T.C. SAKARYA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

ÇEKME DENEYLERİ VE SERTLİK DENEYLERİ İLE GERÇEK GERİLME TAYİNİ

YÜKSEK LİSANS TEZİ

Mak.Müh. ÖZGÜR SEZER

Enstitü Anabilim Dalı	:	MAKİNA MÜHENDİSLİĞİ
Enstitü Bilim Dalı	:	MAKİNA TASARIM VE İMALAT
Tez Danışmanı	:	Yrd. Doç. Dr. Erdal KARADENİZ

Haziran 2007

T.C. SAKARYA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

ÇEKME DENEYLERİ VE SERTLİK DENEYLERİ İLE GERÇEK GERİLME TAYİNİ

YÜKSEK LİSANS TEZİ

Mak.Müh. Özgür SEZER

Enstitü Anabilim Dalı	:	MAKİNA MÜHENDİSLİĞİ
Enstitü Bilim Dalı	:	MAKİNA TASARIM VE İMALAT

Bu tez 21/06/2007 tarihinde aşağıdaki jüri tarafından Oybirliği ile kabul edilmiştir.

Yard. Doç. Dr. Erdal KARADENİZ	Doç. Dr. Kenan GENEL	Doç.Dr. Uğur ŞEN
Jüri Başkanı	Üye	Üye

ÖNSÖZ

Soğuk kafa şişirme dövme yöntemi ile çelik civata imalatı tasarımında malzeme karakterizasyonu, geleneksel tasarım ve bilgisayarlı simülasyon çalışmaları için önemli bir aşamadır. Malzeme karakterizasyonunda, yaygın olarak çekme ve basma deneyleri kullanılmaktadır. Daha pratik bir deney yöntemi olan sertlik deneyleri ile malzeme karakterizasyonu çalışmaları son yıllarda araştırmacıların ilgi odağı olmuştur. Bu çalışmada, gerçek gerilme-gerçek birim şekil değişimi eğrilerinin Vickers sertlik (indentation) deneylerinden elde edilebilirliği araştırılmıştır.

Bu çalışmanın gerçekleştirilmesinde yardımlarını esirgemeyen yüksek lisans danışmanım Yrd. Doç.Dr. Erdal Karadeniz'e teşekkürlerimi sunarım.

Malzeme temini konusunda yardımcı olan DENET Civata San.A.Ş. ilgililerine, çekme deneylerinin gerçekleştirilmesi için laboratuar imkanlarını sağlayan SAÜ Teknik Eğitim Fakültesi Yapı Eğitimi Bölümü öğretim üyelerinden Yrd. Doç. Dr. Mehmet Sarıbıyık'a, metalografi çalışmalarındaki destekleri nedeniyle SAÜ Metalurji Mühendisliği Bölümü öğretim elemanlarından Doç.Dr. Uğur Şen ve Arş.Gör.Dr. Şükran Demirkıran'a, Vickers indentasyon deneylerinin gerçekleştirilmesi için laboratuar imkanlarını sağlayan Dokuz Eylül Üniversitesi Metalurji Bölümü Başkanlığına ve Arş. Gör. Osman Çulha'ya ayrı ayrı teşekkürlerimi sunarım.

Bu çalışmayı gerçekleştirecek aşamaya gelmemde emeği geçen tüm hocalarıma ve aileme ayrı ayrı teşekkürü borç bilirim.

Özgür SEZER

İÇİNDEKİLER

ÖNSÖZ	ii
İÇİNDEKİLER	iii
SİMGELER VE KISALTMALAR LİSTESİ	v
ŞEKİLLER LİSTESİ	vi
TABLOLAR LİSTESİ	ix
ÖZET	x
SUMMARY	xi
BÖLÜM 1. GİRİŞ	1
BÖLÜM 2.	
GERÇEK GERİLME VE GERÇEK BİRİM ŞEKİL DEĞİŞİMİ	4
2.1.Giriş	4
2.2. Çekme Deneyi	5
2.2.1. Nominal ve gerçek çekme diyagramı	8
2.2.2. Gerçek gerilme-gerçek şekil değiştirme eğrileri için yaklaşık	
denklemler	8
2.3. Sertlik Deneyleri	10
2.3.1. Sertlik deneylerinden gerçek gerilme-gerçek birim	
şekil değişimi eğrisi tayini	12
2.3.2. Küresel indentasyon yöntemi (Spherical indentation	
technique)	13
2.3.3. Vickers indentasyon yöntemi	15

BÖLÜM 3

DENEYSEL ÇALIŞMALAR	
3.1.Deney Malzemelerinin İncelenmesi	20
3.1.1.Kimyasal analiz çalışmaları	20
3.1.2. Mikroyapı incelemeleri	20
3.2.Mekanik Deneyler	21
3.2.1.Çekme deneyleri	21
3.2.2 Vickers indentasyon deneyleri	22

BÖLÜM 4

DENEYSEL SONUÇLAR		
4.1.Mikroyapı Sonuçları	24	
4.2.Çekme Deneyleri Sonuçları	25	
4.2.1. QSt32-3 malzemesi için çekme deneyi sonuçları	26	
4.2.2. 20MnB4 malzemesi için çekme deneyi sonuçları	28	
4.2.3. 30MnB3 malzemesi için çekme deneyi sonuçları	31	
4.2.4. 42CrMo4 malzemesi için çekme deneyi sonuçları	34	
4.3. Vickers İndentasyon Deneyleri Sonuçları	38	
4.3.1. QSt32-3 malzemesi için Vickers indentasyon deneyi		
sonuçları	38	
4.3.2. 20MnB4 malzemesi için Vickers indentasyon deneyi		
sonuçları	40	
4.3.3. 30MnB3 malzemesi için Vickers indentasyon deneyi		
sonuçları	43	
4.3.4. 42CrMo4 malzemesi için Vickers indentasyon deneyi		
sonuçları	45	
BÖLÜM5		
SONUÇLAR VE ÖNERİLER	47	
KAYNAKLAR	53	
ÖZGEÇMİŞ		

SİMGELER VE KISALTMALAR LİSTESİ

A	: Numune kesit alanı
BSD	: Brinell sertlik değeri
d	: Çap
e	: Birim şekil değiştirme
E	: Elastisite modülü
Eo	: İndentere(batıcı uca) ait elastisite modülü
Er	: İndirgenmiş elastisite modülü
3	: Gerçek birim şekil değiştirme
F	: Kuvvet
HV	: Vickers Sertliği
h	: Derinlik(µm)
h _{max}	: Maksimum yükteki batma derinliği(µm)
$\mathbf{h}_{\mathbf{f}}$: Yük sıfırlandıktan sonraki derinlik(plastik derinlik) (µm)
h_c	: Yük altındaki temas derinliği(µm)
Κ	: Mukavemet katsayısı(kg/mm ²)
1	: Numune boyu
n	: Pekleşme üssü
Р	: Uygulama yükü(mN)
\mathbf{P}_{m}	Ortalama basınç
σ	: Gerçek gerilme(kgf/mm ²)
σ_{n}	: Nominal gerilme(kgf/mm ²)
σ_{y}	: Akma gerilmesi(kgf/mm ²)
Δl	: Birim uzama
υ	:Malzemeye ait poisson oranı
$v_{_o}$: Batıcı uca ait Poisson oranı

ŞEKİLLER LİSTESİ

Şekil 2.1.	Soğuk dövme yöntemi ile civata imalat prosesi	4
Şekil 2.2.	Çekme deney numunesi	5
Şekil 2.3.	Gerçek ve mühendislik çekme diyagramları	8
Şekil 2.4.	Ludwig denklemine göre ve n=1 halinde akma sınırı σ_o olan bir	
	malzemenin gerçek çekme diyagramı	9
Şekil 2.5.	$\sigma = \sigma \sigma + K \epsilon n (n < 1)$	9
Şekil 2.6.	$\sigma = K\epsilon n$ (n<1), elastik davranış göstermeyen ve akma sınırı	
	belirgin olmayan malzeme	10
Şekil 2.7.	İndentasyon yönteminde kuvvet – iz derinliği eğrileri	12
Şekil 2.8.	Küresel indentasyon yöntemi şematiği	13
Şekil 2.9.	Vickers indentasyon yöntemi şematiği	15
Şekil 2.10.	Yükleme-yük boşaltma ve batma derinliği(yer değiştirme) eğrileri	15
Şekil 2.11.	Vickers indentasyonu derinlik parametreleri şematiği	16
Şekil 3.1.	Çekme cihazı	21
Şekil 3.2.	Çekme deneyi numuneleri	22
Şekil 3.3.	Vickers mikroindentasyon cihazı(DUH-W201S)	22
Şekil 3.4.	Yükleme –yük boşaltma eğrileri(P-h)	23
Şekil 4.1.	QSt32-3 mikroyapı fotoğrafı (x500)	24
Şekil 4.2.	20MnB4 mikroyapı fotoğrafı (x500)	24
Şekil 4.3.	30 MnB3 mikroyapı fotoğrafı (x500)	24
Şekil 4.4.	42CrMo4 mikroyapı fotoğrafı (x500)	24
Şekil 4.5.	QST32-3 (x2000)SEM	25
Şekil 4.6.	20MnB4 (x2000)SEM	25
Şekil 4.7.	30MnB3 (x2000)SEM	25
Şekil 4.8.	42Cr Mo4 (X1500)SEM	25
Şekil 4.9.	QSt32-3 malzemesi için elde edilen kuvvet-uzama diyagramı	.27
Şekil 4.10.	QSt32-3 malzemesi için elde edilen logaritmik eğri	.27

Şekil 4.11.	QSt32-3 malzemesi için elde edilen gerçek gerilme- gerçek
	b.ş.d eğrileri karşılaştırması28
Şekil 4.12.	20MnB4malzemesi için elde edilen kuvvet-uzama diyagramı30
Şekil 4.13.	20MnB4malzemesi için elde edilen logaritmik eğri30
Şekil 4.14.	20MnB4malzemesi için elde edilen gerçek gerilme- gerçek b.ş.d.
	eğrileri karşılaştırması
Şekil 4.15.	30 MnB3 malzemesi için elde edilen kuvvet-uzama diyagramı33
Şekil 4.16.	30 MnB3 malzemesi için elde edilen logaritmik eğri33
Şekil 4.17.	30 MnB3 malzemesi için elde edilen gerçek gerilme- gerçek b.ş.d.
	eğrileri karşılaştırması
Şekil 4.18.	42CrMo4 malzemesi için elde edilen kuvvet-uzama diyagramı35
Şekil 4.19.	42CrMo4 malzemesi için elde edilen logaritmil eğri36
Şekil 4.20.	42CrMo4 malzemesi için elde edilen gerçek gerilme- gerçek b.ş.d.
	eğrileri karşılaştırması
Şekil 4.21.	QSt32-3 malzemesi için kuvvet-izderinliği grafiği
Şekil 4.22.	QSt32-3 malzemesi için gerçek iz derinliği-düzeltilmiş iz derinliği
	İlişkisi40
Şekil 4.23.	QSt32-3 malzemesi için indentasyon deneyinden elde edilen
	gerçek gerilme-gerçek birim şekil değişimi eğrisi40
Şekil 4.24.	20MnB4 malzemesi için kuvvet-izderinliği grafiği42
Şekil 4.25.	20MnB4 malzemesi için gerçek iz derinliği-düzeltilmiş iz derinliği
	İlişkisi42
Şekil 4.26.	20MnB4 malzemesi için indentasyon deneyinden elde edilen
	gerçek gerilme-gerçek birim şekil değişimi eğrisi42
Şekil 4.27.	30MnB3 malzemesi için kuvvet-izderinliği grafiği44
Şekil 4.28.	30MnB3 malzemesi için gerçek iz derinliği-düzeltilmiş iz derinliği
	İlişkisi44
Şekil 4.29.	30MnB3 malzemesi için indentasyon deneyinden elde edilen
	gerçek gerilme-gerçek birim şekil değişimi eğrisi44
Şekil 4.30.	42CrMo4 malzemesi için kuvvet-izderinliği grafiği46
Şekil 4.31.	42CrMo4 malzemesi için gerçek iz derinliği-düzeltilmiş iz derinliği
	İlişkisi46

Şekil 4.32. 42CrMo4 malzemesi için indentasyon deneyinden elde ediler		
	gerçek gerilme-gerçek birim şekil değişimi eğrisi46	
Şekil 5.1	QSt32-3 malzemesi için tayin edilen gerçek gerilme-gerçek birim şek	
	değişimi eğrileri47	
Şekil 5.2	20MnB4 malzemesi için tayin edilen gerçek gerilme-gerçek birim şek	
	değişimi eğrileri48	
Şekil 5.3.	30MnB3 malzemesi için tayin edilen gerçek gerilme-gerçek birim şek	
	değişimi eğrileri49	
Şekil 5.4.	42CrMo4 malzemesi için tayin edilen gerçek gerilme-gerçek birim	
	şekil değişimi eğrileri49	
Şekil 5.5.	Vickers indentasyon deneyinden elde edilen gerçek gerilme-gerçek	
	b.ş.d. eğrileri karşılaştırma grafiği50	

TABLOLAR LİSTESİ

Tablo 2.1.	En çok kullanılan iki Rocwell sertlik yönteminin özellikleri 11
Tablo 3.1.	Deney malzemelerinin kimyasal analiz sonuçları 20
Tablo 4.1.	QSt 32-3 malzemesi için çekme deneyi verileri ve bulunan
	sonuçlar
Tablo 4.2.	20MnB4 malzemesi için çekme deneyi verileri ve bulunan
	sonuçlar
Tablo 4.3.	30MnB3 malzemesi için çekme deneyi verileri ve bulunan
	sonuçlar
Tablo 4.4.	42 CrMo4 malzemesi için çekme deneyi verileri ve bulunan
	sonuçlar
Tablo 4.5.	Çelik civata hammaddeleri için çekme deneylerinden elde
	edilen değerler 37
Tablo 4.6.	QSt32-3 malzemesi için indentasyon deneyi sonuçları
Tablo 4.7.	20MnB4 malzemesi için indentasyon deneyi sonuçları 41
Tablo 4.8.	30MnB3 malzemesi için indentasyon deneyi sonuçları 43
Tablo 4.9.	42CrMo4 malzemesi için indentasyon deneyi sonuçları 45
Tablo 5.1.	Deney malzemeleri için elde edilen B ve C değerleri

ÖZET

Anahtar kelimeler: Vickers sertliği, çekme deneyi, plastik deformasyon

Soğuk kafa şişirme dövme yöntemi ile çelik civata imalatı tasarımında malzeme karakterizasyonu, geleneksel tasarım ve bilgisayarlı simülasyon çalışmaları için önemli bir aşamadır. Malzeme karakterizasyonunda, yaygın olarak çekme ve basma deneyleri kullanılmaktadır. Daha pratik bir deney yöntemi olan sertlik deneyleri ile malzeme karakterizasyonu çalışmaları son yıllarda araştırmacıların ilgi odağı olmuştur.

