal ağırlığı	: 120,62 g	Başlangıç hacmı	Vo	:9,62x6,92 = 66,57cm3
Numunenin kuru ağırlığı	: 91,95 g	Özgül ağırlık	Gs	: 2,60
Su içeriği	: % 31,18			
Sr (120,62-91,95)/(66,57-36,05)	: % 93,94			

Danelerin hacmı V : Ws/Gsxp w= 91,95/2,60x0,981 Vs : 36,05 cm3 Başlangıç boşluk oranı eo

KUVVET	BASINÇ	BOY	BİRİM	DÜZELTİLMİŞ	DEVİATÖR
HALKASI	KUVVETİ	KISALMASI	BOY KISALMASI	ENKESİT ALANI	GERİLME
OKUMASI	(Kn)	(0,01mm has.)(mm))	(cm2)	(kPa)
KH	P=KHx2,1211	Δl	εz =∆l/lo	Ac=Ao/1-Ez	σ=P/Ac
0	0	0	0	9,62	0
5	10,606	10	0,0014	9,63	11
7	14,848	25	0,0036	9,65	15
11	23,332	50	0,0072	9,69	24
13	27,574	75	0,0108	9,73	28
15	31,817	100	0,0145	9,76	33
18	38,18	150	0,0217	9,83	39
19	40,301	200	0,0289	9,91	41
22	46,664	300	0,0434	10,06	46
26	55,149	400	0,0578	10,21	54
30	63,633	500	0,0723	10,37	61
32	67,875	600	0,0867	10,53	64
33	69,996	700	0,1012	10,7	65
35	74,239	800	0,1156	10,88	68
39	82,723	900	0,1301	11,06	75
43	91,207	1000	0,1445	11,24	81
43	91,207	1100	0,159	11,44	80
43	91,207	1200	0,1734	11,64	78
44	93,328	1300	0,1879	11,85	79
49	103,934	1400	0,2023	12,06	86

Tablo C.3. "2/B" NO'LU NUMUNEDE KAYMA DİRENCİ PARAMETRELERİNİN DRENAJSIZ KONSOLİDASYONSUZ ÜÇ EKSENLİ BASINÇ DENEYİ İLE BULUNMASI

Proje adı Numunenin geldiği yer: Güneşler-Kö Sondaj no Numune no: 2/E	prübaşı mevkii B	Kuvvet halkası no Kuvvet halka katsayısı Yükleme hızı		: 4693 : 2,1211 :0,8 mm/dak
Numunenin alındığı derinlik :0,5-1 mt		Çevre basıncı	: 200 kPA	
Numunenin tanımı	Deformasyon saatının ha	: 0,01 mm		
Numune çapı	: 3,59 cm	Başlangıç su içeriği		
Numune yüksekliği	: 7,16 cm	Başlangıç enkesit alanı	Ao	$:\pi x1.79x1,79=10,06 \text{ cm}2$
Numunenin doğal ağırlığı	: 126,35 g	Başlangıç hacmı	Vo	:10,06x7,16 = 72,03cm3
Numunenin kuru ağırlığı	: 96,40 g	Özgül ağırlık	Gs	: 2,60
Su içeriği	: % 31,06			
Sr (126,35-96,40)/(72,03-37,80)	:% 87,50			
Danelerin hacmı V: Ws/Gsxp w=9	6,40/2,60x0,981	Başlangıç boşluk oranı	eo	: Vo-Vs/Vs= 0,91

:37,80 cm3

KUVVET	BASINÇ	BOY	BİRİM	DÜZELTİLMİŞ	DEVİATÖR
HALKASI	KUVVETİ	KISALMASI	BOY KISALMASI	ENKESİT ALANI	GERİLME
OKUMASI	(Kn)	(0,01mm has.)(mm))	(cm2)	(kPa)
KH	P=KHx2,1211	Δl	εz =∆l/lo	Ac=Ao/1-ez	σ=P/Ac
0	0	0	0	10,06	0
5	10,605	10	0,0014	10,07	11
7	14,848	25	0,0035	10,1	15
10	21,211	50	0,007	10,13	21
12	25,453	75	0,0105	10,17	25
13	27,574	100	0,014	10,2	27
14	29,695	150	0,0209	10,27	29
16	33,938	200	0,0279	10,35	33
21	44,543	300	0,0419	10,5	42
26	55,149	400	0,0559	10,66	52
28	59,391	500	0,0698	10,81	55
31	65,754	600	0,0838	10,98	60
29	61,512	700	0,0978	11,15	55
35	74,239	800	0,1117	11,33	66
38	80,602	900	0,1257	11,51	70
41	86,965	1000	0,1397	11,69	74
43	91,207	1100	0,1536	11,88	77
40	84,844	1200	0,1676	12,09	70
44	93,328	1300	0,1816	12,29	76
48	101,813	1400	0,1955	12,5	81

Tablo C.4. "2/C" NO'LU NUMUNEDE KAYMA DİRENCİ PARAMETRELERİNİN DRENAJSIZ KONSOLİDASYONSUZ ÜÇ EKSENLİ BASINÇ DENEYİ İLE BULUNMASI

Proje adı		Kuvvet halkası no		: 4693		
Numunenin geldiği yer: Güneşler-K	öprübaşı mevkii	Kuvvet halka katsayısı		: 2,1211		
Sondaj no Numune no: 2/0	2	Yükleme hızı	:0,8 mm/dak			
Numunenin alındığı derinlik	:0,5-1 mt	Çevre basıncı		: 300 kPA		
Numunenin tanımı		Deformasyon saatının hassaslığı : 0		: 0,01 mm		
Numune çapı	: 3,60 cm	Başlangıç su içeriği				
Numune yüksekliği	: 7,39 cm	Başlangıç enkesit alanı	Ao	:π x1.80x1,8	0=10,17 cm2	
Numunenin doğal ağırlığı	: 129,49 g	Başlangıç hacmı	Vo	:10,17x7,39	=75,16cm3	
Numunenin kuru ağırlığı	: 98,87 g	Özgül ağırlık	Gs	: 2,60		
Su içeriği	: % 30,97					
Sr (129,49-98,87)/(75,16-38,76)	: % 84,12					

KUVVET	BASINÇ	BOY	BİRİM	DÜZELTİLMİŞ	DEVİATÖR
HALKASI	KUVVETİ	KISALMASI	BOY KISALMASI	ENKESİT ALANI	GERİLME
OKUMASI	(Kn)	(0,01mm has.)(mm))	(cm2)	(kPa)
KH	P=KHx2,1211	Δl	εz =∆l/lo	Ac=Ao/1-εz	σ=P/Ac
0	0	0	0	10,17	0
8	16,969	10	0,0014	10,18	17
9	19,09	25	0,0034	10,2	19
13	27,574	50	0,0068	10,24	27
14	29,695	75	0,01	10,27	29
16	33,938	100	0,0135	10,31	33
18	38,18	150	0,0203	10,38	37
20	42,422	200	0,0271	10,45	41
24	50,906	300	0,0406	10,6	48
25	53,028	400	0,0541	10,75	49
24	50,906	500	0,0677	10,91	47
23	48,785	600	0,0812	11,07	53
29	61,512	700	0,0947	11,23	55
32	67,875	800	0,1083	11,41	59
33	69,996	900	0,1218	11,58	60
32	67,875	1000	0,1353	11,76	58
30	63,633	1100	0,1488	11,95	53
34	72,117	1200	0,1624	12,14	59
37	78,481	1300	0,1759	12,34	64
38	80,602	1400	0.1894	12.55	64

Şekil C.2. ''2''(A,B,C) no'lu numune gurubunda UU deneyi

Şekil C.3. ''2'' (A,B,C)no'lu numune gurubunda gerilme-şekil değiştirme ilişkisi

Tablo C.5. "2/D" NO'LU NUMUNEDE KAYMA DİRENCİ PARAMETRELERİNİN DRENAJSIZ KONSOLİDASYONSUZ ÜÇ EKSENLİ BASINÇ DENEYİ İLE BULUNMASI

Proje adı		Kuvvet halkası no		: 4693
Numunenin geldiği yer: Güneşler-Kö	prübaşı mevkii	Kuvvet halka katsayısı		: 2,1211
Sondaj no Numune no: 2/I)	Yükleme hızı	:1,27 mm/dak	
Numunenin alındığı derinlik	:0,5-1 mt	Çevre basıncı		: 100 kPA
Numunenin tanımı		Deformasyon saatının ha	: 0,01 m m	
Numune çapı	: 5,1 cm	Başlangıç su içeriği		
Numune yüksekliği	:10,4 cm	Başlangıç enkesit alanı	Ao	$:\pi x2,55x2,55=20,42 \text{ cm}2$
Numunenin doğal ağırlığı	: 379,27 g	Başlangıç hacmı	Vo	:20,42x10,4 =212,37cm3
Numunenin kuru ağırlığı	: 289,49 g	Özgül ağırlık	Gs	: 2,60
Su içeriği	: % 31,01			
Sr (379,27-289,49)/(212,37-113,50)	: % 90,81			
Danelerin hacmı V: Ws/Gsx ρ w= 2	89,49/2,60x0,981	Başlangıç boşluk oranı	eo	: Vo-Vs/Vs=0,87

: 113,50 cm3

KUVVET	BASINÇ	BOY	BİRİM	DÜZELTİLMİŞ	DEVİATÖR
ALKASI OKUMA	KUVVETİ	KISALMASI	BOY KISALMASI	ENKESİT ALANI	GERİLME
	(Kn)	(0,01mm has.)(mm))	(cm2)	(kPa)
KH	P=KHx2,1211	Δl	$\epsilon z = \Delta l/lo$	Ac=Ao/1-Ez	σ=P/Ac
0	0	0	0	20,42	0
8	16,969	10	0,001	20,44	8
8	16,969	25	0,0024	20,47	8
13	27,574	50	0,0048	20,52	13
17	36,059	75	0,0072	20,57	18
25	53,028	100	0,0099	20,62	26
30	63,633	150	0,0144	20,72	31
35	74,239	200	0,0192	20,82	36
40	84,844	300	0,0288	21,03	40
46	97,571	400	0,0385	21,24	46
50	106,055	500	0,0481	21,45	49
60	127,266	600	0,0577	21,67	59
65	137,872	700	0,0673	21,89	63
69	146,356	800	0,0769	22,12	66
77	163,325	900	0,0865	22,35	73
81	171,809	1000	0,0962	22,59	76
87	184,536	1100	0,1058	22,84	81
89	188,778	1200	0,1154	23,08	82
94	199,383	1300	0,125	23,34	85
102	216,352	1400	0,1346	23,6	92
104	220,594	1500	0,1442	23,86	92
106	224,837	1600	0,1538	24,13	93
107	226,958	1700	0,1635	24,41	93
116	246,048	1800	0,1731	24,69	100
121	256,653	1900	0,1827	24,98	103
121	256,653	2000	0,1923	25,28	102

Tablo C.6. "2/E" NO'LU NUMUNEDE KAYMA DİRENCİ PARAMETRELERİNİN DRENAJSIZ KONSOLİDASYONSUZ ÜÇ EKSENLİ BASINÇ DENEYİ İLE BULUNMASI

Proje adı		Kuvvet halkası no		: 4693
Numunenin geldiği yer: Güneşler	-Köprübaşı mevkii	Kuvvet halka katsayısı		: 2,1211
Sondaj no Numune no:	2/E	Yükleme hızı		:0,8 mm/dak
Numunenin alındığı derinlik	:0,5-1 mt	Çevre basıncı		: 200 kPA
Numunenin tanımı		Deformasyon saatının ha	ssaslığı	: 0,01 mm
Numune çapı	: 5,1 cm	Başlangıç su içeriği		
Numune yüksekliği	: 10,1 cm	Başlangıç enkesit alanı	Ao	$:\pi x2,55x2,55=20,42 \text{ cm}2$
Numunenin doğal ağırlığı	: 373,49 g	Başlangıç hacmı	Vo	:20,42x10,10 = 206,24cm3
Numunenin kuru ağırlığı	: 285,83 g	Özgül ağırlık	Gs	: 2,60
Su içeriği	: % 30,67			
Sr (373,49-285,83)/(206,24-112,0	6) : % 93,08			
Danelerin hacmı V: Ws/Gsxp w	= 285,83/2,60x0,981	Başlangıç boşluk oranı	eo	: Vo-Vs/Vs=0,84

: 112,06 cm3

KUVVET	BASINÇ	BOY	BİRİM	DÜZELTİLMİŞ	DEVİATÖR
HALKASI	KUVVETİ	KISALMASI	BOY KISALMASI	ENKESİT ALANI	GERİLME
OKUMASI	(Kn)	(0,01mm has.)(mm))	(cm2)	(kPa)
KH	P=KHx2,1211	Δl	εz =∆l/lo	Ac=Ao/1-εz	σ=P/Ac
0	0	0	0	20,42	0
5	10,606	10	0,001	20,44	5
7	14,848	25	0,0024	20,47	7
18	38,18	50	0,005	20,52	19
22	46,664	75	0,0074	20,57	23
25	53,028	100	0,0099	20,62	26
31	65,754	150	0,0149	20,73	32
35	74,239	200	0,0198	20,83	36
42	89,086	300	0,0297	21,05	42
48	101,813	400	0,0396	21,26	48
52	110,297	500	0,0495	21,48	51
59	125,145	600	0,0594	21,71	58
65	137,872	700	0,0693	21,94	63
72	152,719	800	0,0792	22,18	69
78	165,446	900	0,0891	22,42	74
84	178,172	1000	0,099	22,66	79
87	184,536	1100	0,1089	22,92	81
90	190,899	1200	0,1188	23,17	82
98	207,868	1300	0,1287	23,44	89
103	218,473	1400	0,1386	23,71	92
105	222,716	1500	0,1485	23,98	93
107	226,958	1600	0,1584	24,26	94
108	229,079	1700	0,1683	24,55	93
116	246,048	1800	0,1782	24,85	99
119	252,411	1900	0,1881	25,15	100
121	256,653	2000	0,198	25,46	101

