T.C. SAKARYA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

MEVCUT BİR YAPININ YENİ DEPREM YÖNETMELİĞİNE (DBYBHY–2007) GÖRE PERFORMANS DEĞERLENDİRMESİ

YÜKSEK LİSANS TEZİ

İnş. Müh. Serdar MERMER

Enstitü Anabilim Dalı	:	İNŞAAT MÜHENDİSLİĞİ
Enstitü Bilim Dalı	:	YAPI
Tez Danışmanı	:	Yrd. Doç. Dr. Mustafa KUTANİS

Haziran 2007

T.C. SAKARYA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

MEVCUT BİR YAPININ YENİ DEPREM YÖNETMELİĞİNE (DBYBHY–2007) GÖRE PERFORMANS DEĞERLENDİRMESİ

YÜKSEK LİSANS TEZİ

İnş. Müh. Serdar MERMER

Enstitü Anabilim Dalı : İNŞAAT MÜHENDİSLİĞİ

Enstitü Bilim Dalı : YAPI

Bu tez 18 / 06 /2007 tarihinde aşağıdaki jüri tarafından Oybirliği ile kabul edilmiştir.

Yrd. Doç. Dr. Mustafa KUTANİSYrd. Doç. Dr Erkan ÇELEBİDoç. Dr. Gündüz HORASANJüri BaşkanıÜyeÜye

TEŞEKKÜR

Çalışmalarım boyunca değerli bilgi ve yardımlarını esirgemeyen, çalışmalarımı her aşamada izleyip değerlendirerek yön veren ve her türlü desteği sağlayan Sn. Yrd. Doç. Dr. Mustafa KUTANİS'e minnet ve şükranlarımı sunarım.

Çalışmalarım esnasında bana yardımcı olmaya çalışan bütün arkadaşlarıma özellikle eleştiri ve önerileri nedeni ile İnş. Müh. Abdülkadir BUDAK'a teşekkür etmek isterim. Yüksek lisans eğitimimde bana inanarak destekleyen ailemin gösterdiği anlayışa müteşekkirim.

Ayrıca, çalışmamı destekleyen Sakarya Üniversitesi BAPK 'a da (Proje No: 2007.50.01.013, Proje Adı: "Performansa dayalı deprem mühendisliğinde "doğrusal elastik" ve "doğrusal elastik olmayan" yöntemlerin karşılaştırılması") şükranlarımı sunarım.

İÇİNDEKİLER

TEŞEKKÜR	ii
İÇİNDEKİLER	iii
SİMGELER VE KISALTMALAR LİSTESİ	vii
ŞEKİLLER LİSTESİ	xi
TABLOLAR LİSTESİ	xiv
ÖZET	xvii
SUMMARY	xviii

BÖLÜM 1.

GİRİŞ	1
1.1. Konu İle İlgili Çalışmalar	2
1.2. Çalışmanın Amacı ve Kapsamı	5

BÖLÜM 2.

PERFORMANSA DAYALI DEĞERLENDİRME	7
2.1. Giriş	7
2.2. Performans Amaçları	8
2.2.1. Deprem performans tanımları	8
2.3. Binalar İçin Hedeflenen Performans Düzeyleri	10
2.4. Spektrum Karakteristik Periyotları ve Etkin Yer İvme Katsayısı	11
2.5. Binalar İçin Deprem Performansı Hesaplama Yöntemleri	12
2.6. Doğrusal Elastik Hesap Yöntemi	13
2.7. Doğrusal Elastik Olmayan Hesap Yöntemi	15
2.7.1. Modal kapasite diyagramının elde edilmesi	16
2.7.2. Hedef tepe yer değiştirmenin bulunması	17

BÖLÜM 3.

SAYISAL	UYGULAMALAR
3.1.	Giriş
3.2.	Sistemin Tanıtılması
	3.2.1. Bina bilgileri
	3.2.2. Malzeme bilgileri
	3.2.3. Proje parametreleri
	3.2.4. Yükler
3.3.	Doğrusal Elastik Hesap Yöntemiyle Çözüm
	3.3.1. Bina bilgi düzeyi
	3.3.2. Doğrusal elastik yönteme göre deprem hesabı
	3.3.3. Elastik eşdeğer deprem yüklerinin hesaplanması
	3.3.4. Eşdeğer deprem yükü yönteminin uygulanabilirliği
	3.3.5. Göreli kat ötelemelerin sınırlandırılması
	3.3.6. Performans değerlendirmesinde izlenecek hesap aşamaları
	3.3.7. X doğrultusundaki tipik bir çerçevede performans
	değerlendirilmesi
	3.3.7.1. K101 kirişinin uçlarındaki eğilme momenti
	kapasitelerinin (M _K) hesabı
	3.3.7.2. K101 kirişinin artık moment kapasitesinin (M _A)
	bulunması
	3.3.7.3. 1S1 kolonunda eğilme momenti kapasitesi (M _K)
	hesabı
	3.3.7.4. K101 kirişinin kesme kontrolü
	3.3.7.5. 1S1 kolonun kesme kontrolü
	3.3.7.6. Birleşim bölgelerinin kesme kontrolü
	3.3.7.7. Örnek K101 kirişinin performans değerlendirilmesi.
	3.3.7.8. Örnek 1S1 kolonunun performans değerlendirmesi
3.4.	Doğrusal Elastik Olmayan Hesap Yöntemiyle Çözüm
	3.4.1. Elemanlarda doğrusal olmayan davranışın idealleştirilmesi
	3.4.1.1. K101 kirişi için örnek hesap
	3.4.1.2. 1S1 ve 1S2 kolonları için örnek hesap
	3.4.2. Kiriş ve kolonlarda yığılı plastik davranışın tanımlanması

3.4.2.1. Kirişler için plastik kesit (plastik maisal)	
tanımlanması	
3.4.2.2. Kolonlar için plastik kesit tanımlanması	
3.4.3. Artımsal eşdeğer deprem yükü yöntemi ile itme analizi	
3.4.3.1. Düşey yükler altında doğrusal olmayan statik analiz.	
3.4.3.2. Artımsal eşdeğer deprem yükü yönteminin	
kullanılabilirliği	
3.4.3.3. Artımsal itme analizi	
3.4.3.4. Modal kapasite diyagramının elde edilmesi	
3.4.3.5. Modal yerdeğiştirme isteminin hesabı	
3.4.4. Kirişler için birim şekil değiştirme istemlerinin hesabı	
3.4.4.1. K101 kirişi için örnek hesap	
3.4.4.2. Örnek kirişteki kesme kapasitesi kontrolü	
3.4.5. Kolonlar için birim şekil değiştirme istemlerinin hesabı	
3.4.5.1. 1S1 kolonu için örnek hesap	
3.4.5.2. Örnek kolondaki kesme kapasitesi kontrolü	
3.4.6. Birleşim bölgelerinin kesme kontrolü	

SONUÇLAR VE ÖNERİLER

KAYNAKLAR	58
-----------	----

EKLER

Ek-A	
Doğrusal Elastik Yönteme Ait Sonuçlar	60
A.1. Giriş	60
A.2. Kirişlerin moment ve artık moment kapasiteleri	60
A.3. Kolonların eğilme momenti kapasiteleri	63
A.4. Kirişlerin kesme kuvveti kapasiteleri	69
A.5. Kolonların kesme kuvveti kapasiteleri	70
A.6. Birleşim bölgelerinin kesme kuvveti kapasiteleri	72
A.7. Kirişlerin kapasite sınır oranları	74

A.8. Kolonların kapasite sınır oranları	76
A.9. Kirişlerin kapasite oranları	78
A.10. Kolonların kapasite oranları	82
A.11. Kirişlerin performans grafikleri	86
A.12. Kolonların performans grafikleri	87
Ek-B	
Doğrusal Elastik Olmayan Yönteme Ait Sonuçlar	88
B.1. Giriş	88
B.2. Kirişlerin kesit parametreleri sonuçları	88
B.3. Kolonların kesit parametreleri sonuçları	90
B.4. Kirişlerin kesme kapasiteleri	92
B.5. Kolonların kesme kapasiteleri	93
B.6. Birleşim bölgelerinin kesme kuvveti kapasiteleri	94
B.7. Kirişlerin performans parametreleri	96
B.8. Kolonların performans sonuçları	97
ÖZGEÇMİŞ	102

SİMGELER VE KISALTMALAR LİSTESİ

A(T)	: Spektral ivme katsayısı
A_0	: Etkin yer ivme katsayısı
a_1	: Birinci (hakim) moda ait modal ivme
a1 ⁽ⁱ⁾	: (i)'inci itme adımı sonunda elde edilen birinci moda ait modal ivme
Ac	: Kolonun veya perde uç bölgesinin brüt enkesit alanı
As	: Boyuna donatı alanı
A _{s1}	 Kolon-kiriş düğüm noktasının bir tarafında, kirişin negatif momentini karşılamak için üste konulan çekme donatısının toplam alanı
A _{s2}	: Kolon-kiriş düğüm noktasının A _{s1} 'e göre öbür tarafında, kirişin pozitif momentini karşılamak için alta konulan çekme donatısının toplam alanı
a_{y1}	: Birinci moda ait eşdeğer akma ivmesi
b_{w}	: Kirişin gövde genişliği
C _{R1}	: Birinci moda ait spectral yerdeğiştirme oranı
d	: Kirişin ve kolonun faydalı yüksekliği
d_1	: Birinci (hakim) moda ait modal yerdeğiştirme
$d_1^{(i)}$: (i)'inci itme adımı sonunda elde edilen birinci moda ait modal yerdeğiştirme
$\mathbf{d}_1^{(p)}$: Birinci moda ait modal yerdeğiştirme istemi
d_i	: Binanın i'inci katında azaltılmış deprem yüklerine göre hesaplanan yerdeğiştirme
d_{fi}	: Binanın i'inci katında F _{fi} fiktif yüklerine göre hesaplanan yerdeğiştirme
d_{y1}	: Birinci moda ait eşdeğer akma yerdeğiştirmesi
Ec	: Betonun elastisite modülü
Es	: Donatı çeliğinin elastisite modülü
(EI) _e	: Çatlamış kesite ait etkin eğilme rijitliği
(EI) ₀	: Çatlamamış kesite ait eğilme rijitliği
\mathbf{f}_{cc}	: Sargılı beton dayanımı

f_{cm}	: Mevcut beton dayanımı
\mathbf{f}_{ctm}	: Mevcut betonun çekme dayanımı
\mathbf{f}_{co}	: Sargısız betonun basınç dayanımı
F_{Fi}	: Birinci doğal titreşim periyodunun hesabında i'inci kata etkiyen fiktif yük
Fi	: Eşdeğer Deprem Yükü Yöntemi'nde i'inci kata etkiyen eşdeğer deprem yükü
\mathbf{f}_{sy}	: Donatı çeliğinin akma dayanımı
\mathbf{f}_{su}	: Donatı çeliğinin kopma dayanımı
$f_{yw} \\$: Enine donatının akma dayanımı
g	: Yerçekimi ivmesi (9.81 m/s ²)
G	: Sabit (ölü) yük
Hi	: Binanın i'inci katının temel üstünden itibaren ölçülen yüksekliği (Bodrum katlarında rijit çevre perdelerinin bulunduğu binalarda i'inci katın zemin kat döşemesi üstünden itibaren ölçülenl yüksekliği)
H _N	: Bınanın temel üstünden itibaren ölçülen toplam yüksekliği (Bodrum katlarında rijit çevre perdelerinin bulunduğu binalarda zemin kat döşemesi üstünden itibaren ölçülen toplam vükseklik)
h_i	: Binanın i'inci katının kat yüksekliği
h	: Çalışan doğrultudaki kesit boyutu
Ι	: Bina önem katsayısı
L _p	: Plastik mafsal boyu
M_A	: Artık moment kapasitesi
M_D	: Düşey yüklerden oluşan moment
$M_{\rm E}$: Deprem yükleri altında oluşan moment
M _K	: Mevcut malzeme dayanımlarına gore hesaplanan moment kapasitesi
M_{x1}	: X deprem doğrultusunda doğrusal elastik davranış için
	tanımlanan birinci (hakim) moda ait etkin kütle
mi	: Binanın i'inci katının kütlesi
Ν	: Binanın temel üstünden itibaren toplam katsayısı (Bodrum katlarında rijit çevre perdelerinin bulunduğu binalarda zemin kat döşemesi üstünden itibaren ölçülen toplam katsayısı)
n	: Hareketli yük katılım katsayısı
N _A	: Artık moment kapasitesine karşı gelen eksenel kuvvet

N _D	: Düşey yüklerden oluşan eksenel kuvvet
N _E	: Deprem yükleri altında oluşan eksenel kuvvet
N _K	: Kesit moment kapasitesine karşı gelen eksenel kuvvet
Q	: Hareketli yük
R _a	: Deprem yükü azaltma katsayısı
r	: Etki/kapasite oranı
r _s	: Etki/kapasite oranının sınır değeri
R_{y1}	: Birinci moda ait dayanım azaltma katsayısı
S	: Etriye aralığı
S(T)	: Spektrum Katsayısı
S _{ae1} ⁽¹⁾	: İtme analizinin ilk adımında birinci moda ait elastik spektral ivme
S _{de1} ⁽¹⁾	: İtme analizinin ilk adımında birinci moda ait elastik spektral yerdeğiştirme
S _{di1}	: Birinci moda ait doğrusal elastik olmayan (nonlineer) spektral yerdeğiştirme
Т	: Bina doğal titreşim periyotu
T_1	: Binanın birinci doğal titreşim periyodu
$T_1^{(1)}$: Başlangıçtaki (i=1) itme adımında birinci (deprem
	doğrultusunda hakim) titreşim moduna ait doğal titreşim periyodu
T _A , T _B	: Spektrum karakteristik periyotları
u _{xN1} ⁽ⁱ⁾	: Binanın tepesinde (N'inci katında) x deprem doğrultusunda
	(i)'inci itme adımı sonunda elde edilen birinci moda ait yerdeğiştirme
$u_{xN1}^{(p)}$: Binanın tepesinde (N'inci katında) x deprem doğrultusunda tepe yerdeğiştirme istemi
Vc	: Betonun kesme dayanımına katkısı
V_{dy}	: Kirişin herhangi bir kesitinde düşey yüklerden meydana gelen
	basit kiriş kesme kuvveti
Ve	: Kolon, kiriş ve perdede esas alınan tasarım kesme kuvveti
V_{kol}	: Düğüm noktasının üstünde ve altında hesaplanan kolon kesme
	kuvvetlerinin küçük olanı

Vr	: Kolon, kiriş veya perde kesitinin kesme dayanımı
Vt	: Binaya etkiyen toplam deprem yükü (taban kesme kuvveti)
$V_{x1}{}^{(i)}$: X deprem doğrultusunda (i)'inci itme adımı sonunda elde
	edilen birinci moda ait taban kesme kuvveti
W	: Binanın, hareketli yük katılım katsayısı kullanılarak bulunan
	toplam ağırlığı
ΔF_n	: Binanın N'inci katına (tepesine) etkiyen ek eşdeğer deprem yükü
$(\delta_i)_{max}$: Binanın i'inci katındaki maksimum etkin göreli kat ötelemesi
Ecg	: Etriye içindeki bölgenin endış lifindeki beton basınç birim
	şekildeğiştirmesi
ε _{cu}	: Kesitin en dış lifindeki beton basınç birim şekil değiştirmesi
ϵ_{sy}	: Donatı çeliğinin akma birim şekildeğiştirmesi
ε _{su}	: Donatı çeliğinin kopma birim şekildeğiştirmesi
$\Phi_{\rm p}$: Plastik eğrilik istemi
Φ_{t}	: Toplam eğrilik istemi
$\Phi_{\rm y}$: Eşdeğer akma eğriliği
Φ_{xN1}	: Binanın tepesinde (N'inci katında) x deprem doğrultusunda
	birinci moda ait mod şekli genliği
Γ_{x1}	: X deprem doğrultusunda birinci moda ait katkı çarpanı
η_{bi}	: i'inci katta tanımlanan burulma düzensizliği katsayısı
λ	: Eşdeğer deprem yükü azaltma katsayısı
Θ_p	: Plastik dönme istemi
ρ	: Çekme donatısı oranı
$ ho_b$: Dengeli donatı oranı
ρ̈́	: Basınç donatısı oranı
$\omega_1^{(1)}$: Başlangıçtaki (i=1) itme adımında birinci (deprem
	doğrultusunda hakim) titreşim moduna ait doğal açısal frekans
$\omega_{\rm B}$: İvme spektrumundaki karakteristik periyoda karşı gelen doğal
	açısal frekans

ŞEKİLLER LİSTESİ

Şekil 1.1.	Lineer kapasite yönteminin algoritması	5
Şekil 2.1.	Bina performans düzeyleri	9
Şekil 2.2.	DBYBHY ivme spektrumu	10
Şekil 2.3.	Eşlenik deplasman kuralı	13
Şekil 2.4.	Statik itme eğrisinin elde edilmesi	17
Şekil 2.5.	Statik itme eğrisinin kapasite eğrisine dönüştürülmesi	17
Şekil 2.6.	$T_1^{(1)} \ge T_B$ olması durumunda (nonlineer) spektral	
	yerdeğiştirmenin elde edilişi	18
Şekil 2.7.	$T_1^{(1)} < T_B$ olması durumunda (nonlineer) spektral	
	yerdeğiştirmenin elde edilişi	19
Şekil 3.1.	Taşıyıcı sistemin 3 boyutlu analiz modeli	21
Şekil 3.2.	Bina kat kalıp planı	22
Şekil 3.3.	Performans değerlendirilmesinde izlenecek hesap algoritması	29
Şekil 3.4.	K101 kirişinin uçlarının kesit ve donatı özellikleri	30
Şekil 3.5.	X doğrultusundaki tipik çerçevenin genel görünümü	31
Şekil 3.6.	K101 kirişinin +X deprem yükü ile uyumlu moment ve	
	kapasiteleri	32
Şekil 3.7.	1S1 kolonun kesit, donatı özellikleri ve eğilme momenti	
	kapasiteleri	33
Şekil 3.8.	1S1 kolonuna ait (P-M) etkileşim diyagramı	33
Şekil 3.9.	K101 kirişinin deprem yönü ile uyumlu kesme kontrolüne esas	
	parametreleri	34
Şekil 3.10.	1S1 kolonunun üst ucundaki birleşimin analiz değerleri	35
Şekil 3.11.	1S1 kolonunun üst ucundaki örnek birleşim	36
Şekil 3.12.	Bir eksenli eğilme analizi (pekleşmesiz) için plastik moment -	
	plastik dönme ilişkisi	41

Şekil 3.13.	1S1 kolonun P-M etkileşim diyagramı (pekleşmesiz)	42
Şekil 3.14.	Tipik çerçevenin X doğrultusu (Klasik) itme eğrisi	44
Şekil 3.15.	Tipik çerçevenin X doğrultusu modal kapasite diyagramı	45
Şekil 3.16.	X doğrultusu modal kapasite diyagramı-davranış spektrumu	46
Şekil 3.17.	Pozitif ve negatif moment-eğrilik ilişkileri ve idealizasyonları	48
Şekil 3.18.	Örnek kolona ait her üç hasar durumu için çizilen eksenel	
	kuvvet-toplam eğrilik diyagramı	51
Şekil A.1.	1S2 kolonunun (P-M) etkileşim diyagramı	63
Şekil A.2.	Normal kat kolonlarının donatı düzeni	63
Şekil A.3.	2S1 kolonunun (P-M) etkileşim diyagramı	64
Şekil A.4.	2S2 kolonunun (P-M) etkileşim diyagramı	64
Şekil A.5.	3S1 kolonunun (P-M) etkileşim diyagramı	65
Şekil A.6.	3S2 kolonunun (P-M) etkileşim diyagramı	65
Şekil A.7.	4S1 kolonunun (P-M) etkileşim diyagramı	66
Şekil A.8.	4S2 kolonunun (P-M) etkileşim diyagramı	66
Şekil A.9.	5S1 kolonunun (P-M) etkileşim diyagramı	67
Şekil A.10.	5S2 kolonunun (P-M) etkileşim diyagramı	67
Şekil A.11.	6S1 kolonunun (P-M) etkileşim diyagramı	68
Şekil A.12.	6S2 kolonunun (P-M) etkileşim diyagramı	68
Şekil A.13.	Kirişlerin (+X) deprem yönüyle uyumlu performans grafiği	86
Şekil A.14.	Kirişlerin (-X) deprem yönüyle uyumlu performans grafiği	86
Şekil A.15.	Kolonların (+X) deprem yönüyle uyumlu performans grafiği	87
Şekil A.16.	Kolonların (-X) deprem yönüyle uyumlu performans grafiği	87
Şekil B.1.	1S1 kolonunun üst ucunun eksenel kuvvet-toplam eğrilik	
	diyagramı	97
Şekil B.2.	1S2 kolonunun alt ve üst ucunun eksenel kuvvet-toplam eğrilik	
	diyagramı	97
Şekil B.3.	1S3 kolonunun alt ve üst ucunun eksenel kuvvet-toplam eğrilik	
	diyagramı	98
Şekil B.4.	1S4 kolonunun alt ve üst ucunun eksenel kuvvet-toplam eğrilik	
	diyagramı	98

Şekil B.5.	2S1 kolonunun alt ve üst ucunun eksenel kuvvet-toplam eğrilik	
	diyagramı	99
Şekil B.6.	2S2 kolonunun alt ve üst ucunun eksenel kuvvet-toplam eğrilik	
	diyagramı	99
Şekil B.7.	2S3 kolonunun alt ve üst ucunun eksenel kuvvet-toplam eğrilik	
	diyagramı	100
Şekil B.8.	2S4 kolonunun alt ve üst ucunun eksenel kuvvet-toplam eğrilik	
	diyagramı	100

TABLOLAR LİSTESİ

Tablo 2.1.	Binalar için hedeflenen minimum performans düzeyleri	
	(DBYBHY–2007)	11
Tablo 2.2.	Spektrum karakteristik periyotları (T _A , T _B)	11
Tablo 2.3.	Etkin yer ivme katsayısı (A ₀)	11
Tablo 3.1.	Bina kat ağırlık ve kat kütleleri	24
Tablo 3.2.	X doğrultusunda periyot hesabı için birim yükleme	25
Tablo 3.3.	Y doğrultusunda periyot hesabı için birim yükleme	25
Tablo 3.4.	X doğrultusu için taban kesme kuvvetinin katlara göre dağılımı	27
Tablo 3.5.	Y doğrultusu için taban kesme kuvvetinin katlara göre dağılımı	27
Tablo 3.6.	X doğrultusu göreli kat ötelemesi oranları	28
Tablo 3.7.	Y doğrultusu göreli kat ötelemesi oranları	28
Tablo 3.8.	K101 kirişinin uçlarının eğilme momenti kapasiteleri	30
Tablo 4.1.	Doğrusal elastik yöntemde can güvenliği performans düzeyini	
	sağlamayan taşıyıcı sistem elemanlarının durumu	55
Tablo 4.2.	Doğrusal elastik olmayan yöntemde hemen kullanım ve can	
	güvenliği performans düzeyini sağlamayan taşıyıcı sistem	
	elemanlarının durumu	56
Tablo A.1.	Ele alınan çerçevedeki kirişlerin donatı düzeni	61
Tablo A.2.	Kirişlerin her iki deprem yönündeki moment ve artık moment	
	kapasiteleri (kNm)	62
Tablo A.3.	Kirişlerin her iki deprem yönüyle uyumlu kesme kuvveti	69
	kapasiteleri	
Tablo A.4.	Kolonların (+X) deprem yönüyle uyumlu kesme kuvveti	
	kapasiteleri	70

Tablo A.5.	Kolonların (-X) deprem yönüyle uyumlu kesme kuvveti
	kapasiteleri
Tablo A.6.	Birleşim bölgelerinin (+X) deprem yönüyle uyumlu kesme
	kuvveti kapasiteleri
Tablo A.7.	Birleşim bölgelerinin (-X) deprem yönüyle uyumlu kesme
	kuvveti kapasiteleri
Tablo A.8.	Kirişlerin i ve j uçlarının (+X) deprem yönüyle uyumlu
	kapasite sınır oranları
Tablo A.9.	Kirişlerin i ve j uçlarının (-X) deprem yönüyle uyumlu
	kapasite sınır oranları
Tablo A.10.	Kolonların (+X) deprem yönüyle uyumlu kapasite sınır
	oranları
Tablo A.11.	Kolonların (-X) deprem yönüyle uyumlu kapasite sınır oranları
Tablo A.12.	Kirişlerin (i) ucunun (+X) deprem yönü ile uyumlu kapasite
	oranları
Tablo A.13.	Kirişlerin (j) ucunun (+X) deprem yönü ile uyumlu kapasite
	oranları
Tablo A.14.	Kirişlerin (i) ucunun (-X) deprem yönü ile uyumlu kapasite
	oranları
Tablo A.15.	Kirişlerin (j) ucunun (-X) deprem yönü ile uyumlu kapasite
	oranları
Tablo A.16.	Kolonların üst ucunun (+X) deprem yönü ile uyumlu kapasite
	oranları
Tablo A.17.	Kolonların alt ucunun (+X) deprem yönü ile uyumlu kapasite
	oranları
Tablo A.18.	Kolonların üst ucunun (-X) deprem yönü ile uyumlu kapasite
	oranları
Tablo A.19.	Kolonların alt ucunun (-X) deprem yönü ile uyumlu kapasite
	oranlari
Tablo B 1	Kirislerin kesit parametreleri
Tablo B 2	Kolonların keşit parametreleri
Tablo B 3	Kirislerin kesme kuvveti kanasiteleri
Tablo B 4	Kolonların kesme kuyveti kapasiteleri
1 uoio D.T.	resonanti Rosino Ravion Rupusitoren

Tablo B.5.	Birleşim bölgelerinin (+X) deprem yönüyle uyumlu kesme	
	kuvveti kapasiteleri	94
Tablo B.6.	Birleşim bölgelerinin (-X) deprem yönüyle uyumlu kesme	
	kuvveti kapasiteleri	95
Tablo B.7.	Kirişlerin performans parametreleri	96

ÖZET

Anahtar kelimeler: Doğrusal Elastik Yöntem, Doğrusal Elastik Olmayan Yöntem, Artımsal İtme Analizi, Performans Değerlendirmesi

Yapıların deprem performanslarının değerlendirilmesi için son yıllarda geliştirilmiş bulunan elastik yöntemler ve statik itme analizine dayalı basitleştirilmiş nonlineer analiz yöntemleri, mühendislik uygulamalarında giderek daha yaygın olarak kullanılmaktadır.

Bu çalışmanın amacı, yapının dayanım ve deformasyon (şekildeğiştirme) kapasitelerini belirleyerek ilgili performans düzeylerindeki deprem istemleri ile karşılaştırmak suretiyle, yapının performansını değerlendirmektir.

Bu çalışmada kapasite kontrollü lineer çözümler ve deplasman kontrollü lineer olmayan çözümler yapılmıştır. Bunun için Türk deprem yönetmeliğindeki doğrusal elastik yöntem ve doğrusal elastik olmayan yöntemler kullanılmıştır. Bu yöntemlerin anlaşılabilmesi için zemin+5 katlı mevcut bir yapı üzerinde performans değerlendirilmesi yapılmıştır.

PERFORMANCE EVALUATION OF AN EXISTING BUILDING ACCORDING TO TURKISH EARTHQUAKE CODE 2007

SUMMARY

Keywords: Linear Elastic Method, Nonlinear Method, Pushover Analysis, Performance Evaluation

In recent years, for performance evaluation of the existing buildings under the seismic loads, linear methods and the Nonlinear Static Procedure (NSP) based on pushover analysis have become extremely popular in structural earthquake engineering community.

This study focuses on the seismic performance evaluation of the structures. This aim can be achieved by introducing linear and nonlinear methods for designing, analyzing and checking the design of structures so that they meet the selected performance objectives. Analysis procedures are capable of predicting the demandsforces deformations.

In this study, have been done to determine the capacity demand imposed on a building expected to elastically and displacement to deform inelastically. For this, was used elastic and inelastic method for Turkish earthquake code. To illustrate these methods, have been done evaluation of the existing building on a simple ground+5 stories.