Bu çalışmada, gerçek gerilme-gerçek birim şekil değişimi eğrilerinin Vickers sertlik (indentation) deneylerinden elde edilebilirliği araştırılmıştır. Deneysel çalışmalarda QSt32-3, 20MnB4, 30MnB3 ve 42CrMo4 civata çelik hammaddelerinin çekme deneylerinden gerçek gerilme-gerçek birim şekil değişimi eğrileri elde edilmiş ve bu eğrilerden malzemelerin mukavemet katsayıları ile pekleşme üssü değerleri tayin edilmiştir. Çekme deneylerinden elde edilen gerçek gerilme-gerçek birim şekil değişimi eğrileri ile Vickers sertlik deneylerinden elde edilen kuvvet-iz derinliği eğrileri arasında bir ilişki araştırılmıştır. Deneylerde kullanılan her bir malzeme için 0,05 gerçek birim şekil değişimi değerinin üzeri değerler için uygun sonuçlar veren bir bağıntı elde edilmiştir.

DETERMINATION OF TRUE STRESS BY TENSILE TESTS AND HARDNESS INDENTATION TESTS

SUMMARY

Keywords: Vickers indentation test, tensile test, plastic deformation

In steel fastener design for the cold heading process, material characterization is very important stage for the traditional design and the studies of computer simulations. Generally tensile and compression tests are using for the material characterization. In last years hardness tests which are more convenient for the material characterization become center of interest by the researchers.

In this study, it is researched that true stres-true strain curves can be obtained from Vickers hardness(indentation) tests or not. In the experimental work, true stress-true strain curves of steel fastener raw materials QSt32-3, 20MnB4, 30MnB3 and 42CrMo4 are obtained from tensile tests and, strength coefficients and strain hardening exponents are appointed from these curves. The relationship between true stres-true strain curves which are obtained from tensile tests and force-penetration depth curves obtained from Vickers indentation tests are also investigated. The values over 0,05 true strain get relations have agreeable results for every material used in experiments.

BÖLÜM 1. GİRİŞ

Çelik cıvatalar yaygın olarak kullanılan makina elemanlarıdır. Genel olarak cıvata imalatı, hammadde tavlama, fosfatlama, soğuk dövme(kafa şişirme), ovalama, ısıl işlem, kaplama vb. işlem aşamalarından meydana gelmektedir. Bu çalışma cıvata imalat aşamalarından kafa şişirme işlemi için gerçekleştirilmiştir.

Kafa şişirme, yeter derecede sünekliğe sahip çelik hammaddelerinin yatay dövme makinalarında kalıplar içine kuvvet uygulanarak soğuk dövme yöntemi ile şekillendirilmesidir. Bu işlem aşamasında kalıp malzemeleri, kalıp geometrisi ve kademeleri, malzemenin plastik şekil değişimi kabiliyeti (dövülebilirlik), şekil değişimi için gerekli kuvvet ve enerji değerleri önemli parametrelerdir.

Son yıllarda, bilgisayar teknolojisindeki gelişmelerle birlikte, simülasyon programlarının yaygın olarak kullanılmaya başlaması sonucu cıvata imalat sanayinde de imalat simülasyonu çalışmaları giderek artış göstermiştir [1-4].

Cıvata imalat simülasyonu çalışmalarında malzeme karakterizasyonu, işlemlerden elde edilecek verilerin hassasiyeti için önemli bir aşamadır. Cıvata imalatında kullanılacak hammaddelerin karakterizasyonunda, gerçek gerilme-gerçek birim şekil değişimi değerleri araştırılır. Bundan dolayı, hammaddelerin gerçek gerilme-gerçek birim şekil değişimi değerlerinin kolaylıkla elde edilebileceği çalışmalar yararlı görülmektedir.

Gerçek gerilme- gerçek birim şekil değişimi değerleri, yaygın olarak çekme ve basma deneyleri ile tayin edilmektedir. Bununla beraber, Tabor tarafından çekme deneyleri ile sertlik deneyleri sonuçları arasında bir ilişkinin olduğu iddia edilmiştir [5]. Bu konuda son yıllarda yapılan çalışmalarda, Nayebi, El Abdi, Bartier ve Mauvoisin, küresel indentasyon tekniğini kullanarak elde edilen kuvvet-iz derinliği eğrilerinden malzemeye ait akma dayanımı ve pekleşme üssü değerlerini hesaplamıştır [6]. Ayrıca bu eğrilerden sertlik değerlerine de ulaşılabileceğini göstermişlerdir. Das, Ghosh ve Sahay yaptıkları çalışmada yine küresel indentasyon yöntemiyle çeliklere ait gerçek gerilme-gerçek birim şekil değişimi eğrilerini elde etmişlerdir [7,8]. Demirkol yaptığı çalışmalarda küresel indentasyon yöntemi ile çelik, bakır ve pirinç malzemeleri kullanarak bu malzemelere ait gerçek gerilme-gerçek birim şekil değişimi eğrilerini sekil değişimi eğrilerini şekil değişimi eğrilerini şekil değişimi eğrilerini şekil değişimi eğrilerini şekil değişimi eğrilerini şekil değişimi eğrilerini şekil değişimi eğrilerini şekil değişimi eğrilerini şekil değişimi eğrilerini şekil değişimi eğrilerini şekil değişimi eğrilerini şekil değişimi eğrilerini şekil değişimi eğrilerini şekil değişimi eğrilerini şekil değişimi eğrilerini şekil değişimi eğrilerini şekil değişimi eğrilerini şekil değişimi şekil değişimi şekil değişimi şekil değişimi şekil değişimi şekil değişimi şekil şerçek gerilme-gerçek birim şekil değişimi şeki şekil şekiş şerilme-şerçek şerilme-şerçek şerilme-şekiş şerilme-ş

Elastisite modülü ve sertlik hesaplamaları üzerine yapılan çalışmalarda Kimmari ve Kommel ,Oliverr-Pharr tarafından geliştirilen metodu [12] kullanılarak kompozit malzemeler üzerinde araştırmalar yaparak 10-100N aralığında uygulama yükleriyle istenen değerleri bulmuşlardır [13]. Yine aynı konu üzerinde çalışan Franco, Pintaude, Sinatora, Pinedo ve Tschiptschin birçok farklı malzeme üzerinde çalışarak Vickers indentasyon yöntemi ile elastisite modülü ve sertlik tayinin yüksek hassasiyette mümkün olabildiğini göstermişlerdir [14].

Sönmez-Demir soğuk şekillendirilen çelikler için mukavemet katsayıları ve pekleşme üssü değerlerinden hareketle küresel ve Vickers indentasyon yöntemleri ile sertlik ile birim şekil değişimi arasında bir analitik ilişki yakalamıştır [15]. Ayrıca Shinohara[16] Vickers sertliğinin pekleşme üssü değeri ve uygulama yükü ile olan ilişkisini inceleyerek bunlar arasında bir bağıntı ortaya sürmüştür.

İndentasyon yöntemlerinden elde edilen kuvvet-iz derinliği eğrilerinin altında kalan alandan faydalanarak enerji metoduyla analitik bir yaklaşımla sertlik hesaplamalarının daha hassas sonuçlar verdiği de bahsedilmektedir [17].

Bucaille, Stauss, Felder ve Michler ise sonlu elemanlar analizi ile farklı tepe açılarına sahip konik uçlar(θ =70.3, 60, 50, 42.3°) ile yaptığı indentasyon deneylerinde

elastisite modülü, akma dayanımı ve pekleşme üssü değerlerini modelleyerek tepe açısının küçülmesiyle daha hassas sonuçlar elde edilebileceğini göstermiştir [18]. Yine bu konuda çalışma yapan Casals ve Alcala, Vickers ve Berkovich uçları kullanarak yaptıkları indentasyon deneylerinden sonlu elemanlar simulasyonu yardımıyla kuvvet-iz derinliği eğrilerinden akma dayanımı, elastisite modülü, pekleşme üssü ve sertlik değerlerinin çıkarılabileceğini savunmuştur [19].

Tüm bu çalışmaların yanında Cheng-Cheng [20-21], indentasyon yöntemlerinde küresel uçlar kullanarak elde edilen gerçek gerilme-gerçek birim şekil değişimi eğrilerinin, konik ve piramit uçlarda elde edilmesinin mümkün olmadığını ve bu uçlar ile sadece elastisite modülü ve sertlik tayinin gerçekleştirilebileceğini öne sürmüştür.

Bu çalışmanın amacı ise, Vickers indentasyon deneylerinden elde edilen kuvvet-iz derinliği eğrilerinden yararlanarak gerçek gerilme-gerçek birim şekil değişimi eğrilerinin elde edilebilirliğini araştırmaktır.

Deneysel çalışmalarda QSt32-3, 20MnB4, 30MnB3 ve 42CrMo4 civata çelik hammaddelerinin çekme deneylerinden gerçek gerilme-gerçek birim şekil değişimi eğrileri elde edilmiş ve bu eğrilerden malzemelerin mukavemet katsayıları ile pekleşme üssü değerleri tayin edilmiştir. Çekme deneylerinden elde edilen gerçek gerilme-gerçek birim şekil değişimi eğrileri ile Vickers sertlik deneylerinden elde edilen kuvvet-iz derinliği eğrileri arasında bir ilişki araştırılmıştır. Deneylerde kullanılan her bir malzeme için 0,05 gerçek birim şekil değişimi üzeri değerler için uygun sonuçlar veren bir bağıntı elde edilmiştir.

BÖLÜM 2. GERÇEK GERİLME VE GERÇEK BİRİM ŞEKİL DEĞİŞİMİ

2.1. Giriş

Çelik civataların üretim aşamaları Şekil 2.1.'de görülmektedir. Bu üretim aşamalarındaki kafa şişirme işlemlerinin uygun bir şekilde gerçekleştirilmesinde malzeme ve işlem değişkenleri etkilidir.

Şekil 2.1. Soğuk dövme yöntemi ile civata imalat prosesi [22].

Kafa şişirme işlemlerinin kaliteli ve avantajlı bir şekilde üretilmesinde bilgisayarlı simülasyon(analiz) çalışmaları son yıllarda yaygın olarak kullanılmaya başlamıştır [1].

Başarılı bir analiz için şekillendirilecek malzemenin karakterizasyonu önemli bir aşamadır. Malzeme karakterizasyonunda da gerçek gerilme ve buna bağlı parametrelerin tayini çalışmalarda önemli bir bölümdür.

Bu bölümde, gerçek gerilme ve gerçek birim şekil değişimi ifadeleri tanıtılacak, gerçek gerilme tayini için yapılan deney prensipleri ve bu deneylerden tayini yöntemleri açıklanacaktır.

2.2. Çekme Deneyi

Çekme deneyi malzemelerin statik(darbesiz) yük altındaki mukavemet özelliklerini belirlemek amacıyla uygulanan , mühendislik açısından çok önemli bir mekanik deneydir. Deney sonucu bulunan malzeme özellikleri mühendislik hesaplamalarında doğrudan kullanılır [23,24].

Çekme deneyi için önce test edilecek malzemeden standartlara uygun bir çekme numunesi hazırlanır [TS 138 EN10002-1][25]. Şekil 2.2'de örneği görülen silindirik çubuk biçimindeki numunede l_0 ve A_0 değerleri deney açısından önemli boyutlardır.

Şekil.2.2. Çekme deney numunesi [25]

Hazırlanan numune iki ucundan özel çekme test cihazının çenelerine bağlanıp, gittikçe artan bir yükle kopuncaya kadar çekilir. Bu esnada uygulanan P yükü ile buna karşı malzemenin l_0 boyunda gösterdiği uzama miktarı(Δl) ölçülür [24].

Deney çubuğunun çekme kuvvetine dik doğrultudaki kesit yüzeyi başlangıçta A_o , deney sırasında P kuvvetinin uygulandığı anda ise A ile gösterilirse, nominal gerilme(veya mühendislik gerilmesi),

$$\sigma_n = \frac{P}{A_0} \tag{2.1}$$

gerçek gerilme,

$$\sigma = \frac{P}{A} \tag{2.2}$$

olarak tanımlanır. Başlangıç ölçü boyu l_0 , deneyin herhangi bir anında uygulanan P yükünün etkisi ile l değerini alırsa, çekme doğrultusunda birim şekil değişimi

$$e = \frac{l - l_0}{l_0} = \frac{\Delta l}{l_0} \quad \text{olur.}$$
(2.3)

Birim şekil değişimi, yukarıdaki ifadeden de görülebileceği gibi, l_o başlangıç ölçü boyuna bağlı olarak hesaplanmaktadır. Deney sırasında ise ölçü sürekli olarak değişmektedir. Örneğin ölçü boyu çekme deneyinin herhangi bir anında l iken, dl gibi sonsuz küçük bir uzama sonunda birim şekil değişimindeki artış dl/l olacaktır. Bu bakımdan, l_o başlangıç ölçü boyu l değerini alıncaya kadar meydana gelen toplam birim şekil değişimi

$$\mathcal{E} = \int_{l_0}^{l} \frac{dl}{l} = \ln \frac{l}{l_0}$$
(2.4)

ε, logaritmik veya gerçek şekil değiştirme olarak da anılır.