Tablo C.7. "2/F" NO'LU NUMUNEDE KAYMA DİRENCİ PARAMETRELERİNİN DRENAJSIZ KONSOLİDASYONSUZ ÜÇ EKSENLİ BASINÇ DENEYİ İLE BULUNMASI

Proje adı		Kuvvet halkası no		: 4693
Numunenin geldiği yer: Güneşler-Köp	rübaşı mevkii	Kuvvet halka katsayısı		: 2,1211
Sondaj no Numune no: 2/F		Yükleme hızı		:0,8 mm/dak
Numunenin alındığı derinlik	:0,5-1 mt	Çevre basıncı		: 300 kPA
Numunenin tanımı		Deformasyon saatinin ha	ssaslığı	: 0,01 mm
Numune çapı	: 5,0 cm	Başlangıç su içeriği		
Numune yüksekliği	: 10,0 cm	Başlangıç enkesit alanı	Ao	$\pi x5,00x5,00= 19,63 \text{ cm}^2$
Numunenin doğal ağırlığı	: 353,24 g	Başlangıç hacmı	Vo	:19,63x10,00 =196,30 cm3
Numunenin kuru ağırlığı	: 270,24 g	Özgül ağırlık	Gs	: 2,60
Su içeriği	: % 30,71			
Sr (353,24-270,24)/(196,30-105,95)	: % 91,86			

Danelerin hacmı V: Ws/Gsxp w= 270,24/2,60x0,981 : 105,95 cm3 Başlangıç boşluk oranı eo

KUVVET	BASINÇ	BOY	BİRİM	DÜZELTİLMİŞ	DEVİATÖR
HALKASI	KUVVETİ	KISALMASI	BOY KISALMASI	ENKESİT ALANI	GERİLME
OKUMASI	(Kn)	(0,01mm has.)(mm))	(cm2)	(kPa)
KH	P=KHx2,1211	Δl	$\epsilon z = \Delta l/lo$	Ac=Ao/1-εz	σ=P/Ac
0	0	0	0	19,63	0
11	23,332	10	0,001	19,65	12
16	33,938	25	0,0025	19,68	17
21	44,543	50	0,005	19,73	23
26	55,149	75	0,0075	19,78	28
32	67,875	100	0,01	19,83	34
41	86,965	150	0,015	19,93	44
48	101,813	200	0,02	20,03	51
57	120,903	300	0,03	20,24	60
61	129,387	400	0,04	20,45	63
63	133,629	500	0,05	20,66	65
72	152,719	600	0,06	20,88	73
80	169,688	700	0,07	21,11	80
88	186,657	800	0,08	21,34	87
86	182,415	900	0,09	21,57	85
88	186,657	1000	0,1	21,81	86
95	201,505	1100	0,11	22,06	91
101	214,231	1200	0,12	22,31	96
104	220,594	1300	0,13	22,56	98
103	218,473	1400	0,14	22,83	96
104	220,594	1500	0,15	23,09	96
109	231,2	1600	0,16	23,37	99
113	239,684	1700	0,17	23,65	101
115	243,927	1800	0,18	23,94	102
114	241,805	1900	0,19	24,23	100
117	248,169	2000	0,2	24,54	101

Şekil C.4. ''2''(D,E,F) no'lu numune gurubunda UU deneyi

Şekil C.5. '2''(D,E,F) no'lu numune gurubunda gerilme-şekil değiştirme ilişkisi

Tablo C.8. "2/J" NO'LU NUMUNEDE KAYMA DİRENCİ PARAMETRELERİNİN DRENAJSIZ KONSOLİDASYONSUZ ÜÇ EKSENLİ BASINÇ DENEYİ İLE BULUNMASI

Proje adı		Kuvvet halkası no		: 4693
Numunenin geldiği yer: Güneşler-Kö	prübaşı mevkii	Kuvvet halka katsayısı		: 2,1211
Sondaj no Numune no: 2/J		Yükleme hızı		:0,8 mm/dak
Numunenin alındığı derinlik	:0,5-1 mt	Çevre basıncı		: 100 kPA
Numunenin tanımı		Deformasyon saatının ha	ssaslığı	: 0,01 mm
Numune çapı	: 3,60 cm	Başlangıç su içeriği		
Numune yüksekliği	: 7,15 cm	Başlangıç enkesit alanı	Ao	$:\pi x1.80x1,80=10,17 cm2$
Numunenin doğal ağırlığı	: 138,42 g	Başlangıç hacmı	Vo	:10,17x7,15 = 72,72cm3
Numunenin kuru ağırlığı	: 109,42 g	Özgül ağırlık	Gs	: 2,60
Su içeriği	: % 26,50			
Sr (138,42-109,42)/(72,72-42,90)	: % 97,25			

Danelerin hacmı V : Ws/Gsxp w= 109,42/2,60x0,981 Vs : 42,90 cm3

Başlangıç boşluk oranı eo : Vo-Vs/Vs=0,70

KUVVET	BASINÇ	BOY	BİRİM	DÜZELTİLMİŞ	DEVİATÖR
HALKASI	KUVVETİ	KISALMASI	BOY KISALMASI	ENKESİT ALANI	GERİLME
OKUMASI	(Kn)	(0,01mm has.)(mm))	(cm2)	(kPa)
KH	P=KHx2,1211	Δl	εz =∆l/lo	Ac=Ao/1-Ez	σ=P/Ac
0	0	0	0	10,17	0
11	23,332	10	0,0014	10,18	23
13	27,574	25	0,0035	10,21	27
23	48,785	50	0,007	10,24	48
31	65,754	75	0,0105	10,28	64
35	74,239	100	0,014	10,31	72
44	93,328	150	0,021	10,39	90
48	101,813	200	0,028	10,46	97
59	125,145	300	0,042	10,62	118
66	139,993	400	0,0559	10,77	130
70	148,477	500	0,0699	10,93	136
83	176,051	600	0,0839	11,1	159
95	201,505	700	0,0979	11,27	179
101	214,231	800	0,1119	11,45	187
106	224,837	900	0,1259	11,63	193
110	233,321	1000	0,1399	11,82	197
119	252,411	1100	0,1539	12,02	210
126	267,259	1200	0,1678	12,22	219
129	273,622	1300	0,1818	12,43	220
130	275,743	1400	0,1958	12,65	218

Tablo C.9. "2/K" NO'LU NUMUNEDE KAYMA DİRENCİ PARAMETRELERİNİN DRENAJSIZ KONSOLİDASYONSUZ ÜÇ EKSENLİ BASINÇ DENEYİ İLE BULUNMASI

Proje adı			Kuvvet halkası no		: 4693
Numunenin geldiği ye	r: Güneşler-Köprü	başı mevkii	Kuvvet halka katsayısı		: 2,1211
Sondaj no N	Jumune no: 2/K		Yükleme hızı		:0,8 mm/dak
Numunenin alındığı d	erinlik	:0,5-1 mt	Çevre basıncı		: 200 kPA
Numunenin tanımı			Deformasyon saatinin has	ssaslığı	: 0,01 mm
Numune çapı		: 3,50 cm	Başlangıç su içeriği		
Numune yüksekliği		: 7,24 cm	Başlangıç enkesit alanı	Ao	$:\pi x1.75x1,75=9,62 \text{ cm}2$
Numunenin doğal ağı	rlığı	: 133,76 g	Başlangıç hacmı	Vo	:9,62x7,24 = 69,65cm3
Numunenin kuru ağırl	ığı	: 105,70 g	Özgül ağırlık	Gs	: 2,60
Su içeriği	-	: % 26,55			
Sr (133,76-105,70)/(6	9,65-41,44)	: % 99,47			
Danelerin hacmı V:	Ws/Gsxp w=105,7	70/2,60x0,981	Başlangıç boşluk oranı	eo	: Vo-Vs/Vs= 0,68

Danelerin hacmı V: Ws/Gsxp w=105,70/2,60x0,981 :41,44 cm3

Ozgur agirrik	Us	. 2,00
Başlangıç boşluk oranı	eo	: Vo-Vs/Vs= 0,6

KUVVET	BASINÇ	BOY	BİRİM	DÜZELTİLMİŞ	DEVİATÖR
HALKASI	KUVVETİ	KISALMASI	BOY KISALMASI	ENKESİT ALANI	GERİLME
OKUMASI	(Kn)	(0,01mm has.)(mm))	(cm2)	(kPa)
KH	P=KHx2,1211	Δl	εz =∆l/lo	Ac=Ao/1-Ez	σ=P/Ac
0	0	0	0	9,62	0
10	21,211	10	0,0014	9,63	22
18	38,18	25	0,0035	9,65	40
27	57,27	50	0,0069	9,69	59
32	67,875	75	0,0104	9,72	70
36	76,36	100	0,0138	9,75	78
44	93,328	150	0,0207	9,82	95
49	103,934	200	0,0276	9,89	105
59	125,145	300	0,0414	10,04	125
68	144,235	400	0,0553	10,18	142
71	150,598	500	0,0691	10,33	146
76	161,204	600	0,0829	10,49	154
85	180,294	700	0,0967	10,65	169
95	201,505	800	0,1105	10,82	186
101	214,231	900	0,1243	10,99	195
105	222,716	1000	0,1381	11,16	200
108	229,079	1100	0,1519	11,34	202
115	243,927	1200	0,1658	11,53	212
124	263,016	1300	0,1796	11,73	224
129	273,622	1400	0,1934	11,93	229

Tablo C.10. "2/L" NO'LU NUMUNEDE KAYMA DİRENCİ PARAMETRELERİNİN DRENAJSIZ KONSOLİDASYONSUZ ÜÇ EKSENLİ BASINÇ DENEYİ İLE BULUNMASI

Proje adı		Kuvvet halkası no		: 4693
Numunenin geldiği yer: Güneşler-Kö	prübaşı mevkii	Kuvvet halka katsayısı		: 2,1211
Sondaj no Numune no: 2/L		Yükleme hızı		:0,8 mm/dak
Numunenin alındığı derinlik	:0,5-1 mt	Çevre basıncı		: 300 kPA
Numunenin tanımı		Deformasyon saatinin ha	ssaslığı	: 0,01 mm
Numune çapı	: 3,60 cm	Başlangıç su içeriği		
Numune yüksekliği	: 7,20 cm	Başlangıç enkesit alanı	Ao	:π x1.80x1,80=10,17 cm2
Numunenin doğal ağırlığı	: 137,31 g	Başlangıç hacmı	Vo	:10,17x7,20 =73,22cm3
Numunenin kuru ağırlığı	: 108,22 g	Özgül ağırlık	Gs	: 2,60
Su içeriği	: % 26,88			
Sr (137,31-108,22)/(73,22-42,43)	: % 94,48			

Danelerin hacmı V: Ws/Gsxp w= 108,22/2,60x0,981:42,43 cm3

Başlangıç boşluk oranı eo : Vo-Vs/Vs= 0,73

KUVVET	BASINÇ	BOY	BİRİM	DÜZELTİLMİŞ	DEVİATÖR
HALKASI	KUVVETİ	KISALMASI	BOY KISALMASI	ENKESİT ALANI	GERİLME
OKUMASI	(Kn)	(0,01mm has.)(mm))	(cm2)	(kPa)
KH	P=KHx2,1211	Δl	εz =∆l/lo	Ac=Ao/1-Ez	σ=P/Ac
0	0	0	0	10,17	0
10	21,211	10	0,0014	10,18	21
15	31,817	25	0,0035	10,21	31
20	42,422	50	0,0069	10,24	41
25	53,028	75	0,0104	10,28	52
28	59,391	100	0,0139	10,31	58
34	72,117	150	0,0208	10,39	69
38	80,602	200	0,0278	10,46	77
44	93,328	300	0,0417	10,61	88
51	108,176	400	0,0556	10,77	100
58	123,024	500	0,0694	10,93	113
62	131,508	600	0,0833	11,09	119
66	139,993	700	0,0972	11,27	124
71	150,598	800	0,1111	11,44	132
78	165,446	900	0,125	11,62	142
81	171,809	1000	0,1389	11,81	145
82	173,93	1100	0,1528	12	145
83	176,051	1200	0,1667	12,2	144
89	188,778	1300	0,1806	12,41	152
94	199,383	1400	0,1944	12,62	158