BÖLÜM 1. GİRİŞ

Performans, depreme karşı dayanıklı yapıların tasarımında yeni bir kavram değildir. Geleneksel deprem yönetmeliklerinde benimsenen, "hafif şiddetteki depremlerde binalardaki yapısal ve yapısal olmayan sistem elemanlarının herhangi bir hasar görmemesi, orta şiddetteki depremlerde yapısal ve yapısal olmayan elemanlarda oluşabilecek hasarın onarılabilir düzeyde kalması, şiddetli depremlerde ise can kaybını önlemek amacı ile binaların kısmen veya tamamen göçmesinin önlenmesi" ilkesi de belirli bir performans düzeyini kabul eder. Fakat performansa dayalı tasarımda, yapılar için hedeflenen performans düzeyleri, Hemen Kullanım (HK), Can Güvenliği (CG), Göçmenin Önlenmesi (GÖ) gibi çeşitlilik göstermektedir. Elastik analiz, genel olarak yapının elastik kapasitesi ve ilk akmanın nerede oluşabileceği konusunda yeterli bilgi verebilir. Bu nedenle Hemen Kullanım (HK) performans düzeyi için yeterli sayılabilir. Fakat bu yöntemle, göçme mekanizmasını ve plastik kesitlerin oluşumu sürecinde kuvvetlerin yeniden dağılımını belirlemek imkânsızdır. Bu nedenle Can Güvenliği (CG), Göçmenin Önlenmesi (GÖ) performans düzeyleri için elastik ötesi davranışı içeren hesap yöntemlerine ihtiyaç vardır [20].

Deprem etkisine maruz kalan bir yapının performansının değerlendirilmesinde ve deprem isteminin (talep) belirlenmesinde en etkili yol doğrusal elastik olmayan (nonlineer) zaman tanım alanında hesap yöntemidir. Fakat söz konusu hesap yönteminde, taşıyıcı sistem elemanlarının tekrarlı yükler altındaki davranışını tanımlayan iç kuvvet-şekildeğiştirme bağıntılarının belirlenmesi ve deprem hesabında kullanılacak uygun ivme kayıtlarının seçilmesi gibi sorunlar vardır. Ve de yöntemin kullanılmasının çok zaman alıcı ve karmaşık olması nedeniyle, alternatif yöntem arayışlarına gidilmiştir [20].

Hâlihazırda yürürlükte bulunan deprem yönetmelikleri, elemanların dayanım kapasitelerinin hesaplanmasını amaçlayan kuvvete dayalı hesap yöntemlerini esas almaktadırlar. Bu nedenle, ilk plastik kesitin oluşumunu takip eden süreçte yapıda değişen dinamik karakteristikler göz önüne alınamamaktadır.

Günümüzde, deprem etkisindeki yapılarda yapısal hasarın, öngörülen yapı elemanlarının şekildeğiştirme kapasitelerinin aşılması ile gerçekleştiği bilinmektedir.

1.1. Konu İle İlgili Çalışmalar

Deprem mühendisliğinde "deplasmana göre tasarım" veya "şekildeğiştirmeye göre tasarım" olarakta isimlendirilen "performansa dayalı tasarım" kavramı 1960 li yıllara kadar uzanmaktadır. Ancak, literatürde çok serbestlik dereceli (ÇSD) bir yapı sisteminin elastik ötesi dinamik davranışım, tek serbestlik dereceli (TSD) yapı davranışı ile ilişkilendiren ilk çalışma (Substitute Method -Yerine Koyma Metodu) Gülkan ve Sözen tarafından yapılmıştır [2]. Günümüzde ortaya konan yöntemler, Gülkan ve Sözen' in bu çalışması esas alınarak geliştirilmiştir. Gülkan ve Sözen'in bu çalışması esas alınarak geliştirilmiştir. Gülkan ve Sözen'in bu çalışması esas alınarak geliştirilmiştir. Gülkan ve Sözen'in bu çalışması esas alınarak geliştirilmiştir. Yerine Koyma Yöntemi (substitute structure method) adıyla verilmiştir. Yerine Koyma Yöntemi, betonarme yapılar için, tasarım spektrumu ile verilen deprem hareketine ait tasarım kuvvetlerinin belirlenmesinde kullanılan bir yöntemdir. Bu yöntem, günümüzde, Priestley [4], Priestley ve Kowalsky [5] ve Priestley [6] tarafından "Direkt Deplasmana Dayalı Tasarım" yönteminin geliştirilmesinde faydalanılmıştır [20].

1981 yılında, Saiidi ve Sözen [7] tarafından önerilen Q-model'de ilk kez, yapı elemanlarının moment eğrilik ilişkileri kullanılmıştır. Burada, TSD sistemin kuvvet yerdeğiştirme karakteristiklerini elde etmek amacıyla moment-eğrilik eğrisinin iki doğrulu olarak idealleştirilmesi yapılmıştır. Daha sonra, Fajfar ve Fischinger [8], Q-model'den esinlenerek geliştirdikleri "N2 Metod"unu önermişlerdir [20].

Freeman [9] tebliğinde, elastik ötesi sismik tasarım hesabı için elde edilen yanal yükyapı tepe noktası yerdeğiştirmesi diyagramının (statik itme eğrisi) ilk olarak 1961 yılında John Blume, Nathan Newmark ve Leo Corning tarafından ortaya konulduğunu bildirmiştir. 1970'li yılların başında bu teknik, Puget Sound Naval Shipyard'da uygulanan pilot sismik risk projesi için geliştirilen "Hızlı Değerlendirme Yöntemi" nin bir enstrümanı olarak "Kapasite Spektrum Metodu (KSM)" adını almıştır. KSM, verilen bir deprem etkisi altında sistemde oluşan maksimum yerdeğiştirmelere ilişkin deprem isteminin belirlenmesi, daha sonra bu istem değerlerinin, seçilen performans düzeyleri için tanımlanan şekildeğiştirme kapasiteleri ile karşılaştırılması ve böylece yapısal performansın değerlendirilmesidir [20].

KSM'nın kullanıldığı Modal İtme Analizi tekniğinde işlem adımları aşağıda verilmiştir: (1) Yapısal modelin oluşturulması, mod şekillerinin ve serbest titreşim frekanslarının hesaplanması; (2) gözönüne alınan ilgili mod şekli ile orantılı yük dağılımının belirlenmesi; (3) gözönüne alınan ilgili mod şekilleri için bağımsız olarak statik itme analizinin yapılması; (4) herbir statik itme eğrisi için kapasite eğrilerinin oluşturulması; (5) kapasite eğrisinin koordinatlarının modal sözde-ivme (pseudo-acceleration) koordinatlarına dönüştürülmesi; (6) her bir mod için modal deprem istemlerinin hesaplanması; (7) son aşama ise, modal istemlerinin uygun bir mod birleştirme kuralı ile birleştirilerek deprem istemleri elde edilmesidir. Yüksek mod etkisinin dikkate alındığı çalışmalardan biri de Moghadam [10] tarafından yapılmıştır. Moghadam yüksek mod etkilerini "Statik İtme Sonuçlarının Kombinasyonu" (Pushover Results Combination–PRC) adını verdiği bir yöntemle birleştirerek sismik davranışının maksimumlarını belirlemeye çalışmıştır [20].

Yapıların elastik ötesi davranışında, plastik mafsalların oluşumu ile birlikte, sistemde önemli ölçüde rijitlik kaybının meydana gelmesi kaçınılmazdır. Bu bağlamda, uyuşumlu (adaptive) veya her adımda değiştirilen dağılımlara göre sisteme etki ettirilen yatay yüklerin kullanıldığı, daha güvenilir yöntemler pek çok araştırmacı tarafından önerilmiştir. Uyuşumlu yöntemlerin kullanılması, ilk olarak, Bracci vd. [11] tarafından KSM'nun üzerine bina edilerek gerçekleştirilmiştir [20].

Gupta and Kunnath [12] ise yük dağılımlarının yapının dinamik karakteristiklerine bağlı olarak sürekli değiştiği, herbir mod için yük dağılımlarının hesaplanıp uygulandığı, en sonunda da yapıya gelen toplam taban kesme kuvvetinin Karelerin Toplamının Kare Kökü (SRSS) kuralı ile elde edildiği bir yöntem önermişlerdir [20].

Diğer bir uyuşumlu yük dağılımı yöntemi Elnashai [13] tarafından ortaya konmuştur. Elnashai, pek çok araştırmacı tarafından geliştirilen ve önerilen özellikleri bu çalışmasında toplamıştır. Tek adımda statik itme analizi algoritmasında Elnashai, tamamen uyuşumlu, çok-modlu, yapısal sistemin anlık direngenliğini ve anlık serbest titreşim periyodunu gözönüne alan, yanal yük dağılımının sürekli değiştiği bir yöntem geliştirmiştir. Papanikolaou ve Elnashai [14; 15] ise, uyuşumlu statik itme analizlerini daha sağlam ve sağlıklı temellere dayandıran bir prosedür önermişlerdir. Yöntemde plastik mafsal hipotezi yerine fiber eleman modeli kullanılmıştır [20].

Konu ile ilgili en önemli çalışmalardan biri Aydınoğlu [16] tarafından gerçekleştirilmiştir. Aydınoğlu'nun Artımsal Spektrum Analizi (ARSA) Yöntemi'nin esası, modal kapasite diyagramları adı verilen ve modal histeresis eğrileri'nin iskelet eğrileri olarak tanımlanan diyagramların yaklaşık olarak elde edilmesine dayanmaktadır [20].

Yukarıdaki çalışmalarda bahsedilen nonlineer performans yöntemlerin dışında elastik performans belirleme yöntemlerinde de çalışmalar mevcuttur. Ülkemizde ileride de bahsedileceği üzere yönetmeliğimize girmiş olan Sucuoğlu [17] tarafından geliştirilen lineer kapasite yöntemi mevcuttur. Aşağıdaki şekilde yöntemin algoritması sunulmuştur (Şekil 1.1).

Şekil 1.1. Lineer kapasite yönteminin algoritması

1.2. Çalışmanın Amacı ve Kapsamı

Deprem mühendisliği pratiğinde, mevcut yapıların deprem performanslarının belirlenmesinde ve yeni yapıların deprem tasarımında şekildeğiştirmeye göre tasarım ilkesinin benimsenmesi ile çok önemli bir gelişme gerçekleşmiştir. Bu amaçla ülkemizde 2007 yılında yürürlüğe giren deprem yönetmeliğinin içeriği ile bu ihtiyacı gidermesi hedeflenmiştir.

Bu çalışmada, yönetmeliğimizde yer alan bina performans yöntemlerinin temel prensiplerinden bahsedilmiş ve kullanılan kavramlar üzerinde durulmuştur.

Dört Bölüm'den oluşan bu çalışmanın;

İkinci Bölümü'nde performansa dayalı tasarım ve yönetmeliğimizde yer alan performans yöntemleri üzerinde durulmuştur.

Üçüncü Bölüm'de ise mevcut bir yapının SAP2000 ve SeismoStruct [18] programlarından yararlanılarak deprem yönetmeliğimizin [1] 7. Bölüm'deki performans yöntemlerine göre değerlendirilmesine yönelik sayısal uygulamaya yer verilmiştir.

Dördüncü bölümde, üçüncü bölümde yapılan sayısal çözümlemelerle varılan sonuçlara ve yorumlara yer verilmiştir.

BÖLÜM 2. PERFORMANSA DAYALI DEĞERLENDİRME

2.1. Giriş

Performansa dayalı deprem mühendisliğinde amaç, sismik performansları belirlenebilen güvenli yapıların inşa edilmesini sağlamaktır. Performans kavramı, deprem mühendisliğinde yeni gelişen bir kavramdır. Öncelikle mevcut binaların taşıyıcı sistem elemanlarının kapasitelerinin hesaplanması ve deprem dayanımlarının değerlendirilmesi için geliştirilmiştir. Ancak, zaman geçtikçe özellikle Priestley'in [5] başını çektiği bir grup bilim adamı tarafından ilgili yöntemlerin yeni yapıların tasarımında da kullanılabileceği gösterilmiştir.

Gerçekte tüm mühendislik boyutlandırma problemlerinin performansa dayalı olduğu söylenebilir. Bilindiği üzere, tüm betonarme taşıyıcı sistemlerin boyutlandırılmasında iki performans seviyesi esas alınır: Kullanma sınır durumu ve taşıma gücü sınır durumu. Birinci performans seviyesinde kullanma durumundaki servis yükleri altında taşıyıcı sistemdeki hasarın kullanıcıları rahatsız etmeyecek şekilde kalması ve sistem elemanlarında aşırı yer değiştirmelerin ortaya çıkmaması istenir. İkinci performans seviyesinde ise taşıyıcı sistemde beklenen arttırılmış yük değerleri altında, sistemde güç tükenilmesine varılmadan kabul edilebilir bir güvenliğin olması beklenir.

Deprem mühendisliğinde performansa dayalı tasarım yöntemi, deprem etkisi altında yapıdan beklenen performans seviyesinin belirlenmesi için kullanılır. Performans seviyesi, depremden sonra yapıda meydana gelecek hasar seviyesi ile ölçülür. Performansa dayalı tasarımda belirli bir deprem etkisinde yapıda birden fazla performans (hasar) seviyesinin ortaya çıkması öngörülür.

Çalışmanın bu bölümünde, performans kriterleri ve tanımları üzerinde durulmuş, depreme dayanıklı yapı tasarımında, tasarıma esas yer hareketinin belirlenmesi ve bu hareketi etkileyen faktörler irdelenmiştir. Ve de ülkemizde 2007 Mart ayında yürürlüğe giren (DBYBHY–2007) yönetmeliğin 7. Bölümünde yer alan performans yöntemleri incelenmiştir.

2.2. Performans Amaçları

Performans kriteri, hasar durumu ve sismik tehlike düzeyi olmak üzere, iki temel öğeye dayanmaktadır. Sismik performans, belirli bir deprem etkisi altında kabul edilebilir maksimum hasar durumlarının belirlenmesi şeklinde de tanımlanabilir. Bir performans amacı çeşitli deprem durumlarını kapsayabilir ki bu durumda "Çoklu Performans Amacı" diye adlandırılır. Yapının sadece elastik davranışını dikkate alıp projelendirme olanağı veren geleneksel depreme dayanıklı yapı yönetmelikleri üzerinde son yıllarda pek çok ülkede önemli değişikliklere gidilmiştir.

2.2.1. Deprem performans tanımları

Binaların deprem performansı, uygulanan deprem etkisi altında yapıda oluşması beklenen hasarların durumu ile ilişkilidir ve dört farklı hasar durumu için tanımlanmıştır. Gerçekte, deprem etkilerine maruz kalmış binaların hasar durumlarının belirlenmesi için de aynı performans tanımları kullanılmaktadır.

Hemen Kullanım (Hasarsızlık) Durumu (Fully Operational), HK: Uygulanan deprem etkisi altında yapısal elemanlarda hasar oluşmamıştır ve dayanım özelliklerini korumaktadırlar. Az sayıda elemanda akma sınırı aşılmış olabilir. Yapısal olmayan elemanlarda çatlamalar görülebilir, ancak bunlar onarılabilir düzeylerdedir. Yapıda kalıcı ötelenmeler oluşmamıştır. Can Güvenliği (Orta Hasar) Durumu (Life Safety), CG: Uygulanan deprem etkisi altında yapısal elemanların bir kısmında hasar görülür, ancak bu elemanlar yatay rijitliklerinin ve dayanımlarının önemli bölümünü korumaktadırlar. Düşey elemanlar düşey yükleri taşımada yeterlidir. Yapısal olmayan elemanlar hasarlı olmakla birlikte dolgu duvarlar yıkılmamıştır. Yapıda az miktarda kalıcı ötelenmeler oluşabilir, ancak gözle fark edilebilir değerlerde değildir.

Göçmenin Önlenmesi (Ağır Hasar) Durumu (Near Collapse), GÖ: Uygulanan deprem etkisi altında yapısal elemanların önemli kısmında hasar görülür. Bu elemanların bazıları yatay rijitliklerinin ve dayanımlarının önemli bölümünü yitirmişlerdir. Düşey elemanlar düşey yükleri taşımada yeterlidir, ancak bazıları eksenel kapasitelerine ulaşmıştır. Yapısal olmayan elemanlar hasarlıdır, dolgu duvarların bir bölümü yıkılmıştır. Yapıda kalıcı ötelenmeler oluşmuştur.

Göçme Durumu (Collapse): Yapı uygulanan deprem etkisi altında göçme durumuna ulaşır. Düşey elemanların bir bölümü göçmüştür. Göçmeyenler düşey yükleri taşıyabilmektedir, ancak rijitlikleri ve dayanımları çok azalmıştır. Yapısal olmayan elemanların büyük çoğunluğu göçmüştür. Yapıda belirgin kalıcı ötelenmeler oluşmuştur. Yapı tamamen göçmüştür veya yıkılmanın eşiğindedir ve daha sonra meydana gelebilecek hafif şiddette bir yer hareketi altında bile yıkılma olasılığı yüksektir.

Şekil 2.1. Bina performans düzeyleri [1]

2.3. Binalar İçin Hedeflenen Performans Düzeyleri

Türk Deprem Yönetmeliği'nde tasarım ivme spektrumu (Şekil 2.2) 50 yılda aşılma olasılığı %10 olan deprem etkisini esas almaktadır. 50 yılda aşılma olasılığı %50 olan depremin ivme spektrumu DBYBHY de tanımlanan spektral ivmelerin yarısı, 50 yılda aşılma olasılığı %2 olan depremin ivme spektrumu ise DBYBHY de tanımlanan spektral ivmelerin 1.5 katıdır [1].

Şekil 2.2. DBYBHY ivme spektrumu [1]

Mevcut veya güçlendirilecek binaların deprem güvenliğinin belirlenmesinde esas alınacak deprem etkileri ve hedeflenecek performans düzeyleri Tablo 2.1'de verilmiştir.

Binanın Kullanım Amacı	Depremin Aşılma Olasılığı		
	50 yılda	50 yılda	50 yılda
ve 1 uru	%50	%10	%2
Deprem Sonrası Kullanımı Gereken Binalar: Hastaneler, sağlık			
tesisleri, itfaiye binaları, haberleşme ve enerji tesisleri, ulaşım	_	нк	CG
istasyonları, vilayet, kaymakamlık ve belediye yönetim binaları,			~~
afet yönetim merkezleri, vb.			
İnsanların Uzun Süreli ve Yoğun Olarak Bulunduğu Binalar:			
Okullar, yatakhaneler, yurtlar, pansiyonlar, askeri kışlalar,	-	HK	CG
cezaevleri, müzeler, vb.			
İnsanların Kısa Süreli ve Yoğun Olarak Bulunduğu Binalar:	нк	CC	
Sinema, tiyatro, konser salonları, kültür merkezleri, spor tesisleri	шх	60	-
Tehlikeli Madde İçeren Binalar: Toksik, parlayıcı ve patlayıcı		ши	сö
özellikleri olan maddelerin bulunduğu ve depolandığı binalar	-	пк	GO
Diğer Binalar: Yukarıdaki tanımlara girmeyen diğer binalar		CC	
(konutlar, işyerleri, oteller, turistik tesisler, endüstri yapıları, vb.)	_	CG	-

Tablo 2.1. Binalar için hedeflenen minimum performans düzeyleri (DBYBHY-2007) [1]

2.4. Spektrum Karakteristik Periyotları ve Etkin Yer İvme Katsayısı

DBYBHY–2007 yönetmeliğinde tasarıma esas yer hareketinin belirlenmesinde kullanılan, ivme spektrumlarının T_A ve T_B karakteristik değerlerinin zemin sınıflarına göre dağılımı Tablo 2.2'de, deprem bölgelerine göre sınıflandırılan etkin yer ivmesi katsayıları Tablo 2.3'de verilmiştir.

Tablo 2.2. Spektrum karakteristik periyotları (T_A, T_B)

V 17 10 0	$T_{\rm A}$	TB
Yerel Zemin Sinifi	(saniye)	(saniye)
Z1	0.10	0.30
Z2	0.15	0.40
Z3	0.15	0.60
Z4	0.20	0.90

Tablo 2.3. Etkin yer ivme katsayısı (A_0)

Deprem Bölgesi	Ao
1	0.40
2	0.30
3	0.20
4	0.10

2.5. Binalar İçin Deprem Performansı Hesaplama Yöntemleri

Binaların deprem performansı, uygulanan deprem etkisi altında yapıda oluşması beklenen hasarların durumu ile ilişkilidir ve dört farklı hasar durumu için tanımlanmıştır (Bkz Bölüm 2.2.1). Gerçekte deprem etkilerine maruz kalmış binaların hasar durumlarının belirlenmesi için de aynı performans tanımları kullanılabilir.

Seçilen performans seviyesi esas alınarak taşıyıcı sistemde kuvvet dağılımının ve yer değiştirmenin yapılması için gereken işlemlerin tümü bu bölümde yer almaktadır. Binalar için deprem performansı hesaplama yöntemleri, doğrusal elastik yöntemler (lineer elastik) doğrusal olmayan yöntemler (nonlineer, inelastik) gibi analiz metotları kullanılmaktadır.

Doğrusal elastik yöntemlerde; yapı davranışı doğrusal elastik kabul edilerek çözüm yapılır. Bulunacak etkiler binanın doğrusal elastik davranması durumunda oldukça gerçekçi kabul edilir. Ancak, taşıyıcı sistemde akmanın olması durumunda iç kuvvetler daha düşük ortaya çıkar. Aradaki fark davranış değiştirme katsayısı ile giderilir.

Doğrusal olmayan elastik yöntemlerde ise amaç verilen bir deprem etkisi altında sünek eğilme davranışına ait plastik şekildeğiştirmelerin ve gevrek davranış modlarındaki iç kuvvetlerin hesaplanmasıdır.

Deprem performansı hesaplama yöntemleri:

- 1. Doğrusal Elastik Yöntemler
 - Eşdeğer Deprem Yükü Yöntemi
 - Mod Birleştirme Yöntemi
 - Zaman Tanım Alanında Hesap Yöntemi

- 2. Doğrusal Olmayan (Nonlineer) Yöntemler
 - Artımsal Eşdeğer Deprem Yükü Yöntemi (Statik İtme-Pushover Analizi)
 - Artımsal Mod Birleştirme Yöntemi
 - Zaman Tanım Alanında Hesap Yöntemi

2.6. Doğrusal Elastik Hesap Yöntemi

Yönetmelikte yer alan doğrusal elastik hesap yönteminde özet olarak, yapının tamamen elastik davrandığı kabul edilir ve sistem tamamen elastik çözülür. Ardından da eleman bazında kapasiteler hesaplanır. Son olarak eşlenik deplasman kuralına benzer şekilde kapasite oranları elde edilir. Bu kapasite oranları ilgili kesitlere ait kapasite sınır oranları ile kıyaslanarak elemanın hasar durumu hakkında fikir edinilmiş olur.

Şekil 2.3. Eşlenik deplasman kuralı [21]

Bu bölümde deprem yönetmeliğinde Bölüm 7.5'te yer alan bina deprem performansının belirlenmesinde kullanılan doğrusal elastik hesap yöntemi üzerinde durulacaktır.

Yönetmelikte yöntemin "Eşdeğer Deprem Yükü Yöntemi" kullanılarak uygulanması için, ele alınan binanın toplam kat adedinin 8'i aşmaması ve bodrum üzerinde toplam yüksekliğinin 25 metreyi geçmemesi söylenmiştir. Ayrıca ele alınan binada ek dışmerkezlik göz önüne alınmaksızın hesaplanan burulma düzensizliği katsayısı η_{bi} < 1.4 sınır şartlarını sağlaması gerektiği söylenmiştir. Aksi takdirde mod birleştirme yönteminin uygulanması belirtilmiştir.

Yöntemde yapının tamamen elastik çözülmesini sağlamak için deprem hesabında kullanılan deprem yükü azaltma katsayısı $R_a = 1$ alınması öngörülmüştür.

Bu aşamada yönetmelikte yer alan yöntemin analitik işlemleri algoritma halinde sunulmuştur.

- Deprem hesabı yönetmelik 7.4'te belirtilen esaslara göre yapılacaktır.
- Elemanların artık moment kapasiteleri bulunacaktır (Yönetmelik 7.5.2.1.a).
- Yönetmelik 7.5.2.2.a'daki esaslara göre taşıyıcı sistem elemanlarının sünek sayılabilmeleri için, bu elemanların kritik kesitlerindeki eğilme momenti kapasiteleri ile uyumlu olarak V_e kesme kuvvetleri hesaplanacak, daha sonra bu değerler TS 500'e göre hesaplanan V_r kesme kapasiteleri ile kıyaslanacaktır.
- Yönetmelik 7.5.2.3'e göre taşıyıcı sistem eleman kesitlerinin etki/kapasite oranı, deprem etkisi altında $R_a = 1$ alınarak hesaplanan kesit momentinin kesit artık moment kapasitesine bölünmesi ile elde edilecektir. Etki/kapasite oranının hesabında, uygulanan deprem kuvvetinin yönü dikkate alınacaktır.
- Hesaplanan bu etki/kapasite oranları yönetmelik 7.5.2.5 Tablo7.2-7-5'te verilen sınır değerler ile karşılaştırılarak elemanların hangi hasar bölgesinde olduğuna karar verilecektir.
- Yönetmelik 7.5.2.6' daki esaslara göre taşıyıcı sistemdeki kolon-kiriş birleşimlerinin kesme kapasiteleri deprem yönü ile uyumlu olarak kontrol edilecektir.
- En son olarak doğrusal elastik yöntemle hesaplanan göreli kat ötelemesi oranları yönetmelik 7.5.3 Tablo 7.6'daki değerlerle karşılaştırılacaktır.

2.7. Doğrusal Elastik Olmayan Hesap Yöntemi

Bu bölümde deprem yönetmeliği Bölüm 7.6'da yer alan depremde bina performansının doğrusal elastik olmayan hesap yöntemiyle belirlenmesi üzerinde durulacaktır.

Bu yöntemde özet olarak taşıyıcı sistem elemanlarının doğrusal olmayan davranışı doğrudan çözümlemeye katılarak modelleme yapılır. Sistemin artan yükler altında, öngörülen hedef yerdeğiştirme (performans noktası), tasarım depreminde ortaya çıkması beklenen yerdeğiştirme olarak kabul edilir. Son olarak sistem hedef yer değiştirmeye eriştiğinde elde edilen istem büyüklükleri ile ilgili yönetmeliğimizde tanımlanmış kapasiteler karşılaştırılarak, kesit ve bina düzeyinde yapısal performans değerlendirmesi yapılır.

Yönetmeliğimizde yer alan doğrusal olmayan elastik yöntemde kullanılan analitik işlemler aşağıda algoritma halinde verilmiştir.

- Öncelikle yönetmelik 7.6.2'de verilen doğrusal elastik olmayan analiz yöntemlerinden hangisinin kullanılacağına dair tespit yapılmalıdır. Bu sebeple artımsal itme analizinin artımsal eşdeğer deprem yükü yöntemi kullanılarak yapılabilmesi için yönetmelik 7.6.5.2'deki şartları sağlaması gerekmektedir. Bu şartlar binanın kat sayısının bodrum hariç 8'den fazla olmaması ve herhangi bir katta ek dışmerkezlik gözönüne alınmaksızın doğrusal elastik davranışa göre hesaplanan burulma düzensizliği katsayısının $\eta_{bi} < 1.4$ koşulunu sağlaması gerekliliği ve ayrıca gözönüne alınan deprem doğrultusunda, doğrusal elastik davranış esas alınarak hesaplanan birinci (hakim) titreşim moduna ait etkin kütlenin toplam bina kütlesine (rijit perdelerle çevrelenen bodrum katlarının kütleleri hariç) oranının en az 0.70 olması zorunluluğudur.
- İkinci olarak artımsal itme analizinden önce, kütlelerle uyumlu düşey yüklerin (G+0.3Q) gözüne alındığı bir doğrusal olmayan statik analiz yapılacaktır. Bu analizin sonuçları, artımsal itme analizinin başlangıç koşulları olarak dikkate alınacaktır.

- Artımsal itme analizinin artımsal eşdeğer deprem yükü yöntemi ile yapılması durumunda, koordinatları "modal yer değiştirme-modal ivme" olarak tanımlanan birinci (hakim) moda ait "modal kapasite diyagramı" elde edilecektir. Bu diyagram ile birlikte, yönetmelikte tanımlanan elastik davranış spektrumu ve farklı aşılma olasılıkları için bu spektrum üzerinde yönetmelik bölüm 7.8'de yapılan değişiklikler gözönüne alınarak, birinci (hakim) moda ait modal yerdeğiştirme istemi belirlenecektir. Son aşamada, modal yerdeğiştirme istemine karşı gelen yerdeğiştirme, plastik şekildeğiştirme (plastik dönmeler) ve iç kuvvet istemleri hesaplanacaktır.
- Plastikleşen (sünek) kesitlerde hesaplanmış bulunan plastik dönme istemlerinden plastik eğrilik istemleri ve yönetmelik bölüm 7.6.8'e göre toplam eğrilik istemleri elde edilecektir. Daha sonra bunlara bağlı olarak betonarme kesitlerde betonda ve donatı çeliğinde meydana gelen birim şekildeğiştirme istemleri hesaplanacaktır. Bu istem değerleri, kesit düzeyinde çeşitli hasar sınırları için yönetmelik bölüm 7.6.9'da tanımlanan ilgili birim şekildeğiştirme kapasiteleri ile karşılaştırılarak kesit düzeyinde sünek davranışa ilişkin performans değerlendirmesi yapılacaktır.