Denklem 2.3'ten

$$\frac{l}{l_o} = 1 + e \tag{2.5}$$

yazılarak denklem 2.4' e taşınırsa

$$\mathcal{E} = \ln(1+e) \tag{2.6}$$

bulunur.

Plastik şekil verme sırasında iş parçasının hacmi değişmez. Hacim sabitliği

$$A_{o} l_{o} = A.l \tag{2.7}$$

şeklinde ifade edilir.Buradan

$$A = A_0 \frac{l_0}{l}$$
(2.8)

yazılarak denklem 2.2' ye taşınırsa

$$\sigma = \frac{P}{A_o} \cdot \frac{l}{l_o} \tag{2.9}$$

buradan da

$$\sigma = \sigma_n (1+e) \tag{2.10}$$

elde edilir. Küçük e değerleri, yani elastik şekil değişimi için

ln(1+e) ≈e alınabileceğinden ε ≡ e kabul edilir. e'nin büyük değerleri için ε ve e arasındaki fark hızla açılır [23].

2.2.1. Nominal ve gerçek çekme diyagramı

Deney sonucu ölçülen yük (F) ve uzama (Δ l) değerlerinden yararlanarak F- Δ l diyagramı elde edilir. Bu diyagrama çekme diyagramı denir. Çekme deneyi sırasında değişen F kuvvetinin herhangi bir andaki değeri, deney parçasının A_o başlangıç kesitine değil de o andaki en dar kesite(A) bölünürse gerçek gerilme bulunur. Gerçek çekme diyagramı, mühendislik çekme diyagramı gibi bir maksimumdan geçmez. Şekil 2.3.'de görüldüğü gibi kopma noktasına kadar sürekli artar. Böylece malzemenin büzülme de dahil olmak üzere plastik şekil verme sırasında sertleştiği anlaşılmaktadır. Buna şekil değiştirme sertleşmesi veya pekleşme denir [23].

Şekil 2.3. Gerçek ve mühendislik çekme diyagramları[23]

Gerçek çekme eğrisinin eğimi (pekleşme hızı veya pekleşme derecesi) gerçek gerilme değerine eşit olduğu anda çekme kuvveti de (veya nominal gerilme) maksimum değerini alır.

2.2.2 Gerçek gerilme-gerçek şekil değiştirme eğrileri için yaklaşık denklemler

Deneysel olarak elde edilen gerçek gerilme-gerçek şekil değiştirme eğrilerine çok uyan bazı ampirik denklemler geliştirilmiştir. Bunlardan biri Ludwig tarafından sabit sıcaklık ve sabit şekil değiştirme hızında ; $\sigma = \sigma_0 + K\epsilon^n$ şeklinde ifade edilmiştir. Burada σ_{0} , akma sınırı, K ve n ise malzemeye özgü sabitlerdir.(n<1)

a) n=1 hali (Şekil 2.4.) :Bu halde, gerçek gerilme gerçek şekil değiştirme ile $\sigma = \sigma_0$ + K ϵ bağıntısına göre değişir. Böyle bir malzemeye çekme deneyi uygulanması halinde, çekme gerilmesi σ_0 akma sınırına erişinceye kadar şekil değişimi görülmez; çekme gerilmesinin akma sınırına erişmesi ile birlikte plastik şekil değişimi başlar. Plastik alanda gerilme ile şekil değiştirme arasında doğrusal bir bağıntı vardır, yani pekleşme lineerdir. Ayrıca şekil değişiminin elastik bileşeni plastik bileşen yanında ihmal edilmektedir [23].

Şekil 2.4. Ludwig denklemine göre ve n=1 halinde akma sınırı σ_0 olan bir malzemenin gerçek çekme diyagramı [23]

b)n<1 hali(Şekil 2.5.) : Bu halde de şekil değişiminin elastik bileşeni plastik bileşen yanında ihmal edilmektedir.

Şekil 2.5. $\sigma = \sigma_0 + K\epsilon^n$ (n<1) [23]

Akma sınırından (σ_0) sonra plastik şekil değişimi nedeniyle malzeme pekleşmekte fakat σ ve ε arasında doğrusal bir bağıntı bulunmamaktadır.(pekleşme lineer değil)

c)n<1, $\sigma_0 = 0$ hali(Şekil 2.6): Bu halde $\sigma = K\epsilon^n$ olmaktadır. Bu tür bir malzeme, yüklemenin başlangıcından itibaren elastik davranış göstermez ve akma sınırı belirgin değildir.

Şekil.2.6. $\sigma = K\epsilon^n$ (n<1), elastik davranış göstermeyen ve akma sınırı belirgin olmayan malzeme [23]

2.3. Sertlik Deneyleri

Malzemenin batıcı uca karşı gösterdiği direnme kabiliyetine sertlik denilir endüstride geniş uygulama alanı bulmasının nedeni, çok uzun süreli araştırma ve tecrübe yerine daha kısa zaman alan ve ucuz deneylerle sonuca ulaşılmasıdır. Deney esnasında parçayı tahrip etmemesi diğer bir tercih nedenidir [24].

Yoğun olarak kullanılan sertlik yöntemleri Brinell, Vickers ve Rocwell yöntemleridir. Brinell yönteminde belli çaptaki bilya malzeme yüzeyine belli bir P yükü uygulanarak bastırılır. Deneyde uygulanan yükün meydana gelen izin alanına bölünmesiyle Brinell sertlik değeri bulunur. En fazla kullanılan bilya çapları 0,625; 1,25; 2,5; 5 ve 10 mm'dir [24].

$$BSD = \frac{P}{Y} = \frac{2P}{\pi D(D - \sqrt{D^2 - d^2})} \quad (\text{kgf/mm}^2)$$
(2.11)

Bu formülde P; deney yükü Y; izin(küre) alanı D; bilya çapı d; izin çapı

Vickers deneylerinde baskı elemanı olarak tepe açısı 136° olan elmas kare piramit kullanılır. P yükü ile malzemeye bastırılan piramit ucun bıraktığı dörtgen izin köşegenleri ölçülerek hesaplanan ortalama köşegen uzunluğu formülde yerine konarak Vickers sertlik değeri bulunur. Vickers sertliği yüke bağlı değildir. Ölçme hatalarını azaltmak ve heterojen yapılarda ortalama değer elde edebilmek için yükü ve dolayısıyla izi büyütmek faydalıdır. Yük 1-120 kgf arasında değişebilir [24].

$$VS = 1,8544 \frac{P}{d^2} \quad , \tag{2.12}$$

P=Baskı yükü(kgf), d=ortalama köşegen uzunluğu(mm)

Rocwell sertlik ölçme yöntemlerinde ise yük malzemeye iki kademede uygulanmakta ve ucun malzeme üzerinde meydana getirdiği kalıcı izin derinliği malzeme sertliğini ifade eden büyüklük olmaktadır. Sertliği ölçülecek malzemenin cinsine uygun olarak Tablo 2.1' deki yöntemlerinden biri seçilir [24].

	Rocwell B	Rocwell C
Baskı ucu	Φ 1/16'' sert çelik bilya	120° tepe açılı elmas
		konikuç
Uygulanan yük	10 kg ön yük+90 kg ana	10 kg ön yük+140 kg ana
	yük	yük
Formül	HRB=130-e/0,002	HRB=100-e/0,002
Malzeme grubu	Yumuşak çelikler	Çelikler
	Alüminyum alaşımları	Titanyum alaşımları
	Bakır alaşımları	
	Temper dökme demir	

Tablo 2.1. En çok kullanılan iki Rocwell sertlik yönteminin özellikleri[24]

Formüllerde kullanılan e, ucun batma derinliğidir.

2.3.1. Sertlik deneylerinden gerçek gerilme-gerçek birim şekil değişimi eğrisi tayini

Klasik sertlik belirleme metotlarındaki ucun numune üzerinde bıraktığı izin optik yollar ile ölçülmesindeki zorluk nedeniyle son yıllarda uygulanan kuvvet ile ucun numune üzerinde bıraktığı izin derinliğinin ölçülmesi esasına dayanan ölçüm metotları geliştirilmiştir. Sertlik ölçüm cihazlarındaki gelişmeler ve malzemelerin mekanik özelliklerini belirlemede küçük boyutlarda malzeme ihtiyacı ile birlikte geliştirilen yeni metotlarla sertlik uygulamalarından temas derinliği ile mekanik özelliklere ulaşmak mümkün olmuştur. Derinlik duyarlı indentasyon (depth sensing indentation), sürekli-kayıtlı indentasyon (continuous-recording indentation), mikroindentasyon (microindentation), nanoindentasyon (nanoindentation) gibi farklı isimlerle anılan bu metotlarda kuvvetin numuneye uygulanması ve kuvvetin sıfırlanması ile elde edilen Şekil 2.7'de verilen kapalı kuvvet-iz derinliği(P-h) grafiklerinden yararlanılır [12,17].

Şekil 2.7. İndentasyon yönteminde kuvvet – iz derinliği eğrileri [19]

Bu grafikler indentasyon yöntemlerinde kuvvetin uygulanmaya başlanmasıyla birlikte eş zamanlı olarak batıcı ucun malzeme üzerinde bıraktığı izin derinliğinin kaydedilmesiyle elde edilir. Elde edilen grafikler ve bu konuda geliştirilen ampirik formüller yardımıyla malzemelere ait mekanik özellikler elde edilebilmektedir. Son yıllarda indentasyon ekipmanlarının oldukça geliştirilmesiyle, özellikle küresel batıcı uçlu indentasyon uygulamalarında küçük boyuttaki numuneler ile gerilmebirim şekil değişimi eğrileri elde edilmektedir.

Özellikle sivri batıcı uçlu indentasyonlarda ise, batıcı ucun geometrisi, faz dönüşümü, mikro çatlak etkileri ve artık gerilme etkileri ile bu eğrilere ulaşmak çoğu zaman mümkün olmamıştır [19-21].

2.3.2. Küresel indentasyon yöntemi (Spherical indentation technique)

Küresel indentasyon yönteminin temel prensibi küresel bir batıcı ucun aynı test numunesi üzerinde aynı noktaya birden fazla yük uygulanması ve yük boşaltılması esasına dayanır. Şekil 2.8.'de küresel indentasyon testinin şematik resmi görülmektedir. Bu işlem yükleme-yük boşaltma-tekrar yükleme sırasıyla tekrarlanır [6,7,8,15,26,27].

Şekil 2.8. Küresel indentasyon yöntemi şematiği [15]

Elastik bölge, batıcı ucun hemen altında plastik bölgeyi çevreler. Plastik bölge ve indentasyon baskısı, indentasyon yükü arttıkça artar. Birim şekil değişimi bölgesi Tabor tarafından temsili birim şekil değişimi(ε_f) olarak gösterilerek d ve D' nin fonksiyonu olarak verilir [6-10,15,26].

$$\varepsilon_{\rm f} = \beta(d/D) \tag{2.13}$$

Burada D; batıcı uç(bilya) çapı ve d; indentasyon(iz) çapıdır.

Tabor' un ampirik bilgileri analiz etmesiyle ε_f ' nin lineer olarak d/D oranı ile değiştiğini ve lineerlik katsayısının(β) 0,2 olduğunu bulmasından sonra, gerçek plastik birim şekil değişimini(ε_p) şu şekilde göstermiştir.

$$\varepsilon_{\rm p} = 0.2({\rm d_p/D}),$$
 (2.14)

Burada d_p, plastik indentasyon çapıdır [6-10,15,26].

Tabor, çalışmalarında gerilme ve ortalama basınç arasında lineer bir ilişki bulmuştur. Ortalama basınç birim temas alanına uygulanan kuvvet olarak tanımlanır.

$$P_m = \alpha \sigma_e, \qquad (2.15)$$

$$P_m = \frac{F}{\pi d^2 / 4} \tag{2.16}$$

Burada α , kısıtlama faktörü olarak adlandırılan bir sabittir ve çelikler için yaklaşık olarak 3 değerini alır. Çeşitli malzemeler için 2,6 ile 3,4 değerleri arasında değişir [11,15]. Denklem 2.15' de kullanılan d ise iz çapıdır.

Denklem 2.15 ve 2.16' dan ;

$$\sigma_e = \frac{4F}{\pi d^2 \alpha} \tag{2.17}$$

bulunur.

Denklem 2.14 ve denklem 2.17'den bulunan temsili gerilme ve temsili birim şekil değişimi eğrilerinin denklem formüllerinden faydalanarak birtakım katsayıların bulunmasıyla gerçek gerilme-gerçek birim şekil değişimi eğrilerine geçiş yapılır [9,10].

2.3.3. Vickers indentasyon yöntemi

Son yıllarda geliştirilen metotlarla Vickers indentasyon yöntemi uygulamalarıyla kuvvet-batma derinliği eğrilerinin elde edilmesi ile birtakım mekanik özelliklere ulaşmak mümkün olmuştur. Yöntemin şematik resmi Şekil 2.9'de verilmiştir.

Şekil 2.9. Vickers indentasyon yöntemi şematiği [15]

Oliverr-Pharr tarafından geliştirilen metotta kuvvetin numuneye uygulanması ve sıfırlanması ile elde edilen Şekil 2.10' da verilen kapalı (P-h) grafiklerinden elastisite modülü ve sertlik tayini yapılabilmektedir [13,14,16,18,19].