Şekil C.6. ''2''(J,K,L) no'lu numune gurubunda UU deneyi

PROJE	PROJE ADI NUMUNENİN ALINDIĞI YER :Günesler-Köprübası mevkii											
KESME	E KUTUSU	UZUNLUĞI	:6,0 cm	GENİŞLİĞİ:	6,0 cm	DERİNLİĞİ: 2,0 cm		Ao=36,00cm2 Vo=72		Vo=72,00ci	72,00cm3	
HALKA+ZEMİN:310,800 g DENEY SONU:125,034 g KURU ZEMİN: 96,318 g HALKA NO:2 HALKA AĞIRLIĞI:187,6								ĞIRLIĞI:187,61 g				
DÜŞEY	DÜŞEY YÜK:4500+3000+10*2850=36000 g İLK OKUMA: 2500 SON OKUMA: 1939 KESME HIZI: 0,5 mm/dak											
KUVVE	KUVVET HALKA NO:13352 KUVVET HALKASI KATSAYISI :2,9873 DÜŞEY DEFORMASYON SAATİ KATSAYISI: 0,002											
NUMUI	NE NO: 2/G	Ì										
GEÇEN	YATAY	YATAY	DÜZELTİLMİŞ	KUVVET	KESME	KAYMA	NORMAL	DÜŞEY	DÜŞEY	DÜZEL-	BOŞLUK	
SÜRE	DEFORM.	DEPLAS-	ENKESİT	HALKASI	KUVVETİ	GERİLMESİ	GERİLME	DEFORM.	DEPLASMAN	TİLMİŞ	ORANI	
		MAN	ALANI	OKUMASI				OKUMASI		HACIM		
			6*(6-δh)		KH*2,9873	P/Ac			(2500-D.D.O.)	Ac*2-δv	Vi-Vs/Vs	
									*0,002/10		Vs=Ms/pw*Gs	
dakika		δh (cm)	Ac(cm2)	KH	P (Kn)	τ (kN/m2-kPa)	σ(kN/m2-kPa)		δv (cm)	Vi(cm3)	ei (%)	
0	0.0	0	36.000	0	0	0	100	2500	0	72.000	0,951	
1	0,5	0,0008	35,995	28	83,644	23	100	2499	0	71,99	0,95	
2	1.0	0,0017	35.990	34	101,568	28	100	2499	0	71,98	0,95	
3	1,5	0,0027	35,984	38	113,517	32	100	2490	0,002	71,896	0,948	
4	2.0	0,0033	35.980	39	116,505	32	100	2476	0,005	71,78	0,945	
5	2,5	0,0042	35,975	41	122,479	34	100	2461	0,008	71,662	0,942	
6	3.0	0.0050	35.970	42	125,467	35	100	2448	0,01	71,58	0,939	
7	3,5	0,0058	35,965	42	125,467	35	100	2434	0,013	71,463	0,936	
8	4.0	0,0067	35.960	42	125,467	35	100	2421	0,016	71,345	0,933	
9	4,5	0,0075	35,955	43	128,454	36	100	2410	0,018	71,263	0,931	
10	5.0	0,0083	35.950	43	128,454	36	100	2399	0,02	71,181	0,929	
11	5,5	0,0092	35,945	43	128,454	36	100	2388	0,022	71,099	0,926	
12	6.0	0.0100	35.940	43	128,454	36	100	2377	0,025	70,982	0,923	
13	6,5	0,0108	35,935	43	128,454	36	100	2367	0,027	70,9	0,921	
14	7.0	0,0117	35.930	42	125,467	35	100	2360	0,028	70,854	0,92	
15												
16												
17												
18												
19												
20												

Tablo C.11. "2/G" NO'LU NUMUNEDE KAYMA DİRENCİNİN KESME KUTUSUNDA ÖLÇÜLMESİ

PROJE ADI NUMUNENİN ALINDIĞI YER : Güneşler-Köprübaşı mevkii											
KESME	E KUTUSU	UZUNLUĞI	1:6,0 cm	GENİŞLİĞİ:	6,0 cm	DERİNLİĞİ: 2,	0 cm	Ao=36,00cm2			m3
HALKA	A+ZEMİN:3	+ZEMİN:307,758 g DENEY SONU:127,795 g KURU ZEMİN: 99,203 g HALKA NO:3			:3	HALKA A	ĞIRLIĞI:180,83 g				
DÜŞEY	YÜK:4500	+6000+10*6	6150=72000 g			İLK OKUMA: 2	2500	SON OKUM	A: 1637	KESME HI	ZI: 0,5 mm/dak
KUVVI	ET HALKA	NO:13352	KUVVET HAL	KASI KATS	AYISI	:2,9873		DÜŞEY DEF	FORMASYON S	SAATİ KAT	SAYISI: 0,002
NUMU	NE NO:2/H										
GEÇEN	YATAY	YATAY	DÜZELTİLMİŞ	KUVVET	KESME	KAYMA	NORMAL	DÜŞEY	DÜŞEY	DÜZEL-	BOŞLUK
SÜRE	DEFORM.	DEPLAS-	ENKESİT	HALKASI	KUVVETİ	GERİLMESİ	GERİLME	DEFORM.	DEPLASMAN	TİLMİŞ	ORANI
		MAN	ALANI	OKUMASI				OKUMASI		HACIM	
			6*(6-δh)		KH*2,9873	P/Ac			(2500-D.D.O.)	Ac*2-δv	Vi-Vs/Vs
		-							*0,002/10		Vs=Ms/pw*Gs
dakika		δh (cm)	Ac(cm2)	KH	P (Kn)	τ (kN/m2-kPa)	$\sigma(kN/m2-kPa)$		δv (cm)	Vi(cm3)	ei (%)
0	0.0	0	36.000	0	0	0	200	2500	0	72.000	0,851
1	0,5	0,0008	35,995	28	83,644	23	200	2498	0	71,99	0,851
2	1.0	0,0017	35.990	55	164,302	46	200	2489	0,002	71;908	0,849
3	1,5	0,0027	35,984	66	197,162	55	200	2476	0,005	71,788	0,846
4	2.0	0,0033	35.980	72	215;086	60	200	2461	0,008	71,672	0,843
5	2,5	0,0042	35,975	75	224,048	62	200	2445	0,011	71,554	0,84
6	3.0	0.0050	35.970	78	233,009	65	200	2425	0,015	71,4	0,836
7	3,5	0,0058	35,965	80	238,984	66	200	2408	0,018	71,283	0,833
8	4.0	0,0067	35.960	80	238,984	66	200	2390	0,022	71,129	0,829
9	4,5	0,0075	35,955	81	241,971	67	200	2375	0,025	71,011	0,826
10	5.0	0,0083	35.950	82	244,959	68	200	2360	0,028	70;893	0,823
11	5,5	0,0092	35,945	83	247,946	69	200	2344	0,031	70,776	0,82
12	6.0	0.0100	35.940	84	250,933	70	200	2330	0,034	70.658	0,817
13	6,5	0,0108	35,935	85	253,921	71	200	2315	0,037	70.54	0,814
14	7.0	0,0117	35.930	84	250,933	70	200	2301	0,04	70.423	0,811
15	7,5	0,0125	35,925	85	253,921	71	200	2288	0,042	70.341	0,809
16	8.0	0,0133	35.920	85	253,921	71	200	2276	0,045	70.224	0,806
17	8,5	0,0142	35,915	85	253,921	71	200	2264	0,047	70.142	0,803
18	9.0	0.0150	35.910	82	244,959	68	200	2253	0,049	70.06	0,801
19									-		
20											

Tablo C.12. "2/H" NO'LU NUMUNEDE KAYMA DİRENCİNİN KESME KUTUSUNDA ÖLÇÜLMESİ

PROJE ADI NUMUNENİN ALINDIĞI YER : Güneşler-Köprübaşı mevkii												
KESMI	E KUTUSU	UZUNLUĞ	1:6,0 cm	GENİŞLİĞİ: 6,0 cm		DERİNLİĞİ: 2,0 cm		Ao=36,00cm2		Vo=72,00c	m3	
HALK	A+ZEMİN:2	.91,492 g	DENEY SONU	:122,850 g		KURU ZEMİN:	96,692 g	HALKA NO	:1	HALKA AĞIRLIĞI:165,38 g		
DÜŞEY	YÜK:4500	+9000+10*9	9450=108000 g			İLK OKUMA: 2	2500	SON OKUM	A: 1175	KESME HIZI: 0,5 mm/dak		
KUVV	ET HALKA	NO:13352	KUVVET HAI	KASI KATS	AYISI	:2,9873		DÜŞEY DEI	FORMASYON S	SAATİ KA	FSAYISI: 0,002	
NUMU	NE NO:2/I											
GEÇEN	YATAY	YATAY	DÜZELTİLMİŞ	KUVVET	KESME	KAYMA	NORMAL	DÜŞEY	DÜŞEY	DÜZEL-	BOŞLUK	
SÜRE	DEFORM.	DEPLAS-	ENKESİT	HALKASI	KUVVETİ	GERİLMESİ	GERİLME	DEFORM.	DEPLASMAN	TİLMİŞ	ORANI	
		MAN	ALANI	OKUMASI				OKUMASI		HACIM		
			6*(6-δh)		KH*2,9873	P/Ac			(2500-D.D.O.)	Ac*2-δv	Vi-Vs/Vs	
									*0,002/10		Vs=Ms/pw*Gs	
dakika		δh (cm)	Ac(cm2)	КН	P (Kn)	τ (kN/m2-kPa)	σ(kN/m2-kPa)		δv (cm)	Vi(cm3)	ei (%)	
0	0.0	0	36.000	0	0	0	300	2500	0	72.000	0,899	
1	0,5	0,0008	35,995	48	143,39	40	300	2494	0,001	71,954	0,898	
2	1.0	0,0017	35.990	78	233,009	65	300	2481	0,004	71.836	0,895	
3	1,5	0,0027	35,984	98	292.755	81	300	2468	0,006	71.752	0,893	
4	2.0	0,0033	35.980	107	319.641	89	300	2451	0,01	71.6	0,889	
5	2,5	0,0042	35,975	115	343.54	95	300	2434	0,013	71.482	0,886	
6	3.0	0.0050	35.970	121	361.463	100	300	2418	0,016	71.364	0,882	
7	3,5	0,0058	35,965	127	379.387	105	300	2400	0,02	71.211	0,878	
8	4.0	0,0067	35.960	130	388.349	108	300	2383	0,023	71.093	0,875	
9	4,5	0,0075	35,955	132	394.324	110	300	2367	0,027	70.939	0,871	
10	5.0	0,0083	35.950	133	397.311	111	300	2350	0,03	70.822	0,868	
11	5,5	0,0092	35,945	135	403,286	112	300	2333	0,033	70.704	0,865	
12	6.0	0.0100	35.940	137	409,26	114	300	2318	0,036	70.586	0,862	
13	6,5	0,0108	35,935	140	418,222	116	300	2300	0,04	70.433	0,858	
14	7.0	0,0117	35.930	141	421,209	117	300	2284	0,043	70.315	0,855	
15	7,5	0,0125	35,925	142	424,197	118	300	2269	0,046	70.197	0,852	
16	8.0	0,0133	35.920	142	424.197	118	300	2255	0,049	70.08	0,849	
17	8,5	0,0142	35,915	144	430.171	120	300	2241	0,052	69.962	0,845	
18	9.0	0.0150	35.910	146	436.146	121	300	2228	0,054	69.881	0,843	
19	9,5	0,0158	35.905	143	427.184	119	300	2219	0,056	69,8	0,841	
20	10.0	0,0167	35,9	145	433,159	121	300	2209	0,058	69.718	0,839	
21	10,5	0,0175	35,895	145	433,159	121	300	2198	0,06	69.636	0,837	
22	11.0	0,0183	35,89	145	433,159	121	300	2175	0,065	69.447	0,832	

Tablo C.13. "2/I" NO'LU NUMUNEDE KAYMA DİRENCİNİN KESME KUTUSUNDA ÖLÇÜLMESİ

Şekil C.7. "2" (G,H,I) no'lu numune gurubunda kesme kutusu deneyi

Şekil C.8. "2" (G,H,I) no'lu numune gurubunda kesme kutusu deneyinde yatay deplasman-düşey deplasman ilişkisi

Şekil C.9. ''2''(G,H,I) no'lu numune gurubunda kesme kutusu deneyinde kayma gerilmesi-yatay deplasman ilişkisi

Ek.D 4 NO'LU NUMUNEYE AİT DENEYSEL ÇALIŞMALAR

PROJE						
ÖRNEĞİN ALINDIĞI YER	GEYVE İLÇESİ					
ÖRNEĞİN TANIMI		ÖRSEL	ENMİŞ			
ÖRNEK NO		DENF	ΞΥΪ ΥΑΡΑ	AN	G.Ş.NO	MALER
DERİNLİK		0,5-1 m	DANE	ÖZ AĞI	RLIK 2,	67
TARİH		13.02.	2006			
		KALII	BIN İÇ H.	ACMI	942,5 cm	3
DENEY NO		1	2	3	4	5
KALIP+TABAN+ZEMİN AĞIRLIĞI	(gr)	9390	9675	9795	9720	
KALIP+TABAN AĞIRLIĞI	(gr)	8000	8000	8000	8000	
SIKIŞTIRILMIŞ ZEMİN AĞIRLIĞI	(gr)	1390	1675	1795	1720	
YAŞ BİRİM HACIM AĞIRLIĞI ((kN/m ³)	14,47	17,43	18,69	17,90	
KAP NO		825	812	821	809	
KAP AĞIRLIĞI	(gr)	59,51	62,51	62,36	62,47	
KAP+YAŞ ÖRNEK AĞIRLIĞI	(gr)	157,13	166,15	214,02	192,82	
KAP+KURU ÖRNEK AĞIRLIĞI	(gr)	145,85	146,03	176,89	156,04	
SU MUHTEVASI	(%)	13,06	22,90	32,42	39,31	
KURU BİRİM HACIM AĞIRLIK (kN/m^3)	12,80	14,19	14,12	12,85	

Tablo D.1. 4 NO'LU NUMUNEDE ZEMİN SIKIŞTIRMA DENEYİ

Tablo D.2. "4/A" NO'LU NUMUNEDE KAYMA DİRENCİ PARAMETRELERİNİN DRENAJSIZ KONSOLİDASYONSUZ ÜÇ EKSENLİ BASINÇ DENEYİ İLE BULUNMASI

: 3,50 cm

: 7,20 cm

: 136,35 g

: 109,67 g

: % 24,33

: % 97,41

Proje adı Numunenin geldiği yer: Geyve ilçesi Sondaj no Numune no: 4/A Numunenin alındığı derinlik Numunenin tanımı

Numunenin doğal ağırlığı

Sr (136,35-109,67)/(69,26-41,87)