2.7.1. Modal kapasite diyagramının elde edilmesi

Bu bölümde yönetmelikte adı geçen modal kapasite diyagramının elde edilmesinde kullanılan kavramlardan ve diyagramın elde edilişinden söz edilecektir.

Modal kapasite diyagramı elde edilişindeki ilk işlem yönetmelik 7.6.5.4'te de adı geçen, artımsal itme analizinden elde edilen koordinatları "tepe yerdeğiştirmesi-taban kesme kuvveti" olan itme eğrisi (pushover) eğrisi (Şekil 2.5) çizilecektir. Bu eğri bir yapının sıfır konumundan kararsız hale gelinceye kadar geçen süre içerisinde yapıya arttırılarak uygulanan yük etkisi altında taban kesme kuvvetlerine karşılık gelen çatı deplasman değerlerinin bir etkileşim diyagramı üzerinde kesişen noktaların geometrik olarak birleştirilmesiyle elde edilen diyagramlardır.

Şekil 2.4. Statik itme eğrisinin elde edilmesi [22]

İkinci aşamada yönetmelikteki denklem 7.1-7.2-7.3'deki formüllerden yararlanılarak itme eğrisine koordinat dönüşümü yapılarak, koordinatları "modal yer değiştirmemodal ivme" olan modal kapasite diyagramı elde edilir.

Şekil 2.5. Statik itme eğrisinin kapasite eğrisine dönüştürülmesi [22]

2.7.2. Hedef tepe yer değiştirmenin bulunması

Doğrusal elastik olmayan yöntemin en önemli adımı olan hedef tepe yerdeğiştirmenin (performans noktası) bulunma aşamaları yönetmeliğimizde bilgilendirme Eki 7C'de verilmiştir. Burada çözüm aşmasındaki en önemli kriter olarak yapının birinci (hakim) doğal titreşim periyodunun karakteristik periyot olan T_B 'ye göre değer olarak durumu irdelenmiştir.
Yönetmeliğin ilgili maddesinde, birinci hakim periyotun karakteristik periyot T_B 'ye eşit veya daha uzun olması durumunda doğrusal elastik olmayan (nonlineer) spektral yerdeğiştirmenin S_{di1} , eşit yerdeğiştirme kuralı uyarınca doğal periyodu yine $T_1^{(1)}$ olan eşlenik doğrusal elastik sistem'e ait lineer elastik spektral yerdeğiştirme S_{de1} 'e eşit alınacağı söylenmiştir. Doğrusal olmayan (nonlineer) spektral yerdeğiştirme S_{di1} 'in bu durumdaki elde edilişini gösteren birinci hakim moda ait ve koordinatları (d₁, a₁) olan modal kapasite diyagramı ile koordinatları spektral yerdeğiştirme (S_d) – spektral ivme (S_a) diyagramları aşağıdaki gibi bir arada çizilmiştir.

Şekil 2.6. $T_1^{(1)} \ge T_B$ olması durumunda (nonlineer) spektral yerdeğiştirmenin elde edilişi

Diğer durumda yönetmelikte, $T_1^{(1)}$ başlangıç periyodunun, daha önce tanımlanan ivme spektrumundaki karakteristik periyot T_B 'den daha kısa olması durumunda (nonlineer) spektral yerdeğiştirme S_{di1} 'in bir ardışık yaklaşım yöntemiyle hesaplanacağı belirtilmiştir.

Bu durumda yönetmelikte eşit alanlar kuralı uygulanıp ilgili denklemler 7C.3-7C.4-7C.5 kullanılarak (nonlineer) spektral yerdeğiştirme S_{di1} 'in bulunması öngörülmüştür. Spektral yerdeğiştirmenin ikinci durum olan $T_1^{(1)} < T_B$ olması durumunda elde edilişi Şekil 2.7'deki şekillerde gösterilmiştir.

Şekil 2.7. $T_1^{(1)} < T_B$ olması durumunda (nonlineer) spektral yerdeğiştirmenin elde edilişi

Yapılan itme analizinin son adımında yukarıda anlatıldığı gibi hesaplanan (nonlineer) spektral yerdeğiştirme S_{di1} , yönetmeliğin ilgili denklemi 7.4 ve 7.5'te yerine koyularak ilgili deprem doğrultusundaki hedef tepe yer değiştirmesi elde edilmiş olur.

BÖLÜM 3. SAYISAL UYGULAMALAR

3.1. Giriş

Bu bölümde, Bölüm 2 de teorik olarak anlatılan DBYBHY–2007 Bölüm 7'de yer alan hesap yöntemlerine göre, mevcut bir binanın deprem performansı değerlendirmesiyle ilgili sayısal çözümlemelere yer verilmiştir. Bilgisayar uygulamaları için SAP2000 ve SeismoStruct programları kullanılmıştır.

İlk olarak DBYBHY–2007 Bölüm 7.5.'te yer alan doğrusal elastik hesap yöntemine göre, daha sonra da DBYBHY–2007 Bölüm 7.6'da yer alan doğrusal elastik olmayan hesap yöntemlerinden biri olan Artımsal Eşdeğer Yükü Yöntemine göre mevcut binanın deprem performansını belirlemeye dair sayısal çözümlemeler sunulmuştur.

3.2. Sistemin Tanıtılması

Ele alınan binanın taşıyıcı sistemi, zemin + 5 katlı, X yönünde 3 açıklığı bulunan, Y yönünde 6 açıklığı bulunan betonarme çerçevelere sahiptir. X yönündeki çerçevelerde kenar açıklıklar 4 m, orta açıklıkta ise 6 m'dir. Y yönündeki çerçevelerde tüm açıklıklar 4 m'dir. Binada bulunan tüm kolon kesitleri 40x50 cm ve tüm kiriş kesitleri 20x60 cm boyutundadır. Binanın kat yükseklikleri zemin katta 6 m, 1.normal katta 4 m ve diğer katlarda 3'er m'dir. Taşıyıcı sistem görüntüsü Şekil 3.1'de verilmiştir.

Şekil 3.1. Taşıyıcı sistemin 3 boyutlu analiz modeli

Şekil 3.2. Bina kat kalıp planı

3.2.1. Bina bilgileri

Kat adedi	6
Bina kat yüksekliği	6 m - 4 m - 3 m
Toplam bina yüksekliği, [H]	22.0 m
Bina oturma alanı	280 m ²
Kullanım amacı	Konut

3.2.2. Malzeme bilgileri

Beton (Tüm betonarme elemanlar)	C20 (f _{cm} = 20 MPa)
Donatı çeliği	S420 (f _{ym} =420 MPa)
Betonarme elastisite modülü, [E _c]	28500 MPa
Donatı çeliği elastisite modülü, [E _s]	200000 MPa

3.2.3. Proje parametreleri

Deprem bölgesi	1
Etkin yer ivme katsayısı, [A ₀]	0.4
Bina önem katsayısı, [I]	1
Yerel zemin sınıfı	Z3
Spektrum karakteristik periyotları	$T_A=0.15 \text{ s}, T_B=0.6 \text{ s}$
Hareketli yük katılım katsayısı	n=0.3

3.2.4. Yükler

25.00 kN/m^3
2.5 kN/m ²
1.5 kN/m ²
2.0 kN/m ²
1.0 kN/m ²

3.3. Doğrusal Elastik Hesap Yöntemiyle Çözüm

Bu bölümde mevcut binanın deprem performansı doğrusal elastik analiz yöntemlerinden "Eşdeğer Deprem Yükü Yöntemi" (DBYBHY–2007 7.5.1.1) kullanılarak irdelenecektir. Bu binanın 50 yılda aşılma olasılığı %10 olan deprem altında yönetmelik 7.8'e göre "Can Güvenliği (CG)" performans hedefini sağlaması gerekmektedir.

3.3.1. Bina bilgi düzeyi

Bina projeleri mevcuttur ve binanın projelerinde malzeme özelliklerinin ve betonarme detaylarının projeye tamamen uyduğu kabul edilmiştir. Bu durumda yönetmelik 7.2.6'ya göre bina bilgi düzeyi "kapsamlı" olarak belirlenmiş ve bilgi düzeyi katsayısı 1.00 alınmıştır.

3.3.2. Doğrusal elastik yönteme göre deprem hesabı

Bu bölümde yönetmelik 7.4'te verilen esaslara göre mevcut binanın elastik deprem hesabı yapılmıştır. Öncelikle binanın kat ağırlıkları yönetmelik 2.7.1.2. denklem 2.5 ve 2.6'ya göre Tablo 3.1'deki gibi hesaplanmıştır.

		Kat Hareketli		
	Kat sabit yük	Yük	Kat Ağırlığı	Kat Kütlesi
Kat	G(kN)	Q(kN)	W(kN)	m(t)
6	2465.42	280	2549.42	259.88
5	3097.16	560	3265.16	332.84
4	3097.16	560	3265.16	332.84
3	3097.16	560	3265.16	332.84
2	3157.59	560	3325.59	339.00
1	3747.37	560	3915.37	399.12
		TOPLAM	19585.86	

Tablo 3.1. Bina kat ağırlık ve kat kütleleri

Daha sonra binanın X ve Y doğrultusundaki 1.doğal titreşim periyotları yönetmelik 2.7.4.1 denklem 2.11'e göre Tablo 3.2 ve 3.3'deki gibi hesaplanmıştır.

Kat	m(t)	F_{fi} (kN)	d_{fi}	$m_i * d_{fi}^2$	F_{fi} * d_{fi}
6	259.88	0.208	9.982E-06	2.589E-08	2.077E-06
5	332.84	0.230	9.804E-06	3.199E-08	2.256E-06
4	332.84	0.194	9.431E-06	2.960E-08	1.828E-06
3	332.84	0.157	8.892E-06	2.632E-08	1.400E-06
2	339.00	0.123	8.219E-06	2.290E-08	1.014E-06
1	399.12	0.087	6.436E-06	1.653E-08	5.609E-07
		1.000		1.532E-07	9.136E-06

Tablo 3.2. X doğrultusunda periyot hesabı için birim yükleme

$$T_{1x} = 2\pi \left(\frac{\sum\limits_{i=1}^{N} m_i {d_{fi}}^2}{\sum\limits_{i=1}^{N} F_{fi} {d_{fi}}} \right) = 2\pi \left(\frac{1.532E - 7}{9.136E - 6} \right)^{1/2} = 0.82 \text{ s}$$

Tablo 3.3. Y doğrultusunda periyot hesabı için birim yükleme

Kat	m(t)	F_{fi} (kN)	d_{fi}	$m_i * d_{fi}^2$	F_{fi} * d_{fi}
6	259.88	0.208	1.169E-05	3.551E-08	2.432E-06
5	332.84	0.230	1.153E-05	4.425E-08	2.654E-06
4	332.84	0.194	1.123E-05	4.198E-08	2.176E-06
3	332.84	0.157	1.081E-05	3.889E-08	1.702E-06
2	339.00	0.123	1.028E-05	3.582E-08	1.268E-06
1	399.12	0.087	8.572E-06	2.933E-08	7.470E-07
		1.000		2.258E-07	1.098E-05

$$T_{1y} = 2\pi \left(\frac{\sum_{i=1}^{N} m_i d_{fi}^2}{\sum_{i=1}^{N} F_{fi} d_{fi}} \right) = 2\pi \left(\frac{2.258E - 7}{1.098E - 5} \right)^{1/2} = 0.90 \text{ s}$$

3.3.3. Elastik eşdeğer deprem yüklerinin hesaplanması

Elastik deprem yükleri hesaplanırken yönetmelik 7.4'teki kriterlere göre, bina önem katsayısı I=1 alınmış ve elastik (azaltılmamış) ivme spektrumu kullanılmıştır. Ayrıca binanın taşıyıcı sistemindeki betonarme elemanların boyutlarının tanımında birleşim bölgeleri sonsuz rijit uç bölgeleri olarak göz önüne alınmıştır. Döşemeler yatay düzlemde rijit diyafram olarak çalıştırılmış, her katta iki yatay yerdeğiştirme ile düşey eksen etrafında dönme serbestlik dereceleri göz önüne alınmıştır.

Toplam eşdeğer deprem yükünün (taban kesme kuvveti) hesabında yönetmelik 7.5.1.1'de açıklandığı gibi denklem 2.4'e göre hesabında, taşıyıcı sistem davranış katsayısı $R_a=1$ alınmış ve denklemin sağ tarafı λ katsayısı (binanın kat adedi bodrum hariç 2'den fazla olduğu için) 0.85 ile çarpılmıştır. Deprem yükü parametrelerinin hesabı ve taban kesme kuvvetinin hesabı aşağıda gösterilmiştir.

$$\begin{split} S(T_{1x}) &= 2.5 \left(\frac{T_B}{T_{1x}}\right)^{0.8} = 2.5 \left(\frac{0.6}{0.82}\right)^{0.8} = 1.9472 \\ S(T_{1y}) &= 2.5 \left(\frac{T_B}{T_{1y}}\right)^{0.8} = 2.5 \left(\frac{0.6}{0.90}\right)^{0.8} = 1.8075 \\ A(T_{1x}) &= A_0 I S(T_{1x}) = 0.4 * (1) * 1.9472 = 0.7789 \\ A(T_{1y}) &= A_0 I S(T_{1y}) = 0.4 * (1) * 1.8075 = 0.7230 \\ V_t &\geq 0.10 A_0 I W = (0.1) * (0.4) * (1) * (19585.86) = 783.43 \text{ kN} \\ V_{tx} &= \frac{WA(T_{1x})\lambda}{R_a(T_{1x})} = \frac{(19585.86) * (0.7789) * (0.85)}{1} = 12966.76 \text{ kN} \geq 783.43 \text{ kN} \\ V_{ty} &= \frac{WA(T_{1y})\lambda}{R_a(T_{1y})} = \frac{(19585.86) * (0.7230) * (0.85)}{1} = 12036.18 \text{ kN} \geq 783.43 \text{ kN} \\ \Delta F_n = 0.0075 \text{ N V}_t = (0.0075) * (6) * (12966.76) = 583.50 \text{ kN} (X \text{ doğrultusu}) \\ \Delta F_n = 0.0075 \text{ N V}_t = (0.0075) * (6) * (12036.18) = 541.63 \text{ kN} (Y \text{ doğrultusu}) \\ Y$$
önetmelik 2.7.2'e göre hesaplanan toplam eşdeğer yükü, aynı bölümdeki denklem 2.9'a göre, aşağıda Tablo 3.4'te gösterildiği gibi katlara dağıtılmıştır. \\ \end{split}

Kat	hi	H _i	W(kN)	F _i (kN)
6	3	22	2549.42	2576.55
5	3	19	3265.16	2849.92
4	3	16	3265.16	2399.93
3	3	13	3265.16	1949.94
2	4	10	3325.59	1527.72
1	6	6	3915.37	1079.19

Tablo 3.4. X doğrultusu için taban kesme kuvvetinin katlara göre dağılımı

Tablo 3.5. Y doğrultusu için taban kesme kuvvetinin katlara göre dağılımı

Kat	hi	H _i	W(kN)	F _i (kN)
6	3	22	2549.42	2391.64
5	3	19	3265.16	2645.39
4	3	16	3265.16	2227.70
3	3	13	3265.16	1810.00
2	4	10	3325.59	1418.08
1	6	6	3915.37	1001.74

3.3.4. Eşdeğer deprem yükü yönteminin uygulanabilirliği

Binanın kat sayısı 8'i aşmadığından ve ek dışmerkezlik göz önüne alınmaksızın hesaplanan burulma düzensizliği katsayıları bütün katlarda $\eta_{bi} < 1.4$ koşulunu sağladığından (bina planda her iki ana eksene göre simetrik olduğundan bütün katlarda $\eta_{bi} = 1$ 'dir), yönetmelik 7.5.1.1'e göre doğrusal elastik hesapta "Eşdeğer Deprem Yükü Yöntemi" kullanılabilirliği sağlanmıştır.

3.3.5. Göreli kat ötelemelerin sınırlandırılması

Binanın bütün katlarındaki göreli kat ötelemesi oranları, aşağıdaki tablolardan görüleceği üzere, yönetmelik 7.5.3 - Tablo 7.6'ya göre can güvenliği performans düzeyi için sınır değer olan 0.03 değerinin altında kalmıştır.

Tablo 3.6. X doğrultusu göreli kat ötelemesi oranları

Kat	$d_{i,max}(m)$	$\delta_{i,max}(m)$	$\delta_{i,max}$ / h		Sınır
6	0.2032	0.0082	0.0027	<	0.03
5	0.1950	0.0128	0.0043	<	0.03
4	0.1822	0.0173	0.0058	<	0.03
3	0.1649	0.0219	0.0073	<	0.03
2	0.1430	0.0455	0.0114	<	0.03
1	0.0975	0.0975	0.0163	<	0.03

Tablo 3.7. Y doğrultusu göreli kat ötelemesi oranları

Kat	$d_{i,max}(m)$	$\delta_{i,max}(m)$	$\delta_{i,max}$ / h		Sınır
6	0.2172	0.0059	0.0020	<	0.03
5	0.2113	0.0103	0.0034	<	0.03
4	0.2010	0.0146	0.0049	<	0.03
3	0.1864	0.0191	0.0064	<	0.03
2	0.1673	0.0447	0.0112	<	0.03
1	0.1226	0.1226	0.0204	<	0.03

3.3.6. Performans değerlendirmesinde izlenecek hesap aşamaları

Şekil 3.3. Performans değerlendirilmesinde izlenecek hesap algoritması

3.3.7. X doğrultusundaki tipik bir çerçevede performans değerlendirilmesi

Bu bölümde mevcut binanın x doğrultunda çalışan tipik bir çerçevesinin +X deprem yüklemesi altında, kritik kesitlerindeki performans değerlendirilmesi, yönetmelik 7.5'te verilen esaslara göre belirlenmiştir. Çerçeve elemanlarının genel görünümü Şekil 3.5'de verilmiştir.

3.3.7.1. K101 kirişinin uçlarındaki eğilme momenti kapasitelerinin (M_K) hesabı

Kiriş uçlarındaki eğilme momenti kapasitelerinin hesabında, ODTÜ hocalarından Uğur Ersoy'un betonarme kitabında [19] bahsedilen kiriş analizi programından yararlanılmıştır. Örnek K101 kirişinin her iki ucu için, kesit ve donatı özellikleri Şekil 3.4'de, üst ve alt eğilme momenti kapasiteleri Tablo 3.8'de verilmiştir.

Şekil 3.4. K101 kirişinin uçlarının kesit ve donatı özellikleri

	Üst Moment Kapasiteleri		Alt Moment	Kapasiteleri
	i	j	i	j
$A_{s} (mm^{2})$	1225	1018	829	628
M _K (kNm)	273	227	187	142
	M _{Ki(üst)}		M _{Ki(alt)}	M _{Kj(alt)}

Tablo 3.8. K101 kirişinin uçlarının eğilme momenti kapasiteleri

Şekil 3.5. X doğrultusundaki tipik çerçevenin genel görünümü (X-Z Düzlem @ Y=12)

3.3.7.2. K101 kirişinin artık moment kapasitesinin (M_A) bulunması

+X deprem yüklemesi ve düşey yükler (G+0.3Q) etkisi altında K101 kirişinin uçlarında oluşan ve hesaplanan, moment ve kapasiteleri Şekil 3.6' da yönleriyle birlikte gösterilmiştir.

Şekil 3.6. K101 kirişinin +X deprem yükü ile uyumlu moment ve kapasiteleri

$$\begin{split} M_{Ki(alt)} &= 187 \text{ kNm}, \ M_{D,i} = -24.28 \text{ kNm} (düşey yüklemeden elde edilen moment)} \\ M_{A,i} &= M_{Ki(alt)} - M_{D,i} = 187 - (-24.28) = 211.28 \text{ kNm} (kesit artık moment kapasitesi)} \\ M_{Kj(üst)} &= 227 \text{ kNm}, \ M_{D,j} = 29.31 \text{ kNm} (düşey yüklemeden elde edilen moment)} \\ M_{A,j} &= M_{Kj(üst)} - M_{D,j} = 227 - 29.31 = 197.69 \text{ kNm} (kesit artık moment kapasitesi)} \end{split}$$

3.3.7.3. 181 kolonunda eğilme momenti kapasitesi (M_K) hesabı

1S1 kolonundaki eğilme momenti kapasitesi M_K ve buna karşı gelen N_K eksenel kuvvetinin hesabı, yönetmelikteki Bilgilendirme Eki 7A'da belirtilen esaslara göre yapılmıştır. Bu hesap için gerekli olan moment-eksenel kuvvet etkileşim diyagramı (Şekil 3.8), Şekil 3.7'de kesit ve donatı özellikleri verilen 1S1 kolonu için yönetmelik 7.4.11(c)'de beton ve donatı çeliği için verilen sınır şartlarına göre, XTRACT adlı moment-eğrilik ilişkisi programından yararlanılarak çizilmiştir. Çizilen etkileşim diyagramına, yönetmelik Şekil 7A.1'de gösterildiği gibi ilgili kolona ait parametreler geometrik olarak yerleştirilerek, M_K eğilme momenti kapasitesi ve buna karşı gelen N_K eksenel kuvveti geometrik ve sayısal olarak bulunmuştur. Diyagramda gösterilen parametrelerin değerleri örnek kolonumuzda $M_E = 1593.92$ kNm, $N_E = 2310.20$ kN, $M_D = 4.79$ kNm, ve $N_D = 732.73$ kN olarak ilgili statik hesap analizlerinden elde edilmiştir.

Şekil 3.7. 1S1 kolonun kesit, donatı özellikleri ve eğilme momenti kapasiteleri

Şekil 3.8. 1S1 kolonuna ait (P-M) etkileşim diyagramı

Bu diyagramdan ilgili kolona ait eğilme momenti kapasitesi, deprem yönü ile uyumlu olarak, $M_K = 412.2$ kNm ve buna karşı gelen eksenel kuvvet $N_K = 1311$ kN olarak geometrik ve sayısal olarak hesaplanmıştır.

3.3.7.4. K101 kirişinin kesme kontrolü

Bu bölümde yönetmeliğin 3.4.5. maddesine göre örnek kirişin kesme kontrolü yapılmıştır. Kesit kesme kapasitesi TS-500'e göre $V_r = V_c + V_w = 0.8 V_{cr} + V_w$ formülü ile hesaplanmıştır. Kiriş mesnet bölgesi için, $V_c = 0.8 * 0.65 f_{ctm} b_w d = 0.8 * 0.65 * 1.05 * 200 * 575 = 62790 N$ $V_w = A_{sw} f_{ywm} d / s = 100.5 * 420 * 575 / 100 = 242707.5 N$ $V_r = 305.5 kN$ olarak hesaplanmıştır.

Kesit kesme etkisi, yönetmelik 3.4.5. maddesine göre örnek kirişin (i) ucunda deprem yönü ile uyumlu olarak (Şekil 3.9) , $V_{e,i} = V_{dyi} - (M_{Ki(alt)} + M_{Kj(üst)}) / l_n$ formülü ile hesaplanmıştır.

$$\begin{split} V_{dyi} &= 38.77 \ kN, \ M_{Ki(alt)} = 187 \ kNm \ , \ M_{Kj(üst)} = 227 \ kNm \ , \ l_n = 3.5 \ m, \\ V_{ei} &= 38.77 - (187 + 227) \ / \ 5.4 = 79.52 \ kN \ olarak \ hesaplanmıştır. \end{split}$$

Kirişin (j) ucunda ise $V_{ej} = V_{dyj} + (M_{Ki(alt)} + M_{Kj(üst)}) / l_n$ şeklinde hesaplanmıştır. $V_{dyj} = 41.64$ kN, $V_{e,j} = 41.64 + (187 + 227) / 5.4 = 159.93$ kN olarak hesaplanmıştır. $V_e < V_r$ olduğu için K101 kirişinin mesnet bölgelerinin sünek olduğu görülmüştür.

Şekil 3.9. K101 kirişinin deprem yönü ile uyumlu kesme kontrolüne esas parametreleri

3.3.7.5. 1S1 kolonun kesme kontrolü

İlgili kolona ait kesit kesme kapasitesi TS 500'e göre $V_r = V_c + V_w = 0.8 V_{cr} + V_w$ formülü ile hesaplanmıştır. $V_c = 0.8 * 0.65 f_{ctm} b_w d (1 + \gamma N / A_c)$ formülü ile, $V_c = 0.8 * 0.65 * 1.6 * 400 * 450 * (1 + 0.07 * 1311 / (400 * 500)) = 218475 N$ $V_w = A_{sw} f_{ywm} d / s = 100.5 * 420 * 450 / 100 = 189945 N$ $V_r = 408.42$ kN olarak hesaplanmıştır.

Kesit kesme etkisi yönetmeliğin 3.3.7 maddesine göre $V_e = (M_{K,u} + M_{K,a}) / l_n$ formülü ile hesaplanmıştır. $M_{K,u} = 130.90$ kNm, $M_{K,a} = 412.2$ kNm, l_n (eleman net açıklığı) = 5.4 m alınarak $V_e = 100.57$ kN olarak hesaplanmıştır. Örnek kolonun üst ucunda kolonlar kirişlerden güçlü olduğu için $M_{K,u}$ değeri deprem yönetmeliği Şekil 3.5'ten hesaplanmıştır. M_a ve M_u değerleri yatay yük analizinden elde edilmiştir. M_a , 2S1 kolonunun alt ucundaki analizden edilen moment; M_u , 1S1 kolonunun üst ucundaki analizden elde edilen moment olarak tanımlanmıştır. M_{Kj} ve M_{Ki} değerleri 1S1 kolonunun üst ucundaki birleşimin solundaki kirişin sağ ucunun üst moment kapasitesi (örnek kolonun solunda kiriş yoktur) ve sağındaki kirişin sol ucunun alt moment kapasitesidir (Şekil 3.10).

$$\Sigma M_{K} = M_{Ki} + M_{Kj} \qquad M_{K,u} = \frac{M_{u}}{M_{u} + M_{a}} \Sigma M_{K} \text{ seklinde hesaplanır.}$$

$$\boxed{\prod_{k=1}^{m} M_{a} = 1593.92 \text{ kNm}}$$

$$\boxed{M_{Ki(alt)} = 187 \text{ kNm}}$$

$$\boxed{M_{u} = 1293.83 \text{ kNm}}$$

Şekil 3.10. 1S1 kolonunun üst ucundaki birleşimin analiz değerleri

$$\begin{split} &\Sigma~M_K = 187 + 0 = 187~kNm, \\ &M_{K,\ddot{u}} = 1293.83~*~187~/~(1593.92 + 1293.83) = 130.90~kNm~olarak~hesaplanmıştır. \\ &V_e < V_r~olduğu için 1S1~kolonunun uçlarının sünek~olduğu görülmüştür. \end{split}$$

3.3.7.6. Birleşim bölgelerinin kesme kontrolü

Doğrusal elastik yöntemde birleşim bölgelerinin kesme kontrolü yönetmelik 7.5.2.6'daki esaslara göre yapılmıştır. Bu aşamada 1S1 kolonunun üst ucundaki birleşim bölgesinin kesme kapasitesi yönetmelik 3.5.2.2'ye göre "Kuşatılmış Birleşimler"'de, $V_r = 0.6$ b h f_{cm}, "Kuşatılmamış Birleşimler''de ise, $V_r = 0.45$ b h f_{cm} formülleri kullanılarak hesaplanmıştır. Örnek birleşim bölgesi kuşatılmamıştır. Dolayısıyla kesme kapasitesi

 $V_r = 0.45 * 400 * 500 * 20 = 1800 \text{ kN}$ olarak hesaplanmıştır.