Şekil 2 .10.Yükleme-yük boşaltma ve batma derinliği(yer değiştirme) eğrileri [17]

Bu grafikteki önemli parametreler şekil 2.11'da da verilerek, maksimum kuvvet(P_{max}), maksimum batma derinliği (h_{max}), yük sıfırlama sonrası derinlik(h_f), maksimum yükteki numune ve uç arasındaki temas derinliği(h_c) ve yük sıfırlama eğrisinin başlangıç kısmının(%30 luk kısım) eğimidir.(S=dP/dh) [13].

Şekil 2.11. Vickers indentasyonu derinlik parametreleri şematiği[17]

Bu parametreler ışığında elastisite modülü hesaplamasında Oliverr-Pharr tarafından geliştirilen formüller şunlardır;

$$h_c = h_{\max} - \varepsilon \frac{P \max}{S}$$
(2.18)

Bu ifadede ε değeri geometri sabiti olup, Vickers uçlar için 0,75, Konik uçlar için 0,72 değerini alır [13].

Buradan hareketle indirgenmiş elastisite modülü;

$$E_r = \frac{\sqrt{\pi}}{2} * \frac{S}{\sqrt{A_c}}$$
(2.19)

formülü ile hesaplanır. ($A_c = 26,43 h_c^2$)

Malzemeye ait elastisite modülü ise;

$$\frac{1}{E_r} = \frac{1 - v^2}{E} + \frac{1 - v_0^2}{E_o}$$
denklemi ile hesaplanır. (2.20)

Burada;Er indirgenmiş elastisite modülü, v ve E malzemeye ait, v_o ve E₀ ise batıcı uca ait poisson oranı ve elastisite modülüdür. Değerler yerine konularak malzemenin elastisite modülü belirlenir [13].

Vickers indentasyon yöntemi ile gerçek gerilm-gerçek birim şekil değişimi eğrilerini tayin etmek üzerine yapılmış birçok araştırma da bulunmaktadır. Tabor tarafından yapılan çalışmalarda akış geriliminin lineer olarak ortalama basınçla ilişkili olduğu belirtilmektedir [15].

$$P_m = c'\sigma_e \tag{2.21}$$

c', sabit katsayıdır. σ_e 'ye denk gelen temsili birim şekil değişimi, ε_e , sabittir ve yük ile sertlikten bağımsızdır. Tabor bu değeri 0,08 olarak hesaplamıştır. *c*'değeri ise 3,2 olarak verilmiştir.

Bu konuda yapılan çalışmalarda sonlu elemanlar yöntemleri ile birçok farklı model kullanılarak çeşitli yaklaşımlar yapılmıştır. Tekkaya yaptığı sonlu eleman analizinde c katsayısı için 2,475 ve plastik birim şekil değişimi için 0,112 olarak bir kabul yapmıştır. Larsson sonlu elemanlar yöntemi ile Vickers indentasyonu üzerinde yaptığı çalışmada Tabor'un çalışmasının sadece tam plastik rejimde geçerli olduğunu savunarak c=2.6 ve $\varepsilon_{e=}$ 0,15 olarak bulmuştur[15].

Yapılan bu çalışmada gerçek gerilme-gerçek birim şekil değişimi eğrilerinin Vickers indentasyon yöntemi ile tayin edilebilmesi için farklı bir yaklaşım sunulmaktadır. Bu yaklaşımda gerçek birim şekil değişimi için;

$$\varepsilon = \ln \frac{h_o}{h_o - h} \tag{2.22}$$

formülü uygulanmaktadır. Bu formülde; h=yük uygulama esnasındaki indentasyon derinliği, h_o=sabit olup, Vickers uygulamaları için 40µm olarak önerilmektedir.

Gerçek birim şekil değişimi değerlerine karşılık gelen gerçek gerilme değerleri için birtakım bağıntılar geliştirilmiştir. Bunun için öncelikle indentasyon deneylerinden elde edilen P-h grafiklerinden elde edilen kuvvet ve iz derinliği verilerinden faydalanılır.

$$\sigma = \frac{F}{A'} \tag{2.23}$$

bağıntısında,

F=İndentasyon yükü,
A'=İndentasyon yük değerlerine karşılık gelmesi gereken temas alanları,
σ= Çekme deneylerinden elde edilen gerçek gerilme değeridir.

Bu temas alanları, çekme deneyleri ile aynı birim şekil değişimi değerine karşılık gelen indentasyon deneylerindeki yüklerde aynı gerilme değerini verecek alanlardır.

Denklem 2.23'den bulunan A' değerleri denklem 2.24'de kullanılarak h' değerleri bulunur.

$$A'=24.5^{*}(h')^{2}$$
(2.24)

h'=iz derinliğinin(h) bir fonksiyonu olup h'=B.h+C şeklinde ifade edilir. B ve C malzemelere özgü sabitlerdir.

Buradan elde edilen h' değerleri ile indentasyon deneylerinden elde edilen gerçek h değerleri arasındaki ilişki bir grafikle temsil edilerek bu iki değer arasında bir bağıntı çıkarılır.

Böylelikle deneylerden elde edilen gerçek h değerleri, her malzeme için ayrı bir formülle düzeltilmiş h' değerlerine dönüştürülür ve buradan

$$A=24.5*(B.h+C)^2$$
 (2.25)

deney verilerindeki her h değeri için kullanılacak olan düzeltilmiş temas alanları bulunur. Her indentasyon yükünün bu yüke denk gelen düzeltilmiş temas alanına bölünmesi ile indentasyon deneylerinden gerçek gerilme değerleri tayin edilir.

$$\sigma = \frac{F_{indentasyon}}{A}$$
(2.26)

Bu yaklaşımla tayin edilen gerçek gerilme-gerçek birim şekil değişimi eğrileri ε =0,05 değerinin üstünde yüksek hassasiyette sonuçlar vermektedir. Düşük gerçek birim şekil değişimi değerlerindeki tutarsızlık batıcı uç geometrisinin karmaşıklığı, malzeme özellikleri ve elastik deformasyonun mevcut cihazlarla yeterli hassasiyette ölçülememesine dayandırılabilir.

BÖLÜM 3.DENEYSEL ÇALIŞMALAR

3.1. Deney Malzemelerinin İncelenmesi

3.1.1. Kimyasal analiz çalışmaları

Bu çalışmada soğuk dövme yöntemi ile üretilecek olan civata hammaddelerinden 42CrMo4(4140), 20MnB4(10B21), 30MnB3(10B30) ve QSt32-3(1006) 4 farklı çelik türü kullanılmıştır. Bu çelikler Avusturya Voestalpine firmasının imalatı olup Denet Civata Sanayi A.Ş. tarafından civata hammaddesi olarak kangal şeklinde alınmıştır. Denet Civata San. A.Ş.'den temin edilen malzemelerin kimyasal bileşimleri Tablo 3.1'de verilmiştir.

	····)								
ÇELİK	%C	%Si	%Mn	%P	%S	%Cr	%Ni	%Mo	%B
42CrMo4	0,4088	0,0826	0,7533	0,0098	0,006	1,0038	0,0196	0,1813	0,0002
20MnB4	0,2124	0,0417	1,0412	0,0105	0,0101	0,2279	0,0300	0,0051	0,0043
30 MnB3	0,3050	0,0600	0,8300	0,0090	0,0070	0,1800	0,1000	0,0308	0,0018
QSt32-3	0,0493	0,0447	0,3733	0,0126	0,0105	0,0319	0,0133	0,0041	

Tablo 3.1. Deney malzemelerinin kimyasal analiz sonuçları

3.1.2. Mikroyapı incelemeleri

Kimyasal analizleri belli olan malzemelerimizin (42CrMo4, 30MnB3, 20MnB4 ve QSt32-3) optik mikroskop ve SEM incelemeleri yapılarak mikroyapı fotoğrafları çekilmiştir. İncelemelerde kullanılan numuneler hadde yönüne paralel olarak 20*14*7 mm boyutlarında hazırlanarak sırasıyla 320, 400, 600, 800, 1000, 1200 ve 2400' lük zımparalar ile zımparalandıktan sonra parlatmada 0,05 μ' luk alümina

kullanılmıştır. %5' lik nital ile dağlanan yüzeylerden elde edilen mikroyapı fotoğrafları Şekil 4.1-4-8' de görülmektedir.

3.2. Mekanik Deneyler

3.2.1.Çekme deneyleri

Bu çalışmada Sakarya Üniversitesi laboratuvarında bulunan çekme cihazı (Şekil3.1) kullanılmıştır. Kullanılan cihazın kapasitesi 40 tondur. Çekme hızı 5mm/dk olarak ve oda sıcaklığında deneyler yapılmıştır. Deney sırasında 3542-050M-100-St model 50 mm ölçüm kapasiteli eksansometre numunelere bağlanarak bilgisayar kontrollü ortamda hassas ölçümler alınmıştır. Bilgisayara eşzamanlı kaydedilen kuvvet-uzama verileriyle kuvvet-uzama eğrileri elde edilmiştir. Elde edilen kuvvet-uzama bilgileri ışığında numunelere ait nominal gerilme-birim şekil değiştirme eğrileri, gerçek gerilme-gerçek birim şekil değiştirme eğrileri ve malzemelere özgü K ve n değerleri saptanmıştır. Çekme deneylerinde kullanılan numunelerin resmi Şekil 3.2'de verilmiştir.

Şekil 3.1. Çekme cihazı

Şekil 3.2 Çekme deneyi numuneleri

3.2.2 Vickers indentasyon deneyleri

Vickers mikroindentasyon deneyleri İzmir Dokuz Eylül Üniversitesi Metalurji Mühendisliği Bölümü laboratuarlarında gerçekleştirilmiştir. Deneylerde kullanılan cihaz Japon Shimadzu marka DUH-W201S (Dynamic Ultra micro Hardness tester) model Şekil 3.3.'de verilen cihazdır.

Şekil 3.3. Vickers mikroindentasyon cihazı(DUH-W201S)

Deneylerde 0-1900mN aralığında 4 farklı malzemeye yüklememe uygulanmıştır. Yükleme hızı ise 7,06 mN/saniye olarak gerçekleştirilmiştir. Kullanılan numune boyutları 4 mm yüksekliğinde 14*14mm dikdörtgen prizmadır. Her numune üzerinde 3 nokta belirlenerek bu noktalara yük uygulanmıştır. Deney esnasında eş zamanlı olarak bilgisayar ekranından yükleme-yük boşaltma eğrilerini izleme imkanı olmuştur.(Şekil 3.4.)

Şekil 3.4. Yükleme –yük boşaltma eğrileri(P-h)

Deneylerde batıcı uç olarak 136⁰ tepe açılı elmas kare piramit kullanılarak , batıcı ucun numuneye yük esnasında derinlikleri belirlenebilmiştir.

Bu deneylerden elde edilen P-h grafiklerindeki veriler denklem 2.22-2.26'da kullanılarak gerçek gerilme gerçek birim şekil değişimi eğrileri tayin edilmiştir.

BÖLÜM 4. DENEYSEL SONUÇLAR

4.1. Mikroyapı Sonuçları

Deneylerde kullanılan numunelere ait x500 büyütme için optik mikroskopta çekilen mikroyapı fotoğrafları Şekil 4.1-4.4' de verilmiştir. Bununla birlikte yine aynı malzemelere ait çeşitli büyütmelerde çekilen SEM fotoğrafları Şekil 4.5-4.9' da verilmiştir.

Şekil 4.1. QSt32-3 mikroyapı fotoğrafı(x500)

Şekil 4.2. 20MnB4 mikroyapı fotoğrafı (x500)

Şekil 4.3 . 30MnB3 mikroyapı fotoğrafı (X500)

Şekil 4.4. 42CrMo4 mikroyapı fotoğrafı (X500)

Şekil 4.7. 30 MnB3(X2000) SEM

Şekil.4.8. 42CrMo4 (x1500) SEM

Şekil 4.1 ve 4.5' de QSt32-3 malzemesi için mikroyapı fotoğrafları verilmiştir. Bu malzemenin küreselleştirme işlemi görmediği ve çok az sayıda perlit taneciği içerdiği görülmektedir. Şekil 4.2-4.4 ve Şekil 4.6-4.8' de 20MnB4, 30MnB3 ve 42CrMo4 malzemelerinin küreselleştirme işlemi gördüğü ve çelik cıvata hammaddeleri için gerekli olan sünekliği sağlayacak bir mikroyapıya sahip oldukları görülmektedir.

4.2. Çekme Deneyleri Sonuçları

Yapılan çekme deneyleri sonucunda elde edilen F- Δ l verileri ve bu verilerden elde edilen birim şekil değiştirme, nominal gerilme, gerçek birim şekil değiştirme, gerçek gerilme değerleri denklem 2.1, 2.3, 2.6, 2.10 kullanılarak hesaplanmıştır. Daha sonra bulunan bu değerlerle birlikte şekillerde verilen kuvvet-uzama, gerçek gerilmegerçek b.ş.d. eğrileri elde edilmiştir. Logaritmik koordinatlarda log σ -log ϵ grafiklerinden faydalanarak K ve n değerleri bulunmuş ve $\sigma = K\varepsilon^n$ formülasyonu ile bulunan hesaplamalı gerilme-birim şekil değişimi eğrileri ile deneysel eğriler karşılaştırılmıştır. K ve n değerlerinin hesaplanması için çizilen log σ -log ε grafiklerinin eğimi pekleşme üssü n' yi verirken , eğim çizgisinin y eksenini kestiği nokta(y), 10^y şeklinde hesaplanarak K bulunur.

4.2.1. QSt32-3 malzemesi için çekme deneyi sonuçları

Tablo 4.1' de QSt32-3 malzemesi için bulunan e, ε , σ değerleri verilmiştir.