Numunenin kuru ağırlığı

Numune çapı Numune yüksekliği

Su içeriği

Kuvvet halkası no		: 4693
Kuvvet halka katsayısı		: 2,1211
Yükleme hızı		:0,8 mm/dak
Çevre basıncı		: 100 kPA
Deformasyon saatının ha	ssaslığı	: 0,01 mm
Başlangıç su içeriği		
Başlangıç enkesit alanı	Ao	$:\pi x1.75x1,75= 9,62 \text{ cm}2$
Başlangıç hacmı	Vo	:9,62x7,2 = 69,26cm3
Özgül ağırlık	Gs	: 2,67

Danelerin hacmı V : s/Gsxp w= 109,67/2,67x0,981 Vs : 41,87 cm3 Başlangıç boşluk oranı eo

KUVVET	BASINÇ	BOY	BİRİM	DÜZELTİLMİŞ	DEVİATÖR
HALKASI	KUVVETİ	KISALMASI	BOY KISALMASI	ENKESİT ALANI	GERİLME
OKUMASI	(Kn)	(0,01mm has.)(mm)		(cm2)	(kPa)
KH	P=KHx2,1211	Δl	εz =∆l/lo	Ac=Ao/1-Ez	σ=P/Ac
0	0	0	0	9,62	0
19	40,301	10	0,0014	9,63	42
31	65,754	25	0,0035	9,65	68
45	95,45	50	0,0069	9,69	99
55	116,661	75	0,0104	9,72	120
64	135,75	100	0,0139	9,76	139
77	163,325	150	0,0208	9,82	166
87	184,536	200	0,0278	9,9	186
104	220,594	300	0,0417	10,04	220
115	243,927	400	0,0556	10,19	239
127	269,38	500	0,0694	10,34	261
142	301,196	600	0,0833	10,49	287
153	324,528	700	0,0972	10,66	304
161	341,497	800	0,1111	10,82	316
168	356,345	900	0,125	10,99	324
173	366,95	1000	0,1389	11,17	329
181	383,919	1100	0,1528	11,36	338
188	398,767	1200	0,1667	11,54	346
192	407,251	1300	0,1806	11,74	347
194	411,493	1400	0,1944	11,94	345

Tablo D.3. "4/B" NO'LU NUMUNEDE KAYMA DİRENCİ PARAMETRELERİNİN DRENAJSIZ KONSOLİDASYONSUZ ÜÇ EKSENLİ BASINÇ DENEYİ İLE BULUNMASI

: 3,50 cm

: 6,87 cm

: 132,45 g

: 106,44 g

: % 24,44

:% 102

Proje adı Numunenin geldiği yer: Geyve ilçesi Sondaj no Numune no: 4/B Numunenin alındığı derinlik Numunenin tanımı

Numune çapı Numune yüksekliği

Su içeriği

Numunenin doğal ağırlığı

Numunenin kuru ağırlığı

Sr (132,45-106,44)/(66,09-40,64)

Kuvvet halkası no		: 4693	
Kuvvet halka katsayısı		: 2,1211	
Yükleme hızı		:0,8 mm/dak	
Çevre basıncı		: 200 kPA	
Deformasyon saatının ha	ssaslığı	: 0,01 mm	
Başlangıç su içeriği Başlangıç enkesit alanı Başlangıç hacmı Özgül ağırlık	Ao Vo Gs	:π x1.75x1,7 : 9,62x6,87 : 2,67	5= 9,62 cm2 =66,09cm3

Danelerin hacmı V: Ms/Gsxp w=106,44/2,67x0,981 :40,64 cm3

Başlangıç boşluk oranı	eo

KUVVET	BASINÇ	BOY	BİRİM	DÜZELTİLMİŞ	DEVİATÖR
HALKASI	KUVVETİ	KISALMASI	BOY KISALMASI	ENKESİT ALANI	GERİLME
OKUMASI	(Kn)	(0,01mm has.)(mm))	(cm2)	(kPa)
KH	P=KHx2,1211	Δl	$\epsilon z = \Delta l/lo$	Ac=Ao/1-ez	σ=P/Ac
0	0	0	0	9,62	0
16	33,938	10	0,0015	9,63	35
27	57,27	25	0,0036	9,65	59
45	95,45	50	0,0073	9,69	99
60	127,266	75	0,0109	9,73	131
72	152,719	100	0,0146	9,76	156
86	182,415	150	0,0218	9,83	186
98	207,868	200	0,0291	9,91	210
112	237,563	300	0,0437	10,06	236
121	256,653	400	0,0582	10,21	251
132	279,985	500	0,0728	10,38	270
146	309,681	600	0,0873	10,54	294
155	328,771	700	0,1019	10,71	307
162	343,618	800	0,1164	10,89	316
168	356,345	900	0,131	11,07	322
172	364,829	1000	0,1456	11,26	324
177	375,435	1100	0,1601	11,45	328
181	383,919	1200	0,1747	11,66	330
186	394,525	1300	0,1892	11,86	333
192	407,251	1400	0,2038	12,08	337

Tablo D.4. "4/C" NO'LU NUMUNEDE KAYMA DİRENCİ PARAMETRELERİNİN DRENAJSIZ KONSOLİDASYONSUZ ÜÇ EKSENLİ BASINÇ DENEYİ İLE BULUNMASI

Proje adı		Kuvvet halkası no		: 4693
Numunenin geldiği yer: Geyve ilçe	si	Kuvvet halka katsayısı	: 2,1211	
Sondaj no Numune no: 4	/C	Yükleme hızı		:0,8 mm/dak
Numunenin alındığı derinlik		Çevre basıncı		: 300 kPA
Numunenin tanımı		Deformasyon saatinin ha	: 0,01 mm	
Numune çapı	: 3,50 cm	Başlangıç su içeriği		
Numune yüksekliği	: 6,89 cm	Başlangıç enkesit alanı	Ao	$:\pi x1.75x1,75=9,62 \text{ cm}2$
Numunenin doğal ağırlığı	: 128,78 g	Başlangıç hacmı	Vo	: 9,62x6,89 =66,28cm3
Numunenin kuru ağırlığı	: 103,53 g	Özgül ağırlık	Gs	: 2,67
Su içeriği	: % 24,39			
Sr (128,78-103,53)/(66,28-39,53)	: % 94,39			
Danelerin hacmı V: Ms/Gsxp w=	103,53/2,67x0,981	Başlangıç boşluk oranı	eo	: Vo-Vs/Vs= 0,68

Danelerin hacmı $V: Ms/Gsx\rho w = 103,53/2,67x0,981$:39,53 cm3

Başlangıç boşluk oranı

KUVVET	BASINÇ	BOY	BİRİM	DÜZELTİLMİŞ	DEVİATÖR
HALKASI	KUVVETİ	KISALMASI	BOY KISALMASI	ENKESİT ALANI	GERİLME
OKUMASI	(Kn)	(0,01mm has.)(mm))	(cm2)	(kPa)
KH	P=KHx2,1211	Δl	εz =∆l/lo	Ac=Ao/1-εz	σ=P/Ac
0	0	0	0	9,62	0
9	19,09	10	0,0015	9,63	20
17	36,059	25	0,0036	9,65	37
39	82,723	50	0,0073	9,69	85
54	114,539	75	0,0109	9,73	118
67	142,114	100	0,0145	9,76	146
86	182,415	150	0,0218	9,83	186
102	216,352	200	0,029	9,91	218
126	267,259	300	0,0435	10,06	266
145	307,56	400	0,0581	10,21	301
151	320,286	500	0,0726	10,37	309
154	326,649	600	0,0871	10,54	310
165	349,982	700	0,1016	10,71	327
180	381,798	800	0,1161	10,88	351
190	403,009	900	0,1306	11,07	364
190	403,009	1000	0,1451	11,25	358
187	396,646	1100	0,1597	11,45	346
190	403,009	1200	0,1742	11,65	346
203	430,583	1300	0,1887	11,86	380
209	443,31	1400	0,2032	12,07	367

Şekil D.2. ''4''(A,B,C) no'lu numune gurubunda UU deneyi

Şekil D.3. ''4''(A,B,C) no'lu numune gurubunda gerilme-şekil değiştirme ilişkisi

Tablo D.5. "4/D" NO'LU NUMUNEDE KAYMA DİRENCİ PARAMETRELERİNİN DRENAJSIZ KONSOLİDASYONSUZ ÜÇ EKSENLİ BASINÇ DENEYİ İLE BULUNMASI

Proje adı			Kuvvet halkası no		: 4693
Numunenin geldiği y	yer: Geyve ilçesi		Kuvvet halka katsayısı		: 2,1211
Sondaj no	Numune no: 4/D		Yükleme hızı		: 0,8 mm/dak
Numunenin alındığı	derinlik		Çevre basıncı		: 100 kPA
Numunenin tanımı			Deformasyon saatinin has	ssaslığı	: 0,01 m m
Numune çapı		: 5,1 cm	Başlangıç su içeriği		
Numune yüksekliği		:10,0 cm	Başlangıç enkesit alanı	Ao	$\pi x2,55x2,55=20,42 \text{ cm}2$
Numunenin doğal ağ	ğırlığı	: 396,26 g	Başlangıç hacmı	Vo	:20,42x10,0 =204,20cm3
Numunenin kuru ağı	rlığı	: 319,77 g	Özgül ağırlık	Gs	: 2,67
Su içeriği		: % 23,92			
Sr (396,26-319,77)/(204,20-122,08)	: % 93,14			

Danelerin hacmı V: W+B531s/Gsxρ w= 319,77/2,67x0,981 Başlangıç boşluk oranı eo : Vo-Vs/Vs= 0,67 : 122,08 cm3

KUVVET	BASINÇ	BOY	BİRİM	DÜZELTİLMİŞ	DEVİATÖR
HALKASI	KUVVETİ	KISALMASI	BOY KISALMASI	ENKESİT ALANI	GERİLME
OKUMASI	(Kn)	(0,01mm has.)(mm))	(cm2)	(kPa)
KH	P=KHx2,1211	Δl	$\epsilon z = \Delta l/lo$	Ac=Ao/1-εz	σ=P/Ac
0	0	0	0	20,42	0
9	19,09	10	0,001	20,44	9
9	19,09	25	0,0025	20,47	9
11	23,332	50	0,005	20,52	11
44	93,328	75	0,0075	20,57	45
68	144,235	100	0,01	20,63	70
104	220,594	150	0,015	20,73	106
128	271,501	200	0,02	20,84	130
170	360,587	300	0,03	21,05	171
206	436,947	400	0,04	21,27	205
234	496,337	500	0,05	21,49	231
256	543,002	600	0,06	21,72	250
276	585,424	700	0,07	21,96	267
295	625,725	800	0,08	22,2	282
315	668,147	900	0,09	22,44	298
331	702,084	1000	0,1	22,69	309
343	727,537	1100	0,11	22,94	317
351	744,506	1200	0,12	23,2	321
360	763,596	1300	0,13	23,47	325
372	789,049	1400	0,14	23,74	332
384	814,502	1500	0,15	24,02	339
392	831,471	1600	0,16	24,31	342
395	837,835	1700	0,17	24,6	341
400	848,44	1800	0,18	24,9	341
410	869,651	1900	0,19	25,21	345
418	886,62	2000	0,2	25,53	347

Tablo D.6. "4/E" NO'LU NUMUNEDE KAYMA DİRENCİ PARAMETRELERİNİN DRENAJSIZ KONSOLİDASYONSUZ ÜÇ EKSENLİ BASINÇ DENEYİ İLE BULUNMASI

Proje adı		Kuvvet halkası no		: 4693	
Numunenin geldiği yer: Geyve ilçesi		Kuvvet halka katsayısı		: 2,1211	
Sondaj no Numune no: 4/E		Yükleme hızı		:0,8 mm/dak	
Numunenin alındığı derinlik		Çevre basıncı		: 200 kPA	
Numunenin tanımı		Deformasyon saatının hassaslığı		: 0,01 mm	
Numune çapı	: 5,0 cm	Başlangıç su içeriği			
Numune yüksekliği	: 9,48 cm	Başlangıç enkesit alanı	Ao	$\pi x2,50x2,50=19,63 \text{ cm}2$	
Numunenin doğal ağırlığı	: 364,23 g	Başlangıç hacmı	Vo	:19,63x9,48 =186,09cm3	
Numunenin kuru ağırlığı	: 294,12 g	Özgül ağırlık	Gs	: 2,67	
Su içeriği	: % 23,84				
Sr (364,23-294,12)/(186,09-112,29)	: % 95				
	4 10/0 (7 0 001				

Danelerin hacmı V: Ws/Gsxp w= 294,12/2,67x0,981 : 112,29 cm3 Başlangıç boşluk oranı eo

KUVVET	BASINÇ	BOY	BOY BİRİM		DEVİATÖR
HALKASI	KUVVETİ	KISALMASI BOY KISALMASI		ENKESİT ALANI	GERİLME
OKUMASI	(Kn)	(0,01mm has.)(mm))	(cm2)	(kPa)
KH	P=KHx2,1211	Δl	εz =∆l/lo	Ac=Ao/1-Ez	σ=P/Ac
0	0	0	0	19,63	0
20	42,422	10	0,0011	19,65	22
24	50,906	25	0,0026	19,68	26
25	53,028	50	0,0053	19,73	27
34	72,117	75	0,0079	19,79	36
42	89,086	100	0,0105	19,84	45
86	182,415	150	0,0158	19,95	91
127	269,38	200	0,0211	20,05	135
182	386,04	300	0,0316	20,27	190
224	475,126	400	0,0422	20,49	232
252	534,517	500	0,0527	20,72	258
274	581,181	600	0,0633	20,96	277
304	644,814	700	0,0738	21,19	304
332	704,205	800	0,0844	21,44	328
352	746,627	900	0,0949	21,69	344
360	763,596	1000	0,1055	21,95	348
371	786,928	1100	0,116	22,21	354
391	829,35	1200	0,1266	22,48	369
410	869,651	1300	0,1371	22,75	382
422	895,104	1400	0,1477	23,03	389
423	897,225	1500	0,1582	23,32	385
428	907,831	1600	0,1688	23,62	384
443	939,647	1700	0,1793	23,92	393
457	969,343	1800	0,1899	24,23	400
464	984,19	1900	0,2004	24,55	401
461	977,827	2000	0,211	24,88	393