Kesit kesme etkisi, yönetmelik 3.5.2.1'e göre $V_e = 1.25 f_{ym} (A_{s1} + A_{s2}) - V_{e(kol)}$ formülü ile hesaplanmıştır. Örnek birleşimimizde (Şekil 3.11) $A_{s1} = 0$, $A_{s2} = 829$ mm² ve $f_{ym} = 420$ MPa alınmıştır.1S1 kolonu için $V_{e(kol)} = 100.57$ kN (Bkz. 3.3.7.5), 2S1 kolonu için $V_{e(kol)} = 36.22$ kN'dur. Hesapta yönetmeliğe göre minimum değer alınacağından, $V_{e(kol)} = \min(100.57; 36.22) = 36.22$ kN olarak alınmıştır. $V_e = 1.25 * 420 * (0 + 829) / 1000 - 36.22 = 399.05$ kN olarak hesaplanmıştır. $V_e < V_r$ olduğu için örnek birleşim bölgesinin kesme bakımından güvenli olduğu görülmüştür.

Şekil 3.11. 1S1 kolonunun üst ucundaki örnek birleşim

3.3.7.7. Örnek K101 kirişinin performans değerlendirilmesi

Bu bölümde örnek kirişe ait etki/kapasite oranı (r), yönetmelik 7.5.2.3'e göre, ilgili kesitin deprem etkisi altında (deprem yönü ile uyumlu olarak) $R_a = 1$ alınarak hesaplanan kesit momentinin kesit artık moment kapasitesine bölünmesiyle elde edilmiştir. Sonraki aşamada ilgili kirişe ait hesaplanan etki/kapasite oranı (r), yönetmelik Tablo 7.2'de verilen sınır değerler (r_s) ile karşılaştırılarak, hedeflenen performans düzeyi için elemanın hangi hasar bölgesinde olduğuna karar verilmiştir. Yatay yüklemeden hesaplanan moment (M_E) , kirişin (i) ucunda 1628.05 kNm, (j) ucunda 1456,57 kNm olarak hesaplanmıştır. Kirişin eğilme momenti kapasitesinden düşey yüklemeden gelen moment (M_D) çıkarılarak, kirişin artık moment kapasitesi (i) ve (j) uçlarında (bkz 3.3.7.2) M_{A,i} = 211.28 kNm ve M_{A,j} = 197.69 kNm olarak hesaplanmıştır.

Etki/kapasite oranı (r) kirişin (i) ucunda, $r_i = M_{E,i} / M_{A,i} = 1628.05 / 211.28 = 7.71$, (j) ucunda ise $r_j = M_{E,j} / M_{A,j} = 1456,57 / 197.69 = 7.37$ olarak hesaplanmıştır.

İlgili kirişe ait etki/kapasite oranı sınır değerlerini (r_s) bulmak için gereken, yönetmelik Tablo 7.2'deki parametreler, örnek kiriş için (bkz Şekil 3.4) aşağıdaki şekilde hesaplanmıştır.

(i) ucunda; $\rho = 0.00691$, $\rho' = 0.01021$ ve $\rho_b = 0.016$ alınarak ($\rho - \rho'$) / $\rho_b = -0.21$ olarak ve $V_e = 79.52$ kN (bkz 3.3.7.4), $b_w d = 1150$ cm² ve $f_{ctm} = 1.6$ MPa alınarak V_e / ($b_w d f_{ctm}$) = 0.43 olarak hesaplanmıştır.

(j) ucunda; $\rho = 0.00848$, $\rho' = 0.00523$ ve $\rho_b = 0.016$ alınarak ($\rho - \rho'$) / $\rho_b = 0.20$ olarak ve V_e = 159.93 kN (bkz 3.3.6.4), b_w d =1150 cm² ve f_{ctm} = 1.6 MPa alınarak V_e / (b_w d f_{ctm}) = 0.87 olarak hesaplanmıştır.

Hesaplanan ($\rho - \rho'$) / ρ_b ve V_e / (b_w d f_{ctm}) değerleri için (r_s) değerleri, bina "Can Güvenliği Performans Düzeyi"ne göre kontrol edildiği için yönetmelik Tablo 7.2'den doğrusal enterpolasyon yapılarak, kirişin (i) ucunda 7 ve (j) ucunda 5.8 olarak bulunmuştur.

Bulduğumuz (r_s) değerleri, örnek kirişteki etki/kapasite oranları (r) değerleri ile karşılaştırılarak, kirişin (i) ucunda r_i / r_s = 7.71 / 7 = 1.10 olarak, kirişin (j) ucunda ise r_i / r_s = 7.37 / 5.8 = 1.27 olarak hesaplanmıştır.

Hesaplanan r / r_s değerleri kirişin her iki ucunda da 1'den büyük olduğu için, örnek kirişin 'GV' güvenlik sınırını sağlamadığı görülmüştür.

3.3.6.8. Örnek 1S1 kolonunun performans değerlendirmesi

Bu bölümde örnek kolona ait etki/kapasite oranı (r), kirişlerdekine benzer şekilde yönetmelik 7.5.2.3'e göre, ilgili kesitin deprem etkisi altında (deprem yönü ile uyumlu olarak) $R_a = 1$ alınarak hesaplanan kesit momentinin kesit artık moment kapasitesine bölünmesiyle elde edilmiştir. Sonraki aşamada ilgili kolona ait hesaplanan etki/kapasite oranı (r), yönetmelik Tablo 7.3'de verilen sınır değerler (r_s) ile karşılaştırılarak, hedeflenen performans düzeyi için elemanın hangi hasar bölgesinde olduğuna karar verilmiştir. Yatay yüklemeden hesaplanan moment (M_E), kolonun alt ucunda 1593.92 kNm, üst ucunda 1293.83 kNm olarak hesaplanmıştır. Düşey yüklemeden (G + 0.3Q) hesaplanan moment, kolonun alt ucunda M_{D,a} = 4.78 kNm ve üst ucunda M_{D,ü} = 9.79 kNm olarak hesaplanmıştır. Kolonun eğilme momenti kapasitesinden (Bkz. Şekil 3.8) düşey yüklemeden gelen moment (M_D) çıkarılarak, örnek kolona ait artık moment kapasitesi alt ve üst uçta M_{A,a} = 416.98 kNm ve M_{A,ü} = 402.42 kNm olarak hesaplanmıştır.

Etki/kapasite oranı (r) kolonun alt ucunda, $r_a = M_{E,a} / M_{A,a} = 1593.92 / 416.98 = 3.82$ ve üst ucunda $r_{\tilde{u}} = M_{E,\tilde{u}} / M_{A,\tilde{u}} = 1293.83 / 402.42 = 3.22$ olarak hesaplanmıştır.

İlgili kolona ait etki/kapasite oranı sınır değerlerini (r_s) bulmak için gereken, yönetmelik Tablo 7.3'deki parametreler, örnek kolon için (bkz Şekil 3.7) aşağıdaki şekilde hesaplanmıştır.

Örnek kolonda N_K = 1311 kN, A_c = 2000 cm² ve f_{cm} = 20 MPa alınarak, N_K / (A_c f_{cm}) = 0.33 olarak, V_e = 100.57 kN (Bkz. 3.3.7.5), b_w d = 1800 cm² ve f_{ctm} = 1,6 MPa alınarak V_e / (b_w d f_{ctm}) = 0.35 olarak hesaplanmıştır. Hesaplanan N_K / ($A_c f_{cm}$) ve V_e / ($b_w d f_{ctm}$) değerleri için (r_s) değeri, bina "Can Güvenliği Performans Düzeyi"ne göre kontrol edildiği için yönetmelik Tablo 7.3'den doğrusal enterpolasyon yapılarak, örnek kolon için 4.47 olarak bulunmuştur.

Bulduğumuz (r_s) değerleri, örnek kolondaki etki/kapasite oranları (r) değerleri ile karşılaştırılarak, kolonun alt ucunda $r_a / r_s = 3.82 / 4.47 = 0.86$ olarak, (j) ucunda ise $r_{u} / r_s = 3.22 / 4.47 = 0.72$ olarak hesaplanmıştır.

Hesaplanan r / r_s değerleri kolonun her iki ucunda da 1'den küçük olduğu için, örnek kolonun 'GV' güvenlik sınırını sağladığı görülmüştür.

3.4. Doğrusal Elastik Olmayan Hesap Yöntemiyle Çözüm

Bu bölümde mevcut binanın tipik bir çerçevesinin (Bkz. Şekil 3.5) deprem performansı doğrusal elastik olmayan analiz yöntemlerinden "Artımsal Eşdeğer Deprem Yükü Yöntemi ile Analizi" (yönetmelik 7.6.5) yöntemi kullanılarak irdelenmiştir. Binanın elastik yöntemde olduğu gibi 50 yılda aşılma olasılığı %10 olan deprem altında yönetmelik 7.8'e göre "Can Güvenliği" performans hedefini sağlaması beklenmiştir.

3.4.1. Elemanlarda doğrusal olmayan davranışın idealleştirilmesi

Bu aşamada yönetmelik 7.4.13'e göre eğilme etkisindeki betonarme elemanlardaki çatlamış kesite ait etkin eğilme rijitlikleri (EI)_e değerleri belirlenmiştir. Kirişler için bu değer yönetmelikte (EI)_e = 0.40 (EI)₀ olarak belirlenmiştir. Kolonlar için ise önce bir düşey yükleme yapılmış (G + 0.3Q), ardından da yönetmelikte verilen sınır değerler arasında doğrusal enterpolasyon yapılarak (EI)_e değerleri belirlenmiştir.

3.4.1.1. K101 kirişi için örnek hesap

Kesit boyutları, $b_w = 20$ cm ve h = 60 cm'dir. Elastiste modülü E = 28500 MPa ve kesitin atalet momenti $I_0 = 3.6e-3$ m⁴ alınmıştır. 0.40 $E I_0 = 0.4 * 2.85e7 * 3.6e-3 = 41040$ kN m² olarak hesaplanmıştır.

3.4.1.2. 1S1 ve 1S2 kolonları için örnek hesap

Kolon ve perdelerde, $N_D / (A_c f_{cm}) \le 0.10$ olması durumunda: (EI)_e = 0.40 (EI)₀

 $N_D / (A_c f_{cm}) \ge 0.40$ olması durumunda: (EI)_e = 0.80 (EI)₀

olarak yönetmelik 7.4.13.b'de verilmiştir.

Kesit özellikleri her iki kolonda, b = 40, h = 50 cm, Ac = 2000 cm² ve f_{cm} = 20 MPa olarak alınmıştır. Düşey yüklemeden (G + 0.3Q) elde edilen eksenel kuvvet 1S1 kolonunda N_D = 359.54 kN ve 2S1 kolonunda N_D = 721.65 kN olarak elde edilmiştir.

1S1 kolonunda N_D / (A_c f_{cm}) = 0.09 < 0.1 olarak hesaplandığından (EI)_e = 0.40 (EI)₀ olarak alınmıştır. 2S1 kolonunda ise N_D / (A_c f_{cm}) = 0.18 > 0.1 olarak hesaplandığından, N_d'nin ara değerleri için yapılan doğrusal enterpolasyon sonucu katsayı 0.51 olarak bulunmuştur. Bu değer kullanılarak 2S1 kolonun çatlamış kesite ait eğilme rijitliği aşağıdaki şekilde hesaplanmıştır.

E = 28500 MPa, $I_0 = 4.167 \text{e-3 m}^4$

 $0.51 \text{ EI}_0 = 60562.5 \text{ kN m}^2$

3.4.2. Kiriş ve kolonlarda yığılı plastik davranışın tanımlanması

Kiriş ve kolonlar için eleman uçlarında tanımlanacak olan plastik kesitlerin akma yüzeylerinin modellenmesinde yönetmelik 7.6.4.4'e göre mevcut malzeme dayanımları ve maksimum birim şekildeğistirme değerleri aşağıdaki gibi dikkate alınmıştır.

Beton için : $f_{cm} = 25$ Mpa, $\varepsilon_c = 0.003$ Çelik için : $f_{ym} = 420$ Mpa, $\varepsilon_s = 0.01$

3.4.2.1. Kirişler için plastik kesit (plastik mafsal) tanımlanması

Yönetmelik 7.6.4.5'e göre kirişler için iç kuvvet-plastik şekildeğistirme bağıntıları tanımlamak amacıyla bir eksenli eğilme analizi yapılıp kesitlere ait plastik moment (M_{pa}) değerleri hesaplanmıştır. Yönetmelik 7.6.4.5.(a)'ya dayanarak pekleşme etkisi göz önüne alınmamış ve içkuvvet-plastik sekil değiştirme bağıntısı aşağıdaki şekilde gösterildiği gibi dikkate alınmıştır.

Aşağıda örnek hesap için seçilen K101 kirişinin sol ucu için (Bkz. Şekil 3.4) yapılan analiz sonucunda plastik moment değerleri gösterilmiştir.

Pozitif eğilme momenti (Altta çekme) (+) M_{pa} = 187 kNm Negatif eğilme momenti (Üstte Çekme) (-) M_{pa} = 273 kNm

3.4.2.2. Kolonlar için plastik kesit tanımlanması

Yönetmelik 7.6.4.4'e göre kolonlar için etkileşim diyagramları (akma çizgileri) örnek 1S1 kolonu için (Bkz. Şekil 3.7) aşağıdaki şekildeki gibi çizilmiştir.

Şekil 3.13. 1S1 kolonun P-M etkileşim diyagramı (pekleşmesiz)

3.4.3. Artımsal eşdeğer deprem yükü yöntemi ile itme analizi

3.4.3.1. Düşey yükler altında doğrusal olmayan statik analiz

Yönetmelik 7.6.5.1'e göre artımsal itme analizinden önce, kütlelerle uyumlu düşey yüklerin göz önüne alındığı bir doğrusal olmayan statik analiz yapılmıştır. Bu analizin sonuçları, artımsal itme analizinin başlangıç koşulları olarak dikkate alınmıştır. Doğrusal olmayan statik analiz hesabında düşey yükler aşağıdaki gibi dikkate alınmıştır.

Düşey yük kombinasyonu: G+nQ = G + 0.3Q

3.4.3.2. Artımsal eşdeğer deprem yükü yönteminin kullanılabilirliği

Yönetmelik 7.6.5.2'ye göre Artımsal Eşdeğer Deprem Yükü Yöntemi'nin kullanılabilmesi için, binanın toplam kat sayısı 8'i aşmadığından ve ek dışmerkezlik göz önüne alınmaksızın hesaplanan burulma düzensizliği katsayıları bütün katlarda $\eta_{bi} < 1.4$ koşulunu sağladığından (bina planda her iki ana eksene göre simetrik olduğundan bütün katlarda $\eta_{bi} = 1$ 'dir), yönetmelik 7.6.5.2'ye göre "Artımsal Eşdeğer Deprem Yükü Yöntemi" ile itme analizi uygulanabilir denmiştir. Göz önüne alınan deprem doğrultusunda mevcut binanın, doğrusal elastik davranış esas alınarak hesaplanan birinci (hakim) titreşim moduna ait etkin kütlenin toplam bina kütlesine oranı 0.95 olarak bulunmuştur. Bulunan bu oranın yönetmelikteki 0.70'ten büyük olma şartını sağladığı için "Artımsal Eşdeğer Deprem Yükü" uygulanabilir denmiştir.

3.4.3.3. Artımsal itme analizi

Artımsal itme analizi sırasında, eşdeğer deprem yükü dağılımının, taşıyıcı sistemdeki plastik kesit oluşumlarından bağımsız biçimde sabit kaldığı varsayımı yapılmıştır (Yönetmelik 7.6.5.3).

Buna göre, ele alınan tipik çerçevenin birinci doğal titreşim modu ile orantılı olarak katlara gelen yükler altında yapılan itme analizinden elde edilen itme eğrisi SeismoStruct programından aşağıdaki şekildeki gibi elde edilmiştir.

Şekil 3.14. Tipik çerçevenin X doğrultusu (Klasik) itme eğrisi

3.4.3.4. Modal kapasite diyagramının elde edilmesi

Şekil 3.14'te elde edilen itme eğrisi yönetmelik 7.6.5.4'teki a ve b maddelerindeki bağıntılar kullanılarak modal kapasite diyagramına dönüştürülmüştür.

Şekil 3.15. Tipik çerçevenin X doğrultusu modal kapasite diyagramı

3.4.3.5. Modal yerdeğiştirme isteminin hesabı

Hesap yapılan doğrultu için modal yerdeğiştirme istemi aşağıdaki bağıntılar kullanılarak hesaplanmıştır (Yönetmelik 7.6.5.6).

$$\mathbf{d}_1^{(p)} = \mathbf{S}_{di1}$$

Yönetmelik 7C.1'e göre doğrusal elastik olmayan (nonlineer) spektral yerdeğiştirme S_{di1}, aşağıdaki bağıntılar yardımıyla hesaplanmıştır.

$$S_{di1} = C_{R1} S_{de1}$$
$$S_{de1} = \frac{S_{ae1}}{(\omega_1^{(1)})^2}$$

 $S_{ae1} = 4.326 \text{ m/s}^2$ $(\omega_1^{(1)})^2 = 21.34 \text{ m/s}^2$ buradan $S_{de1} = 0.202 \text{ m}$ olarak bulunmuştur (Şekil 3.16).

Şekil 3.16. X doğrultusu modal kapasite diyagramı-davranış spektrumu

Yönetmelik 7C.2.1'e göre $T_1^{(1)}$ başlangıç periyodunun, ivme spektrumundaki karakteristik periyot T_B 'ye eşit veya daha uzun olması durumunda spektral yerdeğiştirme oranı:

 $T_1^{(1)} = 1.36 \text{ s} > T_B = 0.6 \text{ s}$ olduğu için,

 $C_{R1} = 1$ dolayısıyla,

 $d_1^{(p)} = S_{di1} = 1 * 0.202 = 0.202 \text{ m olarak hesaplanmıştır.}$

Yönetmelik 7.6.5.7'ye göre X deprem doğrultusundaki tepe yerdeğiştirme istemi $u_{xN1}^{(p)}$ aşağıdaki gibi hesaplanmıştır. $u_{xN1}^{(p)} = \Phi_{xN1} \Gamma_{x1} d_1^{(p)}$

 $u_{xN1}^{(p)} = 0.0845 * 14.22 * 0.202 = 0.243 m$

Binanın tepe yerdeğiştirmesi istemi olan 0.243 m'ye eşit olana kadar itme analizi tekrarlanmış ve bu değere karşı gelen tüm istem büyüklükleri bir sonraki bölümde gösterildiği gibi hesaplanmıştır.

3.4.4. Kirişler için birim şekil değiştirme istemlerinin hesabı

Binanın ele alınan çerçevesinde yapılan itme analizi sonucunda kirişlerde oluşan plastik kesitlere ait plastik dönme istemleri ve bunlara karşılık gelen plastik eğrilik istemleri aşağıdaki formül yardımıyla hesaplanmıştır (Yönetmelik 7.6.8.1).

$$\Phi_{\rm p} = \frac{\theta_{\rm p}}{L_{\rm p}}$$

Analizi yapılan binada bütün kirişler 60 cm yüksekliğindedir, bu nedenle L_p boyu 0.60/2 = 0.30 m olarak alınmıştır (Yönetmelik 7.6.4.1). Kesitte eşdeğer akma eğriliği kesit analizi sonucu elde edilen iki doğrulu moment-eğrilik ilişkisi yardımıyla bulunmuştur. Buradan toplam eğrilik aşağıdaki denklem yardımıyla hesaplamıştır (Yönetmelik 7.6.8.2).

$$\Phi_{\rm t} = \Phi_{\rm y} + \Phi_{\rm p}$$

İlgili kesite ait kesit analizinden elde edilen moment-eğrilik ilişkisine gidilerek toplam eğrilik istemine karsı gelen beton ve donatı çeliğine ait birim sekildeğistirmeler elde edilmiştir. Elde edilen birim sekil değiştirmeler daha sonra birim sekildeğistirme kapasiteleri ile karşılaştırılarak hasar durumu belirlenmiştir.

3.4.4.1 K101 kirişi için örnek hesap

Kirişin kesitindeki eşdeğer akma eğriliği değerinin bulunması için bir eksenli eğilme analizi yapılmıştır. Bu analizde dikkate alınan malzeme modelleri aşağıda özetlenmiştir.

Eğilme analizi için kullanılan malzeme modelleri Bilgilendirme Eki Yönetmelik 7.B.1'e göre dikkate alınmıştır. Kirişlerde enine donatı ile çevrelenen beton sargılı ve enine donatının dışında kalan kabuk betonu sargısız beton ile modellenmiştir. Beton ezilme birim kısalması $\varepsilon_c = 0.004$, dağılma birim kısalması $\varepsilon_c = 0.005$, maksimum gerilmeye karşılık gelen beton birim kısalması 0.002 alınmış, sargısız beton dayanımı ise 20 MPa alınmıştır. Sargılı beton için maksimum basınç birim şekildeğistirmesi $\varepsilon_{cu} = 0.02$, sargılı beton dayanımı f_{cc} = 22.79 MPa bulunmuştur.

Çelikte akma birim uzaması $\varepsilon_{sy} = 0.0021$, pekleşme başlangıcındaki çelik birim uzaması ε_{sh} =0.008, kopma birim uzaması $\varepsilon_{su} = 0.1$ olarak alınmış, çelik akma dayanımı f_{sy} = 420 MPa, çelik kopma dayanımı f_{su} = 550 MPa olarak kullanılmıştır.

Yukarıda tanımlanan malzeme modelleri kullanılarak kesitin pozitif ve negatif eğilme yönleri için elde edilen moment-eğrilik diyagramları, akma eğriliği değerlerinin hesaplanabilmesi için iki doğrudan oluşacak şekilde idealleştirilmiştir. Bu diyagramlar aşağıdaki şekillerde görülmektedir. İdealleştirme, orijinal diyagramın ve idealleştirilmiş diyagramların altında kalan alanlar eşit olacak şekilde yapılmıştır.

Şekil 3.17. Pozitif ve negatif moment-eğrilik ilişkileri ve idealizasyonları

Yukarıda özetlenen idealizasyon sonucunda akma eğriliği ve momentleri için aşağıdaki değerler bulunmuştur. Pozitif eğilme momenti altında $\Phi_y = 0.0063 \text{ rad/m}, M_y = 187 \text{ kNm}$ Negatif eğilme momenti altında $\Phi_y = 0.0058 \text{ rad/m}, M_y = 273 \text{ kNm}$ X doğrultusunda itme analizi sonucunda elde edilen plastik dönme değeri; $\Theta_p = 0.01083 \text{ rad}$ $\Phi_p = \Theta_p / L_p = 0.01083 / 0.3 = 0.03609 \text{ rad/m}$ $\Phi_y = 0.0063 \text{ rad/m},$ $\Phi_t = 0.0063 + 0.03609 = 0.04239 \text{ rad/m}$

Moment eğrilik ilişkisinden bu değere karşılık gelen beton basınç birim şekil değiştirmesi ve donatı çeliğinde birim şekildeğiştirmesi

 $\epsilon_{cu} = 0.003203$ $\epsilon_{s} = 0.02087$ olarak bulunmuştur.

Yönetmelik 7.6.9'a göre $\epsilon_{cu} = 0.003203 < (\epsilon_{cu})_{MN} = 0.0035,$ $(\epsilon_s)_{MN} = 0.01 < \epsilon_s = 0.02087 < (\epsilon_s)_{GV} = 0.04$

Kesitteki hasar durumunun, kesit minimum hasar sınırı ile kesit güvenlik sınırı arasında (belirgin hasar bölgesinde) kaldığı görülmüştür.

3.4.4.2 Örnek kirişteki kesme kapasitesi kontrolü

Yönetmelik 7.6.11.1'e göre kolon-kiriş birleşim bölgeleri dışında tüm betonarme taşıyıcı sistem elemanlarının gevrek kırılma kontrollerinde kullanılacak kesme kuvveti dayanımları TS-500'e göre $V_r = 305.54$ kN (Bkz. 3.3.3.4) olarak hesaplanmıştır.

Kesitin kesme kuvveti istemi, yapılan itme analizinden V = 129.32 kN olarak elde edilmiştir.

 $V_r = 305.54 \text{ kN} > V = 129.32 \text{ kN}$ olduğu için kesitin kesme kuvveti kapasitesi açısından yeterli olduğu görülmüştür.

3.4.5. Kolonlar için birim şekildeğiştirme istemlerinin hesabı

Binada yapılan itme analizi sonucunda kolonlarda oluşan plastik kesitlere ait plastik dönme istemleri ve bunlara karşılık gelen plastik eğrilik istemleri aşağıdaki şekilde hesaplanmıştır (Yönetmelik 7.6.8.1).

$$\Phi_{\rm p} = \frac{\theta_{\rm p}}{L_{\rm p}}$$

Analizi yapılan binada kolonlara ait L_p boyu, ilgili kolonun itme analizi doğrultusunda çalışan boyutunun yarısı olarak alınmıştır (Yönetmelik 7.6.4.1). Örnek kolonumuz 40x50 cm boyutunda olduğu için plastik mafsal boyu, $L_p = 50/2 = 25$ cm olarak dikkate alınmıştır. Buradan toplam eğrilik aşağıdaki denklem yardımıyla hesaplamıştır.

Kesitte eşdeğer akma eğriliği, eksenel kuvvet istemi altında yapılan kesit analizi sonucunda elde edilen iki doğrulu moment-eğrilik ilişkisi yardımıyla bulunmuştur. Akma eğriliği plastik eğrilik istemi ile toplanarak toplam eğrilik istemi elde edilmiştir (Yönetmelik 7.6.8.2).

$$\Phi_t = \Phi_y + \Phi_p$$

Kesitte hasar durumunun pratik bir yolla belirlenmesi için yönetmelik 7.6.9.2'de beton ve çelik için tanımlanan kesit birim şekildeğiştirme kapasitelerine karşı gelen normal kuvvet-toplam eğrilik diyagramları kullanılmıştır.

Normal kuvvet-toplam eğrilik diyagramları aşağıda açıklandığı şekilde elde edilmiştir. Her normal kuvvet seviyesi için yukarıda belirtilen malzeme modelleri kullanılarak moment-eğrilik ilişkileri elde edilmiştir. Bu şekilde belirli bir hasar seviyesi için her bir normal kuvvete karşı gelen toplam eğrilik değerleri elde edilmiştir. İlgili kesite ait toplam eğrilik istemi ile normal kuvvet istemi bu diyagramın içine konulduğunda bu kesitin hangi hasar sınırları arasında kaldığı net olarak görülmüştür.

3.4.5.1. 1S1 kolonu için örnek hesap

X doğrultusunda itme analizi sonucunda ilgili kolonda elde edilen plastik dönme istemi;

 $\Theta_{\rm p} = 0.00586 \text{ rad}$ $\Phi_{\rm p} = \Theta_{\rm p} \ / \ L_{\rm p} = 0.00586 \ / \ 0.25 = 0.01955 \text{ rad/m}$

Örnek kolon kesiti için eksenel kuvvet istemi (X doğrultusunda bina talep deplasmanına ulaştığında elde edilmiş olan kolon eksenel kuvveti) altında hesaplanan moment-eğrilik ilişkisi kullanılarak eşdeğer akma eğriliği aşağıdaki şekilde bulunmuştur.

Eksenel kuvvet istemi : N = 348.09 kN (basınç)

Akma eğriliği : $\Phi y= 0.0086 \text{ rad/m}$

Toplam eğrilik istemi: $\Phi t = 0,0086 + 0.01955 = 0.02815$ rad/m olarak hesaplanmıştır.

Şekil 3.18. Örnek kolona ait her üç hasar durumu için çizilen eksenel kuvvet-toplam eğrilik diyagramı

Yukarıdaki normal kuvvet-toplam eğrilik diyagramından görüldüğü üzere, bu kesit için eksenel yük istemine karşılık gelen toplam eğrilik MN hasar durumu için çizilen diyagramın içinde kalmıştır. Dolayısıyla bu kolonun alt ucundaki plastik kesit için hasar durumu Kesit Minimum Hasar Sınırı (MN) yani minimum hasar bölgesinde kalmıştır (Yönetmelik 7.3.3).

3.4.5.2 Örnek kolondaki kesme kapasitesi kontrolü

Betonun katkısı: $\gamma = 0.07$ N = 348.09 kN $V_c = 0.8 * 0.65 \text{ f}_{ctm} \text{ b}_w \text{ d} (1 + \gamma \text{ N} / \text{A}_c) \text{ formülü ile,}$ $V_c = 0.8 * 0.65* 1.6 * 400 * 450 * (1 + 0.07 * 348.09 / (400 * 500)) = 149780 \text{ N}$

Enine donatının katkısı:

 $V_w = 189945 N$

Kesme kuvveti istemi V = 60.55 kN

 $V_r = V_c + V_w = 339.73 \text{ kN} > 60.55 \text{ kN}$ şartı sağlandığı için örnek kolonun kesme kapasitesi açısından yeterli olduğu görülmüştür.