Tablo 4.1 QSt 32-3 malzemesi	için	çekme	deneyi	verileri	ve bulunan	ı sonuçlar
------------------------------	------	-------	--------	----------	------------	------------

A1 (mm.m.)		-	= (1, efferer 2)	-	~(1,,f/	a Ka ⁿ	1	1
$\Delta L(mm)$	r(Kgt)	e	σ _m (kgī/mm ⁻)	3		37=0	iog ε	log σ
0	0	0	0	0.0004	0	10 74000	0.00000	0.00057
0,02	002	0,0004	8,38293023	0,0004	8,3862834	10,74902	-3,39803	0,92357
0,04	13/9	0,0008	17,4623275	0,0008	17,4762973	12,5861/	-3,09/08	1,242449
0,05	1655	0,001	20,95/3256	0,001	20,9782829	13,2419	-3,00022	1,321/7
0,09	1942	0,0018	24,5916171	0,001798	24,635882	15,13688	-2,74512	1,391568
0,12	1992	0,0024	25,2247689	0,002397	25,2853083	16,16052	-2,62031	1,402868
0,2	2018	0,004	25,5540079	0,003992	25,6562239	18,15061	-2,39881	1,409193
0,48	2013	0,0096	25,4906927	0,009554	25,7354033	22,14063	-2,01981	1,410531
0,6	2018	0,012	25,5540079	0,011929	25,8606559	23,28836	-1,92341	1,41264
0,9	2015	0,018	25,5160187	0,01784	25,9753071	25,52359	-1,74861	1,414561
1,1	2046	0,022	25,9085729	0,021761	26,4785615	26,70493	-1,66231	1,422894
1,3	2105	0,026	26,655692	0,025668	27,34874	27,72792	-1,59061	1,436937
1,5	2171	0,03	27,4914525	0,029559	28,316196	28,63354	-1,52931	1,452035
1,69	2232	0,0338	28,2638977	0,033241	29,2192174	29,40938	-1,47832	1,465669
2	2317	0,04	29,3402558	0,039221	30,513866	30,53818	-1,40648	1,484497
2,3	2388	0,046	30,2393314	0,044973	31,6303406	31,50487	-1,34704	1,500104
2,5	2428	0,05	30,7458529	0,04879	32,2831455	32,09467	-1,31167	1,508976
2,7	2466	0,054	31,2270482	0,052592	32,9133089	32,6478	-1,27908	1,517372
3	2513	0,06	31,822211	0,058269	33,7315436	33,41871	-1,23456	1,528036
3,5	2579	0,07	32,6579714	0,067659	34,9440294	34,57517	-1,16968	1,543373
4,03	2640	0,0806	33,4304166	0,077516	36,1249082	35,66274	-1,11061	1,557807
4,5	2647	0,09	33,5190579	0,086178	36,5357731	36,53332	-1,06461	1,562718
5	2687	0,1	34,0255793	0,09531	37,4281373	37,3809	-1,02086	1,573198
5,5	2718	0,11	34,4181335	0,10436	38,2041281	38,16101	-0,98147	1,58211
6	2741	0,12	34,7093833	0,113329	38,8745093	38,88417	-0,94566	1,589665
6,53	2765	0,1306	35,0132962	0,122748	39,5860327	39,59758	-0,91098	1,597542
7	2786	0,14	35,27922	0,131028	40,2183108	40,19053	-0,88264	1,604424
7,31	2796	0,1462	35,4058503	0,136452	40,5821856	40,56343	-0,86502	1,608335
8	2815	0,16	35,646448	0,14842	41,3498797	41,34743	-0,82851	1,616474
9	2831	0,18	35,8490566	0,165514	42,3018868	42,3866	-0,78116	1,62636
10	2848	0,2	36,0643282	0,182322	43,2771939	43,33038	-0,73916	1,636259
11	2855	0.22	36,1529695	0.198851	44,1066228	44,19513	-0,70147	1,644504
11.18	2857	0.2236	36.1782956	0.201797	44.2677624	44.34339	-0.69508	1.646088
11.44	2857	0.2288	36.1782956	0.206038	44,4558896	44.55388	-0.68605	1.647929
11.5	2855	0.23	36.1529695	0.207014	44.4681525	44.60185	-0.684	1.648049
12.2	2855	0.244	36,1529695	0.218332	44.974294	45,14573	-0.66088	1.652964
12 64	2850	0.2528	36 0896543	0 225381	45 2131189	45 47356	-0.64708	1 655264

Şekil 4.9-4.11' de sırasıyla QSt32-3 malzemesinin kuvvet-uzama diyagramı, K ve n hesabı için Log ϵ -Log σ diyagramı ve gerçek gerilme-gerçek birim şekil değişimi diyagramları verilmiştir.

Şekil 4.9. QSt32-3 malzemesi için elde edilen kuvvet-uzama diyagramı

Şekil 4.10. QSt32-3 malzemesi için elde edilen logaritmik eğri

Şekil 4.11. QSt32-3 malzemesi için elde edilen gerçek gerilme- gerçek b.ş.d. eğrileri karşılaştırması

Şekil 4.10'daki eğrinin eğim formülünden(y=0,2277x+1,8051); n=0,2277 ve K= $10^{1,8051}$ =63,84 kg/mm² olarak hesaplanır.

Şekil 4.11' deki mavi eğri çekme deneyleri ile elde edilen gerçek gerilme-gerçek birim şekil değişimi eğrisini gösterirken, pembe eğri ise Şekil 4.10'dan elde edilen K ve n değerlerinin $\sigma = K\varepsilon^n$ bağıntısında kullanılmasıyla elde edilen gerçek gerilmegerçek birim şekil değişimi eğrisidir. Eğriler karşılaştırıldığında çok küçük ε değerlerinde sapmalar olduğu görülmekle beraber homojen deformasyon bölgesi için %1-2 hata ile iki eğri arasında uyum gözükmektedir. Küçük ε değerlerindeki farklılıklar malzeme yapısından kaynaklanan düşük karbon oranına sahip malzemelerde görülen Lüders bantlarına dayandırılabilir.

4.2.2. 20MnB4 malzemesi için çekme deneyi sonuçları

Tablo 4.2' de 20MnB4 malzemesi için bulunan e, ε , σ değerleri verilmiştir. Şekil 4.12-4.14' de ise sırasıyla 20MnB4 malzemesinin kuvvet-uzama diyagramı, K ve n hesabı için Log ε -Log σ diyagramı ve gerçek gerilme-gerçek birim şekil değişimi diyagramları verilmiştir.

			3					
∆L(mm)	F(kgf)	е	$\sigma_m (kgf/mm^2)$	٤	σ (kgf/mm ²)	$\sigma = K\epsilon^n$	log ε	log σ
0	0	0	0	0	0			
0,0152	504	0,000304	6,318878	0,000304	6,320799	15,72398	-3,51719	0,800772
0,0244	808	0,000488	10,13026	0,000488	10,13521	17,28478	-3,31169	1,005833
0,036341	1202	0,000727	15,07002	0,000727	15,08097	18,7178	-3,13873	1,178429
0,1675	2230	0,00335	27,95853	0,003344	28,05219	25,40181	-2,47568	1,447967
0,2775	2303	0,00555	28,87376	0,005535	29,03401	28,09436	-2,25691	1,462907
0,4275	2402	0,00855	30,11497	0,008514	30,37245	30,62134	-2,06988	1,48248
0,5675	2503	0,01135	31,38125	0,011286	31,73743	32,39735	-1,94746	1,501572
0,7475	2607	0,01495	32,68515	0,014839	33,17379	34,22031	-1,82859	1,520795
0,9475	2701	0,01895	33,86367	0,018773	34,50538	35,86792	-1,72647	1,537887
1,1575	2803	0,02315	35,14249	0,022886	35,95604	37,31774	-1,64043	1,555772
1,3775	2906	0,02755	36,43385	0,027177	37,4376	38,62267	-1,56579	1,573308
1,9775	3105	0,03955	38,9288	0,038788	40,46843	41,4706	-1,4113	1,607116
1,9975	3114	0,03995	39,04164	0,039173	40,60135	41,55253	-1,40702	1,60854
2,4075	3218	0,04815	40,34553	0,047027	42,28817	43,09927	-1,32766	1,626219
2,9075	3326	0,05815	41,69958	0,056522	44,12441	44,71411	-1,24778	1,644679
3,3975	3411	0,06795	42,76526	0,065741	45,67116	46,08591	-1,18216	1,659642
3,8975	3489	0,07795	43,74318	0,075061	47,15296	47,32427	-1,12459	1,673509
4,3175	3543	0,08635	44,42021	0,082823	48,25589	48,26492	-1,08185	1,68355
4,8075	3597	0,09615	45,09723	0,091804	49,43333	49,26895	-1,03714	1,69402
5,3175	3647	0,10635	45,7241	0,101066	50,58686	50,22527	-0,99539	1,704038
5,8175	3682	0,11635	46,16291	0,110064	51,53397	51,08935	-0,95835	1,712094
6,3175	3713	0,12635	46,55157	0,118982	52,43336	51,89165	-0,92452	1,719608
6,8575	3741	0,13715	46,90262	0,128525	53,33532	52,69854	-0,89101	1,727015
7,3675	3758	0,14735	47,11576	0,137455	54,05827	53,41129	-0,86184	1,732862
7,8075	3769	0,15615	47,25367	0,145096	54,63233	53,99229	-0,83835	1,73745
8,2975	3784	0,16595	47,44173	0,153536	55,31469	54,60635	-0,81379	1,74284
8,7175	3791	0,17435	47,52949	0,160715	55,81626	55,10768	-0,79394	1,746761
9,2075	3793	0,18415	47,55457	0,169025	56,31174	55,66616	-0,77205	1,750599
9,7075	3795	0,19415	47,57964	0,177435	56,81723	56,20936	-0,75096	1,75448
10,2075	3795	0,20415	47,57964	0,185774	57,29303	56,72806	-0,73102	1,758102
10,7075	3793	0,21415	47,55457	0,194044	57,73838	57,22438	-0,7121	1,761465
11,2075	3788	0,22415	47,49188	0,202247	58,13719	57,70019	-0,69412	1,764454
11,7075	3781	0,23415	47,40412	0,210382	58,50379	58,15712	-0,67699	1,767184
12,2075	3769	0,24415	47,25367	0,218453	58,79065	58,5966	-0,66064	1,769308
12,7075	3755	0,25415	47,07815	0,226458	59,04306	59,01991	-0,64501	1,771169
13,1875	3725	0,26375	46,70202	0,234083	59,01968	59,41213	-0,63063	1,770997
13,6075	3673	0,27215	46,05007	0,240708	58,5826	59,74468	-0,61851	1,767769
13.8875	3604	0.27775	45.18499	0.245101	57.73512	59.96114	-0.61066	1.76144

Tablo 4.2. 20MnB4 malzemesi için çekme deneyi verileri ve bulunan sonuçlar

Şekil 4.12. 20MnB4 malzemesi için elde edilen kuvvet-uzama diyagramı

Şekil 4.13. 20MnB4 malzemesi için elde edilen logaritmik eğri

Şekil 4.14. 20MnB4 malzemesi için elde edilen gerçek gerilme- gerçek b.ş.d. eğrileri karşılaştırması

Şekil 4.13'deki eğrinin eğim formülünden(y=0,1996x+1,8997); n=0,1996 ve K= $10^{1,8997}$ =79,37 kg/mm² olarak hesaplanır.

Şekil 4.14' deki mavi eğri çekme deneyleri ile elde edilen gerçek gerilme-gerçek birim şekil değişimi eğrisini gösterirken, pembe eğri ise Şekil 4.13'den elde edilen K ve n değerlerinin $\sigma = K\varepsilon^n$ bağıntısında kullanılmasıyla elde edilen gerçek gerilmegerçek birim şekil değişimi eğrisidir. Eğrilerdeki değerler karşılaştırıldığında ε =0,005 değerinden büyük değerler için %1 hata ile sonuçlar birbirine uymaktadır.

4.2.3. 30MnB3 malzemesi için çekme deneyi sonuçları

Tablo 4.3' de 30MnB3 malzemesi için bulunan e, ε , σ değerleri verilmiştir. Şekil 4.15-4.17' de ise sırasıyla 30MnB3 malzemesinin kuvvet-uzama diyagramı, K ve n hesabı için Log ε -Log σ diyagramı ve gerçek gerilme-gerçek birim şekil değişimi diyagramları verilmiştir.