Tablo D.7. "4/F" NO'LU NUMUNEDE KAYMA DİRENCİ PARAMETRELERİNİN DRENAJSIZ KONSOLİDASYONSUZ ÜÇ EKSENLİ BASINÇ DENEYİ İLE BULUNMASI

Proje adı		Kuvvet halkası no		: 4693
Numunenin geldiği yer: Geyve ilçesi	Kuvvet halka katsayısı		: 2,1211	
Sondaj no Numune no: 4/F		Yükleme hızı		: 0,8 mm/dak
Numunenin alındığı derinlik	Çevre basıncı	: 300 kPA		
Numunenin tanımı		Deformasyon saatinin ha	ssaslığı	: 0,01 mm
Numune çapı	: 5,0 cm	Başlangıç su içeriği		
Numune yüksekliği	: 9,32 cm	Başlangıç enkesit alanı	Ao	$\pi x5,00x5,00= 19,63 \text{ cm}2$
Numunenin doğal ağırlığı	: 352,03 g	Başlangıç hacmı	Vo	:19,63x9,32 = 182,95 cm3
Numunenin kuru ağırlığı	: 284,37 g	Özgül ağırlık	Gs	: 2,67
Su içeriği	: % 23,79			
Sr (352,03-284,37)/(182,95-108,57)	: % 90,96			

Danelerin hacmı V: Ws/Gsxp w= 284,37/2,67x0,981 : 108,57 cm3 Başlangıç boşluk oranı eo

KUVVET HALKASI	BASINÇ Kuvvetî	BOY KISALMASI	BİRİM BOV KISALMASI	DÜZELTİLMİŞ ENKESİT ALANI	DEVİATÖR CEDİLME
OKUMASI	(Kn)	(0,01mm has.)(mm)	(cm2)	(kPa)
KH	P=KHx2,1211	Δl	$\epsilon z = \Delta l/lo$	Ac=Ao/1-Ez	σ=P/Ac
0	0	0	0	19,63	0
28	59,391	10	0,0011	19,65	30
32	67,875	25	0,0027	19,68	34
35	74,239	50	0,0054	19,74	38
43	91,207	75	0,008	19,79	46
79	167,567	100	0,0107	19,84	84
137	290,591	150	0,0161	19,95	146
175	371,193	200	0,0215	20,06	185
224	475,126	300	0,0322	20,28	234
257	545,123	400	0,0429	20,51	266
283	600,271	500	0,0536	20,74	289
310	657,541	600	0,0644	20,98	313
328	695,721	700	0,0751	21,22	328
340	721,174	800	0,0858	21,47	336
355	752,991	900	0,0966	21,73	347
376	797,534	1000	0,1073	21,99	363
387	820,866	1100	0,118	22,26	369
388	822,987	1200	0,1288	22,53	365
398	844,198	1300	0,1395	22,81	370
414	878,135	1400	0,1502	23,1	380
425	901,468	1500	0,1609	23,39	385
429	909,952	1600	0,1717	23,7	384
429	909,952	1700	0,1824	24,1	378
435	922,679	1800	0,1931	24,33	379
446	946,011	1900	0,2039	24,66	384
452	958,737	2000	0,2146	24,99	384

Şekil D.4. ''4''(D,E,F) no'lu numune gurubunda UU deneyi

Şekil D.5. ''4''(D,E,F) no'lu numune gurubunda gerilme-şekil değiştirme ilişkisi

Tablo D.8. "4/J" NO'LU NUMUNEDE KAYMA DİRENCİ PARAMETRELERİNİN DRENAJSIZ KONSOLİDASYONSUZ ÜÇ EKSENLİ BASINÇ DENEYİ İLE BULUNMASI

Proje adı		Kuvvet halkası no		: 4693
Numunenin geldiği yer: Geyve ilçesi	Kuvvet halka katsayısı	: 2,1211		
Sondaj no Numune no:4)J		Yükleme hızı		:0,8 mm/dak
Numunenin alındığı derinlik		Çevre basıncı	: 100 kPA	
Numunenin tanımı		Deformasyon saatının hassaslığı		: 0,01 mm
Numune çapı	: 3,57 cm	Başlangıç su içeriği		
Numune yüksekliği	: 7,38 cm	Başlangıç enkesit alanı	Ao	$:\pi x1.785x1,785=10,00 \text{ cm}2$
Numunenin doğal ağırlığı	: 141,30 g	Başlangıç hacmı	Vo	:10,00x7,38 = 73,80cm3
Numunenin kuru ağırlığı	:109,39 g	Özgül ağırlık	Gs	: 2,67
Su içeriği	: % 29,17			
Sr (141,30-109,39)/(73,80-41,76)	: % 99,59			

Danelerin hacmı V : Ws/Gsxp w= 109,39 /2,67x0,981 Vs : 41,76 cm3

Başlangıç boşluk oranı

eo

KUVVET	BASINÇ	BOY	BİRİM	DÜZELTİLMİŞ	DEVİATÖR
HALKASI	KUVVETİ	KISALMASI	BOY KISALMASI	ENKESİT ALANI	GERİLME
OKUMASI	(Kn)	(0,01mm has.)(mm))	(cm2)	(kPa)
KH	P=KHx2,1211	Δl	εz =∆l/lo	Ac=Ao/1-Ez	σ=P/Ac
0	0	0	0	10	0
5	10,606	10	0,0014	10,01	11
9	19,09	25	0,0034	10,03	19
13	27,574	50	0,0068	10,07	27
16	33,938	75	0,0102	10,1	34
18	38,18	100	0,0136	10,14	38
21	44,543	150	0,0203	10,21	44
23	48,785	200	0,0271	10,28	47
28	59,391	300	0,0407	10,42	57
31	65,754	400	0,0542	10,57	62
35	74,239	500	0,0678	10,73	69
39	82,723	600	0,0813	10,88	76
42	89,086	700	0,0949	11,05	81
45	95,45	800	0,1084	11,22	85
46	97,571	900	0,122	11,39	86
47	99,692	1000	0,1355	11,57	86
50	106,055	1100	0,1491	11,75	90
51	108,176	1200	0,1626	11,94	91
50	106,055	1300	0,1762	12,14	87
50	106,055	1400	0,1897	12,34	86
Tablo D.9. "4/K" NO'LU NUMUNEDE KAYMA DİRENCİ PARAMETRELERİNİN DRENAJSIZ KONSOLİDASYONSUZ ÜÇ EKSENLİ BASINÇ DENEYİ İLE BULUNMASI

Proje adı Numunenin geldiği yer: Geyve ilçesi Sondaj no Numune no:4/K Numunenin alındığı derinlik Numunenin tanımı

Kuvvet halkası no		: 4693			
Kuvvet halka katsayısı		: 2,1211			
Yükleme hızı		:0,8 mm/dak			
Çevre basıncı		: 200 kPA			
Deformasyon saatinin ha	: 0,01 mm				
Başlangıç su içeriği Başlangıç enkesit alanı Başlangıç hacmı Özgül ağırlık	Ao Vo Gs	:π x1.80x1,80=10,17 cm2 :10,17x7,20 = 73,22cm3 : 2,67			

Başlangıç boşluk oranı eo : Vo-Vs/Vs=77

Danelerin hacmı V: Ws/Gsxp w= 108,25 /2,67x0,981 : 41.33 cm3

Numune çapı: 3,60 cmNumune yüksekliği: 7,20 cmNumunenin doğal ağırlığı: 138,28 gNumunenin kuru ağırlığı: 108,25 gSu içeriği: % 27,74Sr (138,28-108,25)/(73,22-41,33): % 94,17

KUVVET HALKASI OKUMASI	BASINÇ KUVVETİ (Kn)	BOY KISALMASI (0,01mm has.)(mm)	BİRİM BOY KISALMASI)	DÜZELTİLMİŞ ENKESİT ALANI (cm2)	DEVİATÖR GERİLME (kPa)
KH	P=KHx2,1211	Δl	εz =∆l/lo	Ac=Ao/1-Ez	σ=P/Ac
0	0	0	0	10,17	0
8	16,969	10	0,0014	10,18	17
13	27,574	25	0,0035	10,21	27
19	40,301	50	0,0069	10,24	39
23	48,785	75	0,0104	10,28	47
25	53,028	100	0,0139	10,31	51
29	61,512	150	0,0208	10,39	59
31	65,754	200	0,0278	10,46	63
34	72,117	300	0,0417	10,61	68
35	74,239	400	0,0556	10,77	69
39	82,723	500	0,0694	10,93	76
46	97,571	600	0,0833	11,09	88
51	108,176	700	0,0972	11,26	96
53	112,418	800	0,1111	11,44	98
53	112,418	900	0,125	11,62	97
54	114,539	1000	0,1389	11,81	97
59	125,145	1100	0,1528	12	104
62	131,508	1200	0,1667	12,2	108
62	131,508	1300	0,1806	12,41	106
60	127,266	1400	0.1944	12.62	101

Tablo D.10. ''4/L'' NO'LU NUMUNEDE KAYMA DİRENCİ PARAMETRELERİNİN DRENAJSIZ KONSOLİDASYONSUZ ÜÇ EKSENLİ BASINÇ DENEYİ İLE BULUNMASI

Proje adı		Kuvvet halkası no		: 4693
Numunenin geldiği yer: Geyve ilçesi		Kuvvet halka katsayısı		: 2,1211
Sondaj no Numune no:4/L		Yükleme hızı	: 0,8 mm/dak	
Numunenin alındığı derinlik		Çevre basıncı	: 300 kPA	
Numunenin tanımı		Deformasyon saatının ha	: 0,01 mm	
Numune çapı	: 3,60 cm	Başlangıç su içeriği		
Numune yüksekliği	: 7,20 cm	Başlangıç enkesit alanı	Ao	:π x1.80x1,80=10,17 cm2
Numunenin doğal ağırlığı	: 138,75 g	Başlangıç hacmı	Vo	:10,17x7,20 =73,22cm3
Numunenin kuru ağırlığı	: 108,11 g	Özgül ağırlık	Gs	: 2,67
Su içeriği	: % 28,34			
Sr (138,75-108,11)/(73,22-41,27)	: % 95,90			
Danelerin hacmı V: Ws/Gsxp w=10	08,11/2,67x0,981	Başlangıç boşluk oranı	eo	: Vo-Vs/Vs= 0,77

Danelerin hacmı V: Ws/Gsxp w=108,11/2,67x0,981 :41,27 cm3

Başlangıç boşluk oranı

KUVVET	BASINÇ	BOY	BİRİM	DÜZELTİLMİŞ	DEVİATÖR
HALKASI	KUVVETİ	KISALMASI	BOY KISALMASI	ENKESİT ALANI	GERİLME
OKUMASI	(Kn)	(0,01mm has.)(mm))	(cm2)	(kPa)
KH	P=KHx2,1211	Δl	εz =∆l/lo	Ac=Ao/1-εz	σ=P/Ac
0	0	0	0	10,17	0
10	21,211	10	0,0014	10,18	21
16	33,938	25	0,0035	10,21	33
22	46,664	50	0,0069	10,24	46
26	55,149	75	0,0104	10,28	54
28	59,391	100	0,0139	10,31	58
32	67,875	150	0,0208	10,39	65
35	74,239	200	0,0278	10,46	71
40	84,844	300	0,0417	10,61	80
43	91,207	400	0,0556	10,77	85
44	93,328	500	0,0694	10,93	85
48	101,813	600	0,0833	11,09	92
52	110,297	700	0,0972	11,27	98
55	116,661	800	0,1111	11,44	102
58	123,024	900	0,125	11,62	106
55	116,661	1000	0,1389	11,81	99
56	118,782	1100	0,1528	12	99
60	127,266	1200	0,1667	12,2	104
61	129,387	1300	0,1806	12,41	104
62	131,508	1400	0,1944	12,62	104