3.4.6. Birleşim bölgelerinin kesme kontrolü

Doğrusal olmayan elastik yöntemde birleşim bölgelerinin kesme kontrolü yapılırken yönetmelik 7.6.11.2'deki esaslara uyulmuştur. Buna göre elastik yöntemden farklı olarak (Yönetmelik 3.5.2.1) Denk.(3.11)'de kesme etkisinin hesabında kullanılan V_{kol} yerine doğrusal olmayan analizde ilgili kolon için hesaplanan kesme kuvveti istemi kullanılmıştır.

 $V_r = 0.45 * 400 * 500 * 20 = 1800 \text{ kN}$ olarak hesaplanmıştı (Bkz. 3.3.7.5).

Kesit kesme etkisi, yönetmelik 3.5.2.1'e göre $V_e = 1.25 f_{ym} (A_{s1} + A_{s2}) - V_{e(kol)}$ formülü ile hesaplanmıştır. Örnek birleşimimizde (Şekil 3.11) $A_{s1} = 0$, $A_{s2} = 829$ mm² ve $f_{ym} = 420$ MPa alınmıştır. 1S1 kolonu için $V_{e(kol)} = V_{istem} = 60.55$ kN, 2S1 kolonu için $V_{e(kol)} = V_{istem} = 73.38$ kN'dur. Hesapta yönetmeliğe göre minimum değer alınacağından, $V_{e(kol)} = min(60.55; 73.38) = 60.55$ kN olarak alınmıştır. $V_e = 1.25 * 420 * (0 + 829) / 1000 - 60.55 = 374.68$ kN olarak hesaplanmıştır. $V_e < V_r$ olduğu için örnek birleşim bölgesinin kesme bakımından güvenli olduğu görülmüştür.
BÖLÜM 4. SONUÇ VE ÖNERİLER

Yapıların deprem yükleri altındaki gerçek davranışları ve buna bağlı kesit etkileri tasarım açısından oldukça önemlidir. Bu gereksinme sonucunda yapıların her iki türlü (lineer ve nonlineer) davranışının da dikkate alındığı performansa dayalı tasarım yöntemleri ön plana çıkmaktadır. Bu çalışmada yeni deprem yönetmeliğimizde yer alan performans yöntemlerine göre mevcut bir yapının performansının belirlenmesine çalışılmıştır. Uygulanan performans yöntemlerinin sonuçlarını elde etmek için, DBYBHY–2007 Bölüm 7.7'de yer alan ilgili hasar düzeyleri için verilen şartlar dikkate alınmıştır.

Çalışmada ele alınan mevcut yapının ilk olarak doğrusal elastik yönteme göre performansının belirlenmesine çalışılmıştır. Söz konusu yapının deprem performansı seviyesi, yapı konut olduğu için DBYBHY-2007'e göre can güvenliği olarak seçilmiştir.

Yönetmeliğin ilgili maddesindeki şartların, ele alınan mevcut taşıyıcı sistemde doğrusal elastik performans çözümünde nasıl gerçekleştiğini görmek için aşağıda verilen Tablo 4.1'den yararlanılmıştır. Tablodaki değerler, çalışmamızın Ek-A bölümünde yer alan kiriş ve kolonlar için her bir deprem doğrultusu için bulunan performans grafiklerinden alınmıştır.

	+ X `	Yönü	- X Yönü			
Kat	Sağlamayan Kirişler (%)	Sağlamayan Kolonlar (%)	Sağlamayan Kirişler (%)	Sağlamayan Kolonlar (%)		
6	0	0	0	0		
5	0	0	0	0		
4	0	0	0	0		
3	33	0	33	0		
2	100	0	100	0		
1	66	0	66	0		

Tablo 4.1. Doğrusal elastik yöntemde "Can Güvenliği" performans düzeyini sağlamayan taşıyıcı sistem elemanlarının durumu

Yönetmelikte ilgili maddede söz konusu performans düzeyinde her bir kat ve doğrultudaki kirişlerin en fazla %30'unun ileri hasar bölgesine geçeceği söylenmiştir. Yukarıdaki Tablo 4.1'den anlaşılacağı üzere ele alınan yapıda kirişler bu şartı sağlamadığı için, yapının ilgili yöntemde öngörülen can güvenliği performans seviyesini sağlamadığı görülmüştür.

Çalışmada daha sonra, ele alınan mevcut yapının doğrusal elastik olmayan yönteme göre performansının belirlenmesine çalışılmıştır. Söz konusu yapının deprem performansı seviyesi, elastik yöntemde olduğu gibi can güvenliği olarak seçilmiştir.

Yönetmeliğin ilgili maddesindeki şartların, ele alınan mevcut taşıyıcı sistemde doğrusal elastik olmayan performans çözümünde, kirişler için nasıl gerçekleştiğini görmek için aşağıdaki Tablo 4.2'den yararlanılmıştır. Tablodaki değerler, çalışmanın Ek-B bölümünde yer alan kirişler için yapılan performans tablolarından alınmıştır.

Kat	Sağlamayan Kirişler (MN) (%)	Sağlamayan Kirişler (GV) (%)
6	0	0
5	0	0
4	0	0
3	0	0
2	66	0
1	100	0

Tablo 4.2. Doğrusal elastik olmayan yöntemde "Hemen Kullanım" ve "Can Güvenliği" performans düzeyini sağlamayan taşıyıcı sistem elemanlarının durumu

Kolonlarda ise ilgili yöntemdeki performans değerlendirmesi, çalışmanın Ek-B bölümünde verilen eksenel kuvvet-toplam eğrilik diyagramlarından yararlanılarak yapılmıştır.

İlgili diyagramlardan sadece zemin kat kolonlarının alt uçlarında oluşan kesitlerin, hemen kullanım performans seviyesini (minimum hasar bölgesi) geçtiği görülmüştür. Ele alınan mevcut taşıyıcı sistemde hiçbir kolonun alt ve üst kesitinin minimum hasar bölgesini geçtiği görülmediği için, Yönetmelik 7.7.3.c'de verilen sınır şartının (sağlamayan kolon kesme kuvvetlerinin toplamının, toplam kat kesme kuvvetine oranı) sağlandığı görülmüştür.

Yukarıda verilen sonuçlar ışığında ele alınan mevcut yapının doğrusal elastik yöntemde can güvenliği performans düzeyini sağlamadığı, diğer taraftan yapının nonlineer davranışını esas alan doğrusal elastik olmayan yöntemde ise aynı performans düzeyini sağladığı görülmüştür.

Sonuç olarak, iki yöntem arasındaki performans farklılığının, yönetmelikte de bahsedildiği üzere iki yöntemin yaklaşım farkından ileri geldiği fikri benimsenmiştir.

Buna ek olarak her iki yöntemde de var olan, özellikle doğrusal elastik yöntemden elde edilen sonuçların (kapasite/sınır) aslında aşırı rakamsal olduğu ve sınır değerlere yakınlık derecelerinin çok göreceli olabileceği gözlenmiştir. Ve bu sonuç farkının, değerlere bağımlı oluşunun performans sonucunu kolayca değiştirebilirliği gündeme gelmiştir.

Tüm bunların dışında yönetmelikte açıklanan "Artımsal Eşdeğer Deprem Yükü Yöntemi" ile itme analizinin en önemli sakıncasının, taşıyıcı sistemin deprem davranışının sadece birinci (deprem doğrultusunda hakim) doğal titreşim modundaki davranıştan ibaret olduğunu varsaymasıdır. Bu nedenle yöntemin, çok katlı olmayan ve deprem doğrultusuna göre planda simetrik veya simetriğe yakın olan binalarda uygulanması önerilmiştir [1].

Aksi durumda yönetmelikte yer alan "Artımsal Mod Birleştirme Yönteminin" kullanılması söylenmiştir [1].

KAYNAKLAR

- [1] "Deprem Bölgelerinde Yapılacak Binalar Hakkında Yönetmelik (DBYBHY-2007), T.C. Bayındırlık ve İskan Bakanlığı.
- [2] GÜLKAN, P., SÖZEN, M., "Inelastic response of Reinforced Concrete Structures to Eartquake Motions.", pp.604-610, ACI Journal, 1974.
- [3] SHİBATA, A., and M. A. Sozen, (1976), Substitute-Structure Method for Seismic Design in R/C, Journal of the Structural Division, ASCE, Vol. 102, No. ST1, January, pp. 1-18.
- [4] PRIESTLEY, M. J. N. (1993) Myths and fallacies in earthquake engineering-conflicts between design and reality, Bulletin, NZ National Society for Earthquake Engineering, New Zealand, Vol. 26, No. 3, pp. 329-341.
- [5] PRIESTLEY, M. J. N. and M. J. Kowalsky (2000) Direct displacementbased seismic design of concrete buildings. Bulletin, NZ National Society for Earthquake Engineering, New Zealand, Vol. 33, No. 4, pp. 421–444.
- [6] PRIESTLEY, M. J. N. (2003) Myths and Fallacies in Earthquake Engineering, Revisited, The Mallet Milne Lecture, IUSS Press, Pavia, Italy.
- [7] SAİİDİ, M. and M.A. Sözen (1981) Simple Nonlinear Seismic Response of R/C Structures, Journal of Structural Division, ASCE, Vol. 107, 937-952.
- [8] FAJFAR, P. and M. Fischinger, (1988) N2-A method for non-linear seismic analysis of regular buildings, Proceedings, 9th World Conference on Earthquake Engineering, Proceedings Book, Tokyo-Kyoto, Japan, Paper 7-3-2.
- [9] FREEMAN, S.A. (2005) Performance Based Earthquake Engineering During the Last 40 Years, Earthquake Engineering: Essentials and Applications Workshops, EERC METU, July, Ankara.
- [10] MOGHADAM, A. S. (2002) A pushover procedure for tall buildings. Proceedings of the Twelfth European Conference on Earthquake Engineering, London, United Kingdom, Paper No. 395.

- [12] GUPTA, B. and S.K. Kunnath (2000) Adaptive spectra-based pushover procedure for seismic evaluation of structures. Earthquake Spectra 16(2), 367–391.
- [13] ELNASHAİ, A. S. (2001) Advanced inelastic static (pushover) analysis for earthquake applications. Structural Engineering and Mechanics Vol. 12, No. 1, pp. 51-69.
- [14] PAPANİKOLAOU, V. K. and A. S. Elnashai, (2005) Evaluation of Conventional and Adaptive Pushover Analysis I: Methodology. Journal of Earthquake Engineering, Vol. 9, No. 6, pp. 923–941.
- [15] PAPANİKOLAOU, V. K. and A. S. Elnashai, (2006) Evaluation of Conventional and Adaptive Pushover Analysis II: Comparative Results. Journal of Earthquake Engineering Vol. 10, No.1, pp.127–151.
- [16] AYDİNOĞLU, M.N., (2003) An incremental response spectrum analysis procedure based on inelastic spectral deformation for multi-mode seismic evaluation, Bulletin of Earthquake Engineering, Vol. 1, No. 1, pp. 3-36.
- [17] SUCUOĞLU, M.Günay, "Equivalent Linearization Methods In Displacement based Performance Analysis", Earthquake Engineering Research Center Middle East Technical University July 18 – 20, 2005.
- [18] SEİSMOSOFT (2006) SeismoStruct A Computer Program for Static and Dynamic Nonlinear Analysis of Framed Structures (online). Available from URL: http://www.seismosoft.com.
- [19] ERSOY, ÖZCEBE., "Betonarme Temel İlkeler ve Taşıma Gücü Hesabı", Evrim Yayınevi, İstanbul, 2001.
- [20] KUTANİS, Statik İtme Analizi Yöntemlerinin Performanslarının Değerlendirilmesi YOGS 7-8 Aralık 2006 Pamukkale-DENİZLİ
- [21] AYDINOĞLU, M.N., Deprem Yönetmeliği Pilot Eğitimi Kasım-2006
- [22] CHOPRA, A.K. and R.K. Goel (2001) A Modal Pushover Analysis Procedure to Estimating Seismic Demands for Buildings: Theory and Preliminary Evaluation. PERR Report 2001/03, Pacific Earthquake Engineering Research Center, University of California, Berkeley

EKLER

Ek A. Doğrusal Elastik Yönteme Ait Sonuçlar

A.1. Giriş

Bu bölümde, doğrusal elastik yönteme ait örnek sayısal uygulamaların tümüne ait sonuçlar tablolar ve şekiller halinde sunulmuştur.

A.2. Kirişlerin moment ve artık moment kapasiteleri

Kirişlere ait moment kapasiteleri sunulmadan önce, bu kapasitelerin bulunmasında kullanılan kirişlere ait donatı düzenleri tablo halinde verilmiştir. Ardından da bahsedilen moment kapasiteleri tablo halinde sunulmuştur.

	Sol M	esnet	Açıklık	(Sağ M	lesnet
	Alt	Üst	Alt	Üst	Alt	Üst
K601	2 –	2-\phi12+1-\phi14	2-\$12+1-\$14	2 – \oldsymbol{\phi} 12	2-\phi12+1-\phi14	2-\phi12+2-\phi14
NOU I	φ8	-10	ф 8–20)	φ8	-10
K602	2-\$12+1-\$14	2-\$12+2-\$14	2-\$12+1-\$14	2 – \operatorname{12}	2-\$12+1-\$14	2-\$12+2-\$14
11002	φ8	-10	φ 8–20)	φ8	-10
K603	2-\$12+1-\$14	2-\$12+2-\$14	2-\$12+1-\$14	2-\$12	2 – φ 12	2-ф12+1-ф14
1,000	φ8	-10	φ 8–20)	φ8	-10
K501	2-ф12+1-ф14	2-\$16+1-\$12	3 - \$ 12	2 – \$ 16	2-ф12+1-ф16	2-ф16+2-ф12
1.001	φ 8	-10	φ 8–20)	φ 8	-10
K502	2-ф12+1-ф16	2-ф16+2-ф12	2-\$12+1-\$14	2 – \operatorname{12}	2-ф12+1-ф16	2-ф16+2-ф12
1002	φ 8	-10	φ 8–20)	φ 8	-10
K503	2-\$12+1-\$16	2-\$16+2-\$12	3 – \$ 12	2-\$16	2-\$12+1-\$14	2-ф16+1-ф12
	φ 8	-10	φ 8–20)	φ 8	-10
K401	2-\$12+1-\$14	2-\$16+1-\$14	3 - \$ 12	2-\$16	2-\$12+1-\$16	2-ф16+2-ф12
	φ 8	-10	φ 8–20)	φ 8	-10
K402	2-\$12+1-\$16	2-\$16+2-\$12	2-\$12+1-\$14	2 – \$ 12	2-\$12+1-\$16	2-ф16+2-ф12
	φ8	-10	φ 8–20)	φ8	-10
K403	2-ф12+1-ф16	2-\$16+2-\$12	3 - \$ 12	2-\$16	2-\$12+1-\$14	2-\$16+1-\$14
	φ8	-10	ф 8–20)	φ8	-10
K301	2-\$12+1-\$14	2-\$16+2-\$12	3 - \$ 12	2 – \$ 16	2-ф12+1-ф18	2-ф16+2-ф12
	φ8	-10	φ 8–20)	φ8	-10
K302	2-\phi12+1-\phi18	2-ф16+2-ф14	2-\phi12+1-\phi14	2 – \oldsymbol{\overline} 12	2-\phi12+1-\phi18	2-\$16+2-\$14
	φ8	-10	φ 8–20)	φ8	-10
K303	2-\phi12+1-\phi18	2-\phi16+2-\phi12	3 – φ 12	2 – \operatorname{16}	2-\$12+1-\$14	2-\phi12+2-\phi16
	φ8	-10	φ 8–20)	φ8	-10
K201	2-\phi12+1-\phi16	2-\$16+3-\$12	3 – φ 12	2 – \$ 16	2-\$12+1-\$18	2-\phi16+2-\phi12
	φ8	-10	φ 8–20)	φ8	-10
K202	2-\phi12+1-\phi18	2-\operatorname{16+2-\operatorname{14}}	2-\phi12+1-\phi14	2 – \operatorname{12}	2-\phi12+1-\phi18	2-\phi16+2-\phi14
	φ8	-10	φ 8–20)	φ8	-10
K203	2-\phi12+1-\phi18	2-\$16+2-\$12	3 – ¢ 12	2 – \$ 16	2-\phi12+1-\phi16	2-\phi16+3-\phi12
	φ8	-10	φ 8–20)	φ8	-10
K101	2-\$12+3-\$16	3-\$14+3-\$18	2-\phi12+1-\phi14	2 – \operatorname{14}	2-\$12+2-\$16	4-\phi14+2-\phi16
	φ 8	-10	φ 8–20)	φ 8	-10
K102	2-\phi12+2-\phi16	4-\phi14+2-\phi16	2-\phi12+1-\phi14	2 – ¢ 12	2-\phi12+2-\phi16	4-\phi14+2-\phi16
	φ8	-10	φ 8–20)	φ8	-10
K103	2-\phi12+2-\phi16	4-\phi14+2-\phi16	2-\phi12+1-\phi14	2 – ¢ 14	2-\phi12+3-\phi16	3-\$14+3-\$18
	φ 8	-10	ф 8–20)	φ8	-10