$\Delta L(mm)$	F(kgf)	е	$\sigma_{\rm m}(\rm kgf/mm^2)$	ε	σ (kgf/mm ²)	σ=Kε ⁿ	log ε	log σ
0	0	0	0	0	0			-
0,0335	1011	0,00067	12,87898	0,00067	12,88761		-3,17407	1,110172
0,0505	1525	0,00101	19,42675	0,001009	19,44637		-2,9959	1,288839
0,174	2230	0,00348	28,40764	0,003474	28,5065	27,8141182	-2,45918	1,454944
0,194	2341	0,00388	29,82166	0,003872	29,93736	28,42486911	-2,41201	1,476214
0,264	2409	0,00528	30,6879	0,005266	30,84993	30,22722946	-2,27851	1,489254
0,424	2527	0,00848	32,19108	0,008444	32,46406	33,22098815	-2,07344	1,511403
0,634	2633	0,01268	33,5414	0,0126	33,96671	35,98954994	-1,89962	1,531053
0,834	2822	0,01668	35,94904	0,016542	36,54867	38,00319882	-1,7814	1,562872
1,034	2961	0,02068	37,71975	0,020469	38,49979	39,65701238	-1,6889	1,585458
1,334	3154	0,02668	40,17834	0,02633	41,2503	41,70532488	-1,57954	1,615427
1,634	3303	0,03268	42,07643	0,032157	43,45149	43,40666837	-1,49272	1,638005
1,934	3423	0,03868	43,6051	0,037951	45,29174	44,86878058	-1,42078	1,656019
2,424	3574	0,04848	45,52866	0,047341	47,73589	46,89739924	-1,32476	1,678845
2,924	3689	0,05848	46,99363	0,056834	49,74182	48,6431712	-1,24539	1,696722
3,434	3773	0,06868	48,06369	0,066424	51,36471	50,18404736	-1,17767	1,710665
3,794	3821	0,07588	48,67516	0,073139	52,36863	51,15994689	-1,13585	1,719071
4,434	3838	0,08868	48,89172	0,084966	53,22744	52,71683759	-1,07076	1,726136
4,934	3883	0,09868	49,46497	0,094109	54,34617	53,80554298	-1,02637	1,735169
5,434	3913	0,10868	49,84713	0,10317	55,26452	54,80386006	-0,98645	1,742446
5,934	3930	0,11868	50,06369	0,112149	56,00525	55,7262435	-0,9502	1,748229
6,434	3949	0,12868	50,30573	0,121049	56,77907	56,58384645	-0,91704	1,754188
6,934	3966	0,13868	50,52229	0,12987	57,52872	57,38546805	-0,88649	1,759885
7,434	3975	0,14868	50,63694	0,138613	58,16564	58,1381813	-0,85819	1,764667
7,934	3984	0,15868	50,75159	0,147281	58,80486	58,84776307	-0,83185	1,769413
8,434	3984	0,16868	50,75159	0,155875	59,31237	59,51899703	-0,80722	1,773145
8,934	3984	0,17868	50,75159	0,164395	59,81989	60,15589224	-0,78411	1,776846
9,434	3982	0,18868	50,72611	0,172843	60,29712	60,76184423	-0,76235	1,780297
9,934	3982	0,19868	50,72611	0,181221	60,80438	61,33975599	-0,74179	1,783935
10,434	3982	0,20868	50,72611	0,189529	61,31164	61,89213023	-0,72232	1,787543
10,934	3977	0,21868	50,66242	0,197768	61,74128	62,4211408	-0,70384	1,790576
11,434	3970	0,22868	50,57325	0,20594	62,13834	62,92868879	-0,68626	1,79336
11,934	3960	0,23868	50,44586	0,214046	62,48628	63,41644701	-0,66949	1,795785
12,434	3951	0,24868	50,33121	0,222087	62,84758	63,88589565	-0,65348	1,798289
12,934	3934	0,25868	50,11465	0,230064	63,07831	64,33835124	-0,63815	1,79988
13,444	3918	0,26888	49,91083	0,238135	63,33085	64,78356913	-0,62318	1,801615
13,934	3887	0,27868	49,51592	0,245828	63,31502	65,19686858	-0,60937	1,801507
14,444	3835	0,28888	48,8535	0,253774	62,9663	65,61296434	-0,59555	1,799108
14,774	3788	0,29548	48,25478	0,258881	62,5131	65,87497953	-0,5869	1,795971

Tablo 4.3. 30MnB3 malzemesi için çekme deneyi verileri ve bulunan sonuçlar

Şekil 4.15. 30 MnB3 malzemesi için elde edilen kuvvet-uzama diyagramı

Şekil 4.16. 30MnB3 malzemesi için elde edilen logaritmik eğri

Şekil 4.17. 30 MnB3malzemesi için elde edilen gerçek gerilme- gerçek b.ş.d. eğrileri karşılaştırması

Şekil 4.16'daki eğrinin eğim formülünden(y=0,2x+1,9361); n=0,2 ve K=10^{1,9361}=86,31 kg/mm² olarak hesaplanır.

Şekil 4.17' deki mavi eğri çekme deneyleri ile elde edilen gerçek gerilme-gerçek birim şekil değişimi eğrisini gösterirken, pembe eğri ise Şekil 4.16'dan elde edilen K ve n değerlerinin $\sigma = K\varepsilon^n$ bağıntısında kullanılmasıyla elde edilen gerçek gerilmegerçek birim şekil değişimi eğrisidir. Eğrilerdeki değerler karşılaştırıldığında ε =0,0034 değerinden büyük değerler için %1-2 hata ile sonuçlar birbirine uymaktadır.

4.2.4. 42CrMo4 malzemesi için çekme deneyi sonuçları

Tablo 4.4' de 42CrMo4 malzemesi için bulunan e, ε , σ değerleri verilmiştir. Şekil 4.18-4.20' de ise sırasıyla 42CrMo4 malzemesinin kuvvet-uzama diyagramı, K ve n hesabı için Log ε -Log σ diyagramı ve gerçek gerilme-gerçek birim şekil değişimi diyagramları verilmiştir.

∆L(mm)	F(kgf)	е	$\sigma_{\rm m}(\rm kgf/mm^2)$	ε	$\sigma(\text{kgf/mm}^2)$	σ=Kε ⁿ	log ε	log σ
0	0	0	0	0	0			
0,035	1027	0,0007	13,0828	0,0007	13,09196	25,08929675	-3,15505	1,117005
0,0565	1676	0,00113	21,35032	0,001129	21,37444	27,34690403	-2,94717	1,329895
0,19	2708	0,0038	34,49682	0,003793	34,6279	34,01033792	-2,42104	1,539426
0,7813	3196	0,015626	40,71338	0,015505	41,34956	43,82117065	-1,80952	1,616471
1,3113	3505	0,026226	44,64968	0,025888	45,82066	48,05691741	-1,5869	1,661061
1,7813	3741	0,035626	47,65605	0,035006	49,35385	50,73924593	-1,45586	1,693321
2,2913	3934	0,045826	50,11465	0,044807	52,4112	53,04451177	-1,34865	1,719424
2,7813	4078	0,055626	51,94904	0,054134	54,83876	54,8810929	-1,26653	1,739088
3,3013	4184	0,066026	53,29936	0,063938	56,81851	56,55024289	-1,19424	1,75449
3,7813	4267	0,075626	54,35669	0,072903	58,46747	57,90181404	-1,13726	1,766914
4,2813	4323	0,085626	55,07006	0,082157	59,78549	59,1607957	-1,08536	1,776596
4,7813	4368	0,095626	55,64331	0,091326	60,96426	60,29830408	-1,03941	1,785075
5,2713	4401	0,105426	56,06369	0,100231	61,97427	61,31664646	-0,999	1,792211
5,7913	4420	0,115826	56,30573	0,109595	62,8274	62,31039189	-0,96021	1,798149
6,0813	4399	0,121626	56,03822	0,114779	62,85392	62,83096314	-0,94014	1,798332
6,3813	4387	0,127626	55,88535	0,120115	63,01777	63,34690443	-0,9204	1,799463
6,7813	4404	0,135626	56,10191	0,127184	63,71079	64,00237131	-0,89557	1,804213
6,9813	4406	0,139626	56,12739	0,1307	63,96423	64,31731148	-0,88372	1,805937
7,2813	4408	0,145626	56,15287	0,135951	64,33018	64,77495934	-0,86662	1,808415
7,4813	4411	0,149626	56,19108	0,139437	64,59873	65,07078639	-0,85562	1,810224
7,6713	4411	0,153426	56,19108	0,142737	64,81226	65,34533373	-0,84546	1,811657
8,0813	4406	0,161626	56,12739	0,149821	65,19903	65,91756355	-0,82443	1,814241
8,3813	4404	0,167626	56,10191	0,154973	65,50605	66,31993518	-0,80975	1,816281
8,7813	4404	0,175626	56,10191	0,161801	65,95487	66,83665395	-0,79102	1,819247
9,2813	4397	0,185626	56,01274	0,170271	66,41016	67,4533423	-0,76886	1,822235
9,7913	4382	0,195826	55,82166	0,178837	66,75299	68,05195267	-0,74754	1,824471
10,2913	4347	0,205826	55,3758	0,187165	66,77357	68,61175829	-0,72778	1,824605
10,7913	4272	0,215826	54,42038	0,195424	66,16572	69,14711865	-0,70902	1,820633
11,0813	4198	0,221626	53,47771	0,200183	65,32976	69,44724057	-0,69857	1,815111

Tablo 4.4. 42 CrMo4 malzemesi için çekme deneyi verileri ve bulunan sonuçlar

Şekil 4.18. 42CrMo4 malzemesi için elde edilen kuvvet-uzama diyagramı

Şekil 4.19. 42CrMo4 malzemesi için elde edilen logaritmik eğri

Şekil 4.20. 42CrMo4 malzemesi için elde edilen gerçek gerilme- gerçek b.ş.d eğrileri karşılaştırması

Şekil 4.19'daki eğrinin eğim formülünden(y=0,183x+1,9674); n=0,183 ve K= $10^{1,9674}$ =92,76 kg/mm² olarak hesaplanır. Şekil 4.20' deki mavi eğri çekme deneyleri ile elde edilen gerçek gerilme-gerçek birim şekil değişimi eğrisini gösterirken, pembe eğri ise Şekil 4.19'dan elde edilen K ve n değerlerinin $\sigma = K\varepsilon^n$ bağıntısında kullanılmasıyla elde edilen gerçek gerilmegerçek birim şekil değişimi eğrisidir. Eğrilerdeki değerler karşılaştırıldığında ε =0,0035 değerinden büyük değerler için %2-3 hata ile sonuçlar birbirine uymaktadır.

4 farklı malzeme için yapılan çekme deneyleri sonucu elde edilen değerler Tablo 4.5 verilmiştir.

Malzeme	σ_{ak} (kg/mm ²)	$\sigma_{\rm max}$ (kg/mm ²)	$K(kg/mm^2)$	n
QSt32-3	22-23	36,17	63,84	0,228
20MnB4	28	47,57	79,37	0,199
30MnB3	29	50,75	86,31	0,2
42CrMo4	35	56,19	92,76	0,183

Tablo 4.5. Çelik civata hammaddeleri için çekme deneylerinden elde edilen değerler

Elde edilen değerler göstermiştir ki, malzemelerin akma ve çekme dayanımları sahip oldukları mukavemet katsayıları da artmaktadır. Buna karşılık arttıkça pekleşme üssü değerleri düşüş göstermektedir. Bu da malzemelerin şekillendirilebilme kabiliyetlerinin düşmesi olarak yorumlanabilir. 42CrMo4 malzemesi en yüksek mukavemet değerine sahipken pekleşme üssü olarak bakıldığında en düşük değere sahiptir. Bu malzemenin diğer malzemelere nazaran şekillendirilebilme kabiliyetinin en düşük malzeme olduğu söylenebilir. Bu durumun tam tersi QSt32-3 malzemesi için söz konusudur. Mukavemet katsayısının düşük olması ile birlikte akma ve çekme dayanımları düşük değerlerdedir. Buna karşılık en yüksek pekleşme üssü değerine bu malzeme sahiptir. Bu sonuçta bize en kolay şekillendirilebilecek malzemenin QSt32-3 malzemesi olduğunu göstermektedir.

4.3. Vickers İndentasyon Deneyleri Sonuçları

Yapılan Vickers indentasyon deneyleri ile elde edilen P-h grafikleri ve bunları kullanarak ileri sürülen bağıntılarla hesaplanan h'-h grafikleri ve nihayetinde elde edilen gerçek gerilme-gerçek birim şekil değişimi eğrileri sunulacaktır. Tüm bu eğrileri elde etmek için hesaplanan değerler her malzeme için ilgili tablolarda verilecektir (Tablo 4.6-4.9).

Bu tablolardaki;

h= Yük uygulama esnasındaki iz derinliği,

F= Uygulama yükü

 \mathcal{E} = Gerçek birim şekil değişimi

A'= İndentasyon deneylerinde çekme deneyleri ile aynı ε değerine karşılık gelen temas alanı,

h'= Düzeltilmiş iz derinliği

A= Düzeltilmiş temas alanı

4.3.1. QSt32-3 malzemesi için Vickers indentasyon deneyi sonuçları

Tablo 4.6'da QSt32-3 malzemesi için elde edilen kuvvet-iz derinliği verileri ve bu konuda geliştirilen bağıntılar ile elde edilen gerçek gerilme,gerçek birim şekil değişimi değerleri verilmiştir. Hesaplamalarda denklem 2.22-2.26' dan faydalanılmıştır. Şekil 4.21'de uygulama kuvveti-iz derinliği grafiği verilmiştir. Şekil 4.22' de hesaplanan düzeltilmiş h' değerleri ile deney esnasında oluşan gerçek h değerleri arasındaki ilişki grafik olarak verilmekle beraber aralarındaki ilişki bir formülle ifade edilmiştir. Şekil 4.23'de ise düzeltilmiş h değerleri ile bulunan düzeltilmiş temas alanlarını ve uygulama yüklerini kullanarak tayin edilen gerçek gerilme değerleri ve gerçek birim şekil değişimi değerleri bir grafik olarak verilmiştir.

h(µm)	F(mN)	٤	A'(µm²)	h'	A(mm ²)	F (kg)	٤	σ sertlik	σ çekme
0,08	3	0,002397	12,09439	0,702601	0,000208	0,000306	0,002397	1,467036	25,28531
0,425	22	0,009554	87,14103	1,885942	0,000271	0,002243	0,009554	8,284274	25,7354
0,71	43	0,01784	168,748	2,624438	0,000328	0,004383	0,01784	13,35313	25,97531
0,86	55	0,021761	211,7382	2,939792	0,000361	0,005607	0,021761	15,5402	26,47856
1,014	71	0,025668	264,6379	3,286571	0,000396	0,007238	0,025668	18,28778	27,34874
1,16	87	0,029559	313,1954	3,5754	0,00043	0,008869	0,029559	20,60453	28,3162
1,31	107	0,033241	373,2899	3,903373	0,000468	0,010907	0,033241	23,32909	29,21922
1,53	137	0,039221	457,672	4,322093	0,000525	0,013965	0,039221	26,61269	30,51387
1,9	182	0,04879	574,6806	4,843176	0,000628	0,018552	0,04879	29,52097	32,28315
2,26	223	0,058269	673,9065	5,244653	0,000738	0,022732	0,058269	30,78932	33,73154
3	345	0,077516	973,5165	6,3036	0,000992	0,035168	0,077516	35,45581	36,12491
3,627	462	0,09531	1258,273	7,166454	0,001236	0,047095	0,09531	38,10282	37,42814
4,28	604	0,113329	1583,81	8,04023	0,001519	0,06157	0,113329	40,54013	38,87451
4,9	747	0,131028	1893,336	8,790849	0,001814	0,076147	0,131028	41,97443	40,21831
5,518	890	0,14842	2194,051	9,46325	0,002135	0,090724	0,14842	42,50032	41,34988
6,666	1179	0,182322	2777,063	10,64657	0,002799	0,120183	0,182322	42,93394	43,27719
7,31	1393	0,201797	3207,706	11,44232	0,003211	0,141998	0,201797	44,21591	44,26776
7,48	1431	0,207014	3280,36	11,57118	0,003325	0,145872	0,207014	43,87114	44,46815
8,07	1626	0,225381	3665,954	12,23237	0,003734	0,165749	0,225381	44,38533	45,21312