Şekil D.6. ''4''(J,K,L) no'lu numune gurubunda UU deneyi

PROJE	PROJE ADI NUMUNENİN ALINDIĞI YER : Geyve ilçesi										
KESME	E KUTUSU	UZUNLUĞI	1:6,0 cm	GENİŞLİĞİ: 6,0 cm DERİNLİĞİ: 2,0 cm		Ao=36,00cm	2	Vo=72,00c	m3		
HALKA	HALKA+ZEMİN:292,21 g DENEY SONU:1			IU:132,65 g KURU ZEMİN:104,57 g l		HALKA NO:1		HALKA AĞIRLIĞI:165,38 g			
DÜŞEY	YÜK:4500	+3000+10*2	2850=36000 g	İLK OKUMA: 2500			SON OKUM	IA: 2280	KESME HIZI: 0,5 mm/dak		
KUVVI	ET HALKA	NO:13352	KUVVET HAL	KASI KATS.	AYISI	:2,9873		DÜŞEY DEI	FORMASYON S	SAATİ КАТ	SAYISI: 0,002
NUMU	NE NO:4/G										
GEÇEN	YATAY	YATAY	DÜZELTİLMİŞ	KUVVET	KESME	KAYMA	NORMAL	DÜŞEY	DÜŞEY	DÜZEL-	BOŞLUK
SÜRE	DEFORM.	DEPLAS-	ENKESİT	HALKASI	KUVVETİ	GERİLMESİ	GERİLME	DEFORM.	DEPLASMAN	TİLMİŞ	ORANI
		MAN	ALANI	OKUMASI				OKUMASI		HACIM	
			6*(6-δh)		KH*2,9873	P/Ac			(2500-D.D.O.)	Ac*2-δv	Vi-Vs/Vs
									*0,002/10		Vs=Ms/pw*Gs
dakika		δh (cm)	Ac(cm2)	KH	P (Kn)	τ (kN/m2-kPa)	σ(kN/m2-kPa)		δv (cm)	Vi(cm3)	ei (%)
0	0.0	0	36.000	0	0	0	100	2500	0	72.000	0,803
1	0,5	0,0008	35,995	18	53.771	15	100	2500	0	72.000	0,803
2	1.0	0,0017	35.990	35	104.556	29	100	2500	0	72.000	0,803
3	1,5	0,0027	35,984	47	140.403	39	100	2500	0	72.000	0,803
4	2.0	0,0033	35.980	55	164.302	46	100	2500	0	72.000	0,803
5	2,5	0,0042	35,975	61	182.225	51	100	2497	0,001	71.914	0,801
6	3.0	0.0050	35.970	65	194.175	54	100	2480	0,004	71.796	0,798
7	3,5	0,0058	35,965	68	203.136	56	100	2469	0,006	71.714	0,796
8	4.0	0,0067	35.960	69	206.124	57	100	2458	0,008	71.632	0,794
9	4,5	0,0075	35,955	71	212.098	59	100	2446	0,011	71.514	0,791
10	5.0	0,0083	35.950	72	215.086	60	100	2432	0,014	71.397	0,788
11	5,5	0,0092	35,945	72	215.086	60	100	2418	0,016	71.315	0,786
12	6.0	0.0100	35.940	72	215.086	60	100	2404	0,019	71.197	0,783
13	6,5	0,0108	35,935	71	212.098	59	100	2388	0,022	71.079	0,78
14	7.0	0,0117	35.930	70	209.111	58	100	2371	0,026	70.926	0,777
15	7,5	0,0125	35,925	69	206.124	57	100	2355	0,029	70.808	0,774
16											
17											
18											
19											
20											

Tablo D.11. "4/G" NO'LU NUMUNEDE KAYMA DİRENCİNİN KESME KUTUSUNDA ÖLÇÜLMESİ

PROJE ADI NUMUNENİN ALINDIĞI YER : Geyve ilçesi											
KESME	E KUTUSU	UZUNLUĞI	1:6,0 cm	GENİŞLİĞİ:	6,0 cm	DERİNLİĞİ: 2,	0 cm	Ao=36,00cm2		Vo=72,00c	m3
HALKA	+ZEMİN:3	12,00 g	DENEY SONU	:136,46 g		KURU ZEMİN:108,32 g		HALKA NO:3		HALKA AĞIRLIĞI:180,83	
DÜŞEY	DÜŞEY YÜK:4500+6000+10*6150=72000 g					İLK OKUMA: 2500		SON OKUMA: 2032		KESME HIZI: 0,5 mm/dak	
KUVVI	ET HALKA	NO: 13352	KUVVET HAL	KASI KATS.	AYISI	:2,9873		DÜŞEY DEI	FORMASYON S	БААТІ КАТ	SAYISI: 0,002
NUMU	NE NO:4/H										
GEÇEN	YATAY	YATAY	DÜZELTİLMİŞ	KUVVET	KESME	KAYMA	NORMAL	DÜŞEY	DÜŞEY	DÜZEL-	BOŞLUK
SÜRE	DEFORM.	DEPLAS-	ENKESİT	HALKASI	KUVVETİ	GERİLMESİ	GERİLME	DEFORM.	DEPLASMAN	TİLMİŞ	ORANI
		MAN	ALANI	OKUMASI				OKUMASI		HACIM	
			6*(6-ðh)		KH*2,9873	P/Ac			(2500-D.D.O.)	Ac*2-δv	Vi-Vs/Vs
									*0,002/10		Vs=Ms/pw*Gs
dakika		δh (cm)	Ac(cm2)	КН	P (Kn)	τ (kN/m2-kPa)	σ(kN/m2-kPa)		δv (cm)	Vi(cm3)	ei (%)
0	0.0	0	36.000	0	0	0	200	2500	0	72.000	0,741
1	0,5	0,0008	35,995	33	98,581	27	200	2497	0,001	71.954	0.740
2	1.0	0,0017	35.990	64	191.187	53	200	2482	0,004	71.836	0,737
3	1,5	0,0027	35,984	86	256.908	71	200	2468	0,006	71.752	0,735
4	2.0	0,0033	35.980	100	298.730	83	200	2452	0,01	71.600	0,731
5	2,5	0,0042	35,975	109	325.616	91	200	2436	0,013	71.482	0,729
6	3.0	0.0050	35.970	115	343.540	96	200	2424	0,015	71.401	0,727
7	3,5	0,0058	35,965	120	358.476	100	200	2410	0,018	71.283	0,724
8	4.0	0,0067	35.960	124	370.425	103	200	2396	0,021	71.165	0,721
9	4,5	0,0075	35,955	125	373.413	104	200	2381	0,024	71.047	0,718
10	5.0	0,0083	35.950	125	373.413	104	200	2366	0,027	70.929	0,715
11	5,5	0,0092	35,945	125	373.413	104	200	2352	0,03	70.812	0,712
12	6.0	0.0100	35.940	124	370.425	103	200	2340	0,032	70.730	0.710
13	6,5	0,0108	35,935	119	355.489	99	200	2327	0,035	70.612	0,708
14											
15											
16											
17											
18											
19											
20											

Tablo D.12. "4/H" NO'LU NUMUNEDE KAYMA DİRENCİNİN KESME KUTUSUNDA ÖLÇÜLMESİ

PROJE ADI NUMUNENİN ALINDIĞI YER							: Geyve ilçesi				
KESME	KUTUSU	UZUNLUĞI	1:6,0 cm	GENİŞLİĞİ:	6,0 cm	DERİNLİĞİ: 2,	0 cm	Ao=36,00cm	2	Vo=72,00c	m3
HALKA	+ZEMİN:3	20,01 g	DENEY SONU	:136,82 g		KURU ZEMİN:	HALKA NO:2		HALKA AĞIRLIĞI:187,61		
DÜŞEY	JŞEY YÜK:4500+9000+10*9450=108000 g			İLk		İLK OKUMA: 2	LK OKUMA: 2500		SON OKUMA: 2025		ZI: 0,5 mm/dak
KUVVE	ET HALKA	NO:13352	KUVVET HAL	KASI KATS.	AYISI	:2,9873		DÜŞEY DEI	FORMASYON S	SAATİ KAT	TSAYISI: 0,002
NUMUI	NE NO:4+A	A240/I									
GEÇEN	YATAY	YATAY	DÜZELTİLMİŞ	KUVVET	KESME	KAYMA	NORMAL	DÜŞEY	DÜŞEY	DÜZEL-	BOŞLUK
SÜRE	DEFORM.	DEPLAS-	ENKESİT	HALKASI	KUVVETİ	GERİLMESİ	GERİLME	DEFORM.	DEPLASMAN	TİLMİŞ	ORANI
		MAN	ALANI	OKUMASI				OKUMASI		HACIM	
			6*(6-δh)		KH*2,9873	P/Ac			(2500-D.D.O.)	Ac*2-δv	Vi-Vs/Vs
									*0,002/10		Vs=Ms/pw*Gs
dakika		δh (cm)	Ac(cm2)	КН	P (Kn)	τ (kN/m2-kPa)	$\sigma(kN/m2-kPa)$		δv (cm)	Vi(cm3)	ei (%)
0	0.0	0	36.000	0	0	0	300	2500	0	72.000	0,732
1	0,5	0,0008	35,995	26	77.670	22	300	2499	0	72.000	0,732
2	1.0	0,0017	35.990	60	179,238	50	300	2497	0,001	71.944	0.730
3	1,5	0,0027	35,984	104	310.679	86	300	2485	0,003	71.860	0,728
4	2.0	0,0033	35.980	127	379.387	105	300	2466	0,007	71.708	0.725
5	2,5	0,0042	35,975	138	412.247	115	300	2448	0,01	71.590	0,722
6	3.0	0.0050	35.970	143	427.184	119	300	2429	0,014	71.436	0,718
7	3,5	0,0058	35,965	144	430.171	120	300	2408	0,018	71.283	0,714
8	4.0	0,0067	35.960	145	433.159	120	300	2386	0,023	71.093	0,71
9	4,5	0,0075	35,955	145	433.159	120	300	2368	0,026	70.975	0,707
10	5.0	0,0083	35.950	145	433.159	120	300	2350	0,03	70.822	0,703
11	5,5	0,0092	35,945	145	433.159	121	300	2333	0,033	70.704	0,7
12	6.0	0.0100	35.940	145	433.159	121	300	2316	0,037	70.550	0,697
13											
14											
15											
16											
17											
18											
19											
20											

Tablo D.13. "4/I" NO'LU NUMUNEDE KAYMA DİRENCİNİN KESME KUTUSUNDA ÖLÇÜLMESİ

Şekil D.7. ''4''(G,H,I) no'lu numune gurubunda kesme kutusu deneyi

Şekil D.8. ''4''(G,H,I) no'lu numune gurubunda kesme kutusu deneyinde yatay deplasman-düşey deplasman ilişkisi

Şekil D.9. ''4''(G,H,I) no'lu numune gurubunda kesme kutusu deneyinde kayma gerilmesi-yatay deplasman ilişkisi

EK.E 8 NO'LU NUMUNEYE AİT DENEYSEL ÇALIŞMALAR

Tadio E.I. 8 NO LU NUMUNEDE ZEMIN SIKIŞTIKMA DENEYI	Tablo	E.1.	8 NO	'LU	NUMUN	NEDE	ZEMİN	SIKIŞ	ΓIRMA	DENEYİ
---	-------	------	------	-----	-------	------	-------	-------	-------	--------

PROJE							
ÖRNEĞİN ALINDIĞI YER		TOYOTA EVLERİ ALTI-BEŞKÖPRÜ					
ÖRNEĞİN TANIMI		ÖRSEL	ENMİŞ				
ÖRNEK NO	DENE	ΥΪ ΥΑΡΑ	AN	G.Ş.NO	MALER		
DERİNLİK	0,5-1 mt	DANE	ÖZ AĞI	RLIK 2	2,61		
TARİH							
		KALIF	BIN İÇ H	ACMI	942,5 ci	m ³	
DENEY NO		1	2	3	4	5	
KALIP+TABAN+ZEMİN AĞIRLIĞI	(gr)	9570	9645	9715	9750	9680	
KALIP+TABAN AĞIRLIĞI	(gr)	7990	7990	7990	7990	7990	
SIKIŞTIRILMIŞ ZEMİN AĞIRLIĞI	(gr)	1580	1655	1725	1760	1690	
YAŞ BİRİM HACIM AĞIRLIĞI	(kN/m ³)	16,44	17,23	17,95	18,32	17,95	
KAP NO		808	812	828	853	821	
KAP AĞIRLIĞI	(gr)	62,54	62,51	59,90	64,36	62,47	
KAP+YAŞ ÖRNEK AĞIRLIĞI	(gr)	440,83	432,04	430,70	508,16	548,52	
KAP+KURU ÖRNEK AĞIRLIĞI	(gr)	380,17	360,83	349,86	399,64	415,64	
SU MUHTEVASI	(%)	19,10	23,86	27,88	32,37	37,61	
KURU BİRİM HACIM AĞIRLIK	(kN/m^3)	13,80	13,91	14,04	13,83	12,78	

Şekil E.1. 8 no'lu numunede w_{opt} tayini

Tablo E.2. ''8/A'' NO'LU NUMUNEDE KAYMA DİRENCİ PARAMETRELERİNİN DRENAJSIZ KONSOLİDASYONSUZ ÜÇ EKSENLİ BASINÇ DENEYİ İLE BULUNMASI

Proje adı		Kuvvet halkası no		: 4693
Numunenin geldiği yer:Toyota evleri	altı-Beşköprü	Kuvvet halka katsayısı	: 2,1211	
Sondaj no Numune no: 8/A		Yükleme hızı	:0,8 mm/dak	
Numunenin alındığı derinlik :0,5-2 mt		Çevre basıncı	: 100 kPA	
Numunenin tanımı		Deformasyon saatının hassaslığı		: 0,01 mm
Numune çapı	: 3,58 cm	Başlangıç su içeriği		
Numune yüksekliği	: 7,40 cm	Başlangıç enkesit alanı	Ao	$:\pi x1.79x1,79=10,06 \text{ cm}2$
Numunenin doğal ağırlığı	: 138,80 g	Başlangıç hacmı	Vo	:10,06x7,40 = 74,44cm3
Numunenin kuru ağırlığı	: 104,10 g	Özgül ağırlık	Gs	: 2,61
Su içeriği	: % 33,33			
Sr (138,80-104,10)/(74,44-40,66)	: % 102,72			