Tablo A.1. Ele alınan çerçevedeki kirişlerin donatı düzeni

Kiris adı	Mki(alt)	MDi	M A i	MKi(jigt)	MDi	M A i	$l_{n}(m)$
K601	52	-35 96	87.96	121	-10.08	110.92	3.50
K602	87	-50.75	137.75	121	-50.75	70.25	5.50
K603	87	-10.08	97.08	87	-35.96	51.04	3.50
K501	87	-53.13	140.13	142	-5.88	136.12	3.50
K502	97	-63.52	160.52	142	-63 52	78 48	5 50
K503	97	-5.88	102.88	117	-53.13	63.87	3.50
K401	87	-47.59	134.59	142	-5.63	136.37	3.50
K402	109	-62.92	171.92	160	-62.92	97.08	5.50
K403	97	-5.63	102.63	126	-47.59	78.41	3.50
K301	87	-45.24	132.24	142	-8.32	133.68	3.50
K302	109	-63.30	172.30	160	-63.30	96.70	5.50
K303	109	-8.32	117.32	141	-45.24	95.76	3.50
K201	97	-39.01	136.01	142	-8.30	133.70	3.50
K202	109	-63.21	172.21	160	-63.21	96.79	5.50
K203	109	-8.30	117.30	167	-39.01	127.99	3.50
K101	187	-24.28	211.28	227	-29.31	197.69	3.50
K102	142	-67.58	209.58	227	-67.58	159.42	5.50
K103	142	-29.31	171.31	273	-24.28	248.72	3.50
Kiriş adı	M _{Ki(üst)}	M _{D,i}	M _{A,i}	M _{Kj(alt)}	M _{D,j}	M _{A,j}	l _n (m)
Kiriş adı K601	M _{Ki(üst)} 87	M _{D,i} -35.96	M _{A,i} 51.04	M _{Kj(alt)} 87	M _{D,j} -10.08	M _{A,j} 97.08	$l_n(m)$ 3.50
Kiriş adı K601 K602	M _{Ki(üst)} 87 121	M _{D,i} -35.96 -50.75	M _{A,i} 51.04 70.25	M _{Ki(alt)} 87 87	M _{D,j} -10.08 -50.75	M _{A,j} 97.08 137.75	l _n (m) 3.50 5.50
Kiriş adı K601 K602 K603	M _{Ki(üst)} 87 121 121	M _{D,i} -35.96 -50.75 -10.08	M _{A,i} 51.04 70.25 110.92	M _{Kj(alt)} 87 87 52	M _{D,j} -10.08 -50.75 -35.96	M _{A,j} 97.08 137.75 87.96	l _n (m) 3.50 5.50 3.50
Kiriş adı K601 K602 K603 K501	M _{Ki(üst)} 87 121 121 117	M _{D,i} -35.96 -50.75 -10.08 -53.13	M _{A,i} 51.04 70.25 110.92 63.87	M _{Ki(alt)} 87 87 52 97	M _{D,j} -10.08 -50.75 -35.96 -5.88	M _{A,j} 97.08 137.75 87.96 102.88	l _n (m) 3.50 5.50 3.50 3.50
Kiriş adı K601 K602 K603 K501 K502	M _{Ki(üst)} 87 121 121 117 142	M _{D,i} -35.96 -50.75 -10.08 -53.13 -63.52	$\begin{array}{c} M_{A,i} \\ 51.04 \\ 70.25 \\ 110.92 \\ 63.87 \\ 78.48 \end{array}$	M _{Kj(alt)} 87 87 52 97 97	M _{D,j} -10.08 -50.75 -35.96 -5.88 -63.52	M _{A,i} 97.08 137.75 87.96 102.88 160.52	$\begin{array}{c} l_n(m) \\ 3.50 \\ 5.50 \\ 3.50 \\ 3.50 \\ 5.50 \\ 5.50 \end{array}$
Kiriş adı K601 K602 K603 K501 K502 K503	M _{Ki(üst)} 87 121 121 117 142 142	M _{D,i} -35.96 -50.75 -10.08 -53.13 -63.52 -5.88	$\begin{array}{c} M_{A,i} \\ 51.04 \\ 70.25 \\ 110.92 \\ 63.87 \\ 78.48 \\ 136.12 \end{array}$	M _{Ki(alt)} 87 87 52 97 97 87	M _{D,j} -10.08 -50.75 -35.96 -5.88 -63.52 -53.13	M _{A,j} 97.08 137.75 87.96 102.88 160.52 140.13	$ \begin{array}{r} l_n(m) \\ 3.50 \\ 5.50 \\ 3.50 \\ 3.50 \\ 5.50 \\ 3.50 \\ 3.50 \\ 3.50 \\ \end{array} $
Kiriş adı K601 K602 K503 K501 K502 K503 K401	M _{Ki(üst)} 87 121 121 121 117 142 142 126	M _{D,i} -35.96 -50.75 -10.08 -53.13 -63.52 -5.88 -47.59	$\begin{array}{c} M_{A,i} \\ 51.04 \\ 70.25 \\ 110.92 \\ 63.87 \\ 78.48 \\ 136.12 \\ 78.41 \end{array}$	M _{Kj(alt)} 87 87 52 97 97 87 97	M _{D,j} -10.08 -50.75 -35.96 -5.88 -63.52 -53.13 -5.63	$\begin{array}{c} M_{A,i} \\ 97.08 \\ 137.75 \\ 87.96 \\ 102.88 \\ 160.52 \\ 140.13 \\ 102.63 \end{array}$	$\begin{array}{c} 1_n(m) \\ 3.50 \\ 5.50 \\ 3.50 \\ 3.50 \\ 5.50 \\ 3.50 \\ 3.50 \\ 3.50 \end{array}$
Kiriş adı K601 K602 K603 K501 K502 K503 K401 K402	M _{Ki(üst)} 87 121 121 117 142 142 142 126 160	M _{D,i} -35.96 -50.75 -10.08 -53.13 -63.52 -5.88 -47.59 -62.92	$\begin{array}{c} M_{A,i} \\ 51.04 \\ 70.25 \\ 110.92 \\ 63.87 \\ 78.48 \\ 136.12 \\ 78.41 \\ 97.08 \end{array}$	M _{Kj(alt)} 87 87 52 97 97 87 97 109	M _{D,j} -10.08 -50.75 -35.96 -5.88 -63.52 -53.13 -5.63 -62.92	M _{A,j} 97.08 137.75 87.96 102.88 160.52 140.13 102.63 171.92	$\begin{array}{c} 1_n(m) \\ 3.50 \\ 5.50 \\ 3.50 \\ 3.50 \\ 5.50 \\ 3.50 \\ 3.50 \\ 3.50 \\ 5.50 \end{array}$
Kiriş adı K601 K602 K503 K501 K502 K503 K401 K402 K403	M _{Ki(üst)} 87 121 121 121 142 142 126 160 142	M _{D,i} -35.96 -50.75 -10.08 -53.13 -63.52 -5.88 -47.59 -62.92 -5.63	$\begin{array}{r} M_{A,i} \\ 51.04 \\ 70.25 \\ 110.92 \\ 63.87 \\ 78.48 \\ 136.12 \\ 78.41 \\ 97.08 \\ 136.37 \end{array}$	M _{Kj(alt)} 87 87 52 97 97 87 97 109 87	M _{D,j} -10.08 -50.75 -35.96 -5.88 -63.52 -53.13 -5.63 -62.92 -47.59	$\begin{array}{c} M_{A,i} \\ 97.08 \\ 137.75 \\ 87.96 \\ 102.88 \\ 160.52 \\ 140.13 \\ 102.63 \\ 171.92 \\ 134.59 \end{array}$	$\begin{array}{c} l_n(m) \\ 3.50 \\ 5.50 \\ 3.50 \\ 3.50 \\ 5.50 \\ 3.50 \\ 3.50 \\ 5.50 \\ 3.50 \\ 5.50 \\ 3.50 \end{array}$
Kiriş adı K601 K602 K603 K501 K502 K503 K401 K402 K403 K301	M _{Ki(üst)} 87 121 121 117 142 142 142 126 160 142 141	$\begin{array}{r} M_{D,i} \\ -35.96 \\ -50.75 \\ -10.08 \\ -53.13 \\ -63.52 \\ -5.88 \\ -47.59 \\ -62.92 \\ -5.63 \\ -45.24 \end{array}$	$\begin{array}{r} M_{A,i} \\ 51.04 \\ 70.25 \\ 110.92 \\ 63.87 \\ 78.48 \\ 136.12 \\ 78.41 \\ 97.08 \\ 136.37 \\ 95.76 \end{array}$	M _{Kj(alt)} 87 87 52 97 97 87 97 109 87 109	M _{D,j} -10.08 -50.75 -35.96 -5.88 -63.52 -53.13 -5.63 -62.92 -47.59 -8.32	M _{A,j} 97.08 137.75 87.96 102.88 160.52 140.13 102.63 171.92 134.59 117.32	$\begin{array}{c} 1_n(m) \\ 3.50 \\ 5.50 \\ 3.50 \\ 3.50 \\ 5.50 \\ 3.50 \\ 3.50 \\ 5.50 \\ 3.50 \\ 3.50 \\ 3.50 \\ 3.50 \end{array}$
Kiriş adı K601 K602 K603 K501 K502 K503 K401 K402 K403 K301 K302	$\begin{array}{c} M_{Ki(\bar{u}st)} \\ 87 \\ 121 \\ 121 \\ 117 \\ 142 \\ 142 \\ 126 \\ 160 \\ 142 \\ 141 \\ 160 \\ \end{array}$	$\begin{array}{r} M_{D,i} \\ -35.96 \\ -50.75 \\ -10.08 \\ -53.13 \\ -63.52 \\ -5.88 \\ -47.59 \\ -62.92 \\ -5.63 \\ -45.24 \\ -63.30 \end{array}$	$\begin{array}{c} M_{A,i} \\ 51.04 \\ 70.25 \\ 110.92 \\ 63.87 \\ 78.48 \\ 136.12 \\ 78.41 \\ 97.08 \\ 136.37 \\ 95.76 \\ 96.70 \\ \end{array}$	M _{Kj(alt)} 87 87 52 97 97 87 97 109 87 109 109	M _{D,j} -10.08 -50.75 -35.96 -5.88 -63.52 -53.13 -5.63 -62.92 -47.59 -8.32 -63.30	$\begin{array}{c} M_{A,i} \\ 97.08 \\ 137.75 \\ 87.96 \\ 102.88 \\ 160.52 \\ 140.13 \\ 102.63 \\ 171.92 \\ 134.59 \\ 117.32 \\ 172.30 \end{array}$	$\begin{array}{c} l_n(m) \\ 3.50 \\ 5.50 \\ 3.50 \\ 3.50 \\ 5.50 \\ 3.50 \\ 3.50 \\ 5.50 \\ 3.50 \\ 3.50 \\ 3.50 \\ 5.50 \\ 3.50 \\ 5.50 \end{array}$
Kiriş adı K601 K602 K503 K501 K502 K503 K401 K402 K403 K301 K302 K303	M _{Ki(üst)} 87 121 121 117 142 142 142 160 142 141 160 142	$\begin{array}{r} M_{D,i} \\ -35.96 \\ -50.75 \\ -10.08 \\ -53.13 \\ -63.52 \\ -5.88 \\ -47.59 \\ -62.92 \\ -5.63 \\ -45.24 \\ -63.30 \\ -8.32 \\ \end{array}$	$\begin{array}{r} M_{A,i} \\ 51.04 \\ 70.25 \\ 110.92 \\ 63.87 \\ 78.48 \\ 136.12 \\ 78.41 \\ 97.08 \\ 136.37 \\ 95.76 \\ 96.70 \\ 133.68 \end{array}$	M _{Kj(alt)} 87 87 52 97 97 87 97 109 87 109 109 87	$\begin{array}{r} M_{D,i} \\ -10.08 \\ -50.75 \\ -35.96 \\ -5.88 \\ -63.52 \\ -53.13 \\ -5.63 \\ -62.92 \\ -47.59 \\ -8.32 \\ -63.30 \\ -45.24 \end{array}$	$\begin{array}{r} M_{A,i} \\ 97.08 \\ 137.75 \\ 87.96 \\ 102.88 \\ 160.52 \\ 140.13 \\ 102.63 \\ 171.92 \\ 134.59 \\ 117.32 \\ 172.30 \\ 132.24 \end{array}$	$\begin{array}{c} 1_n(m) \\ 3.50 \\ 5.50 \\ 3.50 \\ 3.50 \\ 5.50 \\ 3.50 \\ 5.50 \\ 3.50 \\ 5.50 \\ 3.50 \\ 5.50 \\ 3.50 \\ 5.50 \\ 3.50 \\ 5.50 \\ 3.50 \end{array}$
Kiriş adı K601 K602 K603 K501 K502 K503 K401 K402 K403 K301 K302 K303 K201	M _{Ki(üst)} 87 121 121 117 142 142 142 142 141 160 142 142 167	$\begin{array}{r} M_{D,i} \\ -35.96 \\ -50.75 \\ -10.08 \\ -53.13 \\ -63.52 \\ -5.88 \\ -47.59 \\ -62.92 \\ -5.63 \\ -45.24 \\ -63.30 \\ -8.32 \\ -39.01 \end{array}$	$\begin{array}{r} M_{A,i} \\ 51.04 \\ 70.25 \\ 110.92 \\ 63.87 \\ 78.48 \\ 136.12 \\ 78.41 \\ 97.08 \\ 136.37 \\ 95.76 \\ 96.70 \\ 133.68 \\ 127.99 \end{array}$	M _{Kj(alt)} 87 87 52 97 97 87 97 109 87 109 109 87 109	$\begin{array}{r} M_{D,i} \\ -10.08 \\ -50.75 \\ -35.96 \\ -5.88 \\ -63.52 \\ -53.13 \\ -5.63 \\ -62.92 \\ -47.59 \\ -8.32 \\ -63.30 \\ -45.24 \\ -8.30 \end{array}$	$\begin{array}{c} M_{A,i} \\ 97.08 \\ 137.75 \\ 87.96 \\ 102.88 \\ 160.52 \\ 140.13 \\ 102.63 \\ 171.92 \\ 134.59 \\ 117.32 \\ 172.30 \\ 132.24 \\ 117.30 \end{array}$	$\begin{array}{c} 1_n(m) \\ 3.50 \\ 5.50 \\ 3.50 \\ 3.50 \\ 5.50 \\ 3.50 \\ 3.50 \\ 5.50 \\ 3.50 \\ 3.50 \\ 5.50 \\ 3.50 \\ 3.50 \\ 3.50 \\ 3.50 \\ 3.50 \end{array}$
Kiriş adı K601 K602 K503 K501 K502 K503 K401 K402 K403 K301 K301 K302 K303 K201 K202	$\begin{array}{c} M_{Ki(\bar{u}st)} \\ 87 \\ 121 \\ 121 \\ 117 \\ 142 \\ 142 \\ 142 \\ 126 \\ 160 \\ 142 \\ 141 \\ 160 \\ 142 \\ 167 \\ 160 \\ \end{array}$	$\begin{array}{r} M_{D,i} \\ -35.96 \\ -50.75 \\ -10.08 \\ -53.13 \\ -63.52 \\ -5.88 \\ -47.59 \\ -62.92 \\ -5.63 \\ -45.24 \\ -63.30 \\ -8.32 \\ -39.01 \\ -63.21 \\ \end{array}$	$\begin{array}{c} M_{A,i} \\ 51.04 \\ 70.25 \\ 110.92 \\ 63.87 \\ 78.48 \\ 136.12 \\ 78.41 \\ 97.08 \\ 136.37 \\ 95.76 \\ 95.76 \\ 96.70 \\ 133.68 \\ 127.99 \\ 96.79 \\ \end{array}$	M _{Kj(alt)} 87 87 52 97 97 87 109 87 109 109 87 109 109 109 109	$\begin{array}{c} M_{D,i} \\ -10.08 \\ -50.75 \\ -35.96 \\ -5.88 \\ -63.52 \\ -53.13 \\ -5.63 \\ -62.92 \\ -47.59 \\ -8.32 \\ -63.30 \\ -45.24 \\ -8.30 \\ -63.21 \\ \end{array}$	$\begin{array}{c} M_{A,i} \\ 97.08 \\ 137.75 \\ 87.96 \\ 102.88 \\ 160.52 \\ 140.13 \\ 102.63 \\ 171.92 \\ 134.59 \\ 117.32 \\ 172.30 \\ 132.24 \\ 117.30 \\ 172.21 \end{array}$	$\begin{array}{c} 1_n(m) \\ 3.50 \\ 5.50 \\ 3.50 \\ 3.50 \\ 5.50 \\ 3.50 \\ 5.50 \\ 3.50 \\ 5.50 \\ 3.50 \\ 5.50 \\ 3.50 \\ 3.50 \\ 5.50 \\ 3.50 \\ 5.50 \\ 3.50 \\ 5.50 \end{array}$
Kiriş adı K601 K602 K603 K501 K502 K503 K401 K402 K403 K301 K302 K303 K201 K202 K203	M _{Ki(üst)} 87 121 121 117 142 142 142 142 141 160 142 167 160 142	$\begin{array}{r} M_{D,i} \\ -35.96 \\ -50.75 \\ -10.08 \\ -53.13 \\ -63.52 \\ -5.88 \\ -47.59 \\ -62.92 \\ -5.63 \\ -45.24 \\ -63.30 \\ -8.32 \\ -39.01 \\ -63.21 \\ -8.30 \end{array}$	$\begin{array}{r} M_{A,i} \\ 51.04 \\ 70.25 \\ 110.92 \\ 63.87 \\ 78.48 \\ 136.12 \\ 78.41 \\ 97.08 \\ 136.37 \\ 95.76 \\ 96.70 \\ 133.68 \\ 127.99 \\ 96.79 \\ 133.70 \\ \end{array}$	M _{Kj(alt)} 87 87 52 97 97 87 97 109 87 109 109 87 109 97 109 97	$\begin{array}{r} M_{D,i} \\ -10.08 \\ -50.75 \\ -35.96 \\ -5.88 \\ -63.52 \\ -53.13 \\ -5.63 \\ -62.92 \\ -47.59 \\ -8.32 \\ -63.30 \\ -45.24 \\ -8.30 \\ -63.21 \\ -39.01 \\ \end{array}$	$\begin{array}{r} M_{A,i} \\ 97.08 \\ 137.75 \\ 87.96 \\ 102.88 \\ 160.52 \\ 140.13 \\ 102.63 \\ 171.92 \\ 134.59 \\ 117.32 \\ 172.30 \\ 132.24 \\ 117.30 \\ 172.21 \\ 136.01 \\ \end{array}$	$\begin{array}{c} 1_n(m) \\ 3.50 \\ 5.50 \\ 3.50 \\ $
Kiriş adı K601 K602 K603 K501 K502 K503 K401 K402 K403 K301 K302 K303 K201 K202 K203 K101	$\begin{array}{r} M_{Ki(\bar{u}st)} \\ 87 \\ 121 \\ 121 \\ 117 \\ 142 \\ 142 \\ 142 \\ 126 \\ 160 \\ 142 \\ 141 \\ 160 \\ 142 \\ 167 \\ 160 \\ 142 \\ 273 \\ \end{array}$	$\begin{array}{r} M_{D,i} \\ -35.96 \\ -50.75 \\ -10.08 \\ -53.13 \\ -63.52 \\ -5.88 \\ -47.59 \\ -62.92 \\ -5.63 \\ -45.24 \\ -63.30 \\ -8.32 \\ -39.01 \\ -63.21 \\ -8.30 \\ -24.28 \end{array}$	$\begin{array}{r} M_{A,i} \\ 51.04 \\ 70.25 \\ 110.92 \\ 63.87 \\ 78.48 \\ 136.12 \\ 78.41 \\ 97.08 \\ 136.37 \\ 95.76 \\ 96.70 \\ 133.68 \\ 127.99 \\ 96.79 \\ 133.70 \\ 248.72 \end{array}$	M _{Kj(alt)} 87 87 52 97 97 87 109 87 109 109 87 109 109 97 142	$\begin{array}{r} M_{D,i} \\ -10.08 \\ -50.75 \\ -35.96 \\ -5.88 \\ -63.52 \\ -53.13 \\ -5.63 \\ -62.92 \\ -47.59 \\ -8.32 \\ -63.30 \\ -45.24 \\ -8.30 \\ -63.21 \\ -39.01 \\ -29.31 \\ \end{array}$	$\begin{array}{r} M_{A,i} \\ 97.08 \\ 137.75 \\ 87.96 \\ 102.88 \\ 160.52 \\ 140.13 \\ 102.63 \\ 171.92 \\ 134.59 \\ 117.32 \\ 172.30 \\ 132.24 \\ 117.30 \\ 172.21 \\ 136.01 \\ 171.31 \\ \end{array}$	$\begin{array}{c} 1_n(m) \\ 3.50 \\ 5.50 \\ 3.50 \\ 3.50 \\ 5.50 \\ 3.50 \\ 3.50 \\ 5.50 \\ 3.50 \\ 3.50 \\ 3.50 \\ 3.50 \\ 3.50 \\ 3.50 \\ 3.50 \\ 3.50 \\ 3.50 \\ 3.50 \\ 3.50 \\ 3.50 \\ 3.50 \\ 3.50 \\ 3.50 \\ 3.50 \end{array}$
Kiriş adı K601 K602 K603 K501 K502 K503 K401 K402 K403 K301 K302 K303 K201 K202 K203 K101 K102	M _{Ki(üst)} 87 121 121 117 142 142 142 141 160 142 141 160 142 201 141 160 142 126 120 141 160 142 167 162 273 227	$\begin{array}{r} M_{D,i} \\ -35.96 \\ -50.75 \\ -10.08 \\ -53.13 \\ -63.52 \\ -5.88 \\ -47.59 \\ -62.92 \\ -5.63 \\ -45.24 \\ -63.30 \\ -8.32 \\ -39.01 \\ -63.21 \\ -8.30 \\ -24.28 \\ -67.58 \\ \end{array}$	$\begin{array}{r} M_{A,i} \\ 51.04 \\ 70.25 \\ 110.92 \\ 63.87 \\ 78.48 \\ 136.12 \\ 78.41 \\ 97.08 \\ 136.37 \\ 95.76 \\ 96.70 \\ 133.68 \\ 127.99 \\ 96.79 \\ 133.70 \\ 248.72 \\ 159.42 \\ \end{array}$	M _{Kj(alt)} 87 87 52 97 97 87 109 109 87 109 109 87 109 109 97 142 142	$\begin{array}{r} M_{D,i} \\ -10.08 \\ -50.75 \\ -35.96 \\ -5.88 \\ -63.52 \\ -53.13 \\ -5.63 \\ -62.92 \\ -47.59 \\ -8.32 \\ -63.30 \\ -45.24 \\ -8.30 \\ -63.21 \\ -39.01 \\ -29.31 \\ -67.58 \end{array}$	$\begin{array}{r} M_{A,i} \\ 97.08 \\ 137.75 \\ 87.96 \\ 102.88 \\ 160.52 \\ 140.13 \\ 102.63 \\ 171.92 \\ 134.59 \\ 117.32 \\ 172.30 \\ 132.24 \\ 117.30 \\ 132.24 \\ 117.30 \\ 172.21 \\ 136.01 \\ 171.31 \\ 209.58 \end{array}$	$\begin{array}{c} 1_n(m) \\ 3.50 \\ 5.50 \\ 3.50 \\ $

Tablo A.2. Kirişlerin her iki deprem yönündeki moment ve artık moment kapasiteleri (kNm)

A.3. Kolonların eğilme momenti kapasiteleri

Bu bölümde yönetmeliğe göre kolonların eğilme momenti kapasitelerinin belirlenmesinde kullanılan P-M etkileşim diyagramlarına yer verilmiştir.

Şekil A.1. 1S2 kolonunun (P-M) etkileşim diyagramı

Zemin kat dışındaki kolonların donatı düzeni aşağıda gösterilmiştir.

Şekil A.2. Normal kat kolonlarının donatı düzeni

Şekil A.3. 2S1 kolonunun (P-M) etkileşim diyagramı

Şekil A.4. 2S2 kolonunun (P-M) etkileşim diyagramı

Şekil A.5. 3S1 kolonunun (P-M) etkileşim diyagramı

Şekil A.6. 3S2 kolonunun (P-M) etkileşim diyagramı

Şekil A.7. 4S1 kolonunun (P-M) etkileşim diyagramı

Şekil A.8. 4S2 kolonunun (P-M) etkileşim diyagramı

Şekil A.9. 5S1 kolonunun (P-M) etkileşim diyagramı

Şekil A.10. 5S2 kolonunun (P-M) etkileşim diyagramı

Şekil A.11. 6S1 kolonunun (P-M) etkileşim diyagramı

Şekil A.12. 6S2 kolonunun (P-M) etkileşim diyagramı

A.4. Kirişlerin kesme kuvveti kapasiteleri

				1	-					
Kiriş no	M _{Ki(alt)}	V _{dyi}	V _{e,i}		V _{r,i}	M _{Kj(üst)}	V_{dyj}	V _{e,j}		V _{r,j}
K601	52	38.79	10.64	<	305.50	121	20.88	70.31	<	305.50
K602	87	55.29	17.47	<	305.50	121	55.29	93.11	<	305.50
K603	87	20.88	28.83	<	305.50	87	38.79	88.50	<	305.50
K501	87	52.69	12.74	<	305.50	142	38.79	104.22	<	305.50
K502	97	65.23	21.78	<	305.50	142	65.23	108.68	<	305.50
K503	97	18.97	42.17	<	305.50	117	52.69	113.83	<	305.50
K401	87	49.50	15.93	<	305.50	142	22.17	87.60	<	305.50
K402	109	65.23	16.32	<	305.50	160	65.23	114.14	<	305.50
K403	97	22.17	41.54	<	305.50	126	49.50	113.21	<	305.50
K301	87	48.15	17.28	<	305.50	142	23.51	88.94	<	305.50
K302	109	65.23	16.32	<	305.50	160	65.23	114.14	<	305.50
K303	109	23.51	47.92	<	305.50	141	48.15	119.58	<	305.50
K201	97	44.63	23.66	<	305.50	142	27.04	95.33	<	305.50
K202	109	65.23	16.32	<	305.50	160	65.23	114.14	<	305.50
K203	109	27.04	51.82	<	305.50	167	44.63	123.49	<	305.50
K101	187	38.77	79.52	<	305.50	227	41.64	159.93	<	305.50
K102	142	72.11	5.02	<	305.50	227	72.11	139.20	<	305.50
K103	142	41.64	76.93	<	305.50	273	38.77	157.34	<	305.50
			1	-					-	
Kiriş no	M _{Ki(üst)}	V _{dyi}	V _{e,i}		V _{r,i}	M _{Kj(alt)}	V_{dyj}	V _{e,j}		V _{r,j}
Kiriş no K601	M _{Ki(üst)} 87	V _{dyi} 38.79	V _{e,i} 88.50	<	V _{r,i} 305.50	M _{Kj(alt)} 87	V _{dyj} 20.88	V _{e,j} 28.83	<	V _{r,j} 305.50
Kiriş no K601 K602	M _{Ki(üst)} 87 121	V _{dyi} 38.79 55.29	V _{e,i} 88.50 93.11	<	V _{r,i} 305.50 305.50	M _{Kj(alt)} 87 87	V _{dyj} 20.88 55.29	V _{e,j} 28.83 17.47	< <	V _{r,j} 305.50 305.50
Kiriş no K601 K602 K603	M _{Ki(üst)} 87 121 121	V _{dyi} 38.79 55.29 20.88	V _{e,i} 88.50 93.11 70.31	< < <	$\frac{V_{r,i}}{305.50}\\305.50\\305.50$	M _{Kj(alt)} 87 87 52	V _{dyj} 20.88 55.29 38.79	V _{e,j} 28.83 17.47 10.64	< < <	V _{r,j} 305.50 305.50 305.50
Kiriş no K601 K602 K603 K501	M _{Ki(üst)} 87 121 121 117	V _{dyi} 38.79 55.29 20.88 52.69	V _{e,i} 88.50 93.11 70.31 113.83	< < < <	$\frac{V_{r,i}}{305.50}\\ 305.50\\ 305.50\\ 305.50\\ 305.50$	M _{Kj(alt)} 87 87 52 97	V _{dyj} 20.88 55.29 38.79 38.79	V _{e,j} 28.83 17.47 10.64 22.35	< < < <	V _{r,j} 305.50 305.50 305.50 305.50
Kiriş no K601 K602 K603 K501 K502	M _{Ki(üst)} 87 121 121 121 117 142	V _{dyi} 38.79 55.29 20.88 52.69 65.23	V _{e,i} 88.50 93.11 70.31 113.83 108.68	< <tr> <</tr>	$\begin{array}{c} V_{r,i} \\ 305.50 \\ 305.50 \\ 305.50 \\ 305.50 \\ 305.50 \\ 305.50 \end{array}$	M _{Kj(alt)} 87 87 52 97 97	V _{dyj} 20.88 55.29 38.79 38.79 65.23	V _{e,j} 28.83 17.47 10.64 22.35 21.78	<	V _{r,j} 305.50 305.50 305.50 305.50 305.50
Kiriş no K601 K602 K603 K501 K502 K503	M _{Ki(üst)} 87 121 121 121 117 142 142	V _{dyi} 38.79 55.29 20.88 52.69 65.23 18.97	V _{e,i} 88.50 93.11 70.31 113.83 108.68 84.40		$\begin{array}{c} V_{r,i} \\ 305.50 \\ 305.50 \\ 305.50 \\ 305.50 \\ 305.50 \\ 305.50 \\ 305.50 \end{array}$	M _{Kj(alt)} 87 87 52 97 97 87	V _{dyj} 20.88 55.29 38.79 38.79 65.23 52.69	V _{e,j} 28.83 17.47 10.64 22.35 21.78 12.74		V _{r,j} 305.50 305.50 305.50 305.50 305.50 305.50
Kiriş no K601 K602 K603 K501 K502 K503 K401	M _{Ki(üst)} 87 121 121 117 142 142 126	V _{dyi} 38.79 55.29 20.88 52.69 65.23 18.97 49.50	V _{e,i} 88.50 93.11 70.31 113.83 108.68 84.40 113.21		$\begin{array}{c} V_{r,i} \\ 305.50 \\ 305.50 \\ 305.50 \\ 305.50 \\ 305.50 \\ 305.50 \\ 305.50 \\ 305.50 \\ \end{array}$	M _{Kj(alt)} 87 87 52 97 97 87 97	V _{dvj} 20.88 55.29 38.79 38.79 65.23 52.69 22.17	V _{e,j} 28.83 17.47 10.64 22.35 21.78 12.74 41.54	 	V _{r,j} 305.50 305.50 305.50 305.50 305.50 305.50 305.50
Kiriş no K601 K602 K603 K501 K502 K503 K401 K402	M _{Ki(üst)} 87 121 121 117 142 142 142 126 160	V _{dvi} 38.79 55.29 20.88 52.69 65.23 18.97 49.50 65.23	V _{e,i} 88.50 93.11 70.31 113.83 108.68 84.40 113.21 114.14		$\begin{array}{c} V_{r,i} \\ 305.50 \\ 305.50 \\ 305.50 \\ 305.50 \\ 305.50 \\ 305.50 \\ 305.50 \\ 305.50 \\ 305.50 \\ 305.50 \end{array}$	M _{Kj(alt)} 87 87 52 97 97 87 97 109	V _{dyj} 20.88 55.29 38.79 38.79 65.23 52.69 22.17 65.23	V _{e,j} 28.83 17.47 10.64 22.35 21.78 12.74 41.54 16.32		V _{r,j} 305.50 305.50 305.50 305.50 305.50 305.50 305.50
Kiriş no K601 K602 K603 K501 K502 K503 K401 K402 K403	M _{Ki(üst)} 87 121 121 117 142 142 142 126 160 142	V _{dyi} 38.79 55.29 20.88 52.69 65.23 18.97 49.50 65.23 22.17	V _{e,i} 88.50 93.11 70.31 113.83 108.68 84.40 113.21 114.14 87.60		$\begin{array}{c} V_{r,i} \\ 305.50 \\ 305.50 \\ 305.50 \\ 305.50 \\ 305.50 \\ 305.50 \\ 305.50 \\ 305.50 \\ 305.50 \\ 305.50 \\ 305.50 \end{array}$	M _{Kj(alt)} 87 52 97 97 87 97 109 87	V _{dyj} 20.88 55.29 38.79 38.79 65.23 52.69 22.17 65.23 49.50	V _{e,j} 28.83 17.47 10.64 22.35 21.78 12.74 41.54 16.32 15.93		V _{r,j} 305.50 305.50 305.50 305.50 305.50 305.50 305.50 305.50
Kiriş no K601 K602 K603 K501 K502 K503 K401 K402 K403 K301	$\begin{array}{c} M_{Ki(\ddot{u}st)} \\ 87 \\ 121 \\ 121 \\ 117 \\ 142 \\ 142 \\ 126 \\ 160 \\ 142 \\ 141 \\ \end{array}$	$\begin{array}{r} V_{dyi} \\ 38.79 \\ 55.29 \\ 20.88 \\ 52.69 \\ 65.23 \\ 18.97 \\ 49.50 \\ 65.23 \\ 22.17 \\ 48.15 \end{array}$	V _{e,i} 88.50 93.11 70.31 113.83 108.68 84.40 113.21 114.14 87.60 119.58		$\begin{array}{c} V_{r,i} \\ 305.50 \\ 305.50 \\ 305.50 \\ 305.50 \\ 305.50 \\ 305.50 \\ 305.50 \\ 305.50 \\ 305.50 \\ 305.50 \\ 305.50 \\ 305.50 \\ \end{array}$	M _{Kj(alt)} 87 87 52 97 97 87 97 109 87 109	$\begin{array}{c} V_{dyi} \\ 20.88 \\ 55.29 \\ 38.79 \\ 38.79 \\ 65.23 \\ 52.69 \\ 22.17 \\ 65.23 \\ 49.50 \\ 23.51 \\ \end{array}$	V _{e,j} 28.83 17.47 10.64 22.35 21.78 12.74 41.54 16.32 15.93 47.92	<	V _{r,j} 305.50 305.50 305.50 305.50 305.50 305.50 305.50 305.50 305.50
Kiriş no K601 K602 K503 K501 K502 K503 K401 K402 K403 K301 K302	$\begin{array}{c} M_{Ki(\ddot{u}st)} \\ 87 \\ 121 \\ 121 \\ 117 \\ 142 \\ 142 \\ 142 \\ 126 \\ 160 \\ 142 \\ 141 \\ 160 \\ \end{array}$	$\begin{array}{r} V_{dyi} \\ 38.79 \\ 55.29 \\ 20.88 \\ 52.69 \\ 65.23 \\ 18.97 \\ 49.50 \\ 65.23 \\ 22.17 \\ 48.15 \\ 65.23 \end{array}$	V _{e,i} 88.50 93.11 70.31 113.83 108.68 84.40 113.21 114.14 87.60 119.58 114.14		$\begin{array}{c} V_{r,i} \\ 305.50 \\ 305.50 \\ 305.50 \\ 305.50 \\ 305.50 \\ 305.50 \\ 305.50 \\ 305.50 \\ 305.50 \\ 305.50 \\ 305.50 \\ 305.50 \\ 305.50 \\ \end{array}$	M _{Kj(alt)} 87 52 97 97 87 97 109 87 109 109	V _{dyj} 20.88 55.29 38.79 38.79 65.23 52.69 22.17 65.23 49.50 23.51 65.23	V _{e,j} 28.83 17.47 10.64 22.35 21.78 12.74 41.54 16.32 15.93 47.92 16.32	<	V _{r,j} 305.50 305.50 305.50 305.50 305.50 305.50 305.50 305.50 305.50 305.50
Kiriş no K601 K602 K603 K501 K502 K503 K401 K402 K403 K301 K303	$\begin{array}{r} M_{Ki(\ddot{u}st)} \\ 87 \\ 121 \\ 121 \\ 117 \\ 142 \\ 142 \\ 142 \\ 126 \\ 160 \\ 142 \\ 141 \\ 160 \\ 142 \end{array}$	$\begin{array}{r} V_{dyi} \\ 38.79 \\ 55.29 \\ 20.88 \\ 52.69 \\ 65.23 \\ 18.97 \\ 49.50 \\ 65.23 \\ 22.17 \\ 48.15 \\ 65.23 \\ 23.51 \\ \end{array}$	$\begin{array}{c} V_{e,i} \\ 88.50 \\ 93.11 \\ 70.31 \\ 113.83 \\ 108.68 \\ 84.40 \\ 113.21 \\ 114.14 \\ 87.60 \\ 119.58 \\ 114.14 \\ 88.94 \\ \end{array}$		$\begin{array}{c} V_{r,i} \\ 305.50 \\ 305.$	M _{Kj(alt)} 87 87 52 97 97 87 97 109 87 109 109 87	$\begin{array}{c} V_{dyj} \\ 20.88 \\ 55.29 \\ 38.79 \\ 38.79 \\ 65.23 \\ 52.69 \\ 22.17 \\ 65.23 \\ 49.50 \\ 23.51 \\ 65.23 \\ 48.15 \\ \end{array}$	V _{e,j} 28.83 17.47 10.64 22.35 21.78 12.74 41.54 16.32 15.93 47.92 16.32 17.28		V _{r,j} 305.50 305.50 305.50 305.50 305.50 305.50 305.50 305.50 305.50 305.50 305.50
Kiriş no K601 K602 K501 K502 K503 K401 K402 K403 K301 K302 K303 K201	$\begin{array}{r} M_{Ki(\ddot{u}st)} \\ 87 \\ 121 \\ 121 \\ 117 \\ 142 \\ 142 \\ 142 \\ 126 \\ 160 \\ 142 \\ 141 \\ 160 \\ 142 \\ 141 \\ 160 \\ 142 \\ 167 \\ \end{array}$	$\begin{array}{r} V_{dyi} \\ 38.79 \\ 55.29 \\ 20.88 \\ 52.69 \\ 65.23 \\ 18.97 \\ 49.50 \\ 65.23 \\ 22.17 \\ 48.15 \\ 65.23 \\ 23.51 \\ 44.63 \\ \end{array}$	$\begin{array}{c} V_{e,i} \\ 88.50 \\ 93.11 \\ 70.31 \\ 113.83 \\ 108.68 \\ 84.40 \\ 113.21 \\ 114.14 \\ 87.60 \\ 119.58 \\ 114.14 \\ 88.94 \\ 123.49 \end{array}$		$\begin{array}{c} V_{r,i} \\ 305.50 \\ 305.$	M _{Kj(alt)} 87 87 52 97 97 87 109 87 109 87 109 87 109	$\begin{array}{c} V_{dyi} \\ 20.88 \\ 55.29 \\ 38.79 \\ 38.79 \\ 65.23 \\ 52.69 \\ 22.17 \\ 65.23 \\ 49.50 \\ 23.51 \\ 65.23 \\ 48.15 \\ 27.04 \\ \end{array}$	V _{e,j} 28.83 17.47 10.64 22.35 21.78 12.74 41.54 16.32 15.93 47.92 16.32 17.28 51.82		V _{r,j} 305.50 305.50 305.50 305.50 305.50 305.50 305.50 305.50 305.50 305.50 305.50 305.50
Kiriş no K601 K602 K603 K501 K502 K503 K401 K402 K403 K301 K303 K201	$\begin{array}{r} M_{Ki(\ddot{u}st)} \\ 87 \\ 121 \\ 121 \\ 117 \\ 142 \\ 142 \\ 142 \\ 126 \\ 160 \\ 142 \\ 141 \\ 160 \\ 142 \\ 141 \\ 160 \\ 142 \\ 167 \\ 160 \\ \end{array}$	$\begin{array}{r} V_{dyi} \\ 38.79 \\ 55.29 \\ 20.88 \\ 52.69 \\ 65.23 \\ 18.97 \\ 49.50 \\ 65.23 \\ 22.17 \\ 48.15 \\ 65.23 \\ 23.51 \\ 44.63 \\ 65.23 \\ \end{array}$	$\begin{array}{c} V_{e,i} \\ 88.50 \\ 93.11 \\ 70.31 \\ 113.83 \\ 108.68 \\ 84.40 \\ 113.21 \\ 114.14 \\ 87.60 \\ 119.58 \\ 114.14 \\ 88.94 \\ 123.49 \\ 114.14 \end{array}$		$\begin{array}{c} V_{r,i} \\ 305.50 \\ 305.$	M _{Kj(alt)} 87 87 52 97 97 87 109 87 109 87 109 109 109	V _{dyj} 20.88 55.29 38.79 38.79 65.23 52.69 22.17 65.23 49.50 23.51 65.23 48.15 27.04 65.23	V _{e,j} 28.83 17.47 10.64 22.35 21.78 12.74 41.54 16.32 15.93 47.92 16.32 17.28 51.82 16.32		V _{r,j} 305.50 305.50 305.50 305.50 305.50 305.50 305.50 305.50 305.50 305.50 305.50 305.50 305.50
Kiriş no K601 K602 K603 K501 K502 K503 K401 K402 K403 K301 K302 K303 K201 K202 K203	$\begin{array}{r} M_{Ki(\ddot{u}st)} \\ 87 \\ 121 \\ 121 \\ 117 \\ 142 \\ 142 \\ 142 \\ 126 \\ 160 \\ 142 \\ 141 \\ 160 \\ 142 \\ 167 \\ 160 \\ 142 \\ 167 \\ 160 \\ 142 \end{array}$	$\begin{array}{r} V_{dyi} \\ 38.79 \\ 55.29 \\ 20.88 \\ 52.69 \\ 65.23 \\ 18.97 \\ 49.50 \\ 65.23 \\ 22.17 \\ 48.15 \\ 65.23 \\ 23.51 \\ 44.63 \\ 65.23 \\ 27.04 \\ \end{array}$	$\begin{array}{c} V_{e,i} \\ 88.50 \\ 93.11 \\ 70.31 \\ 113.83 \\ 108.68 \\ 84.40 \\ 113.21 \\ 114.14 \\ 87.60 \\ 119.58 \\ 114.14 \\ 88.94 \\ 123.49 \\ 114.14 \\ 95.33 \\ \end{array}$		$\begin{array}{c} V_{r,i} \\ 305.50 \\ 305.$	M _{Kj(alt)} 87 52 97 97 87 97 109 87 109 87 109 109 97	$\begin{array}{c} V_{dyi} \\ 20.88 \\ 55.29 \\ 38.79 \\ 38.79 \\ 65.23 \\ 52.69 \\ 22.17 \\ 65.23 \\ 49.50 \\ 23.51 \\ 65.23 \\ 48.15 \\ 27.04 \\ 65.23 \\ 44.63 \\ \end{array}$	V _{e,j} 28.83 17.47 10.64 22.35 21.78 12.74 41.54 16.32 15.93 47.92 16.32 17.28 51.82 16.32 23.66		V _{r,j} 305.50 305.50 305.50 305.50 305.50 305.50 305.50 305.50 305.50 305.50 305.50 305.50 305.50 305.50
Kiriş no K601 K602 K501 K502 K503 K401 K402 K403 K301 K302 K303 K201 K202 K203 K101	$\begin{array}{r} M_{Ki(\ddot{u}st)} \\ 87 \\ 121 \\ 121 \\ 117 \\ 142 \\ 142 \\ 142 \\ 142 \\ 142 \\ 141 \\ 160 \\ 142 \\ 167 \\ 160 \\ 142 \\ 167 \\ 160 \\ 142 \\ 273 \\ \end{array}$	$\begin{array}{r} V_{dyi} \\ 38.79 \\ 55.29 \\ 20.88 \\ 52.69 \\ 65.23 \\ 18.97 \\ 49.50 \\ 65.23 \\ 22.17 \\ 48.15 \\ 65.23 \\ 23.51 \\ 44.63 \\ 65.23 \\ 23.51 \\ 44.63 \\ 65.23 \\ 27.04 \\ 38.77 \end{array}$	$\begin{array}{r} V_{e,i} \\ 88.50 \\ 93.11 \\ 70.31 \\ 113.83 \\ 108.68 \\ 84.40 \\ 113.21 \\ 114.14 \\ 87.60 \\ 119.58 \\ 114.14 \\ 88.94 \\ 123.49 \\ 114.14 \\ 95.33 \\ 157.34 \\ \end{array}$		$\begin{array}{c} V_{r,i} \\ 305.50 \\ 305.$	M _{Kj(alt)} 87 87 52 97 97 87 109 87 109 87 109 109 97 142	$\begin{array}{r} V_{dyj} \\ 20.88 \\ 55.29 \\ 38.79 \\ 38.79 \\ 65.23 \\ 52.69 \\ 22.17 \\ 65.23 \\ 49.50 \\ 23.51 \\ 65.23 \\ 49.50 \\ 23.51 \\ 65.23 \\ 48.15 \\ 27.04 \\ 65.23 \\ 44.63 \\ 41.64 \\ \end{array}$	V _{e,j} 28.83 17.47 10.64 22.35 21.78 12.74 41.54 16.32 15.93 47.92 16.32 17.28 51.82 16.32 23.66 76.93		V _{r,j} 305.50 305.50 305.50 305.50 305.50 305.50 305.50 305.50 305.50 305.50 305.50 305.50 305.50 305.50 305.50 305.50
Kiriş no K601 K602 K603 K501 K502 K503 K401 K402 K403 K301 K201 K202 K203 K101 K102	$\begin{array}{r} M_{Ki(\bar{u}st)} \\ 87 \\ 121 \\ 121 \\ 117 \\ 142 \\ 142 \\ 142 \\ 126 \\ 160 \\ 142 \\ 141 \\ 160 \\ 142 \\ 167 \\ 160 \\ 142 \\ 273 \\ 227 \\ \end{array}$	$\begin{array}{r} V_{dyi} \\ 38.79 \\ 55.29 \\ 20.88 \\ 52.69 \\ 65.23 \\ 18.97 \\ 49.50 \\ 65.23 \\ 22.17 \\ 48.15 \\ 65.23 \\ 23.51 \\ 44.63 \\ 65.23 \\ 23.51 \\ 44.63 \\ 65.23 \\ 27.04 \\ 38.77 \\ 72.11 \\ \end{array}$	$\begin{array}{c} V_{e,i} \\ 88.50 \\ 93.11 \\ 70.31 \\ 113.83 \\ 108.68 \\ 84.40 \\ 113.21 \\ 114.14 \\ 87.60 \\ 119.58 \\ 114.14 \\ 88.94 \\ 123.49 \\ 114.14 \\ 95.33 \\ 157.34 \\ 139.20 \\ \end{array}$		$\begin{array}{c} V_{r,i}\\ 305.50$	M _{Kj(alt)} 87 87 52 97 97 87 109 87 109 109 87 109 109 97 142 142	$\begin{array}{r} V_{dyi} \\ 20.88 \\ 55.29 \\ 38.79 \\ 38.79 \\ 65.23 \\ 52.69 \\ 22.17 \\ 65.23 \\ 49.50 \\ 23.51 \\ 65.23 \\ 48.15 \\ 27.04 \\ 65.23 \\ 48.63 \\ 41.64 \\ 72.11 \\ \end{array}$	$\begin{array}{c} V_{e,j} \\ 28.83 \\ 17.47 \\ 10.64 \\ 22.35 \\ 21.78 \\ 12.74 \\ 41.54 \\ 16.32 \\ 15.93 \\ 47.92 \\ 16.32 \\ 17.28 \\ 51.82 \\ 16.32 \\ 23.66 \\ 76.93 \\ 5.02 \\ \end{array}$		V _{r,j} 305.50 305.50 305.50 305.50 305.50 305.50 305.50 305.50 305.50 305.50 305.50 305.50 305.50 305.50 305.50 305.50 305.50