Tablo 4.6. QSt32-3 malzemesi için indentasyon deneyi sonuçları

Şekil 4.21. QSt32-3 malzemesi için kuvvet- iz derinliği grafiği

Şekil 4.22. QSt32-3 malzemesi için gerçek iz derinliği-düzeltilmiş iz derinliği ilişkisi

Şekil 4.23. QSt32-3 malzemesi için indentasyon deneyinden elde edilen gerçek gerilme-gerçek birim şekil değişimi eğrisi

4.3.2. 20MnB4 malzemesi için Vickers indentasyon deneyi sonuçları

Tablo 4.7'da 20MnB4 malzemesi için elde edilen kuvvet-iz derinliği verileri ve bu konuda geliştirilen bağıntılar ile elde edilen gerçek gerilme,gerçek birim şekil değişimi değerleri verilmiştir. Şekil 4.24'de uygulama kuvveti-iz derinliği grafiği, Şekil 4.25' de bu malzeme için h'-h ilişkisi, Şekil 4.26'de ise düzeltilmiş h değerleri ile bulunan düzeltilmiş temas alanlarını ve uygulama yüklerini kullanarak tayin edilen gerçek gerilme ve gerçek birim şekil değişimi değerleri bir grafik olarak verilmiştir.

h (um)		c	A.	b'	Λ mm ²	Eka	a oortlik	σ ookmo
η (μπ)		с 0	A		АШП	г ку		
0	0	0	01.00000	0.040054	0.000110	0.000010	0	00.05010
0,13	6	0,003344	21,80296	0,943354	0,000116	0,000612	5,264128	28,05219
0,264	14	0,005535	49,15322	1,416423	0,000136	0,001427	10,46296	29,03401
0,349	20	0,008514	67,12451	1,655227	0,00015	0,002039	13,58647	30,37245
0,445	27	0,011286	86,72075	1,881388	0,000166	0,002752	16,55343	31,73743
0,739	51	0,018773	150,6657	2,479843	0,000221	0,005199	23,51486	34,50538
0,906	67	0,022886	189,9477	2,784415	0,000256	0,00683	26,71061	35,95604
1,074	86	0,027177	234,1647	3,09156	0,000293	0,008767	29,91486	37,4376
1,522	143	0,038788	360,2057	3,834355	0,000405	0,014577	35,98252	40,46843
1,549	146	0,039173	366,5586	3,868019	0,000412	0,014883	36,0843	40,60135
1,837	193	0,047027	465,2318	4,357643	0,000495	0,019674	39,76546	42,28817
2,196	253	0,056522	584,484	4,884311	0,000608	0,02579	42,43083	44,12441
2,543	324	0,065741	723,1593	5,432928	0,000728	0,033028	45,35814	45,67116
2,896	397	0,075061	858,2474	5,918658	0,000862	0,040469	46,96336	47,15296
3,185	468	0,082823	988,6135	6,352289	0,000979	0,047706	48,70847	48,25589
3,513	549	0,091804	1132,097	6,797649	0,001122	0,055963	49,87124	49,43333
3,846	642	0,101066	1293,684	7,266598	0,001277	0,065443	51,24829	50,58686
4,17	742	0,110064	1467,714	7,73994	0,001437	0,075637	52,6268	51,53397
4,487	830	0,118982	1613,62	8,115544	0,001603	0,084608	52,77464	52,43336
4,828	940	0,128525	1796,569	8,563256	0,001792	0,095821	53,47668	53,33532
5,137	1047	0,137455	1974,311	8,976866	0,001972	0,106728	54,12679	54,05827
5,403	1140	0,145096	2127,091	9,317728	0,002134	0,116208	54,46429	54,63233
5,692	1250	0,153536	2303,565	9,69655	0,002317	0,127421	55,0005	55,31469
5,938	1350	0,160715	2465,494	10,03157	0,002478	0,137615	55,52356	55,81626
6,231	1470	0,169025	2661,027	10,42177	0,002678	0,149847	55,94882	56,31174
6,503	1610	0,177435	2888,529	10,85814	0,002871	0,164118	57,17017	56,81723
6,785	1731	0,185774	3079,827	11,21192	0,003077	0,17 <u>645</u> 3	57,34145	57,29303
7,057	1848	0,194044	3262,634	11,53988	0,003283	0,188379	57,37623	57,73838

Tablo 4.7. 20MnB4 malzemesi için indentasyon deneyi sonuçları

Şekil 4.24. 20MnB4 malzemesi için kuvvet- iz derinliği grafiği

Şekil 4.25. 20MnB4 malzemesi için gerçek iz derinliği-düzeltilmiş iz derinliği ilişkisi

Şekil 4.26. 20MnB4 malzemesi için indentasyon deneyinden elde edilen gerçek gerilme-gerçek birim şekil değişimi eğrisi

4.3.3. 30MnB3 malzemesi için Vickers indentasyon deneyi sonuçları

Tablo 4.8'de 30MnB3 malzemesi için elde edilen kuvvet-iz derinliği verileri ve bu konuda geliştirilen bağıntılar ile elde edilen gerçek gerilme, gerçek birim şekil değişimi değerleri verilmiştir. Şekil 4.27'de uygulama kuvveti-iz derinliği grafiği, Şekil 4.28' de bu malzeme için h'-h ilişkisi, Şekil 4.29'de ise düzeltilmiş h değerleri ile bulunan düzeltilmiş temas alanlarını ve uygulama yüklerini kullanarak tayin edilen gerçek gerilme ve gerçek birim şekil değişimi değerleri bir grafik olarak verilmiştir.

Tablo 4.8. 30MnB3 malzemesi için indentasyon deneyi sonuçları

h (µm)	F(mN)	3	Α'	h'	A mm ²	F kg	σ sertlik	σ çekme
0	0	0	0	0	0,000137637	0	0	0
0,14	6	0,003474	47,45805	1,391784	0,000158067	0,000612	3,869384	12,88761
0,219	11	0,005266	57,66139	1,534121	0,000170218	0,001121	6,587448	19,44637
0,335	18,5	0,008444	66,15441	1,643222	0,000188877	0,001886	9,984448	28,5065
0,499	29	0,0126	98,74507	2,007588	0,000216911	0,002956	13,62846	29,93736
0,654	41	0,016542	135,4755	2,351512	0,00024519	0,004179	17,04561	30,84993
0,798	54	0,020469	169,5594	2,63074	0,000273013	0,005505	20,16233	32,46406
1,047	79	0,02633	237,0853	3,11078	0,000324653	0,008053	24,80498	33,96671
1,284	107	0,032157	298,4305	3,490105	0,000377956	0,010907	28,85851	36,54867
1,49	135	0,037951	357,4427	3,81962	0,000427576	0,013761	32,18483	38,49979
1,857	190	0,047341	469,5236	4,377697	0,000523558	0,019368	36,99299	41,2503
2,207	252	0,056834	591,1897	4,912249	0,000624141	0,025688	41,15748	43,45149
2,569	325	0,066424	731,468	5,46405	0,000737464	0,033129	44,92352	45,29174
2,818	379	0,073139	809,3291	5,747507	0,000820896	0,038634	47,06325	47,73589
3,257	474	0,084966	971,3767	6,296668	0,00097888	0,048318	49,36053	49,74182
3,59	557	0,094109	1105,405	6,717035	0,001107985	0,056779	51,2451	51,36471
3,925	652	0,10317	1269,134	7,197317	0,001245932	0,066463	53,34383	52,36863
4,245	746	0,112149	1428,678	7,636319	0,001385258	0,076045	54,8958	53,22744
4,559	820	0,121049	1538,069	7,923278	0,001529148	0,083588	54,66322	54,34617
4,873	924	0,12987	1704,341	8,340561	0,001680147	0,09419	56,06033	55,26452
5,177	1027	0,138613	1869,273	8,734807	0,001833109	0,104689	57,11012	56,00525
5,485	1134	0,147281	2035,897	9,115801	0,001994879	0,115596	57,94653	56,77907
5,773	1207	0,155875	2138,718	9,343158	0,002152332	0,123038	57,16483	57,52872
6,063	1329	0,164395	2329,107	9,750159	0,002316921	0,135474	58,47156	58,16564
6,351	1444	0,172843	2503,139	10,10787	0,002486376	0,147197	59,20132	58,80486
6,63	1532	0,181221	2632,961	10,36667	0,002656238	0,156167	58,79262	59,31237
6,907	1640	0,189529	2794,662	10,68025	0,002830434	0,167176	59,06386	59,81989
7,176	1759	0,197768	2973,721	11,0171	0,003004894	0,179307	59,67161	60,29712
7,449	1877	0,20594	3146,737	11,33306	0,003187281	0,191335	60,0309	60,80438

Şekil 4.27. 30MnB3 malzemesi için kuvvet- iz derinliği grafiği

Şekil 4.28. 30MnB3 malzemesi için gerçek iz derinliği-düzeltilmiş iz derinliği ilişkisi

Şekil 4.29. 30MnB3 malzemesi için indentasyon deneyinden elde edilen gerçek gerilme-gerçek birim şekil değişimi eğrisi

Tablo 4.9'de 42CrMo4 malzemesi için elde edilen kuvvet-iz derinliği verileri ve bu konuda geliştirilen bağıntılar ile elde edilen gerçek gerilme, gerçek birim şekil değişimi değerleri verilmiştir. Şekil 4.30'de uygulama kuvveti-iz derinliği grafiği, Şekil 4.31' de bu malzeme için h'-h ilişkisi, Şekil 4.32'de ise düzeltilmiş h değerleri ile bulunan düzeltilmiş temas alanlarını ve uygulama yüklerini kullanarak tayin edilen gerçek gerilme ve gerçek birim şekil değişimi değerleri bir grafik olarak verilmiştir.

Tablo 4.9. 42CrMo4 malzemesi için indentasyon deneyi sonuçları

h(µm)	F(mN)	ε	Α'	h'	A mm ²	F kg	σ sertlik	σ çekme
0,193	9	0,004837	26,49399	1,039898	0,000119	0,000917	7,713478	34,6279
0,615	42	0,015505	103,5403	2,055756	0,000187	0,004281	22,85922	41,34956
1,024	89	0,025888	197,9975	2,842803	0,000268	0,009072	33,81625	45,82066
1,38	142	0,035006	293,2907	3,45992	0,000351	0,014475	41,28681	49,35385
1,755	208	0,044807	404,5482	4,063517	0,000449	0,021203	47,20191	52,4112
2,155	290	0,054134	539,0653	4,6907	0,000568	0,029562	52,06215	54,83876
2,48	370	0,063938	663,8086	5,205212	0,000674	0,037717	55,92484	56,81851
2,81	440	0,072903	767,1307	5,595664	0,000792	0,044852	56,62907	58,46747
3,15	538	0,082157	917,3128	6,118933	0,000923	0,054842	59,41066	59,78549
3,491	645	0,091326	1078,488	6,634751	0,001065	0,065749	61,75807	60,96426
3,814	752	0,100231	1236,908	7,105353	0,001208	0,076656	63,45811	61,97427
4,148	843	0,109595	1367,759	7,471739	0,001366	0,085933	62,91992	62,8274
4,338	911	0,114779	1477,464	7,765608	0,00146	0,092864	63,61398	62,85392
4,558	999	0,120115	1615,971	8,121452	0,001573	0,101835	64,75404	63,01777
4,78	1083	0,127184	1732,792	8,409888	0,001691	0,110398	65,29489	63,71079
4,902	1132	0,1307	1804,015	8,580984	0,001757	0,115392	65,65781	63,96423
5,101	1178	0,135951	1866,644	8,728663	0,001869	0,120082	64,24569	64,33018
5,206	1224	0,139437	1931,472	8,878941	0,001929	0,124771	64,66888	64,59873
5,321	1275	0,142737	2005,322	9,047091	0,001996	0,129969	65,09885	64,81226
5,565	1387	0,149821	2168,534	9,408061	0,002143	0,141386	65,98523	65,19903
5,745	1466	0,154973	2281,306	9,649587	0,002254	0,149439	66,30365	65,50605
6,005	1522	0,161801	2352,333	9,798652	0,002419	0,155148	64,12658	65,95487
6,26	1668	0,170271	2560,31	10,22264	0,002587	0,170031	65,71358	66,41016
6,55	1804	0,178837	2754,843	10,60389	0,002785	0,183894	66,02014	66,75299
6,794	1900	0,1861	2900,703	10,88099	0,002958	0,19368	65,48449	66,77

Şekil 4.30. 42CrMo4 malzemesi için kuvvet- iz derinliği grafiği

Şekil 4.31. 42CrMo4 malzemesi için gerçek iz derinliği-düzeltilmiş iz derinliği ilişkisi

Şekil 4.32. 42CrMo4 malzemesi için indentasyon deneyinden elde edilen gerçek gerilme-gerçek birim şekil değişimi eğrisi

BÖLÜM 5. SONUÇLAR VE ÖNERİLER

QSt32-3 malzemesi ile yapılan çekme deneyleri ile elde edilen gerçek gerilmegerçek birim şekil değişimi eğrisi, yine bu malzeme için hesaplanan K=63,84kg/mm² n=0,228 değerleri ile tayin edilen hesaplamalı gerçek gerilme- gerçek birim şekil değişimi eğrisi ve indentasyon deneyi sonucu bu malzeme için bulunan h'=1,1801h+2,8225 eşitliğinin kullanılmasıyla elde edilen gerçek gerilme-gerçek birim şekil değişimi eğrisi Şekil 5.1' de bir arada verilmiştir.