Danelerin hacmı V : Ws/Gsxp w= 104,10/2,61x0,981 Vs : 40,66 cm3

Başlangıç boşluk oranı eo

: Vo-Vs/Vs=0,83

KUVVET	BASINÇ	BOY	BİRİM	DÜZELTİLMİŞ	DEVİATÖR
HALKASI	KUVVETİ	KISALMASI	BOY KISALMASI	ENKESİT ALANI	GERİLME
OKUMASI	(Kn)	(0,01mm has.)(mm))	(cm2)	(kPa)
KH	P=KHx2,1211	Δl	εz =∆l/lo	Ac=Ao/1-εz	σ=P/Ac
0	0	0	0	10,06	0
8	16,969	10	0,0014	10,07	17
14	29,695	25	0,0034	10,09	29
21	44,543	50	0,0068	10,13	44
25	53,028	75	0,0101	10,16	52
29	61,512	100	0,0135	10,2	60
34	72,117	150	0,0203	10,27	70
37	78,481	200	0,027	10,34	76
41	86,965	300	0,0405	10,48	83
44	93,328	400	0,0541	10,64	88
47	99,692	500	0,0676	10,79	92
48	101,813	600	0,0811	10,95	93
53	112,418	700	0,0946	11,11	101
55	116,661	800	0,1081	11,28	103
57	120,903	900	0,1216	11,45	106
58	123,024	1000	0,1351	11,63	106
58	123,024	1100	0,1486	11,82	104
63	133,629	1200	0,1622	12,01	111
65	137,872	1300	0,1757	12,2	113
65	137,872	1400	0,1892	12,41	111

Tablo E.3. "8/B" NO'LU NUMUNEDE KAYMA DİRENCİ PARAMETRELERİNİN DRENAJSIZ KONSOLİDASYONSUZ ÜÇ EKSENLİ BASINÇ DENEYİ İLE BULUNMASI

Proje adı		Kuvvet halkası no		: 4693
Numunenin geldiği yer: Toyota ev	leri altı-Beşköprü	Kuvvet halka katsayısı		: 2,1211
Sondaj no Numune no:	8/B	Yükleme hızı		:0,8 mm/dak
Numunenin alındığı derinlik	:0,5-2 mt	Çevre basıncı	: 200 kPA	
Numunenin tanımı		Deformasyon saatının has		: 0,01 mm
Numune çapı	: 3,55cm	Başlangıç su içeriği		
Numune yüksekliği	: 7,34 cm	Başlangıç enkesit alanı	Ao	:π x1.78x1,78= 9,95 cm2
Numunenin doğal ağırlığı	: 137,33 g	Başlangıç hacmı	Vo	:9,95x7,34 = 73,03 cm3
Numunenin kuru ağırlığı	: 102,81 g	Özgül ağırlık	Gs	: 2,61
Su içeriği	: % 33,58			
Sr (137,33-102,81)/(73,03-40,15)	:% 104,99			
Danelerin hacmı V: Ws/Gsxp v :40,15 cm3	=102,81/2,61x0,981	Başlangıç boşluk oranı	eo	: Vo-Vs/Vs= 0,82

KUVVET	BASINÇ	BOY	BİRİM	DÜZELTİLMİŞ	DEVİATÖR
HALKASI	KUVVETİ	KISALMASI	BOY KISALMASI	ENKESİT ALANI	GERİLME
OKUMASI	(Kn)	(0,01mm has.)(mm))	(cm2)	(kPa)
KH	P=KHx2,1211	Δl	$\epsilon z = \Delta l/lo$	Ac=Ao/1-εz	σ=P/Ac
0	0	0	0	9,95	0
9	19,09	10	0,0014	9,96	19
15	31,817	25	0,0034	9,98	32
21	44,543	50	0,0068	10,02	44
26	55,149	75	0,0102	10,05	55
29	61,512	100	0,0136	10,09	61
33	69,996	150	0,0204	10,16	69
37	78,481	200	0,0272	10,23	77
45	95,45	300	0,0409	10,37	92
50	106,055	400	0,0545	10,52	101
53	112,418	500	0,0681	10,68	105
51	108,176	600	0,0817	10,84	100
53	112,418	700	0,0954	11	102
59	125,145	800	0,109	11,17	112
63	133,629	900	0,1226	11,34	118
63	133,629	1000	0,1362	11,52	116
60	127,266	1100	0,1499	11,7	109
62	131,508	1200	0,1635	11,89	111
67	142,114	1300	0,1771	12,09	118
68	144,235	1400	0,1907	12,29	117

Tablo E.4. ''8/C'' NO'LU NUMUNEDE KAYMA DİRENCİ PARAMETRELERİNİN DRENAJSIZ KONSOLİDASYONSUZ ÜÇ EKSENLİ BASINÇ DENEYİ İLE BULUNMASI

Proje adı Numunenin geldiği yer:Toyota evleri altı-Beşköprü Sondaj no Numune no: 8/C		Kuvvet halkası no Kuvvet halka katsayısı Yükleme hızı		: 4693 : 2,1211 :0.8 mm/dak		
Numunenin alındığı derinlik	:0,5-2 mt	Çevre basıncı		: 300 kPA		
Numunenin tanımı Deformasyon		Deformasyon saatının ha	on saatının hassaslığı : 0,01 mm			
Numune çapı	: 3,50 cm	Başlangıç su içeriği				
Numune yüksekliği	: 7,10 cm	Başlangıç enkesit alanı	Ao	:π x1.75x1,75=9,62 cm2		
Numunenin doğal ağırlığı	: 127,63 g	Başlangıç hacmı	Vo	:9,62x7,10 = 68,30 cm3		
Numunenin kuru ağırlığı	: 95,82 g	Özgül ağırlık	Gs	: 2,61		
Su içeriği	: % 33,20					
Sr (127,63-95,82)/(68,30-37,4	2) : % 103,01					
Danelerin hacmı V: Ws/Gsx	Başlangıç boşluk oranı	eo	: Vo-Vs/Vs= 0,83			

:37,42 cm3

KUVVET	BASINÇ	BOY	BİRİM	DÜZELTİLMİŞ	DEVİATÖR
HALKASI	KUVVETİ	KISALMASI	BOY KISALMASI	ENKESİT ALANI	GERİLME
OKUMASI	(Kn)	(0,01mm has.)(mm))	(cm2)	(kPa)
KH	P=KHx2,1211	Δl	εz =∆l/lo	Ac=Ao/1-ez	σ=P/Ac
0	0	0	0	9,62	0
11	23,332	10	0,0014	9,63	24
18	38,18	25	0,0035	9,65	40
26	55,149	50	0,007	9,69	57
33	69,996	75	0,0106	9,72	72
36	76,36	100	0,0141	9,76	78
42	89,086	150	0,0211	9,83	91
46	97,571	200	0,0282	9,9	99
52	110,297	300	0,0423	10,04	110
57	120,903	400	0,0563	10,19	119
58	123,024	500	0,0704	10,35	119
56	118,782	600	0,0845	10,51	113
63	133,629	700	0,0986	10,67	125
69	146,356	800	0,1127	10,84	135
72	152,719	900	0,1268	11,02	139
71	150,598	1000	0,1408	11,2	134
68	144,235	1100	0,1549	11,38	127
74	156,961	1200	0,169	11,58	136
79	167,567	1300	0,1831	11,78	142
80	169,688	1400	0,1972	11,98	142

Şekil E.2. ''8''(A,B,C) no'lu numune gurubunda UU deneyi

Şekil E.3. "8" no'lu numune gurubunda gerilme-şekil değiştirme ilişkisi

Tablo E.5. "8/D" NO'LU NUMUNEDE KAYMA DİRENCİ PARAMETRELERİNİN DRENAJSIZ KONSOLİDASYONSUZ ÜÇ EKSENLİ BASINÇ DENEYİ İLE BULUNMASI

Proje adı		Kuvvet halkası no		: 4693
Numunenin geldiği yer:Toyo	ta evleri altı-Beşköprü	Kuvvet halka katsayısı		: 2,1211
Sondaj no Numune	e no: 4(8)/D	Yükleme hızı		:0,8 mm/dak
Numunenin alındığı derinlik :0,5-2 mt		Çevre basıncı	: 100 kPA	
Numunenin tanımı		Deformasyon saatının ha	: 0,01 mm	
Numune çapı	: 5,04 cm	Başlangıç su içeriği		
Numune yüksekliği	:10,40 cm	Başlangıç enkesit alanı	Ao	$:\pi x2,52x2,52=19,94 \text{ cm}2$
Numunenin doğal ağırlığı	: 388,77 g	Başlangıç hacmı	Vo	:19,94x10,40 =207,38cm3
Numunenin kuru ağırlığı	: 291,42 g	Özgül ağırlık	Gs	: 2,61
Su içeriği	: % 33,41			
Sr (388,77-291,42)/(207,38-1	13,82) : % 104,05			
Danelerin hacmı V: Ws/Gs	xρ w= 291,42/2,61x0,981	Başlangıç boşluk oranı	eo	: Vo-Vs/Vs= 0,82

: 113,82 cm3

KUVVET	BASINÇ	BOY	BİRİM	DÜZELTİLMİŞ	DEVİATÖR
HALKASI	KUVVETİ	KISALMASI	BOY KISALMASI	ENKESİT ALANI	GERİLME
OKUMASI	(Kn)	(0,01mm has.)(mm))	(cm2)	(kPa)
KH	P=KHx2,1211	Δl	εz =∆l/lo	Ac=Ao/1-εz	σ=P/Ac
0	0	0	0	19,94	0
24	50,906	10	0,001	19,96	26
35	74,239	25	0,0024	19,99	37
48	101,813	50	0,0048	20,04	51
56	118,782	75	0,0072	20,08	59
64	135,75	100	0,0096	20,13	67
74	156,961	150	0,0144	20,23	78
83	176,051	200	0,0192	20,33	87
96	203,626	300	0,0288	20,53	99
105	222,716	400	0,0385	20,74	107
107	226,958	500	0,0481	20,95	108
112	237,563	600	0,0577	21,16	112
124	263,016	700	0,0673	21,38	123
133	282,106	800	0,0769	21,6	131
136	288,47	900	0,0865	21,83	132
137	290,591	1000	0,0962	22,06	132
138	292,712	1100	0,1058	22,3	131
146	309,681	1200	0,1154	22,54	137
154	326,649	1300	0,125	22,79	143
156	330,892	1400	0,1346	23,04	144
157	333,013	1500	0,1442	23,3	143
154	326,649	1600	0,1538	23,56	139
160	339,376	1700	0,1635	23,84	142
167	354,224	1800	0,1731	24,11	147
170	360,587	1900	0,1827	24,4	148

Tablo E.6. **"8/E" NO'LU NUMUNEDE KAYMA DİRENCİ PARAMETRELERİNİN DRENAJSIZ** KONSOLİDASYONSUZ ÜÇ EKSENLİ BASINÇ DENEYİ İLE BULUNMASI

Proje adı		Kuvvet halkası no		: 4693	
Numunenin geldiği yer:Erenler me	vkii İstikbal Mobilya inş.	Kuvvet halka katsayısı		: 2,1211	
Sondaj no Numune no: 4	(8)/E	Yükleme hızı		:0,8 mm/dak	
Numunenin alındığı derinlik	:0,5-2 mt	Çevre basıncı		: 200 kPA	
Numunenin tanımı De		Deformasyon saatının ha	Deformasyon saatının hassaslığı : 0,01 mm		
Numune çapı	: 5,0 cm	Başlangıç su içeriği			
Numune yüksekliği	: 10,0 cm	Başlangıç enkesit alanı	Ao	$:\pi x2,50x2,50=19,63 \text{ cm}2$	
Numunenin doğal ağırlığı	: 357,00 g	Başlangıç hacmı	Vo	:19,63x10,00 =196,30cm3	
Numunenin kuru ağırlığı	: 268,52 g	Özgül ağırlık	Gs	: 2,61	
Su içeriği	: % 32,95				
Sr (357,00-268,52)/(196,30-104,87) : %96,77				
Danelerin hacmı V: Ws/Gsxp w=	= 268,52/2,61x0,981	Başlangıç boşluk oranı	eo	: Vo-Vs/Vs= 0,87	

: 104,87 cm3

KUVVET	BASINÇ	BOY	BİRİM	DÜZELTİLMİŞ	DEVİATÖR
HALKASI	KUVVETİ	KISALMASI	BOY KISALMASI	ENKESİT ALANI	GERİLME
OKUMASI	(Kn)	(0,01mm has.)(mm)		(cm2)	(kPa)
KH	P=KHx2,1211	Δl	εz =∆l/lo	Ac=Ao/1-εz	σ=P/Ac
0	0	0	0	19,63	0
7	14,848	10	0,001	19,65	8
8	16,969	25	0,0025	19,68	9
10	21,211	50	0,005	19,73	11
10	21,211	75	0,0075	19,78	11
11	23,332	100	0,01	19,83	12
19	40,301	150	0,015	19,93	20
41	86,965	200	0,02	20,03	43
62	131,508	300	0,03	20,24	65
72	152,719	400	0,04	20,45	75
82	173,93	500	0,05	20,66	84
90	190,899	600	0,06	20,88	91
95	201,505	700	0,07	21,11	95
101	214,231	800	0,08	21,34	100
105	222,716	900	0,09	21,57	103
109	231,2	1000	0,1	21,81	106
116	246,048	1100	0,11	22,06	112
122	258,774	1200	0,12	22,31	116
128	271,501	1300	0,13	22,56	120
131	277,864	1400	0,14	22,83	122
132	279,985	1500	0,15	23,09	121
138	292,712	1600	0,16	23,37	125
142	301,196	1700	0,17	23,65	127
147	311,802	1800	0,18	23,94	130
150	318,165	1900	0,19	24,23	131

Tablo E.7. **''8/D'' NO'LU NUMUNEDE KAYMA DİRENCİ PARAMETRELERİNİN DRENAJSIZ** KONSOLİDASYONSUZ ÜÇ EKSENLİ BASINÇ DENEYİ İLE BULUNMASI