Tablo A.3. Kirişlerin her iki deprem yönüyle uyumlu kesme kuvveti kapasiteleri

A.5. Kolonların kesme kuvveti kapasiteleri

Kolon no	MEa	M _{E ü}	M _{Ki(alt)}	M _{Ki(üst)}	M _{K a}	M _{K ü}	Ve		Vr
6S1	11.86	100.13	52	0	3.32	52.00	23.05	<	347.07
581	169.74	298.49	87	0	25.96	83.68	45.68	<	357.85
4S1	289.84	399.02	87	0	31.17	61.04	38.42	<	373.02
3S1	360.59	519.18	87	0	29.97	55.83	35.75	<	389.07
2S1	554.56	806.47	97	0	56.10	67.03	36.22	<	399.62
1S1	1593.9	1293.8	187	0	412.2	130.90	100.57	<	408.42
6S2	208.06	324.07	87	121	70.76	208.00	116.15	<	348.44
582	393.69	494.69	97	142	91.75	168.24	108.33	<	357.85
4S2	584.46	683.29	109	142	101.99	159.25	108.85	<	367.42
382	710.37	853.95	109	142	90.54	149.01	99.81	<	379.90
282	1148.1	1258.9	109	142	155.67	160.46	92.98	<	394.64
1S2	1730.7	1573.2	142	227	414.9	213.33	116.34	<	412.35
6S3	208.06	324.07	87	121	70.76	208.00	116.15	<	348.44
583	393.69	494.69	97	142	93.95	168.24	109.24	<	357.85
4S3	584.46	683.29	97	160	109.30	163.05	113.48	<	367.42
383	710.37	853.95	109	160	97.03	159.70	106.97	<	379.90
2S3	1148.1	1258.9	109	160	155.67	171.97	96.36	<	394.64
1S3	1730.7	1573.2	142	227	414.9	213.33	116.34	<	412.35
6S4	11.86	100.13	0	87	4.47	87.00	38.11	<	347.07
584	169.74	298.49	0	117	37.60	112.53	62.56	<	357.85
4S4	289.84	399.02	0	126	50.51	88.40	57.88	<	373.02
384	360.59	519.18	0	141	51.60	90.49	59.20	<	389.07
284	554.56	806.47	0	167	81.91	115.40	58.03	<	399.62
1S4	1593.9	1293.8	0	273	412.2	191.09	111.72	<	408.42

Tablo A.4. Kolonların (+X) deprem yönüyle uyumlu kesme kuvveti kapasiteleri

Kolon no	M _{E,a}	$M_{E,\ddot{u}}$	M _{Ki(üst)}	M _{Kj(alt)}	M _{K,a}	$M_{K,\ddot{u}}$	Ve		Vr
6S1	11.86	100.13	87	0	4.47	87.00	38.11	<	347.07
5S1	169.74	298.49	117	0	37.60	112.53	62.56	<	360.29
4S1	289.84	399.02	126	0	50.51	88.40	57.88	<	377.24
3S1	360.59	519.18	141	0	51.60	90.49	59.20	<	394.64
2S1	554.56	806.47	167	0	81.91	115.40	58.03	<	405.70
1S1	1593.9	1293.8	273	0	412.2	191.09	111.72	<	410.36
6S2	208.06	324.07	121	87	70.76	208.00	116.15	<	350.65
582	393.69	494.69	142	97	93.95	168.24	109.24	<	357.85
4S2	584.46	683.29	160	97	109.30	163.05	113.48	<	367.95
382	710.37	853.95	160	109	97.03	159.70	106.97	<	382.00
282	1148.1	1258.9	160	109	155.67	171.97	96.36	<	394.64
1S2	1730.7	1573.2	227	142	414.9	213.33	116.34	<	412.25
683	208.06	324.07	121	87	70.76	208.00	116.15	<	350.65
583	393.69	494.69	142	97	91.75	168.24	108.33	<	357.85
483	584.46	683.29	142	109	101.99	159.25	108.85	<	367.95
383	710.37	853.95	142	109	90.54	149.01	99.81	<	382.00
283	1148.1	1258.9	142	109	155.67	160.46	92.98	<	394.64
1S3	1730.7	1573.2	227	142	414.9	213.33	116.34	<	412.25
6S4	11.86	100.13	0	52	3.32	52.00	23.05	<	347.07
584	169.74	298.49	0	87	25.96	83.68	45.68	<	360.29
4S4	289.84	399.02	0	87	31.17	61.04	38.42	<	377.24
384	360.59	519.18	0	87	29.97	55.83	35.75	<	394.64
2S4	554.56	806.47	0	97	56.10	67.03	36.22	<	405.70
1S4	1593.9	1293.8	0	187	412.2	130.90	100.57	<	410.36

Tablo A.5. Kolonların (-X) deprem yönüyle uyumlu kesme kuvveti kapasiteleri

A.6. Birleşim bölgelerinin kesme kuvveti kapasiteleri

Düğüm no	Kirişler	A_{s1}	A_{s2}	$V_{\ddot{u}}$	Va	$V_{kol(min)}$	Ve		Vr
24	K603	0	226	38.11	0	0.00	118.65	<	1800
23	K503	0	380	62.56	38.11	38.11	161.39	<	1800
22	K403	0	380	57.88	62.56	57.88	141.62	<	1800
21	K303	0	380	59.20	57.88	57.88	141.62	<	1800
20	K203	0	427	58.03	59.20	58.03	166.14	<	1800
19	K103	0	829	111.72	58.03	58.03	377.19	<	1800
18	K602,K603	534	380	116.15	0	0.00	479.85	<	1800
17	K502,K503	628	427	109.24	116.15	109.24	444.63	<	1800
16	K402,K403	628	427	113.48	109.24	109.24	444.63	<	1800
15	K302,K303	710	480	106.97	113.48	106.97	517.78	<	1800
14	K202,K203	710	480	96.36	106.97	96.36	528.39	<	1800
13	K102,K103	1018	628	116.34	96.36	96.36	767.79	<	1800
12	K601,K602	534	380	116.15	0	0.00	479.85	<	1800
11	K501,K502	628	427	108.33	116.15	108.33	445.54	<	1800
10	K401,K402	628	427	108.85	108.33	108.33	445.54	<	1800
9	K301,K302	628	480	99.81	108.85	99.81	481.89	<	1800
8	K201,K202	628	480	92.98	99.81	92.98	488.72	<	1800
7	K101,K102	1018	628	116.34	92.98	92.98	771.17	<	1800
6	K601	0	226	23.05	0	0.00	118.65	<	1800
5	K501	0	380	45.68	23.05	23.05	176.45	<	1800
4	K401	0	380	38.42	45.68	38.42	161.08	<	1800
3	K301	0	380	35.75	38.42	35.75	163.75	<	1800
2	K201	0	427	36.22	35.75	35.75	188.42	<	1800
1	K101	0	829	100.57	36.22	36.22	399.01	<	1800

Tablo A.6. Birleşim bölgelerinin (+X) deprem yönüyle uyumlu kesme kuvveti kapasiteleri

Düğüm no	Kirişler	A _{s1}	A_{s2}	$V_{\ddot{u}}$	Va	V _{kol(min)}	Ve		Vr
24	K603	380	0	23.05	0	0.00	199.50	<	1800
23	K503	515	0	45.68	23.05	23.05	247.32	<	1800
22	K403	556	0	38.42	45.68	38.42	253.48	<	1800
21	K303	628	0	35.75	38.42	35.75	293.95	<	1800
20	K203	741	0	36.22	35.75	35.75	353.27	<	1800
19	K103	1225	0	100.57	36.22	36.22	606.91	<	1800
18	K602,K603	534	380	116.15	0	0.00	479.85	<	1800
17	K502,K503	628	427	108.33	116.15	108.33	445.54	<	1800
16	K402,K403	628	427	108.85	108.33	108.33	445.54	<	1800
15	K302,K303	628	480	99.81	108.85	99.81	481.89	<	1800
14	K202,K203	628	480	92.98	99.81	92.98	488.72	<	1800
13	K102,K103	1018	628	116.34	92.98	92.98	771.17	<	1800
12	K601,K602	534	380	116.15	0	0.00	479.85	<	1800
11	K501,K502	628	427	109.24	116.15	109.24	444.63	<	1800
10	K401,K402	628	427	113.48	109.24	109.24	444.63	<	1800
9	K301,K302	710	480	106.97	113.48	106.97	517.78	<	1800
8	K201,K202	710	480	96.36	106.97	96.36	528.39	<	1800
7	K101,K102	1018	628	116.34	96.36	96.36	767.79	<	1800
6	K601	380	0	38.11	0	0.00	199.50	<	1800
5	K501	515	0	62.56	38.11	38.11	232.26	<	1800
4	K401	556	0	57.88	62.56	57.88	234.02	<	1800
3	K301	628	0	59.20	57.88	57.88	271.82	<	1800
2	K201	741	0	58.03	59.20	58.03	330.99	<	1800
1	K101	1225	0	111.72	58.03	58.03	585.09	<	1800

Tablo A.7. Birleşim bölgelerinin (-X) deprem yönüyle uyumlu kesme kuvveti kapasiteleri

A.7. Kirişlerin kapasite sınır oranları

Kiriş no	As	Å	ρ	ρ	$(\rho - \rho') / \rho_b$	$V_{e,i} / (b_w d f_{ctm})$	rs
K601	226	380	0.00188	0.00317	-0.08	0.06	7.00
K602	380	534	0.00317	0.00445	-0.08	0.09	7.00
K603	380	534	0.00317	0.00445	-0.08	0.16	7.00
K501	380	515	0.00317	0.00429	-0.07	0.07	7.00
K502	480	710	0.00400	0.00592	-0.12	0.12	7.00
K503	480	628	0.00400	0.00523	-0.08	0.23	7.00
K401	380	669	0.00317	0.00558	-0.15	0.09	7.00
K402	480	710	0.00400	0.00592	-0.12	0.09	7.00
K403	480	628	0.00400	0.00523	-0.08	0.23	7.00
K301	380	669	0.00317	0.00558	-0.15	0.09	7.00
K302	480	710	0.00400	0.00592	-0.12	0.09	7.00
K303	480	628	0.00400	0.00523	-0.08	0.26	7.00
K201	628	823	0.00523	0.00686	-0.10	0.13	7.00
K202	480	710	0.00400	0.00592	-0.12	0.09	7.00
K203	480	628	0.00400	0.00523	-0.08	0.28	7.00
K101	829	1225	0.00691	0.01021	-0.21	0.43	7.00
K102	628	1018	0.00523	0.00848	-0.20	0.03	7.00
K103	628	1018	0.00523	0.00848	-0.20	0.42	7.00
Kiriş no	As	Å,	ρ	p [°]	$(\rho - \rho') / \rho_b$	$V_{e,j}$ / (b_w d f_{ctm})	r _s
Kiriş no K601	A _s 534	A _s ' 380	ρ 0.00445	ρ [`] 0.00317	(ρ - ρ [']) / ρ _b 0.08	$V_{e,j} / (b_w d f_{ctm})$ 0.38	r _s 6.68
Kiriş no K601 K602	A _s 534 534	A _s ' 380 380	ρ 0.00445 0.00445	ρ ['] 0.00317 0.00317	$(\rho - \rho') / \rho_b$ 0.08 0.08	V _{e,j} / (b _w d f _{ctm}) 0.38 0.51	r _s 6.68 6.68
Kiriş no K601 K602 K603	A _s 534 534 380	A _s 380 380 226	ρ 0.00445 0.00445 0.00317	ρ 0.00317 0.00317 0.00188	$(\rho - \rho') / \rho_b$ 0.08 0.08 0.08	V _{e,j} / (b _w d f _{ctm}) 0.38 0.51 0.48	r _s 6.68 6.68 6.68
Kiriş no K601 K602 K603 K501	A _s 534 534 380 628	A _s 380 380 226 480	ρ 0.00445 0.00445 0.00317 0.00523	ρ 0.00317 0.00317 0.00188 0.00400	$\frac{(\rho - \rho') / \rho_b}{0.08}$ 0.08 0.08 0.08 0.08	V _{e,j} / (b _w d f _{ctm}) 0.38 0.51 0.48 0.57	r _s 6.68 6.68 6.68 6.68
Kiriş no K601 K602 K603 K501 K502	A _s 534 534 380 628 710	A _s 380 380 226 480 480	ρ 0.00445 0.00445 0.00317 0.00523 0.00592	ρ ['] 0.00317 0.00317 0.00188 0.00400 0.00400	$\frac{(\rho - \rho') / \rho_b}{0.08}$ 0.08 0.08 0.08 0.08 0.12	V _{e,j} / (b _w d f _{ctm}) 0.38 0.51 0.48 0.57 0.59	r _s 6.68 6.68 6.68 6.68 6.52
Kiriş no K601 K602 K603 K501 K502 K503	A _s 534 534 380 628 710 515	A _s 380 380 226 480 480 380	ρ 0.00445 0.00317 0.00523 0.00592 0.00429	ρ 0.00317 0.00317 0.00188 0.00400 0.00400 0.00317	$\frac{(\rho - \rho') / \rho_b}{0.08}$ 0.08 0.08 0.08 0.08 0.12 0.07	V _{e,j} / (b _w d f _{ctm}) 0.38 0.51 0.48 0.57 0.59 0.62	r _s 6.68 6.68 6.68 6.68 6.52 6.72
Kiriş no K601 K602 K503 K501 K502 K503 K401	A _s 534 534 380 628 710 515 628	A _s 380 380 226 480 480 380 480	ρ 0.00445 0.00317 0.00523 0.00592 0.00429 0.00523	ρ ['] 0.00317 0.00317 0.00188 0.00400 0.00400 0.00317 0.00400	$\frac{(\rho - \rho') / \rho_b}{0.08}$ 0.08 0.08 0.08 0.12 0.07 0.08	V _{e,j} / (b _w d f _{ctm}) 0.38 0.51 0.48 0.57 0.59 0.62 0.48	rs 6.68 6.68 6.68 6.68 6.52 6.72 6.68
Kiriş no K601 K602 K503 K501 K502 K503 K401 K402	A _s 534 534 380 628 710 515 628 710	As 380 380 226 480 480 380 480 480 480	ρ 0.00445 0.00317 0.00523 0.00592 0.00429 0.00523 0.00592	ρ 0.00317 0.00317 0.00188 0.00400 0.00400 0.00400 0.00400 0.00400	$\frac{(\rho - \rho') / \rho_b}{0.08}$ 0.08 0.08 0.08 0.08 0.12 0.07 0.08 0.12	$\frac{V_{e,j} / (b_w d f_{ctm})}{0.38}$ 0.51 0.48 0.57 0.59 0.62 0.48 0.62	rs 6.68 6.68 6.68 6.68 6.68 6.52 6.72 6.68 6.52
Kiriş no K601 K602 K503 K501 K502 K503 K401 K402 K403	A _s 534 534 380 628 710 515 628 710 669	A _s 380 380 226 480 480 380 480 480 380	ρ0.004450.003170.005230.005920.004290.005230.005920.005920.005920.005920.00558	ρ ['] 0.00317 0.00317 0.00188 0.00400 0.00400 0.00317 0.00400 0.00400 0.00317	$\frac{(\rho - \rho') / \rho_b}{0.08}$ 0.08 0.08 0.08 0.12 0.07 0.08 0.12 0.12 0.15	$\frac{V_{e,j} / (b_w d f_{ctm})}{0.38}$ 0.51 0.48 0.57 0.59 0.62 0.48 0.62 0.62	rs 6.68 6.68 6.68 6.68 6.52 6.72 6.68 6.52 6.62
Kiriş no K601 K602 K603 K501 K502 K503 K401 K402 K403 K301	A _s 534 534 380 628 710 515 628 710 669 628	As 380 380 226 480 480 380 480 380 480 480 480 480 480 480 480	ρ0.004450.003170.005230.005920.004290.005230.005920.005920.005580.00523	ρ 0.00317 0.00317 0.00188 0.00400 0.00317 0.00400 0.00400 0.00400 0.00400 0.00400 0.00400 0.00400 0.00400 0.00400 0.00400 0.00400	$\frac{(\rho - \rho') / \rho_b}{0.08}$ 0.08 0.08 0.08 0.12 0.07 0.08 0.12 0.15 0.08	$\frac{V_{e,j} / (b_w d f_{ctm})}{0.38}$ 0.51 0.48 0.57 0.59 0.62 0.48 0.62 0.62 0.62 0.48	rs 6.68 6.68 6.68 6.68 6.52 6.72 6.68 6.52 6.52 6.52 6.68
Kiriş no K601 K602 K501 K502 K503 K401 K402 K403 K301 K302	A _s 534 534 380 628 710 515 628 710 669 628 710	As 380 380 226 480 480 380 480 380 480 480 480 480 480 480 480 480	ρ0.004450.003170.005230.005920.004290.005230.005920.005580.005230.00592	ρ ['] 0.00317 0.00317 0.00188 0.00400 0.00400 0.00400 0.00400 0.00317 0.00400 0.00400 0.00400	$\frac{(\rho - \rho') / \rho_b}{0.08}$ $\frac{0.08}{0.08}$ $\frac{0.08}{0.12}$ $\frac{0.12}{0.15}$ 0.08 0.12	$\frac{V_{e,j} / (b_w d f_{ctm})}{0.38}$ 0.51 0.48 0.57 0.59 0.62 0.48 0.62 0.62 0.48 0.62 0.48 0.62	rs 6.68 6.68 6.68 6.68 6.52 6.72 6.68 6.52 6.68 6.52 6.68 6.52 6.68 6.52 6.68 6.52 6.40 6.68 6.28
Kiriş no K601 K602 K603 K501 K502 K503 K401 K402 K403 K301 K302 K303	As 534 534 380 628 710 515 628 710 669 669	As 380 380 226 480 480 380 480 480 480 480 380 480 380 480 380 480 380 480 380 480 380	ρ0.004450.003170.005230.005920.004290.005230.005920.005580.005230.005920.005580.005920.005580.00558	ρ ['] 0.00317 0.00317 0.00188 0.00400 0.00400 0.00400 0.00400 0.00400 0.00400 0.00400 0.00400 0.00417	$\frac{(\rho - \rho') / \rho_b}{0.08}$ 0.08 0.08 0.08 0.12 0.07 0.08 0.12 0.15 0.08 0.12 0.15 0.12 0.15	$\frac{V_{e,j} / (b_w d f_{ctm})}{0.38}$ 0.51 0.48 0.57 0.59 0.62 0.48 0.62 0.62 0.48 0.62 0.62 0.62 0.65	$\begin{array}{c} r_{s} \\ \hline 6.68 \\ \hline 6.68 \\ \hline 6.68 \\ \hline 6.68 \\ \hline 6.52 \\ \hline 6.72 \\ \hline 6.68 \\ \hline 6.52 \\ \hline 6.40 \\ \hline 6.68 \\ \hline 6.28 \\ \hline 6.40 \\ \hline \end{array}$
Kiriş no K601 K602 K501 K502 K503 K401 K402 K403 K301 K302 K303 K201	As 534 534 380 628 710 515 628 710 669 628 710 669 628 710 669 628 710 669 628	As 380 380 226 480 480 380 480 380 480 380 480 380 480 380 480 380 480 380 480 380 480 380 480	ρ0.004450.003170.005230.005920.004290.005230.005920.005580.005230.005920.005580.005580.005580.005580.005580.005580.005580.005580.005580.005580.00523	ρ ['] 0.00317 0.00317 0.00188 0.00400 0.00400 0.00317 0.00400 0.00317 0.00400 0.00400 0.00400 0.00317 0.00400	$\begin{array}{r} (\rho - \rho') / \rho_b \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.12 \\ 0.07 \\ 0.08 \\ 0.12 \\ 0.15 \\ 0.08 \\ 0.12 \\ 0.15 \\ 0.08 \\ 0.12 \\ 0.15 \\ 0.08 \\ 0.12 \\ 0.15 \\ 0.08 \end{array}$	$\frac{V_{e,j} / (b_w d f_{ctm})}{0.38}$ 0.51 0.48 0.57 0.59 0.62 0.48 0.62 0.62 0.48 0.62 0.48 0.62 0.48 0.62 0.65 0.52	rs 6.68 6.68 6.68 6.68 6.52 6.72 6.68 6.52 6.68 6.52 6.68 6.52 6.68 6.52 6.40 6.68 6.40 6.68
Kiriş no K601 K602 K603 K501 K502 K503 K401 K402 K403 K301 K302 K303 K201 K202	As 534 534 534 380 628 710 515 628 710 669 628 710 669 628 710 628 710 628 710 628 710 628 710	As 380 380 380 226 480 480 480 480 480 480 380 480 480 480 480 480 480 480 480 480 480 480	ρ0.004450.003170.005230.005920.004290.005230.005920.005580.005920.005920.005580.005580.005580.005580.005580.005580.005580.005580.005580.005580.005580.005580.005580.005580.00558	ρ 0.00317 0.00317 0.00188 0.00400 0.00400 0.00400 0.00400 0.00400 0.00400 0.00400 0.00400 0.00400 0.00400 0.00400 0.00400 0.00400 0.00400 0.00400 0.00400 0.00400	$\begin{array}{r} (\rho - \rho') / \rho_b \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.12 \\ 0.07 \\ 0.08 \\ 0.12 \\ 0.15 \\ 0.08 \\ 0.12 \\ 0.15 \\ 0.08 \\ 0.12 \\ 0.15 \\ 0.08 \\ 0.12 \\ 0.15 \\ 0.08 \\ 0.12 \end{array}$	$\frac{V_{e,j} / (b_w d f_{ctm})}{0.38}$ 0.51 0.48 0.57 0.59 0.62 0.48 0.62 0.62 0.48 0.62 0.62 0.62 0.65 0.52 0.62	rs 6.68 6.68 6.68 6.68 6.52 6.72 6.68 6.52 6.72 6.68 6.52 6.72 6.68 6.52 6.40 6.68 6.28 6.28
Kiriş no K601 K602 K503 K501 K502 K503 K401 K402 K403 K301 K302 K303 K201 K202 K203	As 534 534 380 628 710 515 628 710 669 628 710 628 710 628 710 628 710 628 710 823	As 380 380 226 480 480 380 480 480 480 380 480 380 480 380 480 380 480 480 480 480 480 480 480 480 480 480 480 480 480 480	ρ0.004450.003170.005230.005920.004290.005230.005920.005580.005580.005580.005230.005230.005580.005230.005230.005230.005230.005230.005230.005230.005230.005230.005230.005230.005230.005230.005920.00686	ρ ['] 0.00317 0.00317 0.00188 0.00400 0.00400 0.00400 0.00400 0.00400 0.00400 0.00400 0.00400 0.00400 0.00400 0.00400 0.00400 0.00400	$\begin{array}{r} (\rho - \rho') / \rho_b \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.12 \\ 0.07 \\ 0.08 \\ 0.12 \\ 0.15 \\ 0.08 \\ 0.12 \\ 0.15 \\ 0.08 \\ 0.12 \\ 0.15 \\ 0.08 \\ 0.12 \\ 0.10 \\ 0.10 \end{array}$	$\begin{array}{r} V_{e,j} / (b_w \ d \ f_{ctm}) \\ 0.38 \\ 0.51 \\ 0.48 \\ 0.57 \\ 0.59 \\ 0.62 \\ 0.48 \\ 0.62 \\ 0.62 \\ 0.62 \\ 0.62 \\ 0.65 \\ 0.52 \\ 0.62 \\ 0.62 \\ 0.65 \\ 0.52 \\ 0.62 \\ 0.67 \\ \end{array}$	rs 6.68 6.68 6.68 6.68 6.52 6.72 6.68 6.52 6.72 6.68 6.52 6.72 6.68 6.52 6.40 6.68 6.28 6.40 6.68 6.28 6.40
Kiriş no K601 K602 K603 K501 K502 K503 K401 K402 K403 K301 K302 K201 K202 K203 K101	As 534 534 380 628 710 515 628 710 669 628 710 669 628 710 669 628 710 628 710 628 710 628 710 628 710 823 1018	As 380 380 226 480 628 628	ρ0.004450.004450.005230.005230.005920.005230.005920.005580.005580.005580.005230.005580.005580.005920.005920.005920.005920.005920.005920.005920.005920.006860.00848	ρ 0.00317 0.00317 0.00188 0.00400 0.00400 0.00400 0.00400 0.00400 0.00400 0.00400 0.00400 0.00400 0.00400 0.00400 0.00400 0.00400 0.00400 0.00400 0.00400 0.00400 0.00400 0.00400 0.00523	$\begin{array}{r} (\rho - \rho') / \rho_b \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.12 \\ 0.07 \\ 0.08 \\ 0.12 \\ 0.15 \\ 0.08 \\ 0.12 \\ 0.15 \\ 0.08 \\ 0.12 \\ 0.15 \\ 0.08 \\ 0.12 \\ 0.10 \\ 0.20 \end{array}$	$\begin{array}{r} V_{e,j} / (b_w \ d \ f_{ctm}) \\ \hline 0.38 \\ \hline 0.51 \\ \hline 0.48 \\ \hline 0.57 \\ \hline 0.59 \\ \hline 0.62 \\ \hline 0.62 \\ \hline 0.62 \\ \hline 0.62 \\ \hline 0.62 \\ \hline 0.65 \\ \hline 0.52 \\ \hline 0.62 \\ \hline 0.62 \\ \hline 0.67 \\ \hline 0.87 \end{array}$	rs 6.68 6.68 6.68 6.68 6.52 6.72 6.68 6.52 6.40 6.68 6.28 6.40 5.80
Kiriş no K601 K602 K603 K501 K502 K503 K401 K402 K403 K301 K302 K201 K202 K203 K101	As 534 534 380 628 710 515 628 710 669 628 710 669 628 710 669 628 710 823 1018 1018	As 380 380 226 480 480 380 480 480 480 480 380 480 480 480 480 480 480 480 628 628 628 628	ρ0.004450.003170.005230.005920.004290.005230.005920.005580.005230.005580.005230.005230.005230.005230.005230.005230.005230.005230.005230.005230.005480.008480.008480.00848	ρ 0.00317 0.00317 0.00188 0.00400 0.00400 0.00400 0.00400 0.00400 0.00400 0.00400 0.00400 0.00400 0.00400 0.00400 0.00400 0.00400 0.00400 0.00400 0.00400 0.00400 0.00400 0.00400 0.00523 0.00523	$\begin{array}{r} (\rho - \rho') / \rho_b \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.12 \\ 0.07 \\ 0.08 \\ 0.12 \\ 0.15 \\ 0.08 \\ 0.12 \\ 0.15 \\ 0.08 \\ 0.12 \\ 0.15 \\ 0.08 \\ 0.12 \\ 0.10 \\ 0.20 \\ 0.20 \end{array}$	$\begin{array}{r} V_{e,j} / (b_w \ d \ f_{ctm}) \\ 0.38 \\ 0.51 \\ 0.48 \\ 0.57 \\ 0.59 \\ 0.62 \\ 0.62 \\ 0.62 \\ 0.62 \\ 0.62 \\ 0.65 \\ 0.52 \\ 0.65 \\ 0.52 \\ 0.62 \\ 0.67 \\ 0.87 \\ 0.76 \\ \end{array}$	rs 6.68 6.68 6.68 6.68 6.52 6.72 6.68 6.52 6.72 6.68 6.52 6.72 6.68 6.52 6.40 6.68 6.28 6.40 5.80