Şekil 5.1 QSt32-3 malzemesi için tayin edilen gerçek gerilme-gerçek birim şekil değişimi eğrileri

Şekil 5.1 göstermektedir ki sertlik deneyleri ile elde edilen eğri ε =0,05 değerinin üstündeki değerlerde çekme deneylerinden elde elde edilen eğriler ile ±%5 hata ile uyum sağlamaktadır.

20MnB4 malzemesi ile yapılan çekme deneyleri ile elde edilen gerçek gerilmegerçek birim şekil değişimi eğrisi, yine bu malzeme için hesaplanan K=79,37kg/mm² n=0,199 değerleri ile tayin edilen hesaplamalı gerçek gerilme- gerçek birim şekil değişimi eğrisi ve indentasyon deneyi sonucu bu malzeme için bulunan h'=1,3568h+2,0013 eşitliğinin kullanılmasıyla elde edilen gerçek gerilme-gerçek birim şekil değişimi eğrisi Şekil 5.2' de bir arada verilmiştir.

Şekil 5.2 20MnB4 malzemesi için tayin edilen gerçek gerilme-gerçek birim şekil değişimi eğrileri

Şekil 5.2 göstermektedir ki sertlik deneyleri ile elde edilen eğri ε =0,05 değerinin üstündeki değerlerde çekme deneylerinden elde elde edilen eğriler ile ±%1-2 hata ile uyum sağlamaktadır.

30MnB3 malzemesi ile yapılan çekme deneyleri ile elde edilen gerçek gerilmegerçek birim şekil değişimi eğrisi, yine bu malzeme için hesaplanan K=86,31kg/mm² n=0,2 değerleri ile tayin edilen hesaplamalı gerçek gerilme- gerçek birim şekil değişimi eğrisi ve indentasyon deneyi sonucu bu malzeme için bulunan h'=1,213h+2,3702 eşitliğinin kullanılmasıyla elde edilen gerçek gerilme-gerçek birim şekil değişimi eğrisi Şekil 5.3' de bir arada verilmiştir.

Şekil 5.3 göstermektedir ki sertlik deneyleri ile elde edilen eğri ε =0,05 değerinin üstündeki değerlerde çekme deneylerinden elde elde edilen eğriler ile ±%2 hata ile uyum sağlamaktadır.

Şekil 5.3. 30MnB3 malzemesi için tayin edilen gerçek gerilme-gerçek birim şekil değişimi eğrileri

42CrMo4 malzemesi ile yapılan çekme deneyleri ile elde edilen gerçek gerilmegerçek birim şekil değişimi eğrisi, yine bu malzeme için hesaplanan K=92,76kg/mm² n=0,183 değerleri ile tayin edilen hesaplamalı gerçek gerilme- gerçek birim şekil

Şekil 5.4. 42CrMo4 malzemesi için tayin edilen gerçek gerilme-gerçek birim şekil değişimi eğrileri

değişimi eğrisi ve indentasyon deneyi sonucu bu malzeme için bulunan h'=1,3307h+1,9465 eşitliğinin kullanılmasıyla elde edilen gerçek gerilme-gerçek birim şekil değişimi eğrisi Şekil 5.4' de bir arada verilmiştir. Şekil 5.4 göstermektedir ki sertlik deneyleri ile elde edilen eğri ε =0,05 değerinin üstündeki değerlerde çekme deneylerinden elde elde edilen eğriler ile ±%3 hata ile uyum sağlamaktadır.

Şekil 5.5' de deneysel çalışmalarda kullanılan 4 farklı malzeme için Vickers indentasyon deneylerinden elde edilen gerçek gerilme-gerçek birim şekil değişimi eğrilerinin karşılaştırılmalı grafiği görülmektedir. Tablo 5.1.' de ise Şekil 5.5' deki eğrilerin eldesinde kullanılan h'=B.h+C fonksiyonlarındaki B ve C değerleri sunulmuştur.

Şekil 5.5. Vickers indentasyon deneyinden elde edilen gerçek gerilme-gerçek b.ş.d. eğrileri karşılaştırma grafiği

Tablo 5.1. Deney maizemeteri çin elde cunen b ve c degenen								
Deney malzemesi	В	С						
QSt32-3	1,1801	2,8225						
20MnB4	1,3568	2,0013						
30MnB3	1,213	2,3702						
42CrMo4	1,3307	1,9465						

Tablo 5.1. Deney malzemeleri için elde edilen B ve C değerleri

Şekil 5.5 ve Tablo 5.1 incelendiğinde, C değerleri ile n değerleri değişimi arasında benzer bir değişim görülmektedir. n değerleri azalışı ile C değerleri de azalış

göstermiştir. 20MnB4 hariç diğer 3 malzeme için malzeme mukavemet katsayısı değerlerindeki değişim B değerlerindeki değişime benzerlik göstermektedir.

Bu çalışmanın amacı, Vickers indentasyon deneyleri ile başka bir deneye gerek kalmadan malzemenin gerçek gerilme-gerçek birim şekil değişimi değerlerini elde edilebilirliğidir. Deneysel çalışmaların sonuçları Vickers indentasyon deneyleri ile gerçek gerilme-gerçek birim şekil değişimi eğrilerinin elde edilebileceğini göstermiştir. Fakat, çekme deneylerinden elde edilen gerçek gerilme değerleri yardımıyla elde edilen h'=B.h+C fonksiyonlarındaki B ve C değerlerinin Vickers indentasyon deney verileriyle elde edilmemiş olması çözülmesi gereken bir aşama olarak ortaya çıkmıştır.

Sonuç olarak ;

Deneysel çalışmalarda kullanılan 4 farklı malzemenin her biri için $\mathcal{E}=0,05$ altındaki değerlerde sertlik deneyleri ile gerçek gerilme-gerçek birim şekil değişimi eğrilerinin tayini büyük hatalar vermektedir. Küçük birim şekil değiştirmelerdeki hatalar, batıcı uç geometrisinin çok küçük yükler için uygun sonuçları verememesine, malzemelerin sivri batıcı uçlu uygulamalarda elastik davranışının tam olarak tanımlanma yetersizliğine, küçük yükler için yanal girinti ve yanal çıkıntı etkilerinin büyük olmasına bağlanabilir.

Deneysel çalışmalarda kullanılan 4 farklı malzemenin her biri için geçerli olmak üzere ɛ=0,05 üzerindeki değerlerde çekme ve Vickers indentasyon gerçek gerilmegerçek birim şekil değişimi eğrileri %95-99 benzerlikte sonuçlar vermiştir.

Kullanılan malzemeler içinde en yüksek hata oranı QSt32-3 malzemesinde görülmüştür. Yumuşak malzemelerde bu yöntemin daha yüksek hata oranları verebileceği sonucu çıkarılabilir.

Deneysel çalışmalarda kullanılan 4 farklı malzemenin her biri için ε =0,05' in üzerindeki deformasyon bölgesinde geçerli olan h'=B.h+C fonksiyonu bulunmuştur.

Fakat bu fonksiyondaki B ve C değerlerinin malzeme özellikleri ile ilişkilendirilmesi çalışmaları gereklidir.

Vickers indentasyon deneyleri ile başka bir deneye ihtiyaç duyulmadan gerçek gerilme-gerçek birim şekil değişimi eğrilerinin elde edilebilmesi için h'=B.h+C fonksiyonundaki B ve C değerlerinin malzeme çeşitliliğine bağlı olarak değişimini veren çalışmalar önerilmektedir.

KAYNAKLAR

- PETRESCU, D., SAVAGE, S.C., HODGSON, P.D., Simulalation of the fastener manufacturing process, Journal of Materials Processing Technology, 125-126, pp.361-368, 2002
- [2] KO, D.C., KIM, D.H., KIM, B.M., Application of artificial neural network and Taguchi method to preform design in metal forming considering workability, International Journal of Machine Tools and Manufacture, 39, pp.771-785, 1999
- [3] VAZQUEZ, V., HANNAN, D., ALTAN, T., Tool life in cold forging-an example of design improvement to increaseservice life, Journal of Materials Processing Technology, 98, pp.90-96, 2000
- [4] ASNAFİ, N., On tool stresses in cold heading of fasteners, Engineering Failure Analysis 6, pp.321-335, 1999
- [5] TABOR, D., The hardness of metals, Oxford Univ. Pres, 1951
- [6] NAYEBI, A., EL ABDI, R., BARTIER, O., MAUVOISIN, G., New procedure to determine steel mechanical parameters from the spherical indentation technique, Mechanics of Materials, 34, pp.243-254; 2002
- [7] DAS G., GHOSH SABITA, GHOSH SUKOMAL, Structure-property correlation of EN steel and evaluation of mechanical properties through BIT, NDT&E International, 39, pp.155-161; 2006
- [8] DAS, G., GHOSH, S., SAHAY, S.K., Use of ball indentation technique to determine the change of tensile properties of SS316L steel due to cold rolling, Materials Letters, 59, pp.2246-2251; 2005
- [9] DEMİRKOL, M., KISAKÜREK, Ş.E., On the relations between ball indentation hardness measurements and the tensile flow behaviour of some ferrous and nonferrous metals, Materials Science and Engineering, 59, pp.197-205; 1983
- [10] DEMIRKOL, M., Thesis, A study on the relationship between the hardness and the tensile properties of metals., Bogazici University,Faculty of Mechanical Engineering ,İstanbul, June 1979
- [11] AHN, J.H., JEON, E., CHOI, Y., LEE, Y.H., KWON, D., Derivation of tensile properties of thin films using nanoindentation technique, Current Applied Physics, 2, pp.525-531; 2002

- [12] PHARR, G.M., Instrumented Indentation Testing, University of Tennessee and Oak Ridge National Laboratory
- [13] KIMMARI, E., KOMMEL, L, Application of the continuous indentation test method for the characterization of mechanical properties of B₄C/Al composites, Proc. Estonian Acad. Sci. Eng., 12,4, pp.399-407;2006
- [14] FRANCO, A.R., PİNTAUDE, G., SINATORA, A., PINEDO, C.E., TSCHIPTSCHIN A.P., The use of a Vickers indenter in depth sensing indentation for measuring elastic modulus and Vickers hardness., Materials Research, Vol 7, No3, pp.483-491; 2004
- [15] SONMEZ, F.,DEMÍR, A.,Analytical relations between hardness and strain for cold formed parts, Journal of Materials Processing Technology, 186, pp.163-173; 2007
- [16] SHINORA, K., Relationship between work-hardening exponent and load dependence of Vickers hardness in copper, Journal of Materials Science, 28, pp.5325-5329,1993
- [17] SAHIN, O., UZUN, O., KÖLEMEN, U., UÇAR, N., Enerji metodu ile sertlik hesaplamaları üzerine matematiksel bir model, Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 9, 2,;2005
- [18] BUCAILLE, J.L., STAUSS,S., FELDER, E., MICHLER, J., Determination of plastic properties of metals by instrumented indentation using different sharp indenters, Acta Materialia, 51, pp.1663-1678; 2003
- [19] CASALS, O., ALCALA, J., The duality in mechanical property extractions from Vickers and Berkovich instrumented indentation experiments., Acta Materialia, 53, pp.3545-3561; 2005
- [20] CHENG, Y.T., CHENG, C.M., Can stres-strain relationships be obtained from indentation curves using conical and pyramidial indenters?, Journal of Materials Research, Vol14, No9, pp.3493-3496;1999
- [21] CHENG, Y.T., CHENG, C.M, What is indentation hardness?, Surface & Coatings Technology, 133-134, pp. 417-424;2000
- [22] Soğuk şekillendirme teknolojisi., Denet Civata Sanayii A.Ş., İstanbul, 2005
- [23] ÇAPAN, L., Metallere plastik şekil verme, Çağlayan basımevi,15-28,İstanbul, 1999
- [24] T.C. Kocaeli Üniversitesi Makine Mühendisliği Bölümü Makine Laboratuvarı-1 Deneyleri, Kocaeli, Ekim 2002

- [25] TS138 EN 10002-1 Metalik malzemeler, Çekme deneyi, Bölüm1, Ortam sıcaklığında deney metodu
- [26] TALBOT K., TOMLINSON, W.J., On the relation between hardness and flow curve of metals, Journal of Materials Science ,3, pp.655-658; 1968
- [27] DEMİR, A., SONMEZ, F.O., Prediction of Brinell Hardness distrubution in cold formed parts, Journal of Engineering Materials and Technology, 126, pp.398-405: 2004

ÖZGEÇMİŞ

Özgür Sezer, 28.06.1981 de İzmit'te doğdu. İlk, orta ve lise eğitimini Gölcük' te tamamladı. 1999 yılında başladığı Kocaeli Üniversitesi Makine Mühendisliği bölümünü 2003 yılında tamamladı. 2003 yılında Norm Makine Sanayi adına Şam'da bulunan Suriye Cam ve Porselen fabrikalarına ait oluklu mukavva fabrikasının kurulması projesinde asistan mühendis olarak görev aldı. 2004 yılında Sakarya Üniversitesi Makina Mühendisliği bölümünde yüksek lisans programına başladı. 2005 yılında Azim Ambalaj San. Ve Tic. A.Ş.' ye ait oluklu mukavva fabrikasının kurulumunda mühendis olarak görev aldıktan sonra bu şirkette bakım mühendisi olarak görev yapmaktadır.