Proje adı		Kuvvet halkası no		: 4693	
Numunenin geldiği yer:To	yota evleri altı-Beşköprü	Kuvvet halka katsayısı	: 2,1211		
Sondaj no Numi	une no: 8/F	Yükleme hızı		:0,8 mm/dak	
Numunenin alındığı derinl	ik :0,5-2 mt	Çevre basıncı		: 300 kPA	
Numunenin tanımı		Deformasyon saatının ha	Deformasyon saatının hassaslığı		
Numune çapı	: 5,00 cm	Başlangıç su içeriği			
Numune yüksekliği	: 10,0 cm	Başlangıç enkesit alanı	Ao	$\pi x5,00x5,00= 19,63 \text{ cm}^2$	
Numunenin doğal ağırlığı	: 355,26 g	Başlangıç hacmı	Vo	:19,63x10,00 =196,30 cm3	
Numunenin kuru ağırlığı	: 267,43 g	Özgül ağırlık	Gs	: 2,61	
Su içeriği	: % 32,84				
Sr (355,26-267,43)/(196,3	0-104,45) : % 95,62				
Danelerin hacmı V: Ws/ : 104,	Gsxp w= 267,43/2,61x0,981 45 cm3	Başlangıç boşluk oranı	eo	: Vo-Vs/Vs= 0,88	

KUVVET	BASINÇ	BOY	BİRİM	DÜZELTİLMİŞ	DEVİATÖR
HALKASI	KUVVETI	KISALMASI	BOY KISALMASI	ENKESİT ALANI	GERİLME
OKUMASI	(Kn)	(0,01mm has.)(mm))	(cm2)	(kPa)
KH	P=KHx2,1211	Δl	εz =∆l/lo	Ac=Ao/1-εz	σ=P/Ac
0	0	0	0	19,63	0
6	12,727	10	0,001	19,65	6
8	16,969	25	0,0025	19,68	9
10	21,211	50	0,005	19,73	11
28	59,391	75	0,0075	19,78	30
46	97,571	100	0,01	19,83	49
67	142,114	150	0,015	19,93	71
80	169,688	200	0,02	20,03	85
98	207,868	300	0,03	20,24	103
109	231,2	400	0,04	20,45	113
112	237,563	500	0,05	20,66	115
116	246,048	600	0,06	20,88	118
129	273,622	700	0,07	21,11	130
137	290,591	800	0,08	21,34	136
142	301,196	900	0,09	21,57	140
140	296,954	1000	0,1	21,81	136
143	303,317	1100	0,11	22,06	137
152	322,407	1200	0,12	22,31	145
158	335,134	1300	0,13	22,56	149
162	343,618	1400	0,14	22,83	151
158	335,134	1500	0,15	23,09	145
159	337,255	1600	0,16	23,37	144
166	352,103	1700	0,17	23,65	149
172	364,829	1800	0,18	23,94	152
174	369,071	1900	0,19	24,23	152

Şekil E.5. '' 8''(D,E,F) no'lu numune gurubunda gerilme-şekil değiştirme ilişkisi

PROJE	ADI			NUMUNEN	İN ALINDIĞ	I YER	: Toyota evleri a	ltı-Beşköprü			
KESME	E KUTUSU	UZUNLUĞI	1:6,0 cm	GENİŞLİĞİ:	6,0 cm	DERİNLİĞİ: 2,0 cm Ao=36,00cm2			Vo=72,00c	Vo=72,00cm3	
HALKA	A+ZEMİN:3	06,06 g	DENEY SONU	1:128,36 g		KURU ZEMİN:	97,90 g	HALKA NO	:3	HALKA A	ĞIRLIĞI:180,83 g
DÜŞEY	YÜK:4500	+3000+10*2	2850=36000 g			İLK OKUMA: 2	2500	SON OKUM	A: 2166	KESME H	ZI: 0,5 mm/dak
KUVVI	ET HALKA	NO:13352	KUVVET HAI	.KASI KATS	AYISI	:2,9873		DÜŞEY DEH	FORMASYON S	SAATİ KAT	SAYISI: 0,002
NUMU	NE NO:8/I										
GEÇEN	YATAY	YATAY	DÜZELTİLMİŞ	KUVVET	KESME	KAYMA	NORMAL	DÜŞEY	DÜŞEY	DÜZEL-	BOŞLUK
SÜRE	DEFORM.	DEPLAS-	ENKESİT	HALKASI	KUVVETİ	GERİLMESİ	GERİLME	DEFORM.	DEPLASMAN	TİLMİŞ	ORANI
		MAN	ALANI	OKUMASI				OKUMASI		HACIM	
			6*(6-ðh)		KH*2,9873	P/Ac			(2500-D.D.O.)	Ac*2-δv	Vi-Vs/Vs
									*0,002/10		Vs=Ms/pw*Gs
dakika		δh (cm)	Ac(cm2)	КН	P (Kn)	τ (kN/m2-kPa)	σ (kN/m2-kPa)		δv (cm)	Vi(cm3)	ei (%)
0	0.0	0	36.000	0	0	0	100	2500	0	72.000	0,883
1	0,5	0,0008	35,995	58	173.263	48	100	2500	0	71.99	0,883
2	1.0	0,0017	35.990	92	274.832	76	100	2490	0,002	71.908	0,881
3	1,5	0,0027	35,984	108	322.628	90	100	2476	0,005	71.788	0,877
4	2.0	0,0033	35.980	114	340.552	95	100	2461	0,008	71.672	0,874
5	2,5	0,0042	35,975	116	346.527	96	100	2447	0,011	71.554	0,871
6	3.0	0.0050	35.970	116	346.527	96	100	2433	0,013	71.472	0,869
7	3,5	0,0058	35,965	116	346.527	96	100	2420	0,016	71.355	0,866
8	4.0	0,0067	35.960	114	340.552	95	100	2406	0,019	71.237	0,863
9	4,5	0,0075	35,955	113	337.565	94	100	2394	0,021	71.155	0,861
10	5.0	0,0083	35.950	110	328.603	91	100	2382	0,024	71.037	0,858
11	5,5	0,0092	35,945	108	322.628	90	100	2371	0,026	70.955	0,856
12											
13											
14											
15											
16											
17											
18											
19											
20											

Tablo E.8. "8/G" NO'LU NUMUNEDE KAYMA DİRENCİNİN KESME KUTUSUNDA ÖLÇÜLMESİ

PROJE	ADI			NUMUNEN	İN ALINDIĞ	I YER	: Toyota evleri a	ltı-Beşköprü				
KESME	E KUTUSU	UZUNLUĞI	:6,0 cm	GENİŞLİĞİ:	6,0 cm	DERİNLİĞİ: 2,	0 cm	Ao=36,00cm	2	Vo=72,00c	m3	
HALKA	A+ZEMİN:3	15,91 g	DENEY SONU	1:131,61 g		KURU ZEMİN:	:100,76 g	HALKA NO	:2	HALKA A	ĞIRLIĞI:187,61 g	
DÜŞEY	YÜK:4500	+6000+10*6	6150=72000 g			İLK OKUMA: 2	2500	SON OKUM	A: 1856	KESME H	ZI: 0,5 mm/dak	
KUVVI	ET HALKA	NO: 13352	KUVVET HAL	KASI KATS.	AYISI	:2,9873		DÜŞEY DEI	FORMASYON S	SAATİ KAT	SAYISI: 0,002	
NUMUI	UMUNE NO:8/H											
GEÇEN	YATAY	YATAY	DÜZELTİLMİŞ	KUVVET	KESME	KAYMA	NORMAL	DÜŞEY	DÜŞEY	DÜZEL-	BOŞLUK	
SÜRE	DEFORM.	DEPLAS-	ENKESİT	HALKASI	KUVVETİ	GERİLMESİ	GERİLME	DEFORM.	DEPLASMAN	TİLMİŞ	ORANI	
		MAN	ALANI	OKUMASI				OKUMASI		HACIM		
		kes.h1z1/600	6*(6-ðh)		KH*2,9873	P/Ac			(2500-D.D.O.)	Ac*2-δv	Vi-Vs/Vs	
									*0,002/10		Vs=Ms/pw*Gs	
dakika		δh (cm)	Ac(cm2)	КН	P (Kn)	τ (kN/m2-kPa)	σ(kN/m2-kPa)		δv (cm)	Vi(cm3)	ei (%)	
0	0.0	0	36.000	0	0	0	200	2500	0	72.000	0.830	
1	0,5	0,0008	35,995	24	71.695	20	200	2499	0	71.990	0,829	
2	1.0	0,0017	35.990	57	170.276	47	200	2497	0,001	71.944	0,828	
3	1,5	0,0027	35,984	81	241.971	67	200	2482	0,004	71.824	0,825	
4	2.0	0,0033	35.980	88	262.888	73	200	2463	0,007	71.708	0,822	
5	2,5	0,0042	35,975	90	268.857	75	200	2444	0,011	71.554	0,818	
6	3.0	0.0050	35.970	89	265.870	74	200	2428	0,014	71.436	0,815	
7	3,5	0,0058	35,965	87	259.895	72	200	2415	0,017	71.319	0,812	
8	4.0	0,0067	35.960	86	256.908	71	200	2403	0,019	71.237	0.810	
9	4,5	0,0075	35,955	85	253.921	71	200	2390	0,022	71.119	0,807	
10	5.0	0,0083	35.950	83	247.946	69	200	2380	0,024	71.037	0,805	
11												
12												
13												
14												
15												
16												
17												
18												
19												
20												

Tablo E.9. "8/H" NO'LU NUMUNEDE KAYMA DİRENCİNİN KESME KUTUSUNDA ÖLÇÜLMESİ

PROJE	ADI			NUMUNEN	İN ALINDIĞ	I YER	: Toyota evleri a	ltı-Beşköprü			
KESME	E KUTUSU	UZUNLUĞ	1:6,0 cm	GENİŞLİĞİ:	6,0 cm	DERİNLİĞİ: 2,0 cm		Ao=36,00cm	12	Vo=72,00cm3	
HALKA	+ZEMİN:3	06,58 g	DENEY SONU	:128,36 g		KURU ZEMİN	97,90 g	HALKA NO	:3	HALKA A	ĞIRLIĞI:180,83
DÜŞEY	YÜK:4500	+9000+10*9	9450=108000 g			İLK OKUMA: 2	2500	SON OKUM	IA: 1713	KESME H	ZI: 0,5 mm/dak
KUVVI	ET HALKA	NO:13352	KUVVET HAL	KASI KATS	AYISI	:2,9873		DÜŞEY DEI	FORMASYON S	SAATİ KAT	SAYISI: 0,002
NUMU	NE NO:8/H										
GEÇEN	YATAY	YATAY	DÜZELTİLMİŞ	KUVVET	KESME	KAYMA	NORMAL	DÜŞEY	DÜŞEY	DÜZEL-	BOŞLUK
SÜRE	DEFORM.	DEPLAS-	ENKESİT	HALKASI	KUVVETİ	GERİLMESİ	GERİLME	DEFORM.	DEPLASMAN	TİLMİŞ	ORANI
		MAN	ALANI	OKUMASI				OKUMASI		HACIM	
			6*(6-δh)		KH*2,9873	P/Ac			(2500-D.D.O.)	Ac*2-δv	Vi-Vs/Vs
									*0,002/10		Vs=Ms/pw*Gs
dakika		δh (cm)	Ac(cm2)	КН	P (Kn)	$\tau (kN/m2-kPa)$	σ(kN/m2-kPa)		δv(cm)	Vi(cm3)	ei (%)
0	0.0	0	36.000	0	0	0	300	2500	0	72.000	0,883
1	0,5	0,0008	35,995	58	173.263	48	300	2500	0	71.990	0,883
2	1.0	0,0017	35.990	92	274.832	76	300	2490	0,002	71.908	0,881
3	1,5	0,0027	35,984	108	322.628	90	300	2476	0,005	71.788	0,877
4	2.0	0,0033	35.980	114	340.552	95	300	2461	0,008	71.672	0,874
5	2,5	0,0042	35,975	116	346.527	96	300	2447	0,011	71.554	0,871
6	3.0	0.0050	35.970	116	346.527	96	300	2433	0,013	71.472	0,869
7	3,5	0,0058	35,965	116	346.527	96	300	2420	0,016	71.355	0,866
8	4.0	0,0067	35.960	114	340.552	95	300	2406	0,019	71.237	0,863
9	4,5	0,0075	35,955	113	337.565	94	300	2394	0,021	71.155	0,861
10	5.0	0,0083	35.950	110	328.603	91	300	2382	0,024	71.037	0,858
11	5,5	0,0092	35,945	108	322.628	90	300	2371	0,026	70.955	0,856
12											
13											
14											
15											
16											
17											
18											
19											
20											

Tablo E.10. "8/I" NO'LU NUMUNEDE KAYMA DİRENCİNİN KESME KUTUSUNDA ÖLÇÜLMESİ

Şekil E.6. "8" (G,H,I) no'lu numune gurubunda kesme kutusu deneyi

Şekil E.7. ''8''(G,H,I) no'lu numune gurubunda kesme kutusu deneyinde yatay deplaşman-düşey deplaşman ilişkisi

Şekil E.8. ''8''(G,H,I) no'lu numune gurubunda kesme kutusu deneyinde kayma gerilmesi-yatay deplasman ilişkisi

ÖZGEÇMİŞ

1956 yılında Sakarya'da doğdu. Tüm öğrenimini Sakarya'da tamamladı. 1976 yılında S.D.M.M.A. dan İnşaat Mühendisi olarak mezun oldu. 1977-1995 yılları arasında Ağrı, Tekirdağ ve Sakarya İlleri Bayındırlık ve İskan Müdürlükleri emrinde Kontrol Mühendisi olarak çalıştı. Halen SA.Ü. Yapı İşleri Teknik Dairesi Başkanlığı emrinde Kontrol Mühendisi olarak çalışmaktadır.