Tablo A.8. Kirişlerin i ve j uçlarının (+X) deprem yönüyle uyumlu kapasite sınır oranları

Kiriş no	As	Å	ρ	, p	$(\rho - \rho') / \rho_b$	$V_{e,i} / (b_w d f_{ctm})$	rs
K601	380	226	0.00317	0.00188	0.08	0.48	6.68
K602	534	380	0.00445	0.00317	0.08	0.51	6.68
K603	534	380	0.00445	0.00317	0.08	0.38	6.68
K501	515	380	0.00429	0.00317	0.07	0.62	6.72
K502	710	480	0.00592	0.00400	0.12	0.59	6.52
K503	628	480	0.00523	0.00400	0.08	0.46	6.68
K401	669	380	0.00558	0.00317	0.15	0.62	6.40
K402	710	480	0.00592	0.00400	0.12	0.62	6.52
K403	628	480	0.00523	0.00400	0.08	0.48	6.68
K301	669	380	0.00558	0.00317	0.15	0.65	6.40
K302	710	480	0.00592	0.00400	0.12	0.62	6.28
K303	628	480	0.00523	0.00400	0.08	0.48	6.68
K201	823	628	0.00686	0.00523	0.10	0.67	6.40
K202	710	480	0.00592	0.00400	0.12	0.62	6.28
K203	628	480	0.00523	0.00400	0.08	0.52	6.68
K101	1225	829	0.01021	0.00691	0.21	0.86	5.74
K102	1018	628	0.00848	0.00523	0.20	0.76	5.80
K103	1018	628	0.00848	0.00523	0.20	0.87	5.80

Tablo A.9. Kirişlerin i ve j uçlarının (-X) deprem yönüyle uyumlu kapasite sınır oranları

Kiriş no	As	Å	ρ	, p	$(\rho - \rho') / \rho_b$	$V_{e,i}$ / ($b_w d f_{ctm}$)	rs
K601	380	534	0.00317	0.00445	-0.08	0.16	7.00
K602	380	534	0.00317	0.00445	-0.08	0.09	7.00
K603	226	380	0.00188	0.00317	-0.08	0.06	7.00
K501	480	628	0.00400	0.00523	-0.08	0.12	7.00
K502	480	710	0.00400	0.00592	-0.12	0.12	7.00
K503	380	515	0.00317	0.00429	-0.07	0.07	7.00
K401	480	628	0.00400	0.00523	-0.08	0.23	7.00
K402	480	710	0.00400	0.00592	-0.12	0.09	7.00
K403	380	669	0.00317	0.00558	-0.15	0.09	7.00
K301	480	628	0.00400	0.00523	-0.08	0.26	7.00
K302	480	710	0.00400	0.00592	-0.12	0.09	7.00
K303	380	669	0.00317	0.00558	-0.15	0.09	7.00
K201	480	628	0.00400	0.00523	-0.08	0.28	7.00
K202	480	710	0.00400	0.00592	-0.12	0.09	7.00
K203	628	823	0.00523	0.00686	-0.10	0.13	7.00
K101	628	1018	0.00523	0.00848	-0.20	0.42	7.00
K102	628	1018	0.00523	0.00848	-0.20	0.03	7.00
K103	829	1225	0.00691	0.01021	-0.21	0.43	7.00

A.8. Kolonların kapasite sınır oranları

Kolon no	N _K	$N_K / (A_c f_{cm})$	$V_e / (b_w d f_{ctm})$	rs
6S1	140.49	0.04	0.08	6.00
5S1	346.10	0.09	0.16	6.00
4S1	635.60	0.16	0.13	5.60
3S1	941.70	0.24	0.12	5.07
2S1	1143.00	0.29	0.13	4.73
1S1	1311.00	0.33	0.35	4.47
6S2	166.60	0.04	0.40	6.00
582	346.10	0.09	0.38	6.00
4S2	528.70	0.13	0.38	5.80
382	766.80	0.19	0.35	5.40
282	1048.00	0.26	0.32	4.93
1S2	1386.00	0.35	0.40	4.33
683	166.60	0.04	0.40	6.00
583	346.10	0.09	0.38	6.00
483	528.70	0.13	0.39	5.80
383	766.80	0.19	0.37	5.40
283	1048.00	0.26	0.33	4.93
1S3	1386.00	0.35	0.40	4.33
6S4	140.49	0.04	0.13	6.00
584	346.10	0.09	0.22	6.00
4S4	635.60	0.16	0.20	5.60
384	941.70	0.24	0.21	5.07
284	1143.00	0.29	0.20	4.73
1S4	1311.00	0.33	0.39	4.47

Tablo A.10. Kolonların (+X) deprem yönüyle uyumlu kapasite sınır oranları

Kolon no	N _K	$N_K / (A_c f_{cm})$	$V_e / (b_w d f_{ctm})$	rs
6S1	140.49	0.04	0.13	6.00
5S1	392.80	0.10	0.22	6.00
4S1	716.10	0.18	0.20	5.47
3S1	1048.00	0.26	0.21	4.93
2S1	1259.00	0.31	0.20	4.60
1S1	1348.00	0.34	0.39	4.40
6S2	208.80	0.05	0.40	6.00
582	346.10	0.09	0.38	6.00
4S2	538.80	0.13	0.39	5.80
3S2	806.90	0.20	0.37	5.33
282	1048.00	0.26	0.33	4.93
1S2	1384.00	0.35	0.40	4.33
683	208.80	0.05	0.40	6.00
583	346.10	0.09	0.38	6.00
4S3	538.80	0.13	0.38	5.80
383	806.90	0.20	0.35	5.33
283	1048.00	0.26	0.32	4.93
1S3	1384.00	0.35	0.40	4.33
6S4	140.49	0.04	0.08	6.00
584	392.80	0.10	0.16	6.00
4S4	716.10	0.18	0.13	5.47
384	1048.00	0.26	0.12	4.93
284	1259.00	0.31	0.13	4.60
1S4	1348.00	0.34	0.35	4.40

Tablo A.11. Kolonların (-X) deprem yönüyle uyumlu kapasite sınır oranları

A.9. Kirişlerin kapasite oranları

Kiris adı	M _E i	MKi(alt)	Mni	Ma i	ri	rs	ri / rs
K601	90.46	52	-35.96	87.96	1.03	7.00	0.15
K602	240.18	87	-50.75	137.75	1.74	7.00	0.25
K603	54.52	87	-10.08	97.08	0.56	7.00	0.08
K501	272.91	87	-53.13	140.13	1.95	7.00	0.28
K502	379.56	97	-63.52	160.52	2.36	7.00	0.34
K503	251.26	97	-5.88	102.88	2.44	7.00	0.35
K401	500.05	87	-47.59	134.59	3.72	7.00	0.53
K402	500.78	109	-62.92	171.92	2.91	7.00	0.42
K403	461.96	97	-5.63	102.63	4.50	7.00	0.64
K301	710.65	87	-45.24	132.24	5.37	7.00	0.77
K302	607.48	109	-63.30	172.30	3.53	7.00	0.50
K303	666.43	109	-8.32	117.32	5.68	7.00	0.81
K201	1024.50	97	-39.01	136.01	7.53	7.00	1.08
K202	784.08	109	-63.21	172.21	4.55	7.00	0.65
K203	971.39	109	-8.30	117.30	8.28	7.00	1.18
K101	1628.05	187	-24.28	211.28	7.71	7.00	1.10
K102	925.35	142	-67.58	209.58	4.42	7.00	0.63
K103	1456.57	142	-29.31	171.31	8.50	7.00	1.21

Tablo A.12. Kirişlerin (i) ucunun (+X) deprem yönü ile uyumlu kapasite oranları

Kiriş adı	M _{E,j}	M _{Kj(üst)}	M _{D,j}	M _{A,j}	r _i	r _s	r _i / r _s
K601	54.52	121	-10.08	110.92	0.49	6.68	0.07
K602	240.18	121	-50.75	70.25	3.42	6.68	0.51
K603	90.46	87	-35.96	51.04	1.77	6.68	0.27
K501	251.26	142	-5.88	136.12	1.85	6.68	0.28
K502	379.56	142	-63.52	78.48	4.84	6.52	0.74
K503	272.91	117	-53.13	63.87	4.27	6.72	0.64
K401	461.96	142	-5.63	136.37	3.39	6.68	0.51
K402	500.78	160	-62.92	97.08	5.16	6.52	0.79
K403	500.05	126	-47.59	78.41	6.38	6.40	1.00
K301	666.43	142	-8.32	133.68	4.99	6.68	0.75
K302	607.48	160	-63.30	96.70	6.28	6.28	1.00
K303	710.65	141	-45.24	95.76	7.42	6.40	1.16
K201	971.39	142	-8.30	133.70	7.27	6.68	1.09
K202	784.08	160	-63.21	96.79	8.10	6.28	1.29
K203	1024.50	167	-39.01	127.99	8.00	6.40	1.25
K101	1456.57	227	-29.31	197.69	7.37	5.80	1.27
K102	925.35	227	-67.58	159.42	5.80	5.80	1.00
K103	1628.05	273	-24.28	248.72	6.55	5.74	1.14

Tablo A.13. Kirişlerin (j) ucunun (+X) deprem yönü ile uyumlu kapasite oranları

Kiriş adı	M _{E,i}	M _{Ki(üst)}	M _{D,i}	M _{A,i}	r _i	r _s	r _i / r _s
K601	90.46	87	-35.96	51.04	1.77	6.68	0.27
K602	240.18	121	-50.75	70.25	3.42	6.68	0.51
K603	54.52	121	-10.08	110.92	0.49	6.68	0.07
K501	272.91	117	-53.13	63.87	4.27	6.72	0.64
K502	379.56	142	-63.52	78.48	4.84	6.52	0.74
K503	251.26	142	-5.88	136.12	1.85	6.68	0.28
K401	500.05	126	-47.59	78.41	6.38	6.40	1.00
K402	500.78	160	-62.92	97.08	5.16	6.52	0.79
K403	461.96	142	-5.63	136.37	3.39	6.68	0.51
K301	710.65	141	-45.24	95.76	7.42	6.40	1.16
K302	607.48	160	-63.30	96.70	6.28	6.28	1.00
K303	666.43	142	-8.32	133.68	4.99	6.68	0.75
K201	1024.50	167	-39.01	127.99	8.00	6.40	1.25
K202	784.08	160	-63.21	96.79	8.10	6.28	1.29
K203	971.39	142	-8.30	133.70	7.27	6.68	1.09
K101	1628.05	273	-24.28	248.72	6.55	5.74	1.14
K102	925.35	227	-67.58	159.42	5.80	5.80	1.00
K103	1456.57	227	-29.31	197.69	7.37	5.80	1.27

Tablo A.14. Kirişlerin (i) ucunun (-X) deprem yönü ile uyumlu kapasite oranları

Kiriş adı	M _{E,j}	M _{Kj(alt)}	M _{D,j}	M _{A,j}	r _i	r _s	r _i / r _s
K601	54.52	87	-10.08	97.08	0.56	7.00	0.08
K602	240.18	87	-50.75	137.75	1.74	7.00	0.25
K603	90.46	52	-35.96	87.96	1.03	7.00	0.15
K501	251.26	97	-5.88	102.88	2.44	7.00	0.35
K502	379.56	97	-63.52	160.52	2.36	7.00	0.34
K503	272.91	87	-53.13	140.13	1.95	7.00	0.28
K401	461.96	97	-5.63	102.63	4.50	7.00	0.64
K402	500.78	109	-62.92	171.92	2.91	7.00	0.42
K403	500.05	87	-47.59	134.59	3.72	7.00	0.53
K301	666.43	109	-8.32	117.32	5.68	7.00	0.81
K302	607.48	109	-63.30	172.30	3.53	7.00	0.50
K303	710.65	87	-45.24	132.24	5.37	7.00	0.77
K201	971.39	109	-8.30	117.30	8.28	7.00	1.18
K202	784.08	109	-63.21	172.21	4.55	7.00	0.65
K203	1024.50	97	-39.01	136.01	7.53	7.00	1.08
K101	1456.57	142	-29.31	171.31	8.50	7.00	1.21
K102	925.35	142	-67.58	209.58	4.42	7.00	0.63
K103	1628.05	187	-24.28	211.28	7.71	7.00	1.10

Tablo A.15. Kirişlerin (j) ucunun (-X) deprem yönü ile uyumlu kapasite oranları

A.10. Kolonların kapasite oranları

Kolon no	$M_{E,\ddot{u}}$	$M_{K,\ddot{u}}$	M _{D,ü}	M _{A,ü}	r _ü	r _s	r _ü / r _s
6S1	100.13	146.02	45.89	100.13	1.00	6.00	0.17
5S1	298.49	245.9	28.39	217.51	1.37	6.00	0.23
4S1	399.02	284.3	30.48	253.82	1.57	5.60	0.28
3S1	519.18	318.8	28.13	290.67	1.79	5.07	0.35
2S1	806.47	338.3	22.28	316.02	2.55	4.73	0.54
1S1	1293.83	412.2	9.79	402.41	3.22	4.47	0.72
682	324.07	214.1	54.72	159.38	2.03	6.00	0.34
582	494.69	245.9	34.9	211	2.34	6.00	0.39
4S2	683.29	271.8	37.43	234.37	2.92	5.80	0.50
382	853.95	299.8	35.2	264.6	3.23	5.40	0.60
2S2	1258.94	326.2	29	297.2	4.24	4.93	0.86
1S2	1573.23	414.9	13.26	401.64	3.92	4.33	0.90
6S3	324.07	214.1	54.72	159.38	2.03	6.00	0.34
583	494.69	245.9	34.9	211	2.34	6.00	0.39
4S3	683.29	271.8	37.43	234.37	2.92	5.80	0.50
383	853.95	299.8	35.2	264.6	3.23	5.40	0.60
2S3	1258.94	326.2	29	297.2	4.24	4.93	0.86
1S3	1573.23	414.9	13.26	401.64	3.92	4.33	0.90
6S4	100.13	146.02	45.89	100.13	1.00	6.00	0.17
584	298.49	245.9	28.39	217.51	1.37	6.00	0.23
4S4	399.02	284.3	30.48	253.82	1.57	5.60	0.28
384	519.18	318.8	28.13	290.67	1.79	5.07	0.35
284	806.47	338.3	22.28	316.02	2.55	4.73	0.54
1S4	1293.83	412.2	9.79	402.41	3.22	4.47	0.72

Tablo A.16. Kolonların üst ucunun (+X) deprem yönü ile uyumlu kapasite oranları

Kolon no	M _{E,a}	M _{K,a}	M _{D,a}	M _{A,a}	r _a	r _s	r _a / r _s
6S1	11.86	146.02	38.24	184.26	0.06	6.00	0.01
5S1	169.74	245.9	29.81	275.71	0.62	6.00	0.10
4S1	289.84	284.3	29.47	313.77	0.92	5.60	0.16
3S1	360.59	318.8	28.29	347.09	1.04	5.07	0.20
2S1	554.56	338.3	24.6	362.9	1.53	4.73	0.32
1S1	1593.92	412.2	4.78	416.98	3.82	4.47	0.86
6S2	208.06	214.1	46.07	260.17	0.80	6.00	0.13
5S2	393.69	245.9	36.5	282.4	1.39	6.00	0.23
4S2	584.46	271.8	36.42	308.22	1.90	5.80	0.33
3S2	710.37	299.8	35.45	335.25	2.12	5.40	0.39
2S2	1148.05	326.2	32.62	358.82	3.20	4.93	0.65
1S2	1730.65	414.9	6.49	421.39	4.11	4.33	0.95
6S3	208.06	214.1	46.07	260.17	0.80	6.00	0.13
583	393.69	245.9	36.5	282.4	1.39	6.00	0.23
4S3	584.46	271.8	36.42	308.22	1.90	5.80	0.33
383	710.37	299.8	35.45	335.25	2.12	5.40	0.39
283	1148.05	326.2	32.62	358.82	3.20	4.93	0.65
1S3	1730.65	414.9	6.49	421.39	4.11	4.33	0.95
6S4	11.86	146.02	38.24	184.26	0.06	6.00	0.01
584	169.74	245.9	29.81	275.71	0.62	6.00	0.10
4S4	289.84	284.3	29.47	313.77	0.92	5.60	0.16
384	360.59	318.8	28.29	347.09	1.04	5.07	0.20
284	554.56	338.3	24.6	362.9	1.53	4.73	0.32
1S4	1593.92	412.2	4.78	416.98	3.82	4.47	0.86

Tablo A.17. Kolonların alt ucunun (+X) deprem yönü ile uyumlu kapasite oranları

Kolon no	$M_{E,\ddot{u}}$	$M_{K,\ddot{u}}$	$M_{D,\ddot{u}}$	M _{A,ü}	r _ü	r _s	r _ü / r _s
6S1	100.13	54.24	45.89	100.13	1.00	6.00	0.17
5S1	298.49	253	28.39	281.39	1.06	6.00	0.18
4S1	399.02	293.9	30.48	324.38	1.23	5.47	0.22
3S1	519.18	329.6	28.13	357.73	1.45	4.93	0.29
2S1	806.47	345.2	22.28	367.48	2.19	4.60	0.48
1S1	1293.83	413.7	9.79	423.49	3.06	4.40	0.69
6S2	324.07	221.9	54.72	276.62	1.17	6.00	0.20
5S2	494.69	245.9	34.9	280.8	1.76	6.00	0.29
4S2	683.29	273	37.43	310.43	2.20	5.80	0.38
3S2	853.95	304.3	35.2	339.5	2.52	5.33	0.47
2S2	1258.94	329.6	29	358.6	3.51	4.93	0.71
1S2	1573.23	415	13.26	428.26	3.67	4.33	0.85
6S3	324.07	221.9	54.72	276.62	1.17	6.00	0.20
583	494.69	245.9	34.9	280.8	1.76	6.00	0.29
4S3	683.29	273	37.43	310.43	2.20	5.80	0.38
383	853.95	304.3	35.2	339.5	2.52	5.33	0.47
283	1258.94	329.6	29	358.6	3.51	4.93	0.71
1S3	1573.23	415	13.26	428.26	3.67	4.33	0.85
6S4	100.13	54.24	45.89	100.13	1.00	6.00	0.17
584	298.49	253	28.39	281.39	1.06	6.00	0.18
484	399.02	293.9	30.48	324.38	1.23	5.47	0.22
384	519.18	329.6	28.13	357.73	1.45	4.93	0.29
284	806.47	345.2	22.28	367.48	2.19	4.60	0.48
1S4	1293.83	413.7	9.79	423.49	3.06	4.40	0.69

Tablo A.18. Kolonların üst ucunun (-X) deprem yönü ile uyumlu kapasite oranları

Kolon no	M _{E,a}	M _{K,a}	M _{D,a}	M _{A,a}	r _a	r _s	r _a / r _s
6S1	11.86	54.24	38.24	16	0.74	6.00	0.12
5S1	169.74	253	29.81	223.19	0.76	6.00	0.13
4S1	289.84	293.9	29.47	264.43	1.10	5.47	0.20
3S1	360.59	329.6	28.29	301.31	1.20	4.93	0.24
2S1	554.56	345.2	24.6	320.6	1.73	4.60	0.38
1S1	1593.92	413.7	4.78	408.92	3.90	4.40	0.89
6S2	208.06	221.9	46.07	175.83	1.18	6.00	0.20
5S2	393.69	245.9	36.5	209.4	1.88	6.00	0.31
4S2	584.46	273	36.42	236.58	2.47	5.80	0.43
3S2	710.37	304.3	35.45	268.85	2.64	5.33	0.50
2S2	1148.05	329.6	32.62	296.98	3.87	4.93	0.78
1S2	1730.65	415	6.49	408.51	4.24	4.33	0.98
6S3	208.06	221.9	46.07	175.83	1.18	6.00	0.20
583	393.69	245.9	36.5	209.4	1.88	6.00	0.31
4S3	584.46	273	36.42	236.58	2.47	5.80	0.43
383	710.37	304.3	35.45	268.85	2.64	5.33	0.50
283	1148.05	329.6	32.62	296.98	3.87	4.93	0.78
1S3	1730.65	415	6.49	408.51	4.24	4.33	0.98
6S4	11.86	54.24	38.24	16	0.74	6.00	0.12
584	169.74	253	29.81	223.19	0.76	6.00	0.13
484	289.84	293.9	29.47	264.43	1.10	5.47	0.20
384	360.59	329.6	28.29	301.31	1.20	4.93	0.24
284	554.56	345.2	24.6	320.6	1.73	4.60	0.38
1S4	1593.92	413.7	4.78	408.92	3.90	4.40	0.89

Tablo A.19. Kolonların alt ucunun (-X) deprem yönü ile uyumlu kapasite oranları

A.11. Kirişlerin performans grafikleri

Şekil A.13. Kirişlerin (+X) deprem yönüyle uyumlu performans grafiği

Şekil A.14. Kirişlerin (-X) deprem yönüyle uyumlu performans grafiği

A.12. Kolonların performans grafikleri

Şekil A.15. Kolonların (+X) deprem yönüyle uyumlu performans grafiği

Şekil A.16. Kolonların (-X) deprem yönüyle uyumlu performans grafiği

ÖZGEÇMİŞ

Serdar MERMER, 15.04.1982 de Bursa' da doğdu. İlk, orta ve lise eğitimini Bursa'da tamamladı. 1999 yılında Bursa Erkek Lisesi'nden mezun oldu. 1999 yılında başladığı Dumlupınar Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği bölümünü 2004 yılında bitirdi. 2004–2005 eğitim yılında Sakarya Üniversitesi Fen Bilimleri Enstitüsü İnşaat Mühendisliği Ana Bilim Dalı Yapı bölümünde yüksek lisansa başladı.